LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

ADMINISTRATIVE RECORD

CHRONOLOGICAL INDEX

Volume 2 of 25

2007

Bate Stamp Numbers 00043191 – 00043907

Prepared for

Department of the Army Longhorn Army Ammunition Plant

1976 - 2007

LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS <u>ADMINISTRATIVE RECORD – CHRONOLOGICAL INDEX</u>

VOLUME 2 of 25

2007

- A. Title: Report Final Modeling Report Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment LHAAP Revision I Author(s): Shaw Recipient: All Stakeholders Date: February 13, 2007 Bate Stamp: 00043191 - 00043522
- B. Title: Minutes Draft Final Minutes, Monthly Managers Meeting Author(s): Shaw Recipient: All Stakeholders Date: February 13, 2007 Bate Stamp: 00043523 - 00043533
- C. Title: Letter Caddo Lake National Wildlife Refuge Future Plans Author(s): Mark Williams, Refuge Manager Fish and Wildlife Service Recipient: Rose Zeiler, Site Manager LHAAP Date: February 15, 2007 Bate Stamp: 00043534 - 00043535
- D. Title: Minutes Draft Final Minutes, Monthly Managers Meeting Author(s): Shaw Recipient: All Stakeholders Date: March 6, 2007 Bate Stamp: 00043536 - 00043547
- E. Title: Minutes Draft Final Minutes, Monthly Managers Meeting Author(s): Shaw Recipient: All Stakeholders Date: April 4, 2007 Bate Stamp: 00043548 - 00043558
- F. Title: Report Final Site Evaluation Report LHAAP-48 (Former Igniter Production Area) and LHAAP-35C(53) (Former Static Test Area) Author(s): Shaw Recipient: All Stakeholders Date: April 9, 2007 Bate Stamp: 00043559 - 00043907

Shaw Environmenta, Inc. 3010 Briarpark Drive, Suite 4N Houston, Texas 77042 713.996.4400 Fax: 713.996.4401

February 8, 2007

Mr. Cliff Murray U.S. Army Corps of Engineers – Tulsa District 1645 South 101st - East Avenue Tulsa, Oklahoma 74128-4629

RE: Task Order No. 109

Total Environmental Restoration Contract (TERC) Contract No. DACA56-94-D-0020 Environmental Investigation and Remediation at Longhorn Army Ammunition Plant, Karnack, Texas *Final Modeling Report, Revision 1, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas*

Dear Mr. Murray:

Shaw Environmental, Inc. is pleased to submit the attached Final Modeling Report, Revision 1 along with two CDs that will replace the CDs previously sent. We are also sending copies of the document and CDs directly to individuals on the attached project document distribution list.

Please contact me if you have any questions or require additional information.

Sincerely,

Praveen Srivastav, Ph.D., P.G. Project Manager

Longhorn Distribution List

Member	Agency	Address	Phone No. e-mail address	No. of Copics
Cliff Murray Tulsa District	U.S. Army Corp of Engineers	US Army Corp of Engineers 1645 South 101 st – East Avenue Tulsa, Oklahoma 74128-4529	Office: 918-669-7573 Cliff.Murray@SWT03.usace.army.mil	2
Dr. Rose Zeiler	BRAC; Longhorn Site Manager	P.O. Box 220 Ratcliff, AR 72951 727 South Brooklyn Rd Ratcliff, AR 72951	Office: 479-635-0110 rose.zeiler@us.army.mil	I
Jeff Armstrong	Army Environmental Center	Commander USAEC SFIM-AEC-ERA (Attn: Jeff Armstrong) Beal Road Bldg E-4880 APG, MD 21010-5401	Office: 410-436-1516 jeffrey.armstrong@us.army.mil	1
Chris Villarreal	US Environmental Protection Agency	US Environmental Protection Agency Superfund Division (6SF-AT) 1445 Ross Avenue Dallas, TX 75202-2733	Office: 214-665-6758 villarreal.chris@epamail.epa.gov	2
Fay Duke	Texas Commission of Environmental Quality	Texas Commission on Environmental Quality TCEQ Environmental Cleanup Section II, Team 2 (MC-221) 12100 Park 35 Circle, Bldg D Austin, TX 78753	Office: 512-239-2443 fduke@tceq.state.tx.us	2 - most 4-eco
Dale Vodak	Texas Commission of Environmental Quality	Texas Commission on Environmental Quality 2916 Teague Drive Tyler, TX 75701	Office: 903-535-5147 dvodak@tceq.state.tx.us	1
Paul Bruckwicki	US Fish and Wildlife Service	US Fish and Wildlife Service PO Box 230 Karnack, TX 75661 (mailing only) Caddo Lake NWR 15600 FM 134 Karnack, TX 75661	Office: 903-679-9144 Cell: 903-407-0852 paul_bruckwicki@fws.gov	1
Barry Forsythe	US Fish & Wildlife Service EPA Liaison (6SF- LT)	US Fish & Wildlife Service EPA Liason (6SF-LT) 1445 Ross Avenue, Suite 1200 Dallas, TX 75202	Office: 214-665-8467 forsythe.barry@epa.gov	1 eco

Total external distribution for routine draft final (non eco) reports = 11

February 8, 2007

DAIM-BD-LO

Mr. Chris Villarreal US Environmental Protection Agency Superfund Division (6SF-AT)n 1445 Ross Avenue Dallas, TX 75202-2733

Re: Final Modeling Report Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas, Revision 1, February 2007

Dear Mr. Villarreal,

The above-referenced document is transmitted to you for your files.

Point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at <u>rose.zeiler@us.army.mil</u>.

Sincerely,

Rose M. Zgiler

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

Enclosure: Final Modeling Report, Revision 1, February 2007 Copies furnished: Fay Duke, TCEQ, Austin, TX Paul Bruckwicki, Caddo Lake NWR, TX Cliff Murray, COE-Tulsa District, OK John Lambert, COE – Tulsa District, OK Praveen Srivastav, Shaw – Houston, TX

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

February 8, 2007

DAIM-BD-LO

Ms. Fay Duke Texas Commission on Environmental Quality Environmental Cleanup Section II (MC-221) 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Final Modeling Report Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas, Revision 1, February 2007

Dear Ms. Duke,

The above-referenced document is transmitted to you for your files.

Point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at <u>rose.zeiler@us.army.mil</u>.

Sincerely,

Routh Ziles

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

Enclosure: Final Modeling Report, Revision 1, February 2007 Copies furnished: Chris Villarreal, USEPA Region 6, Dallas, TX Paul Bruckwicki, Caddo Lake NWR, TX Cliff Murray, COE – Tulsa District, OK John Lambert, COE – Tulsa District, OK Praveen Srivastav, Shaw – Houston, TX

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
Comments	s from Chris	s Villarreal (E	PA) by Roger W. Lee (USGS)			
1	General		I have read the subject report and find it to be well organized and thorough in predicting fate and transport of COCs from source areas on site to points of entry to Caddo Lake. However, there should be actual data available of surface water and ground water contamination to validate modeling predictions. These data are not considered nor provided in this document. The report provides sufficient information to evaluate models, but has left out a good bit of the chemistry and geochemistry of the site. Fate of COCs like chlorinated solvents rely on anaerobic biodegradation terms in the models as part of their chemical processing in the aquifers. However, no evidence of geochemistry of ground water is presented to support anaerobic conditions. If conditions are aerobic as they can be in shallow aquifers, no biodegradation of TCE would be observed and fate and transport modeling should not use a biodegradation term in the in model. This could affect predictions of TCE transport to streams.		The stakeholders at LHAAP opted to use simple models for predicting fate and transport of the COCs at LHAAP. The models used; Domenico's equation and AT123D are analytical and semi-analytical tools that assume a homogenous settings. Field observations indicate a heterogeneous subsurface at LHAAP that may depart remarkably from the homogenous settings assumed during prediction of fate and transport of contaminants, therefore, calibration of these models is not practical. In addition, due to lack of groundwater data at the points of exposure, validation of the models is not possible. Two practical evidences suggest that there is some degradation at the sites. During the September 2004 data gap sampling event, geochemistry data were collected from LHAAP-58 (35A). The dissolved oxygen data in most of the monitoring wells showed values less than 1.0 mg/L. The highest was detected at 11.12 mg/L at well 35AWW01, but dropped to only 0.99 mg/L after less than 2 hours during the test. Redox values ranged greatly from -129 to 354. Second, cis-1,2-DCE and vinyl chloride were detected at some sites. These are daughter products of PCE and TCE which proves in itself that dechlorination occurred. On the other hand, recent study at LHAAP-16 shows that sulfate levels are elevated and there is no carbon to sustain significant reductive dechlorination under existing conditions. A study conducted by Geosyntec showed that even when TCE degradation was stimulated in the presence of lactate, vinyl chloride did not degrade, as indicated by a lack of ethene detection. VC degradation potentially may occur only when most of TCE and cis-1,2-DCE have dechlorinated, because the thermodynamics of reductive chlorination assumption used in the report may be valid for some sites and not valid for others. Based on current available data and lack of MNA geochemistry data, the reductive	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					dechlorination assumption has been conservatively utilized. It is the intention of the Army to present the results of the current transport calculations for PCE, TCE, cis-1,2-DCE and VC at the sites involved (LHAAP-12,- 29, -35A, -35B, -35C, -47, -48, -50 and -67) until such a time that additional data are available to validate the presence or absence of degradation on a site- specific basis. Additional comment from Robert Lee - Areas should be noted in text or map if chlorinated degradation is evident or not.	
					See page 4-14 for new text.	
1	Section 3.0		Title should be "Modeling considerations for COCs at Select LHAAP Sites"	С	The title of the Section has been revised to reflect the comment.	
2	Table 3-1		TCA isomers are considered only at LHAAP-67. Is this their only occurrence on the site?		1,1,2-Trichloroethane (TCA) was detected at LHAAP-35A, -47 and -50. At two of these sites (LHAAP-47 and 50), the maximum detected concentrations were below the MCL. At LHAAP-35A, TCA was detected at concentrations above the MCL. The proportion of risk contributed by each COC for a specific site was one of the factors in the COC selection (Shaw, 2004a). The risk contributed by TCA at LHAAP-35A was minor compared with other contaminants that were modeled (trichloroethene, tetrachloroethene, 1-1, dichloroethene, RDX, and perchlorate), and therefore was not selected for modeling. Additional comment from Robert Lee - Response is fine but should be in text. See page 4-1 for new text.	
3		1st Paragraph	How was the decreasing trend for perchlorate determined? Please provide evidence and data to show this conclusion can be supported.		Historical perchlorate data for LHAAP-29 was evaluated and showed a general decreasing trend. Table 4-1 summarizes the perchlorate groundwater analytical data. Additional comment from Robert Lee - The question of how a decreasing trend was determined was not answered. Was a statistical evaluation used? Graph of time vs. perchlorate? A method should support the conclusion.	
					The conclusion of decreasing trend was based on data in Table 4-1.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
4		3rd Paragraph	What analytical methods were used to establish initial contaminant concentrations in the soil?		Analytical methods used to establish the initial contaminant concentrations were those analytical methods listed in the approved Final Work Plans for RI/FS at LHAAP prepared by Jacobs Engineering Group, Inc and Solutions to Environmental Problems, Inc., as follows:	
					VOCs EPA Method 8260A SVOCs EPA Method 8270 Metals (except Hg) EPA Method 6010A Hg EPA Method 7471A Explosives EPA Method 8330 Pesticides/PCBs EPA Method 8080A Dioxins/Furans EPA Method 8290 Perchlorate EPA Method 314.0 This information will be incorporated into the report.	
					Additional comment from Robert Lee - Response is good, add to text.	
					See page 4-3 for reference.	
5		3rd Paragraph	Does this model code require boundary conditions or establish a hydrologic steady state? You might state how this differs from hydrologic models coupled with transport.		The Domenico equation used here is under steady state condition. Since it is an analytical model and a non-exact solution which assumes homogeneous, isotropic, it does not require the stringent boundary conditions required by other numerical transport models. The source plume has to be defined in terms of its horizontal and vertical dimensions. The spreading of the plume in the vertical direction is limited by the aquifer's thickness. When the thickness of the source plume is less than the aquifer thickness, it would spread horizontally and vertical dispersivity is no longer active and the error function term with α_z in Equation 4-15 becomes unity. The horizontal distance at which the plume touches the bottom can be calculated (Domenico and Schwartz, 1998).	
					Additional comment from Robert Lee - The response is ok, but the limits of the model should be discussed in the text. See page 4-12 for new text.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
6	Page 4-1		There should be included here a table of half-lives used with references.		This portion is a general description of the overall methodology used in the evaluation of the dilution factor. A list of half-lives and degradation rates with references has been presented for each individual site in the Appendices included in the report except those sites whose only COC is perchlorate which is assumed to have no degradation rate.	
				Additional comment from Robert Lee - The response is ok, but when the half-lives are discussed in the text, refer to the attachment appendix pertinent to the discussion.		
					See applicable Appendices for discussion.	
7	Page 5-2	Paragraph and	Paragraph and redox potential and low dissolved oxygen to support biodegradation of TCE? Without that specific data, it is	С	See response to comment no.1	
					Additional comment from Robert Lee - areas should be noted in text or map if chlorinated degradation is evident or not.	
		elsewhere	difficult to support that the system is anaerobic and subject to reductive dechlorination. If aerobic conditions		See response to General Comment #1.	
			prevail, TCE should not have a biodegradation term in the fate and transport computations.			
8	Page 2-2	2-2 Appendix B	Appendix B The half lives for TCE and VC should be reconsidered. TCE should not have a half life term if the system is aerobic. I could not find 3.4 years as a half life for VC in the Howard reference. They were 2 years and 8 years at a maximum for VC.	С	Please see response to comment no.1. The half life utilized for VC during the modeling was the average of the literature values. The model was rerun with a conservative half-life of 8 years to address field comment.	
					Additional comment from Robert Lee - ok. A text revision is expected.	
					See page 2-2 in Appendix B for new text.	
9	Page 2-3	Appendix B 2nd Paragraph	Koc is not applicable to perchlorate, but there is some sorption (Kd) for perchlorate, albeit small because of its relatively high aqueous solubility. The sorption process is different for perchlorate and relatively negligible but not because it is inorganic as stated.	С	The text has been revised for clarity. Koc is not applicable to perchlorate, but there is some sorption for perchlorate at a negligible value. When a substance is inorganic, there is no Koc involved. That is what this sentence was meant to state. It does not mean that perchlorate has no sorption process because it is inorganic. It still has a small Kd value that can be neglected.	
				Additional comment from Robert Lee - ok. A text revision is expected.		
					See page 2-3 in Appendix B.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
Comments	from Alan	Etheredge (T	CEQ) by Charles D. Stone (Remediation Division)			
10	A.1	Table 1	Table 1 summarizes the various release sites and associated exposure pathway evaluations. This document address exposure pathways for each release site in its respective Section (see Table 1).	C	A summary table of all the model parameters and input values has been provided for each site in the appendices. Model descriptions are provided in the main text. Site-specific parameter input values are described for each individual site. However, due to lack of these site-specific data, literature values were used. 7Q2 value was derived based on daily discharge with 5- minutes interval obtained from the continuous record from December 1999 to March 2000. Since this is a short duration record of less than 5 years, a more stringent requirement of 10 th percentile will be used as an estimate of 7Q2 as stipulated by TCEQ ("Determining 7Q2" in "Procedures to Implement the Texas Surface Water Quality Standards, January 2003," TCEQ), which is approximately 2.5 cfs, instead of 26 cfs used previously. The mixing concentration in the surface water has been re-calculated.	
SECTION B	: LHAAP-4 B.1		Geologic, hydrostratigraphic and aquifer hydraulic information are not provided, as requested by TCEQ (2003). Minimum model simulation submittal requirements are not provided, as requested by the TCEQ (2003).	c	Section 2.2 in the main text portion has been revised to add more information about geology and hydrogeology of LHAAP. Jacobs RI reports and several cross-sections have been provided on a CD included with the document. Site geology and hydrogeology parameters for LHAAP-04 are described on Pg 2-1 to 2-2 of Appendix A to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). Aquifer hydraulic information (hydraulic conductivity, hydraulic gradient and flow direction) is provided on a site-by-site basis in the appendices.	
12	B.2		COC PCL determinations at LHAAP-4 are for perchlorate only. Modeling of the ^{GW} GW pathway for perchlorate is considered "not necessary" because the groundwater concentration in monitoring well 04WW0I of 3.98 μ g/L reported in STEP (2003) did not exceed the Texas Class 1 Groundwater PCL of 17.0 μ g/L (Sec 1.0, Appendix A, Subject Report).		We agree that perchlorate concentration at the source could be higher than 3.98 μ g/L at 04WW01. However, back calculation using Domenico solution indicates a dilution factor of 1.119 (see attachment). This implies that the concentration at the source (180 feet north of well 04WW01could be 4.45 μ g/L which is still less than the groundwater MSC of 26 μ g/L and less than the Texas Class 1 Groundwater PCL of 17.0 μ g/L.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			However, MW 04WW0I is located approximately 180 feet south of the acknowledged source in a direction that is lateral to, not along, the easterly groundwater gradient (<i>e.g.</i> , Sec 1.0 & Figure 3A, Appendix A, Subject Report). Back calculation of the Domenico solution to the groundwater fate and transport equations (<i>e.g.</i> , Domenico and Schwartz, 1997) using input parameter value assumptions commensurate with the location would indicate that groundwater perchlorate concentrations closer to the LHAAP-4 may exceed the PCL and that a significant perchlorate plume appears to be present and migrating down gradient from there. Additionally, current perchlorate concentrations in MW 04WW0I are not provided in the subject report.		The input parameters (hydraulic conductivity, hydraulic gradient, longitudinal and lateral length of the assumed plume, dispersivities, and aquifer thickness, distance to Goose Prairie Creek, etc) in the calculation are all site-specific or based on regulatory assumptions. Conservative assumption was made that the "plume" occupies the full thickness of the water bearing zone. The available perchlorate concentration information used in the calculation were those obtained from reports generated by the Jacob's Engineering Group in 2002 and 2003. The most recent perchlorate concentration in well 04WW01 was non-detect, the detection limit of which was 1.0 µg/L (Shaw E & I: Draft Final – Data Gap Investigation, July 2005). After further discussions with TCEQ, additional modeling was conducted in y-direction to demonstrate transport in that direction. This was done for sites LHAAP-4, -29, -47.	
13	В.3		VLEACHSM is used to simulate the leaching of perchlorate soil contamination to groundwater (Sec 2.1, Appendix A, Subject Report). Some assumed perchlorate chemical input parameter values used in the VLEACHSM simulations require revision: <u>Henry's Law constant</u> - data regarding partitioning of perchlorate from the liquid phase into the vapor was not available (Sec 2.1.1, Appendix A, Subject Report). However, the value is expected to be small. The recommended conservative value for the Henry's Law constant is zero (0.0). <u>Air diffusivity</u> - similar to Henry's Law constant (above), the recommended conservative value for air diffusivity is zero (0.0). <u>Aqueous solubility</u> - solubility data were not available (Sec 2.1.1, Appendix. A, Subject Report). Perchlorate is an <i>ion</i> , and is completely soluble in water. The assumed		The input parameters for perchlorate in the model are conservatively small in values for Henry's Law constant, air diffusivity, and high solubility (50,000 mg/L). Had these parameter values been changed to the recommended values, the nature of the results would still remain the same. The perchlorate phase is currently not clear. The exact commensurate solubility cannot be identified at this moment. The solubility depends on the kind of perchlorate compound at	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			solubility greatly underestimates the actual solubility. VLEACH requires the solubility for <i>a solid phase</i> COC in the soil. While the subject report does not discuss the nature or origin of the perchlorate, <i>an appropriate</i> <i>perchlorate phase must be specified (e.g., ammonium</i> <i>perchlorate - for explosives and solid rocket motors, etc.)</i> <i>and a commensurate solubility assigned.</i> This should be reflected in the revised model simulation.		the site. It could range from 15,000 mg/L (potassium perchlorate) to 200,000 mg/L (ammonium perchlorate). The current value of 50,000 mg/L used in the model is within this range. Further, recalculation using zero values of Henry's Law constant and air diffusivity, and using 200,000 mg/L of solubility has shown that the difference in results is minimal, i.e., 75.94 mg/L versus 75.86 mg/L. This result has been documented in the final report.	
			Kd / degradation rate - a typographical error appears likely (Sec 2.1.1, Appendix A, Subject Report) which couples these two separate parameters in the subject report. The discussion is interpreted to mean that both parameters are assigned a value of zero, with which the TCEQ concurs. Any other intended meaning should be clarified with the revised calculations.	С	The error has been revised by adding "and" between "partition coefficient (kd)" and "degradation."	
			<u>Dispersivities</u> - longitudinal dispersion (EQ AI, Appendix A, Subject Document) is provided, but not explained. Reference to an unavailable document (Dynamac Corporation, <i>1995</i>) is not an acceptable substitute by which an evaluation for approval can be made. Additionally, the <i>arithmetic presented is incorrect</i> for	D	Dynamac Corporation was the company that developed VLEACHSM for the EPA 's Robert S. Kerr Environmental Research Laboratory – Center for Subsurface Modeling Support (see the Reference List). Therefore this reference should be acceptable.	
			both longitudinal and vertical dispersivities (EQs Al & A2, Appendix A, Subject Report).	С	The equation A1 has a typo error. It has been corrected to: $\alpha_L = 2.554 \times 10^{-4} L_u^{-3.811}$ This equation is provided in the VLEACHSM document (Dynamac Corporation, 1995).	
			<u>Darcy velocity</u> - (presumably) for the VLEACHSM groundwater mixing calculation (EQ A3) uses an average K value that is " based on the slug tests at LHAAP-04 and LHAAP-35. (Sec 2.1.1, Appendix A, Subject Document). However, Section 2.2.1 (Appendix A, Subject Document) indicates shallow underlying groundwater is a GWBU" consisting of sand ranging from 2 to 5 feet" in thickness. The K value derived from the slug test at LHAAP-04 is reported to be 3.5 x 10-5 cm/sec (Sec 2.1.1, Appendix A, Subject Document). This value is inconsistent with a unit comprised of sand (e.g., Fetter, 1988, etc.) and is most	D	The average hydraulic conductivity used for this site is actually 6.36 x 10^{-4} cm/sec and NOT 3.5 x 10^{-5} cm/sec as mentioned (see Pg 2-4, Appendix A). Because only one slug test data was available at LHAAP-04, additional test values from a nearby site (LHAAP-35A) were included to obtain the average value consistent with the formation type observed at the site. The soil type at the site is not pure sand, it is a combination of sand, clayey sand and silty sand. According to Fetter (1988), the range of hydraulic conductivity for silty sand and fine sand is from 10^{-3} to 10^{-5} cm/sec (Pg 80 of Fetter). The average value of hydraulic conductivity used for this site is therefore acceptable.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			likely a slug test performed either entirely or partially in the unit underlying the shallow sand GWBU. In lieu of available hydraulic aquifer test results, boring/well logs and other hydrostratigraphic information (see Item B. 1) the Darcy velocity cannot be accepted by the TCEQ.		Boring logs are included in Jacobs RI report provided in a CD with this report.	
			Based on the information provided and the discussion above, the submittal does not rise to the level necessary to support an ACL determination. Consequently, <i>the</i> <i>TCEQ</i> cannot accept the results of the VLEA CHSM model simulations.	D	Based on the above responses, model results obtained from VLEACHSM will be checked with the recommended input parameter values. However, the methodology and the relevant input parameters are considered adequate to support determination of protective values.	
14	B.4		AT123D is used to simulate groundwater fate and transport from the mixed groundwater simulated by VLEACHSM (see Item B.3) directly beneath the site to Goose Prairie Creek (Sec 2.2, Appendix A, Subject Report). Model submittal requirements requested by the TCEQ (2003) are not provided, including model domain, model calibration and model run data. Additionally, the details regarding the coupling of VLEACHSM and AT123D, also requested by the TCEQ (2003), are not provided in the subject report.		Model domain in this semi-analytical model (AT123D) includes the distance to Goose Prairie Creek (POE) which is described on Pg 2-4 of Appendix A. Laterally, the model domain extends 5 feet on both sides from the center line of the source. Vertically, it extends to the total thickness of the shallow water bearing zone which is 5 feet. Even though perchlorate was not detected in Goose Prairie Creek (i.e., can be regarded as zero concentration), there is no observed data at the POE (point of exposure at the interface of groundwater and surface water) in groundwater. Therefore there is no data to calibrate against when using AT123D. See also response to comment no.1 in reference to model calibration. Shaw has provided model run data (model input and output files) on CD. The maximum mixing concentration of 78,000 μg/L derived from VLEACHSM was used conservatively as the source concentration. This value was converted to a release rate in (kg/hr) as required by AT123D. This is the only "coupling" between VLEACHSM and AT123D, unlike other numerical model where the changes of mixing concentration over time are inputs to the groundwater flow and transport model. The point has been clarified in the text on page 2-4 of Appendix A.	
			The submittal deficiencies discussed above, together with the inaccuracies inherent in the VLEACHSM model simulations (see Item B.3), prohibit further evaluation of	D	Strongly disagree.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			the AT123D model for LHAAP-4. As such, the TCEQ cannot accept the results of the AT123D model simulations provided.			
15	В.5		RUSLE (USDA, 1997) is used to evaluate the soil-to- sediment pathway using overland soil loss to Central Creek for the COC perchlorate. The origin and/or determination of numerous RUSLE input parameter values are not described or substantiated. Some parameter units conversions cannot be duplicated and appear to be incorrect (<i>e.g.</i> , SL_{TOT}). The source of each model input value should appear on a table. All site- specific parameter input <i>values</i> associated with the Universal Soil Loss Equation, the Sediment Load equation (SL), and ^{Sed} Soil must be referenced and explained.		All the input parameters are either generated within RUSLE software or determined by the guidance in the RUSLE documentation (USDA, 1996). The explanation of each parameter is provided in Pg 3-1 through 3-3 of Appendix A. The derivation of parameters can be attached to the revised report for better understanding and book keeping purposes. All the units of parameters are correctly used as directed by the guidance documents. SI_{tot} has a unit of kg/ac-yr, which is a correct unit (refer to USDA, 1996). Because some site-specific parameters are not available, values derived from neighboring or similar location were used. For example, the rainfall-runoff erosivity factor was not available for LHAAP site, so the value derived for Shreveport, Louisiana was used. Other unavailable site-specific data needed in the calculation were estimations based on professional judgment. Where professional judgment is used, the text will state so clearly.	
16	B.6		The surface runoff to surface water pathway is evaluated using a modification of the TRRP 24 watercourse mass balance relationship and 7Q2 flow data. 7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10" percentile</i> as an estimate of 7Q2 (TCEQ, 2002). The exposure pathway determination was calculated using a <i>50% probability exceedance</i> 7Q2 value and shall require re-calculation.	С	7Q2 value was derived based on daily discharge with 5- minutes interval obtained from the continuous record from December 1999 to March 2000. Since this is a short duration record of less than 5 years, a more stringent requirement of 10 th percentile will be used as an estimate of 7Q2 as stipulated by TCEQ ("Determining 7Q2" in "Procedures to Implement the Texas Surface Water Quality Standards, January 2003," TCEQ), which is approximately 2.5 cfs, instead of 26 cfs used previously. The mixing concentration in the surface water has been re-calculated.	
SECTION C	: LHAAP-12	2				
17	C.1		The use of the Domenico steady state solution to the groundwater advection-dispersion fate and transport used for predictive purposes should be calibrated using the transient solution. No calibration of the model system appears in this section of the subject report.		Domenico equation is an analytical model assuming homogeneous and isotropic settings. No matter how well the calibration will be (i.e., good matching of observed and simulated concentrations), the so-called calibrated parameters still cannot represent the true values. As such, calibration using analytical models are not recommended in practice. Furthermore, monitoring wells are not present at the downstream POE locations, therefore neither flow data (i.e.,	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					head) nor concentration data are available for calibration purposes. In addition, perchlorate was not detected in Central Creek (Shaw 2004, Technical Memorandum). While the value for perchlorate may be assumed to be nondetect (zero) in Central Creek, no results are available for perchlorate at the POE between groundwater and surface water. Therefore calibration using stream concentration would not be possible. Please reference response to comment no. C.2 attached to the Technical Memorandum dated February 2004. After additional discussions with TCEQ, Shaw performed additional model runs in y-direction to include downgradient wells for sites LHAAP-04, -29, and -47.	
18	C.2		A correction for longitudinal distance, x, to the POE that accounts for the restriction of actual potential vertical dispersion, a_x should be made and described for the condition: $S_d=B$. This correction for x is not apparent and affects the groundwater transport DAF.	C	Domenico equation was programmed in Excel spreadsheet with consideration of using α_z restricted by the thickness of the aquifer. When the thickness of the source plume is less than the aquifer thickness, the plume would spread horizontally and vertically downwards until it reaches the entire thickness at which point the vertical dispersivity is no longer active and the error function term with α_z in Equation 4-15 becomes unity. The horizontal distance at which the plume touches the bottom can be calculated (Domenico and Schwartz, 1998). This consideration IS reflected in the calculation. Tables 1, 2, and 3 show the horizontal distance, Xp (the corrected x), at which the plume occupies the entire thickness and α_z cannot be considered in the equation after that point. In the current modeling, the source plume was conservatively assumed to occupy the entire thickness initially, therefore, Xp = 0 (a worst case scenario). The Final report text has been revised to include the above description.	
19	C.3		Source concentrations of TCE and perchlorate are calculated (using the tentative values [see C.2]) to be exceeded at the groundwater - Central Creek surface water interface. Hence, surface water dilution factors were calculated.	С	Noted.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
20	C.4		The calculated value of U_{gw} (30.24 ft/yr) is not consistent with the input parameter values described in subject report. TCEQ calculates a value of 49.9 fl/yr. This apparent discrepancy should be resolved as it directly affects the surface water DF calculation (Q).	С	Agree. The results have been revised.	
21	C.5		Recalculations of ^{sw} GW (see Item C.4) should be performed consistent with guidance provided in TCEQ (2002).	С	Groundwater concentration protective of surface water has been recalculated (see Response in C4).	
22	C.6		7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). The exposure pathway determination was calculated using a different 7Q2 value and shall require re-calculation. Therefore, acceptance of the results and conclusions regarding the DF calculation for LHAAP-12 is deferred.	С	Because the current stream-discharge data only provide short- term records from December 1999 to March 2000. As stated in the response for comment no. B.6, the 10 th percentile should be used for 7Q2. However, in the current study, 7Q10 was used. This value is identical to 10 th percentile (i.e., 1.0 cfs). The text related to this section has been revised and the results have been checked.	
23	C.7		No other exposure pathway has been addressed in association with the LHAAP-12 site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed.		Based on the human health risk assessment, none of the COCs in soil were determined to have an unacceptable risk (Shaw's Technical Memorandum, March 2004), therefore the only exposure pathway is groundwater to surface water. See section 3.0 and Table 2-1.	
SECTION I	D: LHAAP-2	29				
24	D.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of methylene chloride, 1 ,2-DCA, TCE and perchlorate from the source area to Central Creek, at a distance of approximately 312 feet away. The subject report lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results. In lieu of these data, the evaluation of the results of this modeling can not occur until a full and complete description and report of the simulation is received. Until	D	 A. The distance from the source area to Central Creek is not 312 feet as mentioned in the comments. It is approximately 6,125 feet. B. The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 of Appendix C to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Central Creek, the vertical distance (the thickness of the shallow water-bearing zone). This information is provided on page 2-1 of Appendix C. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc) are mentioned on page 2-1 and listed in Table 1 (Appendix C). The potentiometric surface for this site is 	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			such time, the results of the model can not be evaluated or accepted.		included as Figure 2. Basically, all the information for running AT123D is included in this Appendix C.	
					C. Model calibration was not performed (see response to comment no. C1) because AT123D is basically an analytical model.	
25	D.2		The requested hydrogeologic information (see D.1) also must detail reasons why groundwater discharge to nearby Goose Prairie Creek surface water is not considered in the modeling.		As mentioned on page 1-1 in Appendix C, groundwater flow direction is toward southeast. The Closest surface water body downgradient of the source area is Central Creek. Available groundwater data does not indicate that groundwater would flow into Goose Prairie Creek, which is located to the north.	
26	D.3		7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the 10 th percentile as an estimate of 7Q2 (TCEQ, 2002). The exposure pathway determination was calculated using a different 7Q2 value and shall require re-calculation. Therefore, acceptance of the results and conclusions regarding the DF calculation for LHAAP-29 is deferred	С	The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses to comments nos. B6 and C6) for short term discharge records.	
27	D.4		No other exposure pathway has been addressed in association with the LHAAP-29 site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed		Based on the human health risk assessment, none of the COCs in soil were determined to have an unacceptable risk (Shaw's Technical Memorandum, March 2004), therefore the only exposure pathway is groundwater to surface water. Please see comment response #23.	
SECTION E	: LHAAP-3	5A (58)				
28	E.1		ATI23D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of 1,1 -DCE, TCE, PCE, RDX and perchlorate from the source area to Goose Prairie Creek, at a distance of approximately 6,319 feet away. The AT123D modeling report for LHAAP-35A (58) lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model	D	A. The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 of Appendix D to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Central Creek, the vertical distance (the thickness of the shallow water-bearing zone). This information is provided on page 2-1, Appendix D. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc)	
			calibration information for groundwater flow and chemical transport throughout the model domain, and		are mentioned on page 2-1 and listed in Table 1 (Appendix D). The potentiometric surfaces for this site are	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response A or D ²
			specific simulation results (see Attachment A). Additionally, the TCEQ requests the digital input file and printed output file for the LHAAP-35A (58) simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the		shown in Figures 3A and 3B. Basically, all the information for running AT123D is included in Appendix D.B. Model calibration was not performed (see response to comment no. C1) because AT123D is basically an analytical model.
			simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		C. Shaw has provided digital input and output files on a CD.
29	E.2		 VLEACHSM or "VLEACHM" (Sec 2.1.1, Appendix L, Subject Report) is used to " obtain the leachate mixing concentration hydrograph" for bis(2- ethlyexyl)phthalate in groundwater at LHAAP-35A (58). This simulation comprises COC leaching from a source in the unsaturated zone, mixing of the leachate with underlying groundwater and transport of COC mass in saturated zone to location of POE. The VLEACH(?) modeling report for LHAAP-35A (58) lacks requisite information regarding the modeled simulation, including details regarding soil polygon data (for each polygon), COC properties, soil recharge information and aquifer properties, as well as the sources of the values. The use of VLEACH/VLEACHSM requires accompaniment of commensurate input information of model construction and model parameters (see for example Section 6.0, <i>Input Parameters</i>, VLEACH 2.2 (USEPA, 1997). Additionally, the TCEQ requests the digital input file (depending on model version) and printed output file for the LHAAP-35A (58) simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted. 	D	 A. Typo error for VLEACHM has been corrected to VLEACHSM. B. The soil polygon is selected at the maximum soil concentration location. There is no need to use other polygons where soil concentrations are lower. COC and aquifer properties (source release, source area and depth, hydraulic conductivity, hydraulic gradient, recharge, dispersivities, chemical parameters etc) are described on page 2-1 to 2-2 of Appendix L. C. Shaw has provided digital input and output files on a CD.
30	E.3		The COCs 1,1,2-TCA and VC and were not included in the model simulation. The precise reasons for their respective elimination is absent from the subject document. However, the reasons for their elimination	D	The reasons for not modeling these COCs are mentioned in 3 rd paragraph, Page 1-1 (Appendix D).

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			should be documented and included in the submittal			
31	E.4		RUSLE (USDA, 1997) is used to evaluate the soil-to- sediment pathway using overland soil loss to Central Creek for the COC perchlorate. The origin and/or determination of numerous RUSLE input parameter values are not described or substantiated. Some parameter units conversions cannot be duplicated and appear to be incorrect (<i>e.g.</i> , SL_{TOT}). The source of each model input value should appear on a table. All site- specific parameter input <i>values</i> associated with the Universal Soil Loss Equation, the Sediment Load equation (SL), and ^{Sed} Soil must be referenced and explained.	D	 A. RUSLE (USDA, 1996; Toy and Foster, 1998) is used to evaluate the soil-to-sediment pathway using overland soil loss to Goose Prairie Creek and NOT Central Creek for the COC bis(2-ethlyexyl)phthalate, NOT perchlorate for Site 35A (58) as mentioned in the comments. B. All the input parameters are either generated within RUSLE software or determined by the guidance in the RUSLE documentation (USDA, 1996, Toy and Foster, 1998). The explanation of each parameter is provided on Pg 4-3 through 4-6 in the main text and on Page 2-1 to 2-3 in Appendix D. All the units of parameters are correctly used as directed by the guidance documents. <i>SL_{TOT}</i> has a unit of kg/ac-yr, which is a correct unit (refer to USDA, 1996). Because some site-specific parameters are not available, values derived from neighboring or similar location were used. For example, the rainfall-runoff erosivity factor was not available for LHAAP site, so the value derived for Shreveport, Louisiana was used. Other unavailable site-specific data needed in the calculation were an estimation based on professional judgment. 	
32	E.5		The soil-to-surface water exposure pathway for bis(2- ethlyexyl)phthalate was evaluated using an inappropriate value for 7Q2. 7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). The exposure pathway determination was calculated using a <i>50% probability</i> <i>exceedance</i> 7Q2 value (Appendix L, Subject Report) and shall require recalculation. Therefore, acceptance of the results and conclusions regarding the soil-to-surface water exposure pathway for <i>LHAAP-35A (58)</i> is deferred.	С	The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses to comments nos. B6 and C6) for short term discharge records.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²				
SECTION I	SECTION F: LHAAP-35B (37)									
33	F.1		AT123D (ORNL, 1981) was used to simulate groundwater flow and contaminant transport of 1,1-DCE, TCE and PCE from the source area to Goose Prairie Creek at a distance of approximately 125 feet away. The AT123D modeling report for LHAAP-35B (37) lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LHAAP-35B (37) simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		 A. The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 in Appendix E to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Goose Prairie Creek, the vertical distance (the thickness of the shallow water-bearing zone). This information is provided on page 2-1 in the appendix. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc) are mentioned on page 2-1 and listed in Table 1 (Appendix E). The potentiometric surface for this site was not prepared but a plant site-wide potentiometric surface based on December 1998 water level measurement was used as mentioned on Page 1-1. Basically, all the information for running AT123D is included in Appendix E. B. Model calibration was not performed (see response to comment no. C1) because AT123D is basically an analytical model C. Shaw has provided digital input and output files on a CD. 					
34	F.2		No other exposure pathway has been addressed in association with the LHAAP-35B(37) site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed		Based on the human health risk assessment, none of the COCs in soil were determined to have an unacceptable risk (Shaw's Technical Memorandum, March 2004), therefore the only exposure pathway is groundwater to surface water. Please see comment response #23.					
SECTION G	: LHAAP-35	5C (53)								
35	G.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of TCE and perchlorate from the source area to Central Creek, at a distance of approximately 300 feet away and Harrison Bayou, at a distance of approximately <i>658</i> feet away. The AT123D modeling report for <i>LHAAP-35C (53)</i> lacks requisite information regarding the modeled simulation,		A. The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 in Appendix F to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distances to Central Creek and Harrison Bayou, and the vertical distance (the thickness of the					

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response A or D ²
			including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LHAAP-35C(53) simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		 shallow water-bearing zone). This information is provided on page 1-1 and 2-1 in the appendix. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc) are mentioned on page 2-1 and listed in Tables 1 and 2 (Appendix F). The potentiometric surface for this site was not prepared but a plant site-wide potentiometric surface based on December 1998 water level measurement was used as mentioned on Page 1-1. Basically, all the information for running AT123D are included in this Appendix F. B. Model calibration was not performed (see response to comment no. C1) because AT123D is basically an analytical model
36	G.2		RUSLE (USDA, 1997) is used to evaluate the soil-to- sediment pathway using overland soil loss to Central Creek for the COC perchlorate. The origin and/or determination of numerous RUSLE input parameter values are not described or substantiated. Some parameter units conversions cannot be duplicated and appear to be incorrect; in the case of SL_{TOT} , reference is made to a "Section 4.1.1" that does not exist. The source of each model input value should appear on a table. All site-specific parameter input <i>values</i> associated with the Universal Soil Loss Equation, the Sediment Load equation (SL), and ^{Sed} Soil must be referenced and explained.		 A. All the input parameters are either generated within RUSLE software or determined by the guidance in the RUSLE documentation (USDA, 1996, Toy and Foster, 1998). The explanation of each parameter is provided on Pg 4-3 through 4-6 in the main text and on Page 3-1 to 3-6 in Appendix F. The derivation of parameters can be attached to the revised report for better understanding and book keeping purposes. All the units of parameters are correctly used as directed by the guidance documents. <i>SL_{TOT}</i> has a unit of kg/ac-yr, which is a correct unit (refer to USDA, 1996). Because some site-specific parameters are not available, values derived from neighboring or similar location were used. For example, the rainfall-runoff erosivity factor was not available for LHAAP site, so the value derived for Shreveport, Louisiana was used. Other unavailable site-specific data needed in the calculation were an estimation based on professional judgment.
			The TCEQ human health PCL value for perchlorate in sediment (C_{TOT}) used for this pathway should be checked for updated values.		B. The TCEQ human health PCL value for perchlorate in sediment was obtained from the Table for Risk Reduction Program Rule, TNRCC, 2002.

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
37	G.3		The surface runoff to surface water pathway is evaluated using a modification of the TRRP 24 watercourse mass balance relationship and 7Q2 flow data. 7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>1 0th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). The exposure pathway determination was calculated using a <i>50% probability exceedance</i> 7Q2 value and shall require re-calculation.		The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses to comments nos. B6 and C6) for short term discharge records.	
SECTION H	I: LHAAP-46	; ;				
38	H.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of perchlorate from the source area to Goose Prairie Creek, at a distance of approximately 312 feet away. The AT123D modeling report for LHAAP-46 lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LHAAP-46 simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		The distance from the source to Goose Prairie Creek is approximately 3120 feet, NOT 312 feet stated in the comment. The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 in Appendix G to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Goose Prairie Creek, the vertical distance (the thickness of the shallow water-bearing zone). These information are provided on page 2-1 in the appendix. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc) are mentioned on page 2-1 and listed in Table 1 (Appendix G). The potentiometric surface for this site was not prepared but a plant site-wide potentiometric surface based on December 1998 water level measurement was used as mentioned on Page 1-1. Basically, all the information for running AT123D is included in this Appendix G. Model calibration was not performed (see response to comment no. C1) because AT123D is basically an analytical model.	
39	H.2		Leachate modeling at LHAAP-46 is alluded to (Sec 2.2, Appendix L, Subject Report) in regards to Goose Prairie Creek "875 feet downgradient." This distance differs from that reported in Item H. 1. One sentence is devoted	D	The distance of 875 feet referenced here is the distance for surface soil to be transported on land surface to Goose Prairie Creek. The distance of 3120 feet mentioned in H.1 is the distance in groundwater from the source to Goose Prairie	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			to explaining the model and its results. The results are can not be accepted for reasons explained in Sec E (above).		Creek along the flowpath. This sentence in question substantiates the reason why leachate modeling of bis(2-ethylhexy)phthalate is not necessary because leachate concentration at Site 35A (58) is less than MCL in groundwater even though the soil concentration is higher than that in Site 46 when the rest of the parameters are similar.	
40	Н.3		Modeling of the soil-to-sediment model is similarly alluded to in Sec 2.2.2.1 (Appendix L, Subject Report) to which the comments in Sec E (above) apply.		All the input parameters are either generated within RUSLE software or determined by the guidance in the RUSLE documentation (USDA, 1996, Toy and Foster, 1998). The explanation of each parameter is provided on Pg 4-3 through 4-6 in the main text and on Page 2-7 to 2-9 in Appendix L. The derivation of parameters can be attached to the revised report for better understanding and book keeping purposes. All the units of parameters are correctly used as directed by the guidance documents. SL_{TOT} has a unit of kg/ac-yr, which is a correct unit (refer to USDA, 1996). Because some site-specific parameters are not available, values derived from neighboring or similar location were used. For example, the rainfall-runoff erosivity factor was not available for LHAAP site, so the value derived for Shreveport, Louisiana was used. Other unavailable site-specific data needed in the calculation were estimation based on professional judgment.	
41	H.4		The soil-to-surface water exposure pathway for bis(2- ethlyexyl)phthalate was evaluated using an inappropriate value for 7Q2. 7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10"percentile</i> as an estimate of 7Q2 (TCEQ, 2002). The exposure pathway determination was calculated using a <i>50% probability exceedance</i> 7Q2 value (Appendix L, Subject Report) and shall require recalculation. Therefore, acceptance of the results and conclusions regarding the soil-to-surface water exposure pathway for LHAAP-46 is deferred	С	The magnitude of 7Q10has been revised based on TCEQ's requirements (refer to responses in B6 and C6) for short term discharge records.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
42	H.5		No other exposure pathway has been addressed in association with the LHAAP-46 site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed.		Based on the human health risk assessment, none of the COCs in soil were determined to have an unacceptable risk (Shaw's Technical Memorandum, March 2004), therefore the only exposure pathway is groundwater to surface water. Please see comment response #23.	
SECTION I:	LHAAP-47	1		1		1
43	I.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and TCE, PCE, PCP, VC and perchlorate contaminant transport from the source area to Central Creek from differing distances. The AT123D modeling report for LHAAP-47 lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LHAAP-47 simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 in Appendix H to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Goose Prairie Creek, the vertical distance (the thickness of the shallow water-bearing zone). This information is provided on page 2-1 in the appendix. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc) are mentioned on page 2-1 and listed in Table 1. The potentiometric surface for this site was not prepared but a plant site-wide potentiometric surface based on December 1998 water level measurement was used as mentioned on Page 1-1. Basically, all the information for running AT123D are included in this Appendix H.	
					Shaw has provided digital input and output files on a CD.	
44	1.2		RUSLE (USDA, 1997) is used to evaluate the soil-to- sediment pathway using overland soil loss to Central Creek for the COC perchlorate. The origin and/or determination of numerous RUSLE input parameter values are not described or substantiated. Some parameter units conversions cannot be duplicated and appear to be incorrect (e.g., SL _{TOT}). The source of each model input value should appear on a table. All site- specific parameter input values associated with the Universal Soil Loss Equation, the Sediment Load		All the input parameters are either generated within RUSLE software or determined by the guidance in the RUSLE documentation (USDA, 1996, Toy and Foster, 1998). The explanation of each parameter is provided on Pg 4-3 through 4-6 in the main text and on Page 2-10 to 2-14 in Appendix L. The derivation of parameters can be attached to the revised report for better understanding and book keeping purposes. All the units of parameters are correctly used as directed by the guidance documents. SL_{TOT} has a unit of kg/ac-yr, which is a correct unit (refer to USDA, 1996). Because some site-specific	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			equation (SL), and ^{Sed} Soil must be referenced and explained.		parameters are not available, values derived from neighboring or similar location were used. For example, the rainfall-runoff erosivity factor was not available for LHAAP site, so the value derived for Shreveport, Louisiana was used. Other unavailable site-specific data needed in the calculation were estimation based on professional judgment.	
45 SECTION J	1.3		The subject report indicates groundwater modeling to surface water DF mixing calculations were performed using 7Q2 low flow discharge of 26 cfs (Sec 4.2, Appendix H, Subject Report), based on "flow shown in figure 9." No Figure 9 occurs in this Appendix. However, the 7Q2 value is similar to that used elsewhere on the reach. 7Q2 determinations in streams for which long- term, daily discharge data are not available must be calculated using the <i>10th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). Therefore, DF calculations shall require recalculation. Acceptance of the results and conclusions regarding the soil-to-surface water exposure pathway for LHAAP-47 is deferred.	C	Figure 9 was inadvertently left out of the draft report. The figure has been included in the final report. The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses to comments nos. B.6 and C.6) for short term discharge records.	
46	J.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of TCE from the source area to Central Creek, at an unspecified distance feet away. The AT123D modeling report for LHAAP-48 lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LH.AAP-48 simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the	D	Because Site 48 is located on both sides of the tributary of the Central Creek and the monitoring locations are very close to this tributary, it was assumed conservatively that the maximum concentrations of TCE and perchlorate occurred at the creek in groundwater (Page 2-1, Appendix I). Therefore no groundwater modeling was performed. The report mistakenly mentions that AT123D was used (Page 1-1 of Appendix I). However, the mixing concentrations in the creek indicate levels lower than MCLs.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.			
47	J.2		The surface water mixing calculations were performed appear in Appendix L. 7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). The 7Q2 value used in the exposure pathway mixing calculation must be confirmed as appropriate and may require re-calculation.	С	The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses in B6 and C6) for short term discharge records.	
48	J.3		No other exposure pathway has been addressed in association with the LHAAP-48 site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed.		 A. Correction for Sec 2.3.1, Page 2-9, Appendix L: VLEACHM has been corrected to VLEACHSM; bis(2- ethylhexy)phthalate has been corrected to PCE and vinyl chloride. B. PCE and VC in soil were detected at elevated concentrations, therefore VLEACHSM modeling was performed to identify the leachate concentration contributing to groundwater along this exposure pathway. The pathway from groundwater to surface water based on leachate was incomplete due to very low mixing concentrations. Another exposure pathway is the transport of PCE and VC along land surface by erosion. This pathway has been evaluated in terms of PCE and VC concentrations protective of sediment and surface water (see Page 2-10 through 2-14, Appendix L) 	
SECTION K	: LHAAP-5	0				
49	К.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of TCE, PCE, VC, 1 ,2- DCA and perchlorate from the source area to Goose Prairie Creek, at a distance of approximately 132 feet away. The AT123D modeling report for LHAAP-50 lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size,		The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 in Appendix J to the extent of supporting the model (please reference response to comment No. C.3 attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Goose Prairie Creek, the vertical distance (the thickness of the shallow water-bearing zone). This information is provided on page 1-1 and 2-1 in the appendix. The source area, source depth, release time, chemical properties (dispersivity, half-lives,	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LHAAP-50 simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		 partition coefficients, etc) are mentioned on page 2-1 and listed in Table 1 (Appendix J). The potentiometric surface map based on September 2000 water level measurement for this site was not attached in the report but will be furnished in the final report. Basically, all the information for running AT123D is included in this Appendix J. However, more detail description of the concerned subjects will be added to the report as deemed necessary. Model calibration was not performed (see response to comment no. C1) because AT123D is basically an analytical model. Shaw has provided digital input and output files on a CD. 	
50	К.2		The subject report indicates groundwater modeling results in exceedances of TCE, PCE, VC, 1 ,2-DCA and perchlorate at the surface water POE. Therefore, surface water DF mixing calculations were performed. However, no details, calculations or other relevant information regarding the calculations is provided. 7Q2 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). Therefore, if the exposure pathway DF determination was calculated using a <i>50% probability exceedance</i> 7Q2 value, the DF determination shall require re-calculation	С	 A. Detailed mixing calculation has been added to the Appendix. B. The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses to comments nos. B6 and C6) for short term discharge records. 	
51	K.3		No other exposure pathway has been addressed in association with the LHAAP-50 site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed.		Based on the human health risk assessment, none of the COCs in soil were determined to have an unacceptable risk (Shaw's Technical Memorandum, March 2004), therefore the only exposure pathway is groundwater to surface water. Please see comment response #23.	
SECTION L	LHAAP-67					
52	L.1		AT123D (ORNL, 1981) is used to simulate groundwater flow and contaminant transport of 1,1 -DCE, 1 ,2-DCA, 1,1,1 -TCA, 1,1 ,2-TCA and TCE from the source area to Central Creek, at a distance of approximately 867 feet		The geology and hydrogeology parameters (hydraulic conductivity, hydraulic gradient etc) are described in the main text and on page 2-1 in Appendix K to the extent of supporting the model (please reference response to comment No. C.3	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			away. The AT123D modeling report for LHAAP-67 lacks requisite information regarding the modeled simulation, including: geology, hydrology, model dimensionality, potentiometric map of model domain, aquifer size, source area size, source release type and rate, model calibration information for groundwater flow and chemical transport throughout the model domain, and specific simulation results (see Attachment A). Additionally, the TCEQ request the digital input file and printed output file for the LHAAP-67 simulations. The evaluation of the results of this modeling can not proceed until a complete description and report of the simulation is received. In lieu of these data, the results of the model can not be evaluated nor accepted.		attached to the Technical Memorandum dated March 2004). The model dimensionality for AT123D includes the distance to Goose Prairie Creek, the vertical distance (the thickness of the shallow water-bearing zone). This information is provided on page 1-1, 2-1 and 2-2 in the appendix. The source area, source depth, release time, chemical properties (dispersivity, half-lives, partition coefficients, etc) are mentioned on page 2-1 and listed in Table 1 (Appendix K). The potentiometric surface map based on September 2000 water level measurement for this site was not attached in the report but will be furnished in the final report. Basically, all the information for running AT123D is included in this Appendix K. Model calibration was not performed (see response to comment no. C.1) because AT123D is basically an analytical model. Shaw has provided digital input and output files on a CD.	
53	L.2		The subject report indicates groundwater modeling results in exceedances of 1 ,2-DCA, 1,1,1 - TCA, 1,1 ,2- TCA and TCE at the surface water POE. Therefore, surface water DF mixing calculations were performed using 7Q10 low flow discharge of <i>5.0</i> cfs (Sec 3.2, Appendix K, Subject Report). However, 7Q10 determinations in streams for which long-term, daily discharge data are not available must be calculated using the <i>10th percentile</i> as an estimate of 7Q2 (TCEQ, 2002). Based on figure 2 (Appendix K, Subject Report), the <i>10th</i> percentile of 7Q2(10) is <i>1.0</i> <i>cfs</i> . Therefore, all exposure pathway DF determinations shall require re-calculation.	С	The magnitude of 7Q10 has been revised based on TCEQ's requirements (refer to responses to comments nos. B6 and C6) for short term discharge records.	
54	L.3		No other exposure pathway has been addressed in association with the LHAAP-67 site. The subject report should document the specific reasons for which analysis of the other exposure pathways were not completed.		Based on the human health risk assessment, none of the COCs in soil were determined to have an unacceptable risk (Shaw's Technical Memorandum, March 2004), therefore the only exposure pathway is groundwater to surface water. Please see comment response #23.	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X		A or D ²		
SECTION M: CUMULATIVE COC LOADING TO CENTRAL CREEK. GOOSE PRAIRIE CREEK AND CADDO LAKE								
55	M.1		 Release sites LHAAP-4, LHAAP-35A (58), LHAAP-35B (37), LHAAP-46, LHAAP-47 and <i>LHAAP-50</i> represent exposure pathways to Goose Prairie Creek. Sites LHAAP- 12, LHAAP29, LHAAP-35C (53), LHAAP-48 and LHAAP-67 represent exposure pathways to Central Creek. Specifically, the soil-to-creek sediment, soil-to-surface water and groundwater-to- surface water pathways have been evaluated. Impacts to Goose Prairie Creek and to Central Creek from various sources through various exposure pathways have been documented; each pathway from each release having been evaluated <i>individually and independently</i> from all other single evaluations. However, while each individual pathway evaluation may eventually be shown to not exceed respective surface water PCLs, the <i>cumulative effect of numerous pathways</i> to Goose Prairie Creek, <i>whose 7Q2 discharge remains constant</i> in a reach, can result in PCL exceedances in <i>Caddo Lake</i>. No analysis of the cumulative effects of COC loading from all combined creek-specific pathways to Caddo Lake has been performed (in Subject Report). 		This comment is correct if pollutants from each site are delivered along each pathway into THE SAME location at the creek (Central Creek or Goose Prairie Creek). Then the cumulative effect of numerous pathways has to be evaluated with the same 7Q2 flow in the creek to derive the mixing concentration. However, these pathways enter the creek(s) at different locations, some upstream and some downstream, NOT at the same location. In this case, pollutants entering at upstream location would be diluted due to mixing and also dispersed along the creek flowing downstream before they reach another location where more pollutants from other pathways are discharged into the stream. Therefore, accumulating all the pollutant concentrations from different pathways and using the 7Q2 flow to evaluate the mixing concentration will undoubtedly underestimate the dilution factor (DF). To be more accurate, one of the sophisticated surface water quality models such as SMS (surface water modeling system), WASP5, HSPF, QUAL2E, CE-QUAL-W2 or BASIN3 has to be applied. These models can cope with point source or non-point source loadings from different pathways at different locations. The cumulative effect of COC loading can thus be more accurately evaluated at Caddo Lake. However, the purpose of the modeling report was to evaluate the impact of releases from individual sites to nearby surface water. The assessment of cumulative effect on Caddo Lake is outside the scope of this document.			
56	M.2		 The TCEQ requests that all appropriately-revised exposure pathway analyses (see above) be analyzed further as follows: 1. Sum (cumulatively) revised mass loading for each applicable COC (see above) for each exposure pathway from each site leading to Goose Prairie Creek (see Item M. 1) with the appropriate, revised 7Q2 for Goose Prairie Creek. Compare final cumulative COC concentration in Goose Prairie 		See response to comment M.1.			

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			Creek to the applicable surface water standard for Caddo Lake.			
			2. Repeat process for Central Creek.			
SECTION N	REFEREN	CES				
			Domenico P.A. and Schwartz F.W. 1997 <i>Physical and Chemical Hydrogeology</i> , John Wiley & Sons, New York, 506 pp.		These are references given by Chuck Stone for his comments.	
			Fetter C.W. 1988 <i>Applied Hydrogeology,</i> Macmillan Publishing Co., New York, 592 pp.			
			ORNL 1981 ATJ23D: Analytical Transient One-, Two- and Three-Dimensional Simulation of Waste Transport in the Aquifer System, ORNL-5602, Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN.			
			STEP 2003 Draft Final Project Report: Plant- Wide Perchlorate Investigation, Longhorn Army Ammunition Plant, Karnack, Texas - Volume 1, Solutions to Environmental Problems, Inc., March.			
			TCEQ 2002 Procedures to Implement the Texas Surface Water Quality Standards, RG- 194, Texas Commission on Environmental Quality, Austin, TX, 187 pp.			
			TCEQ 2003 Draft Technical Memorandum: Modeling Approach for Derivation of Soil and Groundwater concentrations Protective of Surface water and Sediment; Longhorn Army Ammunition Plant, Karnack, Texas; October 2003, December 19, 2003. (Reproduced in Attachment A)			
			USDA 1997 Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (R USLE), Agriculture Handbook			

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			703, U.S. Department of Agriculture, Agricultural Research Service, Washington D.C., 4.04 pp.			
			USEPA 1997 VLEACH: A One-Dimensional Finite Difference Vadose Zone Leaching Model, U.S. Environmental Protection Agency, ORD, CSMoS, Ada, OK.			
Comments	from Kristi	an Mauricio b	y Charles D Stone			
SECTION A	: TOPSOIL	CONCENTRA	TION PROTECTIVE OF SURFACE WATER AND SEDIM	ENTS		
57	A.1		Each location at which ACLs for this model are needed should be plotted on a scaled site- wide map <i>and</i> on a scaled close-up map of a portion of the site-wide map. Nearby features such as ecological and/or human health receptors should be clearly resolved on the scaled detail maps		Modeled environmental sites are shown on a site-wide map (Figure 1 of each appendix). Actual areas being modeled, with streams where applicable, are included in appendices as well. Human health exposure is in Caddo Lake, a source of drinking water, however, it was agreed upon by the regulators and the Army that the modeling would be based on meeting ARARs at the nearby creeks.	
58	A.2		A summary table of all model parameters and their model input values should be included with the model description. The source of each model input value also should appear on the table. All site-specific parameter input values associated with the Universal Soil Loss Equation (USLE), the Sediment Load equation (SL), and Sed501 (?) must be referenced and explained.		A summary table of all the model parameters and input values has been provided for each site in the appendices. Model description is provided in the main text. Site-specific parameter input values associated with the Universal Soil Loss Equation (USLE), the Sediment Load equation (SL) are described for each individual site. However, due to lack of these site-specific data, literature values were used.	
59	A.3		Parameter input values used to calculate ^{SW} Soil should be summarized in a table that describes how the values were determined. Stream discharge values measurement methods should be described. The source of runoff, Kd, and all other values must be documented.		These values have been referenced and explained in more detail. For a one year period, approximately between December 1999 and December 2000, data collection instruments were placed in the three major streams on Longhorn AAP; Harrison Bayou, Central Creek and Goose Prairie Creek. On each stream, two data recording stations were installed, one upstream and one downstream. At each recording station, a profile line of the streambed was surveyed at right angles to the general stream flow collecting x, y, and z data for each survey point. Each station consisted of a data logger for collection and storage of the data, a measurement device that included a transducer for	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					the measurement of water depth, and a radar-type device capable of recording water velocity. The equipment was from ISCO and was capable of recording depth and velocity of the water. A data logger was connected to each transducer with information retrieved every one to two months. The measurements were collected by Jacobs Engineering in support of an installation-wide modeling report that was generated by the U.S. Army Corps of Engineers, Engineering Research and Development Center, Waterways Experiment Station.	
60	ATTACH- MENT A		Copy of the following reference: TCEQ 2003 Draft Technical Memorandum: Modeling Approach for Derivation of Soil and Groundwater concentrations Protective of Surface water and Sediment; Longhorn Army Ammunition Plant, Karnack, Texas; October 2003, December 19, 2003. Sec A <u>Topsoil Concentration Protective of Surface</u> Water and Sediments Sec B <u>Subsurface Soil Concentration Protective of</u> <u>Groundwater</u> Sec C <u>Groundwater Concentration Protective of Surface</u> Water (^{SW} SW			
SECTION B		ACE SOIL CO				
61	B.1		The location of each area subject to this Tier 3 modeling effort shall be clearly plotted on a site-wide map <i>and</i> on a scaled enlargement showing actual areas being modeled, potential receptor details (e.g., streams, ecological features, <i>etc.</i>) and other relevant landmarks.		Modeled environmental sites are shown on a site-wide map (Figure 1 of each appendix). Actual areas being modeled showing streams where applicable are included in appendices as well.	
62	B.2		The origin and value of all parameter input values should be fully discussed and summarized in a table with references. Field documentation for a reference pedologic section at each model location is expected. Documentation for the origin of values of Kd, foc and COC physico-chemical properties should be included. Test methods used to determine site-specific parameter		See response to comment No. 59, A.2	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			values must be standardized procedures (e.g., ASTM) and be fully described.			
63	В.3		Each VLEACH simulation must have a summary table of variable values for the <i>Simulation Data</i> and the <i>Polygon Data</i> . Justification of the values should be included. VLEACH runs should progress with sufficiently small timesteps to resolve meaningful trends and with a sufficiently long simulation length to reach steady state. Actual printouts of the results of each simulation run should be included in an Appendix. A summary of each VLEACH run should be presented in a table form within the body of the discussion. The predicted groundwater concentrations through time for each simulation location should be plotted and presented in the discussion.		Simulated data and polygon data have been provided for each site in the respective appendices. Many parameters used were literature values due to lack of site-specific tests. VLEACHSM results have shown a meaningful trend, especially peak concentrations at certain location have been revealed. In the current modeling, the peak mixing concentration was used conservatively. For VLEACH (or VLEACHSM), there is no "steady-state" to achieve, every time step is under equilibrium state among the three phases (liquid, solid and gaseous). Shaw has provided digital input and output files on a CD.	
SECTION C	: GROUND	WATER CON	CENTRATION PROTECTIVE OF SURFACE WATER (^{GW} S	SW)	1	1
64	C.1		LHAAP indicates it will use AT123D to perform long-term flow and transport modeling of groundwater and its interaction with surface water bodies.		Noted	
65	C.2		LHAAP should develop a <i>site-wide</i> flow model whose domain encompasses the entirety of the base and include all adjacent water bodies and potential receptors. <i>The flow model must be fully calibrated, verified and</i> <i>validated prior to performing any transport modeling.</i>		 Please see response to comment no. 34, C.2 attached to the Technical Memorandum dated March 2004. EPA, TCEQ agreed previously that simple models should be used for this purpose. 3-D numerical modeling was not considered necessary by the stakeholders. A site-wide flow model has to be a 3-dimensional numerical model such as MODFLOW. Only under such application can the model be calibrated. However, more detail site geology, hydrogeology and surface water investigation have to be conducted due to the heterogeneity of the sites. Surface water flow discharge would have to be measured continuously for at least another 5 years. 	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
66	C.3		The domain hydrogeology should be described in detail using available subsurface data. Hydrostratigraphy, aquifers, hydraulic divides, zones of saturation, stratigraphic variations, hydraulic interconnectivities, surface water interactions, appropriate boundary conditions, <i>etc.</i> must be identified and described completely. Assignment of all hydrogeologic parameter values must be validated and described. A summary table of all model parameter values should be presented		Please see response to comment no. 35, C.3 attached to the Technical Memorandum dated March 2004. The geology and hydrogeology parameters were described in the report to the extent of supporting the models.	
67	C.4		The flow model must be fully calibrated. Details of the calibration process should be described. Starting parameter values and calibrated values must be listed for comparison. Calibration statistics are expected.		A flow model was not planned, see response to comment no. 36, C.4 attached to the Technical Memorandum dated March 2004. Model calibration can only be performed when the site geology, hydrogeology and hydrology is fully investigated and the model used is a numerical model. Any attempt to calibrate an analytical model that assumes homogenous and isotropic settings is meaningless because no matter how well the calibration shows, the heterogeneity of the site may yield very different flow and transport results.	
68	C.5		The transport modeling should proceed only after the flow model has been calibrated, verified and validated. The transport model should account for all known contaminant sources, including those identified in Sec B. The maximum groundwater contaminant concentrations calculated from the VLEACH modeling in Sec B must be used as continuous source concentrations in the AT123D model. The continuous source concentrations must be incorporated into the AT123D model at each respective modeling location		Please see response to comment no. 37, C.5 attached to the Technical Memorandum dated March 2004. Simple analytical models such as VLEACHSM, AT123D, Domenico's equation cannot be used for calibration due to the reason mentioned in response to comment no. C.4. The maximum groundwater contaminant concentrations calculated from VLEAHSM were used as continuous sources or instantaneous sources, depending on each site situation very conservatively. The source concentrations do not need to be incorporated into AT123D at each respective modeling location. Conservatively, only the maximum concentration at its respective location needs to be incorporated into AT123D. There are two reasons: first, though we can input source concentration varied with time, we cannot input different concentration at different location in AT123D. We can only input a rate of release converted from a concentration value in the source area with source length, source width and source	

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					depth. In the current modeling, the maximum concentration was used. This was a very conservative consideration.	
69	C.6		AT123D should be used to report the maximum predicted concentrations of each COC plume that contacts surface water bodies at the groundwater-surface water interface. Similarly, the maximum dissolved COC concentrations should be reported at all other points of exposure and potential receptors (<i>e.g.</i> , wet lands, <i>etc.</i>).		The maximum predicted concentration of each COC at the interface of groundwater and surface water and at other points of exposure was used.	
70	C.7		All transport model inputs should be described in the text and summarized in a table		All the transport model inputs for each respective site are described in each appendix and are summarized in a table.	
71	C.8		AT123D output should be described individual for each dissolved COC plume within the model domain and all modeled groundwater plume-surface water body interaction should be discussed in detail using scaled maps and isoconcentration lines. All AT123D output data should be organized and summarized in the text. All actual AT123D output data should be organized and annotated in an Appendix		AT123D outputs are presented and described for each site in the respective appendices. The modeled groundwater plume – surface water interaction is also presented for each site in the respective appendices. However, construction of isoconcentration lines is not possible and not necessary. Shaw has provided digital input and output files on a CD.	
72	C.9		Dilution factors applied to groundwater at the surface water interfaces should be calculated at each interface location using the methods described in TRRP 24 (<i>Determining PCLs for Surface Water and Sediment</i>). Dilution factors should be calculated separately for each individual groundwater-surface water interface location. Discussion and calculations of each dilution factor is expected.		Dilution factors applied to groundwater at the surface water interfaces were calculated at each interface location using the methods described in TRRP 24 (Determining PCLs for Surface Water and Sediment even though Longhorn is still under the old rules). Dilution factors were calculated separately for each site at groundwater-surface water interface location. However, calculation for different location at one individual site is not necessary because we used the maximum concentration on the center line of the plume at the groundwater – surface water interface. That is a conservative approach. Other locations would only yield concentration less than the maximum concentration.	
ADDITIONA		ITS IN AN EM	AIL FROM FAY DUKE, TCEQ			

Compilation - Response to Comments on

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commenter Agrees (A) with response, or Does not Agree (D) with response.

Comment #	Page/ Section	Paragraph		Comment	C, D ¹ , E or X		A or D ²
73			Subject:	Draft Minutes, Meeting to Resolve TCEQ Comments on Draft Final Modeling Report, Longhorn Army Ammunition Plant (LHAAP)		All these issues have been addressed in the responses to preceding comments for LHAAP-29.	
				ing: TCEQ Office, Austin, TX			
			Date of Meeting:	July 06, 2006, 8:00 AM – 12:30 Noon			
			geological/hydrog the report and ad sections to the re	t Shaw will expand the geological discussion in the main part of d one or two representative cross- port. On a site-specific level, e provided to Figures in Jacobs reports.			
				already exist in the report, but Shaw se sure that there are no omissions.			
				w will provide the Jacobs RI reports on uck Stone easy access to the cross- er figures.			
			parameters where provide TCEQ a	ce sources for values of modeling e they are missing. Shaw will also copy of the Dynamac report which was persivity values used in the modeling.			
				t to clarity instances where certain /LEACHSM are input to AT123D, and lues.			
			subsequent phon additional runs of allow TCEQ to co concentrations in from the source.	was suggested by Chuck Stone in a e call to Song-Kai Yan, to perform models in the Y-direction. This will ompare actual versus predicted monitoring wells in the lateral direction This may not be possible at every site lls in the appropriate directions.			
			Fay Duke sugges	sted that Shaw compare the		The groundwater flow direction did not change significantly and thus the model was not rerun.	

Compilation - Response to Comments on

Draft Final Modeling Report: Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment (May 2005);

Longhorn Army Ammunition Plant, Karnack, Texas

June 2006

Reviewers: Chris Villarreal with Roger W. Lee, U.S. Geological Survey and Alan Etheredge with Charles D. Stone (TCEQ) Respondents: Song Kai Yan, Agnes Mayila and Praveen Srivastav, Shaw Environmental, Inc.

Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commenter Agrees (A) with response, or Does not Agree (D) with response.

Comment #	Page/ Section	Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			groundwater flow direction used for LHAAP-29 in the Modeling Report with a more recent groundwater map included in the evaluation report for the site, and adjust the model accordingly.			

FINAL MODELING REPORT DERIVATION OF SOIL AND GROUNDWATER CONCENTRATIONS PROTECTIVE OF SURFACE WATER AND SEDIMENT LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared for U.S. Army Corps of Engineers Tulsa District 1645 South 101st Avenue Tulsa, Oklahoma

Prepared by Shaw Environmental, Inc. 3010 Briarpark Drive, Suite 4N Houston, Texas 77042

Contract Number DACA56-94-D-0020 Task Order No. 0109

> Revision 1 February 2007

Table of Contents_

List of List of	Figure Appen	s dices		ii ii
1.0				
2.0	,	5		
	2.1	5 05		
	2.2	Geology and Hydrogeology		
3.0		0	ncern at Select LHAAP Sites	
	3.1			
1.0	3.2			
4.0			Concentrations for Chemicals of Concern	
	4.1 4.2	•		
	4.Z		rotective of Sediment and Surface Water	
			Soil-Sediment (^{Sed} Soil MSC)	
			Soil-Surface Water (^{sw} Soil MSC)	
			s Protective of Groundwater	
			Protective of Surface Water	
5.0	Mode			
0.0	5.1	5		
	5.2			
	5.3			
	5.4	LHAAP-35A(58)		5-2
	5.5	LHAAP-35B(37)		5-3
	5.6	LHAAP-35C(53)		5-3
	5.7	LHAAP-46		5-3
	5.8	LHAAP-47		5-4
	5.9	LHAAP-48		5-4
	5.10			
	5.11			
	5.12		cent Studies	
6.0			LHAAP-35A(58), -46, and -48	
	6.1	. ,		
	6.2			
7.0	6.3			
7.0				
8.0	Refer	ences		8-1

List of Tables _____

- Table 3-1
 Rationale for Selection of Chemicals of Concern
- Table 4-1
 Perchlorate Analytical Data LHAAP-29 Selected Shallow Monitoring Wells
- Table 4-2Input Parameters and Results for Soil Concentrations Protective of Sediment and
Surface Water Calculations
- Table 4-3Rainfall/Runoff Erosivity (R Factor), Shreveport, Louisiana
- Table 4-4
 Input Parameters for Modeling Soil Concentrations Protective of Groundwater using VLEACHSM
- Table 5-1Summary of Modeling Results
- Table 6-1Summary of Additional Modeling of Chemicals in Soil at LHAAP-35A(58), -46, and -48

List of Figures _____

- Figure 2-1 Longhorn Army Ammunition Plant with Surface Water Drainage Systems
- Figure 3-1 Environmental Sites Modeling Report
- Figure 4-1 Isoerodent Map of Eastern United States Modeling Report
- Figure 4-2 Schematic Description of Domenico's Model

List of Appendices_____

Appendix A	LHAAP-04, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Goose Prairie Creek from Soil and Groundwater
Appendix B	LHAAP-12, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Central Creek
Appendix C	LHAAP-29, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Central Creek
Appendix D	LHAAP-35A(58), Calculation of Maximum Concentrations and Dilution Factors of
	Contaminants Discharged to Goose Prairie Creek from Groundwater
Appendix E	LHAAP-35B(37), Calculation of Maximum Concentrations and Dilution Factors of
	Contaminants Discharged to Goose Prairie Creek
Appendix F	LHAAP-35C(53), Calculation of Maximum Concentrations and Dilution Factors of
	Contaminants Discharged to Central Creek or Harrison Bayou
Appendix G	LHAAP-46, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Goose Prairie Creek from Groundwater
Appendix H	LHAAP-47, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Goose Prairie Creek from Soil and Groundwater
Appendix I	LHAAP-48, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Central Creek from Groundwater
Appendix J	LHAAP-50, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Goose Prairie Creek from Groundwater
Appendix K	LHAAP-67, Calculation of Maximum Concentrations and Dilution Factors of Contaminants
	Discharged to Central Creek
Appendix L	Additional Evaluations of Chemicals in Soil at LHAAP-35A(58), -46, and -48
Appendix M	Creeks Survey and Water Elevation Data

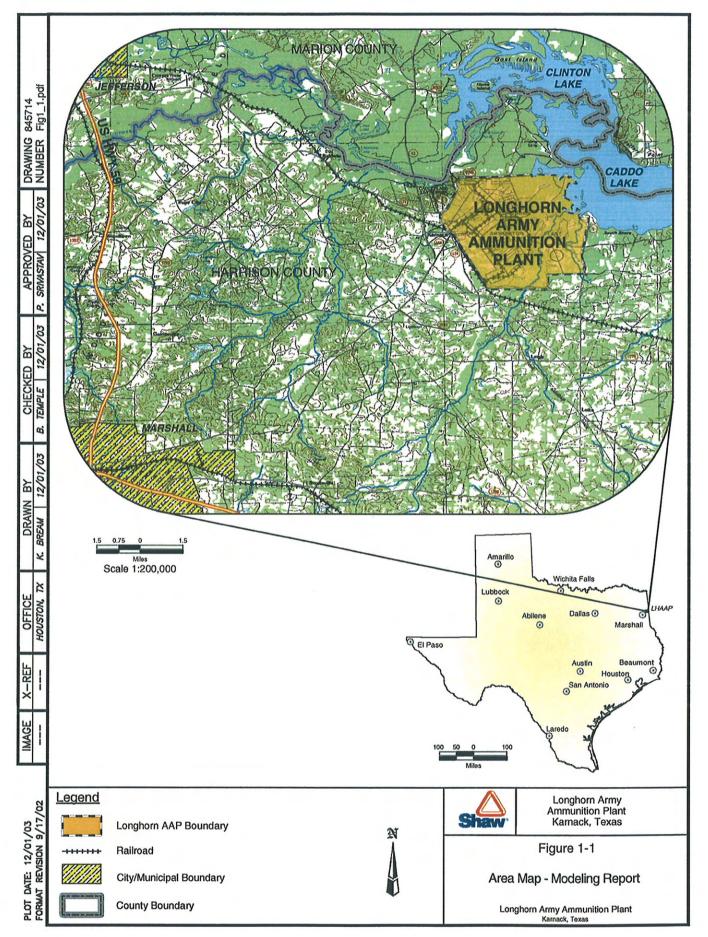
Acronyms and Abbreviations_

A	estimated average annual soil loss
ac	acre
ASTM	ASTM International (formerly American Society for Testing and Materials)
AT123D	Analytical Transient One-, Two-, and Three-Dimensional
bgs	below ground surface
С	cover management factor
cm ³ /g	cubic centimeters per gram
COC	chemical of concern
DCA	dichloroethane
DCE	dichloroethene
DF	dilution factor
E	energy
ft/yr	feet per year
ft ³ /sec	cubic feet per second
g/cm ³	grams per cubic centimeter
g/cm ³	grams per cubic centimeter
GWP	protective of groundwater
Ι	intensity
IAL	interim action level
Jacobs	Jacobs Engineering Group, Inc.
Κ	soil erodability factor
kg/L	kilogram per liter
kg/yr	kilogram per year
L	slope length factor
lb/ac	pound(s) per acre
LHAAP	Longhorn Army Ammunition Plant
MCL	maximum contaminant level
µg/kg	micrograms per kilogram
μg/L	micrograms per liter
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MSC	medium-specific concentration
NAS	National Academy of Sciences
OA	other area
Р	support practice factor
PCA	tetrachloroethane

PCE	tetrachloroethene
PCP	pentachlorophenol
POE	point of entry
R	Rainfall-runoff erosivity factor
RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine
RUSLE	Revised Universal Soil Loss Equation
S	slope steepness factor
SDR	sediment delivery ratio
Shaw	Shaw Environmental, Inc.
TCA	trichloroethane
TCE	trichloroethene
TCEQ	Texas Commission on Environmental Quality
TNRCC	Texas Natural Resource Conservation Commission
USDA	U.S. Department of Agriculture
USEPA	U.S. Environmental Protection Agency
VC	vinyl chloride
VLEACHSM	Vadose Zone Leaching and Saturated Zone Mixing

1.0 Introduction

This modeling report was prepared by Shaw Environmental, Inc. (Shaw), for the U.S. Army Corps of Engineers, Tulsa District, under Total Environmental Restoration Contract DACA56-94-D-0020, Task Order 0109, and presents the results of fate and transport modeling of chemicals of concern (COCs) in soil and groundwater, and their potential for discharge to the surface water and sediment of creeks and bayous within Longhorn Army Ammunition Plant (LHAAP) that ultimately flow into Caddo Lake.


LHAAP is an inactive, government-owned, formerly contractor-operated and contractormaintained industrial facility located in central-east Texas in the northeastern corner of Harrison County (**Figure 1-1**). The installation occupies nearly 8,500 acres between State Highway 43 at Karnack, Texas, and the western shore of Caddo Lake. The nearest cities are Marshall, Texas, approximately 14 miles to the southwest, and Shreveport, Louisiana, approximately 40 miles to the southeast. Caddo Lake, a large freshwater lake along the Texas-Louisiana border, bounds LHAAP to the north and east. The Army transferred approximately 5,032 acres to the U.S. Fish and Wildlife Service on May 5, 2004 for management as The Caddo Lake National Wildlife Refuge, with an additional 742 acres transferred in September 2004.

The soil, groundwater, surface water, and sediment at LHAAP have been contaminated by past industrial operations and waste management practices. Previous studies conducted at LHAAP identified contaminants such as volatile organic compounds, heavy metals, perchlorate, and explosives in on-site media. Several areas of contamination are subject to investigation and cleanup under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (42 United States Code 9604).

Analytical equations and computer models were applied to estimate the transport of COCs through various environmental media to exposure points in the surface water bodies. The COCs were chemicals potentially causing unacceptable risk to human or ecological receptors, or chemicals that exceeded a maximum contaminant level (MCL) or an equivalent standard. The models were used to calculate contaminant concentrations in soil and groundwater that, if present in these media at LHAAP, will result in an acceptable risk to human health or ecological receptors at exposure points in the creeks and bayous. Modeling of fate and transport of COCs was conducted at the following sites: LHAAP-04, -12, -29, -35A, -35B, -35C, -46, -47, -48, -50, and -67. Sites LHAAP-35A, -35B, and -35C are also known as LHAAP-58, -37, and -53, respectively. Both names of these sites are currently in use and, therefore, the sites are referred to as LHAAP-35A(58), -35B(37), and -35C(53) throughout this document.

The purpose of the modeling effort was to identify those sites at LHAAP where COCs in soil or groundwater represent unacceptable human health risk, however, the concentrations of these COCs are not high enough to generate an unacceptable human health or ecological risk in nearby surface water bodies. The results of the modeling effort are intended to be used for selection of risk-based alternatives, which are not necessarily alternatives involving clean up, in the feasibility studies for the sites. For example, land-use controls to prevent exposure to groundwater may be appropriate for a site where COCs in the groundwater pose an unacceptable risk to human receptors but do not cause an unacceptable risk to human or ecological receptors in a nearby creek.

2.0 Physical Setting

2.1 Surface Hydrology

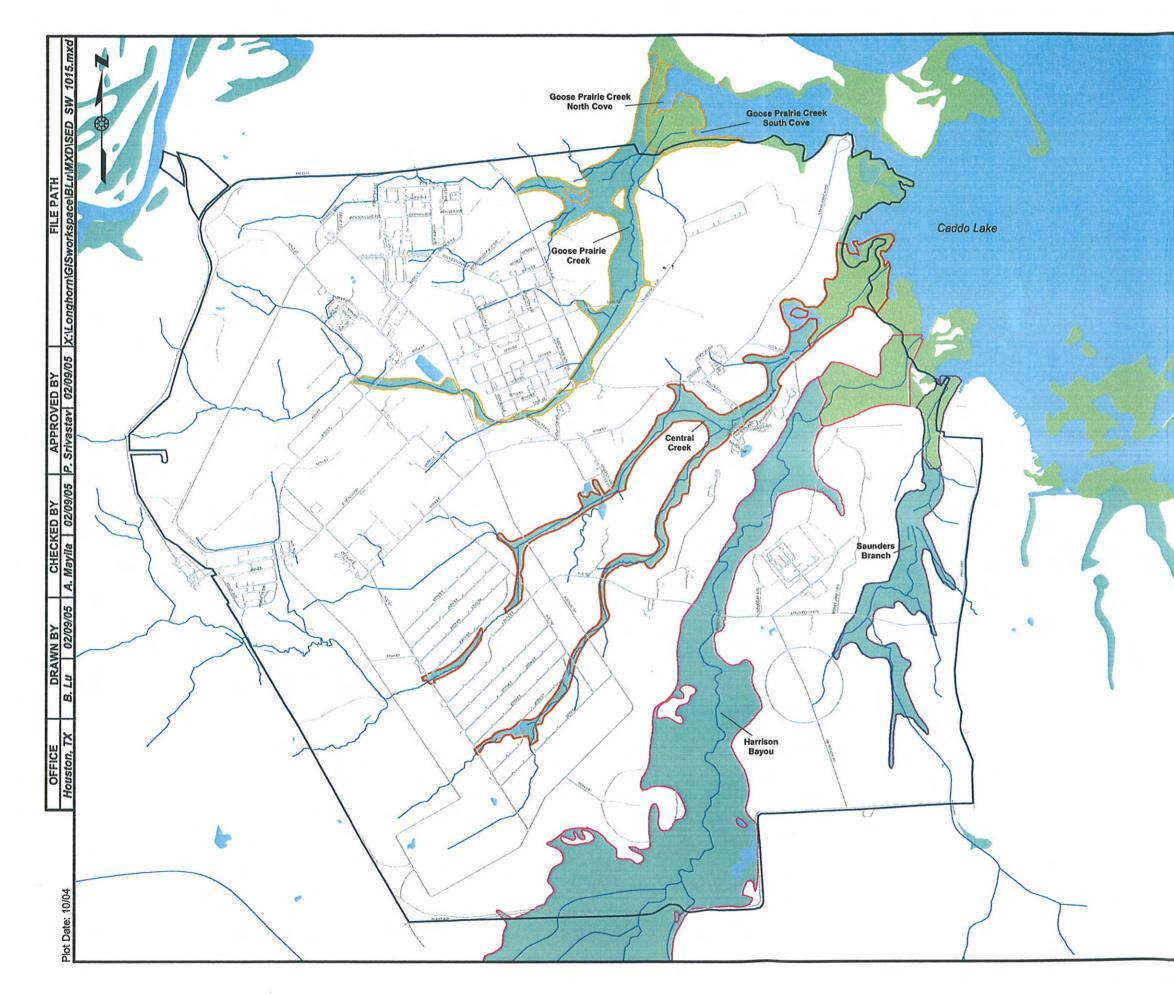
The surface water at LHAAP drains to the northeast into Caddo Lake, a part of Big Cypress Bayou, via four drainage systems (**Figure 2-1**): Saunders Branch, Harrison Bayou, Central Creek, and Goose Prairie Creek, all of which are intermittent streams. Saunders Branch begins immediately south of the southeast corner of LHAAP. From the southern boundary to Long Point Road, Saunders Branch flows within a confined channel. In the vicinity of Long Point Road, beaver dams inhibit the stream's flow and create extensive wetlands. From Long Point Road to the north perimeter fence, Saunders Branch flows in a less confined channel resulting in a broad stream profile, becoming confined again beyond the northern perimeter fence, until it reaches Caddo Lake.

Harrison Bayou originates more than 4 miles south of the facility. With the extensive drainage basin south of LHAAP, this stream carries much more water than the other streams on the facility. Approximately 1,400 feet from Caddo Lake, Harrison Bayou maintains a distinct sinuous channel that is not obvious during periods of moderate to high flow rates. Harrison Bayou enters Caddo Lake at a blind inlet.

Central Creek originates off the western boundary of LHAAP in two separate segments. Central Creek also remains substantially in its stream channel for the majority of the area within LHAAP. Approximately 3,000 feet from the fence line near Caddo Lake, Central Creek becomes more sinuous.

Originating immediately off the northwest corner of LHAAP, the flow of Goose Prairie Creek is confined within its embankment for the majority of its traverse across LHAAP. Goose Prairie Creek has two separate channels that flow into Caddo Lake. One channel proceeds generally east-west and the other channel flows generally east-west and then north into Goose Prairie Cove.

2.2 Geology and Hydrogeology


The subsurface geology at LHAAP consists of a thin veneer of Quaternary alluvium overlying Tertiary age formations of the Wilcox and Midway Groups. Underlying these sediments are Cretaceous age formations of the Navarro and Taylor Groups.

The stratigraphic thickness of the uppermost Wilcox Group ranges from a maximum of 350 feet in the northwest corner of LHAAP to approximately 130 to 140 feet along the east side of the facility near Caddo Lake. The Wilcox Group formation constitutes the majority of the unconsolidated sediments underlying LHAAP. The Wilcox Group consists of interbedded sands, silts, and clays. These sediments were deposited in a regressive fluvial-deltaic and transgressive marine environment that resulted in considerable stratigraphic heterogeneity over short distances across the site.

The unconsolidated sediments of the Wilcox Group formation typically consist of three sandy, water-bearing zones separated by semiconfining layers of silty clay. The uppermost portion of the Wilcox Group formation at LHAAP consists of medium plastic sandy silts and clays ranging in thickness from approximately 5 to 15 feet. These surficial sediments are underlain by the first or shallow saturated sand zone, which ranges in thickness from 10 to 20 feet. This sand zone consists of silty fine sand containing some silt and clay lenses and is at first dry to moist and then generally becomes saturated at 15 to 20 feet below ground surface (bgs). A 5- to 20-foot-thick medium to highly plastic silt and clay layer underlies the shallow saturated sand zone. An intermediate saturated sand zone, consisting of fine to medium silty sand, is then encountered below the semiconfining layer at 30 to 50 feet bgs. The intermediate saturated sand zone is generally less silty than the shallow saturated sand zone and exhibits higher hydraulic conductivity. A silt to silty clay layer is encountered beneath the intermediate saturated sand zone and ranges in thickness from 5 to 30 feet. Underlying this silt to silty clay layer, a massive homogeneous silty, clayey, fine sand layer is encountered at a depth that continues to the top of the underlying Midway Group formation (approximately 200 to 300 feet bgs).

Groundwater generally occurs under semi-confined to confined conditions. Because of the high degree of stratigraphic heterogeneity, the level of interconnection between the shallow, intermediate, and deep water-bearing zones in the Wilcox Group deposits at LHAAP is highly variable. The depth to groundwater across the facility ranges from 1 to 70 feet bgs, with the typical depth at 12 to 16 feet. The regional groundwater flow direction is generally east-northeast towards Caddo Lake, but varies by site location.

Geologic cross sections are available for some select sites, LHAAP-35A, LHAAP-12, LHAAP-46, and LHAAP-47, and are included in reports by Jacobs Engineering (Jacobs, 2001b; Jacobs, 2002a).

	Legend
	Road
	Stream
	Approximate LHAAP Boundary
	Watershed
	Central Creek
	Goose Prairie Creek
	Harrison Bayou
	Saunders Branch
	Habitat Zone
n	Cypress Swamp
3 54	Wetland/Bottomland Forest
	Water
	0 1,250 2,500 5,000 Feet
	reet
	U.S. Army Corps of Engineers Tulsa District Tulsa, Oklahoma
	Figure 2-1
	LHAAP with Surface Water
	Drainage Systems
	Longhorn Army Ammunition Plant Karnack, Texas

3.0 Modeling Considerations for Chemicals of Concern at Select LHAAP Sites

Modeling was conducted for a total of 11 sites including LHAAP-04, -12, -29, -35A(58), -35B(37), -35C(53), -46, -47, -48, -50 and -67 (Figure 3-1); sites that are currently in the feasibility study phase. Chemicals of concern at each site were identified in the baseline human health and the screening ecological risk assessments conducted by the Jacobs Engineering Group (Jacobs, 2002d; 2002e) as chemicals that constituted potential unacceptable risk to human or ecological receptors. More recent data from the plant-wide perchlorate investigation identified perchlorate as an additional COC at some of the sites. Chemicals that were of concern for specific media or exceeded an MCL or an equivalent standard were designated as potential COCs for modeling. From this extensive list of chemicals at each site, a smaller number of target COCs were selected for modeling in order to keep the modeling effort focused on addressing primary issues at each site. The proportion of risk contributed by each COC for a specific site was also a factor in the COC selection (Shaw, 2004a). Not all chemicals that exceeded their respective MCL or an equivalent standard at a specific site were modeled. Only those COCs that were predominant contributors to the cancer risk or non-cancer hazard at a site were selected for modeling. Further, if a group of chemicals (e.g., solvents) contributed equally to risk, a subset of COCs was carefully selected for modeling if these COCs could serve as surrogates for the other chemicals of the same group, and had physical or chemical properties that qualified them as appropriate representatives of the remaining COCs. Surrogates were utilized for chemicals with comparatively high adsorption and short half-lives. Available documentation was reviewed including remedial investigation reports for Group 2 and Group 4 sites (Jacobs, 2001b, 2002a), remedial investigation report addendum for Group 4 sites (Jacobs, 2002b), human health and ecological screening risk assessment reports for the Groups 2 and Group 4 sites (Jacobs, 2002d, 2002e), and perchlorate investigation reports (Jacobs, 2001a, Solutions to Environmental Problems, Inc. 2003) in order to compile the list of COCs, their maximum concentrations at each site, and site-specific hydrogeological information. Table 3-1 summarizes the modeled environmental media, pathways, and rationale for the selection of COCs at each site. Shaw has collected additional analytical and hydrogeological data (Shaw, 2005) and the results of the modeling were compared to the results of the recent data presented in the Data Gaps Investigation report.

Modeling was not conducted for sites where the proximity of a site or plume to a surface water body allowed the use of actual data to make a determination as to whether or not contaminants were being released to the surface water or sediments, or if a site was considered a candidate for remediation in the future based on extremely high concentrations of contaminants (e.g., LHAAP-16, -17, and -18/24). Modeling of COCs was also not conducted for sites where chemicals present in media did not present unacceptable risk to human or ecological receptors nor had concentrations below MCL or equivalent standards. An exception to this rule were three sites, LHAAP-35A(58), LHAAP-46 and LHAAP-48, where the fate and transport of chemicals was evaluated because of high concentrations of the chemicals in the soil even though the chemicals did not present a human health risk from exposure to the soil.

3.1 Soil

Pathways modeled for transport of contaminants from a contaminated soil source included: (a) erosion of soil and transport to surface water and sediment; (b) leaching of contaminants from soil to groundwater; (c) transport and dilution of contaminants by groundwater until discharge to surface water; and (d) transport and dilution by surface water. Perchlorate was the only COC modeled in the soil medium, as a chemical presenting significant human health risk. Erosion of soil and migration of perchlorate to sediment and surface water was calculated at three sites: LHAAP-04, -35C(53), and -47. Leaching of perchlorate from soil to groundwater was modeled at two sites: LHAAP-04 and -47.

Although not posing a human health risk, the migration of bis(2-ethylhexyl)phthalate at LHAAP-35A(58) and LHAAP-46 was modeled because of high concentrations of these chemicals. Erosion of soil and migration of bis(2-ethylhexyl)phthalate to sediment and surface water was calculated at two sites, LHAAP-35A(58) and LHAAP-46. Leaching of bis(2-ethylhexyl)phthalate from soil to groundwater was modeled at LHAAP-35A(58). Erosion of soil and migration of vinyl chloride (VC) and tetrachloroethene (PCE) to sediment and surface water as well as leaching of these chemicals to groundwater, were modeled at LHAAP-48.

3.2 Groundwater

Migration of COCs in groundwater from a site to a potential downgradient point of entry (POE) into surface water was estimated using the transport model Analytical Transient One-, Two-, and Three-Dimensional (AT123D) and the Domenico equation. Eleven groundwater COCs were modeled including trichloroethene (TCE), 1.2-dichloroethane (1,2-DCA), VC. 1,1-dichloroethene (1,1-DCE), (PCE), methylene chloride, hexahydro-1,3,5-trinitro-1,3,5triazine (RDX), pentachlorophenol (PCP), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-TCA, and perchlorate. Migration of COCs in groundwater to the nearest surface water body was modeled from LHAAP-04, -35A(58), -35B(37), -46, -47, and -50 to Goose Prairie Creek; from LHAAP-12, -29, and -67 to Central Creek; and from LHAAP-35C(53) to both Central Creek and Harrison Bayou. There is no impact to Saunders Branch from the 10 sites modeled for this report. Because LHAAP-48 is located on both sides of the tributary of the Central Creek and the monitoring wells are very close to the tributary, it was assumed conservatively that the contaminants (TCE and perchlorate) have already occurred in the creek, therefore no fate and transport modeling was performed. Only mixing concentrations were calculated.

Metals and dioxins in the groundwater posed unacceptable human health risk at sites LHAAP-35C(53), LHAAP-46, and LHAAP-48. It is possible that the elevated levels of metals and dioxins in the groundwater were due to high turbidity of the samples. The groundwater at sites LHAAP-35C(53) and LHAAP-48 was recently sampled during the Data Gaps Investigation (Shaw, 2005). However, the results were not conclusive and additional sampling is planned. Groundwater at LHAAP-46 may also be resampled in the future. No modeling for these chemicals was conducted due to the evaluation currently underway.

TCA isomers were considered in the groundwater transport modeling only at LHAAP-67. TCA isomers were not selected for modeling at other sites because at two of the sites (LHAAP-47 and 50), the maximum detected concentrations were below the MCL. The proportion of risk contributed by each COC for a specific site was one of the factors in the COC selection (Shaw, 2004a). The risk contributed by TCA at LHAAP-35A was minor (8 μ g/L) compared with other contaminants that were modeled (trichloroethene, PCE, 1-1, dichloroethene, RDX, and perchlorate).

 Table 3-1

 Rationale for Selection of Chemicals of Concern

Site	Medium	Modeled Path	Chemical	Regulatory	Maximum	Sample	Rationale for Modeling
			of	Limits ^a	Concentration at Source	Location	the Contaminant
				(µg/L, unless			
			Concern	noted otherwise)	(water-µg/L) (soil-µg/kg)		
LHAAP-4	Soil	Surface soil to surface water - Goose Prairie Creek	Perchlorate	4.0 (IAL)	163,000 ^b	04SS06/0-0.5	Elevated concentration of 163,000 µg/kg.
		Surface soil to sediment - Goose Prairie Creek		25 mg/kg ^c			
		Soil leachate to groundwater		10(11)			In soil, only 5 feet to water table.
	Groundwater	Groundwater to surface water - Goose Prairie Creek		4.0 (IAL)	 495 ^d		
LHAAP-12	Groundwater	Groundwater to surface water - Central Creek	Trichloroethene Vinyl Chloride	5.0 (MCL) 2.0 (MCL)	2.1	12WW12 12WW02	Elevated concentration in groundwater higher than MCL. Elevated concentration in groundwater higher than MCL.
			Perchlorate	. ,	2.1 56 ^b	12WW02	з з ,
	Countration	Country to the term from working Country I Country		4.0 (IAL)	1,200 ^d		Elevated concentration in groundwater higher than IAL.
LHAAP-29	Groundwater	Groundwater to surface water - Central Creek	Trichloroethene	5.0 (MCL)	1,200 ^d	29WW15	Elevated concentration in groundwater higher than MCL.
			1,2-dichloroethane	5.0 (MCL)		29WW15	Elevated concentration in groundwater higher than MCL.
			Methylene Chloride	5.0 (MCL)	6,600,000 ^d	29WW16	Elevated concentration in groundwater higher than MCL.
	-		Perchlorate	4.0 (IAL)	61,400 ^b	29WW15	Elevated concentration in groundwater higher than IAL.
LHAAP-35A	Groundwater	Groundwater to surface water - Goose Prairie Creek	Trichloroethene	5.0 (MCL)	160 ^e	LHSMW05	Elevated concentration in groundwater higher than MCL.
(LHAAP-58)			1,1-dichloroethene	7.0 (MCL)	1,340 ^e	LHSMW07	Elevated concentration in groundwater higher than MCL.
			Tetrachloroethene	5.0 (MCL)	49,010/5,400 ^e	LHSMW05	Elevated concentration in groundwater higher than MCL.
			RDX	26.0 (MSC)	88 ^e	LHSMW03	Elevated concentration in groundwater higher than the MSC.
			Perchlorate	4.0 (IAL)	36.9 ^e	LHSMW01	Elevated concentration in groundwater higher than IAL.
LHAAP-35B	Groundwater	Groundwater to surface water - Goose Prairie Creek	Trichloroethene	5.0 (MCL)	330 ^e	LHSMW59	Concentrations of TCE, 1,1-DCE, and PCE are higher than MCLs
(LHAAP-37)			1,1-dichloroethene	7.0 (MCL)	58 ^e	LHSMW58	and sources are only 125 feet away from Goose Prairie Creek.
			Tetrachloroethene	5.0 (MCL)	34 ^e	LHSMW58	
LHAAP-35C	Soil	Surface soil to sediment - Central Creek or Harrison Bayou	Perchlorate	25 mg/kg ^c	60.9 ^e	35CSB03/0-0.5	Concentration in topsoil is 61 µg/kg.
(LHAAP-53)		Surface soil to surface water - Central Creek or Harrison Bayou	Perchlorate	4.0 (IAL)	60.9 ^e	35CSB03/0-0.5	
	Groundwater	Groundwater to surface water - Central Creek or Harrison Bayou	Trichloroethene	5.0 (MCL)	7 ^e	LHSMW67	Concentration in groundwater higher than MCL.
LHAAP-46	Groundwater	Groundwater to surface water - Goose Prairie Creek -Middle	Perchlorate	4.0 (IAL)	30 ^b	46WW04	Elevated concentration in groundwater higher than IAL.
LHAAP-47	Soil	Subsurface soil to sediment - Goose Prairie Creek	Perchlorate	25 mg/kg ^c	180,000 ^e	25C-21/1.5-2.0	Concentration in top soil at 180,000 µg/kg.
		Subsurface soil to surface water - Goose Prairie Creek	Perchlorate	4.0 (IAL)	190,000 ^e	25C-06/4.0-5.0	Possible leachate from elevated levels in soil less than 5 feet from
		Soil leachate to groundwater	Perchlorate				water table.
	Groundwater	Groundwater to surface water - Goose Prairie Creek	Trichloroethene	5.0 (MCL)	29,410 ^e	LHSMW43	Elevated concentration in groundwater higher than MCL.
			Tetrachloroethene	5.0 (MCL)	168 ^e	LHSMW43	Elevated concentration in groundwater higher than MCL.
			Pentachlorophenol	1.0 (MCL)	7.9 ^e	LHSMW47	Concentration in groundwater higher than MCL.
			Vinyl Chloride	2.0 (MCL)	127 ^e	LHSMW56	Elevated concentration in groundwater higher than MCL.
			Perchlorate	4.0 (IAL)	82,900 ^b	LHSMW60	Significant contribution by leachate from soil.

 Table 3-1

 Rationale for Selection of Chemicals of Concern

Site	Medium	Modeled Path	Chemical	Regulatory	Maximum	Sample	Rationale for Modeling
			of	Limits ^a	Concentration at Source	Location	the Contaminant
				(µg/L, unless			
			Concern	noted otherwise)	(water-µg/L) (soil-µg/kg)		
LHAAP-48	Groundwater	Groundwater to surface water - Central Creek	Trichloroethene	5.0 (MCL)	9 ^e	LHSMW63	Elevated concentration in groundwater higher than MCL.
			Perchlorate	4.0 (IAL)	160 ^e	LHSMW62	Elevated concentration in groundwater higher than IAL.
LHAAP-50	Groundwater	Groundwater to surface water - Goose Prairie Creek	Trichloroethene	5.0 (MCL)	22,000 ^e	50WW02	Elevated concentration in groundwater higher than MCL.
			Tetrachloroethene	5.0 (MCL)	35 ^e	50WW02	Elevated concentration in groundwater higher than MCL.
			1,2-dichloroethane	5.0 (MCL)	98 ^e	50WW02	Elevated concentration in groundwater higher than MCL.
			Vinyl Chloride	2.0 (MCL)	100 ^e	50WW02	Elevated concentration in groundwater higher than MCL.
			Perchlorate	4.0 (IAL)	18,000 ^b	50WW02	Elevated concentration in groundwater higher than IAL.
LHAAP-67	Groundwater	Groundwater to Central Creek	Trichloroethene	5.0 (MCL)	6.3 ^f	67WW01	Elevated concentration in groundwater higher than MCL.
			1,2-dichloroethane	5.0 (MCL)	27 ^f	67WW01	Elevated concentration in groundwater higher than MCL.
			1,1-dichloroethene	7.0 (MCL)	380 ^f	67WW01	Elevated concentration in groundwater higher than MCL.
			1,1,1-trichloroethane	200 (MCL)	1,800 ^f	67WW03	Elevated concentration in groundwater higher than MCL.
			1,1,2-trichloroethane	5.0 (MCL)	33 ^f	67WW01	Elevated concentration in groundwater higher than MCL.

Notes:

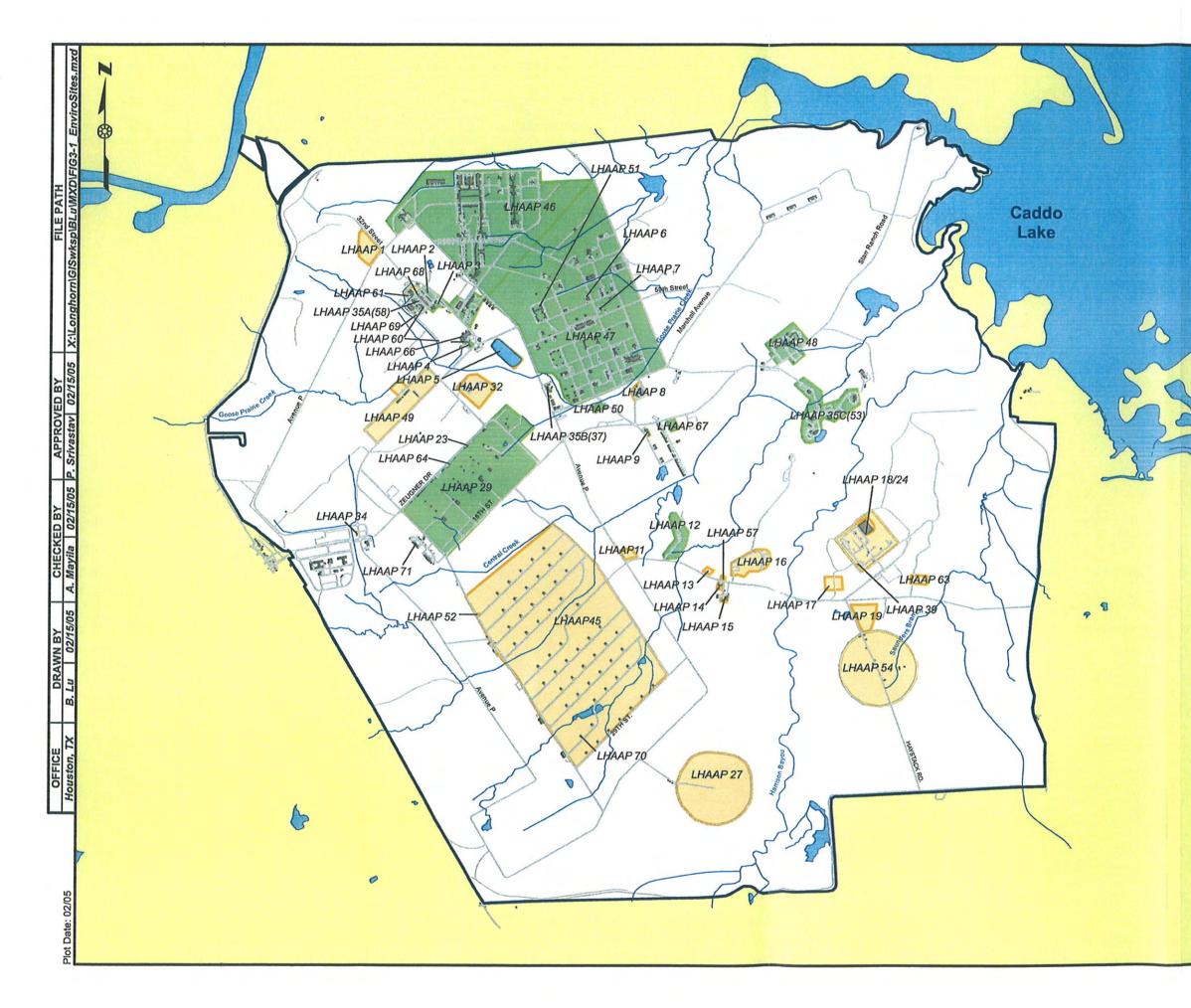
-- Data were not collected, or results are non-detect, or below regulatory levels.

^a Value represents the maximum concentration limit (MCL), the TCEQ risk-based medium specific concentration (MSC) for industrial use, or the TCEQ interim action level (IAL) for perchlorate

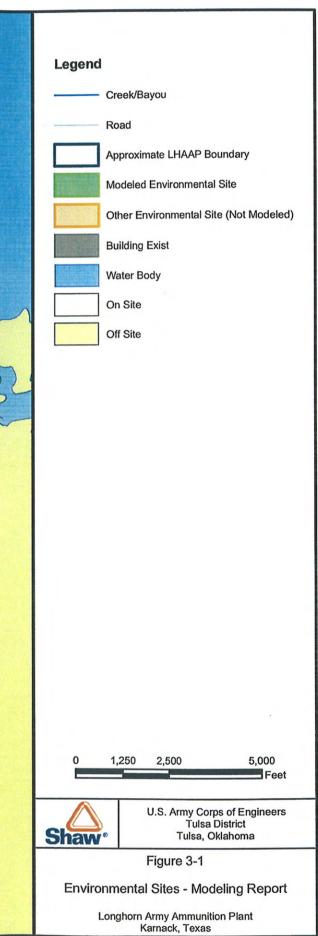
^b Solutions to Environmental Problems, Inc., 2003, Draft Final Project Report Plant-Wide Perchlorate Investigation, Longhorn Army Ammunition Plant, Karnack Texas, March

^c Sediment protective concentration level for human risk from the Table for Risk Reduction Program Rule, TNRCC, 2002.

^d Jacobs, 2001b, Final Remedial Investigation Report (Volume 1 - 3) for the Group 2 Sites 12, 17, 18/24, 29, and 32, Longhorn Army Ammunition Plant, Karnack, Texas, April


e Jacobs, 2002a, Final Remedial Investigation Report (Volume 1 & 2) for the Group 4 Sites 35A, 35B, 35C, 46, 47, 48, 50, 50, and Goose Prairie Creek, Longhorn Army Ammunition Plant, Karnack, Texas, January

^f Jacobs, 2002b, Final Remedial Investigation Report Addendum for the Group 4 Sites 04, 08, 67, and Hydrocarbon Study, Longhorn Army Ammunition Plant, Karnack, Texas, February


µg/kg micrograms per kilogram

µg/L micrograms per liter

mg/kg milligrams per kilogram

4.0 Development of Protective Medium-Specific Concentrations for Chemicals of Concern

Analytical equations and computer models were used to calculate concentrations of COCs during their migration through various environmental media to exposure points in the surface water bodies. Except for perchlorate in the groundwater at LHAAP-29, the historically maximum concentration of a COC detected in the medium of concern at a site was utilized for calculations and modeling, thus presenting the worst-case scenario. At LHAAP-29, perchlorate levels in the groundwater showed a decreasing trend with time (**Table 4-1**); therefore, the most recent high value was used in modeling. Specific media and the models used in this effort depended upon the contaminated source medium and anticipated pathway of contaminant migration (**Table 3-1**).

The modeling effort yielded a dilution factor (DF) for a contaminant between the location of the contaminated source medium and an exposure point in the surface water. The DF was used to derive on-site medium-specific concentrations (MSCs) based on applicable regulatory standards or risk-based remedial goals at the exposure point.

4.1 Medium-Specific Concentration

Development of MSCs is in compliance with Texas Commission on Environmental Quality (TCEQ) regulations described in 30TAC§335.160. The MSC values for groundwater at LHAAP sites were developed to be protective of surface water and sediment at locations both on and off LHAAP property. Calculation of soil MSCs was performed in accordance with the procedures described in Texas Risk Reduction Standards (30TAC§335.551-335.569) and associated TCEQ memoranda and updates (Texas Natural Resource Conservation Commission [TNRCC], 1998).

Analytical equations and models were used to develop on-site soil and groundwater MSCs that are protective of human and ecological receptors at exposure points in creeks and bayous. Migration of COCs in groundwater from a site to an exposure point in the surface water was estimated using a transport model, which yielded a chemical-specific DF. The DF was used to multiply the applicable regulatory standard to develop a groundwater MSC. During discussions with regulatory agencies, it was decided that the standard to be met in the surface water of the creeks would be the TCEQ ecological benchmark value, in the absence of which, either the MCL or interim action level (IAL) for perchlorate would be used (minutes of the Longhorn Monthly Manager's Meeting, November 11, 2003). However, because Caddo Lake is a drinking water source for several neighboring communities in Texas and Louisiana, and creeks at LHAAP flow into Caddo Lake, the MCL (or Texas IAL for perchlorate) was used as the criteria for the surface water in the creeks in order to be conservative (**Table 3-1**).

The resulting groundwater MSC was interpreted as the groundwater concentration at a compliance point on site or at an off-site downgradient location that will be protective of the surface water farther downgradient.

Groundwater MSCs developed for COC transport to sediments were based on TCEQ's protective concentration limits for sediments (**Table 3-1**). Groundwater and soil MSCs were developed to be protective of the drinking water source at Caddo Lake, and human and ecological receptors exposed directly to the surface water and sediment. The MSCs are specific to the site, transport pathway, receptor surface water body, and COC.

4.2 Analytical Models

Four analytical models were utilized for calculation of protective levels in various media. Contaminant migration from (1) topsoil to sediments, (2) surface soil to surface water, (3) subsurface soil to groundwater, and (4) groundwater to the surface water were calculated using the appropriate analytical equation and or model as described in the Technical Memorandum (Shaw, 2004a) and summarized in the following sections.

Data Collection and Review

Soil and groundwater data from existing remedial investigation reports (Jacobs), and U.S. Department of Agriculture (USDA) and U.S. Environmental Protection Agency (USEPA) maps were reviewed and compiled for the modeling effort. The data collection focused on information useful for input to the models. The following were reviewed in detail:

- Historical and current water level information
- Contaminant concentration data (spatial and temporal distributions)
- Slug test data (permeability and hydraulic conductivity)
- Precipitation rates
- Stream elevations from surveys or accurate detailed maps
- Stream flow data
- Isoerodent maps of the United States of America
- Soil type and composition
- Soil bulk densities
- Soil porosities
- Geologic cross sections
- Potentiometric surface maps
- Organic fraction of soil

The data deemed to be most important to the model, site-specific input parameters, and conservative assumptions were used as model input for each site. When site-specific data were not available, conservative literature values were used.

Analytical methods used to establish the initial contaminant concentrations were those analytical methods listed in the approved Final Work Plans for RI/FS at LHAAP prepared by Jacobs Engineering Group, Inc. and Solutions to Environmental Problems, Inc., as follows:

- VOCs EPA Method 8260A
- SVOCs EPA Method 8270
- Metals (except Hg) EPA Method 6010A
- Hg EPA Method 7471A
- Explosives EPA Method 8330
- Pesticides/PCBs EPA Method 8080A
- Dioxins/Furans EPA Method 8290
- Perchlorate EPA Method 314.0

4.2.1 Surface Soil Concentrations Protective of Sediment and Surface Water

Contaminants released on the land surface are retained between the pore spaces of topsoil, adsorbed on soil particles, or migrated into subsurface soil. Contaminated soil particles are transported by storm-generated runoff to nearby streams or depressions. The following sections describe the calculations used to develop surface soil concentrations protective of sediment and surface water in streams.

4.2.1.1 Calculation for MSC-Soil-Sediment (Sed Soil MSC)

A screening calculation was performed to evaluate whether storm water from sites LHAAP-04, -35A(58), -35C(53), -46, -47 and -48 has the potential to impact nearby receiving water bodies. Soil loss was evaluated at each site using the Revised Universal Soil Loss Equation (RUSLE) before the soil concentration protective of sediment could be calculated.

Soil Loss Calculation

The RUSLE (Version 1.06) was developed jointly by the Agriculture Research Service of the USDA and the Natural Resources Conservation Service in cooperation with Purdue University, the University of Minnesota, and the University of Tennessee (Toy and Foster, 1998). RUSLE is empirical and is based on statistical relationships that support its universal applicability.

The RUSLE is in the form:

$$A = R \times K \times L \times S \times C \times P$$

where:

- A = estimated average annual soil loss (kg/acre [ac] per year)
- R = rainfall-runoff erosivity factor (feet-ton-inches per ac per hour per year)
- K = soil-erodability factor (ton/ac per unit of *R*)

Equation 4-1

- L = slope length factor (unitless)
- S = slope steepness factor (unitless)
- C = cover management factor (unitless)
- P = support practice factor (unitless)

The RUSLE was used to facilitate the input of the parameters and calculations. The input parameters were all dependent on the actual location of the site being evaluated. The location factor implicitly describes rainfall, land use, surface coverage, soil type, and other factors for the specific location. Since LHAAP is close to Shreveport, Louisiana (**Figure 1-1**) several of the parameters established for Shreveport were utilized in the calculations. **Table 4-2** presents a summary of site-specific input parameters and results for calculations of soil concentrations protective of the sediment.

Rainfall-Runoff Erosivity Factor (R). When factors other than rainfall are held constant, soil losses from cultivated land are directly proportional to a rainstorm parameter:

Total storm energy (E) multiplied by the maximum 30 minute intensity (I). During the current evaluations, *R* was obtained using the following:

- Isoerodent maps covering the entire United States with *R* contours available from USDA and USEPA were utilized. An *R* value for LHAAP of 400 was obtained from **Figure 4-1**, a map showing a portion of the eastern United States (USDA, 1996). This is a conservative value since the LHAAP land is uncultivated.
- The RUSLE software was utilized. The topographic slope of each affected area (contaminant site) was assumed and the slope from the site being evaluated to the nearby creek (total area) was estimated. The overall *R* value of 400 was given in the template provided by the RUSLE program. **Table 4-3** shows the annual precipitation of 43.8 inches with monthly distributions of rainfall and temperature for the city of Shreveport, which is the nearest location to LHAAP. Hourly EI distribution is also shown in **Table 4-3**. The site specific *R* factor was estimated for each site.

Soil Erodability (K). The K factor is the ease with which soil is detached by splash during rainfall or by surface flow, or by a combination of both. It is a function of the composition of the soil type, percentage of organic matter, soil structure and grain size, and soil permeability. The K factor is calculated and included on a soil loss and sediment yield computation worksheet for each site. The calculated K factor ranged from 0.12 to 0.192 ton/ac-per unit of R for the sites where soil loss calculations were conducted (**Table 4-2**).

Topographic Factor, including L and S (LS). The value of *LS* increases as hillslope length and steepness increase.

- Slope length factor (*L*). Erosion increases as slope length increases. Slope length is defined as the horizontal distance from the origin of overland flow to the point where either (1) the slope gradient decreases enough that deposition begins, or (2) runoff becomes concentrated in a defined channel.
- Slope steepness factor (S). Slope steepness plays an important role in soil erosion. There are several equations for slopes longer than 15 feet in length and slopes shorter than 15 feet. Slope steepness greater than 9 percent is calculated differently from those slope steepness of less than 9 percent. The length of the slope of the affected and total areas was assumed for each site.

LS values for the sites modeled are shown in **Table 4-2**.

Cover Management Factor (C). The C factor is the ratio of soil loss with specific cropping and management practices to the corresponding loss with up-slope and down-slope tillage and continuously fallow conditions. This factor includes the effects of cover, crop sequence, productivity level, length of growing season, tillage practices, residue management, and the expected time distribution of erosive rainstorms. In the RUSLE program, the annual average value was used. The following factors and parameters were assumed because site-specific data were not available:

- Plant : southern grasses
- Annual site production potential of plant: 2 pounds per acre (lb/ac) (affected area) and 50 lb/ac (total area)
- Effective root mass in top 4 inches: 11 lb/ac (affected area) and 280 lb/ac (total area)
- Percent canopy cover: 5 percent and 50 percent (affected and total areas, respectively)
- Roughness for the field condition: 0.8 inches (corresponding to short grass)
- Average fall height: 0.1 foot
- Number of years for soil consolidation: 7 years
- Number of years since last mechanical disturbances: 1 year
- Total percentage of ground covered by rock and residue: variable for each site (affected and total areas, respectively)

The *C* values were then calculated and are included on the RUSLE calculation results output for each site and in **Table 4-2**.

Support Practice Factor (P). The P factor is an expression of the effects of supporting conservation practices, such as contouring, buffer strips of close-growing vegetation, and terracing, on soil loss at a particular site. The value of P decreases with the practice of these

factors because they reduce runoff volume and velocity and encourage the deposition of sediment on the slope. As in the case of the C factor, many of the input parameters for the P factor were unknown or not available when the calculations were performed. Therefore, the following inputs were assumed:

- Ridge height: high ridges 4 to 6 inches
- Furrow grade: 0.05 percent
- Overall slope gradient: from 0.1 to 2.22
- Soil type and composition: similar to the *K* factor above

The P factors for the affected and total area, and the subsequent resultant soil losses were calculated using the RUSLE program and are included on the RUSLE calculation results output for each site and in **Table 4-2**.

In the process of moving towards the watershed outlet, soil will be trapped by vegetation and plant residue or will be deposited in low lying areas, local scour, rills, and channels. Other factors inhibiting the eroded material's delivery to the watershed outlet include climate, soil particle size and texture, size and proximity of the upland erosion source, the ratio of rill versus sheet erosion, total watershed area, watershed length and relief, and drainage density. Therefore, not all of the soil loss calculated by the above approach will reach the watershed outlet. The sediment yield or load at the outlet was estimated using a sediment delivery ratio (SDR) from 0 to 1 to account for the above-mentioned deduction factors. RUSLE is designed to calculate the SDR by assigning different values for permanent barriers (strips or concaves) and terraces or sediment basins that include the land slope, soil type and texture etc. Because many of the site specific data are not available, assumptions were made, similar to the assumptions described in the previous sections. The SDR value and the annual sediment yields were estimated using RUSLE and are included on the RUSLE calculation results output for each site and are shown in **Table 4-2**.

Calculate Sed Soil MSC

The soil concentration protective of sediment, ^{Sed}Soil MSC (or C_{AP}), was calculated using the following equation:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT}) - (SL_{OA} \times C_{OA})}{SL_{AP}} \quad (mg/kg)$$
 Equation 4-3

where:

 C_{AP} = the ^{Sed}Soil MSC in milligrams per kilogram (mg/kg) for the surface water runoff pathway from the affected area.

- SL_{TOT} = total sediment load estimated for the entire contributing watershed (kg/ac per year).
- C_{TOT} = published regulatory sediment MSC (mg/kg) for the COC.
- SL_{OA} = sediment load (kilogram per year [kg/yr]) estimated for other areas of the watershed.
- C_{OA} = background soil concentration for inorganic COCs (if available). This term is zero for organic compounds because there is no Texas-specific median background soil concentrations; thus $C_{OA} = 0$.
- *OA* = other area. This is the area of contributing watershed other than the affected area.
- SL_{AP} = sediment load from the affected property (kg/yr).

The above equation can be simplified as:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT})}{SL_{AP}} = {}^{Sed}Soil\,MSC$$
 Equation 4-4

The ^{Sed}Soil MSC value is compared with the affected property surface soil concentration to determine if the erodable soil concentrations exceed the ^{Sed}Soil MSC. Calculations for soil concentrations protective of sediment were conducted for three sites (LHAAP-04, -35C[53], and -47).

4.2.1.2 Calculation for MSC-Soil-Surface Water (^{sw}Soil MSC)

Screening for the erodable soil to surface water pathway was conducted using conservative screening equations that account for some affected property and watershed characteristics. The sediment load to the surface water body calculated using RUSLE and delivery ratio approaches can be used to estimate the load on surface water during average flow conditions and to estimate the greatest potential effect on the water body. This assumption is necessary to account for the maximum release from the affected property and is supported by the theory that sediment from eroded soil is transported toward the outlet by intensive and heavy rainstorm but not necessarily flushed into the surface water body by the same storm; therefore, the flow in the stream does not necessarily correspond to this storm (USEPA, 1985). In the current study, it was conservatively assumed that "7Q2" conditions in the creeks (flow in seven consecutive days occurs once every 2 years; i.e., an exceedance probability of 0.5) prevail and, therefore, pose a greater effect on the creek after mixing and dilution. However, because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2.

The equation used to estimate the COC concentration in runoff from the affected property is as follows:

$$C_{AP} = \frac{Q_D \times C_D - Q_{OA} C_{OA}}{Q_{AP}}$$

Equation 4-5

where:

- C_{AP} = concentration of COC in runoff from the affected property (milligrams per liter [mg/L])
- Q_D = flow downstream of the affected property watershed (cubic feet per second [ft³/sec]), using 7Q2 flow
- C_D = concentration of COC downstream of the affected property (mg/L)
- Q_{AP} = runoff from the affected property (ft³/sec)
- Q_{OA} = runoff from other areas of the affected property watershed (ft³/sec)
- C_{OA} = concentration of COC in runoff from other areas of the affected property watershed (mg/L) ($C_{OA} = 0$ in this case)

The calculation of runoff rates and volumes are based on the Schueler Method (Schueler, 1987).

First, the runoff coefficient for each land use type can be derived with the following equation:

$$R_{VU} = 0.05 + (0.009 \times I_U)$$
 Equation 4-6

where:

 I_U = percent imperviousness (unitless) characteristic of land use type U

The runoff flow rates are then calculated using the following equation:

$$Q = P \times P_J \times R_{VU} \times A_U \ (ft^3/sec)$$
Equation 4-7

where:

P = precipitation rate (inches/year) $P_J = \text{ratio of storms producing runoff (unitless) with a default value of 0.9}$ $R_{VU} = \text{runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain})}$ $A_U = \text{area of land use type U (acres)}$

At each site the area of affected property and the percent imperviousness (I_U) for the affected property and the other area (OA) of the affected property watershed are estimated based on site maps.

 Q_{AP} is then calculated. Q_D is obtained based on 7Q2 flow charts for each site. Since $C_{OA} = 0$, the term $Q_{OA} \times C_{OA} = 0$ and, therefore, the other areas of the affected property watershed are omitted.

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP} C_{AP}}{Q_D}$$
 Equation 4-8

When the COC concentration downstream of the affected property (C_D) is set equal to a regulatory standard, the resulting C_{AP} represents the COC concentration protective of the receiving surface water. Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}}$$
 Equation 4-9

The concentration of COC in the solute, *Conc_{source}* (mg/L), can be derived from the measured soil concentration, *Conc_{soil}* in mg/kg (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$
 Equation 4-10

where:

 $\rho_b = bulk density of soil$ $k_d = distribution coefficient$ $\phi_w = water-filled porosity$ $\phi_a = air-filled porosity$ $H_c = Henry's law coefficient$

Using the equation used above, COC concentration in soil (C_{soil}) can be back-calculated by setting COC concentration in due solute ($Conc_{source}$) equal to C_{AP} :

$$C_{soil} = \frac{[\phi_w + H_C \phi_a] C_{AP}}{\rho_b} = {}^{SW} Soil MSC$$
Equation 4-11

This value C_{soil} (=^{SW}Soil MSC), is the soil concentration protective of surface water. Calculations for soil concentrations protective of surface water were conducted for six sites, LHAAP-04, -35A(58), -35C(53), -46, -47, and -48.

4.2.2 Subsurface Soil Concentrations Protective of Groundwater

Contaminants in the soil, especially in the vadose zone, migrate mainly to the groundwater. It is necessary to calculate the DF of contaminant concentration in groundwater after mixing so that the MSC for soil that is protective of groundwater (*GWP*) derived based on the DF.

$$GWP = \frac{GW}{DF}$$
 Equation 4-12

where:

GW is the regulatory standard for groundwater (MCL or IAL) for the COC, when available.

The dimensional integrity of this equation is maintained by assuming the density of water is 1 kilogram per liter (kg/L).

Vadose Zone Leaching and Saturated Zone Mixing

For modeling of soil leaching to groundwater, and groundwater transport between shallow and intermediate zones, the DF was derived by calculating the mixing concentration in groundwater ($Conc_{mix}$) contributed by the contaminant source in the soil. The calculation was performed using USEPA's leaching model, Vadose Zone Leaching and Saturated Zone Mixing (VLEACHSM), a modification of VLEACH (ASTM, 1999). VLEACHSM was utilized for modeling soil leaching to groundwater at three sites: LHAAP-04, -35A(58), and -47.

The VLEACHSM model is a one-dimensional finite-difference vadose zone leaching model. The model estimates impact to groundwater due to the mobilization and migration of contaminants in the vadose zone, and subsequently estimates mixing in the saturated zone. The model simulates the transport processes including liquid-phase advection, liquid- and vaporphase dispersion, sorption, and decay of the contaminant. The model input parameters for the hydrogeologic and chemical properties are assumed to be uniform and homogeneous throughout the simulation.

The initial contaminant concentration distribution in the vertical polygon (soil column) from the land surface to the water table is used as input to the model.

Other input parameters include duration of the source release, chemical distribution coefficient (partition coefficient), Henry's law coefficient, solubility of contaminant, free air diffusion coefficient, longitudinal dispersion coefficient, bulk density of soil, water-filled porosity, air-filled porosity, decay rate, groundwater recharge rate, Darcy velocity of groundwater, and background concentration in groundwater. Literature values were used when site-specific data were not available. **Table 4-4** presents input parameters for VLEACHSM.

Two types of results are provided by VLEACHSM simulation: the contaminant profile in soil varying with time and the mixing concentration in groundwater varying with time. The time-varying COC concentration in the leachate is described as *Conc_{source}* in mg/L and is calculated by the equation (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$
 Equation 4-13

where:

<i>Conc</i> _{so}	p_{il} = Chemical concentration in soil (mg/kg)
$ ho_b$	= Bulk density of soil (grams per cubic centimeter $[g/cm^3]$)
k_d	= distribution coefficient [cubic centimeters per gram (cm^3/g)]
ϕ_w	= Water-filled porosity (unitless)
ϕ_a	= Air-filled porosity (unitless)
H_c	= Henry's law coefficient (unitless)

The time-varying concentration after mixing with groundwater is described as $Conc_{mix}$, in mg/L (ppm). Then DF (unitless) is calculated as:

$$DF = \frac{Conc_{source}}{Conc_{mix}}$$
 Equation 4-14

The VLEACHSM model employs single values for each input parameter and, therefore, produces single values of $Conc_{source}$ and $Conc_{mix}$ at each time interval. The input values can be the maximum, minimum, mean, or any other descriptor of the concentration data. A modeled concentration at a downgradient receptor location based on a maximum at the source site would approximate an upper bound for the contribution of the source to the receptor. Similarly, the minimum and mean source concentrations would estimate the lower bound and most probable contributions.

4.2.3 Groundwater Concentrations Protective of Surface Water

The area of discharge of a groundwater contaminant plume into a nearby stream is defined as the area (or interface) of the portion of the plume containing chemical concentrations above values protective of human and ecological receptors. This approach provides a calculated MSC for groundwater-to-surface-water pathway (MSC-GW-SW) or ${}^{SW}GWMSC$ that is protective of surface water by the groundwater discharge pathway. The method of calculating the mixing concentration accounts for the dilution of contaminants in the stream before they are discharged into another stream or lake.

The analytical computer model AT123D or the Domenico equation was used to calculate the chemical concentration and the DF at the interface where groundwater enters the surface water body.

AT123D

In order to calculate the maximum concentrations of the contaminants in groundwater and the time of transportation just before they are discharged to the surface water body, the computer model AT123D was utilized. AT123D is the acronym for "Analytical Transient One-, Two-, and Three-Dimensional Simulation of Waste Transport in the Aquifer System" (ASTM, 1999). AT123D was developed by Professor G.T. Yeh of Pennsylvania State University for the Oak Ridge National Laboratory in Oak Ridge, Tennessee, and is a public domain model recognized by the USEPA (Yeh, 1987). The model is included in the USEPA publications, *Ground-Water Modeling Compendium* (USEPA, 1994) and *Selection Criteria for Mathematical Models Used in Exposure Assessments: Ground-Water Models* (USEPA, 1988).

AT123D is an analytical groundwater transport model that computes the spatial-temporal concentration distribution of chemicals in an aquifer system and predicts the transient spread of a contaminant plume through a groundwater aquifer. The aquifer is assumed to be homogeneous and isotropic. The fate and transport processes account for advection, dispersion, adsorption, and chemical decay/degradation. AT123D can model two kinds of source releases; an instantaneous and a continuous release with either a constant source loading, or time-varying loading. AT123D can model three types of waste (radioactive, chemical, and heat), four types of source configurations (a point source; a line source parallel to x-, y-, or z-axis; an area source perpendicular to the z-axis; and a volume source), and four variations of the aquifer dimensions (finite depth and finite width, finite depth and infinite width, infinite depth and finite width).

The input required for AT123D includes source size (length, width, depth), source concentration or release load, aquifer size, hydrogeologic parameters (hydraulic conductivity, porosity, hydraulic gradient), longitudinal, lateral, and vertical dispersivities, decay rate of chemicals, time steps, and downgradient points of evaluation. AT123D was utilized at nine sites (LHAAP-04, -29, -35A[58], -35B[37], -35C[53], -46, -47, -50, and -67) to model the groundwater fate and transport.

Domenico Equation

The DF of the COCs at a point of interest downgradient of the source at LHAAP-12 was obtained using the Domenico equation (Domenico and Schwartz, 1998). The model AT123D was not utilized for LHAAP-12 because the results from Domenico equations were considered adequate, considering the low concentrations of COCs at the site. The Domenico equation is an analytical model expressed as follows:

$$DF = \frac{C_{si}}{C_{(x)i}} = \left\{ \exp\left[\frac{x}{2\alpha_x} \left(1 - \sqrt{1 + \frac{4\lambda_i \alpha_x R_i}{v}}\right)\right] \left(erf\left[\frac{S_w}{4\sqrt{\alpha_y x}}\right]\right) \left(erf\left[\frac{S_d}{2\sqrt{\alpha_z x}}\right]\right) \right\}^{-1} \quad \text{Equation 4-15}$$

The notations used in this equation are conceptually shown in **Figure 4-2** and also explained below:

$$DF =$$
 dilution factor

- C_{si} = concentration of chemical *i* in source zone (micrograms per liter [µg/L])
- $C_{(x)i}$ = concentration of chemical *i* in groundwater at distance *x* downgradient of source (µg/L)
- S_w = source width perpendicular to groundwater flow (feet)
- S_d = source thickness (i.e., the thickness of the affected groundwater within the permeable zone) (feet). Since the thickness of the contaminated plume is unknown, the average thickness of the water bearing zone is used. The thickness of the shallow permeable zone at LHAAP 12 is in the range of 5 to 20 feet, the average thickness of the permeable water bearing zone (sand) = 12.5 feet.

 S_d is a site specific variable. However, it can be determined by adding the depth caused by advection and the depth caused by vertical dispersion:

$$S_d = h_{adv} + h_{disp}$$
 Equation 4-16

Where h_{adv} is the advective component of the plume depth (feet):

$$h_{adv} = B\{1 - exp[(-I \times L)/B \times D_v)]\}$$
 Equation 4-17

where B is the aquifer thickness (feet), I is the infiltration rate (feet/year), and L is the source length parallel to groundwater flow (feet).

 h_{disp} is the dispersive component of the plume depth:

$$h_{disp} = (2 \times \alpha_z \times L)^{1/2}$$
 Equation 4-18

If the calculated *Sd* exceeds the thickness of the aquifer, then Sd = B. In this evaluation the thickness of the groundwater plume is unknown; therefore Sd = B.

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas

- Dv = groundwater Darcy velocity in feet per year (ft/yr) (= $K \times i$). *K* is the hydraulic conductivity and i is the hydraulic gradient
- v = groundwater seepage velocity in ft/yr (= Dv/n), where n is the effective porosity, assumed as 0.25
- x = distance downgradient from source to the receiving water body (feet)
- foc = fraction of organic carbon content
- αx = longitudinal groundwater dispersivity (feet)
- αy = transverse groundwater dispersivity (feet)
- αz = vertical groundwater dispersivity (feet)
- erf = error function value, $erf\chi = \frac{2}{\sqrt{\pi}} \int_0^{\chi} e^{-t^2} dt$, which is available in tables
- λi = first-order degradation rate for chemical *i* (day-1)

$$\lambda_i = \frac{\ell n 2}{(t_{1/2})_i}$$

where (t1/2)i is the half-life of chemical i

Because no site-specific degradation rate was tested, conservative literature half-life values were used (Howard et al., 1991). The use of degradation rates was justified as follows: two practical evidences suggest that there is some degradation at the sites. During the September 2004 data gap sampling event, geochemistry data were collected from LHAAP-58 (35A). The dissolved oxygen data in most of the monitoring wells showed values less than 1.0 mg/L. The highest was detected at 11.12 mg/L at well 35AWW01, but dropped to only 0.99 mg/L after less than 2 hours during the test. Redox values ranged greatly from -129 to 354. Second, cis-1,2-DCE and vinyl chloride were detected at some sites. These are daughter products of PCE and TCE which proves in itself that dechlorination occurred. On the other hand, recent study at LHAAP-16 shows that sulfate levels are elevated and there is no carbon to sustain significant reductive dechlorination under existing conditions. A study conducted by Geosyntec showed that even when TCE degradation was stimulated in the presence of lactate, vinyl chloride did not degrade, as indicated by a lack of ethene detection. VC degradation potentially may occur only when most of TCE and cis-1,2-DCE have dechlorinated, because the thermodynamics of reductive chlorination favors the higher chlorinated compounds. These conflicting phenomena demonstrate that not only is the geologic condition highly heterogeneous at LHAAP but the

geochemistry is also highly heterogeneous. As such, the reductive dechlorination assumption used in the report may be valid for some sites and not valid for others. Based on current available data and before full scale site investigation is performed, the reductive dechlorination assumption will be conservatively utilized. It is the intention of the Army to present the results of the current transport calculations for PCE, TCE, cis-1,2-DCE and VC at the sites involved (LHAAP-12,- 29, -35A, -35B, -35C, -47, -48, -50 and -67) until such a time that additional data are available to validate the presence or absence of degradation on a site-specific basis.

The retardation factor for chemical $i(R_i, \text{dimensionless})$ is given by the equation:

$$R_i = [1 + (K_d \rho_b / n)]$$
 Equation 4-19

where:

- Kd = distribution coefficient for the chemical between groundwater and soil (cm^3/g)
- ρb = dry soil bulk density in g/cm3. $Kd = Koc \times foc$ where Koc is the carbonwater sorption coefficient (cm3/g)

n = porosity

The calculations of the DF for each of the COCs were performed with a spreadsheet and the corresponding concentrations at the interface of groundwater and surface water were obtained.

The Domenico equation used here is under steady state condition. Since it is an analytical model and a non-exact solution which assumes homogeneous, isotropic, it does not require the stringent boundary conditions required by other numerical transport models. The source plume has to be defined in terms of its horizontal and vertical dimensions. The spreading of the plume in the vertical direction is limited by the aquifer's thickness. When the thickness of the source plume is less than the aquifer thickness, it would spread horizontally and vertically downwards until it reaches the entire thickness at which the vertical dispersivity is no longer active and the error function term with α_z in Equation 4-15 becomes unity. The horizontal distance at which the plume touches the bottom can be calculated (Domenico and Schwartz, 1998). There exists obvious limitations to using the Domenico equation. Since each hydrogeologic property is represented by a single value, it can only yield reasonable results in a homogeneous setting. The assumption that the subsurface at the various sites is homogeneous is not realistic. Due to the current conservative assumptions, the conclusions reached are reasonable.

Dilution Factor

Once the COC concentration at the interface of groundwater and surface water was calculated, it was multiplied by the DF (a value greater than one, as defined below) to obtain the mixing concentration $Conc_{mix}$ in the immediate proximity of the groundwater outflow and surface water body. The DF in the surface water body was calculated using the following equation:

$$DF = \frac{Q_{GW}}{Q_{CC} + Q_{GW}}$$
 Equation 4-20

where Q_{CC} and Q_{GW} are the flow rates in the surface water body and in groundwater, respectively.

$$Q_{GW} = U_{gw} \times \delta_p \times Lm$$
 Equation 4-21

where:

$$U_{gw}$$
 = the approaching groundwater velocity (ft/yr)
 δ_p = the thickness of the plume approaching the surface water body (feet)
 L_m = the width of the plume approaching surface water body (feet)

Calculation of the surface water flow rate Q_{CC} was based on the 7Q2 stream flow analysis. According to TCEQ (2003), the 10th percentile flow has to be used when stream flow record is less than five years.

The mixing concentration $Conc_{mix}$ and the concentration at the source $Conc_{source}$ (= C_{si}) was then used to calculate the overall *DF* from the source:

Equation 4-22

$$DF = \frac{Conc_{source}}{Conc_{mix}}$$

DF was then used to calculate groundwater concentration protective of surface water MSC-GW-SW (^{SW}GW MSC) according to the equation:

$$^{SW}GWMSC = \frac{MSC - SW}{DF}$$
 Equation 4-23

where:

 $^{SW}GWMSC =$ MSC for groundwater at the source area that is protective of human or ecological receptors in surface water at a downgradient location (μ g/L) MSC-SW = Regulatory standard for surface water protective of human or environmental receptors, as appropriate, at the downgradient location, (µg/L).

Table 4-1Perchlorate Analytical DataLHAAP-29 Selected Shallow Monitoring Wells

Well Number	May-00	Sept/Oct 2000	Jan-01	Mar-02	Sep-02
29WW08				ND	ND
29WW13		30	ND	ND	ND
29WW14		ND		ND	ND
29WW16	35.8	ND	ND	ND	ND
29WW21				ND	ND
Well Number	May-00	Sept/Oct 2000	Jan-01	Mar-02	Sep-02
29WW15		88,000	47,000	61,400	46,400
29WW05		130	130	77.1	65.7
29WW17		130	ND	ND	ND
29WW18		ND		84.7	ND
29WW20		8	ND	ND	ND

Notes and Abbreviations:

Blank cell - not sampled

ND non-detect

ug/L micrograms per Liter

Site No.	LHAAP-04	LHAAP-35C	LHAAP-47
Parameter/Units			
Distance to nearest stream (feet)	722	300	192
Topographic slope (%)	0.1	0.4	2.22
Topsoil (%)	29% - silt	29% - silt	39% - silt and very fine sand
	70% - clay	70% - clay	60% - clay
	1% - organic matter	1% - organic matter	1% - organic matter
Soil erodibility (K) (tons/acre per unit of R)			
Affected area	0.19	0.14	0.12
Total area	0.192	0.19	0.12
Length (L) and Steepness (S) Factors			
Affected area	0.04	0.08	0.37
Total area	0.14	0.08	0.43
Cover Management Factor (C)			
Affected area	0.17	0.12	0.14
Total area	0.119	0.14	0.18
Overall Slope Gradient (%)			
Affected area	0.1	0.1	2.22
Total area	0.69	0.69	2.22
Support Practice factor (P)			
Affected area	0.82	0.82	0.58
Total area	0.98	0.98	0.58
Soil Loss - A (tons/acre-year)			
Affected area	0.44	0.4	1.4
Total area	1.2	0.82	2.2
Annual sediment yield (tons/acre-year)			
Affected area	0.42	0.4	0.73
Total area	1.2	0.82	1.1
Sediment Delivery Ratio (SDR)			
Affected area	0.79	0.74	0.3
Total area	0.92	0.92	0.3

Table 4-2 Input Parameters and Results for Soil Concentrations Protective of Sediment and Surface Water Calculations

Notes and Abbreviations:

% percent

mg/kg milligrams per kilogram

City code: 18003	City: Shreveport	State: Louisiana		
Total P: 43.8 "	El curve #: 96	Freeze-Free d	ays/year: 272	
Elevation (ft): 252	10 year El: 180		R factor: 400	
Mean P (inches)	Tave (deg. F)	%EI	%EI	
4.02	47.8	0	54	
3.46	51.7	2	58	
3.77	58.15	4	62	
4.71	67.05	6	66	
4.7	73.7	9	70	
3.54	81.2	12	74	
3.56	83.45	17	78	
2.52	84.15	23	82	
3.29	78.75	30	86	
2.63	68.45	37	90	
3.77	56.25	43	94	
3.87	49.8	49	97	

Table 4-3 Rainfall/Runoff Erosivity (R Factor) Shreveport, Louisiana

Notes and Abbreviations:

ft feet

F Fahrenheit

. % Р percent

precipitation

Table 4-4
Input Parameters for Modeling Soil Concentrations
Protective of Groundwater using VLEACHSM

	LHAAP-47
722	312 ^a
5	6
5 x 5	50 x 50
6.36 x 10 ⁻⁴	7.49 x 10 ⁻⁴
0.0072	0.00397
0.118	31.2
0.035	1.57
163,000 (top 5 ft)	7000 (0-0.5ft)
160,000 (deeper than 5 ft)	190,000 (4-5 ft)
	140,000 (9-10 ft)
Perchlorate	Perchlorate
NA	NA
0	0
0.024	0.024
0.00001 50,000	0.00001 50,000
	5 5 x 5 6.36 x 10 ⁻⁴ 0.0072 0.118 0.035 163,000 (top 5 ft) 160,000 (deeper than 5 ft) Perchlorate NA 0 0.024 0.00001

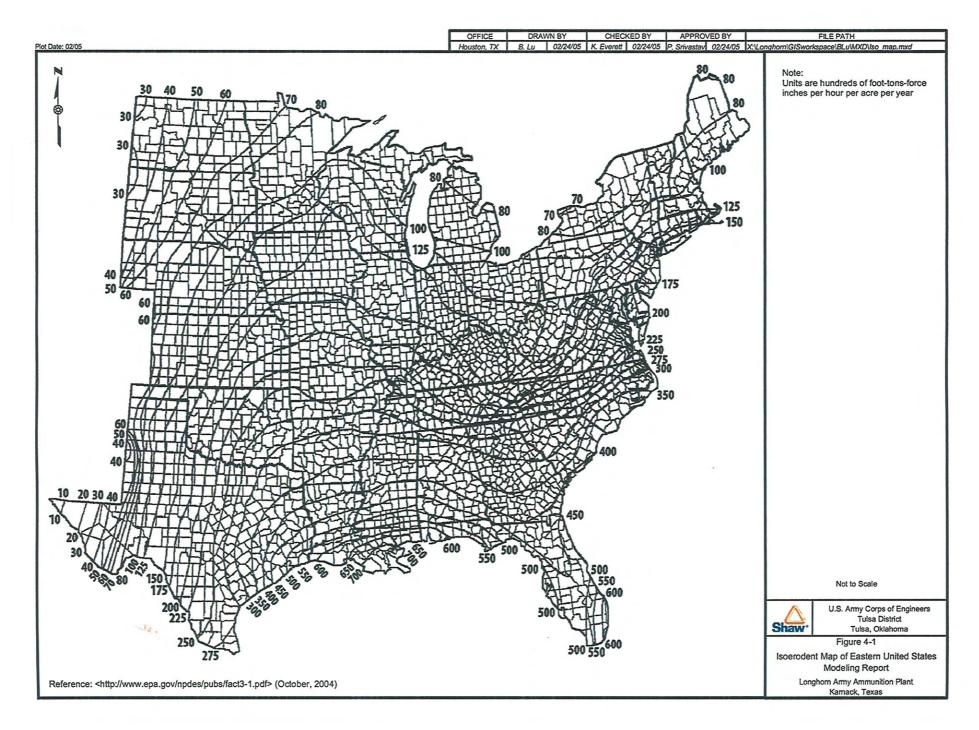
Notes and Abbreviations

^a Shortest distance to Goose Prairie Creek along the groundwater flow direction

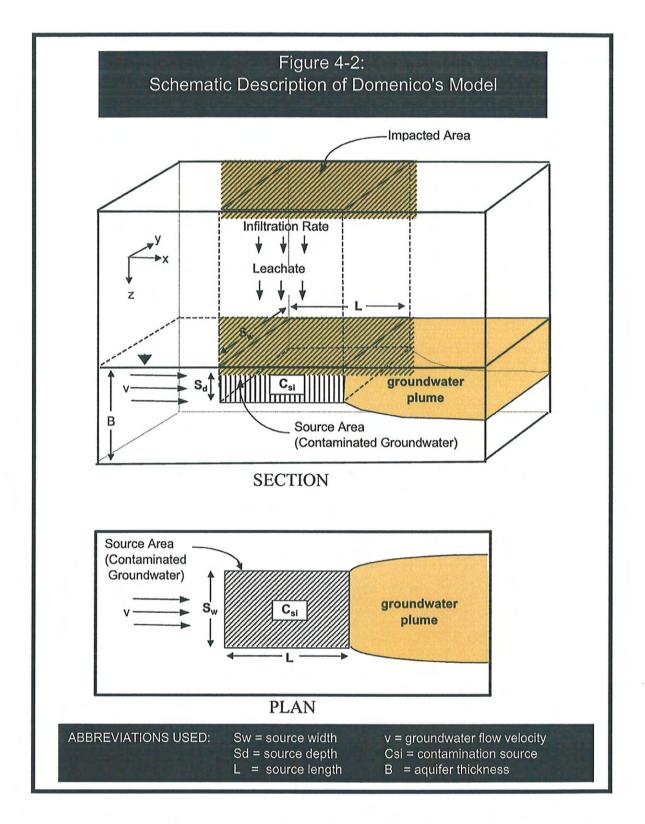
µg/kg micrograms per kilogram

µg/L micrograms per liter

cm/sec centimeters per second


cm²/sec square centimeters per second

cm³/g cubic centimeters per gram


ft feet

NA not applicable

00043266

http://www.dep.state.la.us/trchnology/recap/2000/APPJ-fig1.pdf October, 2004

5.0 Modeling Results

The fate and transport modeling for the COCs at each site is summarized in **Sections 5.1** through **5.11**. **Section 5.12** provides a comparison of the modeling results with the data collected after the modeling was completed. **Table 5-1** summarizes results of calculations and modeling of the fate and transport of COCs present in soil and groundwater to surface water and sediments of creeks and bayous within LHAAP at each of the 11 sites evaluated. This table includes a summary of modeled pathways, the analytical model or equation utilized, COCs modeled and modeling results. Detailed information regarding input parameters, specific models used, and model output is presented separately for each site in **Appendices A** through **K**. **Appendix L** presents the results of modeling of soil to surface water and soil to groundwater pathways at three sites (LHAAP-35A[58], -46, and -48). **Appendix M** presents results of an elevation survey of creeks and bayous at LHAAP. Creek bottom elevations were compared with groundwater elevations to determine if the groundwater at a site would discharge to a nearby creek.

5.1 LHAAP-04

Calculations of maximum concentrations and DFs of perchlorate discharging into Goose Prairie Creek from soil and groundwater at LHAAP-04 were performed as follows: 1) modeling of soil perchlorate leachate in the vadose zone to underlying groundwater using VLEACHSM, 2) calculation of maximum concentrations of perchlorate in groundwater and the time of transportation before discharging to Goose Prairie Creek utilizing AT123D, and 3) calculation of perchlorate concentrations in surface soil that are protective of sediment and surface water due to erosion of soil by rainstorm generated runoff as described in the Technical Memorandum (Shaw, 2004a). Detailed calculations and results of modeling are included as **Appendix A**.

Summary of Calculation Results. A maximum perchlorate concentration of 163,000 micrograms per kilogram (μ g/kg) was detected in soil that can be eroded by rainstorm-generated runoff to the nearest point of Goose Prairie Creek. The perchlorate levels found in soil (163,000 μ g/kg) exceeded the calculated soil concentrations protective of sediment (71,400 μ g/kg) and surface water (3.27 μ g/kg).

Modeling of the leaching of perchlorate from the soil to groundwater indicated that perchlorate levels in groundwater as a result of soil leachate are lower than the calculated levels protective of surface water. Subsequent flow mixing and dilution of groundwater into the surface water of Goose Prairie Creek resulted in concentrations of perchlorate that are below the IAL of 4 μ g/L. Mixing concentrations of perchlorate in Goose Prairie Creek are at 0.519 and 1.39 μ g/L for the 10-year and 100-year continuous source release scenarios, respectively.

5.2 LHAAP-12

Calculations of maximum concentrations and DFs of TCE, VC, and perchlorate potentially discharging into Central Creek from groundwater at LHAAP-12 were performed utilizing the Domenico equation. Detailed results of the calculations are included as **Appendix B**.

Summary of Calculation Results. The results of the Domenico equation calculations indicated that the maximum concentrations of TCE, VC, and perchlorate in groundwater at the POE into Central Creek are 16.23, 0.307, and 21.2 μ g/L, respectively. Even prior to mixing and dilution, VC concentration is below the MCL of 2 μ g/L. TCE and perchlorate concentrations decrease substantially with mixing and dilution to 0.03 and 0.038 μ g/L, respectively. These levels are below the MCL for TCE and the IAL for perchlorate. The current maximum concentrations at the source: TCE (495 μ g/L), VC (2.1 μ g/L), and perchlorate (56 μ g/L), are lower than the MSCs protective of surface water for all three COCs including TCE (49,500 μ g/L), perchlorate (3,568 μ g/L) and VC, the concentration of which is lower than the MSC protective of groundwater at POE even before mixing with surface water in the creek.

5.3 LHAAP-29

AT123D was utilized to predict the fate and transport of TCE, methylene chloride, 1,2-DCA, and perchlorate in groundwater at LHAAP-29. Detailed results of the modeling are included as **Appendix C**.

Summary of Modeling Results. Results of the modeling indicate that the three COCs; TCE, methylene chloride, and 1,2-DCA will not reach Central Creek. The COC perchlorate reaches the creek at 1,634 μ g/L in groundwater; however, perchlorate is mixed and diluted in surface water to a concentration of 2.74 μ g/L, a level below the action level of 4 μ g/L. The current maximum perchlorate concentration at the source, 61,400 μ g/L, is lower than the MSC value protective of surface water, 89,635 μ g/L.

5.4 LHAAP-35A(58)

Calculations of maximum concentrations and DFs of TCE, 1,1-DCE, PCE, RDX, and perchlorate in groundwater and the time of transportation before discharging to Goose Prairie Creek were performed utilizing AT123D. Detailed results of modeling are included as **Appendix D**.

Summary of Calculation Results. Results of the modeling indicated that except for RDX and perchlorate, the three COCs: TCE, 1,1-DCE, and PCE will not reach Goose Prairie Creek. For the RDX, the derived maximum concentration of 12.75 μ g/L at the POE is lower than the MSC (26 μ g/L) and the observed RDX concentration at the site (88 μ g/L) is less than the calculated MSC (179.4 μ g/L). For the COC perchlorate, upon reaching the creek, perchlorate is mixed and

diluted to a concentration of 0.0075 μ g/L, a level below the action level of 4 μ g/L. The current maximum perchlorate concentration at the source at 36.9 μ g/L is lower than the MSC protective of surface water of 4,920 μ g/L.

5.5 LHAAP-35B(37)

The fate and transport of TCE, 1,1-DCE, and PCE in groundwater to Goose Prairie Creek was modeled utilizing AT123D. Detailed results of modeling are included as **Appendix E**.

Summary of Modeling Results. Results of the modeling indicated that PCE and 1,1-DCE will not appear in detectable levels at the POE. The maximum concentration of TCE (3.63 μ g/L) at the POE is below the MCL (5 μ g/L).

5.6 LHAAP-35C(53)

Calculations of perchlorate concentrations in surface soil that are protective of sediment and surface water due to erosion of soil by storm-generated runoff were performed as described in the Technical Memorandum (Shaw, 2004). In addition, AT123D was utilized to predict the fate and transport of TCE in groundwater at the site. Detailed results of the calculations and modeling are included as **Appendix F**.

Summary of Calculation Results. A maximum perchlorate concentration of $60.9 \,\mu$ g/kg was detected in soil that can be eroded by rainstorm-generated runoff to the nearest point in Central Creek. The level of perchlorate found in soil at the source is below the calculated soil concentrations protective of sediment (51,300 μ g/kg) and surface water (130 μ g/kg derived from a solute concentration of 625 μ g/L). In addition, the calculated perchlorate concentration of 3.4 μ g/L in the water at the downstream end of the affected property is lower than the action level of 4.0 μ g/L.

Results of the modeling indicate that the maximum concentration of TCE at the POE is below the MCL in both Central Creek and Harrison Bayou. Even if the maximum concentration of TCE (7 μ g/L) is placed at Central Creek and Harrison Bayou, the mixing concentrations of 7.9 x 10⁻⁴ and 4.2 x 10⁻⁵ μ g/L, respectively, are much lower than the MCL of 5 μ g/L. In addition, the maximum source concentration of 7 μ g/L, is lower than the MSC of 8,861 μ g/L.

5.7 LHAAP-46

The fate and transport of perchlorate in groundwater to Goose Prairie Creek – Middle was modeled utilizing AT123D. Detailed results of the calculations and modeling are included as **Appendix G**.

Summary of Calculation Results. Results of the modeling indicate that perchlorate will start to appear at the POE in the creek after 207 years and peak after 300 years at a concentration of 0.07 μ g/L, which is lower than the IAL of 4 μ g/L.

5.8 LHAAP-47

Calculations of perchlorate transport by eroded soil to the nearby Goose Prairie Creek, and simulation of the fate and transport of TCE, PCE, PCP, VC, and perchlorate in groundwater to the creek were performed for the site. Detailed results of the calculations are included as **Appendix H**.

Summary of Calculation Results. The calculated soil concentrations protective of surface water and sediment for perchlorate are 15.96 and 37,700 μ g/kg, respectively. The current perchlorate level in soil at 180,000 μ g/kg is not protective of surface water or sediment in nearby Goose Prairie Creek because the source levels are higher than the surface water and sediment protective values. The calculated perchlorate concentration of 45,100 μ g/L in the water at the downstream end of the affected property is higher than the action level of 4.0 μ g/L.

Simulation results indicate that TCE, PCE, and PCP will not exceed their respective MCLs at the POE in groundwater at Goose Prairie Creek. However, VC and perchlorate will appear at maximum concentrations of 46.1 and 66,820 μ g/L, respectively, at the POE. After mixing and dilution in Goose Prairie Creek, VC and perchlorate will decrease to 0.0039 and 3.13 μ g/L, respectively; values that are below the MCL (2.0 μ g/L) for VC and the IAL (4.0 μ g/L) for perchlorate. Note that perchlorate at the POE comes from two sources: (1) the groundwater plume; and (2) as leachate from soil. Source concentrations of VC and perchlorate at 127 and 82,900 μ g/L are lower than the calculated MSCs protective of surface water at concentrations of 65,128 and 105,942 μ g/L, respectively.

5.9 LHAAP-48

Calculations of maximum concentrations and DFs of TCE and perchlorate in groundwater and the time of transportation before discharging to Central Creek was performed using AT123D. Detailed results of modeling are included as **Appendix I**.

Summary of Calculation Results. LHAAP-48 is located on both sides of the tributary of Central Creek and monitoring locations are in close proximity with the tributary. Therefore it was assumed conservatively (worst-case scenario) that TCE and perchlorate are present at the POE in the tributary of the creek at maximum concentrations of 9 and 160 μ g/L, respectively. Mixing calculation results indicate that concentrations of TCE (0.00018 μ g/L) and perchlorate (0.0032 μ g/L) in the tributary of Central Creek are lower than their respective MCL (5 μ g/L) and the IAL (4 μ g/L). Maximum observed source concentrations of TCE and perchlorate are lower than the MSCs protective of surface water.

5.10 LHAAP-50

AT123D was utilized to simulate the fate and transport of TCE, PCE, VC, 1,2-DCA, and perchlorate in groundwater to surface water. Detailed modeling results are included as **Appendix J**.

Summary of Modeling Results. Simulation results indicated that PCE and 1,2-DCA will not exceed their respective MCLs at the POE at Goose Prairie Creek. However, TCE, VC, and perchlorate will appear at the POE at maximum concentrations of 567.5, 16.8, and 17,840 μ g/L, respectively. After mixing and dilution in Goose Prairie Creek, TCE, VC and perchlorate will decrease to 0.014, 4.22×10^{-4} , and 0.448 μ g/L, respectively; values that are below the MCLs for TCE (5.0 μ g/L) and VC (2.0 μ g/L) and the IAL for perchlorate (4.0 μ g/L). Maximum observed source concentrations of VC and perchlorate at 100 and 18,000 μ g/L are lower than the MSCs protective of surface water, 473,934 and 160,714 μ g/L, respectively.

5.11 LHAAP-67

AT123D was utilized to simulate the fate and transport of TCE, 1,2-DCA, 1,1-DCE, 1,1,1-TCA, and 1,1,2-TCA in groundwater to surface water. Detailed modeling results are included as **Appendix K**.

Summary of Modeling Results. Simulation results indicate that for the instantaneous source scenario, maximum concentrations for all chemicals were below their respective MCLs at the POE. However, for the continuous source scenario, except for 1,1-DCE and 1,2-DCA, all other chemicals appear at the POE at maximum concentrations that exceed their MCLs. The maximum concentrations of 1,1,1-TCA, 1,1,2-TCA, and TCE at the POE were 240.6 μ g/L, 23.7 μ g/L, and 21.6 μ g/L, respectively. Upon mixing and dilution in the creek, the concentrations for 1,2-DCA, 1,1,1-TCA, 1,1,2-TCA, and TCE are 0.024, 1.459, 0.144, and 0.131 μ g/L, respectively. In addition, the maximum observed source concentrations for the chemicals are well below their respective of surface water.

5.12 Comparison of Modeling Results to Recent Studies

Maximum Concentrations of COCs. The maximum concentrations of COCs at each site used during the modeling were based on previous investigations by other consultants. The data utilized during modeling was qualitatively compared with the most recent data collected by Shaw during data gaps investigation activities (Shaw, 2005). Results of the comparison of the data indicated that except for two chemicals, methylene chloride at LHAAP-29 and TCE at LHAAP-35A(58), most of the chemical concentrations were below previously detected levels. The concentrations of methylene chloride and TCE detected at LHAAP-29 and

LHAAP-35A(58), respectively, during the data gaps investigation (Shaw, 2005) were below the MSCs calculated in this report.

Perchlorate. Recent studies by the National Academy of Sciences (NAS) recommended the maximum daily dose of perchlorate at 0.0007 milligrams per kilogram of body weight per day compared with EPA's 0.00003 mg/kg. The safe dosage recommended by NAS is 23 times higher than what the EPA had initially suggested based on its previous assessment. The maximum daily dose recommended by NAS corresponds to a groundwater action level approximately five times the Texas IAL standard of 4 μ g/L indicating that the modeling presented in this report is highly conservative in protecting surface water bodies at LHAAP from perchlorate.

Table 5-1 Summary of Modeling Results

Site	Medium	Modeled Path	Analytical Model	COC	Regulatory	Derived Concentration	Maximum Conc	MSC Based on	Maximum Conc	MSC Based on	Mixing Conc	MSC Evaluated at	Results Protective
			-		Limits ^a	Downstream of Affected Area	in GW at Creek	DF in GW at Creek	in GW at Creek	DF in GW at Creek	in Creek	Point of Discharge	of Surface Water
						in Creek (from Surface Soil)	Insta	ntaneous	Continu	ious (MSP) ^b		•	
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
HAAP-4	Soil	Surface soil to surface water - Goose Prairie Creek	Tech Memo [Shaw (2004)]	Perchlorate	4.0 (IAL)	7800 > 4.0 (IAL)		4 2 .		10	1 2 -	4 2 -	No
		Surface soil to sediment - Goose Prairie Creek											No
		Soil leachate to groundwater	VLEACHSM										
		Groundwater to surface water - Goose Prairie Creek	AT123D						3,604	84.4	0.519	584,971	Yes
LHAAP-12	Groundwater	Groundwater to surface water - Central Creek	Dominico Equation	Trichloroethene	5.0 (MCL)		16.23	152.45			0.03	82,500	Yes
				Vinyl Chloride	2.0 (MCL)		0.307	13.67			0.000	5 005	Yes
114 4 0 20	Croundwater	Croundurator to purface water Control Crook	AT123D	Perchlorate Trichloroethene	4.0 (IAL) 5.0 (MCL)		21.2	10.56 Infinity			0.038 NA	5,895 NA	Yes Yes
LHAAP-29	Groundwater	Groundwater to surface water - Central Creek	ATT23D	1.2-dichloroethane	5.0 (MCL) 5.0 (MCL)		0	Infinity			NA	NA	Yes
				Methylene Chloride	5.0 (MCL) 5.0 (MCL)		0	Infinity			NA	NA	Yes
				Perchlorate	4.0 (IAL)		1.634	150.4			2.74	89.635	Yes
LHAAP-35A	Groundwater	Groundwater to surface water - Goose Prairie Creek	AT123D	Trichloroethene	5.0 (MCL)		1,034	150.4	0	Infinity	NA	NA	Yes
(LHAAP-58)	crounditator			1.1-dichloroethene	7.0 (MCL)				0	Infinity	NA	NA	Yes
(21/10/11 000)				Tetrachloroethene	5.0 (MCL)				0 0	Infinity	NA	NA	Yes
				RDX	26.0 (MSC)				12.75	179.4	NA	NA	Yes
				Perchlorate	4.0 (IAL)				12.43	11.9	0.0075	4,920	Yes
LHAAP-35B	Groundwater	Groundwater to surface water - Goose Prairie Creek	AT123D	Trichloroethene	5.0 (MCL)		3.63	454.5					Yes
(LHAAP-37)				1,1-dichloroethene	7.0 (MCL)		0	infinity					Yes
				Tetrachloroethene	5.0 (MCL)		0.02	8,500					Yes
LHAAP-35C	Soil	Surface soil to sediment - Central Creek or Harrison Bayou	Tech Memo [Shaw (2004)]	Perchlorate	25 mg/kg (PCL) ^c	Derived Soil PCL=51.3 mg/kg >>							Yes (sediment)
(LHAAP-53)						0.061mg/kg at source							
		Surface soil to surface water - Central Creek or Harrison Bayou	Tech Memo [Shaw (2004)]		4.0 (IAL)	3.4 < 4.0 (IAL)							Yes
							⊐d	_d			4.2E-05 (HB)	166,667 (HB)	Yes
	Groundwater	Groundwater to surface water - Central Creek or Harrison Bayou	AT123D	Trichloroethene	5.0 (MCL)		7ª	5 ^d			7.9E-04 (CC)	8,861 (CC)	Yes
LHAAP-46	Groundwater	Groundwater to surface water - Goose Prairie Creek -Middle	AT123D	Perchlorate	4.0 (IAL)		0.07	1,716			NA	NA	Yes
LHAAP-47	Soil	Subsurface soil to sediment - Goose Prairie Creek	Tech Memo [Shaw (2004)]			Derived Soil PCL=37.7 mg/kg <<	0.07	1,710			NA	NA	
LHAAP-47	501	Subsurface soil to sediment - Goose Praine Creek	Tech Memo (Snaw (2004))	Perchlorate	25 mg/kg (PCL) ^c	180 mg/kg at source							No (sediment)
		Subsurface soil to surface water - Goose Prairie Creek	Tech Memo [Shaw (2004)]		4.0 (IAL)	45100 >> 4.0 (IAL)							No
		Soil leachate to groundwater	VLEACHSM		4.0 (IAL)	43100 >> 4.0 (IAE)							NO
			VEEACIISM										
	Groundwater	Groundwater to surface water - Goose Prairie Creek	AT123D	Trichloroethene	5.0 (MCL)		1.08	136,110			NE	NE	Yes
				Tetrachloroethene	5.0 (MCL)		0	Infinity			NE	NE	Yes
				Pentachlorophenol	1.0 (MCL)		0	Infinity			NE	NE	Yes
				Vinyl Chloride	2.0 (MCL)		46.1	5.5			0.0019	65,128	Yes
				Perchlorate	4.0 (IAL)		NE	NE	66820	4.96	2.8	105,942	Yes
LHAAP-48													
	Groundwater	Groundwater to surface water - Central Creek	AT123D	Trichloroethene	5.0 (MCL)		9	NE			1.80E-04	1.38E+07	Yes
			1.5.440	Perchlorate	4.0 (IAL)		160	NE			1.30E-03	2.00E+05	Yes
LHAAP-50	Groundwater	Groundwater to surface water - Goose Prairie Creek	AT123D	Trichloroethene	5.0 (MCL)		567.5	194 Infinity			0.007	7,857,143	Yes
	1			Tetrachloroethene	5.0 (MCL)		0	Infinity Infinity			NE NE	NE NE	Yes
	1			1,2-dichloroethane Vinyl Chloride	5.0 (MCL) 2.0 (MCL)		0 16.8	11.9			4.22E-05	NE 73,934	Yes Yes
	1			Perchlorate	4.0 (IAL)		17.840	4.04			4.22E-05 0.448	73,934 160.714	Yes
LHAAP-67	Groundwater	Groundwater to Central Creek	AT123D	Trichloroethene	5.0 (MCL)		0.13	242	21.6	1.46	0.131	240	Yes
	Groundwaler		111230	1,2-dichloroethane	5.0 (MCL)		0.06	242	3.9	34.5	0.024	5,625	Yes
	1			1,1-dichloroethene	7.0 (MCL)		0.00	Infinity	0.15	14,778	NE	NE	Yes
	1			1,1,1-trichloroethane	200 (MCL)		2.39	150,628	240.6	1,500	1.459	246,744	Yes
	1			1,1,2-trichloroethane	5.0 (MCL)		0.23	717	23.7	6.95	0.144	1.146	Yes

Notes and Abbreviations:

Shaw E & I, 2004, Final Technical Memorandum - Modeling Approach for Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas, March 2004

^a Value represents the maximum concentration limit (MCL), the TCEQ risk-based medium specific concentration (MSC) for industrial use, or the TCEQ interim action level (IAL) for perchlorate

^b Assume continuous source for 10 years

^c Sediment PCL for human risk, Table for Risk Reduction Program Rule, TNRCC, 2002

^d Assume TCE discharge to both Harrison Bayou and Central Creek, a worst-case scenario.

CC Central Creek

COC contaminant of concern

Conc concentration DF dilution factor

GPC Goose Prairie Creek

GW groundwater HB Harrison Bayou

MSC medium-specific concentration

NA Not applicable

NE Not estimated

6.0 Additional Evaluations of Chemicals in Soil at LHAAP-35A(58), -46, and -48

In addition to the modeling and calculations for the chemicals of concern presented in **Section 5.0** of this report, the fate and transport for bis(2-ethylhexyl)phthalate at LHAAP-35A(58) and LHAAP-46, and vinyl chloride and PCE at LHAAP-48 in soil was evaluated. Although risk assessment results indicated that these chemicals do not pose a risk to human health (Jacobs, 2002), for a very conservative approach, the evaluation of the effect of these chemicals on nearby surface water and sediment was conducted. The three chemicals were detected at elevated concentrations in the top 2 feet of the soil. Bis(2-ethylhexyl)phthalate was detected in soil at a concentration of 200,000 and 690 μ g/kg at LHAAP-35A(58) and -46, respectively. Vinyl chloride and PCE were detected in surface soil at LHAAP-48, at concentrations of 497 and 204 μ g/kg, respectively.

Table 6-1 presents a summary of modeled pathways, the analytical model, COCs modeled and modeling results. Detailed calculations and the results of modeling are included as **Appendix L**.

6.1 LHAAP-35A(58)

Calculation of bis(2-ethylhexyl)phthalate concentrations in soil that are protective of sediment and surface water due to erosion of soil by rainstorm-generated runoff to nearby Goose Prairie Creek was performed. Modeling of soil bis(2-ethylhexyl)phthalate leachate in the vadose zone to underlying groundwater using VLEACHSM was also conducted.

Summary of Calculation Results. A maximum bis(2-ethylhexyl)phthalate concentration of 200,000 μ g/kg was detected in soil eroded by rainstorm-generated runoff to the nearest point of Goose Prairie Creek. The level of bis(2-ethylhexyl)phthalate found in soil at the source is below the calculated soil concentrations protective of sediment (303,500 μ g/kg). In addition, the calculated bis(2-ethylhexyl)phthalate concentration of 8,430 μ g/L in the water at the downstream end of the affected property is higher than the MSC of 6.0 μ g/L.

The current concentration of bis(2-ethylhexy)phthalate in the soil at LHAAP-35A(58) is protective of sediment but not protective of surface water in Goose Prairie Creek.

6.2 LHAAP-46

Calculations of bis(2-ethylhexyl)phthalate concentrations in surface soil that are protective of sediment and surface water due to erosion of soil by storm-generated runoff to nearby Goose Prairie Creek – Middle were performed.

Summary of Calculation Results. Bis(2-ethylhexyl)phthalate in surface soil at a concentration of 690 μ g/kg is protective of sediment and surface water.

6.3 LHAAP-48

Calculations of vinyl chloride and PCE concentrations in surface soil that are protective of sediment and surface water due to erosion of soil by storm-generated runoff to nearby Central Creek were performed. In addition, modeling of leaching of vinyl chloride and tetrachloroethane (PCA) from soil to groundwater was performed utilizing VLEACHSM.

Summary of Calculation Results. Vinyl chloride and PCA in soil, though elevated in concentration, will not adversely impact surface water when the COCs migrate vertically to groundwater because their mixing concentrations in groundwater are already below their respective MCLs. However, when the soil is eroded and transported to surface water, the vinyl chloride concentration is not protective of surface water.

 Table 6-1

 Summary of Additional Modeling of Chemicals in Soil at LHAAP-35A(58), -46, and -48

Site	Medium	Modeled Path	Analytical Model	COC	Regulatory	Derived Concentration	Maximum Conc	MSC	Maximum Conc	MSC	Mixing Conc	MSC	Results Protective
					Limits (a)	Downstream of Affected Area	in GW at Creek	GW & Creek	in GW at Creek	GW & Creek	in Creek	Point of Discharge	of Surface Water
						in Creek (from Surface Soil)	Instantan	eous	Continuo	us(b)			
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
LHAAP-35A (58)	Soil	Surface soil to sediment - Goose Prairie Creek	Tech Memo (Shaw, 2004)	Bis(2-ethylhexyl)phthalate		Derived Soil PCL=303.5 mg/kg >> 200mg/kg at source							Yes (Sediment)
		Surface soil to surface water - Goose Prairie Creek	Tech Memo (Shaw, 2004)	Bis(2-ethylhexyl)phthalate	6.0 (MSC)	8430 > 6.0 (MSC)							No
		Soil leachate to groundwater	VLEACHISM										
LHAAP-46	Soil	Subsurface soil to sediment - Goose Prairie Creek - Middle	Tech Memo (Shaw, 2004)	Bis(2-ethylhexyl)phthalate		Derived Soil PCL expected to be much greater than 304 mg/kg (see Site 35A), therefore much greater than 0.690 mg/kg at source							Yes (Sediment)
		Subsurface soil to surface water - Goose Prairie Creek - Middle	Tech Memo [Shaw (2004)]	Bis(2-ethylhexyl)phthalate	6.0 (MSC)	4.4 < 6.0 (MSC)							Yes
LHAAP-48	Soil	Surface soil to surface water/sediment - Central Creek	Tech Memo [Shaw (2004)]	Vinyl Chloride		Derived Soil PCL=38 mg/kg >> 0.497 mg/kg at source							Yes (Sediment)
				Tetrachloroethene		27.5 > 2.0 (MCL) Derived Soil PCL=1118 mg/kg >> 0.204 mg/kg at source 8.3 < 5.0 (MCL)							No (Surface Water) Yes (Sediment) No (Surface Water)
	Soil	Soil leachate to groundwater	VLEACHISM	Vinyl Chloride Tetrachloroethene									Yes Yes

Notes:

Shaw, 2004, "Final Technical Memorandum - Modeling Approach for Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas." March 2004

(a) Value represents whether the MCL (maximum concentration limit), the TCEQ risk-based MSC (medium specific concentration) for industrial use, or the TCEQ interim action level for perchlorate (IAL)

(b) Assume continuous sources for 10 years

(c) Sediment PCL for human risk, Table for Risk Reduction Program Rule, TNRCC, 2002

(d) Assume TCE source is at both Harrison Bayou and Central Creek - a worst case scenario.

CC Central Creek

- COC contaminant of concern
- GPC Goose Prairie Creek
- HB Harrison Bayou
- MCL maximum concentration limit
- MSC medium-specific concentration
- NA Not Applicable
- NE not estimated
- PCL protective concentration limit μg/L micrograms per liter

00043276 Shaw Environmental, Inc.

7.0 Conclusions

Chemicals of Concern in Soil

Generally, chemicals in soil at the LHAAP sites evaluated in this report are present at concentrations lower than MSCs that are protective of surface water and sediment. Perchlorate at sites LHAAP-04 and LHAAP-47 is present in erodable soil at values that exceed levels protective of both sediment and surface water in nearby Goose Prairie Creek. Although human health risk assessments indicated that bis(2-ethylhexyl)phthalate at LHAAP-35A(58), vinyl chloride and PCE at LHAAP-48 do not pose a risk, these chemicals are present in erodable soil at levels that exceed values protective of surface water in nearby Goose Prairie Creek and Central Creek, respectively. Other chemicals present in the soil at these LHAAP sites will not adversely impact surface water or sediment.

Chemicals of Concern in Groundwater

Eleven COCs were modeled to estimate migration of chemicals in groundwater from a site to a downgradient location of discharge to surface water. Results of modeling at the 11 sites indicate that the COCs appear at POE in surface water at values that are either lower than MCLs or IAL or, upon mixing and dilution with surface water, COC levels decrease to concentrations below MCLs or IAL. Chemicals present in groundwater will not adversely impact sediment or surface water.

8.0 References

The references that follow support the main volume modeling report as well as Appendices A through M:

ASTM, 1995, Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, E-1739-95.

ASTM, 1999, *RBCA Fate and Transport Models: Compendium and Selection Guidance*, Technical & Professional Training.

Business Publishers, Inc., 2003, Solving the Perchlorate Problems: Assessing the Risk, Seeking a Standard and Innovative Treatment Methods.

Domenico, P.A. and F.W. Schwartz, 1998, *Physical and Chemical Hydrogeology-Second Edition*" John Wiley & Sons, Inc.

Dynamac Corporation, 1995, *VLEACHSM - Vadose Zone Leaching and Saturated Zone Mixing Model, version 1.0a,* developed for Robert S. Kerr Environmental Research Laboratory Center for Subsurface Modeling Support, May.

Feenstra, S., D.M. Mackay and J.A. Cherry, 1991, *A Method for Assessing Residual NAPL Based* on Organic Chemical Concentration in Soil Samples, Ground Water Monitoring and Remediation, Spring.

Howard, P.H., R.S. Boethling, W.F. Jarvis, W.M., Meylan, and E.M. Michalenko, 1991, *Environmental Degradation Rates*, Lewis Publishers, Inc.

Jacobs Engineering Group, Inc. (Jacobs), 2001a, Preliminary Draft, Third Quarter Data Summary Report for the Investigation at the Longhorn Army Ammunition Plant, Karnack, Texas, April.

Jacobs, 2001b, Final Remedial Investigation Report (Volume 1-3) for the Group 2 Sites: Sites 12, 17, 18/24, 29, and 32, Longhorn Army Ammunition Plant, Karnack, Texas, April.

Jacobs, 2001c, Preliminary Draft-Third Quarter Data Summary Report for the Perchlorate Investigation at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas, April.

Jacobs, 2002a, Final Remedial Investigation Report (Volume 1 & 2) for the Group 4 Sites, Sites 35A, 35B, 35C, 46, 47, 48, 50, 60, and Goose Prairie Creek, Longhorn Army Ammunition Plant, Karnack, Texas, January.

Jacobs, 2002b, Final Remedial Investigation Report Addendum for the Group 4 Sites, Sites 04, 08, 67 and Hydrocarbon Study, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Jacobs, 2002c, Draft Final Feasibility Study for the Group 2 Sites, Sites 12, 16, 17, 18/24, 29, 32, and 49, Longhorn Army Ammunition Plant, Karnack, Texas, May.

Jacobs, 2002d, Draft Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites, Sites 35A, 35B, 35C, 46, 47, 48, 50, 60, and Goose Prairie Creek, Longhorn Army Ammunition Plant, Karnack, Texas, June.

Jacobs, 2002e, Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 2 Sites, Sites 12, 17, 18/24, 29, 32, and 49, Harrison Bayou and Caddo Lake, Longhorn Army Ammunition Plant, Karnack, Texas, August.

Jacobs, 2002f, Draft Feasibility Study for the Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunders Branch, Central Creek, and Caddo Lake, Longhorn Army Ammunition Plant, Karnack, Texas, August.

Longhorn Army Ammunition Plant (LHAAP), 2002, LHAAP IAP, Meeting Minutes — Data Quality Objective Workshop, Group 2, Dallas, Texas, June 12-13.

LHAAP, 2003a, LHAAP IAP, Minutes — Surface Water Standards Meeting, Workshop, Group 2, Texas Commission on Environmental Quality, Austin, Texas, January 22.

LHAAP, 2003b, LHAAP IAP, Meeting Minutes - Data Quality Objective Workshop, Group 4 Sites, Austin, Texas, April 29-30.

LHAAP, 2003c, LHAAP Monthly Manager's Meeting, Dallas, Texas, November 19.

Lindeburg, M.R., 1989, *Civil Engineering Reference Manual, Fifth Edition*, Professional Publications, Inc., Belmont, California.

Miller, G. and van der Leeden Troise, 1973, *Water Atlas of the United States*, A Water Information Publication, NY.

Montgomery, J.H., 2000, "Groundwater Chemicals, Desk Reference (Third Edition)," Lewis Publishers.

Oak Ridge National Laboratory, 2004, "Risk Assessment Information System," http://risk.lsd.ornl.gov (October 2004).

Schueler, T. R., 1987, *Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs*, Document No. 87703, Metropolitan Washington Council of Governments, Washington, D. C.

Shaw Environmental, Inc. (Shaw), 2004a, *Final Technical Memorandum, Modeling Approach* for Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, March.

Shaw, 2004b, Revised Final Feasibility Study, Site 12 Group 2, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, August.

Shaw, 2005, Draft Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, January.

Solutions to Environmental Problems, Inc., 2003, *Draft Final Project Report Plant-Wide Perchlorate Investigation, Longhorn Army Ammunition Plant, Karnack, Texas*, Vol. 1, March.

Texas Commission on Environmental Quality, 2003, *Procedures to Implement the Texas Surface Water Quality Standards*, January, Water Quality Division, RG-194

Texas Natural Resources Conservation Commission (TNRCC) (now the Texas Commission on Environmental Quality, 1998, *Implementation of the Existing Risk Reduction Rule*, Memorandum from Ronald R. Peede to Remediation Division Staff, July 23. This memorandum is commonly referred to as the "consistency Memorandum" and may be obtained on-line with subsequent TCEQ updates at http://www.tnrcc.state.tx.us/permitting/rrr.htm> (March 2004).

TNRCC, 2002, "Texas Risk Reduction Program Rule," Texas Register, May.

Toy, T.J and G.R. Foster, 1998, *Guidelines for the Use of Revised Universal Soil Loss Equation* (*RUSLE*), Version 1.06, on Mined Lands, Construction Sites, and Reclaimed Lands, Office of Surface Mining.

U.S. Department of Agriculture (USDA), 1996, *Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), AH 703, July.*

U.S. Environmental Protection Agency (USEPA), 1985, *Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants in Surface and Ground Water*, Revised 1985, EPA-600-6/85-002a, Washington D.C.

USEPA, 1988, Selection Criteria for Mathematical Models Used in Exposure Assessments: Ground-Water Models, EPA 600/8-88/075, May.

USEPA, 1994, Ground-Water Modeling Compendium, EPA 500-B-94-004, July.

USEPA, 2001, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, EPA/OSWER 9355.4-24, March.

USEPA, National Center for Environmental Assessment, 2002, Perchlorate Environmental Contamination: Toxicological Review and Risk Characterization Based on Emerging Information, External Review Draft.

Wischmeier, W.H. and D. D. Smith, 1978, *Predicting Rainfall-Erosion Losses – A Guide to Conservation Planning*, U. S. Department of Agriculture Handbook 37.

Yeh, G. T., 1987, AT123D: Analytical Transient One-, Two-, and Three-Dimensional Simulation of Waste Transport in the Aquifer System, Pennsylvania State University.

Zheng, C, 1992, *MT3D – A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater System*, S.S. Papadopulos & Associates, Inc.

00043282

Appendix A

LHAAP-04 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Goose Prairie Creek from Soil and Groundwater

Table of Contents_

List of	Tables			ii
List of	Figure	S		ii
	0			
1.0				
2.0	Mode	ling		
	2.1	Leacha	te Modeling	2-1
		2.1.1	Assumptions and Model Inputs	2-1
		2.1.2	Model Results	
		2.1.3	Dilution Factor	2-3
	2.2	Ground	lwater Modeling	2-3
		2.2.1	Input Parameters	
		2.2.2	Modeling Results and Dilution Factors	2-5
		2.2.3	Dilution in Goose Prairie Creek	
3.0	Soil C	oncentra	ation Protective of Sediment and Surface Water	3-1
	3.1	Perchlo	brate Concentration in Erodable Soil Protective of Sediment	3-1
		3.1.1	Soil Loss Calculation	3-1
		3.1.2	Calculate SedSoil MSC	3-3
	3.2	Perchlo	brate Concentration in Erodable Soil Protective of Surface Water	3-4
4.0			Conclusions	
5.0	Refere	ences		5-1

List of Tables _____

Table 1	Calculated Dilution Factor for Four Scenarios. Leaching of Perchlorate from Soil, LHAAP-04
Table 2	Summary of Simulated Perchlorate Maximum Concentrations and MSCs at Goose
	Prairie Creek (722 feet Downgradient from Source) Discharged from Groundwater

- Table 3Create Creek (722 reet Downgradient from Source) Discharged from GroundwateTable 3Calculation of Flow Discharge in Goose Prairie Creek
- Table 4
 RUSLE Calculation Result for LHAAP-04 Affected Area
- Table 5
 RUSLE Calculation Result for LHAAP-04 Total Area

List of Figures _____

Figure 1	Environmental Sites – Modeling Report
Figure 2 Figure 3A	LHAAP-04 Wet Season Sampling Event (March 2002) Soil Analytical Data Shallow Groundwater Elevation Contour Map (December 1998 Data)
Figure 3B	Shallow Groundwater Contour Map (September 2000 Data)
Figure 4	Mixing Concentration in Groundwater Contributed by Soil Leachate Condition at the Source Area, LHAAP-04
Figure 5	Mixing Concentration in Groundwater Contributed by Soil Leachate Condition at the Source Area, LHAAP-04
Figure 6	Mixing Concentration in Groundwater Contributed by Soil Leachate Condition at the Source Area, LHAAP-04
Figure 7	Mixing Concentration in Groundwater Contributed by Soil Leachate Condition at the Source Area, LHAAP-04
Figure 8	Perchlorate Concentrations in Groundwater Contributed by Soil Leachate at the Source Area and in Groundwater at Goose Prairie Creek (722 feet from source), LHAAP-04
Figure 9	Perchlorate Concentrations in Groundwater Contributed by Soil Leachate at the Source Area and in Groundwater at Goose Prairie Creek (722 feet from source), LHAAP-04
Figure 10	7Q2 Low Flow Analysis, Probability vs Flow Discharge for Goose Prairie Creek based on December 1999 to March 2000 Flow Derivation

1.0 Introduction

LHAAP-04 is located in the northwestern portion of the LHAAP facility with LHAAP-35A(58) to the northwest, LHAAP-49 to the southwest, and LHAAP-5 to east (**Figure 1**). LHAAP-04 was referred to as the Pilot Waste Water Treatment Plant where waste water from sumps throughout the facility was treated. This waste water plant was removed and closed in 1998.

The chemical of concern (COC) in the soil at LHAAP-04 is perchlorate. Elevated perchlorate concentrations at 163,000 μ g/kg and 160,000 μ g/kg were detected in soil samples collected from sampling location 04SS06 (**Figure 2**) at depth intervals of 0.0 to 0.5 feet and 1.0 to 2.0 feet below ground surface, respectively, in March 2002 (Solution to Environmental Problems, Inc. [STEP], 2003). Perchlorate was detected in groundwater at a concentration of 3.98 μ g/L in monitoring well 04WW01 (Table 2-3 — STEP, 2003). Since this perchlorate concentration in groundwater is below the Texas interim action level (IAL) of 4 μ g/L, it is not necessary to model this contaminant based solely on the current detected concentration in groundwater. However, because of the elevated concentrations in the vadose zone in the plume area and also the shallow depth to groundwater of approximately 5 feet, perchlorate leachate must be considered; consequently, the groundwater to surface water pathway must be modeled. No other contaminant was considered as a COC for modeling.

The surface water body closest to LHAAP-04 is Goose Prairie Creek, approximately 722 feet to the south. Goose Prairie Creek flows from west to east, southeast and northeast to Caddo Lake. Groundwater flows to the east in general, however, localized flow direction at LHAAP-4 and its vicinity may change from time to time as shown on **Figures 3A** and **3B**. Recent data gaps investigation activities indicated that groundwater flows to the southwest, southeast, and east. Contaminant particles in the groundwater at LHAAP-04 would not reach Goose Prairie Creek until approximately 7,000 feet to the east, based on December 1998 water level measurements. However, contaminants would travel south and enter Goose Prairie Creek 722 feet from the site based on September 2000 measurements (Figure 3B). Note that groundwater could also flow to the north, which would take a much longer route to Goose Prairie Creek. Therefore, the shortest distance for contaminants to travel 722 feet to Goose Prairie Creek was used in this calculation as a worst-case scenario.

The purpose of the calculation was to estimate: (1) perchlorate leachate to the groundwater from soil; (2) perchlorate transport from groundwater to surface water (Goose Prairie Creek; and (3) perchlorate transport from surface soil to Goose Prairie Creek. The maximum concentrations in sediment and in surface water as well as the dilution factors (DFs) of perchlorate were calculated, and, thereby, the media-specific concentrations (MSCs) from soil to sediment and from soil to surface water were developed.

2.0 Modeling

The objectives of this modeling effort were achieved by applying two computer codes VLEACHSM and AT123D.

2.1 Leachate Modeling

The VLEACHSM model was employed to obtain the leachate mixing concentration hydrograph in groundwater at LHAAP-04.

2.1.1 Assumptions and Model Inputs

Because of the uncertainty of the input parameters, conservative values were used and assumptions were made as described below:

- **Contaminant Source.** Perchlorate in soil is the only contaminant source at LHAAP-04. Because of the uncertainty of the time perchlorate continues to dissolve and be released to groundwater, two scenarios were considered in the current modeling using VLEACHSM: continuous constant-source release for 10 years and 100 years.
- Source Area. Perchlorate was detected in soil at sampling location 04SS06 with the highest concentration of 163,000 µg/kg. Perchlorate was also detected at soil sampling locations 04SS03 and 04SS05 with concentration ranging from 9,340 µg/kg to 10,000 µg/kg within 100 feet from 04SS06 (see Figure 2). In order to reduce the number of simulation times and to obtain conservative results, the simulated column with perchlorate source was assumed to be 5 feet by 5 feet in area and 5 feet in depth at 04SS06 only; applying the maximum soil concentration of 163,000 and 160,000 µg/kg at different depths. The simulated results were then applied to the entire area of 120 feet (east-west) by 100 feet (north-south); i.e., the area of the detected soil area (Figure 2) in groundwater as affected area. Therefore, simulations for other columns at LHAAP-04 were avoided.
- **Depth to Groundwater.** No land survey data and geologic cross sections are available for this site. Therefore the adjacent site data (Site 35A) are used. The land surface elevation is approximately 214 feet (msl) (Jacobs, 2002a). The average groundwater elevation measured in December 1998 at LHAAP-4 was 209 feet (msl) (**Figure 3A**). Therefore, the depth to groundwater is 5 feet.
- Chemical Parameters. Because perchlorate is kinetically nonlabile (i.e., the reduction of the central chlorine atom occurs extremely slowly) and sorption or natural chemical reduction in the environment is not significant, perchlorate is exceedingly mobile in aqueous systems and can persist for many decades under typical groundwater and surface water conditions (USEPA, 2002). Hence, the water-soil partition coefficient (k_d) and degradation rate for perchlorate were assumed to be zeros. The Henry's law constant, diffusivity in air, and solubility of perchlorate were not available. Therefore, a conservative value of zero was assumed for the Henry's

law constant and diffusivity in air, and 200,000 mg/L was assumed for the solubility, assuming a worst-case scenario with ammonium perchlorate.

• **Dispersivities**. The longitudinal dispersivity was calculated based on the following equation (Dynamac Corporation, 1995):

$\alpha_L = 2.554 \text{ x } 10^{-4} L_u^{3.811}$ (L _u = 5 feet, depth of the column)	Equation A1
= 0.118 ft	
and the vertical dispersivity $\alpha_v = 0.3 \ \alpha_L = 0.035 \ ft$	Equation A2

• **Darcy's velocity.** Darcy's velocity (Dv) is required by VLEACHSM.

Dv = ki (k = hydraulic conductivity and i = hydraulic gradient) Equation A3

Because there is only one hydraulic conductivity value $(3.5 \times 10^{-5} \text{ cm/sec})$ derived from a slug test for LHAAP-04, the hydraulic conductivity, k, was therefore based on a slug test at the neighboring site LHAAP-35A (formerly LHAAP-58) (Table 5-1 — Jacobs, 2002a). The average value for k was calculated to be 6.36×10^{-4} cm/sec. The hydraulic gradient of 0.0072 was based on the potentiometric surface map constructed for the December 1998 water level measurement (Jacobs, 2002a). Therefore, Dv = 4.74 ft/year.

• **Recharge.** This input parameter has a high degree of uncertainty. Because the soil at the site is mainly clayey material (silty clay and clay) in the shallow subsurface (Jacobs, 2000a), the infiltration rate is very low. In this model, two scenarios of recharge to groundwater were assumed: 0.5 inch/year and 1.0 inch/year.

2.1.2 Model Results

The simulation results for four scenarios are graphically presented in **Figures 4** through **7**, showing the mixing concentration of perchlorate in groundwater contributed by soil leachate. These four scenarios are:

- Scenario 1: Continuous source release for 10 years with 0.5 in/yr of recharge (Figure 4). The maximum concentration is 35,700 μg/L.
- Scenario 2: Continuous source release for 10 years with 1.0 in/yr of recharge (Figure 5). The maximum concentration is 75,900 μg/L.
- Scenario 3: Continuous source release for 100 years with 0.5 in/yr of recharge (Figure 6). The maximum concentration is 45,000 μ g/L. Because of the continuous source supply towards the downgradient portion of the site, the maximum concentration is maintained at 45,000 μ g/L after 35 years.
- Scenario 4: Continuous source release for 100 years with 1.0 in/yr of recharge (Figure 7). The maximum concentration is 78,200 μg/L and stays at this concentrations after 15 years.

The above modeling results show that a continuous source release for 100 years yields a higher and sustainable maximum concentration in groundwater. Furthermore, the higher the recharge rate the higher the maximum concentration.

2.1.3 Dilution Factor

The highest COC concentration in time after mixing of the leachate with the groundwater was used as $Conc_{mix}$ in mg/L, then DF was calculated by:

$$DF = \frac{Conc_{source}}{Conc_{mix}}$$
 Equation A4

where *Conc_{source}* is the maximum COC concentration in the leachate in mg/L. *Conc_{source}* was calculated based on the maximum soil concentration of the COC, *Conc_{soil}*, in mg/kg (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} * \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$
 Equation A5

where:

 $\begin{array}{ll} \rho_{b} &= bulk \ density \ of \ soil = assumed \ 1.7 \ g \ /cm^{3} \\ k_{d} &= distribution \ coefficient = Assumed \ 0.0 \ cm^{3}/g \\ \phi_{w} &= water-filled \ porosity = 0.35 \\ \phi_{a} &= air-filled \ porosity = assumed \ 0.15 \\ H_{c} &= Henry's \ law \ coefficient = assumed \ 0.0 \ (dimensionless) \end{array}$

$$Conc_{source} = \frac{163*1.7}{(0.35+0.0*0.15)} = 791,700 \ \mu\text{g/L}$$

The dilution factors for the four scenarios are summarized in **Table 1**.

2.2 Groundwater Modeling

Although perchlorate was detected in groundwater at a low concentration of $3.98 \ \mu g/L$, the currently elevated perchlorate concentrations in soil and the short vertical distance to groundwater (5 feet) may cause the generation of a leachate from soil, which may cause perchlorate levels in groundwater to increase with time as shown in **Table 1** and **Figures 4** through **7**. Therefore, fate and transport of perchlorate from the groundwater to the surface water was modeled using AT123D.

2.2.1 Input Parameters

The input data for the groundwater model are described as follows:

- **Contaminant source.** Conservatively, perchlorate source contributed by leachate from the vadose zone was considered under two scenarios (i.e., Scenarios 2 and 4 in the vadose zone modeling): 10-year and 100-year continuous sources, both with a recharge rate of 1.0 inch per year. The leachate mixing concentration hydrographs generated by VLEACHSM were used as inputs to the groundwater model AT123D. Seven discretized values of the mixing concentration hydrographs (**Figures 5** and **7**) at different time periods, including the maximum concentrations (75,000 μ g/L for 10-year continuous source release and 78,200 μ g/L for 100-year continuous source release), were translated to a release rate (kg/hour) by multiplying these discretized values with the the recharge rate and the plume area of 120 feet by 100 feet (see below).
- Source area. While the source area in the soil was assumed to be 5 feet x 5 feet with 160,000 μ g/kg to 163,000 μ g/kg (corresponding to $Conc_{source} = 791,700 \mu$ g/L per Equation A5) in the upper 2 feet of soil, the dimensions of the perchlorate source in groundwater were assumed conservatively to be 120 feet (east-west) by 100 feet (north-south). Because no geologic cross sections were constructed for this site, the geologic cross sections in the neighboring site (LHAAP 35A[58]) were used (Jacobs, 2002a). The thickness of the shallow water-bearing zone, consisting of fine sand, ranged from 2 to 5 feet. Conservatively, a depth of 5 feet was used, as it was assumed that the contaminant source in this shallow zone extended to the entire depth of 5 feet.
- **Distance to Goose Prairie Creek.** Groundwater flows to the east in general but changes locally at LHAAP-04 from time to time. In the current calculation, a distance of 722 feet was used because it is the shortest possible groundwater travel distance from LHAAP-04 to Goose Prairie Creek to the south.
- Aquifer and Chemical Properties. The following properties and parameters were the inputs to AT123D model:
 - **Hydraulic conductivity** (*K*): there is only one test value of 3.5×10^{-5} cm/sec for LHAAP-04 (Jacobs, 2002a), which is likely not representative of the entire site. Therefore *K* values tested at LHAAP-35A(58) were included to obtain an average *K* of 6.36×10^{-4} cm/sec in this area.
 - Hydraulic gradient: 0.0072 feet/feet (based on potentiometric surface map in Figure 3B)
 - **Effective porosity**: assumed $0.25\alpha_x = \text{longitudinal groundwater dispersivity} (feet) = <math>x \times 0.1$ (ASTM, 1995 Table 3.1) where *x* is the travel distance of contaminants, i.e., 722 feet from the source to the Goose Prairie Creek.
 - α_y = transverse groundwater dispersivity (feet) = $\alpha_x/3$ (ASTM, 1995 Table x3.1).
 - α_z = vertical groundwater dispersivity (feet) = $\alpha_x/20$ (ASTM, 1995 Table x3.1).
 - Retardation factor and degradation were not considered.

2.2.2 Modeling Results and Dilution Factors

The simulation time step was one year with a total simulation period of 100 years and 500 years for the 10-year and 100-year continuous-source scenarios, respectively. These simulation time periods were long enough to capture the maximum concentrations of perchlorate occurring at the point of entry (POE) where groundwater discharges into Goose Prairie Creek. Computer simulation results were evaluated at the POE. These results include the time when perchlorate reaches the POE, the time the concentration reaches its peak, the maximum concentration at this location, the DF and the MSC based on DF and the action level. **Table 2** presents a summary of these results for the 10-year and 100-year continuous source scenarios.

The simulated maximum concentration of perchlorate in groundwater at the POE at Goose Prairie Creek for the 10-year Continuous Source Release Scenario is 3,604 μ g/L, which occurs after 56 years (**Table 2** and **Figure 8**). This value is much higher than the perchlorate IAL of 4 μ g/L by 901 times. The DF calculated for this scenario at the POE is 21.1 (**Table 2**).

For the 100-year continuous-source release scenario, the simulated maximum concentration of perchlorate in groundwater before discharging into Goose Prairie Creek is 9,650 μ g/L, occurring after 125 years (**Table 2** and **Figure 9**). This value is much higher than the IAL of 4 μ g/L by 2,413 times. The dilution factors (DF) calculated for this scenario at the POE is only 8.1 (**Table 2**).

Field Confirmation

Additional calculations were conducted to simulate perchlorate concentrations at a well located in a transverse direction from the centerline of the flow. These calculations were conducted to compare the model results with actual field observations.

Based on the above modeling effort, the simulated maximum concentration of perchlorate at the most downgradient monitoring well, 04WW001, is 3,221 μ g/L and 7,367 μ g/L after 27 years and 100 years for the 10-year and 100-year continuous sources, respectively. This location is approximately 180 feet downgradient from the source area and 100 feet in the transverse direction away from the centerline of the flow. However, the observed concentration, at this location was 3.98 μ g/L in 2003 and non-detect in 2005 (Shaw, 2005). Obviously the simulation results are highly elevated and therefore very conservative. As discussed in Section 2.2.3, even with these high concentrations the mixing or dilution concentrations in the creek would still be below the perchlorate IAL, hence protective of surface water.

2.2.3 Dilution in Goose Prairie Creek

Perchlorate in groundwater is subject to mixing and dilution after it is discharged into Goose Prairie Creek.

The DF of perchlorate after mixing with surface water in Goose Prairie Creek is calculated based on the dilution factor of the mixing calculated below:

$$DF = \frac{Q_{GW} + Q_{CC}}{Q_{GW}}$$
 Equation A6

where Q_{CC} and Q_{GW} are the flow rates in Goose Prairie Creek and in groundwater, respectively.

$$Q_{GW} = U_{gw} * \delta_p * Lm$$
 Equation A7

where U_{gw} , δ_p and L_m are the approaching groundwater seepage velocity, the thickness and width of the plume approaching surface water. U_{gw} (= Ki/n) is 18.95 ft/year, calculated based on the hydraulic conductivity of 6.36 x 10⁻⁴ cm/sec, hydraulic gradient of 0.0072 and the effective porosity of 0.25. δ_p is 5 ft and L_m is unknown at the intersection but can be conservatively assumed as the width at the source, which is 120 ft (east-west direction). Then:

$$Q_{GW} = 18.95/(365 \times 86400) \times 5 \times 120 = 3.6 \times 10^{-4} \text{ ft}^3/\text{s}$$
 Equation A8

Calculation of Q_{CC} must be based on the 7Q2 stream flow analysis. The 7Q2 is the low flow at the point of interest, defined as the flow discharge in seven consecutive days that occurs once every two years, statistically. At Goose Prairie Creek, two sets of stream data at the upstream and downstream cross sections are available from the U.S. Army Corps of Engineers. These data sets include the velocity data and the gauge readings (i.e., depths of water) obtained only during the period of December 1999 to March 2000; a total of only 4 months. Flow discharge data were not available. Based on these data, the average flow discharges in every consecutive 7-day period were calculated and presented in **Table 3**. Note that because there is no observation at the point where contaminated groundwater flow discharges into the Goose Prairie Creek, average values between upstream and downstream flow were used. Because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow should be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 2.5 cubic feet per second (cfs) is derived (**Figure 10**). Then:

$$DF = (3.6 \times 10^{-4} + 2.5)/(3.6 \times 10^{-4}) = 6945$$
 Equation A9

The mixing concentrations for perchlorate in Goose Prairie Creek are:

10-year continuous source release: $3604/6945 = 0.519 \,\mu g/L$

100-year continuous source release: $9650/6945 = 1.39 \ \mu g/L$

These concentrations are all below the perchlorate IAL of 4 μ g/L. A conclusion can thus be made that the potential high perchlorate concentration at the source area in groundwater is

protective of surface water. Current non-detect levels for perchlorate in the creek substantiates this conclusion. The mixing concentrations and the overall MSCs for perchlorate are presented in **Table 2**.

Equation A10

3.0 Soil Concentration Protective of Sediment and Surface Water

Perchlorate in the subsurface soil, together with the contaminated soil particles will be transported by storm-generated runoff to a nearby stream – in this case Goose Prairie Creek. The approach to develop surface soil concentrations protective of sediment and surface water is described in the main part of this document and the following sections. The distance for the eroded contaminated soil to travel to the nearest stream – Goose Prairie Creek, is 722 feet.

3.1 Perchlorate Concentration in Erodable Soil Protective of Sediment

A screening calculation was performed to evaluate whether storm water from an affected property has the potential to pose a risk to human or ecological receptors in the Goose Prairie Creek. First, soil loss from the effected property was evaluated by the revised universal soil loss equation (RUSLE) before soil concentration protective of sediment could be calculated.

3.1.1 Soil Loss Calculation

The RUSLE is in the form:

$$A = R * K * L * S * C * P$$

where :

- A = Estimated average annual soil loss (ton/ac-yr)
- R =Rainfall-runoff erosivity factor (ft-ton-in/ac-hr-yr)
- K = Soil erodibility (ton/ac per unit of R)
- L = Slope length factor (unitless)
- S = Slope steepness factor (unitless)
- C =Cover management factor (unitless)
- P = Support practice factor (unitless)

A software, RUSLE, developed by the Agricultural Research Service and the Natural Resource Conservation Service was used to facilitate the input of the parameters and calculation. The input parameters depend on the location of the site being evaluated. The location factor actually implicitly describes rainfall, land use, surface coverage, soil type, and other factors at that location. Since LHAAP is close to Shreveport, Louisiana, some of the parameters established for Shreveport were used for LHAAP as described below.

• **Rainfall-runoff erosivity factor** (*R*). When the factors other than rainfall are held constant, soil losses from cultivated land are directly proportional to a rainstorm parameter: total storm energy (E) multiplied by the maximum 30-minute intensity (I). *R* was obtained using isoerodent map (Figure 4-1, main document) covering the entire

United States, with *R* contours available from USDA and USEPA. As discussed in **Section 4.2.1.1**, an *R* value of 400 is obtained for Shreveport, Louisiana.

- Soil erodibility (*K*). The *K* factor is the ease with which soil is detached by splash during rainfall, or by surface flow or by a combination of both. It is a function of the composition of soil type, percentage of organic matter, soil structure and grain size, and soil permeability. In this evaluation, it was assumed that the topsoil consists of 29 percent silt and very fine sand, 70 percent clay, 1 percent organic matter, medium to coarse granular (less than 5 mm), and low permeability. The result of *K* factor using these soil properties in a nomograph is 0.192 as shown in **Tables 4** and **5**, which are soil loss and sediment yield computation worksheets.
- **Topographic factor, including** *L* **and** *S* (*LS*). The value of *LS* increases as hillslope length and steepness increase.
 - In this calculation, only one single segment of slope was assumed. Soil texture and land use were assumed as silty clay and "disturbed topsoil, rock cover."
 "Rock cover" was assumed to represent pavement and construction with impervious cover. The length of slope was assumed to be 100 feet and 722 feet for the affected area and the total area, respectively. The calculated *LS* values are 0.04 and 0.14 for the affected area and the total area, respectively, as shown in Tables 4 and 5.
- Cover management factor (*C*). The *C* factor is the ratio of soil loss with specific cropping and management practices to the corresponding loss with up-slope and down-slope tillage and continuously fallow conditions. The calculated values of *C* are 0.17 (affected area) and 0.119 (total area) as shown in **Tables 4** and **5**.
- Support practice factor (*P*). The *P* factor is an expression of the effects of supporting conservation practices, such as contouring, buffer strips of close-growing vegetation, and terracing on soil loss at a particular site. The *P* factor was calculated through the RUSLE equations and the results are 0.82 and 0.98 respectively for the affected area and the total area as shown in **Tables 4** and **5**.

The resultant soil losses calculated using the RUSLE program are 0.44 tons/ac-yr for the affected area and 1.2 tons/ac-yr for the total area.

In the process of moving towards the outlet, soil will be trapped by vegetation and plant residue or deposited in low lying areas, local scour, rills, and channels. Other factors that inhibit the eroded material's delivery to the watershed outlet include climate, soil particle size and texture, size and proximity of the upland erosion source, the ratio of rill versus sheet erosion, total watershed area, watershed length and relief, and drainage density. Therefore, not all of the soil loss calculated by the above approach will reach the watershed outlet. The sediment yield or load at the outlet should be estimated using a sediment delivery ratio (SDR) from 0 to 1 to account for the above-mentioned deduction factors. RUSLE is designed in calculating the SDR by assigning different values for permanent barriers (strips or concaves) and terraces or sediment basins that include the land slope, soil type and texture, etc. Because many of the site-specific data are not available, assumptions were made similar to the assumptions described in the previous sections. The SDR values estimated using RUSLE are 0.79 (affected area) and 0.92 (total area) as shown in **Tables 4** and **5**.

The annual sediment yields calculated using RUSLE are 0.42 tons/ac-yr for the affected area and 1.2 tons/ac-yr for the total area (**Tables 4** and **5**).

3.1.2 Calculate Sed Soil MSC

The soil concentration protective of sediment, ^{Sed}Soil MSC (or C_{AP}), is calculated using the following equation:

$$C_{AP} = \frac{(SL_{TOT} * C_{TOT}) - (SL_{OA} * C_{OA})}{SL_{AP}} \quad (\text{in mg/kg})$$
 Equation A11

where:

- C_{AP} = the ^{Sed}Soil MSC (mg/kg) for the surface water runoff pathway from the affected area
- SL_{TOT} = total sediment load estimated for the entire contributing watershed. (1.2 metric tons/ac-yr = 1200 kg/ac-yr, see Section 3.1.1).
- C_{TOT} = published regulatory standard for sediment (mg/kg)
- SL_{OA} = sediment load (kg/yr) estimated for other areas of the watershed
- C_{OA} = background soil concentration for inorganic COCs (if available). This term is zero for organic compounds. Because there is no Texas-specific median background soil concentrations, $C_{OA} = 0$.
- *OA* = other area. This is the area of contributing watershed other than the affected area
- SL_{AP} = sediment load from the affected property (in kg/yr). In this case, = 0.42 ton/ac-yr = 420 kg/ac-yr.

The above equation can be simplified as:

$$C_{AP} = \frac{(SL_{TOT} * C_{TOT})}{SL_{AP}}$$
 Equation A12

where:

 $SL_{TOT} = 1200 \text{ kg/ac-yr}$ $SL_{AP} = 420 \text{ kg/ac-yr}$ $C_{TOT} = 25 \text{ mg/kg}$ (TCEQ sediment PCL for perchlorate for human risk, Table for Risk Reduction Program Rule, TNRCC, 2002)

Therefore,

$$C_{AP}$$
 (^{Sed}Soil MSC) = (1200)(25)/420 = 71.4 mg/kg. Equation A13

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas

Note that perchlorate concentration in soil at the source that can be eroded is 163 mg/kg which is greater than ^{Sed}Soil MSC (= 71.4 mg/kg).

3.2 Perchlorate Concentration in Erodable Soil Protective of Surface Water

In this study, it was assumed conservatively that TCEQ 7Q2 conditions in Goose Prairie Creek prevail and therefore posed a greater effect on the creek after mixing and dilution.

The equation used to estimate the COC concentration in runoff from the affected property is as follows:

$$C_{AP} = \frac{Q_D * C_D - Q_{OA} C_{OA}}{Q_{AP}}$$
 Equation A14

where:

 C_{AP} = concentration of perchlorate in runoff from the affected property (mg/L) Q_D = flow downstream of the affected property watershed (ft³/sec), using 7Q2 flow C_D = concentration of perchlorate downstream of the affected property (mg/L) Q_{AP} = runoff from the affected property (ft³/sec) Q_{OA} = runoff from other areas of the affected property watershed (ft³/sec) C_{OA} = concentration of perchlorate in runoff from other areas of the affected property watershed (mg/L) (C_{OA} = 0 in this case)

The calculation of runoff rates and volumes was based on the Schueler Method (Schueler, 1987):

First, the runoff coefficient for each land use type was derived with the following equation:

$$R_{VU} = 0.05 + (0.009 * I_U)$$
 Equation A15

where:

 R_{VU} = runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain})

 I_U = percent imperviousness (unitless) characteristic of land use type U

The runoff flow rates were then calculated using the following equation:

$$Q = P * P_J * R_{VU} * A_U \text{ (in ft3/sec)}$$
Equation A16

where:

P = precipitation rate (inches/year) $P_J =$ ratio of storms producing runoff (unit less) with a default value of 0.9 $R_{VU} =$ runoff coefficient (unit less) for land use type U (inches_{run}/inches_{rain}) $A_U =$ area of land use type u (acres) At LHAAP-04, the affected property was estimated to be 0.28 acres. The annual precipitation at LHAAP was estimated to be 45 inches/year read from the "Water Atlas of the United States" (Miller and Troise, 1973). The percent imperviousness (I_U) for the affected property area and the other areas of the affected property watershed are 50 % and 10 %, respectively. Therefore,

For the affected property area:

$$Q_{AP} = \{(45)(0.9)[0.05 + (0.009 \text{ x } 0.5)](0.28)\} = 0.63 \text{ ft}^3/\text{sec}$$
 Equation A17

Since $C_{OA} = 0$, the term $Q_{OA} \ge C_{OA} = 0$ and therefore the other areas of the affected property watershed are omitted.

 $Q_D = 2.5 \text{ ft}^3/\text{sec}$ (Based on the 10th percentile estimate of 7Q2 flow shown in **Figure 10**) Equation A18

Based on the calculation in **Section 2.1.3**, the solute concentration of perchlorate (C_{AP}) is 792 mg/L derived from the soil concentration of 163,000 µg/kg.

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (0.63)(792)/2.5 = 199.6 \text{ mg/L} = 199,600 \text{ }\mu\text{g/L}$$
 Equation A19

This concentration ($C_D = 199,600 \ \mu g/L$) is much greater than the IAL of 4 $\mu g/L$ for perchlorate in surface water.

When perchlorate concentration downstream of the affected property (C_D) is set equal to the IAL of 4 µg/L, the resulting C_{AP} represents the perchlorate concentration protective of the receiving surface water (similar to MSC derived in **Section 2.2.2**). Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (2.5)(4)/(0.63) = 15.9 \, \mu \text{g/L}$$
 Equation A20

Using the following equation in Section 2.1.3, perchlorate concentration in soil (C_{soil}) can be derived by:

$$C_{soil} = \frac{[\phi_w + H\phi_a]C_{AP}}{\rho_b} = [0.35 + (0.0)(0.15)](15.9)/1.7 = 3.27 \,\mu\text{g/kg} \qquad \text{Equation A21}$$

Note that the actual perchlorate concentration of 163,000 μ g/kg at the source is much greater than the C_{soil} (=^{SW}Soil_{MSC}), the soil concentration protective of surface water.

4.0 Summary and Conclusions

A maximum perchlorate concentration of 163,000 micrograms per kilogram (μ g/kg) was detected in soil that can be eroded by rainstorm-generated runoff to the nearest point of Goose Prairie Creek. The perchlorate levels found in soil (163,000 μ g/kg) exceeded the calculated soil concentrations protective of sediment (71,400 μ g/kg) and surface water (3.27 μ g/kg).

Modeling of the leaching of perchlorate from the soil to groundwater indicated that perchlorate levels in groundwater as a result of soil leachate are lower than the calculated levels protective of surface water. Subsequent flow mixing and dilution of groundwater into the surface water of Goose Prairie Creek resulted in concentrations of perchlorate that are below the IAL of 4 μ g/L. Mixing concentrations of perchlorate in Goose Prairie Creek are at 0.519 and 1.39 μ g/L for the 10-year and 100-year continuous source release scenarios, respectively.

5.0 References

References are provided in the main document, Section 8.0.

Table 1
Calculated Dilution Factor for Four Scenarios
Leaching of Perchlorate from Soil, LHAAP-04

Scenario	Converted Source Liquid Concentration (Conc _{source}) (µg/L)	Simulated Maximum Concentration in Groundwater (Conc _{mix}) (µg/L)	Dilution Factor (DF)
1	791,700	35,700	22.2
2	791,700	75,900	10.4
3	791,700	45,000	17.6
4	791,700	78,200	10.1

Abbreviations:

μg/L DF micrograms per Liter dilution factor

Table 2 Summary of Simulated Perchlorate Maximum Concentrations and MSCs at Goose Prairie Creek (722 feet Downgradient from Source)

Discharged from Groundwater

Scenario	MCL	Source Area	Maximum	Distance to	Maximum	Years	Maximum Concentration	MSC Based on DF	Mixing Concentration	Overall MSC**
	or	(north-south	Source	Central	Source	Contaminant	in GW POE at	in POE at	after Discharge	after Discharge
	Action	x east-west)	Concentration	Creek	Release	Starts	Goose Prairie Creek	Goose Prairie	into Goose Prairie	into Goose Prairie
	Level	-	in Groundwater		Rate*	to Appear	μg/L (years occurred)	Creek	Creek	Creek
	(µg/L)	(feet x feet)	(µg/L) ^a	(feet)	(kg/hr)	(years)	(DF)	(µg/L)	(µg/L)	(µg/L)
10-year Continuous	4.0	100 x 120	75,900	722	2.450E-04	9.0	3,604 (56 years)	84.4	0.519	584,971
Source										
							(21.1)			
100-year Continuous	4.0	100 x 120	78,200	722	2.530E-04	9.0	9,650 (125 years)	32.4	1.39	225,036
Source										
							(8.1)			

Notes and Abbreviations:

All the sources are continuous and extend across the entire aquifer thickness of 5 feet.

*Continuous source release rate in kg/hr = maximum source concentration x recharge rate x source area **Overall MSC =(maximum source concentration in groundwater / mixing concentration in GPC) x (4.0 μg/L)

a see Table 1 - Appenidx A

µg/L micrograms per liter

DF dilution/attenuation factor

MCL maximum contaminant level

MSC medium specific concentration

POE point of entry

Table 3Calculation of Flow Discharge in Goose Prairie Creek(Data Collected from December 1, 1999 to March 15, 2000)

Month-Year	Day of Month	Measured	Depth (feet)	Measured V	elocity (feet/second)	Cross Sectior	nal Area (feet ²)	Calculated Dis	charge (cfs)	Average Discharge
		Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)
Dec-99	3 - 9	0.10830	0.22081	1.44906	4.88410	2.80	4.20	4.0574	20.5132	12.2853
	10 - 16	0.11651	0.30483	0.48774	2.94988	3.21	6.87	1.5656	20.2657	10.916
	17 - 23	0.06315	0.37523	0.45438	2.12994	2.10	8.56	0.9542	18.2323	9.593
	24 - 30	0.06315	0.36534	0.45438	14.99560	2.10	7.88	0.9542	118.1653	59.560
Jan-00	1 - 7	0.02700	0.36224	0.21000	7.10767	1.05	7.98	0.2205	56.7192	28.470
	8 - 14	0.12681	0.44958	0.24389	11.82963	3.45	18.63	0.8414	220.3860	110.614
	15 - 21	0.03749	0.36559	0.03032	11.51831	1.41	8.35	0.0428	96.1779	48.110
	22 - 28	0.06279	0.42399	0.80813	14.08148	2.08	17.56	1.6809	247.2708	124.476
Feb-00	1 - 7	0.09417	0.42572	0.12182	9.59478	2.65	20.51	0.3228	196.7889	98.556
	8 - 14	0.05132	0.37422	0.04973	6.47123	1.75	8.01	0.0870	51.8346	25.961
	15 - 21	0.03763	0.37675	0.04530	0.53829	1.48	9.24	0.0670	4.9738	2.520
	22 - 28	0.14625	0.48311	0.35183	1.14280	4.45	20.51	1.5656	23.4388	12.502
Mar-00	1 - 7	0.10288	0.37274	0.16989	0.50621	2.79	7.95	0.4740	4.0244	2.249
1	8 - 14	0.20995	0.58798	0.48053	1.13559	6.10	21.55	2.9312	24.4720	13.702

Notes and Abbreviations:

Measured depths and measured velocities are averaged values over every seven days.

Average flow discharges are the average values of upstream and downstream discharges.

cfs cubic feet per second

Table 4 **RUSLE Calculation Result for LHAAP-04 – Affected Area**

	R	к	LS	С	[P	SDR]	Α	SY
SITE4TRA	400	0.19	0.04	0.17	0.82	0.788	.44	.42
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Notes and Abbreviations:

Annual sediment yield: 0.42 tons/ac-yr

А area

С

Κ

Т

Ρ

area cover management factor soil erodability slope length factor support practice factor rainfall – runoff erosivity factor slope steepness factor sediment delivery ratio sediment yield R

S

SDR

SY

Table 5 **RUSLE Calculation Result for LHAAP-04 – Total Area**

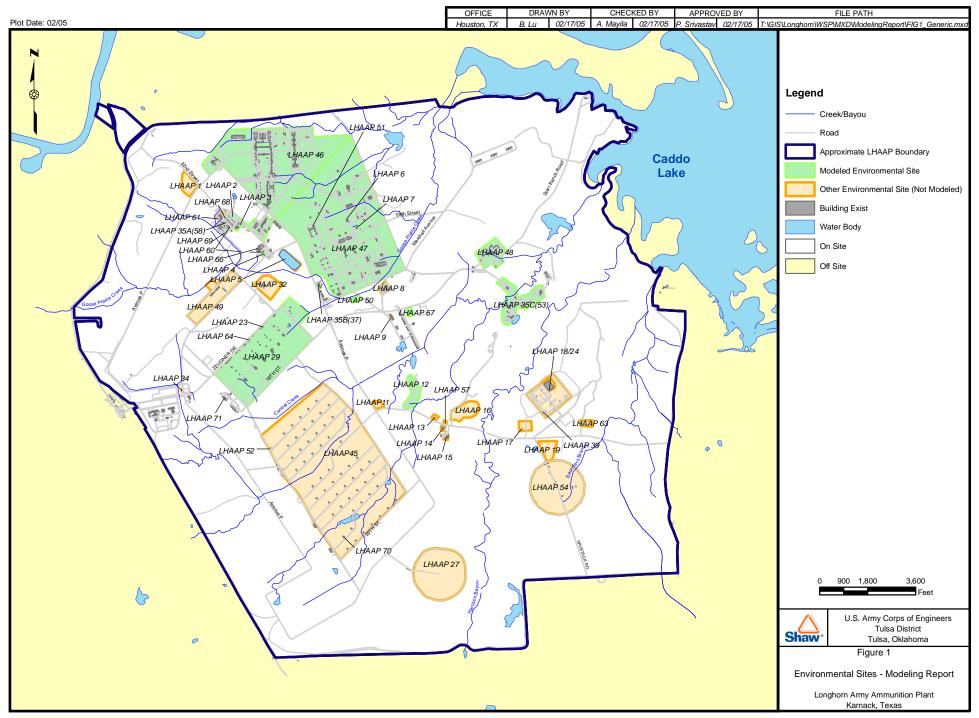
	R	К	LS	С	[P	SDR]	А	SY
SITE4TRA	400	0.19	0.14	0.12	0.98	0.919	1.2	1.2
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

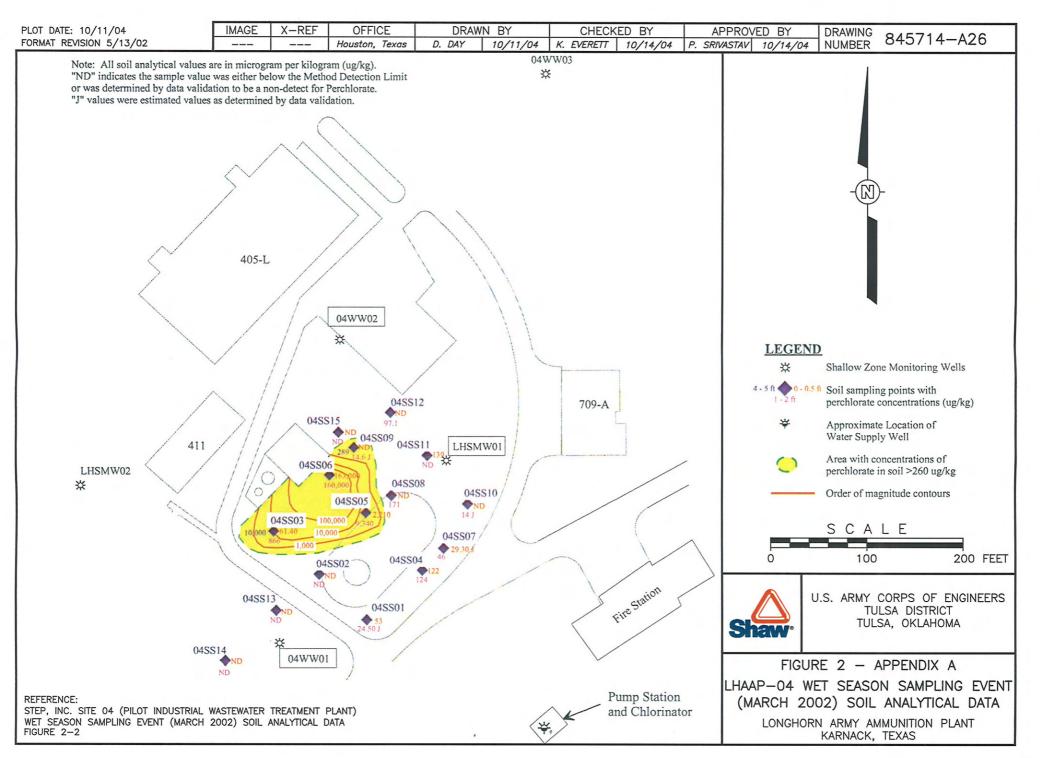
Notes and Abbreviations:

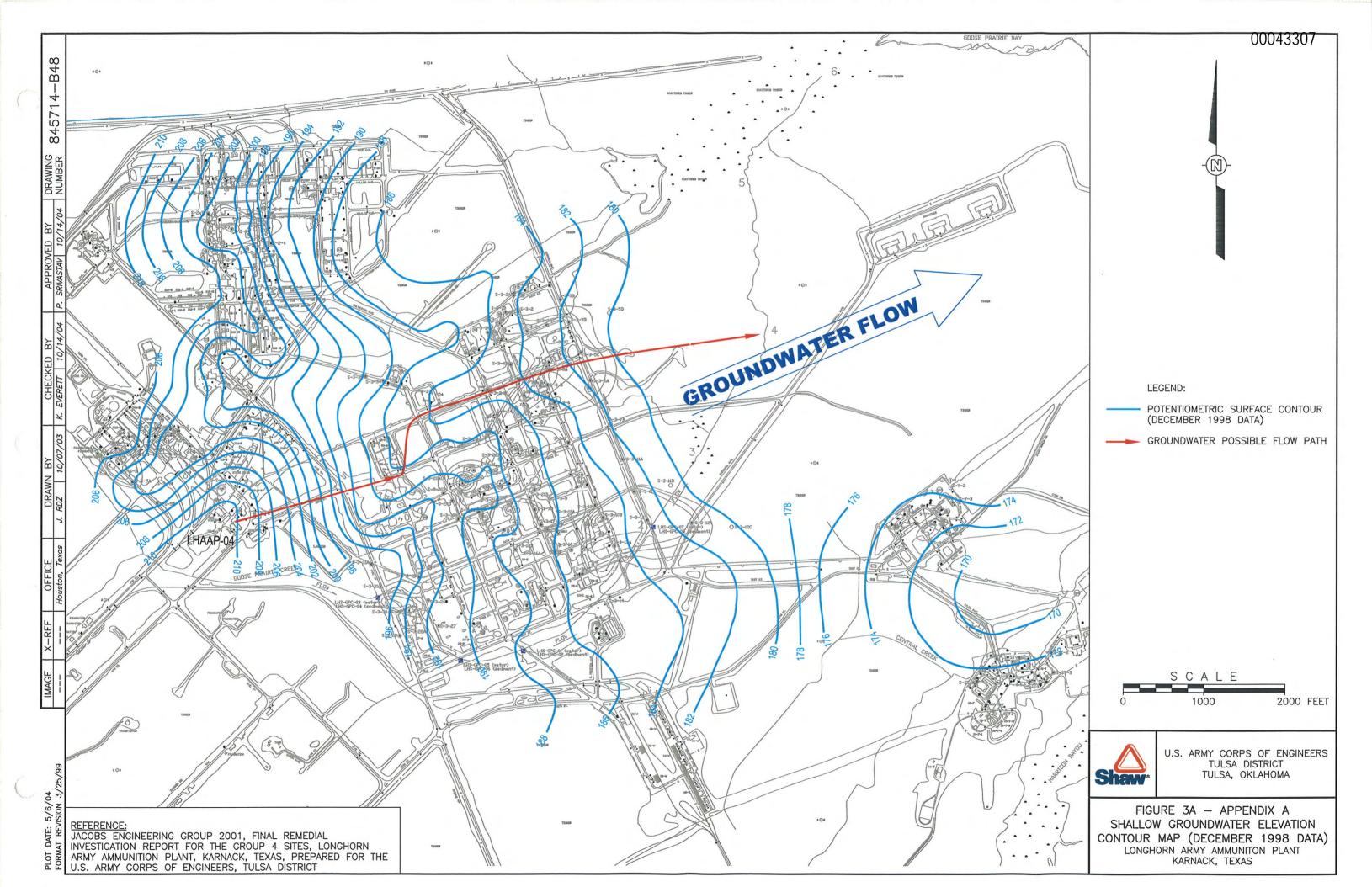
Annual sediment yield: 1.2 tons/ac-yr

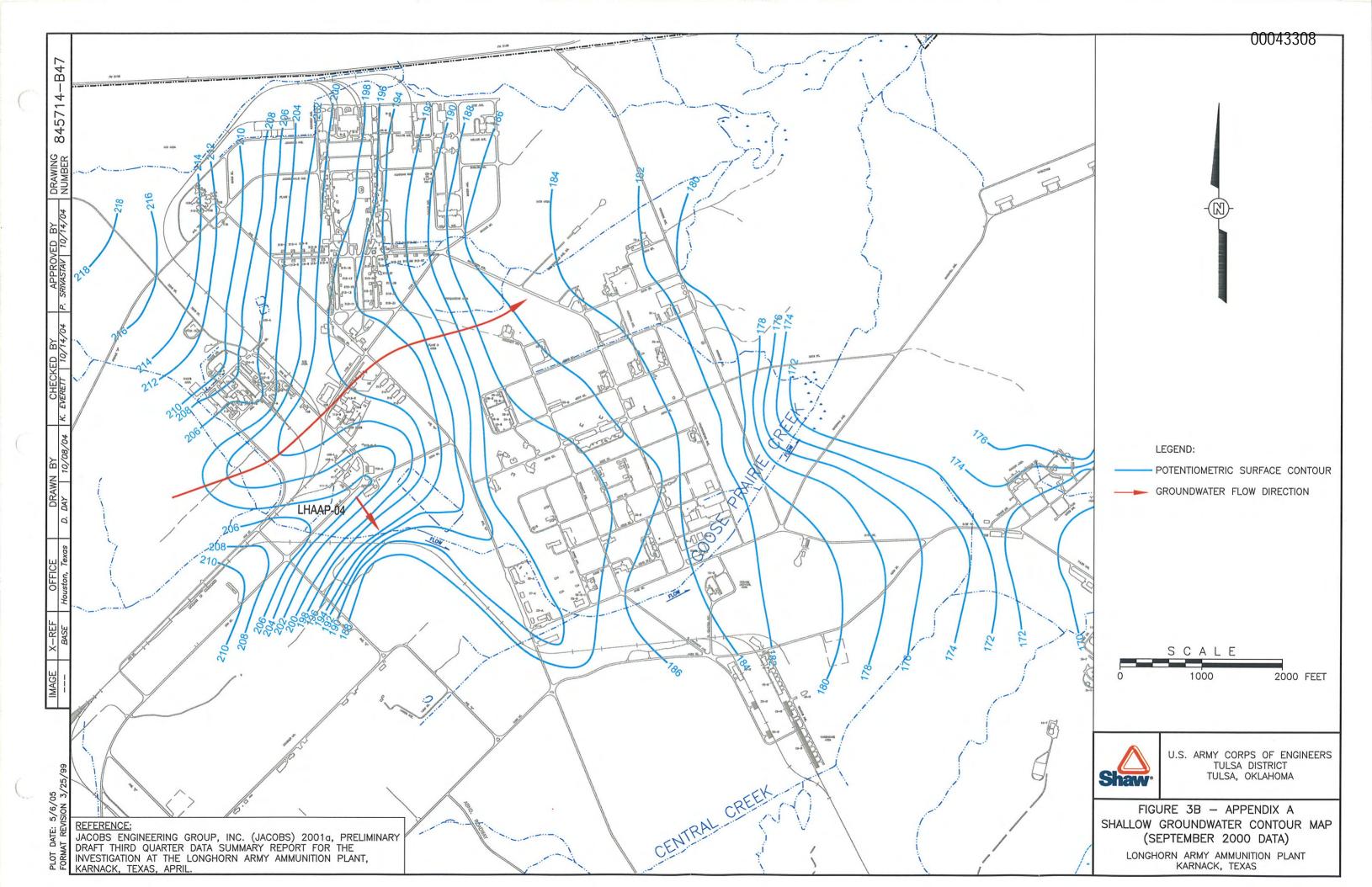
А area

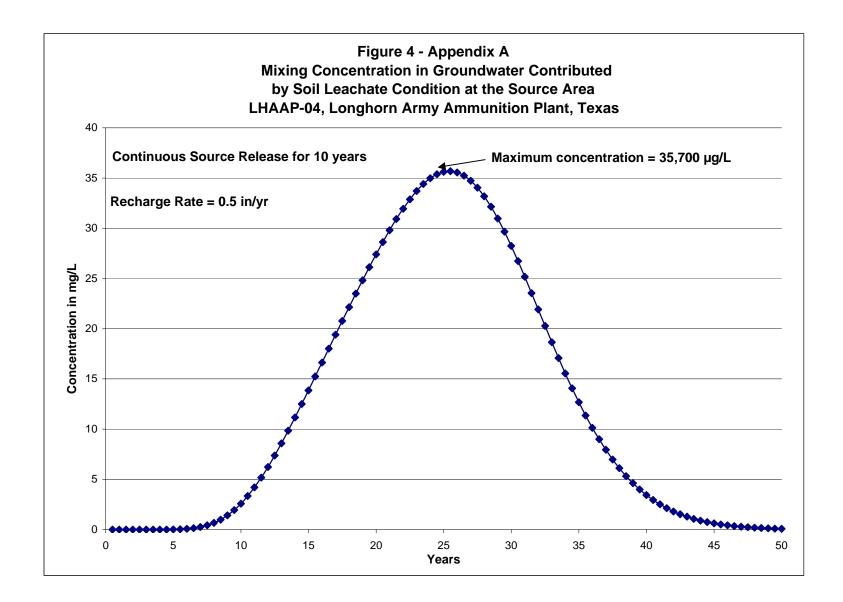
C K cover management factor soil erodability

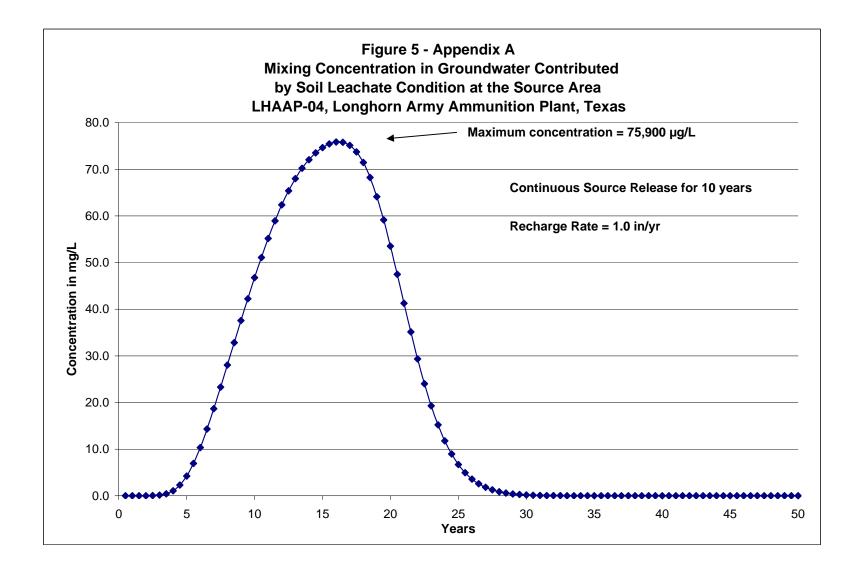

L P

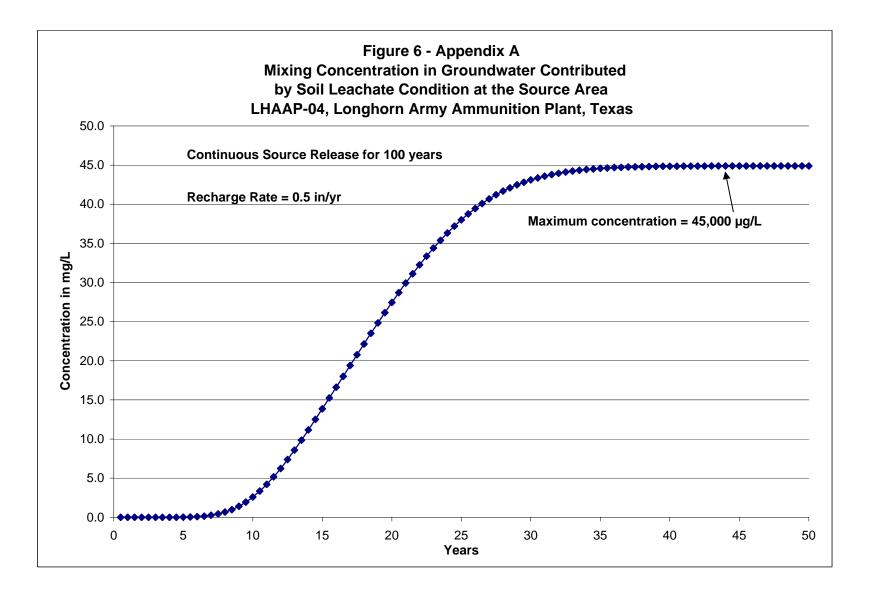

slope length factor support practice factor rainfall – runoff erosivity factor slope steepness factor R

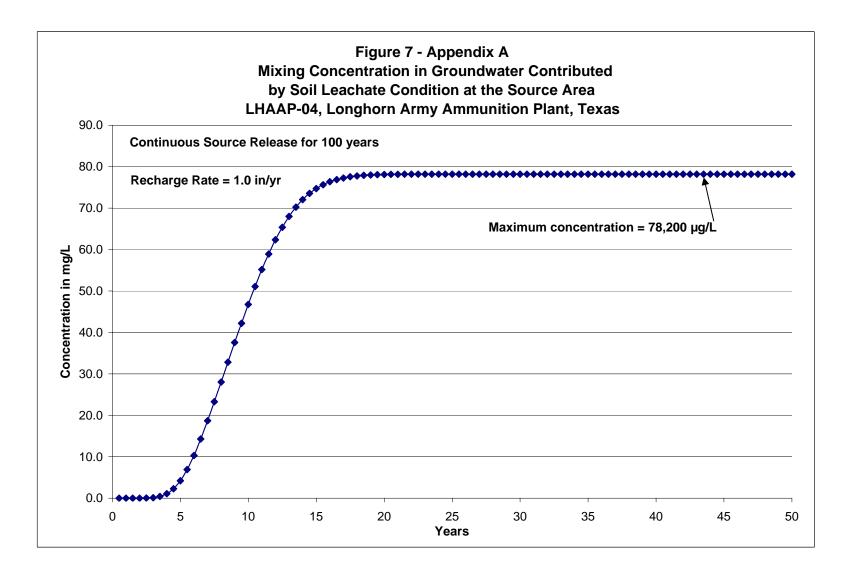

S

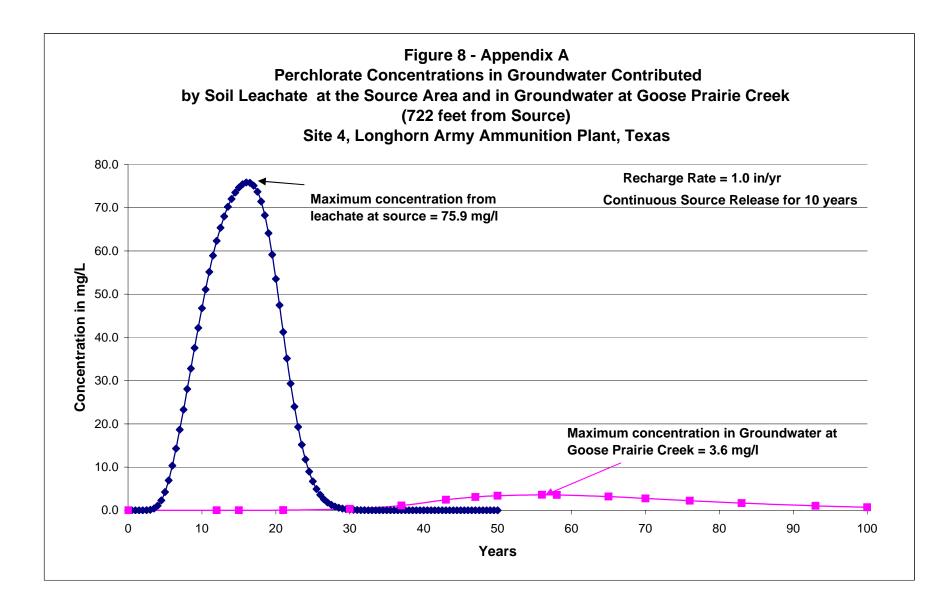

SDR sediment delivery ratio


sediment yield SY









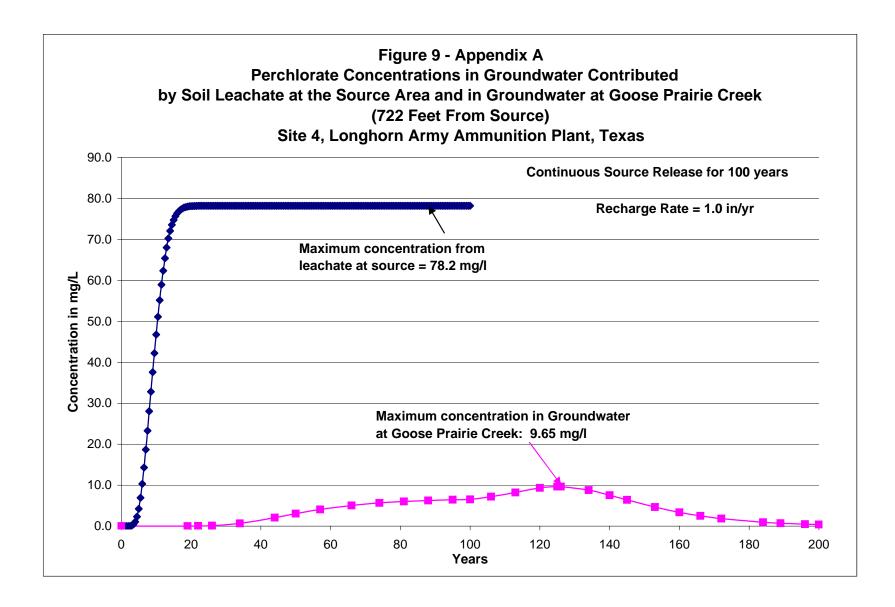


Figure 10 - Appendix A 7Q2 Low Flow Analysis Probability vs Flow Discharge for Goose Prairie Creek Based on December 1999 to March 2000 Flow Derivation

Appendix B

LHAAP-12 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Central Creek

Table of Contents_____

1.0	Introduction
2.0	Modeling
3.0	Calculation Results
4.0	Dilution Factors for TCE and Perchlorate Evaluated at the Point of Discharge into Central Creek. 4-1
5.0	Summary and Conclusions
	References

List of Tables _____

Table 1	Calculation of Dilution Factor (DF) using Domenico's Equation (Trichloroethene)
Table 2	Calculation of Dilution Factor (DF) using Domenico's Equation (Vinyl Chloride)
Table 3	Calculation of Dilution Factor (DF) using Domenico's Equation (Perchlorate)
Table 4	Calculation of Flow Discharge in Central Creek
Table 5	Summary of Derivation of Dilution Factors and Medium-Specific Concentrations
	(MSCs)

List of Figures _____

Figure 1	Environmental S	Sites –	Modeling	Report
i igui o i	Entri officiation		modoling	

- Figure 2 Groundwater Potentiometric Surface in the Shallow Permeable Zone Based on August 25, 2003, Water Level Measurements – Modeling Report
- Figure 3 7Q2 Low Flow Analysis, Probability vs Flow Discharge for Central Creek, Based on December 1999 to March 2000 Flow Derivation

1.0 Introduction

LHAAP-12 is located approximately at the center of Longhorn Army Ammunition Plant (LHAAP) with LHAAP-67 to the north and LHAAP-16 to the southeast (**Figure 1**).

The chemicals of concern (COC) at LHAAP-12 are trichloroethene (TCE), vinyl chloride (VC), and perchlorate. These three compounds were detected at maximum concentrations of 495 μ g/L, 2.1 μ g/L, and 56 μ g/L, respectively in the groundwater. The purpose of the following calculation is to determine the dilution factor of each contaminant at the location where it may enter the nearest surface body.

There are two nearby streams, Central Creek and Harrison Bayou where groundwater from LHAAP-12 is likely to be discharged. During the dry season (September 2002), groundwater elevations at LHAAP-12 varied from 180.86 to 181.94 feet above sea level (msl) and during the wet season (March 2002) from 180.56 to 184.92 feet msl. Recent creek survey data indicated that the bottom of Central Creek is at elevations of 182.01 and 181.9 feet for location CC-1 and 183.41 and 182.92 feet for location CC-2. Streambed survey data indicate that groundwater underlying LHAAP-12 is at a lower elevation than Central Creek during the dry season and may not discharge into the creek. However, groundwater may potentially discharge to Central creek during the wet season. A table presenting groundwater and Central Creek surface water elevations is included in Appendix M.

The elevation of the edge of the swamp for Harrison Bayou was measured at 167.85 and 166.73 feet above msl. Harrison Bayou is at a lower elevation than groundwater underlying the site. Therefore, groundwater will discharge to Harrison Bayou.

Although groundwater is likely to discharge to Harrison Bayou than to Central Creek, but because Central Creek is closer to LHAAP-12, for conservative calculation purposes and assuming the worst-case scenario, it was assumed that groundwater discharges to Central Creek.

At LHAAP-12, the shallow groundwater potentiometric map (August, 2003) indicated that groundwater is flowing toward the northeast for the majority of the site and flowing north at the north end of the site (**Figure 2**). Groundwater flowing to the north could enter Central Creek at a distance of 588 feet from the north end of LHAAP-12.

The purpose of this calculation is to estimate the dilution factors (DFs) for the three COCs at the interface of groundwater and Central Creek and to develop the groundwater medium-specific concentrations (MSCs) by multiplying these dilution factors with the maximum contaminant levels (MCLs) or action levels.

2.0 Modeling

The dilution factors of the COCs were obtained using the Domenico equation (Domenico and Schwartz, 1998) based on the possible flowpath mentioned above and the various parameters described in the following sections.

The Domenico equation is expressed as follows:

Equation B1

$$DF = \frac{C_{si}}{C_{(x)i}} = \left\{ \exp\left[\frac{x}{2\alpha_x} \left(1 - \sqrt{1 + \frac{4\lambda_i \alpha_x R_i}{v}}\right)\right] \left(erf\left[\frac{S_w}{4\sqrt{\alpha_y x}}\right]\right) \left(erf\left[\frac{S_d}{2\sqrt{\alpha_z x}}\right]\right) \right\}^{-1}$$

The notations in this equation and the related equations as well as and the value for each variable are explained below. Note that some assumptions are made.

$$DF$$
 = dilution factor.

- C_{si} = concentration of constituent i in source zone (µg/L).
- $C_{(x)i}$ = concentration of constituent i in groundwater at distance x downgradient of source (µg/L).
- S_w = source width perpendicular to groundwater flow (feet). Average length of landfill perpendicular to groundwater flow = 150 feet (Figure 2-1—Jacobs, 2002c).
- S_d = source thickness (i.e., the thickness of the affected groundwater within the permeable zone)(feet). Since the thickness of the contaminated plume is unknown, the average thickness of the water bearing zone was used. The thickness of the shallow permeable zone at LHAAP-12 is in the range of 5 to 20 feet, the average thickness of the permeable water bearing zone (sand) = 12.5 feet (Jacobs, 2001b).
- D_v = groundwater Darcy velocity in feet/yr (= *Ki*).

Where:

- K = is the hydraulic conductivity, which is in the range of 3.50×10^{-7} cm/sec to 4.54×10^{-3} cm/sec (Table 3-2–Jacobs, 2001b). By eliminating the extreme low value of 3.50×10^{-7} cm/sec, the average K value is 781.1 feet/year.
- *i* = the hydraulic gradient. = difference of head/distance.

Based on the potentiometric surface contour map (Figure 2)

$$i = 0.016.$$

- v = groundwater seepage velocity in feet/yr (= D_v/n), where n is the effective porosity, assumed 0.25.
- x = distance downgradient from source
 = 588.2 feet is the shortest distance from source to Central Creek based on
 Figure 1.

 λ_i = first-order degradation rate for constituent *i* (*day*⁻¹).

$$\lambda_i = \frac{\ln 2}{(t_{1/2})_i}$$

Where: ln 2 = natural log of 2

 $(t_{1/2})_i$ = the half-life of constituent *i*.

Because no site-specific degradation rate was tested, conservative literature half-life values were used (Howard et al., 1991):

For TCE $t_{1/2} = 4.5$ years (maximum) $\lambda_{tce} = 0.154$ (1/yr) For VC $t_{1/2} = 8.0$ years (maximum) $\lambda_{vc} = 0.087$ (1/yr)

Perchlorate

Because perchlorate is kinetically nonlabile (i.e., the reduction of the central chlorine atom occurs extremely slowly) and sorption or natural chemical reduction in the environment is not significant, perchlorate is exceedingly mobile in aqueous systems and can persist for many decades under typical groundwater and surface water conditions (USEPA, 2002). Because of this, the degradation rate for perchlorate was assumed to be zero.

 R_i = retardation factor for constituent *i* (dimensionless).

$$R_i = [1 + (K_d \rho_b / n)]$$

Where: $K_d (\text{cm}^3/\text{g}) =$ the distribution coefficient for that constituent $\rho_b =$ the dry soil bulk density in g/cm³. $K_d = K_{oc}f_o$

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas **Equation B2**

Where:

 K_{oc} = the carbon-water sorption coefficient (cm³/g) and the average values based on literature values are (Montgomery, 2000) TCE at 100 cm³/g and VC at 2.45 cm³/g.

Perchlorate is an inorganic compound; however, there is some sorption for perchlorate at a negligible value. for the reason mentioned above, it was assumed that there was no retardation for the movement of perchlorate.

foc is the fraction of organic carbon content. Assume 0.1 percent for sand at the site.

 α_x = longitudinal groundwater dispersivity (feet) (= x • 0.1) (ASTM, E-1739-95, Table

x3.1, 1995)

- α_y = transverse groundwater dispersivity (feet) (α_x /3) (ASTM, E-1739-95, Table x3.1, 1995)
- α_z = vertical groundwater dispersivity (feet) (α_x /20) (ASTM, E-1739-95, Table x3.1, 1995)

$$erf\chi = \frac{2}{\sqrt{\pi}} \int_0^{\chi} e^{-t^2} dt$$
 Equation B3

 S_d is a site specific variable. However, it can be determined by adding the depth caused by advection and the depth caused by vertical dispersion:

$$S_d = \mathbf{h}_{adv} + \mathbf{h}_{disp}$$

Where:

 h_{adv} = the advective component of the plume depth (feet):

$$h_{adv} = B\{1 - exp[(-I^*L)/(B^*D_v)]\}$$

Equation B4

Where:

B = the aquifer thickness (feet)

- I = the infiltration rate (feet/year, assuming 2 inch/year, i.e., 0.042 feet/year)
- L = the source length parallel to groundwater flow which is 350 feet (Figure 2-1—Jacobs, 2002c).

 h_{disp} = the dispersive component of the plume depth

 $h_{disp} = (2^* \alpha_z^* L)^{1/2}$

If the calculated S_d exceeds the thickness of the aquifer, then $S_d = B$.

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas

The thickness of the affected permeable zone shall be used as S_d if the thickness of the groundwater plume is unknown. Therefore in the current case, $S_d = B$.

3.0 Calculation Results

The calculations of the dilution factor for each of the three COCs were performed with a spreadsheet and the results are presented as **Table 1** for TCE, **Table 2** for VC, and **Table 3** for perchlorate. The calculated DFs for TCE, VC, and perchlorate are 30.485, 6.836, and 2.641, respectively, in the groundwater at the point of entry (POE) into Central Creek. The corresponding concentrations at this location for TCE, VC, and perchlorate are 16.23 μ g/l, 0.307 μ g/L, and 21.2 μ g/L, respectively.

The MCLs for TCE and VC are 5 μ g/l and 2 μ g/l, respectively, and the TCEQ interim action level (IAL) for perchlorate is 4 μ g/L.

Based on the calculated DFs calculated at POE into Central Creek, the MSCs for the three COCs are:

TCE:	5 μ g/L x 30.49 = 152.45 μ g/L (Current maximum concentration at source: 495 μ g/L)
VC:	$2 \mu g/L \ge 6.836 = 13.67 \mu g/L$ (Current maximum concentration at source: 2.1 $\mu g/L$)
Perchlorate:	$4 \mu g/L \ge 2.64 = 10.56 \mu g/L$ (Current maximum concentration at source: 56 $\mu g/L$)

These results show that TCE and perchlorate concentrations at the POE into Central Creek are above their acceptable levels. Therefore, the mixing concentrations of these two contaminants after they discharge into the Central Creek must be calculated.

4.0 Dilution Factors for TCE and Perchlorate Evaluated at the Point of Discharge into Central Creek

The concentrations of TCE and perchlorate ($Conc_{CC}$) at the POE are calculated by dividing the source concentration by the DF calculated above:

For TCE: $Conc_{CC} = 495 \ \mu g/l / 30.49 = 16.23 \ \mu g/L$ For perchlorate: $Conc_{CC} = 56 \ \mu g/l / 2.64 = 21.2 \ \mu g/L$

The concentrations of TCE and perchlorate after mixing with surface water in Central Creek are calculated based on the dilution factor of the mixing calculated below:

$$DF = \frac{Q_{GW}}{Q_{CC} + Q_{GW}}$$
 Equation B5

Where:

 Q_{CC} and Q_{GW} are the flow rates in Central Creek and in groundwater, respectively.

$$Q_{GW} = U_{gw} * \delta_p * Lm$$
 Equation B6

Where:

 U_{gw} , δ_{p_i} and L_m are the approaching groundwater seepage velocity, the thickness, and the width of the plume approaching surface water, respectively.

 U_{gw} (= *Ki/n*) is 49.98 feet/year calculated based on the hydraulic conductivity, hydraulic gradient, and the effective porosity listed in **Tables 1, 2** and **3**.

 δ_p is 12.5 feet and L_m is unknown at the intersection but can be conservatively assumed as the width at the source, which is 150 feet. Then:

$$Q_{GW} = 49.98/(365 \times 86400) \times 12.5 \times 150 = 2.97 \times 10^{-3} \text{ ft}^3/\text{s}.$$

Calculation of Q_{CC} must be based on the 7Q2 stream flow analysis. 7Q2 is the low flow at the POE, defined as the flow discharge in seven consecutive days that occurs once every two years

statistically. At Central Creek, only two sets of stream data at the upstream and downstream cross sections are available from the U.S. Army Corps of Engineers. These data sets include the velocity data and the gauge readings (i.e., depths of water) obtained during the period of December 1999 to March 2000, a total of only 4 months. Flow discharge data were not available. Based on these data, the average flow discharges in every consecutive 7-day period are calculated and presented in **Table 4**. Note that there is no observation at the point where contaminated groundwater flow discharges into the Central Creek; rather, average values between upstream and downstream flow are used. Because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 1.0 cubic feet per second (cfs) is derived (**Figure 3**).

$$DF = (2.97 \times 10^{-3})/(2.97 \times 10^{-3} + 1.0) = 2.961 \times 10^{-3}$$
 Equation B7

The mixing concentrations for TCE and perchlorate in Central Creek are:

For TCE:

$$Conc_{mix} = 2.961 \times 10^{-3} \times 16.23 = 0.05 \ \mu g/L$$

The overall DF of TCE at point of discharge into the Central Creek is 495/0.05 = 9,900. The MSC for TCE is therefore $9,900 \ge 5 \ \mu g/L = 49,500 \ \mu g/L$. Note that the observed concentration at the site, $495 \ \mu g/L$, is much lower than the calculated MSC.

For perchlorate:

$$Conc_{mix} = 2.961 \times 10^{-3} \times 21.2 = 0.063 \ \mu g/L$$

The overall DF at point of discharge into the Central Creek is 56/0.063 = 892.1. The MSC for perchlorate is therefore $892.1 \times 4 \mu g/L = 3,568 \mu g/L$. Note that the observed concentration at the site, $56 \mu g/L$, is much lower than the calculated MSC.

5.0 Summary and Conclusions

Table 5 summarizes the calculation results in terms of dilution factors and concentrations at different locations with maximum concentrations detected at the source for comparison.

The results of the Domenico equation calculations indicated that at the location where groundwater enters Central Creek, TCE, vinyl chloride, and perchlorate maximum concentrations in groundwater are 16.23, 0.307, and 21.2 μ g/L, respectively. Even prior to mixing and dilution, vinyl chloride levels are below the MCL of 2 μ g/L. TCE and perchlorate concentrations decrease substantially with mixing and dilution to 0.03 and 0.038 μ g/L, respectively; levels that are below the MCL and the action level. The current maximum concentrations at the source (TCE [495 μ g/L], vinyl chloride [2.1 μ g/L], and perchlorate [56 μ g/L]) are lower than the MSCs protective of surface water for all three COCs including TCE (49,500 μ g/L), perchlorate (3,568 μ g/L), and vinyl chloride, the concentrations of which are lower than the MSC protective of groundwater at POE even before mixing with surface water in the creek.

Field Confirmation

Note that the calculation of all three constituents using Domenico's equation was based on a distance of 588 feet from the north end of the landfill at LHAAP-12, and there is no monitoring well downgradient and in the lateral direction of the landfill. No calculation was attempted for a lateral location downgradient of the landfill to provide field confirmation of the model.

6.0 References

References are provided in the main document, in Section 8.0.

TERC No. DACA56-94-D-0020, TO No. 0109 2.6.07 Longhorn Army Ammunition Plant, Karnack, Texas

Table 1 CALCULATION OF DILUTION FACTOR (DF) USING DOMENICO'S EQUATION (LHAAP-12, Longhorn Army Ammunition Plant, Texas)

(Trichloroethene) TCE Discharged to Central Creek (Assumed TCE half-life = 4.5 years [Howard et al., 1991]⁽¹⁾)

L 350 ft alphaz1 1.75 ft B 12.5 ft Dv 12.4976 ft/year I 0.042 ft/year Aquifer thickness (H) 12.5 ft

Sw	150 ft	x	588.2 ft
effective n	0.25	alpha x	58.82 ft
lambda	0.154 1/yr	alpha y	19.61 ft
R	1.68	alpha z	2.941 ft
I	0.016 ft/ft	Koc	100 cm ³ /g
к	781.1 ft/yr	foc	0.001
v	49.9904 ft/year	rho	1.7 g/cm ³

Calculations:

hadv	1.12 ft
hdisp	35 ft
Sd (Method 1)	12.50 ft
Sd (Method 2)	12.5 ft

Identify the following condition:

Xp = (H -Sd)^2/alphaz =

0.0000 ft

Xp = 0.0 (i.e.Sd = H)

hadv	1.12 ft
hdisp	35 ft
Sd (Method 1)	12.50 ft
Sd (Method 2)	12.5 ft
DF DOMENICO	30.485

Parameters Definition, Assumptions and Sources

L alphaz1 B Dv I Sw Sd	length of source parallel to groundwater flow in feet vertical dispersivity in feet $(=L/200)^{(2)}$ thickness of shallow water bearing zone in feet Darcy horizontal velocity in ft/yr (= K x i) infiltration rate in ft/yr source width perpendicular to groundwater flow in feet source thickness in feet (if hadv+hdisp > B, Sd = B or else Sd = hadv + hdisp) (NOTE: The thickness of the impacted permeable zone shall be used if the thickness of the plume isn't known) hadv = B[1-exp((-I x L)/(B x Dv))] hdisp = (2 x alphaz1 x L) ^{1/2}
effective n Iambda R	effective porosity first order degradation rate retardation factor (= 1+ (Kd x rho)/n where Kd = Koc x foc (Koc = soil sorption coefficient, assumed nitrate not adsorbed) (foc = fraction of organic carbon in soil =0.1%, assumed for silty clay) rho = bulk density = assumed 1.7 g/cm ³
I K V X alpha x alpha y alpha z	hydraulic gradient hydraulic conductivity in ft/yr groundwater seepage velocity in ft/yr (= K x i / n) distance down gradient from source in feet longitudinal groundwater dispersivity in feet (= $0.1x$) ⁽²⁾ transverse groundwater dispersivity in feet (= $alphax / 3$) ⁽²⁾ vertical groundwater dispersivity in feet (= $alphax / 20$) ⁽²⁾

Reference:

 Howard, P.H., R.S. Boethling, W.F. Jarvis, W.M., Meylan, and E.M. Michalenko, 1991, "Environmental Degradation Rates," Lewis Publishers, Inc.

(2) ASTM, E-1739-95, Table X3.1

Table 2 CALCULATION OF DILUTION FACTOR (DF) USING DOMENICO'S EQUATION (LHAAP-12, Longhorn Army Ammunition Plant, Texas)

(Vinyl Chloride) VC Discharged to Central Creek (Assumed VC half-life = 8.0 years [Howard et al., 1991]⁽¹⁾)

L	350 ft
alphaz1	1.75 ft
В	12.5 ft
Dv	12.4976 ft/year
I	0.042 ft/year
Aquifer thickness (H)	12.5 ft

Sw	150 ft	х	588.2 ft
effective n	0.25	alpha x	58.82 ft
lambda	0.087 1/yr	alpha y	19.61 ft
R	1.017272	alpha z	2.941 ft
I	0.016 ft/ft	Koc	2.54 cm ³ /g
К	781.1 ft/yr	foc	0.001
v	49.9904 ft/year	rho	1.7 g/cm ³

Calculations:

hadv	1.12 ft
hdisp	35 ft
Sd (Method 1)	12.50 ft
Sd (Method 2)	12.5 ft

Identify the following condition:

Xp = (H -Sd)^2/alphaz =

0.0000 ft

Xp = 0.0 (i.e.Sd = H)

hadv	1.12 ft
hdisp	35 ft
Sd (Method 1)	12.50 ft
Sd (Method 2)	12.5 ft
DF DOMENICO	6.836

Parameters Definition, Assumptions and Sources

L alphaz1 B Dv I Sw Sd	length of source parallel to groundwater flow in feet vertical dispersivity in feet (=L/200) ⁽²⁾ thickness of shallow water bearing zone in feet Darcy horizontal velocity in ft/yr (= K x i) infiltration rate in ft/yr source width perpendicular to groundwater flow in feet source thickness in feet (if hadv+hdisp > B, Sd = B or else Sd = hadv + hdisp) (NOTE: The thickness of the impacted permeable zone shall be used if the thickness of the plume isn't known)
effective n lambda	hadv = B[1-exp((-I x L)/(B x Dv))] hdisp = (2 x alphaz1 x L) ^{1/2} effective porosity first order degradation rate
R	retardation factor (= 1+ (Kd x rho)/n where Kd = Koc x foc (Koc = soil sorption coefficient , assumed nitrate not adsorbed) (foc = fraction of organic carbon in soil =0.1%, assumed for silty clay) rho = bulk density = assumed 1.7 g/cm ³
l K V X alpha x alpha y alpha z	hydraulic gradient hydraulic conductivity in ft/yr groundwater seepage velocity in ft/yr (= K x i / n) distance down gradient from source in feet longitudinal groundwater dispersivity in feet (= $0.1x$) ⁽²⁾ transverse groundwater dispersivity in feet (= $alphax / 3$) ⁽²⁾ vertical groundwater dispersivity in feet (= $alphax / 20$) ⁽²⁾

Reference:

 Howard, P.H., R.S. Boethling, W.F. Jarvis, W.M., Meylan, and E.M. Michalenko, 1991, "Environmental Degradation Rates," Lewis Publishers, Inc.

(2) ASTM, E-1739-95, Table X3.1

Table 3 CALCULATION OF DILUTION FACTOR (DF) USING DOMENICO'S EQUATION (LHAAP-12, Longhorn Army Ammunition Plant, Texas)

(Perchlorate)

Perchlorate Discharged into Central Creek

L	350 ft
alphaz1	1.75 ft
В	12.5 ft
Dv	12.4976 ft/year
1	0.042 ft/year
Aquifer thickness (H)	12.5 ft

Sw	150 ft	x	588.2 ft
effective n	0.25	alpha x	58.82 ft
lambda	0 1/yr	alpha y	19.61 ft
R	1	alpha z	2.941 ft
I	0.016 ft/ft	Kd	0 cm ³ /g
К	781.1 ft/yr	foc	
v	49.9904 ft/year	rho	1.7 g/cm ³

Definition, Assumptions and Sources

Calculations:

hadv	1.12 ft
hdisp	35 ft
Sd (Method 1)	12.50 ft
Sd (Method 2)	12.5 ft

Identify the following condition:

Xp = (H -Sd)^2/alphaz =

0.0000 ft

Xp = 0.0 (i.e.Sd = H)

hadv	1.12 ft
hdisp	35 ft
Sd (Method 1)	12.50 ft
Sd (Method 2)	12.5 ft
DF DOMENICO	2.641

length of source parallel to groundwater flow in feet L vertical dispersivity in feet (=L/200)⁽²⁾ alphaz1 в thickness of shallow water bearing zone in feet Dv Darcy horizontal velocity in ft/yr (= K x i) infiltration rate in ft/yr н Sw source width perpendicular to groundwater flow in feet Sd source thickness in feet (if hadv+hdisp > B, Sd = B or else Sd = hadv + hdisp) (NOTE: The thickness of the impacted permeable zone shall be used if the thickness of the plume isn't known) $hadv = B[1-exp((-I \times L)/(B \times Dv))]$ hdisp = $(2 \text{ x alphaz1 x L})^{1/2}$ effective porosity effective n lambda first order degradation rate R retardation factor (= 1+ (Kd x rho)/n) where Kd = Koc x foc (Koc = soil sorption coefficient , assumed nitrate not adsorbed) (foc = fraction of organic carbon in soil =0.1%, assumed for silty clay) rho = bulk density = assumed 1.7 g/cm^3 hydraulic gradient T к hydraulic conductivity in ft/yr groundwater seepage velocity in ft/yr (= K x i / n) v distance down gradient from source in feet х alpha x longitudinal groundwater dispersivity in feet $(= 0.1x)^{(1)}$ transverse groundwater dispersivity in feet (=alphax / 3)⁽¹⁾ alpha y

alpha z vertical groundwater dispersivity in feet (= alphax / 20)⁽¹⁾

Reference:

Parameters

(1) ASTM, E-1739-95, Table X3.1

Table 4
Calculation of Flow Discharge in Central Creek
(Data Collected from December 1, 1999 to March 15, 2000)

Month-Year	Day of Month	Measured Depth (feet)		Measured Velocity (feet/second)		Cross Sectional Area (ft ²)		Calculated Discharge (cfs)		Average Discharge
	-	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)
Dec-99	3 - 9	0.09341	1.11074	0.11183	1.29100	6.10	6.31	0.6822	8.1462	4.4142
	10 - 16	0.07876	1.48660	0.14567	0.25542	4.40	7.30	0.6409	1.8646	1.253
	17 - 23	0.03000	1.46344	0.11000	0.73705	2.00	7.25	0.2200	5.3436	2.782
	24 - 30	0.03000	1.32520	0.11000	0.23729	2.00	7.00	0.2200	1.6610	0.941
Jan-00	1 - 7	0.03000	1.06090	0.11000	0.29642	3.90	11.90	0.4290	3.5274	1.978
	8 - 14	0.07554	1.62076	0.13253	0.19877	2.50	10.80	0.3313	2.1467	1.239
	15 - 21	0.03000	1.48365	0.07000	0.15027	2.50	7.20	0.1750	1.0819	0.628
	22 - 28	0.04400	1.36087	0.08400	3.31644	8.50	11.00	0.7140	36.4808	18.597
Feb-00	1 - 7	0.05970	1.63820	0.05752	0.54047	2.00	6.12	0.1150	3.3077	1.711
	8 - 14	0.03500	1.51571	0.03000	0.25153	4.20	11.70	0.1260	2.9429	1.534
	15 - 21	0.03500	1.44892	0.03000	1.64454	2.00	7.26	0.0600	11.9394	6.000
	22 - 28	0.04400	1.55024	0.08400	0.25240	2.80	7.15	0.2352	1.8047	1.020
Mar-00	1 - 7	0.06586	2.07625	0.05766	3.62250	4.10	17.90	0.2364	64.8428	32.540
	8 - 14	0.19663	2.40898	0.28986	2.59353	12.00	25.30	3.4783	65.6163	34.547

Notes:

Measured depths and measured velocities are averaged values over every seven days.

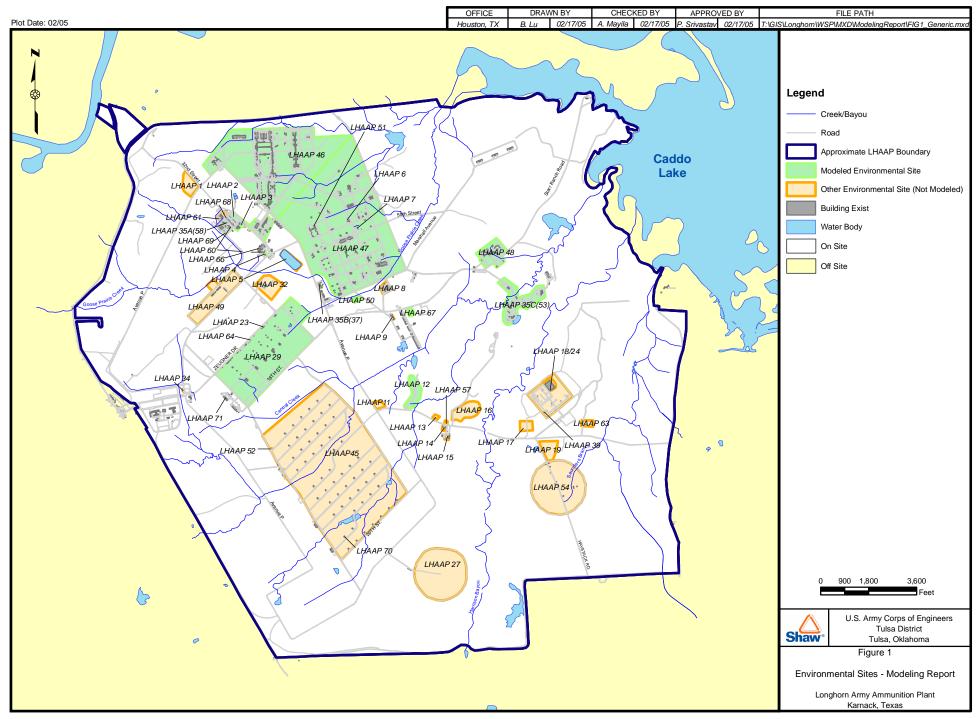
Average flow discharges are the average values of upstream and downstream discharges.

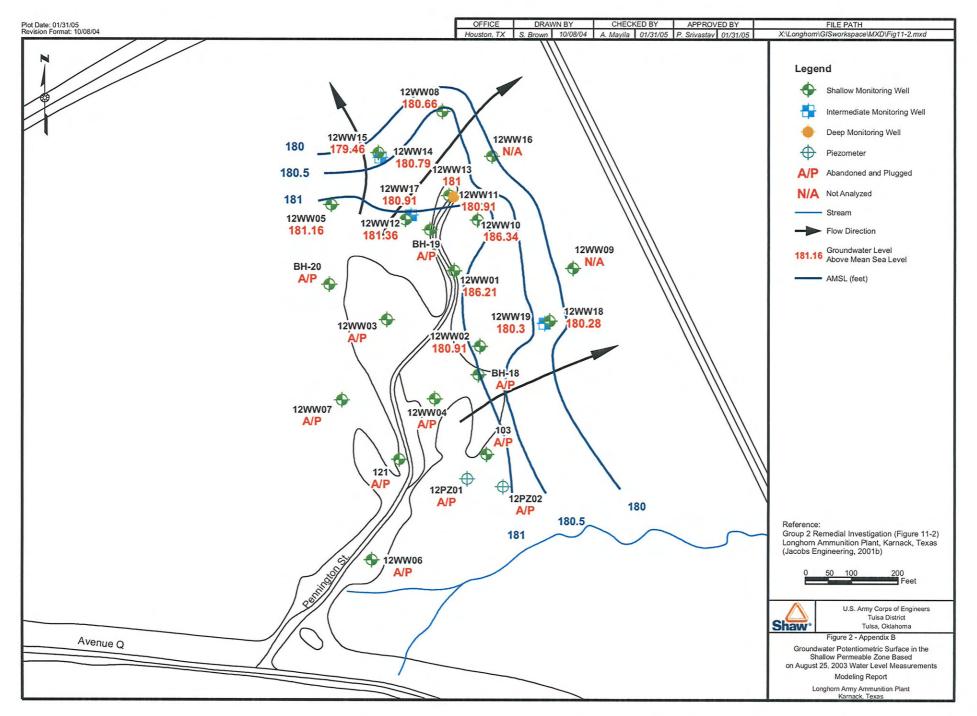
ft² square feet

cfs cubic feet per second

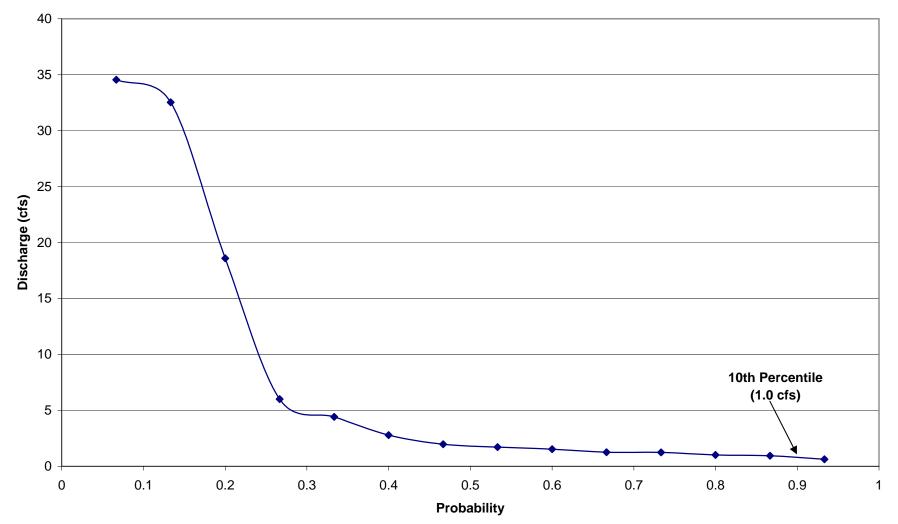
Table 5
Summary of Derivation of Dilution Factors and Medium Specific Concentrations (MSCs)

Chemical of Concern	Maximum Concentration at Source (µg/L)	Dilution Factor (DF) at the POE into Central Creek	Concentration at the POE into Central Creek (µg/L)	MSC Based on DF at the POE into Central Creek (µg/L)	Dilution Factor (DF) at POE into Central Creek	Mixing Concentration after Discharge into Central Creek (µg/L)	MSC Based on DF after Discharge into Central Creek (µg/L)
Perchlorate	56.0	2.641	21.2	10.56	1,474	0.038	5,895
TCE	495.0	30.485	16.23	152.45	16,500	0.03	82,500
VC	2.1	6.836	0.307	13.67			


Abbreviations:


POE point of entry trichloroethene

TCE


VC

vinyl chloride micrograms per Liter µg/L

Figure 3 - Appendix B 7Q2 Low Flow Analysis Probability vs Flow Discharge for Central Creek Based on December 1999 to March 2000 Flow Derivation

Appendix C

LHAAP-29, Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Central Creek

Table of Contents_____

1.0	Introduction	. 1-1
2.0	Input Parameters and Assumptions	. 2-1
3.0	Simulation and Results	. 3-1
	3.1 Dilution in Central Creek	. 3-1
4.0	Summary and Conclusions	. 4-1
	References	

List of Tables _____

Table 1	Chemical Properties for LHAAP-29 Groundwater Fate and Transport Modeling
Table 2	Summary of 1,2-DCA, TCE, Methylene Chloride and Perchlorate Concentrations at
	Central Creek
Table 3	Calculation of Flow Discharge in Central Creek

List of Figures _____

Figure 1	Environmental Sites – Modeling Report
----------	---------------------------------------

- Figure 2 LHAAP-29 Shallow Potentiometric Surface Map (August 1998)
- Figure 3 Simulated Perchlorate Concentrations in Groundwater at Central Creek
- Figure 4 7Q10 Low Flow Analysis, Probability vs Flow Discharge for Central Creek, Based on December 1999 to March 2000 Flow Derivation

1.0 Introduction

LHAAP-29 is located on the western central portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-29 was a trinitrotoluene (TNT) production area. The chemicals of concern (COC) in groundwater are methylene chloride, 1,2-dichloroethane, trichloroethene (TCE), and perchlorate at maximum concentrations of 6,600,000, 14,000, 1,200, and 61,400 μ g/L, respectively (Jacobs, 2001b; Jacobs, 2001c; Solutions to Environmental Problems, Inc., 2003). The COC concentrations are higher than the maximum contaminant levels (MCLs) and interim action level (IAL) for perchlorate.

The purpose of the modeling was to calculate the maximum concentrations and dilution factors for each COC at the point of entry (POE) of the groundwater into the surface water. The purpose was also to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factors with the MCLs or IAL for perchlorate. The closest surface water body downgradient from the detected maximum contamination (29WW15 and 29WW16) at the site is Central Creek at a distance of approximately 6,125 feet (**Figure 1**). Groundwater flows to the southeast from this location, then northeast based on August 1998 water level measurements (**Figure 2**).

In order to calculate the maximum concentrations of the COCs and the time of travel to the POE at Central Creek, the computer program AT123D was used.

2.0 Input Parameters and Assumptions

Groundwater modeling at LHAAP-29 was based on the following assumptions and considerations:

- Contaminant source: Instantaneous source extending across the entire aquifer thickness of 10 feet was assumed. The only source is the plume itself.
- The source area was assumed to be the plume area. The dimensions of the plume were assumed to be 1,250 feet (east-west) by 375 feet (north-south) by 10 feet (depth) for all the contaminants.
- Based on the geologic cross-sections at LHAAP-29 (Jacobs, 2001b), the thickness of the shallow water-bearing zone consisting of sand is in the range of 5 to 15 feet. Therefore, an average depth of 10 feet was used. It was assumed that the contaminant source in this shallow zone extended to the entire depth of 10 feet.
- The properties of the shallow water bearing zone used in the model were as follows:
 - Average hydraulic conductivity (*K*) based on the slug tests at LHAAP-29 was estimated to be 6.79×10^{-4} cm/sec (Jacobs, 2001b)
 - Hydraulic gradient: 0.01feet/feet (based on the potentiometric surface map for water level measurements from August 1998 (Jacobs, 2001b). The potentiometric surface map constructed based on 2005 groundwater level measurements shows little difference from that of August 1998.
 - Effective porosity assumed at 0.25
 - Longitudinal groundwater dispersivity: = $x \times 0.1$ (ASTM, E-1739-95, Table x3.1, 1995) where *x* is the travel distance of contaminants, assumed to be the distance from the source to the Central Creek = 612 feet.
 - Transverse groundwater dispersivity: = α_x / β (ASTM, E-1739-95, Table x3.1, 1995) = 62.2 feet
 - Vertical groundwater dispersivity: = $\alpha_x/20$ (ASTM, E-1739-95, Table x3.1, 1995) = 9.34 feet

Chemical properties of each chemical including the carbon partition coefficient, water-soil distribution coefficient, and half-life are listed in **Table 1**.

3.0 Simulation and Results

Computer simulation results were evaluated at the POE as shown in **Table 2**. The results include the time when COCs reach the POE, the time they reach their peaks, the maximum concentrations at this location, the dilution factors, and the MSC based on DF and the action level.

Simulation shows that except for perchlorate, no other COC will reach Central Creek. Perchlorate will take 176 years to reach Central Creek at a concentration of 1,634 μ g/L (**Table 2** and **Figure 3**). The maximum concentration of perchlorate exceeds the IAL of 4 μ g/L. The dilution factor calculated for perchlorate is 37.6 at the POE (**Table 2**).

3.1 Dilution in Central Creek

Because perchlorate exceeds the IAL in groundwater at the POE, further evaluation of its mixing and dilution in the Central Creek was performed.

The DF of perchlorate after mixing with surface water in the Central Creek is calculated based on the dilution factor of the mixing calculated below:

$$DF = \frac{Q_{GW} + Q_{CC}}{Q_{GW}}$$
 Equation C1

Where:

 Q_{CC} and Q_{GW} are the flow rates in the Central Creek and in groundwater, respectively.

$$Q_{GW} = U_{gw} \times \delta_p \times Lm$$
 Equation C2

Where:

 U_{gw} , δ_p , and L_m are the approaching groundwater seepage velocity, the thickness, and width of the plume approaching surface water, respectively.

 U_{gw} is calculated based on the hydraulic conductivity of 6.79×10^{-4} cm/sec, hydraulic gradient of 0.01 and the effective porosity of 0.25. Therefore groundwater seepage velocity is 0.077 ft/day.

 δ_p is 10 feet and L_m is unknown at the intersection but can be conservatively assumed as one-half the width of the source, which is 188 feet since the source is 6125 feet away. Then:

DF = (1.68x10-3 + 1.0)/(1.68x10-3) = 596.2

Calculation of Q_{CC} has to be based on the 7Q2 stream flow analysis. 7Q2 is the low flow at the point of interest, defined as the flow discharge in seven consecutive days that occurs once every ten years statistically. At Central Creek, only two sets of stream data at the upstream and downstream cross sections are available from the U.S. Army Corps of Engineers. These data sets include the velocity data and the gauge readings (i.e., depths of water) obtained during the period of December 1999 to March 2000, a total of only four months. Flow discharge data were not available. Based on these data, the average flow discharges in every consecutive 7-day period are calculated and presented in **Table 3**. Note that there is no observation at the point where contaminated groundwater flow discharges into Central Creek, average values between upstream and downstream flow are used. Because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 1.0 cubic feet per second (cfs) is derived (**Figure 4**).

The mixing concentration for perchlorate in Central Creek is 2.74 µg/L.

This concentration is below perchlorate IAL of 4 μ g/L.

The mixing concentrations and the overall MSC for perchlorate are presented in Table 2.

4.0 Summary and Conclusions

Results of the modeling indicate that the three COCs; TCE, methylene chloride, and 1,2-DCA will not reach Central Creek. The COC perchlorate reaches the creek at 1,634 μ g/L in groundwater; however, perchlorate is mixed and diluted in surface water to a concentration of 2.74 μ g/L, a level below the action level of 4 μ g/L. The current maximum perchlorate concentration at the source, 61,400 μ g/L, is lower than the MSC value protective of surface water 89,635 μ g/L.

Field Confirmation

Additional calculations were conducted to simulate perchlorate concentrations at a well located in a transverse direction from the centerline of the flow. These calculations were conducted to compare the model results with actual field observations.

The computer modeling provides a maximum simulated concentration of 154 μ g/L of perchlorate after 91 years at monitoring well 117. Monitoring well 117 is situated at a lateral distance of 691 feet away from the center line of flow path, 380 feet downgradient from the source location (29WW15 and 29WW16). Recent observation of perchlorate shows non-detect at well 117 (Solutions to Environmental Problems, Inc., 2003).

5.0 References

References are provided in the main document, Section 8.0.

Chemica	Chemical Properties for LHAAP-29 Groundwater Fate and Transport Modeling												
Chemical	Koc ⁽¹⁾ (cm ³ /g)	foc (percent)	Kd (cm³/g)	Kd (m³/kg)	Half-life (years) ⁽²⁾	Degradation Rate (1/year)							
Methylene Chloride	27.5	0.1	0.0275	2.75E-05	1 ⁽³⁾	0.694							
1,2-Dichloroethane	31.6	0.1	0.0316	3.16E-05	1	0.694							
Trichloroethene	100	0.1	0.1	1.00E-04	4.5	0.154							
Perchlorate			0	0.00E+00		0							

 Table 1

 Chemical Properties for LHAAP-29 Groundwater Fate and Transport Modeling

Notes:

Sources: (1) Montgomery, 2000, Groundwater Chemicals - Desk Reference (Third Edition)

(2) Howard et al., 1991, Environmental Degradation Rates

(3) Use dichloromethane (synonym of methylene chloride) value in (2), i.e., 8 weeks. Conservatively 1 year was used.

Koc carbon-water sorption coefficient

cm³/g cubic centimeters per gram

m³/kg cubic meters per kilogram

kd distribution coefficient

foc fraction organic carbon

Final Modeling Report, Rev 1 Appendix C

Table 2 Summary of 1,2-DCA, TCE, Methylene Chloride and Perchlorate Concentrations at Central Creek (6125 feet Downgradient from Source) LHAAP-29, Longhorn Army Ammunition Plant

Source Type	MCL (µg/L)	Source Area (north-south x east-west) (feet x feet)	Maximum Observed Source Concentration (µg/L)	Distance to Central Creek (feet)	Source Release Rate* (kg)	Years Contaminant Starts to Appear (years)	Maximum Concentration at POE into Central Creek (µg/L) (DF)	MSC Based on DF at POE into Central Creek (µg/L)	Mixing Concentration after Discharge in Central Creek (µg/L)	Overall MSC after Discharge into Central Creek (µg/L)
1,2-Dichloroethane	5.0	375 x 1250	14,000	6,125	649.300	Infinity	0 (Infinity)	Infinity	NA	NA
Trichloroethene	5.0	375 x 1250	1,200.0	6,125	55.700	Infinity	0 (Infinity)	Infinity	NA	NA
Methylene Chloride	5.0	375 x 1250	6,600,000	6,125	306,095.0	Infinity	0 (Infinity)	Infinity	NA	NA
Perchlorate	4 ⁽¹⁾	375 x 1250	61,400.0	6,125	2,848.0	20.0	1,634 (176 Years) (37.6)	150.4	2.74	89,635

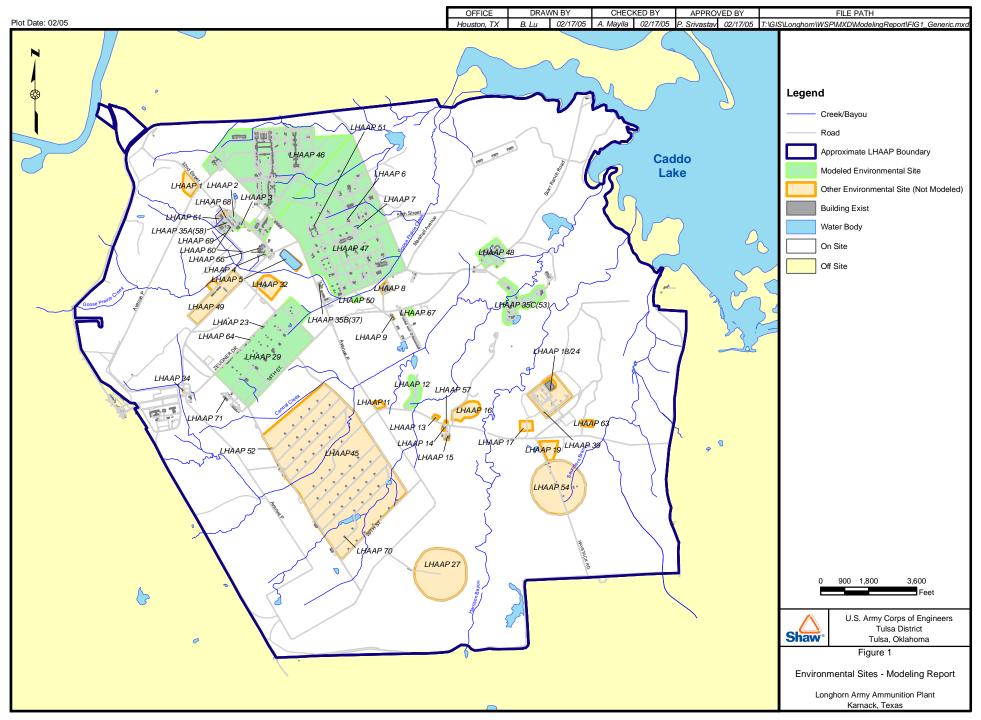
Notes and Abbreviations:

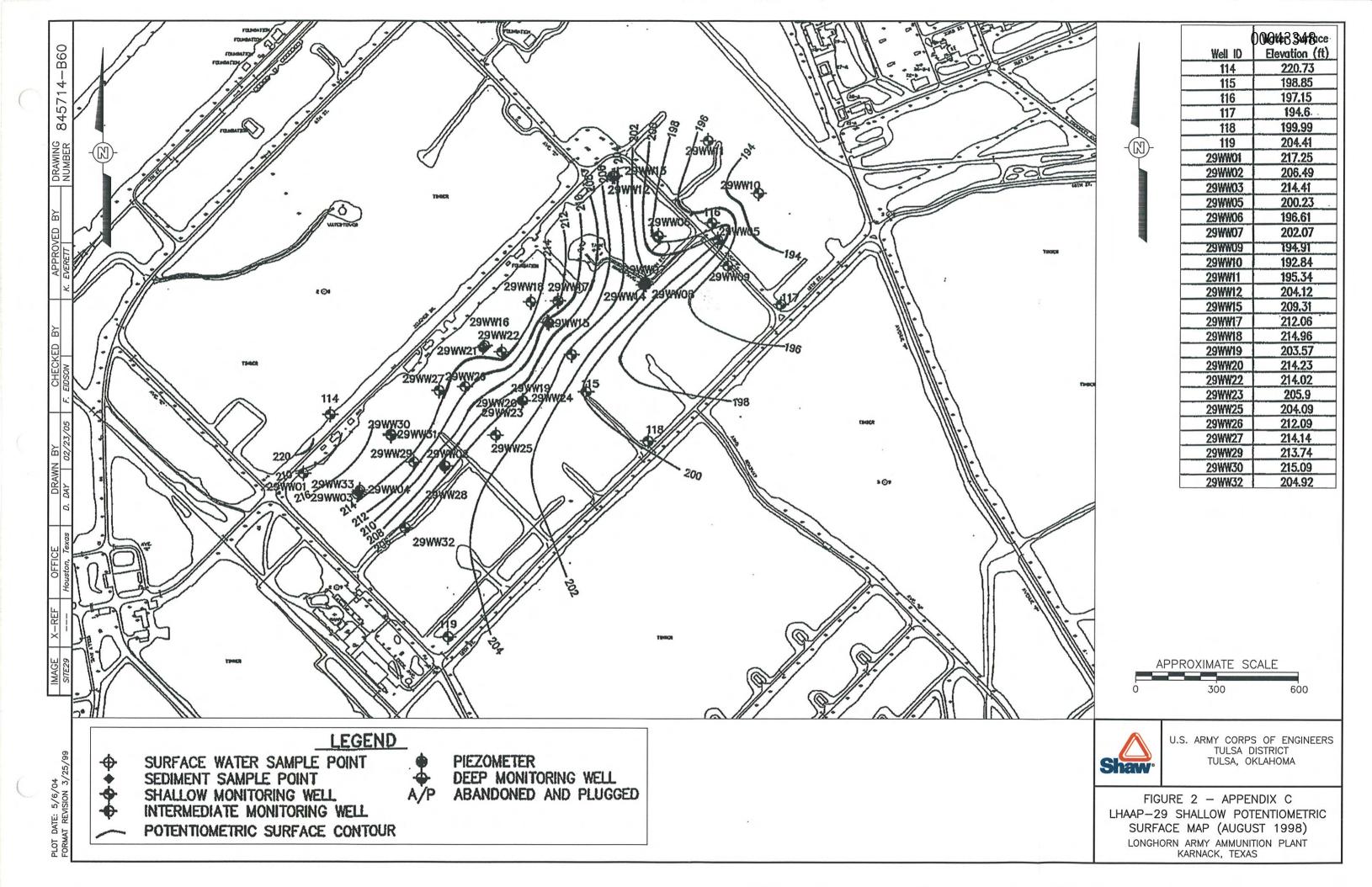
All the sources are instantaneous and extend across the entire aquifer thickness of 10 feet.

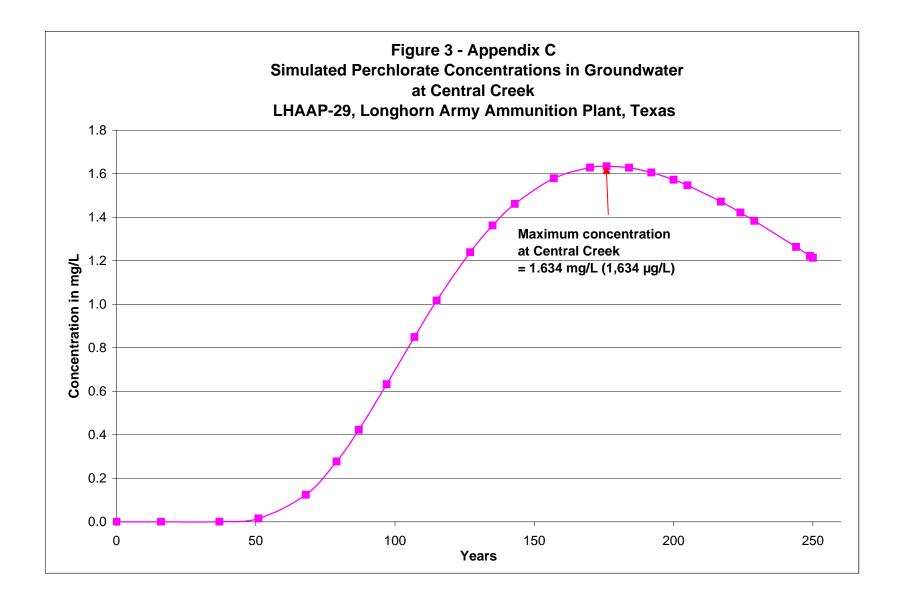
* Instantaneous source release in kg = maximum source concentration x plume pore volume

(1) Texas interim action level

DF dilution/attenuation factor


MSC medium specific concentration


Table 3Calculation of Flow Discharge in Central Creek(Data Collected from December 1, 1999 to March 15, 2000)


Month-Year	Day of Month	Measure	d Depth (ft)	Measured	Velocity (ft/s)	Cross Sectional Area (ft ²)		ross Sectional Area (ft ²) Calculated Discharge (cfs)		Average Discharge	
	_	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)	
Dec-99	3 - 9	0.09341	1.11074	0.11183	1.29100	6.10	6.31	0.6822	8.1462	4.4142	
	10 - 16	0.07876	1.48660	0.14567	0.25542	4.40	7.30	0.6409	1.8646	1.253	
	17 - 23	0.03000	1.46344	0.11000	0.73705	2.00	7.25	0.2200	5.3436	2.782	
	24 - 30	0.03000	1.32520	0.11000	0.23729	2.00	7.00	0.2200	1.6610	0.941	
Jan-00	1 - 7	0.03000	1.06090	0.11000	0.29642	3.90	11.90	0.4290	3.5274	1.978	
	8 - 14	0.07554	1.62076	0.13253	0.19877	2.50	10.80	0.3313	2.1467	1.239	
	15 - 21	0.03000	1.48365	0.07000	0.15027	2.50	7.20	0.1750	1.0819	0.628	
	22 - 28	0.04400	1.36087	0.08400	3.31644	8.50	11.00	0.7140	36.4808	18.597	
Feb-00	1 - 7	0.05970	1.63820	0.05752	0.54047	2.00	6.12	0.1150	3.3077	1.711	
	8 - 14	0.03500	1.51571	0.03000	0.25153	4.20	11.70	0.1260	2.9429	1.534	
	15 - 21	0.03500	1.44892	0.03000	1.64454	2.00	7.26	0.0600	11.9394	6.000	
	22 - 28	0.04400	1.55024	0.08400	0.25240	2.80	7.15	0.2352	1.8047	1.020	
Mar-00	1 - 7	0.06586	2.07625	0.05766	3.62250	4.10	17.90	0.2364	64.8428	32.540	
	8 - 14	0.19663	2.40898	0.28986	2.59353	12.00	25.30	3.4783	65.6163	34.547	

Notes:

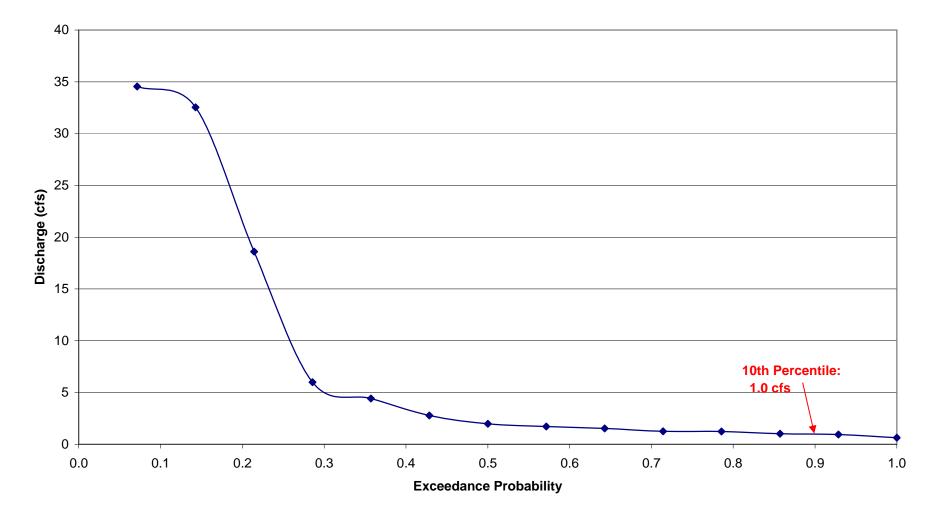

Measured depths and measured velocities are averaged values over every seven days. Cross sectional areas are based on the measured depths and cross sections in Attachment D. Average flow discharges are the average values of upstream and downstream discharges.

Figure 4 - Appendix C 7Q2 Low Flow Analysis Probability vs Flow Discharge for Central Creek Based on December 1999 to March 2000 Flow Derivation

Appendix D

LHAAP-35A(58) Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Goose Prairie Creek from Groundwater

Table of Contents_____

1.0	Introd	uction		1-1
2.0	Comp	outer Co	de and Methodology	
			lwater Modeling	
		2.1.1	Input Parameters	
		2.1.2	Modeling Results and Dilution Factors	
		2.1.3	Dilution in Goose Prairie Creek	
3.0	Sumn	nary and	I Conclusions	3-1

List of Tables _____

Table 1	Maximum Concentrations and Chemical Properties for COCs at LHAAP-35A(58)
Table 2	Summary of 1,1-DCE, TCE, PCE, RDX and Perchlorate Concentrations at Goose
	Prairie Creek
Table 3	Calculation of Flow Discharge in Goose Prairie Creek

List of Figures _____

Figure 1	Environmental Sites – Modeling Report
Figure 2	LHAAP-04 and LHAAP-35A(58) Site Map
Figure 3A	Shallow Groundwater Elevation Contour Map (December 1998 Data)
Figure 3B	Shallow Groundwater Elevation Contour Map (September 2000 Data)
Figure 4	RDX Concentrations in Groundwater at Goose Prairie Creek
Figure 5	Perchlorate Concentrations in Groundwater at Goose Prairie Creek
Figure 6	Low Flow Analysis, Probability vs Flow Discharge for Goose Prairie Creek, based
-	on December 1999 to March 2000 Flow Derivation

1.0 Introduction

LHAAP-35A(58) is located in the northwestern portion of Longhorn Army Ammunition Plant with LHAAP-61 to the north, LHAAP-4 to the southeast, LHAAP-49 to the southwest, and LHAAP-51 to east (**Figure 1**). This site is referred to as the Maintenance Complex.

The chemicals of concern (COC) in the groundwater at LHAAP-35A(58) are 1,1-dichloroethene (1,1-DCE), 1,1,2-trichloroethane (1,1,2-TCA), trichloroethene (TCE), tetrachloroethene (PCE), vinyl chloride (VC), bis(2-ethylhexyl)phthalate, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and perchlorate which were detected at elevated concentrations above their respective MCLs, medium-specific concentration (MSC) or interim action level (IAL) for perchlorate, as listed in **Table 1**. This is based on data presented in the remedial investigation reports (Jacobs, 2002a and 2001b).

The purpose of the following modeling was to calculate the maximum concentrations and the dilution factors of these COCs in the groundwater at the point of entry (POE) into the nearest surface water body, Goose Prairie Creek, and thereby derive the concentrations protective of surface water. Among these COCs, 1,1,2-TCA, VC, and bis(2-ethylhexyl)phthalate were not modeled for their transport in groundwater because of either their low concentrations (8 μ g/L, 10 μ g/L, and 88.3 μ g/L), high adsorption (70.8 cm³/g, 11.0 cm³/g, and 87,016 cm³/g), or short half-life (2 years, 2 to 8 years, and 1.1 year). These COCs are not expected to reach Goose Prairie Creek which is 6,000 to 8,000 feet away).

Goose Prairie Creek is located approximately 120 feet to the west of LHAAP-35A(58) (**Figure 2**). Goose Prairie Creek flows from west to east, southeast and northeast to Caddo Lake. Because groundwater flows in the same direction as surface water in general (**Figures 3A** and **3B**), contaminant particles in the groundwater at LHAAP-35A(58) will not travel to the southwest or west but to the east until they reach Goose Prairie Creek approximately 6,319 feet (straight line) to 8,000 feet downgradient of the site.

The purpose of this calculation was to estimate COCs transport from groundwater to surface water (Goose Prairie Creek). The maximum concentrations in surface water as well as the dilution factors (DFs) of COCs at the POE and after discharge into the surface water were calculated and then the Medium Specific Concentrations (MSCs) were developed.

2.0 Computer Code and Methodology

The objectives of this modeling effort were achieved by applying the computer code AT123D.

2.1 Groundwater Modeling

As mentioned previously, the transport of 1,1-DCE, TCE, PCE, RDX and perchlorate in groundwater was modeled for LHAAP-35A(58).

2.1.1 Input Parameters

The input data for the groundwater model are described as follows:

- Contaminant source. Conservatively, the maximum concentrations of COCs to be modeled were assumed to cover the entire plume area of 600 feet (east-west) by 500 feet (north-south) (Table 2). The maximum concentration of PCE was detected in monitoring well LHS-MW-05 at a concentration of 5,400 µg/L on 5/13/1998 (Jacobs, 2002a). However, the diluted field duplicate was analyzed at 49,010 µg/L (Table 5-7 in Jacobs 2002a and Appendix C in Jacobs 2002b). It was not certain how this high value was derived. In the current modeling, this high value was used as a very conservative approach. Based on the geologic cross sections at LHAAP-35A(58) (Jacobs, 2002a), the thickness of the shallow water bearing zone is 2 to 5 feet. It was assumed that the contaminant source in this shallow zone extended to the entire depth of 5 feet.
- **Distance to Goose Prairie Creek.** The shortest distance from LHAAP-35A(58) to Goose Prairie Creek is only 120 feet to the west and southwest. However, groundwater flows to the southeast and east (**Figures 3A** and **3B**) and the distance to Goose Prairie Creek was conservatively considered as the straight line distance of approximately 6319 feet (**Figure 3A**).
- Aquifer and Chemical Properties. The following properties and parameters were the inputs to AT123D model:
 - Hydraulic conductivity (K). The average hydraulic conductivity, based on the slug tests at LHAAP-35A(58) (Table 5-1, Jacobs, 2002a) was estimated to be 6.36x10⁻⁴ cm/sec.
 - Hydraulic gradient. 0.0072 feet/feet (based on potentiometric surface map in Figure 2-1, Jacobs, 2002a);
 - Effective porosity: assumed 0.25

 α_x = longitudinal groundwater dispersivity (feet) = x • 0.1 (ASTM, 1995, Table x3.1) where x is the travel distance of contaminants, i.e., 6,319 feet from the source to Goose Prairie Creek.

Therefore $\alpha_x = 631.9$ feet.

 α_y = transverse groundwater dispersivity (feet) = $\alpha_x/3$ (ASTM, 1995, Table x3.1), i.e., 210.6 feet.

 α_z = vertical groundwater dispersivity (feet) = $\alpha_x/20$ (ASTM, 1995, Table x3.1), i.e., 31.6 feet.

Chemical properties for each COC including the organic carbon partition coefficient (Koc), water-soil distribution coefficient and half-life are listed in **Table 1**.

2.1.2 Modeling Results and Dilution Factors

The simulation time step was one year with a total simulation period of 100 to 700 years, long enough to capture the maximum concentrations of each contaminant occurring at the POE, where groundwater discharges into Goose Prairie Creek. Computer simulation results were evaluated at the POE as shown in **Table 2**. These results include the time when COCs reach the POE, the time they reach their peaks, the maximum concentrations at this location, the DFs and the MSC based on DF and the action level. As shown on **Table 2**, 1,1-DCE, TCE and PCE do not reach the POE, whereas RDX and perchlorate take 134 years and 58 years, respectively, to reach the POE at very low levels. RDX and perchlorate reach their peaks after 655 years and 284 years at concentrations of 12.75 μ g/L and 12.43 μ g/L, respectively (**Table 2** and **Figures 4** and **5**).

While the maximum concentration of RDX at the POE (12.75 μ g/L) is lower than its MSC of 26 μ g/L, the maximum concentration of perchlorate at 12.43 μ g/L exceeds its IAL of 4 μ g/L by 3 times. The DFs calculated for RDX and perchlorate are 6.9 and 2.97, respectively, evaluated in the groundwater at the POE (**Table 2**).

2.1.3 Dilution in Goose Prairie Creek

Because perchlorate exceeds the IAL at the POE in groundwater, further evaluation of its mixing and dilution in the Goose Prairie Creek was performed.

The DF of perchlorate after mixing with surface water in Goose Prairie Creek is calculated based on the dilution factor of the mixing calculated below:

$$DF = \frac{Q_{GW} + Q_{CC}}{Q_{GW}}$$
 Equation D1

Where:

 Q_{CC} and Q_{GW} are the flow rates in Goose Prairie Creek and in groundwater, respectively.

Equation D2

$$Q_{GW} = U_{gw} * \delta_p * Lm$$

Where:

 U_{gw} , δ_p and L_m are the approaching groundwater seepage velocity, the thickness and width of the plume approaching surface water.

 U_{gw} (= *Ki/n*) is 18.95 feet/year, calculated based on the hydraulic conductivity of 6.36 x 10⁻⁴ cm/sec, hydraulic gradient of 0.0072 and the effective porosity of 0.25.

 δ_p is 5 feet and L_m is unknown at the intersection but can be conservatively assumed as the width of the source, which is 500 feet.

Then:

$$Q_{GW} = 18.95/(365 \times 86400) \times 5 \times 500 = 1.5 \times 10^{-3} \text{ feet}^3/\text{s}.$$

Calculation of Q_{CC} has to be based on the 7Q2 stream flow analysis. 7Q2 is the low flow at the point of interest, defined as the flow discharge in seven consecutive days that occurs once every two years statistically. At Goose Prairie Creek, only two sets of stream data at the upstream and downstream cross-sections are available, from the U.S. Army Corps of Engineers. These data sets include the velocity data and the gauge readings (i.e., depths of water) obtained during the period of December 1999 to March 2000, a total of only four months. Flow discharge data were not available. Based on these data, the average flow discharges in every consecutive 7-day period are calculated and presented in **Table 3**. Note that there is no observation at the point where contaminated groundwater flow discharges into Goose Prairie Creek, average values between upstream and downstream flow are used. Because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 2.5 cubic feet per second (cfs) is derived (**Figure 6**).

Then:

 $DF = (1.5 \times 10^{-3} + 2.5)/(1.5 \times 10^{-3}) = 1667.7$

The mixing concentration for perchlorate in Goose Prairie Creek contributed by LHAAP-35A(58) is:

 $12.43/1667.7 = 0.0075 \ \mu g/L$

This concentration is below the perchlorate IAL of 4 μ g/L. The mixing concentrations and the overall MSC for perchlorate is presented in **Table 2**.

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas

3.0 Summary and Conclusions

At LHAAP-35A(58), the concentrations of COCs (except perchlorate) in the groundwater are protective of surface water. The concentrations of 1,1-DCE, TCE, PCE, RDX derived using groundwater modeling at the POE at Goose Prairie Creek are either not detected or, if detected, are less than their respective MCLs or MSCs. Although the current source concentration of perchlorate at 36.9 μ g/L in groundwater will result in a maximum concentration that is higher than the IAL of 4.0 μ g/L at the POE (after 284 years), the mixing concentration after it is discharged into the creek will be negligible. Therefore, surface water in Goose Prairie Creek will not be adversely impacted from groundwater contamination.

Field Confirmation

The source area was assumed to be 500 ft \times 600 ft and encompasses all the monitoring wells. Therefore there is no downgradient well in the lateral direction off the center line of the flow path. For this reason, no evaluation of contaminant concentration at lateral location downgradient was attempted to provide field confirmation of the model.

4.0 References

References are provided in the main document, Section 8.0.

Maximum concentrations and chemical Properties for COCS at LHAAP-35A(56)												
Chemical	Maximum Observed Concentration (µg/L)	MCL (µg/L)	Koc ⁽¹⁾ cm ³ /g	foc %	Kd cm³/g	Kd m³/kg	Half-life years ⁽²⁾	Degradation Rate (1/year)				
1,1-Dichloroethene	1340.0	7.0	61.7	0.1	0.0617	6.17E-05	0.362	1.915				
1,1,2-Trichloroethane	7.1	5.0	70.8	0.1	0.0708	7.08E-05	2	0.347				
Trichloroethene	160.0	5.0	100.0	0.1	0.1	1.00E-04	4.5	0.154				
Tetrachloroethene	5,400 ⁽⁵⁾	5.0	155.0	0.1	0.155	1.55E-04	2	0.347				
Vinyl Chloride	10.0	2.0	11.0	0.1	0.011	1.10E-05	8	0.087				
Bis(2-ethylhexyl)phthalate	88.3	6.0 ⁽⁶⁾	87096.0	0.1	87.096	8.71E-02	1.1	0.630				
RDX ⁽³⁾	88.0	26.0 ⁽⁶⁾	195.4	0.1	0.1954	1.95E-04	N/A	N/A				
Perchlorate ⁽⁴⁾	36.9	4.0 ⁽⁷⁾	N/A				N/A	N/A				

 Table 1

 Maximum Concentrations and Chemical Properties for COCs at LHAAP-35A(58)

Notes and Abbreviations:

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)"

(2) Howard et al., 1991," Environmental Degradation Rates"

(3) Koc source: Oak Ridge National Lab Website: http://risk.lsd.ornl.gov/cgi-bin/tox/TOX_9801 (RAIS); Half-life not available, assumed no degradation

(4) No data available, assumed no degradation and no water-soil partitioning

(5) Detected at LHS-MW-05 on 5/13/98. Detected at LHS-MW-05DLFD on 5/13/98 was 49010 mg/L (Jacob's Engineering Group, Inc., 2002b)

(6) msc - Texas medium specific concentration

(7) Texas interim action level

N/A not available; *

- Koc carbon-water sorption coefficient
- foc fraction organic carbon
- Kd distribution coefficient
- cm³/g cubic centimeters per gram
- m³/kg cubic meters per kilogram
- µg/L micrograms per liter

 Table 2

 Summary of 1,1-DCE, TCE, PCE, RDX and Perchlorate Concentrations at Goose Prairie Creek (6319 feet Downgradient from Source)

							Bonngraaiont nom oot			
Source Type	MCL	Source Area	Maximum	Distance to	Source	Years	Maximum Concentration at	MSC Based on DF	Mixing Concentration	Overall MSC
		(north-south x	Observed Source	Goose	Release	Contaminant	POE into Goose Prairie Creek	at POE into	after Discharge in	after Discharge
		east-west)	Concentration	Prairie	Rate*	Starts to Appear	(µg/L)	Goose Prairie Creek	Goose Prairie Creek	into
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg/hr)	(years)	(DF)	(µg/L)	(µg/L)	Goose Prairie Creek
1,1-Dichloroethene	7.0	500 x 600	1,340	6,319	0.0246	Infinity	0	Infinity	NA	NA
						-	(Infinity)	-		
Trichloroethene	5.0	500 x 600	160.0	6,319	0.0029	Infinity	0	Infinity	NA	NA
						-	(Infinity)	-		
Tetrachloroethene	5.0	500 x 600	49,010	6,319	0.9009	Infinity	0	Infinity	NA	NA
						-	(Infinity)	-		
RDX	26 ⁽¹⁾	500 x 600	88.0	6,319	0.0016	134.0	12.75 (655 years)	179.4	NA	NA
							(6.9)			
Perchlorate	4 ⁽²⁾	500 x 600	36.9	6.319	0.0007	58.0	12.43 (284 Years)	11.9	0.0075	4920
							(2.97)			

Notes and Abbreviations:

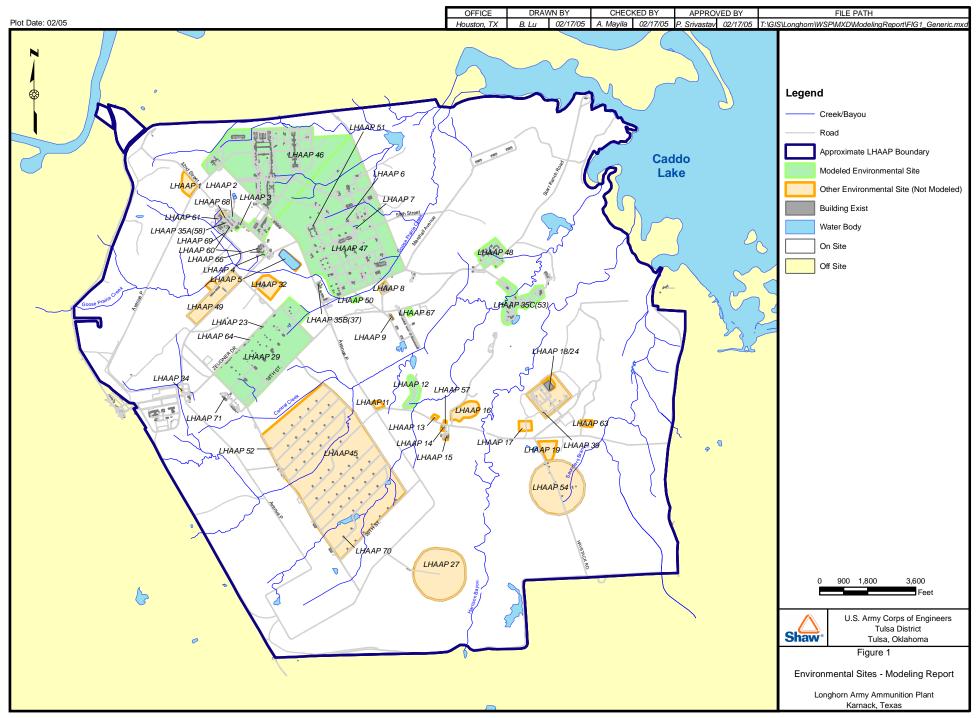
All the sources are continuous for 6 months and extend across the entire aquifer thickness of 5 feet.

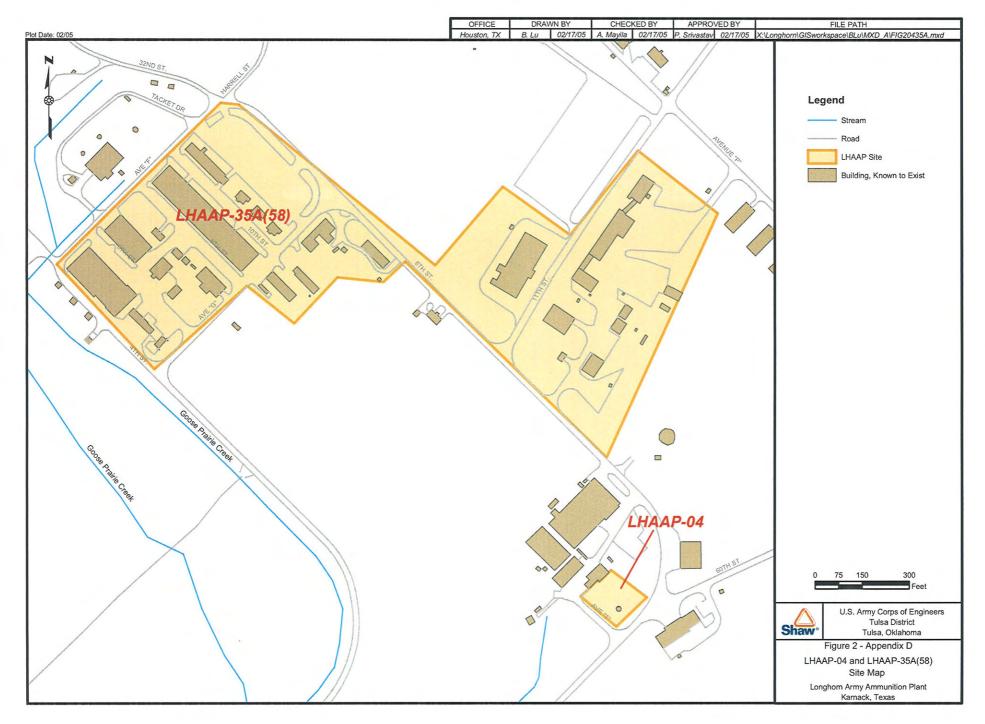
* Continuous source release rate in kg/hr = maximum source concentration x groundwater seepage velocity x source area

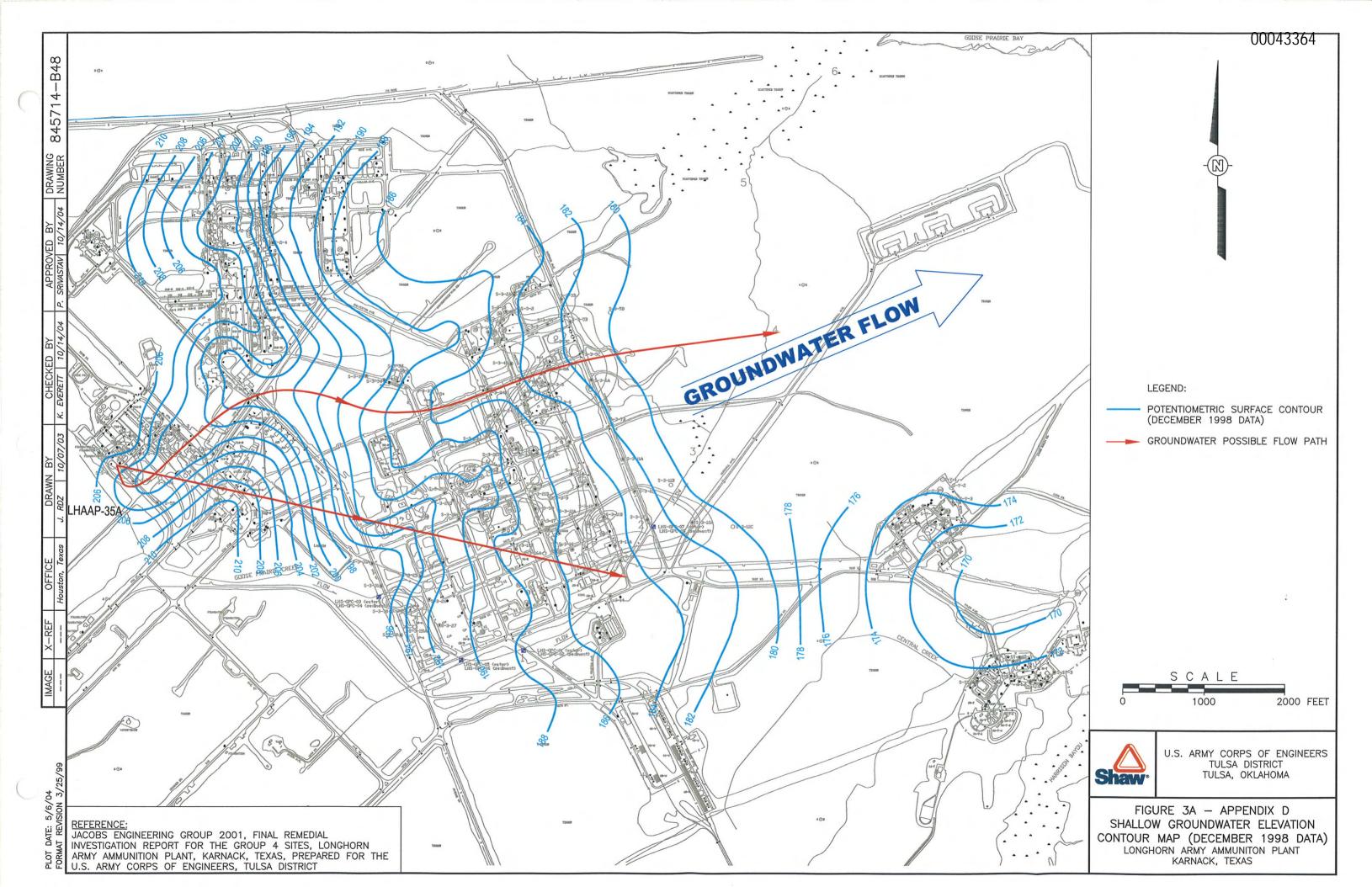
⁽¹⁾ msc - medium specific concentration of chemical calculated to represent less than 1e-06 cancer risk or hazard quotient less than 1.

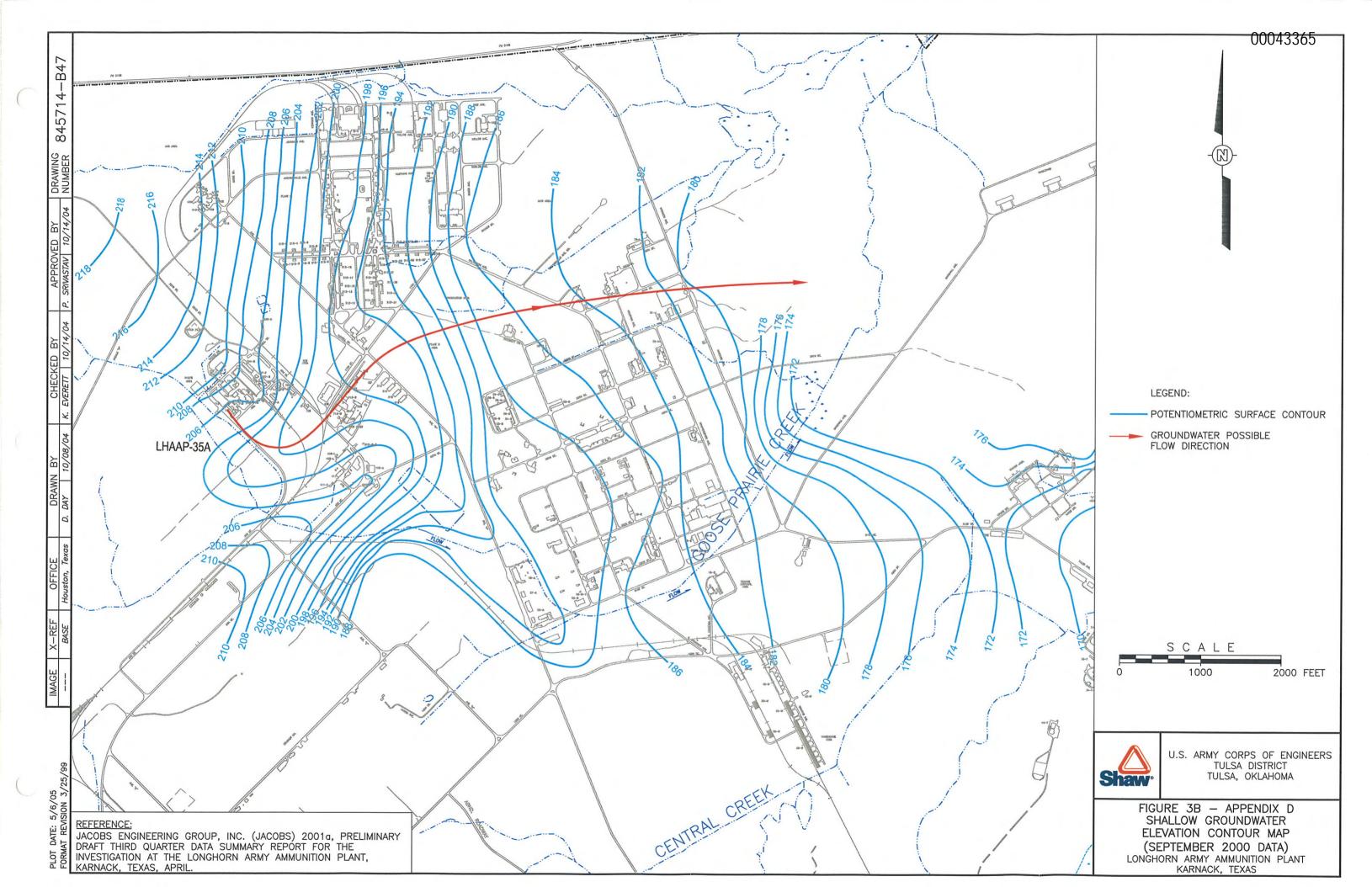
- (2) Texas interim action level
- µg/L micrograms per liter
- DF dilution/attenuation factor
- kg/hr kilograms per hour
- MCL maximum contaminant level
- MSC medium specific concentration
- NA $\hfill \hfill \hfi$
- POE point of entry

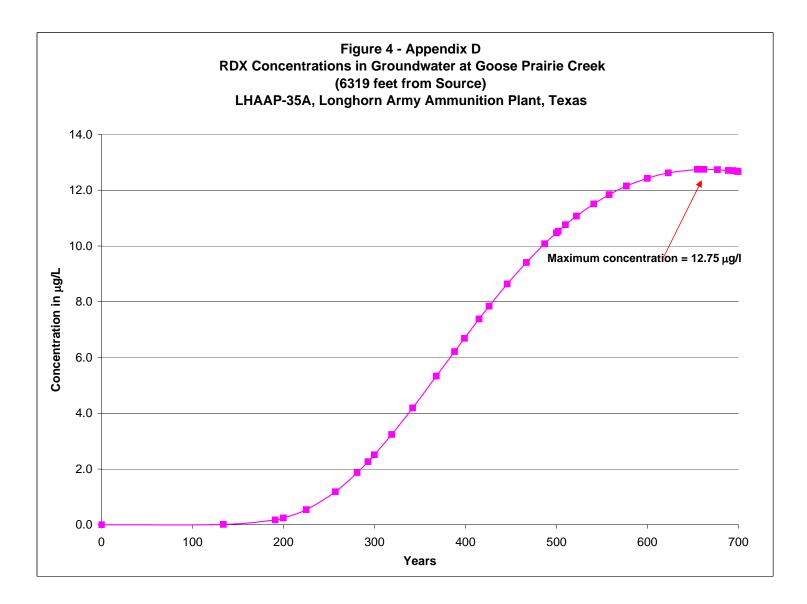
Table 3Calculation of Flow Discharge in Goose Prairie Creek(Data Collected from December 1, 1999 to March 15, 2000)

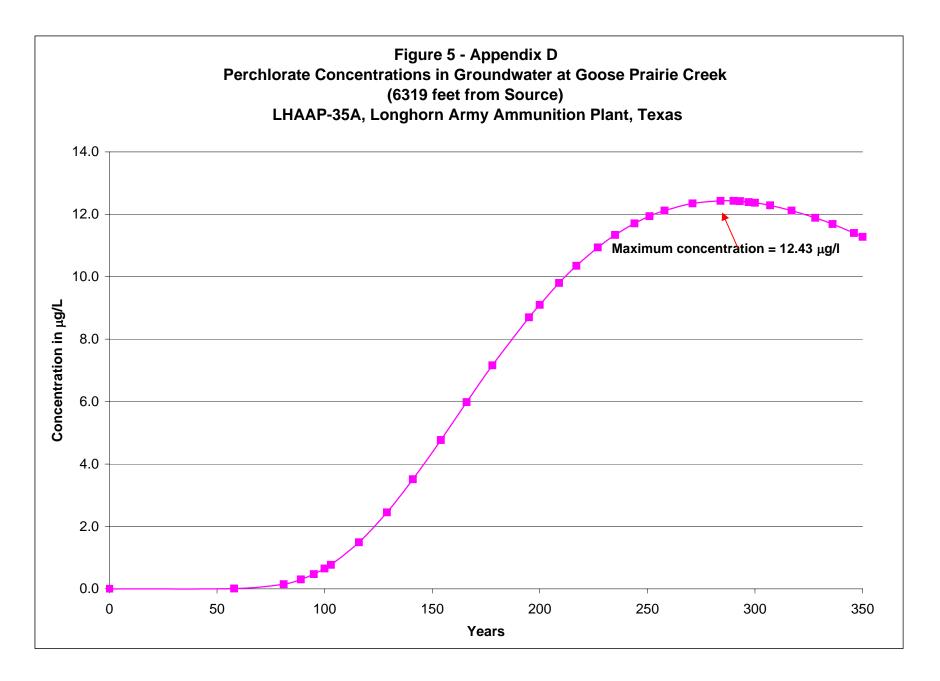

Month-Year	Day of Month	Measured	Depth (feet)	Measured V	elocity (feet/second)	Cross Section	al Area (feet ²)	Calculated Dis	charge (cfs)	Average Discharge
		Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)
Dec-99	3 - 9	0.10830	0.22081	1.44906	4.88410	2.80	4.20	4.0574	20.5132	12.2853
	10 - 16	0.11651	0.30483	0.48774	2.94988	3.21	6.87	1.5656	20.2657	10.916
	17 - 23	0.06315	0.37523	0.45438	2.12994	2.10	8.56	0.9542	18.2323	9.593
	24 - 30	0.06315	0.36534	0.45438	14.99560	2.10	7.88	0.9542	118.1653	59.560
Jan-00	1 - 7	0.02700	0.36224	0.21000	7.10767	1.05	7.98	0.2205	56.7192	28.470
	8 - 14	0.12681	0.44958	0.24389	11.82963	3.45	18.63	0.8414	220.3860	110.614
	15 - 21	0.03749	0.36559	0.03032	11.51831	1.41	8.35	0.0428	96.1779	48.110
	22 - 28	0.06279	0.42399	0.80813	14.08148	2.08	17.56	1.6809	247.2708	124.476
Feb-00	1 - 7	0.09417	0.42572	0.12182	9.59478	2.65	20.51	0.3228	196.7889	98.556
	8 - 14	0.05132	0.37422	0.04973	6.47123	1.75	8.01	0.0870	51.8346	25.961
	15 - 21	0.03763	0.37675	0.04530	0.53829	1.48	9.24	0.0670	4.9738	2.520
	22 - 28	0.14625	0.48311	0.35183	1.14280	4.45	20.51	1.5656	23.4388	12.502
Mar-00	1 - 7	0.10288	0.37274	0.16989	0.50621	2.79	7.95	0.4740	4.0244	2.249
	8 - 14	0.20995	0.58798	0.48053	1.13559	6.10	21.55	2.9312	24.4720	13.702


Notes and Abbreviations:


Measured depths and measured velocities are averaged values over every seven days.


Average flow discharges are the average values of upstream and downstream discharges.


cfs cubic feet per second



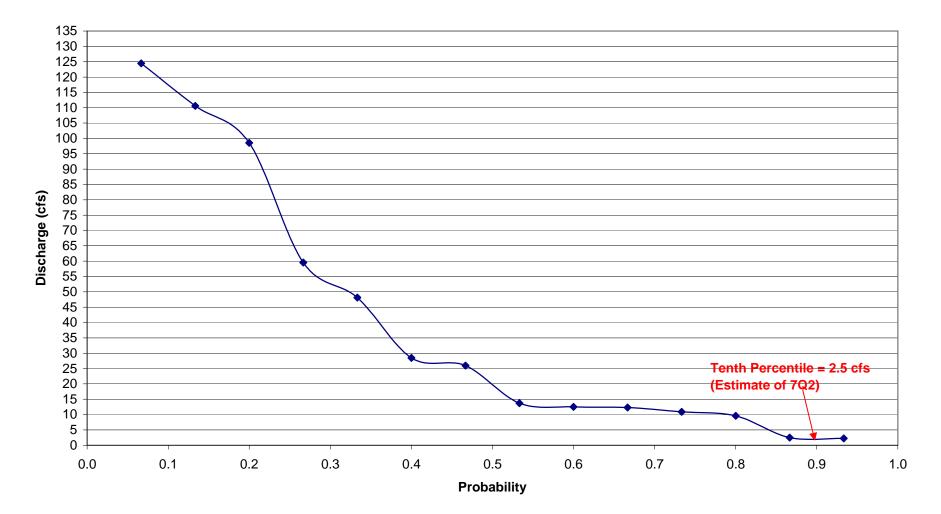


Figure 6 - Appendix D Low Flow Analysis Probability vs Flow Discharge for Goose Prairie Creek Based on December 1999 to March 2000 Flow Derivation

00043369

Appendix E

LHAAP-35B(37) Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Goose Prairie Creek

Table of Contents

1.0	Introduction	1-1
2.0	Input Parameters and Assumptions	2-1
3.0	Simulation and Results	3-1
4.0	References	4-1

List of Tables _____

Table 1	Chemical Properties for LHAAP-35B(37) Groundwater Fate and Transport Modeling
Table 2	Summary of 1,1-DCE, TCE and PCE Concentrations at Goose Prairie Creek (125 feet
	Downgradient from Source)

List of Figures _____

- Figure 1 Environmental Sites – Modeling Report
- Figure 2 Simulated TCE Concentrations in Groundwater at Goose Prairie Creek

1.0 Introduction

LHAAP-35B(37) is located on the north central portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-35B(37) was a chemical laboratory that used to support the production activities at the facility. The chemicals of concern in groundwater are 1,1-dichloroethene (DCE), trichloroethene (TCE), and tetrachloroethene (PCE) at maximum concentrations of 58, 330, and 34 μ g/L, respectively. The chemical of concern (COCs) are at concentrations that are higher than their respective maximum contaminant levels (MCLs).

The purpose of the modeling was to calculate the maximum concentrations and dilution factors for each COC at the point of entry (POE) of the groundwater into the surface water, and to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factors with the MCLs. The closest surface water body is Goose Prairie Creek. During recent data gaps investigation activities, groundwater elevations at LHAAP-35B(37) varied from 181.88 to 189.98 feet msl. Goose Prairie Creek survey data indicated that the toe of the creek is at elevations of 187.21 and 187.50 feet for location GPS. Generally, groundwater elevation underlying the site is at an elevation that is lower than Goose Prairie Creek (except for one monitoring well data) and, therefore, will not discharge into the creek. However, for conservative calculation purposes and assuming the worst-case scenario, it was assumed that groundwater discharges to Goose Prairie Creek. A table presenting groundwater and Goose Prairie Creek surface water elevations is included in Appendix M. Because of the relatively small area of LHAAP-35B(37), a potentiometric surface map was not prepared; instead, the LHAAP site-wide potentiometric map generated from the December 1998 water level measurements was utilized, which indicated that groundwater flow at the site is to the eastnortheast direction (Figure 3A of Appendix A, Jacobs, 2001b). The distance from LHAAP-35B(37) to Goose Prairie Creek is approximately 125 feet (Figure 1).

In order to calculate the maximum concentrations of the COCs and the time of travel at the POE at Goose Prairie Creek, the computer code AT123D was used.

2.0 Input Parameters and Assumptions

Groundwater modeling at LHAAP-35B(37) was based on the following assumptions and considerations:

- Contaminant Source: Instantaneous source extending across the entire aquifer thickness of 13.5 feet was assumed. The only source is the current plume itself. Source contaminants consist of 1,1-DCE, TCE, and PCE with maximum concentrations of 58, 330, and 34 μ g/L, respectively.
- The source area was assumed to be the plume area. The dimensions of the plume were assumed to be 350 feet (east-west) by 200 feet (north-south) by 13.5 feet in depth for all the contaminants.
- Because no geological cross section was available for this site, the geologic cross sections for LHAAP-47, an adjacent site, were used (Figures 9-3 through 9-6—Jacobs, 2002a). Based on the cross sections, the thickness of the shallow water-bearing zone consisting of sand is 13.5 feet. It was assumed that the contaminant source in this shallow zone extended to the entire depth of 13.5 feet.
- The properties of the shallow water bearing zone used in the model were as follows:
 - Average hydraulic conductivity (*K*) based on the slug test at LHAAP-35B(37) was estimated to be 6.13×10^{-4} cm/sec (Jacobs, 2002a)
 - Hydraulic gradient: 0.007 feet/feet (based on the potentiometric surface map for water level measurements from December 1998) (Figure 3A –Appendix A; Jacobs, 2002a)
 - Effective porosity assumed at 0.25
 - Longitudinal groundwater dispersivity = $x \times 0.1$ (ASTM, E-1739-95, Table x3.1, 1995) = 12.5 ft, where x is the travel distance of contaminants, assumed to be the distance from the source to the Goose Prairie Creek = 125 feet
 - Transverse groundwater dispersivity = α_x / β (ASTM, E-1739-95, Table x3.1, 1995) = 4.17 ft
 - Vertical groundwater dispersivity = $\alpha_x/20$ (ASTM, E-1739-95, Table x3.1, 1995) = 0.625 ft

Chemical properties of each chemical including the carbon partition coefficient, water-soil distribution coefficient, and half-life are listed in **Table 1**.

3.0 Simulation and Results

Computer simulation results were evaluated at the POE as shown in **Table 2**. The results include the time when COCs reach the POE, the time they reach their peaks, the maximum concentrations at this location, the dilution factors and the MSC based on DF, and the action level.

Simulation shows that PCE and 1,1-DCE will not appear at detectable levels at the POE. The maximum concentration of TCE (3.63 μ g/L) (**Figure 2**) at the POE is below the MCL (5 μ g/L). **Table 2** lists the results of the three chemicals modeled.

Field Confirmation

In the simulation of contaminant transport, the plume area was assumed to be 350 feet \times 200 feet. This area covers all the monitoring wells at the LHAAP-35B (37) site. There is no downgradient well in the lateral direction off the center line of the flow path. For this reason, no evaluation of contaminant concentration at a lateral location downgradient was attempted to provide field confirmation of the model.

4.0 References

References are provided in the main document, Section 8.0.

Table 1

Chemical Properties for LHAAP-35B(37) Groundwater Fate and Transport Modeling

Chemical	Koc ⁽¹⁾ cm³/g	foc %	Kd cm³/g	Kd m³/kg	Half-life years ⁽²⁾	Degradation Rate (1/year)
1,1-Dichloroethene	61.7	0.1	0.0617	6.17E-05	0.362	1.917
Trichloroethene	100	0.1	0.1	1.00E-04	4.5	0.154
Tetrachloroethene	155	0.1	0.155	1.55E-04	2	0.347

Notes:

Sources: (1) Montgomery, 2000, Groundwater Chemicals - Desk Reference (Third Edition)

(2) Howard, et al., 1991, Environmental Degradation Rates

Koc carbon-water sorption coefficient

foc fraction organic carbon

Kd distribution coefficient

cm³/g cubic centimeters per gram

m³/kg cubic meters per kilogram

Table 2 Summary of 1,1-DCE, TCE and PCE Concentrations at Goose Prairie Creek (125 feet Downgradient from Source) LHAAP-35B(37), Longhorn Army Ammunition Plant

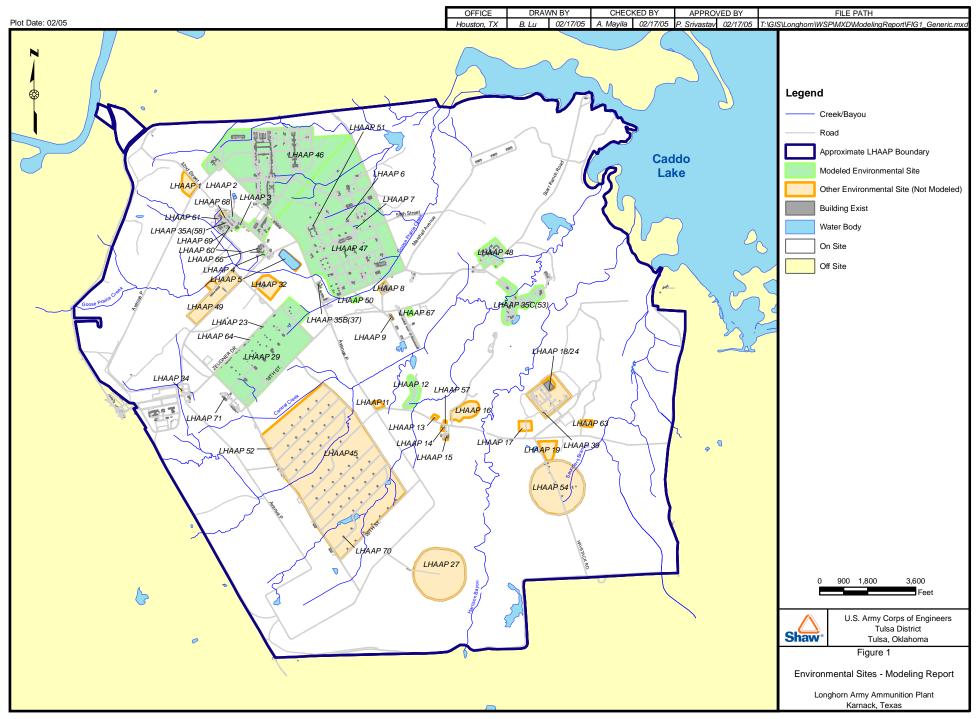
Source Type	MCL	Source Area (north-south x east-west)	Maximum Observed Source Concentration	Distance to Goose Prairie Creek	Source Release Rate*	Years Contaminant Starts to Appear	Maximum Concentration in Groundwater at Goose Prairie Creek (µg/L)	MSC Based on DF at Groundwater & Goose Prairie Creek
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)
1,1-Dichloroethene	7.0	200 x 350	58	125	0.544	Never	0 (Infinity)	Infinity
Trichloroethene	5.0	200 x 350	330.0	125	3.100	2.79	3.63 (11.59 yrs) (90.9)	454.5
Tetrachloroethene	5.0	200 x 350	34	125	0.319	5.17	0.02 (6.82 yrs) (1700)	8500

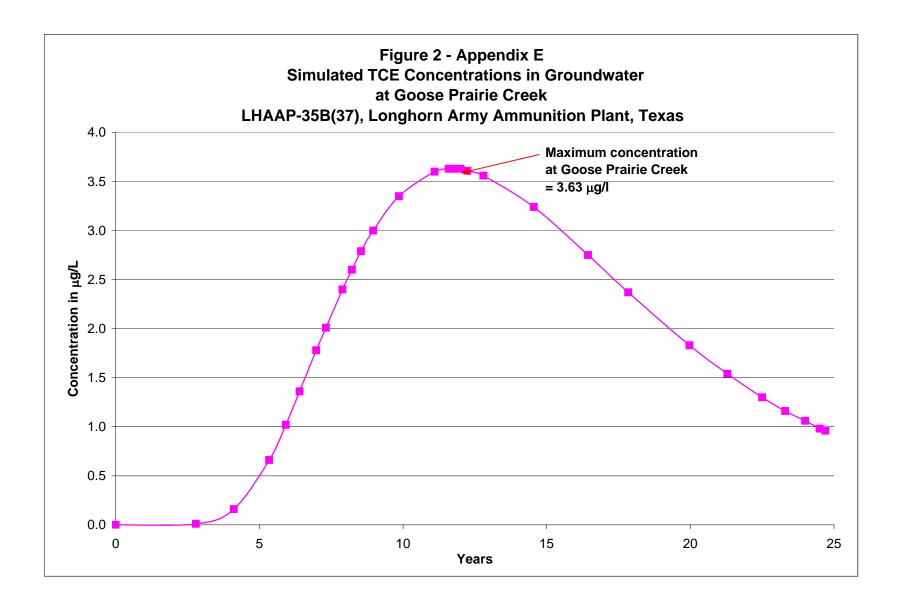
Notes and Abbreviations:

All the sources are constant for 6 months and extend across the entire aquifer thickness of 13.5 feet

* Instantaneous source release in kg = maximum source concentration x plume pore volume

DF dilution/attenuation factor


kg kilograms


MCL maximum contaminant level

mg/L milligrams per Liter

MSC medium specific concentration

POE point of entry

00043379

Appendix F

LHAAP-35C(53) Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Central Creek or Harrison Bayou

Table of Contents_____

1.0	Introduction	1-1
2.0	Input Parameters and Assumptions	2-1
	2.1 Groundwater Modeling Results	2-2
3.0	Soil Concentration Protective of Sediment and Surface Water	
	3.1 Perchlorate Concentration in Erodable Soil Protective of Sediment	
	3.1.1 Soil Loss Calculation	3-1
	3.1.2 Calculate ^{Sed} Soil MSC	
	3.2 Perchlorate Concentration in Erodable Soil Protective of Surface Water	3-4
4.0	Results	4-1
5.0	References	5-1

List of Tables _____

Table 1	Chemical Properties for LHAAP-35C(53) Groundwater Fate and Transport Modeling
Table 2	Summary of TCE Concentrations at Harrison Bayou and Central Creek, LHAAP- 35C(53)
Table 3	Calculation of Flow Discharge in the Central Creek (Downstream)
Table 4	Rainfall/Runoff Erosivity (R Factor), Shreveport, Louisiana
Table 5	RUSLE Calculation Result for LHAAP-35C(53), Affected Area
Table 6	RUSLE Calculation Result for LHAAP-35C(53), Total Area
Table 7	Calculation of Flow Discharge in the Harrison Bayou (Downstream)

List of Figures _____

Figure 1	Environmental Sites – Modeling Report
----------	---------------------------------------

- Figure 2 Low Flow Analysis, Probability vs Flow Discharge for Central Creek (Downstream) Based on December 1999 to March 2000 Flow Derivation
- Figure 3 Low Flow Analysis Probability vs Flow Discharge for Harrison Bayou (Downstream)

1.0 Introduction

LHAAP-35C(53) is located in the east-central portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-35C(53) was a static test area. The chemicals of concern are trichloroethene (TCE) in groundwater at a maximum concentration of 7 μ g/L and perchlorate in soil at a maximum concentration of 60.9 μ g/kg (Jacobs, 2000a). TCE is at a concentration that is higher than its maximum contaminant levels (MCLs) and perchlorate in soil may impact other media in time.

There are two streams in the vicinity of LHAAP-35C(53): Central Creek to the northwest and Harrison Bayou to the southeast. Contaminants in groundwater are likely to travel to Harrison Bayou rather than to Central Creek due to the southerly groundwater flow from LHAAP-35C(53) based on the September 2000 potentiometric surface map (Figure 3B in Appendix A; Jacobs, 2002a). The distance from LHAAP-35C(53) to Central Creek and Harrison Bayou is approximately 300 and 658 feet, respectively (**Figure 1**).

The purpose of the modeling is to calculate the maximum concentrations and dilution factors for TCE at the point of entry (POE) into Central Creek and Harrison Bayou, and, if necessary, after discharge into the surface water. The purpose is also to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factors with the MCL. Calculations were also performed to develop surface perchlorate soil concentrations protective of sediment and surface water due to the erosion of soil by storm-generated runoff to the nearby surface water body. Because of the low levels of perchlorate in soil at a maximum concentration of 60.9 μ g/kg, transport through the vadose zone to groundwater and from groundwater to surface water was not modeled. It is anticipated that perchlorate in the soil will not affect groundwater and surface water adversely. This is supported by the results obtained at a similar site, LHAAP-04. At LHAAP-04, the maximum perchlorate concentration in top soil was 163,000 μ g/kg. Modeling results at LHAAP-04 indicated that even at this elevated perchlorate level, surface water was not adversely affected and the resultant concentration in surface water was below the interim action limit of 4 μ g/L. However, evaluation of perchlorate soil concentrations protective of sediment and surface water via erosion and transport were performed.

In order to calculate the maximum concentrations of the TCE and the time of travel at the POE at Central Creek and Harrison Bayou, the computer code AT123D was used.

2.0 Input Parameters and Assumptions

Groundwater modeling at LHAAP-35C(53) was based on the following assumptions and considerations:

- Contaminant Source: No continuous source in the upper layer, only instantaneous source was assumed. The only source is the current plume itself with a maximum concentration of $7 \mu g/L$.
- The source area was assumed to be the plume area. The dimension of the plume was assumed to be 100 feet (east-west) by 100 feet (north-south) for TCE estimated from the sampling locations where TCE was detected (Jacobs, 2000a)..
- Because cross sections were not available for LHAAP-35C(53), the average well screen length that covers sand, silty clay and silty sand was used. It was assumed that the contaminant source in this shallow zone extended to the entire depth of 11 feet.
- The properties of the shallow water bearing zone used in the model were as follows:
 - Average hydraulic conductivity (*K*) based on the slug tests at LHAAP-35C(53) was estimated to be 6.9×10^{-4} cm/sec (Jacobs, 2002a)
 - Hydraulic gradient: 0.007 feet/feet (based on the potentiometric surface map for water level measurements in September 2000, Jacobs, 2002a)
 - Effective porosity assumed at 0.25
 - Longitudinal groundwater dispersivity: = $x \times 0.1$ (ASTM, E-1739-95, Table x3.1, 1995) where x is the travel distance of contaminants, assumed to be the distance from the source to the Central Creek = 30 feet; to Harrison Bayou = 65.8 feet.
 - Transverse groundwater dispersivity: = α_x / β (ASTM, E-1739-95, Table x3.1, 1995) = 10 feet (Central Creek); = 21.9 feet (Harrison Bayou).
 - Vertical groundwater dispersivity: = $\alpha_x / 20$ (ASTM, E-1739-95, Table x3.1, 1995) = 1.5 feet (Central Creek); = 3.29 feet (Harrison Bayou).

Chemical property of each chemical including the carbon partition coefficient, water-soil distribution coefficient, and half-life are listed in **Table 1**. Other input parameters and simulation results are shown in **Table 2**. Simulation results show that TCE will not reach Harrison Bayou and will reach Central Creek at a very low concentration of 0.14 μ g/L in groundwater. Because of the low levels of perchlorate in soil at a maximum concentration of 60.9 μ g/kg, transport through the vadose zone to groundwater and from groundwater to surface water was not modeled. It is anticipated that perchlorate in the soil will not impact groundwater and surface water adversely. This is supported by the results obtained at a similar site, LHAAP-04. At LHAAP-04, the maximum perchlorate concentration in top soil was 163,000 μ g/kg.

2.1 Groundwater Modeling Results

Modeling results at LHAAP-04 indicated that even at this elevated perchlorate level, surface water was not adversely impacted and resultant concentration in the surface water was below the interim action limit of 4 μ g/L. However, evaluation of perchlorate soil concentrations protective of sediment and surface water via erosion and transport had to be performed.

Field Confirmation

The source plume of TCE at this site was assumed conservatively to cover an area of 100 ft x 100 ft. TCE's maximum concentration of only 7 μ g/L was detected at well LHSMW67. No downgradient wells are in the downgradient direction towards Central Creek or Harrison Bayou. For this reason, no evaluation of contaminant concentration at a lateral location downgradient was attempted to provide field confirmation of the model.

3.0 Soil Concentration Protective of Sediment and Surface Water

Perchlorate in the subsurface soil, together with the contaminated soil particles will be transported by storm-generated runoff to nearby surface water bodies – in this case Central Creek or Harrison Bayou. Since the distance from the source to Harrison Bayou is longer than to Central Creek by approximately 360 feet more, the shortest distance was conservatively assumed to be the distance for the eroded contaminated soil to travel to the nearest stream, Central Creek, which is 300 feet from the source area.

The approach to develop surface soil concentrations protective of sediment and surface water is described in the main volume of this report and in the following sections.

3.1 Perchlorate Concentration in Erodable Soil Protective of Sediment

A screening calculation was performed to evaluate whether storm water from an affected property has the potential to pose a risk to human or ecological receptors in the Central Creek. First, soil loss from the effected property was evaluated by the revised universal soil loss equation (RUSLE) before soil concentration protective of sediment could be calculated.

3.1.1 Soil Loss Calculation

The RUSLE is in the form:

$$A = R \times K \times L \times S \times C \times P$$
 Equation F1

Where :

A = Estimated average annual soil loss (ton/ac-yr) R = Rainfall-runoff erosivity factor (feet-ton-in/ac-hr-yr) K = Soil erodibility (ton/ac per unit of R) L = Slope length factor (unitless) S = Slope steepness factor (unitless) C = Cover management factor (unitless)P = Support practice factor (unitless)

The input parameters are all depend on the location of the site being evaluated. The location factor actually implicitly describes rainfall, land use, surface coverage, soil type and other factors in that location. Since LHAAP is close to Shreveport, Louisiana, some of the parameters established for Shreveport were used for LHAAP as described below.

• **Rainfall-runoff erosivity factor** (*R*). When the factors other than rainfall are held constant, soil losses from cultivated land are directly proportional to a rainstorm parameter: total storm energy (*E*) multiplied by the maximum 30-minute intensity (*I*).

R was obtained using RUSLE software. The topographic slope in the affected area as well as the slope from LHAAP-35C(53) to Central Creek (total area) was estimated to be 0.4 percent. The overall *R* value of 400 was thus given in the template provided by the RUSLE program. **Table 4** shows the annual precipitation of 43.8 inches with monthly distributions of rainfall and temperature for the city of Shreveport. Hourly *EI* distribution is also presented. The *R* factor was estimated and also presented in this template.

- Soil erodibility (*K*). The *K* factor is the ease with which soil is detached by splash during rainfall or by surface flow or by a combination of both. It is a function of the composition of soil type, percentage of organic matter, soil structure and grain size, and soil permeability. In this current evaluation, it was assumed that the topsoil consists of 29 percent silt and very fine sand, 70 percent clay, 1 percent organic matter, medium to coarse granular (less than 5 mm), and low permeability. The result of *K* factor, using these soil properties in a nomograph, is 0.14 and 0.19, respectively for the affected are and the total area as shown in **Tables 5** and **6**, which is the soil loss and sediment yield computation worksheet.
- **Topographic factor, including** *L* and *S* (*LS*). The value of *LS* increases as hill slope length and steepness increase. In this calculation, only one single segment of slope was assumed. Soil texture and land use were assumed as silty clay and "disturbed topsoil, rock cover." "Rock cover" was assumed to represent pavement and construction with impervious cover. The calculated *LS* values are 0.08 for both the affected area and the total area, respectively, as shown in **Tables 5** and **6**.
- Cover management factor (*C*). The *C* factor is the ratio of soil loss with specific cropping and management practices to the corresponding loss with up-slope and down-slope tillage and continuously fallow conditions. The calculated values of *C* are 0.12 (affected area) and 0.14 (total area) as shown in **Tables 5** and **6**.
- Support practice factor (P). The P factor is an expression of the effects of supporting conservation practices, such as contouring, buffer strips of close-growing vegetation, and terracing on soil loss at a particular site. The P factor was calculated through the RUSLE equations and the results are 0.82 and 0.98 respectively for the affected area and the total area as shown in **Tables 5** and **6**.

The resultant soil losses calculated using the RUSLE program are 0.4 tons/ac-yr for the affected area and 0.82 tons/ac-yr for the total area.

In moving towards the outlet, soil will be trapped by vegetation and plant residue or will be deposited in low lying areas, local scour, rills and channels. Other factors that inhibit the eroded material's delivery to the watershed outlet include climate, soil particle size and texture, size and proximity of the upland erosion source, the ratio of rill versus sheet erosion, total watershed area, watershed length and relief, and drainage density. Therefore, not all of the soil loss calculated by the above approach will reach the watershed outlet. The sediment yield or load at the outlet should be estimated using a sediment delivery ratio (SDR) from 0 to 1 to account for the

deduction factors. RUSLE is designed in calculating the SDR by assigning different values for permanent barriers (strips or concaves) and terraces or sediment basins that include the land slope, soil type and texture, etc. Because many of the site-specific data are not available, assumptions were made, similar to the assumptions described in the previous sections. The SDR values estimated using RUSLE are 0.74 (affected area) and 0.92 (total area) as shown in **Tables 5** and **6**.

The annual sediment yields calculated using RUSLE are 0.4 tons/ac-yr for the affected area and 0.82 tons/ac-yr for the total area (**Tables 5** and **6**).

3.1.2 Calculate Sed Soil MSC

The soil concentration protective of sediment, ^{Sed}Soil MSC (or C_{AP}), is calculated using the following equation:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT}) - (SL_{OA} \times C_{OA})}{SL_{AP}}$$
 Equation F2

where:

- C_{AP} = the ^{Sed}Soil MSC (mg/kg) for the surface water runoff pathway from the affected area
- SL_{TOT} = total sediment load estimated for the entire contributing watershed. (0.82 tons/ac-yr = 820 kg/ac-yr, see Section 3.1.1).
- C_{TOT} = published regulatory standard for COC (mg/kg)
- SL_{OA} = sediment load (kg/yr) estimated for other areas of the watershed
- C_{OA} = background soil concentration for inorganic COCs (if available). This term is zero for organic compounds. Because there is no Texas-specific median background soil concentrations, $C_{OA} = 0$.
- *OA* = other area. This is the area of contributing watershed other than the affected area
- SL_{AP} = sediment load (kg/yr) from the affected property. In this case, 0.4 tons/ac-yr = 400 kg/ac-yr.

The above equation can be simplified as:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT})}{SL_{AP}}$$
 Equation F3

where:

 $SL_{TOT} = 820 \text{ kg/ac-yr}$ $SL_{AP} = 400 \text{ kg/ac-yr}$ $C_{TOT} = 25 \text{ mg/kg}$ (sediment PCL for perchlorate for human risk, Table for Risk Reduction Program Rule, TNRCC, 2002)

Therefore, C_{AP} (^{Sed}Soil MSC) = (820)(25)/400 = 51.3 mg/kg.

Note that perchlorate concentration in soil at the source that can be eroded is 0.061 mg/kg, which is smaller than ^{Sed}Soil MSC (= 51.3 mg/kg).

3.2 Perchlorate Concentration in Erodable Soil Protective of Surface Water

In this study, it was assumed conservatively that 7Q2 conditions in Central Creek (flow in 7 consecutive days occurs once every 2 years) prevail and therefore have a greater effect on the creek after mixing and dilution. However, the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 2.5 cubic feet per second (cfs) is derived (**Figure 2**). Because site LHAAP-35C (53) is situated closer to the downstream side of the Central Creek, flow data at the downstream cross section were used.

The equation used to estimate the COC concentration in runoff from the affected property is as follows (TCEQ, 2002):

$$C_{AP} = \frac{Q_D \times C_D - Q_{OA} C_{OA}}{Q_{AP}}$$
 Equation F4

where:

C		concentration of	manahlanata in	mun off from	the offected	mmomometry (mag/I)
(ΔP)	=	concentration of	percinorate in	гипон пош	the affected	Droderty (mg/L)
- /11						

- Q_D = flow downstream of the affected property watershed (feet³/sec), using 7Q2 flow
- C_D = concentration of perchlorate downstream of the affected property (mg/L)
- Q_{AP} = runoff from the affected property (feet³/sec)
- Q_{OA} = runoff from other areas of the affected property watershed (feet³/sec)
- C_{OA} = concentration of perchlorate in runoff from other areas of the affected property watershed (mg/L) (C_{OA} = 0 in this case)

The calculation of runoff rates and volumes was based on the Schueler Method (Schueler, 1987):

First, the runoff coefficient for each land use type was derived with the following equation:

$$R_{VU} = 0.05 + (0.009 \times I_U)$$
 Equation F5

where:

 R_{VU} = runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain}) I_U = percent imperviousness (unitless) characteristic of land use type U

The runoff flow rates were then calculated using the following equation (feet³/sec):

Equation F6

$$Q = P \times P_J \times R_{VU} \times A_U$$

where:

P = precipitation rate (inches/year) $P_J =$ ratio of storms producing runoff (unit less) with a default value of 0.9 $R_{VU} =$ runoff coefficient (unit less) for land use type U (inches_{run}/inches_{rain}) $A_U =$ area of land use type u (acres)

At LHAAP-35C(53), the affected property is estimated to be 0.00918 acres (20 feet x 20 feet). The annual precipitation at LHAAP is estimated to be 45 inches/year (Miller and Troise, 1973). The percent imperviousness (I_U) for the affected property area and the other areas of the affected property watershed are 50 percent and 10 percent, respectively. Therefore,

For the affected property area:

 $Q_{AP} = \{(45)(0.9)[0.05 + (0.009 \times 0.6)](0.00918)\} = 0.02 \text{ feet}^3/\text{sec}$

Since $C_{OA} = 0$, the term $Q_{OA} \ge C_{OA} = 0$ and therefore the other areas of the affected property watershed are omitted.

 $Q_D = 1.75$ feet³/sec (Based on 7Q2 flow data included in **Table 3** and **Figure 2**)

The concentration of perchlorate in the solute, *Conc_{source}* (mg/L), can be derived from the soil concentration of 0.0609 mg/kg, *Conc_{soil}* (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$
 Equation F7

where:

 ρ_b = bulk density of soil =assumed 1.7 g/cm³ k_d = distribution coefficient = Assumed 0.0 cm³/g ϕ_w = water-filled porosity = 0.35 ϕ_a = air-filled porosity = assumed 0.15 H_c = Henry's law coefficient = assumed 0.0 (dimensionless)

$$Conc_{source} = \frac{0.061 \times 1.7}{(0.35 + 0.0 \times 0.15)} = 0.296 \text{ mg/L}$$

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (0.02)(0.296)/1.75 = 0.0034 \text{ mg/L} = 3.4 \text{ }\mu\text{g/L}$$

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas This concentration ($C_D = 3.4 \ \mu g/L$) is less than the interim action level (IAL) of $4 \ \mu g/L$ for perchlorate in surface water.

When perchlorate concentration downstream of the affected property (C_D) is set equal to the IAL of 4 µg/L, the resulting C_{AP} represents the risk-based perchlorate concentration protective of the receiving surface water. Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (1.75)(4)/(0.02) = 350 \,\mu\text{g/L}$$

Using the equation shown below, perchlorate concentration in soil (C_{soil}) can be derived by:

$$C_{soil} = \frac{[\phi_w + H_c \phi_a]C_{AP}}{\rho_b} = [0.35 + 0.0(0.15)](350)/1.7 = 72 \,\mu\text{g/kg}$$

This value C_{soil} (= ^{SW}Soil MSC); i.e., soil concentration protective of surface water is greater than the actual perchlorate concentration of 60.9 µg/kg at the source.

4.0 Results

Simulation shows that TCE will not exceed its MCL of 5 μ g/L at the POE in groundwater at Central Creek or Harrison Bayou. Even if the maximum concentration of TCE is placed at the two creeks, Central Creek and Harrison Bayou, the mixing concentrations in the creeks at 4.2 × 10⁻⁵ and 7.9 × 10⁻⁴ μ g/L, respectively, are much lower than the MCL (see **Table 2**). These concentrations were calculated based on the seepage flow out into the streams from groundwater and the flow discharge in the streams based on the 10th percentile flow of 1.75 cfs in Central Creek and 19 cfs in Harrison Bayou (see **Table 7** and **Figure 3**). In the case of perchlorate, it is anticipated that its maximum concentration at the surface water (both creeks) will not exceed its IAL of 4 μ g/L when it reaches the surface water through leaching from soil and via groundwater to surface water, based on similar calculations conducted at other sites (e.g., LHAAP-04). The current maximum concentration of 60.9 μ g/kg in soil will also be protective of sediment and surface water.

5.0 References

References are provided in the main document, Section 8.0.

Chemical Pro	operties for	LHAAP-35C	(53) Ground	water Fate an	d Transp	ort Modeling
Chemical	Koc ⁽¹⁾ cm ³ /g	foc %	Kd cm ³ /g	Kd m³/kg	Half-life years ⁽²⁾	Degradation Rate (1/year)
Trichloroethene	100	0.1	0.1	1.00E-04	4.5	0.154

Table 1

Notes and Abbreviations:

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)" (2) Howard et al., 1991, "Environmental Degradation Rates"

cm³/g cubic centimeters per gram

foc fraction organic carbon

Kd water-soil partition coefficient

Koc carbon-water sorption coefficient

m³/kg cubic meters per gram

Table 2Summary of TCE Concentrationsat Harrison Bayou and Central CreekLHAAP-35C (53), Longhorn Army Ammunition Plant

Harrison Bayou

Source Type	MCL	Source Area	Maximum	Distance to	Source	Years	Maximum Concentration	MSC Based on DF	Mixing Concentration	Overall MSC
		(north-south x	Observed Source	Harrison	Release	Contaminant	in Groundwater at	at Groundwater &	in	after Discharge
		east-west)	Concentration	Bayou	Rate*	Starts	POE at Harrison Bayou	Harrison Bayou	Harrison Bayou	into Harrison Bayou
						to Appear	(µg/L)			
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)	(µg/L)	(µg/L)
Trichloroethene	5.0	100 x 100	7.0	658	0.008	Never	0 (Infinity)	Infinity	NA	NA
Central Creek										
Source Type	MCL	Source Area	Maximum	Distance to	Source	Years	Maximum Concentration	MSC Based on DF	Mixing Concentration	Overall MSC
		(north-south x	Observed Source	Central Creek	Release	Contaminant	in Groundwater at	at Groundwater &	in	after Discharge
		east-west)	Concentration	Creek	Rate*	Starts	POE at Central Creek	Central Creek	Central Creek	into Central Creek
						to Appear	(µg/L)			
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)	(µg/L)	(µg/L)
Trichloroethene	5.0	100 x 100	7.0	300	0.008	4	0.14 (10 yrs) (50)	250	NA	NA
Assumed Sour	ce at Ha	arrison Bayou	and Central C	eek						
Source Type	MCL	Source Area	Maximum	Distance to	Source	Years	Maximum Concentration	MSC Based on DF	Mixing Concentration	Overall MSC
		(north-south x	Observed Source	Harrison Bayou or	Release	Contaminant	in Groundwater	at Groundwater &	in	after Discharge
		east-west)	Concentration	Central Creek	Rate*	Starts	at Harrison Bayou &	Harrison Bayou or	Harrison Bayou &	into Harrison Bayou o
						to Appear	Central Creek POE	Central Creek	Central Creek	Central Creek
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Trichloroethene	5.0	100 x 100	7.0	0	0.008	Instant	7.0	5.0	4.2 x 10 ⁻⁵ (HB)	166,667 (HB)
									7.9 x 10 ⁻⁴ (CC)	8,861 (CC)

Notes and Abbreviations:

All the sources are instantaneous and extend across the entire aquifer thickness of 11 feet.

* Instantaneous source release in kg = maximum source concentration x plume pore volume

DF dilution/attenuation factor

HB Harrison Bayou; CC = Central Creek

MSC medium specific concentration

NA not analyzed or not applicable

POE point of entry

Month-Year	Day of Month	Measured Depth	Measured Velocity	Cross Sectional Area	Calculated Discharge
		(ft)	(ft/s)	(ft2)	(cfs)
		Downstream	Downstream	Downstream	Downstream
Dec-99	3 - 9	1.11074	1.29100	6.31	8.1462
	10 - 16	1.48660	0.25542	7.30	1.8646
	17 - 23	1.46344	0.73705	7.25	5.3436
	24 - 30	1.32520	0.23729	7.00	1.6610
Jan-00	1 - 7	1.06090	0.29642	11.90	3.5274
	8 - 14	1.62076	0.19877	10.80	2.1467
	15 - 21	1.48365	0.15027	7.20	1.0819
	22 - 28	1.36087	3.31644	11.00	36.4808
Feb-00	1 - 7	1.63820	0.54047	6.12	3.3077
	8 - 14	1.51571	0.25153	11.70	2.9429
	15 - 21	1.44892	1.64454	7.26	11.9394
	22 - 28	1.55024	0.25240	7.15	1.8047
Mar-00	1 - 7	2.07625	3.62250	17.90	64.8428
	8 - 14	2.40898	2.59353	25.30	65.6163

 Table 3

 Calculation of Flow Discharge in the Central Creek (downstream) (Data Collected from Dec 1, 1999 to March 15, 2000)

Notes and Abbreviation:

Measured depths and measured velocities are averaged values over every seven days

Cross sectional areas are based on the measured depths and cross sections

cfs cubic feet per second

City code: 18003	City: Shreveport	State: LA		
Total P: 43.8 "	El curve #: 96	Freeze-Free	days/year: 272	
Elevation (ft): 252	10 yr El: 180		R factor: 400	
Mean P (")	Tave (deg. F)	%EI	%EI	
4.02	47.8	0	54	
3.46	51.7	2	58	
3.77	58.15	4	62	
4.71	67.05	6	66	
4.7	73.7	9	70	
3.54	81.2	12	74	
3.56	83.45	17	78	
2.52	84.15	23	82	
3.29	78.75	30 86		
2.63	68.45	37 90		
3.77	56.25	43	94	
3.87	49.8	49	97	

Table 4 Rainfall/Runoff Erosivity (R Factor) Shreveport, Louisiana

Table 5
RUSLE Calculation Result for LHAAP-35C (53) – Affected Area

	R	К	LS	С	[P	SDR]	А	SY
SITE35CA	400	0.14	0.08	0.12	0.82	0.74	.45	0.4
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Notes:

Annual sediment yield: 1.2 tons/ac-yr

area

A C cover management factor soil erodability slope length factor

K L

Ρ

support practice factor rainfall – runoff erosivity factor R

slope steepness factor sediment delivery ratio S

SDR

SY sediment yield

Table 6	
RUSLE Calculation Result for LHAAP-35C (53) -	- Total Area

	R	К	LS	С	[P	SDR]	А	SY
S35CALL	400	0.19	0.08	0.14	0.977	0.92	.88	0.82
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Notes:

Annual sediment yield: 1.2 tons/ac-yr

area

A C K L

Ρ

area cover management factor soil erodability slope length factor support practice factor rainfall – runoff erosivity factor slope steepness factor sediment delivery ratio sediment yield r R S SDR

SY

Month-Year	Day of Month	Measured Depth (feet)	Measured Velocity (feet/second)	Cross Sectional Area (square feet)	Calculated Discharge (cfs)
		Downstream	Downstream	Downstream	Downstream
Dec-99	3 - 9	3.37480	0.30440	105.00	31.9620
	10 - 16	3.69160	0.34860	128.00	44.6208
	17 - 23	3.27500	0.11400	98.00	11.1720
	24 - 30	3.20430	0.35050	90.00	31.5450
Jan-00	1 - 7	3.30580	0.35250	99.00	34.8975
	8 - 14	3.98980	0.29030	148.00	42.9644
	15 - 21	3.42900	0.23540	112.00	26.3648
	22 - 28	3.62910	0.19780	122.00	24.1316
Feb-00	1 - 7	3.99540	0.56400	150.00	84.6000
	8 - 14	3.68440	0.93390	127.50	119.0723
	15 - 21	3.60140	0.13790	120.00	16.5480
	22 - 28	3.90640	0.33230	143.00	47.5189
Mar-00	1 - 7	3.77690	0.15670	135.00	21.1545
	8 - 14	3.92540	0.19900	146.00	29.0540

Table 7Calculation of Flow Discharge in the Harrison Bayou (Downstream)(Data Collected from December 1, 1999 to March 15, 2000)

Notes:

Measured depths and measured velocities are averaged values over every seven days.

Average flow discharges are the average values of upstream and downstream discharges.

cfs cubic feet per second

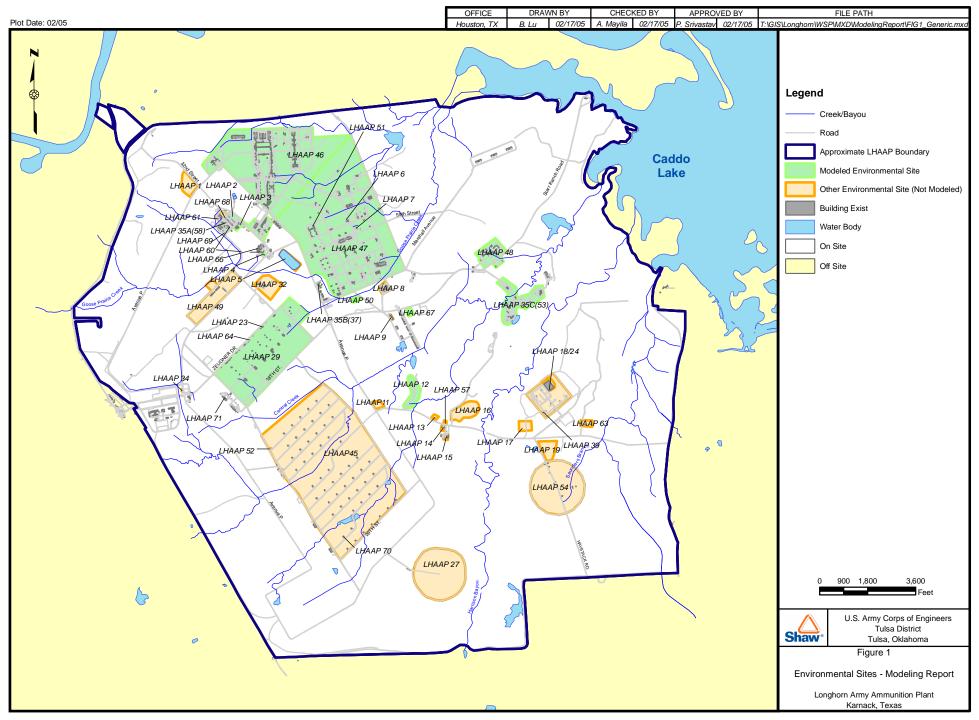


Figure 2 - Appendix F Low Flow Analysis Probability vs Flow Discharge for Central Creek (Downstream) Based on December 1999 to March 2000 Flow Derivation

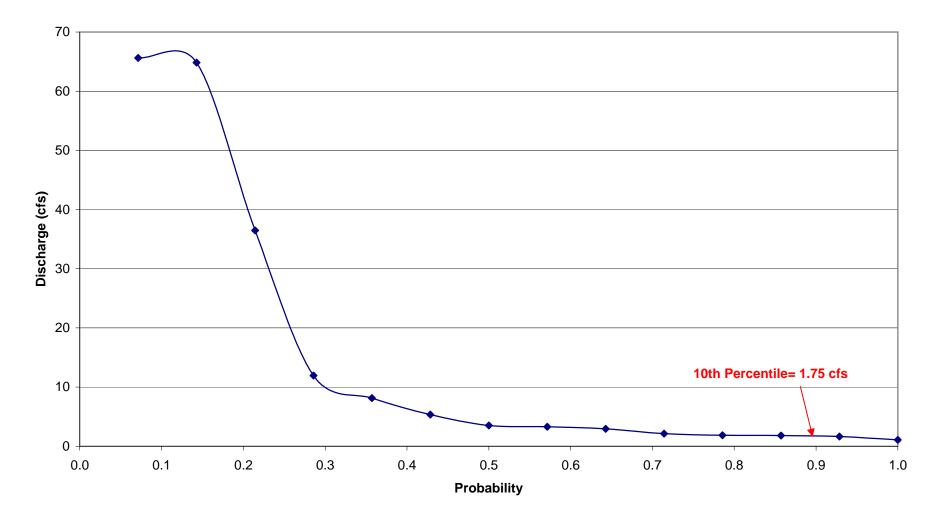
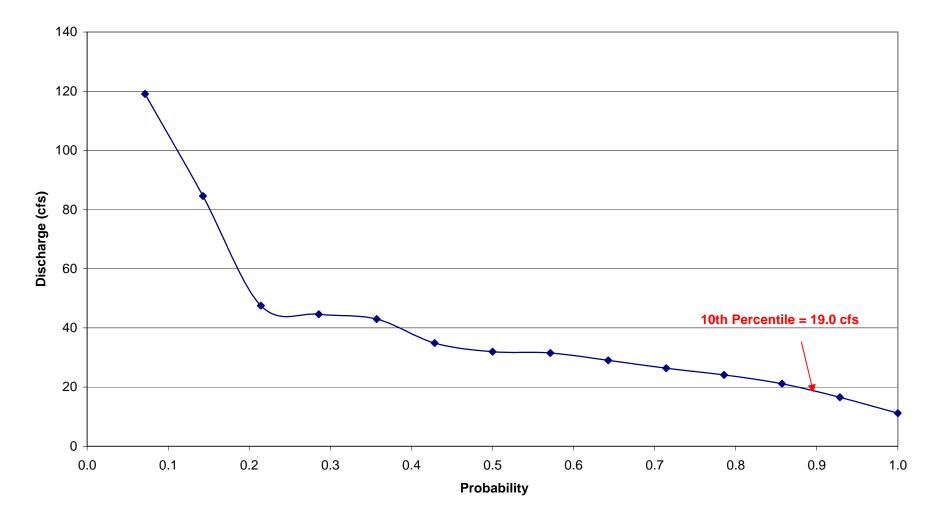



Figure 3 - Appendix F Low Flow Analysis Probability vs Flow Discharge for Harrison Bayou (Downstream) Based on December 1999 to March 2000 Flow Derivation

00043402

Appendix G

LHAAP-46 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Goose Prairie Creek from Groundwater

Table of Contents_____

1.0	Introduction	1-1
2.0	Input Parameters and Assumptions	2-1
3.0	Simulation Results	3-1
4.0	References	4-1

List of Tables _____

Table 1	Maximum Concentrations and Chemical Properties for COCs at LHAAP-46
Table 2	Summary of Perchlorate Concentrations at Goose Prairie Creek – Middle, LHAAP-46

List of Figures _____

Figure 1 Environmental Sites – Modeling Report

1.0 Introduction

LHAAP-46 is located on the northwestern portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-46 was referred to as Plant 2 Area. The chemical of concern is perchlorate in groundwater at a maximum concentration of 30 μ g/L that is higher than the Texas interim action level (IAL) of 4 μ g/L.

The purpose of the following modeling was to calculate the maximum concentration and dilution factors for perchlorate at the point of entry (POE) of groundwater and Goose Prairie Creek, and to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factor with the IAL. Groundwater flows to the east based on December 1998 water level measurements (Jacobs, 2002a). The distance from LHAAP-46 to Goose Prairie Creek-Middle is approximately 3,125 feet (**Figure 1**).

In order to calculate the maximum concentrations of perchlorate and the time of travel at the POE into Goose Prairie Creek, the computer code AT123D was used.

2.0 Input Parameters and Assumptions

Groundwater modeling at LHAAP-46 was based on the following assumptions and considerations:

- Contaminant Source: instantaneous source was assumed. Conservatively, the maximum concentration of perchlorate was assumed to cover the entire plume area. The maximum concentration of perchlorate was detected in monitoring well 46WW04 at a concentration of 30 μ g/L. The only source is the current plume itself.
- The source area was assumed to be the plume area. The dimension of the plume was assumed to be 474 feet (east-west) by 274 feet (north-south) by 3 feet in depth for all the contaminants.
- Based on the geologic cross sections at LHAAP-46 (Figure 8-2 in Jacobs 2002a), the thickness of the shallow water bearing zone consisting of sand is 3 feet. It was assumed that the contaminant source in this shallow zone extended to the entire depth of 3 feet.
- The properties of the shallow water bearing zone used in the model were as follows:
 - Hydraulic conductivity: 7.82×10^{-4} cm/sec (average value based on slug test data, [Jacobs, 2002a])
 - Hydraulic gradient: 0.009 (based on Figure 2-11 in Jacobs, 2001a)
 - Effective porosity assumed at 0.25
 - Longitudinal groundwater dispersivity: = $x \times 0.1$ (ASTM, E-1739-95, Table x3.1, 1995) where *x* is the travel distance of contaminants, assumed to be the distance from the source to Goose Prairie Creek = 312.5 feet
 - Transverse groundwater dispersivity: = α_x / β (ASTM, E-1739-95, Table x3.1, 1995) =104.2 feet
 - Vertical groundwater dispersivity: = $\alpha_x/20$ (ASTM, E-1739-95, Table x3.1, 1995) = 15.6 feet

Chemical properties of perchlorate are listed in **Table 1**, basically *Kd* and degradation rate are neglected.

3.0 Simulation Results

Simulation shows that perchlorate will not exceed its IAL of 4 μ g/l at the POE of groundwater into Goose Prairie Creek-Middle. Perchlorate will start to appear at the POE after 207 years with a concentration of only 0.01 μ g/L and will not increase to its IAL of 4 μ g/L because after 300 years, the maximum concentration at Goose Prairie Creek-Middle is only 0.07 μ g/L (**Table 2**). Even in the entire flow system, the peak concentration is only 4.12 μ g/L after 200 years, occurring at 833 feet downgradient of the source.

Field Confirmation

The source plume of TCE at this site was assumed conservatively to cover an area of 474 ft x 274 ft in which the maximum concentration of perchlorate was detected at 30 μ g/L at well 46WW04. There are several wells downstream of this well. However, these wells are in the plume area or along the center line of the flow path. For this reason, no evaluation of contaminant concentration at a lateral location downgradient was attempted to provide field confirmation of the model.

4.0 References

References are provided in the main document, Section 8.0.

		1	Га	b	e	1	1						
	~												

Maximum Concentrations and Chemical Properties for COCs at LHAAP-46

Chemical	Maximum Observed	MCL	Koc ⁽¹⁾	foc	Kd	Kd	Half-Life	Degradation Rate
	Concentration	(µg/L)	cm³/g	%	cm³/g	m³/kg	years ⁽²⁾	(1/year)
Perchlorate ⁽³⁾	30 µg/L (in groundwater)	4.0 ⁽⁴⁾	N/A				N/A	N/A

Notes and Abbreviations:

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)"
(2) Howard, et al., 1991, "Environmental Degradation Rates," assumed no degradation
(3) No data available, assumed no degradation and no water-soil partitioning

(4) action level

µg/L micrograms per liter

cm³/g cubic centimeters per gram

foc fraction organic carbon

Kd water-soil partition coefficient

Koc carbon-water sorption coefficient

MCL maximum contaminant level

m³/kg cubic meters per kilogram

N/A not available

Table 2 Summary of Perchlorate Concentrations at Goose Prairie Creek - Middle LHAAP-46, Longhorn Army Ammunition Plant

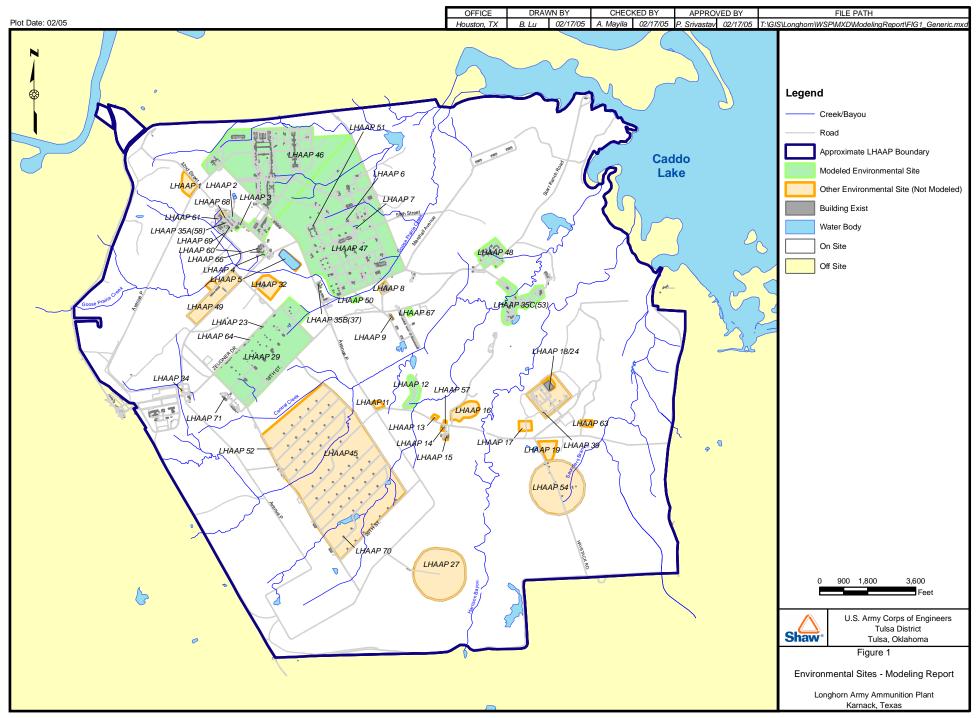
Source Type	Action Level	Source Area (north-south x	Maximum Observed	Distance to Goose Prairie	Source Release	Years Contaminant	Maximum Concentration in Groundwater at POE	MSC Based on DF at Groundwater &	Mixing Concentration	Overall MSC after
	Lever	east-west)	Source Concentration	Creek-Middle	Rate*	Starts to Appear at Creek in groundwater	at Goose Prairie Creek- Middle (µg/L)	Goose Prairie- Middle	in Creek	Discharge into GPC-Middle
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)	(µg/L)	(µg/L)
Perchlorate	4.0	274 x 474	30.0	3,125	0.126	207	0.07(300) (429)	1,716	NA	NA

Notes and Abbreviations:

All the sources are instantaneous and extend across the entire aquifer thickness of 11 feet.

* Instantaneous source release in kg = maximum source concentration x plume pore volume

µg/L micrograms per liter


DF dilution/attenuation factor

kg kilograms

MSC medium specific concentration

NA not analyzed or not applicable

POE point of entry

Appendix H

LHAAP-47 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Goose Prairie Creek from Soil and Groundwater

Table of Contents_____

1.0	Introduction	1-1
2.0	Input Parameters and Assumptions	2-1
3.0	Simulation and Results	
4.0	Soil Concentration of Perchlorate Protective of Sediment and Surface Water	4-1
	4.1 Perchlorate Concentration in Erodable Soil Protective of Sediment	4-1
	4.1.1 Soil Loss Calculation	4-1
	4.1.2 Calculate SedSoil MSC	
	4.2 Perchlorate Concentration in Erodable Soil Protective of Surface Water	4-4
5.0	Results	
6.0	References	6-1

List of Tables _____

Table 1	Maximum Concentrations and Chemical Properties for COCs at LHAAP-47
Table 2	Summary of TCE, PCE, VC, PCP, and Perchlorate Concentrations at Goose Prairie
	Creek, LHAAP-47
Table 3	Rainfall/Runoff Erosivity (R Factor), Shreveport, Louisiana
Table 4	RUSLE Calculation Result for LHAAP-47 – Affected Area
Table 5	RUSLE Calculation Result for LHAAP-47 – Total Area
Tabla 6	Calculation of Flow Discharge in Cases Drairie Creek

Table 6Calculation of Flow Discharge in Goose Prairie Creek

List of Figures _____

Figure 1	Environmental Sites – Modeling Report
Figure 2	Trichloroethene Concentrations in Groundwater at Goose Prairie Creek (1,296 feet from Source), LHAAP-47
Figure 3	Vinyl Chloride Concentrations in Groundwater at Goose Prairie Creek (264 feet from Source), LHAAP-47
Figure 4	Perchlorate Concentrations in Groundwater at Goose Prairie Creek (312 feet from Source), LHAAP-47
Figure 5	Perchlorate Concentrations in Groundwater Contributed by Soil Leachate at the Source Area and in Groundwater at Goose Prairie Creek (312 feet from Source), LHAAP-47
Figure 6	Low Flow Analysis – Probability vs Flow Discharge for Goose Prairie Creek

1.0 Introduction

LHAAP-47 is located in the north-central portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-47 was referred to as Plant 3 Area. The chemicals of concern are trichloroethene (TCE), PCE, pentachlorophenol (PCP), vinyl chloride (VC), and perchlorate in groundwater and perchlorate in top soil. Perchlorate was detected in subsurface soil at a maximum concentration of 190,000 μ g/kg at sampling location 25C-06 at a depth interval of 4 to 5 feet below ground surface. TCE, PCE, PCP, VC and perchlorate were detected in groundwater at maximum concentrations of 20,410, 168, 7.9, 127, and 82,900 μ g/L, respectively (Jacobs, 2002a).

The purpose of the modeling was to calculate the maximum concentrations and dilution factors for COCs at the point of entry (POE) of groundwater into Goose Prairie Creek, and to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factors with the MCLs or interim action level (IAL) for perchlorate. Calculations were also performed to develop subsurface perchlorate soil concentrations protective of sediment and surface water due to the erosion of soil by storm-generated runoff to the nearby surface water body.

Calculation of perchlorate leachate to groundwater was done using VLEACHSM. In order to calculate the maximum concentrations of the COCs and the time of travel at the POE at Goose Prairie Creek, the computer code AT123D was used.

2.0 Input Parameters and Assumptions

Soil leachate modeling and groundwater modeling at LHAAP-47 was based on the following assumptions and considerations:

- **Contaminant Source.** No continuous source in the upper soil layer for TCE, PCE, PCP, and VC instantaneous source is assumed for these chemicals. For perchlorate, a maximum concentration of 190,000 µg/kg was detected in soil at a depth of 4 to 5 feet below ground surface. A continuous source is assumed for perchlorate for 10 years. At sampling location 25C-06, perchlorate leachate from soil is evaluated; at a depth of 0 to 0.5 feet: 7,000 µg/kg; 4 to 5 feet: 190,000 µg/kg; and 9 to 10 feet: 140,000 µg/kg. The concentration in the leachate was estimated with the model, VLEACHSM. Then, after mixing with groundwater, perchlorate transport was modeled to obtain concentrations at the point of entry (POE) at Goose Prairie Creek.
- The depth to groundwater is approximately 13 feet (Jacobs, 2000a)
- The dimension of the plume is assumed to be 200 feet (east-west) by 200 feet (north-south) by 6 feet in thickness for the other contaminants.
- The perchlorate plume transported to Goose Prairie Creek is assumed to be 50 feet wide.
- Based on the geologic cross sections at LHAAP-47 (Figures 9-2 through 9-6 Jacobs, 2002a), the average thickness of the shallow water bearing zone is 6 feet. It is assumed that the contaminant source in this shallow zone extended to the entire thickness of 6 feet.
- Based on the locations of the COC plumes and the flow direction to Goose Prairie Creek, the distance of TCE, PCE, and PCP transport in groundwater to Goose Prairie Creek is 1,296 feet, the distance of VC transport in groundwater to Goose Prairie Creek is 264 feet, and the distance of perchlorate transport in groundwater to Goose Prairie Creek is 312 feet (Jacobs, 2002a).
- Chemical properties of perchlorate in soil: since perchlorate is kinetically nonlabile and sorption or natural reduction in the environment is not significant, the water-soil partition coefficient (kd) and degradation rate were assumed to be zero. The Henry's law constant and diffisivity in air were also assumed to be zero. The solubility of perchlorate was assumed to be 200,000 mg/L. This value corresponds to ammonium perchlorate, which has the highest solubility among other perchlorates.
- **Dispersivities in Soil**. The longitudinal dispersivity was calculated based on the following equation (Dynamac Corporation, 1995):

$\alpha_{L} = 1.072 \text{ x } 10^{-1} L_{u}^{0.584}$ (L _u = 10 feet, source to water table)	Equation H1
= 0.41 ft	
and the vertical dispersivity $\alpha_v = 0.3 \ \alpha_L = 0.123 \ ft$	Equation H2

• **Darcy's velocity.** Darcy's velocity (Dv) is required by VLEACHSM.

Dv = ki (k = hydraulic conductivity and i = hydraulic gradient) Equation H3

- Recharge Rate in soil was assumed to be a value of 1 inch per year.
- The properties of the shallow water bearing zone used in the model were as follows:
 - The average hydraulic conductivity (*K*) based on the slug tests at LHAAP-47 was estimated to be 7.49 x 10^{-4} cm/sec (Jacobs, 2002a)
 - Hydraulic gradient: 0.0071 feet/feet for TCE, PCE, PCP, and VC transport, and 0.00397 feet/feet for perchlorate transport because of different locations (Jacobs 2002a).
 - Longitudinal dispersivity: 129.6 feet for TCE, PCP; 26.4 feet for VC; 31.2 feet for perchlorate
 - Transverse dispersivity: 43.2 feet for TCE, PCP; 8.8 feet for VC; 10.4 feet for perchlorate
 - Vertical dispersivity: 6.48 feet for TCE, PCE, PCP; 1.31 feet for VC; 1.57 feet for perchlorate

Chemical properties of each chemical including the carbon partition coefficient, water-soil distribution coefficient, and half-life are listed in **Table 1**.

3.0 Simulation and Results

Computer simulation results were evaluated at the POE as shown in **Table 2**. The results include the time when COCs reach the POE, the time they reach their peaks, the maximum concentrations at this location, the dilution factors (DFs) and the MSC based on DF, and the action level.

Modeling results show that maximum concentrations of TCE (though elevated at the source), PCE, PCP, in groundwater at the POE at Goose Prairie Creek are less than their respective MCLs (**Table 2** and **Figure 2**). However, VC and perchlorate at concentrations of 46.1 and 66,820 μ g/L, respectively, exceed the MCL or the action level (**Table 2** and **Figures 3** and **4**). After mixing in Goose Prairie Creek, VC and perchlorate concentrations are reduced to below the MCL or action level in the amount of 0.0039 μ g/L and 3.13 μ g/L, respectively (**Table 2**).

Note that perchlorate concentration at the POE comes from two sources: (1) current perchlorate plume with maximum concentration of 82,900 μ g/L in groundwater, and (2) current perchlorate in soil with maximum concentration of 190,000 μ g/kg. The predicted maximum concentration at the POE due to perchlorate already in the groundwater is 66,320 μ g/L in 13.6 years. After 50 years, the maximum concentration drops to below 9,000 μ g/L. At 13.6 years, the concentration of perchlorate at the POE in groundwater originating from soil leachate (using VLEACHSM) is approximately 500 μ g/L (**Figure 5**). Therefore, the combined maximum concentration at the POE in groundwater is 66,820 μ g/L. This value is the overall maximum concentration that would appear at the POE in groundwater. Even though the perchlorate concentration in groundwater at the POE generated by leachate would rise to 9,110 μ g/L after 52 years, the combination of both concentrations from leachate and from the groundwater plume would not exceed 18,000 μ g/L.

Field Confirmation

Additional calculations were conducted to simulate perchlorate concentrations at a well located in a transverse direction from the centerline of the flow. These calculations were conducted to compare the model results with actual field observations.

An evaluation of perchlorate concentration at a downgradient monitoring well, 50WW01, was made. This well is approximately 192 feet downgradient from the source but offsets the center flow line by 348 feet laterally to the southwest. The simulated concentration observed at this location is non-detect until after 30 years and peaks at 35.6 μ g/L after 36 years of simulation. Currently perchlorate at this location is non-detect.

4.0 Soil Concentration of Perchlorate Protective of Sediment and Surface Water

Maximum perchlorate concentration in soil was detected at 190,000 μ g/kg at sampling location 25C-06 at a depth interval of 4 to 5 feet. It is very unlikely that this layer of soil will be eroded considering the depth at which it exists. Therefore, the maximum concentration of 180,000 μ g/kg detected at a depth of 1.5 to 2 feet below ground surface at 25C-21 was used to evaluate the transport of perchlorate by eroded soil.

Perchlorate in the subsurface soil (with a concentration of 180,000 μ g/kg), together with the contaminated soil particles will be transported by storm-generated runoff to a nearby surface water body, Goose Prairie Creek. The shortest distance from the source to Goose Prairie Creek is approximately 192 feet. The approach to develop surface soil concentrations protective of sediment and surface water is described in the Technical Memorandum (Shaw Environmental, Inc, 2004a) and the following sections.

4.1 Perchlorate Concentration in Erodable Soil Protective of Sediment

A screening calculation was performed to evaluate whether storm water from an affected property has the potential to pose a risk to human or ecological receptors in the Goose Prairie Creek. First, soil loss from the effected property was evaluated by the revised universal soil loss equation (RUSLE) before soil concentration protective of sediment could be calculated.

4.1.1 Soil Loss Calculation

The RUSLE is in the form:

$$A = R \times K \times L \times S \times C \times P$$

where :

- A = Estimated average annual soil loss (ton/ac-yr)
- R =Rainfall-runoff erosivity factor (ft-ton-in/ac-hr-yr)
- K = Soil erodibility (ton/ac per unit of R)
- L = Slope length factor (unitless)
- S = Slope steepness factor (unitless)
- C =Cover management factor (unitless)
- P = Support practice factor (unitless)

The input parameters all depend on the location of the site being evaluated. The location factor actually implicitly describes rainfall, land use, surface coverage, soil type, and other factors in that location. Since LHAAP is close to Shreveport, Louisiana, some of the parameters established for Shreveport were used for LHAAP as described below.

Equation H4

- **Rainfall-runoff erosivity factor** (*R*). When the factors other than rainfall are held constant, soil losses from cultivated land are directly proportional to a rainstorm parameter: total storm energy (*E*) multiplied by the maximum thirty-minute intensity (*I*). *R* was obtained by using RUSLE software. The topographic slope in the affected area as well as the slope from LHAAP-47 to Goose Prairie Creek (total area) was estimated to be 2.22 percent. The overall R value of 400 was thus given in the template provided by RUSLE program. **Table 3** shows the annual precipitation of 43.8 inches with monthly distributions of rainfall and temperature for the city of Shreveport. Hourly EI distribution is also presented. The *R* factor was estimated and also presented in this template.
- Soil erodibility (K). The K factor is the ease with which soil is detached by splash during rainfall or by surface flow or by a combination of both. It is a function of the composition of soil type, percentage of organic matter, soil structure and grain size, and soil permeability. In this current evaluation, it was assumed that the topsoil consists of 39 percent silt and very fine sand, 60 percent clay, 1 percent organic matter, medium to coarse granular (less than 5 mm), and low permeability. The result of K factor, using these soil properties in a nomograph, is 0.12 for the affected are and the total area as shown in **Tables 4** and **5**, which is the soil loss and sediment yield computation worksheet.
- **Topographic factor, including** *L* and *S* (*LS*). The value of *LS* increases as hill slope length and steepness increase. In this calculation, only one single segment of slope was assumed. Soil texture and land use were assumed as silty clay and "disturbed topsoil, rock cover." "Rock cover" was assumed to represent pavement and construction with impervious cover. The calculated *LS* values are 0.37 and 0.43 for the affected area and the total area, respectively, as shown in **Tables 4** and **5**.
- Cover management factor (*C*). The *C* factor is the ratio of soil loss with specific cropping and management practices to the corresponding loss with up-slope and down-slope tillage and continuously fallow conditions. The calculated values of *C* are 0.14 (affected area) and 0.18 (total area) as shown in **Tables 4** and **5**.
- Support practice factor (*P*). The *P* factor is an expression of the effects of supporting conservation practices, such as contouring, buffer strips of close-growing vegetation, and terracing on soil loss at a particular site. The *P* factor was calculated through the RUSLE equations and the results are 0.58 for both the affected area and the total area as shown in **Tables 4** and **5**.

The resultant soil losses calculated using the RUSLE program are 1.4 tons/ac-yr for the affected area and 2.2 tons/ac-yr for the total area.

In moving towards the outlet, soil will be trapped by vegetation and plant residue or deposited in low lying areas, local scour, rills and channels. Other factors that inhibit the eroded material's delivery to the watershed outlet include climate, soil particle size and texture, size and proximity of the upland erosion source, the ratio of rill versus sheet erosion, total watershed area, watershed length and relief, and drainage density. Therefore, not all of the soil loss calculated by the above approach will reach the watershed outlet. The sediment yield or load at the outlet should be estimated by using a sediment delivery ratio (SDR) from 0 to 1 to account for the deduction factors. RUSLE is designed in calculating the SDR by assigning different values for permanent barriers (strips or concaves) and terraces or sediment basins that include the land slope, soil type and texture, etc. Because many site-specific data are not available, assumptions are made. The SDR values estimated using RUSLE are 0.3 (affected area and total area) as shown in **Tables 4** and **5**.

The annual sediment yields calculated using RUSLE are 0.73 tons/ac-yr for the affected area and 1.1 tons/ac-yr for the total area (**Tables 4** and **5**).

4.1.2 Calculate Sed Soil MSC

The soil concentration protective of sediment, ^{Sed}Soil MSC (or C_{AP}), is calculated using the following equation:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT}) - (SL_{OA} \times C_{OA})}{SL_{AP}}$$
 Equation H5

where:

 C_{AP} = the ^{Sed}Soil PCL (mg/kg) for the surface water runoff pathway from the affected area.

$$SL_{TOT}$$
 = total sediment load estimated for the entire contributing watershed (1.1 tons/ac-yr = 1100 kg/ac-yr) (see Section 4.1.1).

$$C_{TOT}$$
 = published regulatory standard for COC

 SL_{OA} = sediment load (kg/yr) estimated for other areas of the watershed.

- C_{OA} = background soil concentration for inorganic COCs (if available). This term is zero for organic compounds. Because there is no Texas-specific median background soil concentrations, $C_{OA} = 0$.
- OA =other area. This is the area of contributing watershed other than the affected area.

$$SL_{AP}$$
 = sediment load (kg/yr) from the affected property. In this case,
0.73 tons/ac-yr = 730 kg/ac-yr.

The above equation can be simplified as:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT})}{SL_{AP}}$$

Equation H6

where:

$$SL_{TOT} = 1100 \text{ kg/ac-yr}$$

 $SL_{AP} = 730 \text{ kg/ac-yr}$
 $C_{TOT} = 25 \text{ mg/kg}$ (sediment PCL for perchlorate for human risk, Table for
Risk Reduction Program Rule, TNRCC, 2002)

Therefore, C_{AP} (^{Sed}Soil MSC) = (1100)(25)/730 = 37.7 mg/kg.

Note that the perchlorate concentration in soil at the source that can be eroded is 180 mg/kg, which is greater than the ^{Sed}Soil MSC (37.7 mg/kg).

4.2 Perchlorate Concentration in Erodable Soil Protective of Surface Water

Screening for the pathway for the contaminant in erodable soil to surface water was conducted using conservative screening equations that account for some affected property and watershed characteristics. In this study, it is assumed conservatively that 7Q2 conditions in Goose Prairie Creek (flow in 7 consecutive days occurs once every 2 years) prevail and, therefore, pose a greater effect on the creek after mixing and dilution. Because the derived flow data in Goose Prairie Creek are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2.

The equation used to estimate the COC concentration in runoff from the affected property is as follows:

$$C_{AP} = \frac{Q_D \times C_D - Q_{OA} C_{OA}}{Q_{AP}}$$
 Equation H7

where:

C_{AP} =	concentration	of perchlorate in runoff from the	e affected property (mg/L)
------------	---------------	-----------------------------------	----------------------------

- Q_D = flow downstream of the affected property watershed (ft³/sec), using 7Q2 flow
- C_D = concentration of perchlorate downstream of the affected property (mg/L)
- Q_{AP} = runoff from the affected property (ft³/sec)
- Q_{OA} = runoff from other areas of the affected property watershed (ft³/sec)
- C_{OA} = concentration of perchlorate in runoff from other areas of the affected property watershed (mg/L) (C_{OA} = 0 in this case)

The calculation of runoff rates and volumes was based on the Schueler Method (Schueler, 1987):

First, the runoff coefficient for each land use type was derived with the following equation:

$$R_{VU} = 0.05 + (0.009 \times I_U)$$

where:

 R_{VU} = runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain}) I_U = percent imperviousness (unitless) characteristic of land use type U

The runoff flow rates were then calculated (ft^3 /sec) using the following equation:

Equation H8

$$Q = P \times P_J \times R_{VU} \times A_U$$

where:

P = precipitation rate (inches/year) $P_J =$ ratio of storms producing runoff (unitless) with a default value of 0.9 $R_{VU} =$ runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain}) $A_U =$ area of land use type U (acres)

At LHAAP-47, the affected property was estimated to be 0.0574 acres (50 feet \times 50 feet). The annual precipitation at LHAAP was estimated to be 45 inches/year (Miller and Troise, 1973). The percent imperviousness (I_U) for the affected property area and the other areas of the affected property watershed are 50 percent and 10 percent, respectively. Therefore,

For the affected property area:

 $Q_{AP} = \{(45)(0.9)[0.05 + (0.009 \times 0.6)](0.0574)\} = 0.129 \text{ ft}^3/\text{sec}$

Since $C_{OA} = 0$, the term $Q_{OA} \times C_{OA} = 0$ and therefore the other areas of the affected property watershed are omitted.

 $Q_D = 2.5 \text{ ft}^3/\text{sec}$ (based on 7Q2 flow shown in Figure 6 and Table 6)

The solute concentration of perchlorate in the solute, *Conc_{source}* (mg/l), can be derived from the soil concentration of 180 mg/kg, *Conc_{soil}* (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$
 Equation H9

where:

 $\rho_b = \text{bulk density of soil} = \text{assumed } 1.7 \text{ g/cm}^3$ $k_d = \text{distribution coefficient} = \text{Assumed } 0.0 \text{ cm}^3/\text{g}$ $\phi_w = \text{water-filled porosity} = 0.35$ $\phi_a = \text{air-filled porosity} = \text{assumed } 0.15$ $H_c = \text{Henry's law coefficient} = \text{assumed } 0.0 \text{ (dimensionless)}$

$$Conc_{source} = \frac{180 \times 1.7}{(0.35 + 0.0 \times 0.15)} = 874,286 \, \mu \text{g/L}$$

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (0.129)(874.29)/2.5 = 45.1 \text{ mg/L} = 45,100 \text{ }\mu\text{g/L}$$

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas This concentration ($C_D = 45,100 \ \mu g/L$) is much greater than the IAL of 4 $\mu g/L$ for perchlorate in surface water.

When perchlorate concentration downstream of the affected property (C_D) is set equal to the IAL of 4 µg/L, the resulting C_{AP} represents the risk-based perchlorate concentration protective of the receiving surface water. Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (2.5)(4)/(0.129) = 77.5 \ \mu g/L$$

Using the equation used above, perchlorate concentration in soil (C_{soil}) can be derived by:

$$C_{soil} = \frac{\left[\phi_w + H_c \phi_a\right]C_{AP}}{\rho_b} = \left[0.35 + 0.0 \ (0.15)\right](77.5)/1.7 = 15.96 \ \mu g/kg$$

Thus, the observed perchlorate concentration of 180,000 μ g/kg at the site is much greater than the value C_{soil} (= ^{SW}Soil MSC) protective of the surface water.

5.0 Results

Simulation shows that TCE, PCE, PCP will not exceed their respective MCLs in groundwater at the POE at Goose Prairie Creek. VC and perchlorate, however, exceed their MCL or IAL at the POE. After mixing in Goose Prairie Creek, these two chemicals are diluted to less than their MCL or IAL. Estimation of perchlorate transport by eroded soil shows that the current perchlorate concentration in the upper soil (180,000 μ g/kg) is not protective of sediment and surface water.

6.0 References

References are provided in the main document, Section 8.0.

 Table 1

 Maximum Concentrations and Chemical Properties for COCs at LHAAP-47

Chemical	Maximum Observed Concentration in GW (µg/L)	MCL (µg/L)	Koc(1) cm3/g	foc %	Kd cm3/g	Kd m3/kg	Half-life years(2)	Degradation Rate (1/year)
Trichloroethene	29,410.0	5.0	100.0	0.1	0.1	1.00E-04	4.5	0.154
Tetrachloroethene	168.0	5.0	155.0	0.1	0.155	1.55E-04	2	0.347
Vinyl Chloride	127.0	2.0	11.0	0.1	0.011	1.10E-05	3.4	0.204
Pentachlorophenol	7.9	1.0	1000.0	0.1	1	1.00E-03	4.2	0.165
Perchlorate ⁽³⁾	82,900.0	4.0 ⁽⁴⁾	N/A				N/A	N/A

Notes and Abbreviations:

(2) Howard et al., 1991, " Environmental Degradation Rates"

(3) No data available, assumed no degradation and no water-soil partitioning

(4) action level

µg/L micrograms per liter

% percent

- cm³/g cubic centimeters per gram
- foc fraction organic carbon
- Kd water-soil partition coefficient
- Koc carbon-water sorption coefficient
- m³/kg cubic meters per kilogram

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)"

Table 2 Summary of TCE, PCE, VC, PCP, and Perchlorate Concentrations at Goose Prairie Creek LHAAP-47

Source Type	MCL	Source Area	Maximum	Distance to	Source	Years	Maximum	MSC Based on DF	Mixing	Overall MSC
	(µg/L)	(north-south x	Observed	Goose	Release	Contaminant	Concentration at	at POE	Concentration	after
		east-west)	Source	Prairie	Rate*	Starts to	POE at Goose Prairie	at Goose Prairie	in Goose	Discharge into
			Concentration			Appear	(µg/L)		Prairie Creek	Goose Prairie Creek
		(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)	(µg/L)	(µg/L)
Trichloroethene	5.0	200 x 200	29,400.0	1,296	70.000	12	1.08 (30.5 years) (27,222)	136,110	NE	NE
Tetrachloroethene	5.0	200 x 200	168	1,296	0.400	Infinity	0 (Infinity)	Infinity	NE	NE
Vinyl Chloride	2.0	200 x 200	127	264	0.302	0.25	46.1 (3.62 years) (2.75)	5.5	0.0039	65,128
Pentachlorophenol	1.0	200 x 200	7.9	1,296	0.019	Infinity	0 (Infinity)	Infinity	NE	NE
Perchlorate	4 ^(a)	200 x 200	82,900.0	312	197.450	0.5	66,820 (13.6 years) (1.24)	4.96	3.13	105,942

Notes and Abbreviations:

All the sources are instantaneous and extend across the entire aquifer thickness of 5 feet.

* Instantaneuos source release rate in kg = maximum source concentration x porosity x source area x thickness of layer

(a) Texas action level

- µg/L micrograms per liter
- DF dilution/attenuation factor
- kg kilograms
- MCL maximum contaminant level
- mg/L milligrams per liter
- MSC medium-specific concentration
- NE not evaluated due to concentration in groundwater already below MCL, MSC or action level at POE

POE point of entry

City code: 18003	City: Shreveport	Stat	e: LA				
Total P: 43.8 "	El curve #: 96	Freeze-	Freeze-Free days/year: 272				
Elevation (ft): 252	10 yr El: 180	R fact	or: 400				
Mean P (")	Tave (deg. F)	%EI	%EI				
4.02	47.8	0	54				
3.46	51.7	2	58				
3.77	58.15	4	62				
4.71	67.05	6	66				
4.7	73.7	9	70				
3.54	81.2	12	74				
3.56	83.45	17	78				
2.52	84.15	23	82				
3.29	78.75	30	86				
2.63	68.45	37	90				
3.77	56.25	43	94				
3.87	49.8	49	97				

Table 3 Rainfall/Runoff Erosivity (R Factor) Shreveport, Louisiana

	NOOL						Cu	
	R	К	LS	С	Р	SDR	А	SY
SITE47AFF	400	0.12	0.37	0.14	0.579	0.30	1.4	0.73
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

 Table 4

 RUSLE Calculation Result for LHAAP-47 – Affected Area

Notes and Abbreviations:

Annual sediment yield: 1.2 tons/ac-yr

A area

C cover management factor

K soil erodability

L slope length factor

P support practice factor

R rainfall – runoff erosivity factor

S slope steepness factor

SDR sediment delivery ratio

SY sediment yield

	RUSL	E Calcu	lation Re	sult for I	_HAAP-4	7 – Total	Area	
	R	К	LS	С	Р	SDR	А	SY
SITE47ALL	400	0.12	0.43	0.1801	0.58	0.30	2.2	1.1
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Table 5 1-4 14 6. . -.

Notes and Abbreviations:

Annual sediment yield: 1.2 tons/ac-yr

А area

cover management factor soil erodability С

Κ

L slope length factor

Ρ support practice factor

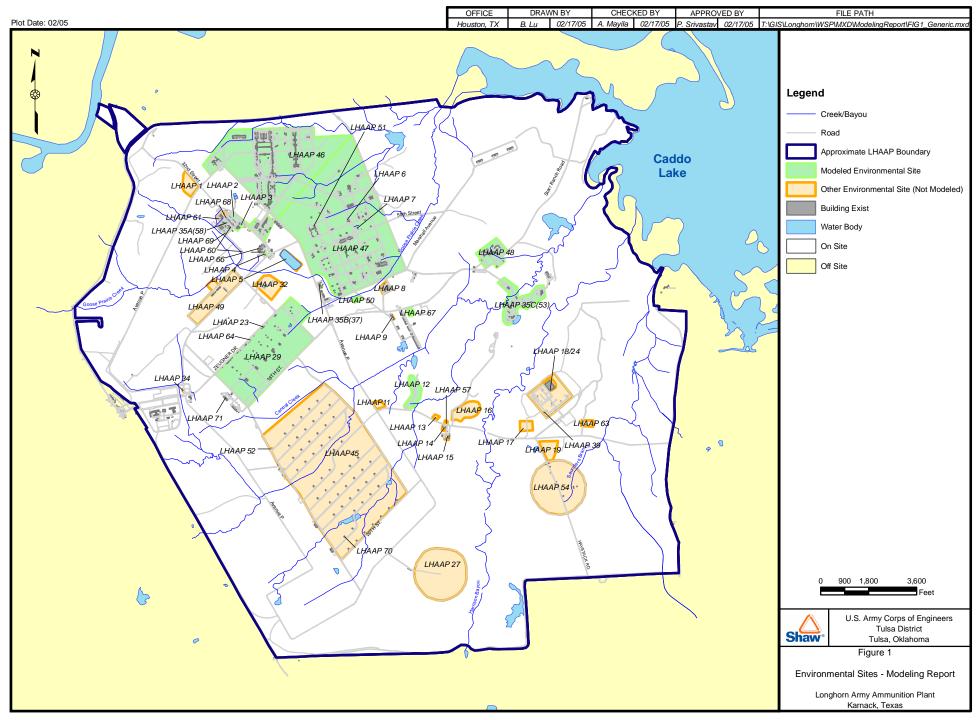
R rainfall - runoff erosivity factor

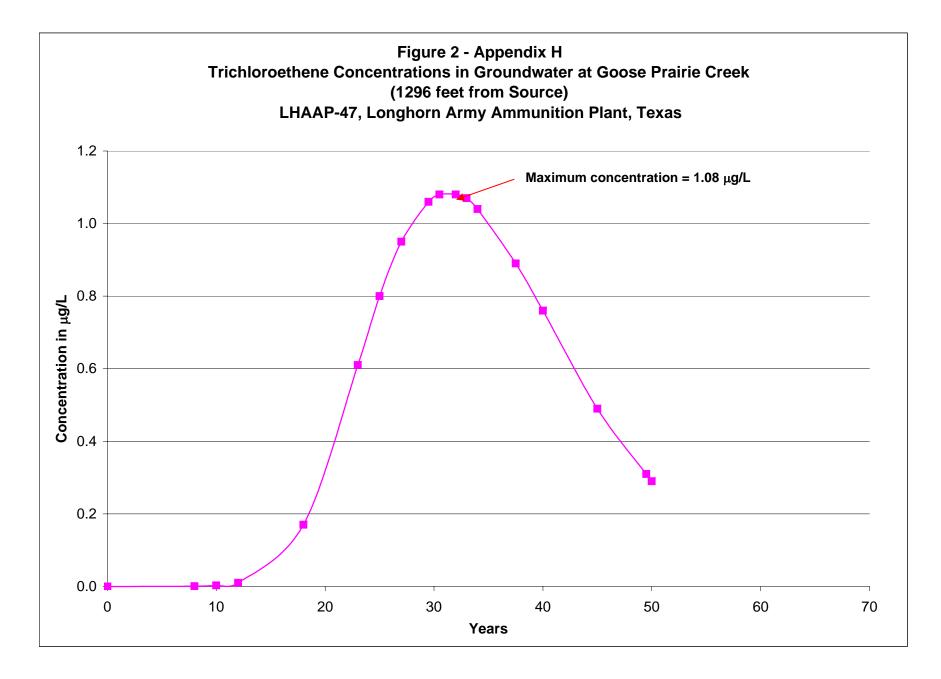
S slope steepness factor

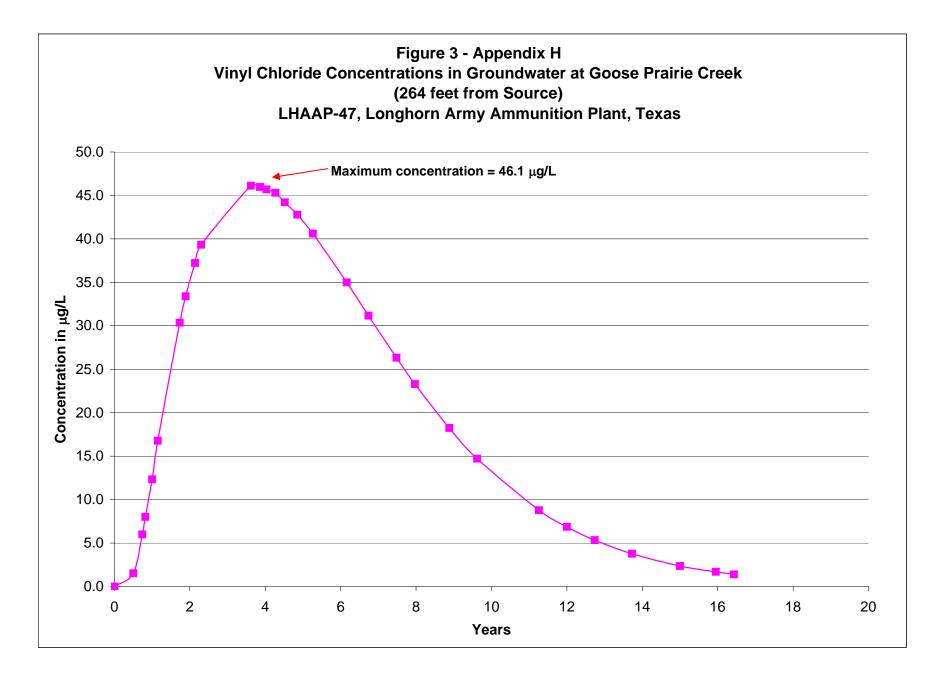
SDR sediment delivery ratio

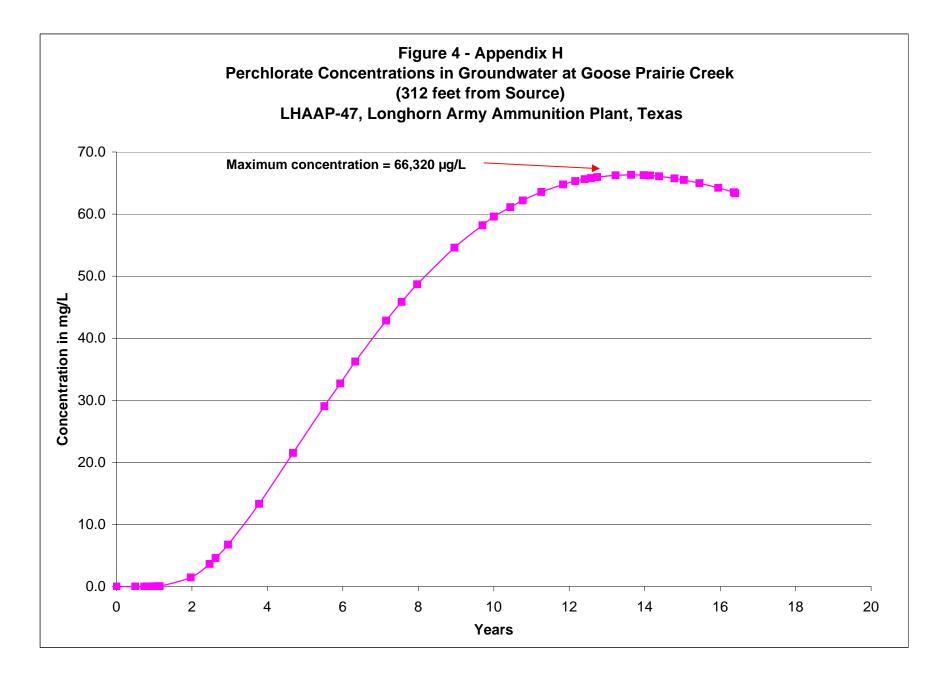
SY sediment yield

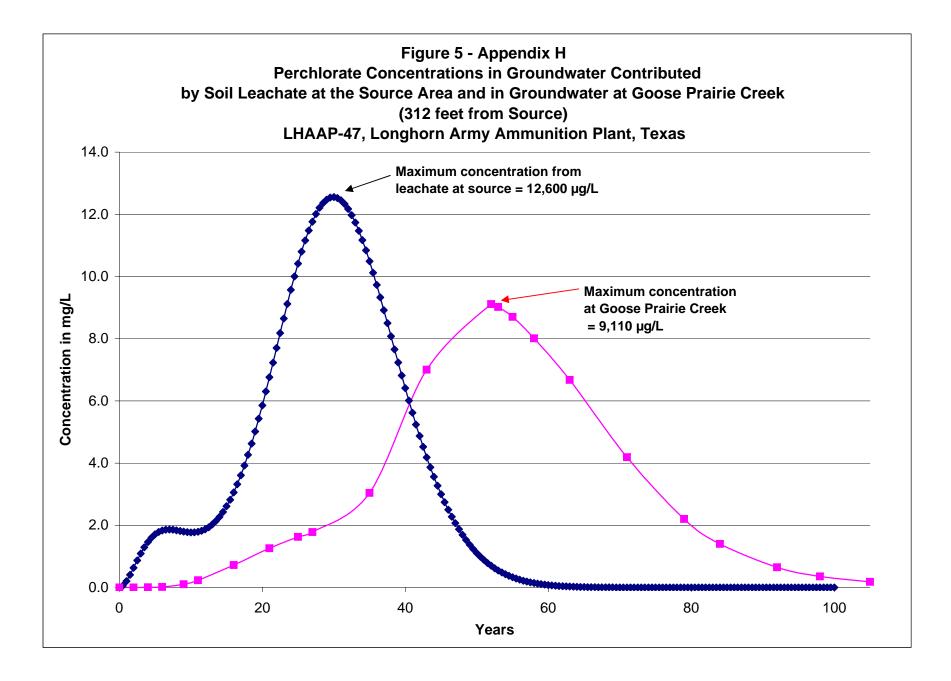
Table 6Calculation of Flow Discharge in Goose Prairie Creek(Data Collected from December 1, 1999 to March 15, 2000)


Month-Year	Year Day of Month Measured Depth (feet)		Depth (feet)	Measured Velocity (feet/second)		Cross Sectional Area (feet ²)		Calculated Discharge (cfs)		Average Discharge	
		Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)	
Dec-99	3 - 9	0.10830	0.22081	1.44906	4.88410	2.80	4.20	4.0574	20.5132	12.2853	
	10 - 16	0.11651	0.30483	0.48774	2.94988	3.21	6.87	1.5656	20.2657	10.916	
	17 - 23	0.06315	0.37523	0.45438	2.12994	2.10	8.56	0.9542	18.2323	9.593	
	24 - 30	0.06315	0.36534	0.45438	14.99560	2.10	7.88	0.9542	118.1653	59.560	
Jan-00	1 - 7	0.02700	0.36224	0.21000	7.10767	1.05	7.98	0.2205	56.7192	28.470	
	8 - 14	0.12681	0.44958	0.24389	11.82963	3.45	18.63	0.8414	220.3860	110.614	
	15 - 21	0.03749	0.36559	0.03032	11.51831	1.41	8.35	0.0428	96.1779	48.110	
	22 - 28	0.06279	0.42399	0.80813	14.08148	2.08	17.56	1.6809	247.2708	124.476	
Feb-00	1 - 7	0.09417	0.42572	0.12182	9.59478	2.65	20.51	0.3228	196.7889	98.556	
	8 - 14	0.05132	0.37422	0.04973	6.47123	1.75	8.01	0.0870	51.8346	25.961	
	15 - 21	0.03763	0.37675	0.04530	0.53829	1.48	9.24	0.0670	4.9738	2.520	
	22 - 28	0.14625	0.48311	0.35183	1.14280	4.45	20.51	1.5656	23.4388	12.502	
Mar-00	1 - 7	0.10288	0.37274	0.16989	0.50621	2.79	7.95	0.4740	4.0244	2.249	
	8 - 14	0.20995	0.58798	0.48053	1.13559	6.10	21.55	2.9312	24.4720	13.702	


Notes and Abbreviations:


Measured depths and measured velocities are averaged values over every seven days.


Average flow discharges are the average values of upstream and downstream discharges.


cfs cubic feet per second

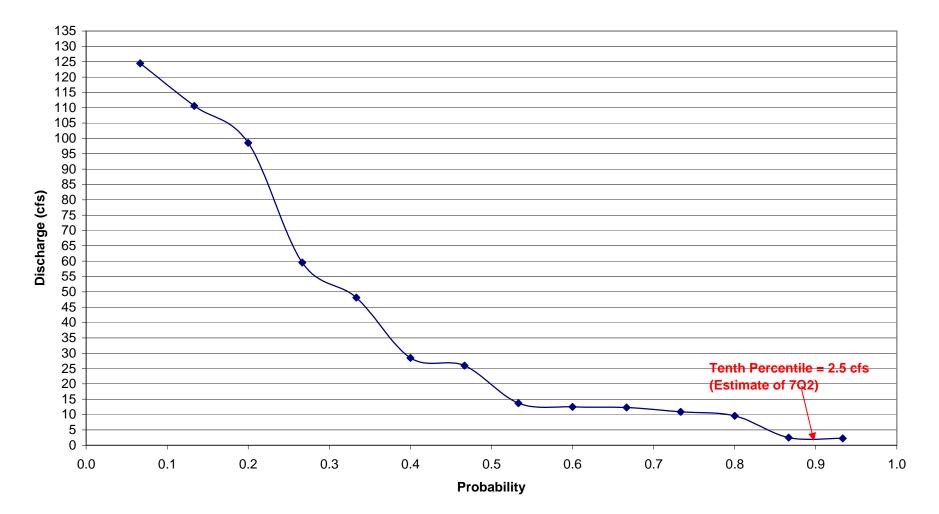


Figure 6 - Appendix H Low Flow Analysis Probability vs Flow Discharge for Goose Prairie Creek Based on December 1999 to March 2000 Flow Derivation

Appendix I

LHAAP-48 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Central Creek from Groundwater

Table of Contents

1.0	Introduction	1-1
2.0	Assumptions and Conditions	2-1
3.0	Groundwater Protective of Surface Water	3-1
4.0	References	4-1

List of Tables _____

Table 1	Maximum Concentrations and Chemical Properties for COCs at LHAAP-48
Table 2	Calculation of Flow Discharge in Central Creek (Downstream)
Table 3	Summary of TCE and Perchlorate Concentrations at the Tributary of Central Creek, LHAAP-48

List of Figures _____

- Figure 1 Environmental Sites – Modeling Report
- Figure 2 Low Flow Analysis – Probability vs Flow Discharge for Central Creek (Downstream)

1.0 Introduction

LHAAP-48 is located in the east-central portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-48 was also known as the Y-Area or Igniter Area. The chemicals of concern are trichloroethene (TCE) and perchlorate in groundwater at maximum concentrations of 9 and 160 μ g/L, respectively. The chemicals of concern (COCs) are at levels that are higher than their respective maximum contaminant level (MCL) and action level.

The purpose of the modeling was to calculate the maximum concentrations and dilution factors for each COC at the point of entry (POE) of groundwater into the surface water, and to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factors with the MCL for TCE, and interim action level (IAL) for perchlorate. The closest surface water body is Central Creek. Groundwater flows to the southeast based on December 1998 water level measurements (Jacobs, 2002a).

Because LHAAP-48 is located on both sides of the tributary of the Central Creek and the monitoring wells are very close to this tributary, it was assumed conservatively that the maximum concentration of TCE and perchlorate occurred at the creek. Therefore, no groundwater flow and transport modeling was performed.

Elevated vinyl chloride and tetrachloroethene were also found in the top soil at the site. The leaching modeling and the evaluation of soil concentration protective of sediment and surface water is addressed in Appendix L.

2.0 Assumptions and Conditions

In modeling LHAAP-48, several site specific conditions and assumptions were made. These include the origin of the contaminant source and assumptions made regarding properties of the shallow water bearing zone. These assumptions and conditions are detailed below.

- Contaminant source: No continuous source in the upper soil layer is assumed. It was assumed that TCE and perchlorate plumes are at the tributary of Central Creek. No groundwater modeling is required, only a mixing calculation was performed a conservative approach. Observed maximum concentrations are assumed to be present in the groundwater at the POE into Central Creek.
- The properties of the shallow water bearing zone used in the calculation were as follows:
 - Average shallow water bearing zone thickness: 10 feet (no geologic cross sections were available, the well screen average length was used instead)
 - Average hydraulic conductivity (*K*) based on the slug tests at LHAAP-48 was estimated to be 3.8×10^{-5} cm/sec (Jacobs, 2002a)
 - Hydraulic gradient: 0.00679 feet/feet based on the groundwater level map (Figure 3B, Appendix A September 2000 potentiometric surface map; Jacobs, 2001a)

Chemical properties of each chemical including the carbon partition coefficient, water-soil distribution coefficient, and half-life are listed in **Table 1**.

3.0 Groundwater Protective of Surface Water

Because LHAAP-48 is located on both sides of the tributary of Central Creek and the monitoring locations are very close to the tributary, it was assumed conservatively that the maximum concentrations of TCE and perchlorate observed at the site also occurred at the POE at the creek.

The mixing concentration of TCE and perchlorate in Central Creek was based on the flow discharge from the groundwater into the creek and the flow in the creek using 7Q2 estimation, which is the 10^{th} percentile flow derived from the TCEQ approach (2003) (**Figure 1** and **Table 2**).

Dilution factor in the creek (DF) = $(Q_{gw} + 7Q2)/Q_{gw} = (3.46 \times 10^{-5} + 1.75)/3.46 \times 10^{-5}$

Mixing concentration for TCE in Central Creek: $9/50579 = 1.8 \times 10^{-4} \mu g/L$

Mixing concentration for perchlorate: $160/50579 = 3.2 \times 10^{-3} \mu g/L$

Mixing calculation results show that concentrations of TCE $(1.8 \times 10^{-4} \ \mu g/L)$ and perchlorate $(3.2 \times 10^{-3} \ \mu g/L)$ in the tributary of Central Creek are much lower than their respective MCL and IAL (**Table 3**). These concentrations are, therefore, protective of surface water.

3-1

4.0 References

References are provided in the main document, Section 8.0.

Table 1
Maximum Concentrations and Chemical Properties for COCs at LHAAP-48

Chemical	Maximum Observed Concentration in GW (µg/L)	MCL (µg/L)	Koc ⁽¹⁾ cm ³ /g	foc %	Kd cm³/g	Kd m³/kg	Half-life years ⁽²⁾	Degradation Rate (1/year)
Trichloroethene	9	5.0	100.0	0.1	0.1	1.00E-04	4.5	0.154
Perchlorate ⁽³⁾	160	4.0 ⁽⁴⁾	N/A				N/A	N/A

Notes and Abbreviations:

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)"

(2) Howard, et al., 1991," Environmental Degradation Rates"

(3) No data available, assumed no degradation and no water-soil partitioning

(4) Texas interim action level

- % percent
- µg/L micrograms per liter
- cm³/g cubic centimeters per gram
- COC contaminant of concern
- foc fraction organic carbon
- Kd water-soil partition coefficient
- Koc carbon-water sorption coefficient
- m3/kg cubic meters per kilogram
- mg/kg milligrams per kilogram
- N/A not available
- NE not estimated

Month-Year	Day of Month	Measured Depth	Measured Velocity	Cross Sectional Area	Calculated Discharge
		(ft)	(ft) (ft/s)		(cfs)
		Downstream	Downstream	Downstream	Downstream
Dec-99	3 - 9	1.11074	1.29100	6.31	8.1462
	10 - 16	1.48660	0.25542	7.30	1.8646
	17 - 23	1.46344	0.73705	7.25	5.3436
	24 - 30	1.32520	0.23729	7.00	1.6610
Jan-00	1 - 7	1.06090	0.29642	11.90	3.5274
	8 - 14	1.62076	0.19877	10.80	2.1467
	15 - 21	1.48365	0.15027	7.20	1.0819
	22 - 28	1.36087	3.31644	11.00	36.4808
Feb-00	1 - 7	1.63820	0.54047	6.12	3.3077
	8 - 14	1.51571	0.25153	11.70	2.9429
	15 - 21	1.44892	1.64454	7.26	11.9394
	22 - 28	1.55024	0.25240	7.15	1.8047
Mar-00	1 - 7	2.07625	3.62250	17.90	64.8428
	8 - 14	2.40898	2.59353	25.30	65.6163

 Table 2

 Calculation of Flow Discharge in the Central Creek (Downstream) (Data Collected from Dec 1, 1999 to March 15, 2000)

Notes and Abbreviation:

Measured depths and measured velocities are averaged values over every seven days.

Cross sectional areas are based on the measured depths and cross sections .

cfs cubic feet per second

ft² square feet

Table 3 Summary of TCE and Perchlorate Concentrations at the Tributary of Central Creek LHAAP-48

Source Type	MCL	Source Area	Maximum	Distance to	Source	Years	Maximum Concentration	MSC Based on DF	Mixing Concentration	Overall MSC
		(north-south x	Observed Source	Tributary of	Release	Contaminant	in Groundwater at POE at the	at POE at the	in Tributary	after Discharge
		east-west)	Concentration	Central Creek	Rate	Starts to Appear	Tributary of Central Creek	Trib. Of Central Creek	of Central Creek	into Tributary
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(µg/L)	(mg/L)	(µg/L)	(µg/L)
Trichloroethene	5.0	NE	9.0	0	NE	NE	9	NE	1.80E-04	13,805,555
Perchlorate	4 ^(a)	NE	160.0	0	NE	NE	160	NE	3.20E-03	200,000

Notes and Abbreviations:

All the sources are instantaneous and extend across the entire aquifer thickness of 10 feet.

^(a) Texas interim action level

- µg/L micrograms per liter
- DF dilution factor
- kg kilograms
- MCL maximum contaminant level
- mg/L milligrams per liter
- MSC medium specific concentration
- NE not evaluated due to allocation of maximum concentrations at point of exposure without any modeling
- POE point of entry
- TCE trichloroethene

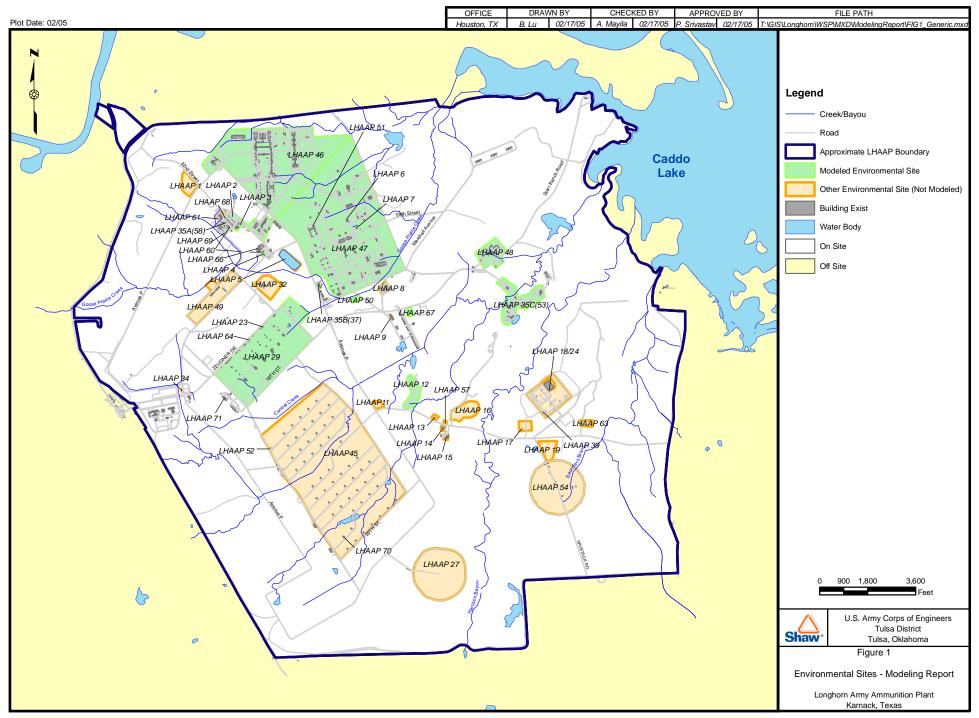
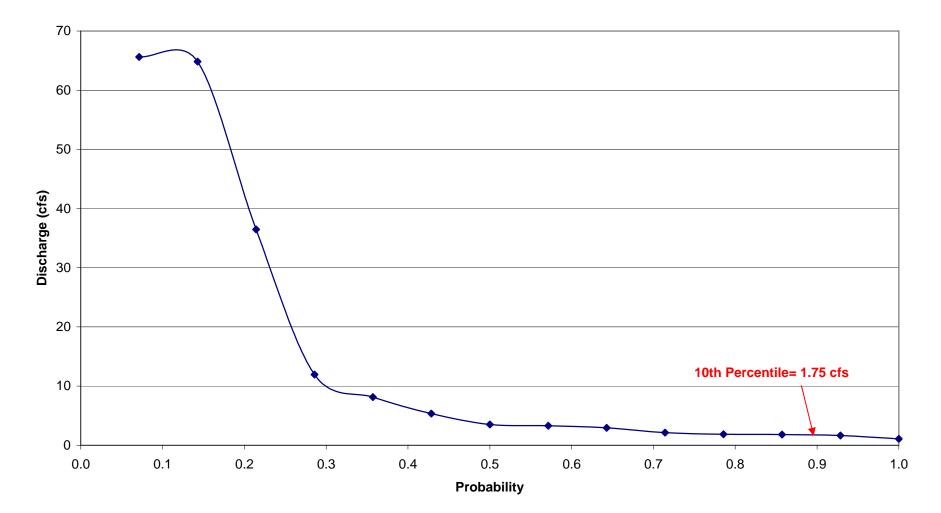



Figure 2 - Appendix I Low Flow Analysis Probability vs Flow Discharge for Central Creek (Downstream) Based on December 1999 to March 2000 Flow Derivation

Appendix J

LHAAP-50 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Goose Prairie Creek from Groundwater

Table of Contents_____

1.0	Introduction	1-1
	Input Parameters and Assumptions	
	Groundwater Protective of Surface Water	
	3.1 Dilution in Goose Prairie Creek	3-1
4.0	References	4-1

List of Tables _____

Table 1	Maximum Concentrations and Chemical Properties for COCs at LHAAP-50
Table 2	Summary of TCE, PCE, Vinyl Chloride, 1,2-Dichloroethane, and Perchlorate
	Concentrations at Goose Prairie Creek, LHAAP-50
Table 3	Calculation of Flow Discharge in Goose Prairie Creek

List of Figures _____

Figure 1	Environmental Sites – Modeling Report
Figure 2	Trichloroethene Concentrations in Groundwater at Goose Prairie Creek (132 feet
	from Source), LHAAP-50
Figure 3	Vinyl Chloride Concentrations in Groundwater at Goose Prairie Creek (132 feet
	from Source), LHAAP-50
Figure 4	Perchlorate Concentrations in Groundwater at Goose Prairie Creek (132 feet from
-	Source), LHAAP-50
Figure 5	Low Flow Analysis – Probability vs Flow Discharge in Goose Prairie Creek

1.0 Introduction

LHAAP-50 is located on the north-central portion of Longhorn Army Ammunition Plant (**Figure 1**). LHAAP-50 was identified as an aboveground storage tank for industrial wastewater collected from industrial waste production sumps located at various sites throughout LHAAP. The chemicals of concern (COCs) are trichloroethylene (TCE), tetrachloroethene (PCE), vinyl chloride (VC), 1,2-dichloroethane (1,2-DCA) and perchlorate in groundwater at maximum concentrations of 22,000, 35, 100, 98 and 18, 000 μ g/L, respectively (Jacobs, 2002a). The COCs are at levels that are higher than their respective maximum contaminant levels (MCLs) and action levels.

The purpose of the modeling was to calculate the maximum concentrations and dilution factors for each COC at the interface of groundwater and Goose Prairie Creek, and to develop the groundwater medium-specific concentrations (MSCs) by multiplying the dilution factors with the applicable regulatory standards. The closest surface water body is Goose Prairie Creek. Groundwater flows to the northeast based on September 2000 water level measurements (Jacobs 2001a). The distance from LHAAP-50 to Goose Prairie Creek is approximately 132 feet.

In order to calculate the maximum concentrations of the COCs and the time of travel just before they are discharged to Goose Prairie Creek, the computer program AT123D was used.

2.0 Input Parameters and Assumptions

Groundwater modeling at LHAAP-50 was based on the following assumptions and considerations:

- Contaminant source: No continuous source in the upper soil layer for contaminants, instantaneous source is assumed for these chemicals.
- Conservatively, it was assumed that the plumes are approximately 132 feet from Goose Prairie Creek and the groundwater flow is to the northeast direction (parallel to the creek) as shown on the potentiometric surface map based on September 2000 water level measurements (Jacobs, 2001a).
- Average shallow water bearing zone thickness: 10 feet (no geologic cross section is available, well screen average length is used instead)
- The properties of the shallow water bearing zone used in the model were as follows:
 - The average hydraulic conductivity (*K*) based on the slug tests at LHAAP-47 was estimated to be 1.26×10^{-4} cm/sec (Jacobs, 2002a)
 - Hydraulic gradient: 0.0038 feet/feet based on the groundwater level map (September 2000 – Jacobs, 2001a)
 - Effective porosity assumed at 0.25
 - Longitudinal groundwater dispersivity: = $x \times 0.1$ (ASTM, E-1739-95, Table x3.1, 1995) where *x* is the travel distance of contaminants, assumed to be the distance from the source to the Goose Prairie Creek = 13.2 feet
 - Transverse groundwater dispersivity: = α_x / β (ASTM, E-1739-95, Table x3.1, 1995) = 4.4 feet
 - Vertical groundwater dispersivity: = $\alpha x / 20$ (ASTM, E-1739-95, Table x3.1, 1995) = 0.2 feet
 - Chemical properties of each chemical including the carbon partition coefficient, water-soil distribution coefficient, degradation rate, and half-life are listed in Table 1. Due to dechlorination as evidenced by the existence of TCE and VC, the daughter products of PCE, degradation rates at the site were assumed for these chemicals using literature values (Table 1, Howard et al., 1991).

3.0 Groundwater Protective of Surface Water

LHAAP-50 is located on the southern side of Goose Prairie Creek and the distance between the creek and plume is very short. However, groundwater flows parallel to the creek. Conservatively, it was assumed that the groundwater flows toward the creek in an event of change of groundwater flow direction. Computer modeling using AT123D shows that the maximum concentrations of TCE (567.5 μ g/L), VC (5.32 μ g/L), and perchlorate (17,800 μ g/L) in groundwater at the point of entry into the creek are higher than their respective regulatory levels (**Table 2** and **Figures 2**, **3**, and **4**). Therefore, mixing concentrations in the creek for these three chemicals were calculated. Concentrations of PCE and 1,2-DCA are way below MCLs at the creek.

3.1 Dilution in Goose Prairie Creek

TCE, VC, and perchlorate in groundwater are subject to mixing and dilution after they are discharged into Goose Prairie Creek.

The DF of perchlorate after mixing with surface water in Goose Prairie Creek is calculated based on the dilution factor of the mixing calculated below:

$$DF = \frac{Q_{GW} + Q_{CC}}{Q_{GW}}$$
 Equation J1

where Q_{CC} and Q_{GW} are the flow rates in Goose Prairie Creek and in groundwater, respectively.

$$Q_{GW} = U_{gW} * \delta_p * Lm$$
 Equation J2

where U_{gw} , δ_p and L_m are the approaching groundwater seepage velocity, the thickness and width of the plume approaching surface water. U_{gw} (= Ki/n) is 1.98 feet/year, calculated based on the hydraulic conductivity of 1.26×10^{-4} cm/sec, hydraulic gradient of 0.0038 and the effective porosity of 0.25. δ_p is 10 feet and L_m is unknown at the intersection but can be conservatively assumed as the width at the source, which is 100 feet (northwest-southeast direction). Then:

$$Q_{GW} = 1.981/(365 \times 86400) \times 10 \times 100 = 6.283 \times 10^{-5} \text{ ft}^3/\text{s}$$
 Equation J3

Calculation of Q_{CC} must be based on the 7Q2 stream flow analysis. The 7Q2 is the low flow at the point of entry, defined as the flow discharge in seven consecutive days that occurs once every two years, statistically. At Goose Prairie Creek, two sets of stream data at the upstream and downstream cross sections are available from the U.S. Army Corps of Engineers. These data sets include the velocity data and the gauge readings (i.e., depths of water) obtained during the period between December 1999 and March 2000; a total of only 4 months. Flow discharge data were not available. Based on these data, the average flow discharges in every consecutive 7-day period were calculated and are presented in **Table 3**. Note that because there is no observation at the point where contaminated groundwater flow discharges into the Goose Prairie Creek, average values between upstream and downstream flow were used. Because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 2.5 cubic feet per second (cfs) is derived (**Figure 5**). Then:

$$DF = (6.283 \times 10^{-5} + 2.5)/(6.283 \times 10^{-5}) = 39,791$$
 Equation J4

The mixing concentrations for the three chemicals in Goose Prairie Creek are:

Trichloroethene:	$567.5/39791 = \ 0.014 \ \mu g/L$
Vinyl chloride:	$16.8/39791 = 4.22 \times 10^{-4} \ \mu g/L$
Perchlorate:	17840/39791 = 0.448 µg/L

The above mixing calculation results (summarized in **Table 2**) show that concentrations of TCE (0.014 μ g/L), VC (4.22 × 10⁻⁴ μ g/L), and perchlorate (0.448 μ g/L) in Goose Prairie Creek are much lower than their respective MCLs or the action level; hence, the COC levels in groundwater are protective of surface water.

Field Confirmation

All the maximum concentrations of COCs occurred at 50WW02, which is 132 feet away from the Goose Prairie Creek. The model assumes a plume area of 100 ft x 100 ft with the maximum concentrations of each contaminant. There is no downgradient well before approaching the creek. For this reason, no evaluation of contaminant concentration at a lateral location downgradient was attempted to provide field confirmation of the model.

4.0 References

References are provided in the main document, Section 8.0.

Та	ble 1
Maximum Concentrations and Chen	nical Properties for COCs at LHAAP-50

Chemical	Maximum Observed Concentration in GW (µg/L)	MCL (µg/L)	Koc ⁽¹⁾ cm ³ /g	foc %	Kd cm³/g	Kd m³/kg	Half-life years ⁽²⁾	Degradation Rate (1/year)
Trichloroethene	22,000.0	5.0	100.0	0.1	0.1	1.00E-04	4.5	0.154
Tetrachloroethene	35.0	5.0	155.0	0.1	0.155	1.55E-04	2	0.347
Vinyl Chloride	100.0	2.0	11.0	0.1	0.011	1.10E-05	3.4	0.087
1,2-Dichloroethane	98.0	5.0	31.6	0.1	0.0316	3.16E-05	1	0.693
Perchlorate ⁽³⁾	18,000.0	4.0 ⁽⁴⁾	N/A				N/A	N/A

Notes and Abbreviations:

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)"

(2) Howard et al., 1991," Environmental Degradation Rates"

(3) No data available, assumed no degradation and no water-soil partitioning

(4) TCEQ interim action level

% percent

µg/L micrograms per liter

cm³/g cubic centimeters per gram

- foc fraction organic carbon
- Kd water-soil partition coefficient

Koc carbon-water sorption coefficient

m³/kg cubic meters per kilogram

N/A not available

Table 2 Summary of TCE, PCE, VC, 1,2-DCA, and Perchlorate Concentrations at Goose Prairie Creek, LHAAP-50

Source Type	MCL	Source Area	Maximum Observed Source	Distance to Goose Prairie	Source Release Rate*	Years Contaminant Starts to Appear	Maximum Concentration at Goose Prairie Creek	MSC Based on DF at Groundwater &	Mixing Concentration in Goose Prairie Creek	Overall MSC at Point of Discharge
	<i>(</i> ")	(north-south x east-west)	Concentration	Creek		<i>(</i>)	(μg/L)	Goose Prairie Creek	(")	into Goose Prairie Creek
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)	(µg/L)	(µg/L)
Trichloroethene	5.0	100 x 100	22,000.0	132	21.8	1	567.5 (11.5 years)	194	0.014	7,857,143
							(38.8)			
Tetrachloroethene	5.0	100 x 100	35.0	132	0.035	7.5	0	Infinity	NE	NE
							(Infinity)			
Vinyl Chloride	2.0	100 x 100	100.0	132	0.099	1.5	16.8 (12.5 years)	11.9	4.22x10 ⁻⁴	473,934
,							(5.95)			
1,2-Dichloroethane	5.0	100 x 100	98.0	132	0.097	1.5	0	Infinity	NE	NE
							(Infinity)			
Perchlorate	4 ⁽¹⁾	100 x 100	18,000.0	132	17.840	1.0	17,840 (31.5 years)	4.04	0.448	160,714
							(1.01)			

Notes and Abbreviations

All the sources are instantaneous and extend across the entire aquifer thickness of 10 feet.

* Instantaneuos source release rate in kg = maximum source concentration x porosity x source area x thickness of layer

- ⁽¹⁾ Texas interim action level µg/L micrograms per liter
- DF dilution/attenuation factor
- kg kilogram

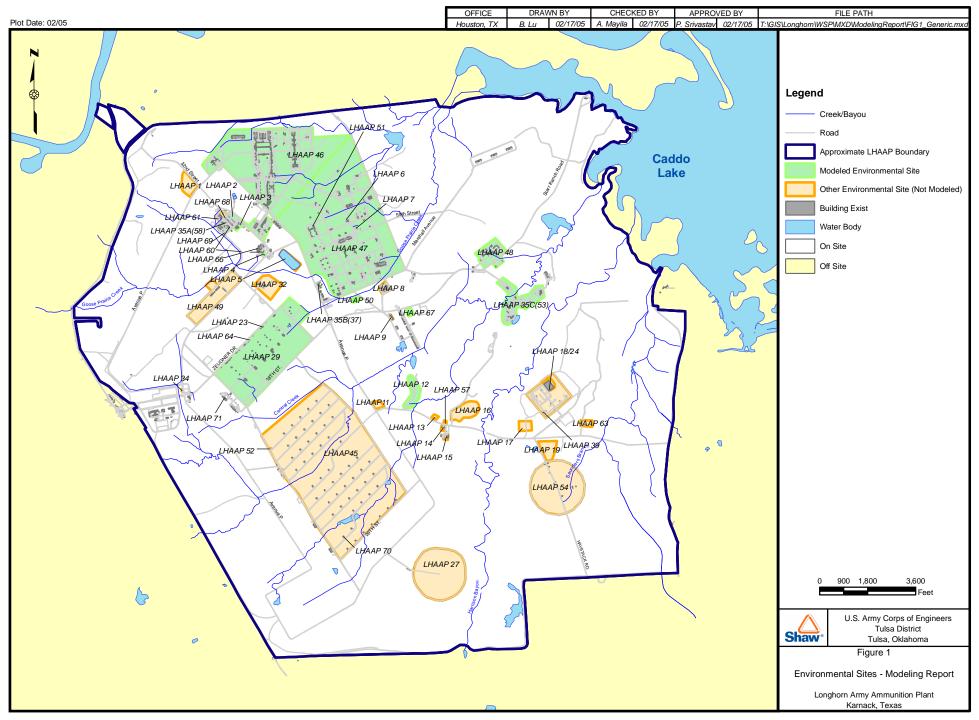
MCL maximum contaminant level

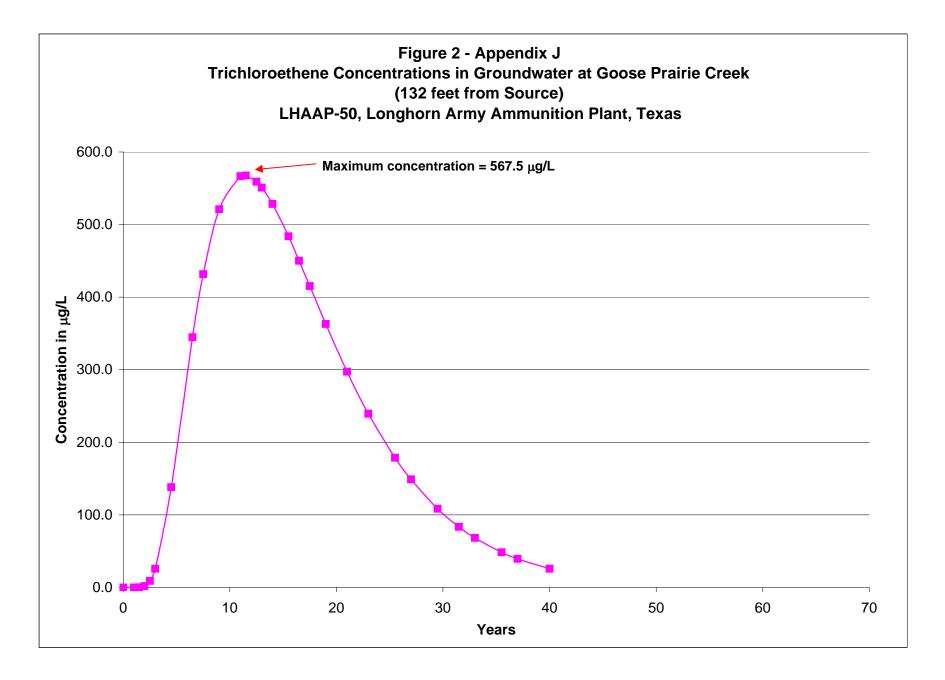
mg/L milligrams per liter

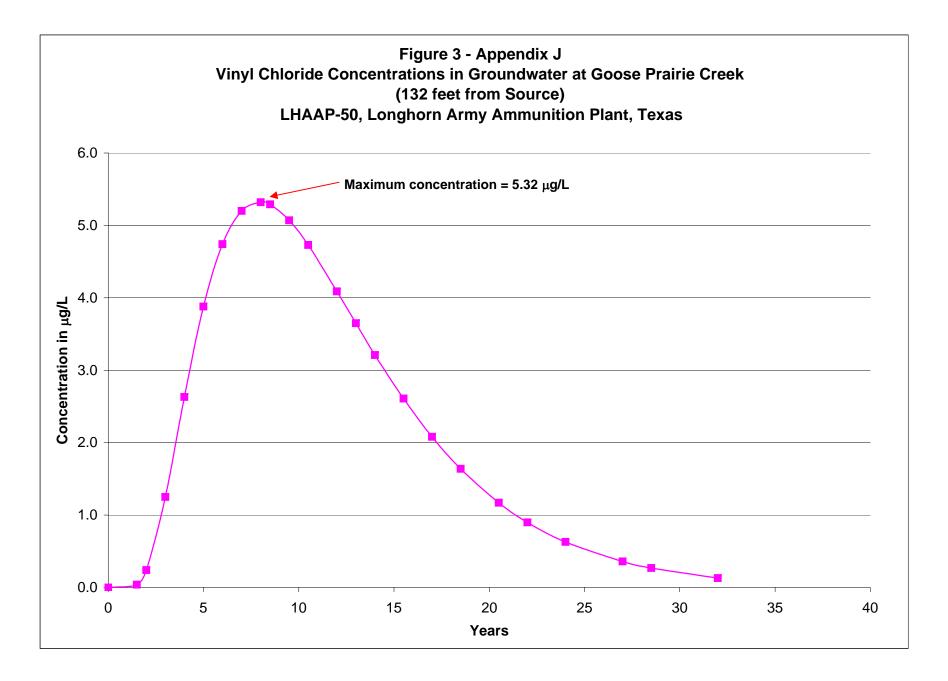
MSC medium specific concentration

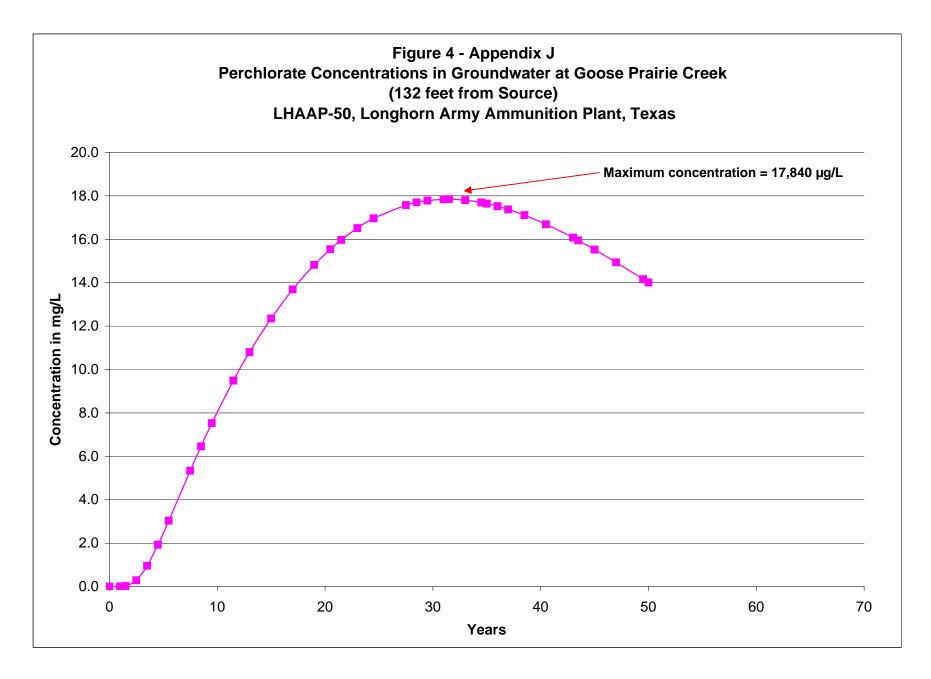
NE not evaluated due to concentration in groundwater already below MCL, or action level at point of entry

Table 3Calculation of Flow Discharge in Goose Prairie Creek(Data Collected from December 1, 1999 to March 15, 2000)


Month-Year	Day of Month	Measured	Depth (feet)	Measured V	elocity (feet/second)	Cross Sectior	nal Area (feet ²)	Calculated Dis	charge (cfs)	Average Discharge
		Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)
Dec-99	3 - 9	0.10830	0.22081	1.44906	4.88410	2.80	4.20	4.0574	20.5132	12.2853
	10 - 16	0.11651	0.30483	0.48774	2.94988	3.21	6.87	1.5656	20.2657	10.916
	17 - 23	0.06315	0.37523	0.45438	2.12994	2.10	8.56	0.9542	18.2323	9.593
	24 - 30	0.06315	0.36534	0.45438	14.99560	2.10	7.88	0.9542	118.1653	59.560
Jan-00	1 - 7	0.02700	0.36224	0.21000	7.10767	1.05	7.98	0.2205	56.7192	28.470
	8 - 14	0.12681	0.44958	0.24389	11.82963	3.45	18.63	0.8414	220.3860	110.614
	15 - 21	0.03749	0.36559	0.03032	11.51831	1.41	8.35	0.0428	96.1779	48.110
	22 - 28	0.06279	0.42399	0.80813	14.08148	2.08	17.56	1.6809	247.2708	124.476
Feb-00	1 - 7	0.09417	0.42572	0.12182	9.59478	2.65	20.51	0.3228	196.7889	98.556
	8 - 14	0.05132	0.37422	0.04973	6.47123	1.75	8.01	0.0870	51.8346	25.961
	15 - 21	0.03763	0.37675	0.04530	0.53829	1.48	9.24	0.0670	4.9738	2.520
	22 - 28	0.14625	0.48311	0.35183	1.14280	4.45	20.51	1.5656	23.4388	12.502
Mar-00	1 - 7	0.10288	0.37274	0.16989	0.50621	2.79	7.95	0.4740	4.0244	2.249
1	8 - 14	0.20995	0.58798	0.48053	1.13559	6.10	21.55	2.9312	24.4720	13.702


Notes and Abbreviations:


Measured depths and measured velocities are averaged values over every seven days.


Average flow discharges are the average values of upstream and downstream discharges.

cfs cubic feet per second

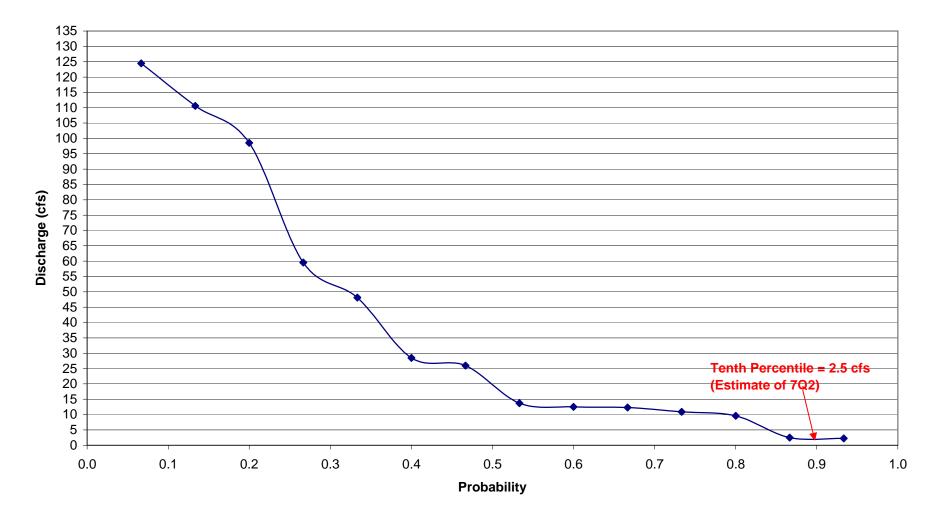


Figure 5 - Appendix J Low Flow Analysis Probability vs Flow Discharge for Goose Prairie Creek Based on December 1999 to March 2000 Flow Derivation

Appendix K

LHAAP-67 Calculation of Maximum Concentrations and Dilution Factors of Contaminants Discharged to Central Creek

Table of Contents_____

1.0	Introduction	1-1
2.0	Input Parameters and Assumptions	
3.0	Simulation and Results	3-1
	3.1 Instantaneous Source Scenario	3-1
	3.2 Continuous Source Scenario	3-1
4.0	References	4-1

List of Tables _____

Chemical Properties for LHAAP-67 Groundwater Fate and Transport Modeling
Summary of 1,1-DCE, 1,2-DCA, 1,1,1-TCA, 1,1,2-TCA, and TCE Concentrations at
Central Creek (867 feet Downgradient from Source)
Calculation of Flow Discharge in the Central Creek (Data Collected from
December 1, 1999 to March 15, 2000)

List of Figures _____

Figure 2 Low Flow Analysis, Probability vs. Flow Discharge for Central Creek Based on December 1999 to March 2000 Flow Derivation

1.0 Introduction

LHAAP-67 is located approximately at the center of Longhorn Army Ammunition Plant with LHAAP-12 to the south and LHAAP-8 to the northwest (**Figure 1**). This site was referred to as the aboveground storage tank area where seven aboveground tanks stored fuel oil, kerosene, and solvents.

The chemicals of concern (COC) in the groundwater at LHAAP-67 are 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), and trichloroethene (TCE), detected at maximum concentrations of 380 μ g/L, 27.0 μ g/L, 1,800 μ g/L, 33.0 μ g/L and 6.3 μ g/L, respectively. The purpose of the following evaluation is to calculate the dilution factor of each contaminant at the location where they may enter the nearest surface body.

There are two streams in the vicinity of LHAAP-67: Central Creek to the southeast and Goose Prairie Creek to the northwest. Contaminants in the groundwater are most likely to travel to Central Creek rather than to Goose Prairie Creek due to the easterly and southeasterly groundwater flow from LHAAP-67 based on December 1998 groundwater level measurements (Figure 3A-Appendix A; Figure 2-1 in Jacobs, 2002a). The distance from LHAAP-67 to Central Creek is approximately 867 feet (**Figure 1**).

The purpose of this calculation is to estimate the maximum concentrations and dilution factors (DFs) of the five COCs at the point of entry (POE) of the groundwater into Central Creek, and to develop the groundwater medium-specific concentrations (MSCs) by multiplying these dilution factors with the maximum contaminant levels (MCLs).

In order to calculate the maximum concentrations of the contaminants and the time of travel at the POE at Central Creek, AT123D was used.

2.0 Input Parameters and Assumptions

The groundwater model at LHAAP-67 was based on the following assumptions and considerations:

- Instantaneous and continuous source scenarios were assumed. When there is no leachate contribution from the vadose zone soil to the groundwater, the only source is the current plume. This plume can be treated as an instantaneous source. On the other hand, leachate from soil may still be probable at LHAAP-67. In this case, leachate was considered as a continuous source and may replenish the contaminants in groundwater over time. Therefore, in the current modeling, both instantaneous and continuous source scenarios were considered because of the uncertainty of the cases. For the continuous source scenario, it was conservatively assumed that the maximum concentrations of contaminants remained constant throughout the entire simulation period to account for the constant continuous source.
- The source area was assumed conservatively to be the plume area. The dimensions of the plume are assumed to be: 200 feet (east-west) by 300 feet (north-south) by 13.5 feet in depth (i.e., shallow sand thickness) for all the contaminants.
- Shallow sand thickness. Because no geologic cross sections were constructed for this site, the geologic cross sections in the most southern end of LHAAP-47 were used (Figures 9-2 through 9-6, Jacobs 2002a). The thickness of the shallow water bearing zone consisting of sand is in the range of 12 to 15 feet. Therefore, an average depth of 13.5 feet was used. It was assumed that the contaminant source in this shallow zone extended to the entire depth of 13.5 feet.
- The contaminant release rates for the two source scenarios. For instantaneous release, the release rate is actually the mass of contaminant within the plume with maximum concentration (in kg) a conservation estimation. For the continuous source scenario, the release rate was estimated based on the maximum concentration in the plume multiplied by the groundwater velocity and plume area (in kg/hr). The continuous release rate was assumed to be constant for a 100 year period. The chemical properties and the calculated contaminant release mass and the release rate for all the COCs are presented in **Table 1** and **Table 2**, respectively.

The contaminant source in the saturated zone was assumed to reach the full thickness of the aquifer (i.e., 13.5 feet).

The properties of the shallow water bearing zone used in the model were as follows:

- Average hydraulic conductivity: 5.21×10^{-3} cm/sec (Jacobs, 2002a);
- Hydraulic gradient: 0.0033 feet/feet (based on potentiometric surface map in Jacobs, 2001b)

- Effective porosity: 0.25 assumed)
- α_x = longitudinal groundwater dispersivity (feet) = $x \times 0.1$ (ASTM, E-1739-95, Table x3.1, 1995) where *x* is the travel distance of contaminants, assumed to be the distance from the source to the Central Creek.
- α_y = transverse groundwater dispersivity (feet) = $\alpha_x /3$ (ASTM, E-1739-95, Table x3.1, 1995)
- α_z = vertical groundwater dispersivity (feet) = $\alpha_x/20$ (ASTM, E-1739-95, Table x3.1, 1995)

3.0 Simulation and Results

The simulation time step was one year with a total simulation period of 100 years which was long enough to capture the maximum concentrations occurring at the POE into Central Creek. Computer simulation results were evaluated at the POE. These results include the time when the COCs reach the POE, the time the concentrations reach its peak, the maximum concentrations at this location, the DFs and the MSCs based on DFs and MCLs. **Table 2** presents a summary of these results for both the instantaneous and continuous source scenarios.

3.1 Instantaneous Source Scenario

The DFs calculated for this scenario at the POE are infinity, 450, 753, 143.5, and 48.5 for 1,1-DCE, 1,2-DCA, 1,1,1-TCA, 1,1,2-TCA and TCE, respectively. All maximum concentrations under this scenario are below their respective MCLs at the POE which is the location where groundwater discharges into the creek. No further dilution calculation in the creek is needed for this scenario.

3.2 Continuous Source Scenario

The continuous source scenario yielded much higher concentrations that exceed MCLs at the POE for some of the COCs as shown in **Table 2**. Except for 1,1-DCE and 1,2-DCA, the maximum concentrations of all other contaminants are 240.6 μ g/L, 23.7 μ g/L, and 21.6 μ g/L for 1,1,1-TCA, 1,1,2-TCA, and TCE, respectively. Calculation of dilution of these contaminants in the creek was required.

The DFs of the above mentioned four contaminants after mixing with surface water in the Central Creek are calculated based on the dilution factor of the mixing calculated below:

$$DF = \frac{Q_{GW} + Q_{CC}}{Q_{GW}}$$
 Equation K1

Where:

 Q_{CC} and Q_{GW} are the flow rates in the Central Creek and in groundwater, respectively.

$$Q_{GW} = U_{gw} \times \delta_p \times Lm$$
 Equation K2

Where U_{gw} , δ_p and L_m are the approaching groundwater seepage velocity, the thickness and width of the plume approaching surface water. U_{gw} (= *Ki/n*) is 71.08 feet/year, calculated based on the hydraulic conductivity of 5.206×10^{-3} cm/sec, hydraulic gradient of 0.0033 and the effective porosity of 0.25. δ_p is 13.5 feet and L_m is unknown at the intersection but can be conservatively assumed to be the same width as the source, which is 200 feet. Then:

$$Q_{GW} = 71.08/(365 \times 86400) \times 13.5 \times 200 = 6.1 \times 10^{-3} \text{ ft}^3/\text{s}$$
 Equation K3

Calculation of Q_{CC} has to be based on the 7Q2 stream flow analysis. The 7Q2 is the low flow at the POE, defined as the flow discharge in seven consecutive days that occurs once every two years, statistically. At Central Creek, two sets of stream data at the upstream and downstream cross sections are available from the U.S. Army Corps of Engineers. These data sets include the velocity data and the gauge readings (i.e., depths of water) obtained during the period between December 1999 and March 2000; a total of only 4 months. Flow discharge data were not available. Based on these data, the average flow discharges in every consecutive 7-day period were calculated and are presented in **Table 3**. Note that because there is no observation at the point where contaminated groundwater flow discharges into the Central Creek, average values between upstream and downstream flow were used. Because the derived flow data are less than five continuous years, TCEQ (TCEQ, 2003) requires that the 10th percentile flow be used as an estimate of 7Q2. Based on these fourteen 7-day flow data, the 7Q2 is analyzed and the 10th percentile flow of 1.0 cubic feet per second (cfs) is derived (**Figure 2**). Then:

$$DF = (6.1 \times 10^{-3} + 1.0) \div (6.1 \times 10^{-3}) = 164.9$$
 Equation K4

The mixing concentrations for the four contaminants in Central Creek are:

1,2-DCA:	$3.91/164.9 = 0.024 \mu g/L$
1,1,1-TCA:	$240.6/164.9 = 1.459 \ \mu\text{g/L}$
1,1,2-TCA:	$23.7/164.9 = 0.144 \ \mu g/L$
TCE:	$21.6/164.9 = 0.131 \mu\text{g/L}$

These concentrations are all lower than their respective MCLs. The mixing concentrations and the overall MSCs for all the contaminants are presented in **Table 2**.

Field Confirmation

The initial plume covers an area of 200 ft by 300 ft. There is no downgradient well from the source area before approaching the creek. For this reason, no evaluation of contaminant concentration at a lateral location downgradient was attempted to provide field confirmation of the model.

4.0 References

References are provided in the main document, Section 8.0.

onemical inopenies for EnAAr for Groundwater rate and transport modeling									
Chemical	Koc ⁽¹⁾ cm ³ /g	foc %	Kd cm ³ /g	Kd m ³ /kg	Half-life years ⁽²⁾	Degradation Rate (1/year)			
1,1-Dichloroethene	61.7	0.1	0.0617	6.17E-05	0.362	1.917			
1,2-Dichloroethane	31.6	0.1	0.0316	3.16E-05	1	0.694			
1,1,1-Trichloroethane	125.9	0.1	0.126	1.26E-04	1.5	0.462			
1,1,2-Trichloroethane	70.8	0.1	0.0708	7.08E-05	2	0.347			
Trichloroethene	100	0.1	0.1	1.00E-04	4.5	0.154			

 Table 1

 Chemical Properties for LHAAP-67 Groundwater Fate and Transport Modeling

Notes and Abbreviations:

Sources: (1) Montgomery, 2000, "Groundwater Chemicals - Desk Reference (Third Edition)" (2) Howard, et al., 1991, "Environmental Degradation Rates"

cm³/g cubic centimeters/gram

% percent

m³/kg cubic meters/kilogram

Table 2 Summary of 1,1-DCE, 1,2-DCA, 1,1,1-TCA, 1,1,2-TCA, and TCE Concentrations at Central Creek (867 feet Downgradient from Source)

(a) Instantaneous Source Scenario

Source Type	Source Type Source Area		Maximum	Distance to	Source Release	Years Contaminant	Maximum Concentration	MSC Based on DF
			Observed Source	Central Creek	Rate*	Starts to Appear	at Central Creek	at Groundwater &
	MCL	(north-south x east-west)	Concentration				(mg/l)	Central Creek
	(µg/L)	(feet x feet)	(µg/L)	(feet)	(kg)	(years)	(DF)	(µg/L)
1,1-Dichloroethene	7.0	200 x 300	380	867	3.1	Infinity	0	Infinity
							(Infinity)	
1,2-Dichloroethane	5.0	200 x 300	27.0	867	0.22	2.0	0.06	2250
							(450)	
1,1,1 - Trichloroethane	200.0	200 x 300	1,800	867	14.48	2.0	2.39 (6 Years)	150628
							(753)	
1,1,2 - Trichloroethane	5.0	200 x 300	33.0	867	0.27	4.0	0.23 (6 years)	717
							(143.5)	
Trichloroethene	5.0	200 x 300	6.3	867	0.05	4.0	0.13 (8 Years)	242
							(48.5)	

(b) Continuous Source Scenario

Source Type	MCL	Source Area	Maximum Observed Source	Distance to Central Creek	Source Release Rate*	Years Contaminant Starts to Appear	Maximum Concentration in GW at Central Creek	MSC Based on DF at Groundwater &	Mixing Concentration at Point of Discharge	MSC Based on DF at Point of Discharge
	(µg/L)	(north-south x east-west) (feet x feet)	Concentration (µg/L)	(feet)	(kg/hr)	(years)	(mg/l) (DF)	Central Creek (µg/L)	into Central Creek (µg/L)	into Central Creek (µg/L)
1,1-Dichloroethene	7.0	200 x 300	380	867	5.243E-03	2.0	0.15(8 years) (2533)	14,778		
1,2-Dichloroethane	5.0	200 x 300	27.0	867	3.730E-04	2.0	3.9 (12 years) (6.91)	34.5	0.024	5625
1,1,1 - Trichloroethane	200.0	200 x 300	1,800	867	2.480E-02	2.0	240.6 (29 Years) (7.5)	1500	1.459	246744
1,1,2 - Trichloroethane	5.0	200 x 300	33.0	867	4.550E-04	2.0	23.7 (49 years) (1.4)	6.95	0.144	1146
Trichloroethene	5.0	200 x 300	6.3	867	8.690E-05	3.0	21.6 (39 Years) (0.29)	1.46	0.131	240

Notes and Abbreviations:

All the sources are instantaneous and extend across the entire aquifer thickness of 13.5 feet.

* Instantaneous source release in kg = maximum source concentration x pore space volume in source area (assuming a total porosity of 0.35)

Continuous source release rate in kg/hr = maximum source concentration x groundwater seepage velocity x source area

DF dilution/attenuation factor

MSC medium specific concentration

Table 3
Calculation of Flow Discharge in the Central Creek
(Data Collected from December 1, 1999 to March 15, 2000)

Month-Year	Day of Month	Measure	d Depth (ft)	Measured Velocity (ft/s)		Cross Sectional Area (ft ²)		Calculated Discharge (cfs)		Average Discharge
		Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)
Dec-99	3 - 9	0.09341	1.11074	0.11183	1.29100	6.10	6.31	0.6822	8.1462	4.4142
	10 - 16	0.07876	1.48660	0.14567	0.25542	4.40	7.30	0.6409	1.8646	1.253
	17 - 23	0.03000	1.46344	0.11000	0.73705	2.00	7.25	0.2200	5.3436	2.782
	24 - 30	0.03000	1.32520	0.11000	0.23729	2.00	7.00	0.2200	1.6610	0.941
Jan-00	1 - 7	0.03000	1.06090	0.11000	0.29642	3.90	11.90	0.4290	3.5274	1.978
	8 - 14	0.07554	1.62076	0.13253	0.19877	2.50	10.80	0.3313	2.1467	1.239
	15 - 21	0.03000	1.48365	0.07000	0.15027	2.50	7.20	0.1750	1.0819	0.628
	22 - 28	0.04400	1.36087	0.08400	3.31644	8.50	11.00	0.7140	36.4808	18.597
Feb-00	1 - 7	0.05970	1.63820	0.05752	0.54047	2.00	6.12	0.1150	3.3077	1.711
	8 - 14	0.03500	1.51571	0.03000	0.25153	4.20	11.70	0.1260	2.9429	1.534
	15 - 21	0.03500	1.44892	0.03000	1.64454	2.00	7.26	0.0600	11.9394	6.000
	22 - 28	0.04400	1.55024	0.08400	0.25240	2.80	7.15	0.2352	1.8047	1.020
Mar-00	1 - 7	0.06586	2.07625	0.05766	3.62250	4.10	17.90	0.2364	64.8428	32.540
	8 - 14	0.19663	2.40898	0.28986	2.59353	12.00	25.30	3.4783	65.6163	34.547

Notes:

Measured depths and measured velocities are averaged values over every seven days.

Average flow discharges are the average values of upstream and downstream discharges.

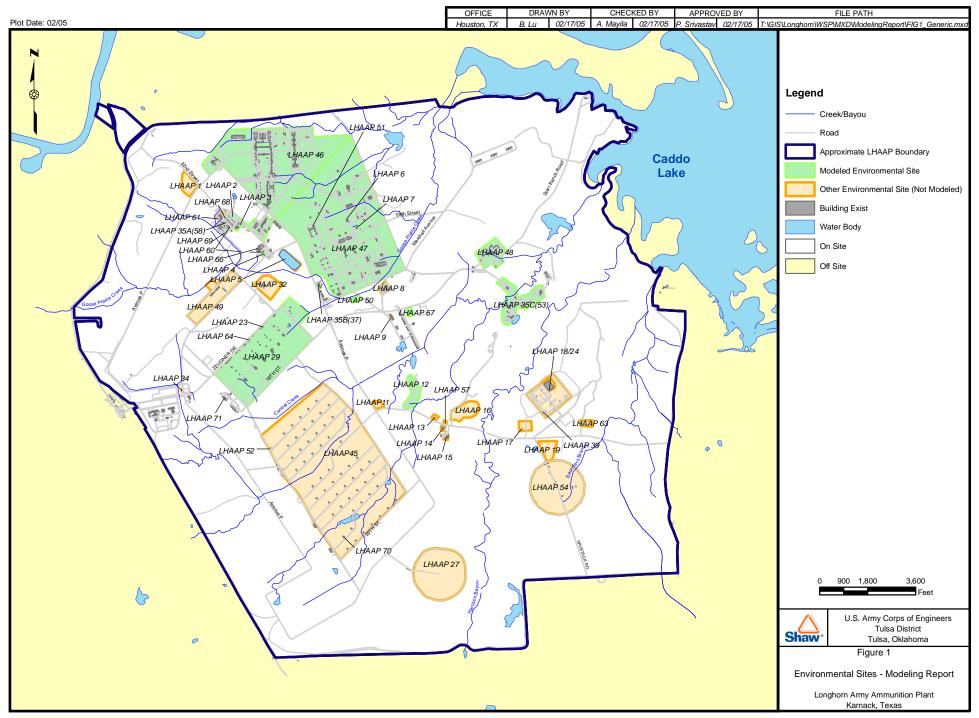
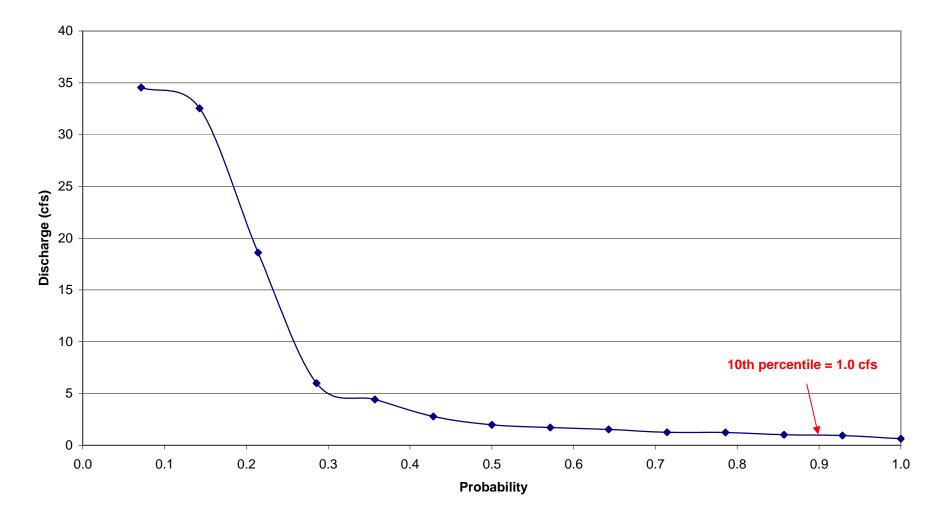



Figure 2 - Appendix K Low Flow Analysis Probability vs Flow Discharge for Central Creek Based on December 1999 to March 2000 Flow Derivation

Appendix L

Additional Evaluations of Chemicals in Soil at LHAAP-35A(58), -46, and -48

Table of Contents_

List of	Figures	S			ii		
1.0 2.0							
	2.1	LHAAP	-35A(58)		2-1		
		2.1.1	Leachate	e Modeling	2-1		
			2.1.1.1	Assumptions and Input Parameters	2-1		
			2.1.1.2	Simulation and Results			
		2.1.2	Soil Con	centration Protective of Sediment and Surface Water	2-3		
			2.1.2.1	Bis(2-ethylhexyl)phthalate Concentration in Erodable Soil Protective of			
				Sediment	2-3		
			2.1.2.2	Bis(2-ethylhexyl)phthalate Concentration in Erodable Soil Protective of Surface Water (^{SW} Soil MSC)	2-4		
		2.1.3		y and Conclusion			
	2.2	LHAAP	-46		2-6		
		2.2.1		e Modeling			
		2.2.2		centrations Protective of Sediment and Surface Water	2-7		
			2.2.2.1	Bis(2-exylhexyl)phthalate Concentration in Erodable Soil Protective of Sediment (SedSoil MSC)	2-7		
			2.2.2.2	Bis(2-exylhexyl)phthalate Concentration in Erodable Soil Protective of			
				Surface Water (^{sw} Soil MSC)	2-7		
		2.2.3					
	2.3	LHAAP-48					
		2.3.1		e Modeling			
			2.3.1.1	Assumptions and Input Parameters			
			2.3.1.2	Simulation Results			
		2.3.2		centration Protective of Sediment and Surface Water	. 2-10		
			2.3.2.1	Vinyl Chloride and Tetrachloroethene Concentrations in Erodable Soil Protective of Sediment	. 2-11		
			2.3.2.2	Vinyl Chloride and Tetrachloroethene Concentrations in Erodable Soil Protective of Surface Water	. 2-12		
		2.3.3	Results		. 2-14		
3.0	Refere	ences			3-1		

List of Tables _____

Table 1	Input Parameters and Results for Additional Calculations of Soil Concentrations Protective of Sediment and Surface Water
Table 2	Input Parameters for Additional Modeling of Soil Concentrations Protective of Groundwater
Table 3	Calculation of Flow Discharge in Goose Prairie Creek (Data Collected from Dec. 1, 1999 to March 15, 2000)
Table 4	Calculation of Flow Discharge in Central Creek (Downstream) (Data Collected from Dec. 1, 1999 to March 15, 2000)

List of Figures _____

Figure 1	Low Flow Analysis, Probability vs. Flow Discharge for Goose Prairie Creek based
	on December 1999 to March 2000 Flow Derivation
Figure 2	Mixing Concentration of VC in Groundwater Contributed by Soil Leachate Condition
	at the Source Area, LHAAP-48
Figure 3	Mixing Concentration of PCE in Groundwater Contributed by Soil Leachate
0	Condition at the Source Area, LHAAP-48
Figure 4	Low Flow Analysis – Probability vs Flow Discharge for Central Creek (Downstream)
Ũ	

List of Attachments _____

Attachment A Computer Printout for the Mixing Concentration of Bis(2-ethylhexyl)phthalate in Groundwater Caused by Leachate from Soil at LHAAP-35A(58)

1.0 Introduction

The fate and transport for three chemicals of concern (COCs) in soil at three sites (LHAAP-35A[58], -46, and -48) was evaluated as follows:

LHAAP-35A(58): 1) Calculations of bis(2-ethylhexyl)phthalate transport by eroded soil to nearby Goose Prairie Creek; and 2) leaching of bis(2-ethylhexyl)phthalate from soil to groundwater and from groundwater to Goose Prairie Creek.

LHAAP-46: Calculations of bis(2-ethylhexyl)phthalate transported by eroded soil to Goose Prairie Creek – Middle.

LHAAP-48: 1) Calculations of vinyl chloride and tetrachloroethane transport by eroded soil to Central Creek; and 2) leaching of vinyl chloride and tetrachloroethane from soil to groundwater and from groundwater to Central Creek.

The approach to develop soil concentrations protective of sediment and surface water is described in the Technical Memorandum (Shaw Environmental, 2004) and the following sections. **Tables 1** and **2** present summaries of input parameters for the calculations.

2.0 Modeling

2.1 LHAAP-35A(58)

Elevated bis(2-ethylhexyl)phthalate concentrations were detected in soil at 200,000 μ g/kg at sampling location LHS-SH-05 at a depth interval of 1.0 to 2.0 feet below land surface (Jacobs 2002a). Due to the elevated concentration of bis(2-ethylhexyl)phthalate in soil, its vertical downward transport and horizontal pathway transported by eroded soil were modeled to evaluate its contribution to groundwater, surface water and sediments.

The surface water body closest to LHAAP-35A(58) is Goose Prairie Creek, approximately 120 feet to the west of the site. Goose Prairie Creek flows from west to east, southeast and northeast to Caddo Lake. Generally, groundwater flows in the same direction as surface water. Contaminant particles in the groundwater at LHAAP-35A(58) will not travel to the southwest or west but to the east until they reach Goose Prairie, at a distance ranging from 6,319 feet (straight line) to 8,000 feet downgradient of the site.

The maximum bis(2-ethylhexyl)phthalate concentrations in sediment and in surface water, as well as the medium-specific concentrations (MSCs) in the soil, that are protective of sediment and surface water were developed.

2.1.1 Leachate Modeling

A VLEACHSM (Dynamac Corporation 1995; ASTM, 1999) model was employed to obtain the leachate mixing concentration hydrographs of bis(2-ethylhexyl) in the groundwater at LHAAP-35A(58).

2.1.1.1 Assumptions and Input Parameters

Because of the uncertainty of the input parameters, conservative values were used and assumptions were made as described below:

- **Contaminant Source.** Because of the uncertainty of the time bis(2ethylhexyl)phthalate continues to dissolve and to be released to groundwater, two scenarios were considered in the modeling using VLEACHSM: continuous constant source release for 10 years and 100 years.
- Source Area. bis(2-ethylhexyl)phthalate was detected at sampling location LHS-HS-05 with a maximum concentration of 200,000 μ g/kg in soil. The simulated soil column with bis(2-ethylhexyl)phthalate source was assumed 5 feet by 5 feet in area and 12 feet in depth at LHS-HS-05 only, applying the maximum soil concentration of 200,000 μ g/kg at a depth of 1 to 2 feet. The simulated results were then applied to the entire area of 600 feet (east-west) by 500 feet (north-south) as affected area in .

- **Depth to Groundwater**. The land surface elevation based on Figure 2-2 in the main report is approximately 216 feet mean sea level (msl). The average groundwater elevation measured in December 1998 at LHAAP-35A(58) was 204 feet (msl). Therefore the depth to groundwater is 12 feet.
- **Chemical Parameters**. The water-soil partition coefficient (k_d) of bis(2ethylhexyl)phthalate is as high as 87 cm³/g based on a very high value of organic carbon partition coefficient of 87096 cm³/g (Montgomery, 2000). The half-life for bis(2-ethylhexyl)phthalate is 1.1 years (Howard et al., 1991). The Henry's law constant, diffusivity in air and solubility for bis(2-ethylhexyl)phthalate are 4.18E-6 (dimensionless), 0.0351 cm²/sec, and 350 µg/L, respectively (Montgomery, 2000; Oak Ridge National Laboratory, 2004).
- **Dispersivities**. The longitudinal dispersivity was calculated based on the following equation (Dynamac Corporation, 1995):

 $\alpha_L = 1.072 \times 10^{\text{-1}} \; L_u^{-0.584} \; (L_u = 12 \; \text{feet}$ - < 6.562, depth of the column) = 0.458 feet

and the vertical dispersivity $\alpha_v = 0.3 \alpha_L = 0.153$ feet

• **Darcy's velocity.** Darcy's velocity (Dv) is required by VLEACHSM.

Dv = ki (k = hydraulic conductivity and i = hydraulic gradient)

Average hydraulic conductivity, (k) based on the slug tests at LHAAP-35A(58) was estimated to be 6.36×10^{-4} cm/sec (Jacobs 2002a).

The hydraulic gradient of 0.0072 feet/feet was based on the potentiometric surface map from December 1998 (Jacobs 2001b). Therefore, Dv = 4.74 feet/year.

• **Recharge.** This input parameter has a high degree of uncertainty. Because the soil at the site is mainly clayey material (silty clay and clay) in the shallow subsurface, infiltration rate is very low. In this model, two scenarios of recharge to groundwater were assumed: 0.5 inch/year and 1.0 inch/year.

2.1.1.2 Simulation and Results

The simulated result of the mixing concentration of bis(2-ethylhexyl)phthalate in groundwater contributed by soil leachate showed that this contaminant would not travel far enough to reach the groundwater within 200 years due to the extraordinary high value of organic carbon partition coefficient (Koc = $87096 \text{ cm}^3/\text{g}$) under any of the following four scenarios:

- Scenario 1: Continuous source release for 10 years with 0.5 in/yr of recharge
- Scenario 2: Continuous source release for 10 years with 1.0 in/yr of recharge
- Scenario 3: Continuous source release for 100 years with 0.5 in/yr of recharge

• Scenario 4: Continuous source release for 100 years with 1.0 in/yr of recharge

Even with the worst case scenario, i.e. continuous source release for 100 years with 1.0 in/yr of recharge, the mixing concentration in groundwater was still undetectable. Because of the incomplete pathway (bis[2-ethylhexyl]phthalate in soil does not impact groundwater) there is, therefore, no need to evaluate bis(2-ethylhexyl)phthalate concentration in soil protective of groundwater.

2.1.2 Soil Concentration Protective of Sediment and Surface Water

Even though bis(2-ethylhexyl)phthalate in the soil does not impact the groundwater, it could be carried away by erosion of sediment caused by a rainstorm and transported to a nearby stream – Goose Prairie Creek that is 120 feet away from the source on land surface.

2.1.2.1 Bis(2-ethylhexyl)phthalate Concentration in Erodable Soil Protective of Sediment

A screening calculation was performed to evaluate whether storm water from an affected property has the potential to pose a risk to human or ecological receptors in Goose Prairie Creek. First, soil loss from the affected property was evaluated by the revised universal soil loss equation (RUSLE) before soil concentration protective of sediment could be calculated. **Table 1** summarizes input parameters for calculations of soil concentrations protective of sediment and surface water using the RUSLE program.

Calculate ^{Sed}Soil PCL

The soil concentration protective of sediment, ^{Sed}Soil PCL (or C_{AP}), is calculated using the following equation:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT}) - (SL_{OA} \times C_{OA})}{SL_{AP}} \quad (mg/kg)$$
 Equation L1

where:

- C_{AP} = the ^{Sed}Soil PCL (mg/kg) for the surface water runoff pathway from the affected area
- SL_{TOT} = total sediment load estimated for the entire contributing watershed. (0.86 tons/ac-yr = 860 kg/ac-yr, **Table 1**).

 $C_{TOT} = COC$ sediment PCL (mg/kg)

 SL_{OA} = sediment load (kg/yr) estimated for other areas of the watershed

- C_{OA} = background soil concentration for inorganic COCs (if available). This term is zero for organic compounds. Because there is no Texas-specific median background soil concentrations, $C_{OA} = 0$.
- OA = other area. This is the area of contributing watershed other than the affected area

$$SL_{AP}$$
 = sediment load from the affected property (kg/yr). In this case = 0.68 ton/ac-yr = 680 kg/ac-yr.

The above equation can be simplified as:

Equation L2

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT})}{SL_{AP}}$$

where:

Therefore, C_{AP} (^{Sed}Soil MSC) = (860)(240)/680 = 303.5 mg/kg.

Note that bis(2-ethylhexyl)phthalate concentration in soil at the source that can be eroded is 200 mg/kg which is smaller than ^{Sed}Soil MSC of 303.5 mg/kg.

2.1.2.2 Bis(2-ethylhexyl)phthalate Concentration in Erodable Soil Protective of Surface Water (^{sw}Soil MSC)

The equation used to estimate the COC concentration in runoff from the affected property is as follows:

$$C_{AP} = \frac{Q_D \times C_D - Q_{OA} C_{OA}}{Q_{AP}}$$
 Equation L3

where:

- C_{AP} = concentration of bis(2-ethylhexyl)phthalate in runoff from the affected property (mg/L)
- Q_D = flow downstream of the affected property watershed (feet³/sec), using 7Q2 flow
- C_D = concentration of bis(2-ethylhexyl)phthalate downstream of the affected property (mg/L)
- Q_{AP} = runoff from the affected property (feet³/sec)
- Q_{OA} = runoff from other areas of the affected property watershed (feet³/sec)
- C_{OA} = concentration of bis(2-ethylhexyl)phthalate in runoff from other areas of the affected property watershed (mg/L) (C_{OA} = 0 in this case)

The calculation of runoff rates and volumes was based on the Schueler Method (Schueler, 1987):

First, the runoff coefficient for each land use type was derived with the following equation:

$$R_{VU} = 0.05 + (0.009 \times I_U)$$
 Equation L4

where:

 R_{VU} = runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain}) I_{U} = percent imperviousness (unitless) characteristic of land use type U

TERC No. DACA56-94-D-0020, TO No. 0109 3.26.07 Longhorn Army Ammunition Plant, Karnack, Texas The runoff flow rates were then calculated using the following equation:

$$Q = P \times P_I \times R_{VII} \times A_{II}$$
 (in feet³/sec) Equation L5

where:

At LHAAP-35A(58), the affected property was estimated to be 4.1 acres. The annual precipitation at LHAAP was estimated to be 45 inches/year read from the "Water Atlas of the United States" (Miller and Troise, 1973). The percent imperviousness (I_U) for the affected property area and the other areas of the affected property watershed are 60 % and 40 %, respectively. Therefore, for the affected property area:

 $Q_{AP} = \{(45)(0.9)[0.05 + (0.009 \text{ x } 0.6)](4.1)\} = 9.2 \text{ feet}^{3}/\text{sec}$

Since $C_{OA} = 0$, the term $Q_{OA} \ge C_{OA} = 0$ and therefore the other areas of the affected property watershed are omitted.

 $Q_D = 2.5 \text{ ft}^3/\text{sec}$ (Based on 7Q2 flow, actually the 10th percentile flow was used (**Figure 1** and **Table 3**) based on the TCEQ requirement (2003) when the flow record is less than 5 years)

The solute concentration of bis(2-ethylhexyl)phthalate in soil, $Conc_{soil}$ (mg/kg), can be calculated based on the soil concentration of 200,000 µg/kg using the equation as follows (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$

Equation L6

where:

 ρ_b = bulk density of soil =assumed 1.7 g /cm³

 k_d = distribution coefficient = 87.1 cm³/g (**Table 1**)

 $\phi_{\rm w}$ = water-filled porosity = 0.35

 ϕ_a = air-filled porosity = assumed 0.15

 H_c = Henry's law coefficient = assumed 0.024 (dimensionless)

$$Conc_{source} = \frac{200.0 \times 1.7}{(87.1 \times 1.7 + 0.35 + 0.024 \times 0.15)} = 2.29 \text{ mg/L} = C_{AP}$$

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (9.2)(2.29)/2.5 = 8.43 \text{ mg/L} = 8,430 \text{ }\mu\text{g/L}$$

This concentration ($C_D = 8,430 \ \mu g/L$) is much greater than the TCEQ MSC of 6 $\mu g/L$ for bis(2-ethylhexy)phthalate in surface water.

When bis(2-ethylhexy)phthalate concentration downstream of the affected property (CD) is set equal to the maximum contaminant level (MCL) or the MSC of 6 μ g/L, the resulting CAP represents the risk-based bis(2-ethylhexy)phthalate concentration protective of the receiving surface water. Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (2.5)(6)/(9.2) = 1.63 \ \mu g/L$$

Using the equation utilized to convert soil concentration into solution concentration or vice versa, bis(2-ethylhexy)phthalate concentration in soil (C_{soil}) can be derived by:

$$C_{soil} = \frac{[k_d \times \rho_d + \phi_w + H\phi_a]C_{AP}}{\rho_b} = [(87.1 \times 1.7) + 0.35 + 0.024(0.15)](1.63)/1.7$$

= 142.3 µg/kg

This value C_{soil} (= ^{SW}Soil MSC), i.e., soil concentration protective of surface water is much smaller than the actual bis(2-ethylhexy)phthalate concentration of 200,000 µg/kg at the source.

2.1.3 Summary and Conclusion

Calculation result shows that the current concentration of bis(2-ethylhexy)phthalate in the soil is protective of sediment but not protective of surface water in Goose Prairie Creek. This is due to the fact that the calculated concentration in the water at the downstream end of the affected property is higher than the MSC of 6.0 μ g/L for bis(2-ethylhexyl)phthalate.

2.2 LHAAP-46

Bis(2-exylhexyl)phthalate in the subsurface soil, together with the contaminated soil particles will be transported by storm-generated runoff to a nearby surface water body – Goose Prairie Creek – Middle; approximately 875 feet down slope of LHAAP-46. This distance is the shortest distance to the creek on land surface and, therefore, it is different from the distance used in Appendix G where the distance referenced to the creek is the distance within groundwater.

2.2.1 Leachate Modeling

Based on the leachate modeling for LHAAP-35A(58), a concentration of 690 μ g/kg in the soil at LHAAP-46 will not cause detectable levels of bis(2-ethylhexyl)phthalate in the groundwater.

2.2.2 Soil Concentrations Protective of Sediment and Surface Water

Even though bis(2-ethylhexyl)phthalate in the soil does not impact the groundwater, it could be carried away by erosion of sediment caused by a rainstorm and transported to a nearby stream – Goose Prairie Creek.

2.2.2.1 Bis(2-exylhexyl)phthalate Concentration in Erodable Soil Protective of Sediment (^{Sed}Soil MSC)

Given the close proximity of LHAAP-35A(58) and LHAAP-46, it is assumed that the physical and geographic conditions are similar at the two sites. Since the same chemical bis(2-exylhexyl)phthalate is detected at both sites, the calculated soil concentration protective of sediment (^{sed}Soil MSC) at LHAAP-35A(58) is used at LHAAP-46. The current soil bis(2-exylhexyl)phthalate concentration of 690 μ g/kg at LHAAP-46, is lower than the calculated ^{sed}Soil MSC of 303,500 μ g/kg. In addition, the distance to the water body is even longer at LHAAP-46 than at LHAAP-35A(58) by 375 feet. Therefore, it is not necessary to re-calculate the sediment PCL at LHAAP-46.

2.2.2.2 Bis(2-exylhexyl)phthalate Concentration in Erodable Soil Protective of Surface Water (^{sw}Soil MSC)

The equation used to estimate the COC concentration in runoff from the affected property is as follows:

$$C_{AP} = \frac{Q_D \times C_D - Q_{OA} C_{OA}}{Q_{AP}}$$
 Equation L7

where:

- C_{AP} = concentration of bis(2-exylhexyl)phthalate in runoff from the affected property (mg/L)
- Q_D = flow downstream of the affected property watershed (feet³/sec), using 7Q2 flow (the 10th percentile was used based on TCEQ requirement [2003]).
- C_D = concentration of bis(2-exylhexyl)phthalate downstream of the affected property (mg/L)
- Q_{AP} = runoff from the affected property (feet³/sec)
- Q_{OA} = runoff from other areas of the affected property watershed (feet³/sec)
- C_{OA} = concentration of bis(2-exylhexyl)phthalate in runoff from other areas of the affected property watershed (mg/L) (C_{OA} = 0 in this case)

The calculation of runoff rates and volumes was based on the Schueler Method (Schueler, 1987):

First, the runoff coefficient for each land use type was derived with the following equation:

$$R_{VU} = 0.05 + (0.009 \times I_U)$$

Equation L8

where:

 R_{VU} = runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain}) I_{U} = percent imperviousness (unitless) characteristic of land use type U

The runoff flow rates were then calculated using the following equation:

$$Q = P \times P_J \times R_{VU} \times A_U \text{ (in feet}^3/\text{sec)}$$
Equation L9

where:

At LHAAP-46, the affected property was approximated to be 0.1469 acres (80 feet x 80 feet – a more realistic but still conservative estimation). The annual precipitation at LHAAP was estimated to be 45 inches/year read from the "Water Atlas of the United States" (Miller and Troise, 1973). The percent imperviousness (I_U) for the affected property area and the other areas of the affected property watershed are 50 % and 10 %, respectively. Therefore,

For the affected property area:

 $Q_{AP} = \{(45)(0.9)[0.05 + (0.009 \times 0.6)](0.1469)\} = 0.33 \text{ ft}^{3}/\text{sec}$

Since $C_{OA} = 0$, the term $Q_{OA} \ge C_{OA} = 0$ and therefore the other areas of the affected property watershed are omitted.

Since no flow and cross sectional data are available for Goose Prairie Creek – Middle, data of the nearby creek, Goose Prairie Creek, were used.

$$Q_D = 2.5 \text{ ft}^3/\text{sec}$$
 (Based on 10^{th} percentile flow for Goose Prairie Creek – see Figure 1
and Table 3)

The solute concentration of bis(2-exylhexyl)phthalate in soil, *Conc_{source}* (in mg/l), can be derived from the soil concentration of 0.69 mg/kg, *Conc_{soil}* (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_d \rho_b + \phi_w + H_c \phi_a)}$$

Equation L10

where:

 ρ_b = bulk density of soil =assumed 1.7 g/cm³ k_d = distribution coefficient = 87.1 cm³/g ϕ_w = water-filled porosity = 0.35 ϕ_a = air-filled porosity = assumed 0.15 H_c = Henry's law coefficient = assumed 0.024 (dimensionless)

$$Conc_{source} = \frac{0.69 \times 1.7}{(87.1 \times 1.7 + 0.35 + 0.024 \times 0.15)} = 0.033 \text{ mg/L}$$

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (0.33)(0.033)/2.5 = 0.0044 \text{ mg/L} = 4.4 \text{ }\mu\text{g/L}$$

This concentration ($C_D = 4.4 \ \mu g/L$) is less than the TCEQ MSC of 6 $\mu g/L$ for bis(2-ethylhexyl)phthalate in surface water.

When bis(2-ethylhexyl)phthalate concentration downstream of the affected property (C_D) is set equal to the MCL or MSC of 6 μ g/L, the resulting CAP represents the risk-based bis(2-ethylhexyl)phthalate concentration protective of the receiving surface water. Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (2.5)(6)/(0.33) = 45.5 \,\mu\text{g/L}$$
 Equation L11

Using the equation above, bis(2-ethylhexyl)phthalate concentration in soil (C_{soil}) can be derived by:

$$C_{soil} = \frac{[k_d \rho_b + \phi_w + H \phi_a]C_{AP}}{\rho_b} = [87.1 \times 1.7 + 0.35 + 0.024(0.15)](45.5)/1.7$$
$$= 3,973 \,\mu\text{g/kg}$$

This value C_{soil} (= ^{SW}Soil MSC), i.e. soil concentration protective of surface water is much greater than the actual bis(2-ethylhexyl)phthalate concentration of 690 µg/kg at the source.

2.2.3 Results

Bis(2-ethylhexyl)phthalate in surface soil at a concentration of 690 μ g/kg is protective of sediment and surface water.

2.3 LHAAP-48

Elevated vinyl chloride and tetrachloroethane were detected in surface soil at sampling location LHS9901 at concentrations of 497 and 204 μ g/kg, respectively. Due to elevated concentrations of these chemicals in soil, the vertical downward transport and horizontal pathway transported by eroded soil were modeled to evaluate the COCs contribution to groundwater and possibly, surface water and sediment.

2.3.1 Leachate Modeling

A VLEACHSM model was employed to obtain the leachate mixing concentration hydrographs of vinyl chloride (VC) and tetrachloroethene (PCE) in the groundwater at LHAAP-48.

2.3.1.1 Assumptions and Input Parameters

Because of the uncertainty of the input parameters, conservative values were used and assumptions were made as described below:

- **Contaminant Source:** No continuous source, instantaneous source is assumed. Vinyl chloride and perchlorate are found in top soil. Maximum concentrations of vinyl chloride and tetrachloroethane in surface soil were detected at 497 and 204 μ g/kg at sampling location LHS9901, respectively
- Chemical properties of each chemical including the carbon partition coefficient, watersoil distribution coefficient, and half-life are listed in **Table 2**.
- **Longitudinal dispersivity**: 0.54 feet for calculation of vertical movement of COCs and mixing in groundwater.
- Vertical dispersivity: 0.05 feet for COCs vertical migration
- Average hydraulic conductivity (K) based on the slug tests at LHAAP-48 was estimated to be 3.8×10^{-5} cm/sec (Jacobs, 2002a)
- **Hydraulic gradient:** 0.00679 feet/feet based on the groundwater level map (9/00-Jacobs 2001b)
- **Recharge rate:** Assumed 1 inch per year in the vadose zone.

2.3.1.2 Simulation Results

Simulation results indicated that the mixing concentrations of vinyl chloride and tetrachloroethene in groundwater are 4.8 and 0.3 μ g/L, respectively (**Figures 2** and **3**). Though vinyl chloride concentration is slightly higher than its MCL, the mixing concentration in the tributary will be way below the MCL of 2 μ g/L.

2.3.2 Soil Concentration Protective of Sediment and Surface Water

Vinyl chloride and tetrachloroethene in the subsurface soil, with concentration of 497 and 204 μ g/kg, respectively, together with the contaminated soil particles will be transported by stormgenerated runoff to a nearby surface water bodies – in this case the tributary of Central Creek. The shortest distance from the source to this tributary is approximately 100 feet.

Given the similar physical and geographical condition of LHAAP-35C(53) and other sites, the sediment yield generated by soil erosion at LHAAP-48 would be similar. Because of the

relatively low concentration of vinyl chloride and tetrachloroethene, it is anticipated that these two chemicals would be protective of sediment and surface water.

2.3.2.1 Vinyl Chloride and Tetrachloroethene Concentrations in Erodable Soil Protective of Sediment

A screening calculation was performed to evaluate whether storm water from an affected property has the potential to pose a risk to human or ecological receptors in the Central Creek. First, soil loss from the affected property was evaluated by the RUSLE program before soil concentration protective of sediment could be calculated. **Table 1** summarizes input parameters and results for calculations of soil concentrations protective of sediment and surface water.

Calculation of ^{Sed}Soil MSC:

The soil concentration protective of sediment, ^{Sed}Soil MSC (or C_{AP}), is calculated using the following equation:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT}) - (SL_{OA} \times C_{OA})}{SL_{AP}} \quad (\text{in mg/kg})$$
 Equation L12

where:

C _{AP}	=	the ^{Sed} Soil MSC (mg/kg) for the surface water runoff pathway from the
		affected area
SL _{TOT}	=	total sediment load estimated for the entire contributing watershed. (0.38
		tons/ac-yr = 380 kg/ac-yr, Table 1).
C _{TOT}	=	COC sediment PCL (mg/kg)
SLOA	=	sediment load (kg/yr) estimated for other areas of the watershed
COA	=	background soil concentration for inorganic COCs (if available). This term is
		zero for organic compounds. Because there is no Texas-specific median
		background soil concentrations, $C_{OA} = 0$.
OA	=	other area. This is the area of contributing watershed other than the affected
		area
SLAP	=	sediment load from the affected property (in kg/yr). In this case,

$$0.34 \text{ tons/ac-yr} = 340 \text{ kg/ac-yr}.$$

The above equation can be simplified as:

$$C_{AP} = \frac{(SL_{TOT} \times C_{TOT})}{SL_{AP}}$$

Equation L13

where:

Therefore, C_{AP} (^{Sed}Soil MSC) = (380)(36)/340 = 38 mg/kg (vinyl chloride)

$$C_{AP}$$
 (^{Sed}Soil MSC) = (380)(1000)/340 = 1117.6 mg/kg (tetrachloroethane)

Note that vinyl chloride and tetrachloroethene concentrations in soil at the source that can be eroded are 0.497 and 0.204 mg/kg, which are much lower than ^{Sed}Soil MSC of 1117.6 and 38 mg/kg, respectively.

2.3.2.2 Vinyl Chloride and Tetrachloroethene Concentrations in Erodable Soil Protective of Surface Water

The equation used to estimate the COC concentration in runoff from the affected property is as follows:

$$C_{AP} = \frac{Q_D \times C_D - Q_{OA} C_{OA}}{Q_{AP}}$$
 Equation L14

where:

- C_{AP} = concentration of chemicals in runoff from the affected property (mg/L)
- Q_D = flow downstream of the affected property watershed (feet³/sec), using 7Q2 flow
- C_D = concentration of chemicals downstream of the affected property (mg/L)
- Q_{AP} = runoff from the affected property (feet³/sec)
- Q_{OA} = runoff from other areas of the affected property watershed (feet³/sec)
- C_{OA} = concentration of chemicals in runoff from other areas of the affected property watershed (mg/L) (C_{OA} = 0 in this case)

The calculation of runoff rates and volumes was based on the Schueler Method (Schueler, 1987):

First, the runoff coefficient for each land use type was derived with the following equation:

$$R_{VU} = 0.05 + (0.009 \times I_U)$$
 Equation L15

where:

 R_{VU} = runoff coefficient (unitless) for land use type U (inches_{run}/inches_{rain}) I_{U} = percent imperviousness (unitless) characteristic of land use type U

The runoff flow rates were then calculated using the following equation:

$$Q = P \times P_{I} \times R_{VII} \times A_{II}$$
 (in feet³/sec) Equation L16

where:

P = precipitation rate (inches/year) $P_J = ratio of storms producing runoff (unit less) with a default value of 0.9$

$$R_{VU}$$
 = runoff coefficient (unit less) for land use type U (inches_{run}/inches_{rain})

 A_U = area of land use type u (acres)

At LHAAP-48, the affected property was assumed to be 0.0143 acres (25 feet \times 25 feet). The annual precipitation at LHAAP was estimated to be 45 inches/year according to the "Water Atlas of the United States" (Miller and Troise, 1973). The percent imperviousness (I_U) for the affected property area and the other areas of the affected property watershed are 30 percent and 10 percent, respectively. Therefore,

For the affected property area:

 $Q_{AP} = \{(45)(0.9)[0.05 + (0.009 \times 0.3)](0.0143)\} = 0.0305 \text{ feet}^3/\text{sec}$

Since $C_{OA} = 0$, the term $Q_{OA} \times C_{OA} = 0$ and therefore the other areas of the affected property watershed are omitted.

 $Q_D = 1.75 \text{ ft}^3/\text{sec}$ (Based on 7Q2 flow, estimated with the 10th percentile flow [Figure 4 and Table 4])

The solute concentration of vinyl chloride and tetrachloroethane in soil, $Conc_{source}$ (in mg/l), can be derived from the soil concentration of 0.497 mg/kg (vinyl chloride), and 0.204 mg/kg (tetrachloroethene), $Conc_{soil}$ (Feenstra, et al., 1991; USEPA, 2001):

$$Conc_{source} = \frac{Conc_{soil} \times \rho_b}{(k_a \rho_b + \phi_w + H_c \phi_a)}$$
 Equation L17

where:

 ρ_b = bulk density of soil =assumed 1.7 g/cm³ k_d = distribution coefficient = Assumed 0.0 cm³/g ϕ_w = water-filled porosity = 0.35 ϕ_a = air-filled porosity = assumed 0.15 H_c = Henry's law coefficient (see Table 2)

$$Conc_{source} = \frac{0.497 \times 1.7}{(0.011 \times 1.7 + 0.35 + 1.11 \times 0.15)} = 1.58 \text{ mg/L (vinyl chloride)}$$

$$Conc_{source} = \frac{0.204 \times 1.7}{(0.155 \times 1.7 + 0.35 + 0.754 \times 0.15)} = 0.477 \text{ mg/L} \text{ (tetrachloroethene)}$$

Therefore, for the resultant concentration downstream of the affected property C_D is:

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (0.0305)(1.58)/1.75 = 0.0275 \text{ mg/L} = 27.5 \text{ }\mu\text{g/L} \quad (\text{vinyl chloride})$$

$$C_D = \frac{Q_{AP}C_{AP}}{Q_D} = (0.0305)(0.477)/1.75 = 0.0083 \text{ mg/L} = 8.3 \text{ }\mu\text{g/L} \quad \text{(tetrachloroethane)}$$

The concentrations of vinyl chloride ($C_D = 27.5 \ \mu g/L$) and tetrachloroethene ($C_D = 8.3 \ \mu g/L$) are greater than their MCLs of 2 $\mu g/L$ and 5 $\mu g/L$, respectively. The calculated values can be reduced to below the MCL if the affected area can be further reduced to 10 feet × 10 feet.

When vinyl chloride concentration downstream of the affected property (C_D) is compared to the ^{SW}RBEL or the surface water PCL (^{SW}SW), it can be regarded as MCL of 2 µg/L (vinyl chloride), the resulting CAP represents the risk-based vinyl chloride concentration protective of the receiving surface water. Therefore,

$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (1.75)(2)/(0.0305) = 114.8 \ \mu\text{g/L} \quad \text{(vinyl chloride)}$$
$$C_{AP} = \frac{Q_D C_D}{Q_{AP}} = (1.75)(5)/(0.0305) = 286.9 \ \mu\text{g/L} \quad \text{(PCE)}$$

Using the equation used above, vinyl chloride concentration in soil (C_{soil}) can be derived:

$$C_{soil} = \frac{[k_a \times \rho_b + \phi_w + H\phi_a]C_{AP}}{\rho_b} = [0.011 \times 1.7 + 0.35 + 1.11(0.15)](114.8)/1.7$$
$$= 36.1 \,\mu\text{g/kg} \quad (\text{vinyl chloride})$$

$$C_{soil} = \frac{[k_d \times \rho_b + \phi_w + H\phi_a]C_{AP}}{\rho_b} = [0.011 \times 1.7 + 0.35 + 1.11(0.15)](286.9)/1.7$$
$$= 122.6 \,\mu\text{g/kg} \text{ (PCE)}$$

These values, $C_{soil} = {}^{SW}$ Soil MSC, i.e., soil concentration protective of surface water are smaller than the actual vinyl chloride concentration of 497 µg/kg and tetrachloroethene concentration of 204 µg/kg at the source.

2.3.3 Results

Vinyl chloride and tetrachloroethene in soil, though elevated in concentration, will not adversely impact surface water when the COCs migrate vertically to groundwater because their mixing concentrations in groundwater are already below their respective MCLs. However, when the soil

they adhered to is eroded and transported to surface water, their concentrations are not protective of surface water.

3.0 References

References are provided in the main document, Section 8.0.

Site No.	DIS Protective of Sediment and Surf	LHAAP-48
	LHAAP-35A(58)	LHAAP-48
Parameter/Units	120	100
Distance to nearest stream (feet)	120	100
Γopographic slope (%)	0.4	1.5
Гopsoil (%)	29% - silt	30% - silt
	70% - clay	60% - clay
	1% - organic matter	1% - organic matter
Soil erodibility (K) (ton/ac per unit of R)		
Affected area	0.19	0.12
Fotal area	0.19	0.12
Length and Steepness Factors		
Affected area	0.08	0.2
Fotal area	0.085	0.23
Cover Management Factor (C)		
Affected area	0.16	0.12
Fotal area	0.14	0.12
Overall Slope Gradient (%)		
Affected area	0.1	1.5
Fotal area	0.69	1.5
Support Practice Factor (P)		
Affected area	0.82	0.58
Fotal area	0.98	0.58
Soil Loss - A (tons/ac-yr)		
Affected area	0.74	0.66
Total area	0.92	0.74
Annual Sediment Yield (tons/ac-yr)		
Affected area	0.68	0.34
Fotal area	0.86	0.38
Sediment Delivery Ratio		
Affected area	0.74	0.3
Fotal area	0.92	0.3
		PCE - 1117.6
SedSoil PCL (mg/kg) (C _{AP})	303.5	VC - 38
^{SW} Soil PCL (mg/kg) (C _{soil})	1.475	VC - 0.0256
		PCE - 0.497
Maximum Source Concentration (mg/kg)	200	VC - 0.204
Maximum Soil Concentration > C _{soil}	No	No
Maximum Soil Concentration > C _{AP}	No	No

 Table 1

 Input Parameters and Results for Additional Calculations

 of Soil Concentrations Protective of Sediment and Surface Water

Site No.	LHAAP-35A(58)	LHAAP-48			
Parameter/Units					
Distance to nearest stream (feet)	120	10	00		
Depth to groundwater (feet)	12	1	0		
Source Area in soil (feet x feet)	600 x 500	25 x	x 25		
Hydraulic conductivity (cm/sec)	$6.36 \ge 10^{-4}$	3.8 x	x 10 ⁻⁵		
Hydraulic gradient	0.0072	0.00)679		
Longitudinal dispersivity (feet)	0.458	0.54			
Vertical dispersivity (feet)	0.153	0.	05		
Source concentration (µg/kg)	200,000	497	204		
Chemical Parameters	Bis(ethylhexyl)phthalate	Vinyl Chloride	Tetrachlorethane		
Organic carbon partition coefficient (cm ³ /g)	87096	11	155		
Distribution coefficient (K_d) (cm ³ /g)	87	0.011	0.155		
Henry's law constant (dimensionless)	4.18E-06	1.11E+00	0.754		
Free air diffusion coefficient (cm ² /sec)	0.0351	0.106	0.072		
Aqueous solubility (µg/L)	350	1,100,000	2,200,000		
Half-life (year)	Not considered	8 2			

 Table 2

 Input Parameters for Additional Modeling of Soil Concentrations Protective of Groundwater

Table 3Calculation of Flow Discharge in Goose Prairie Creek(Data Collected from December 1, 1999 to March 15, 2000)

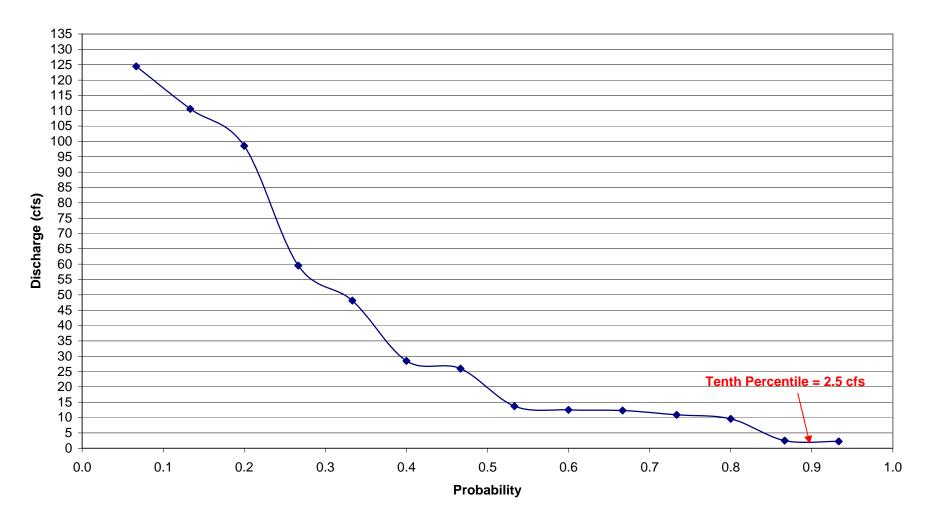
Month-Year	Day of Month	Measured	Measured Depth (feet)		Measured Velocity (feet/second)		Cross Sectional Area (feet ²)		Calculated Discharge (cfs)	
	-	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(cfs)
	3 - 9	0 100 20	0.22001	1 44004	4 00 410	2.00	4.20	4.0574	20 E122	10 0050
Dec-99		0.10830	0.22081	1.44906	4.88410	2.80	4.20	4.0574	20.5132	12.2853
	10 - 16	0.11651	0.30483	0.48774	2.94988	3.21	6.87	1.5656	20.2657	10.916
	17 - 23	0.06315	0.37523	0.45438	2.12994	2.10	8.56	0.9542	18.2323	9.593
	24 - 30	0.06315	0.36534	0.45438	14.99560	2.10	7.88	0.9542	118.1653	59.560
Jan-00	1 - 7	0.02700	0.36224	0.21000	7.10767	1.05	7.98	0.2205	56.7192	28.470
	8 - 14	0.12681	0.44958	0.24389	11.82963	3.45	18.63	0.8414	220.3860	110.614
	15 - 21	0.03749	0.36559	0.03032	11.51831	1.41	8.35	0.0428	96.1779	48.110
	22 - 28	0.06279	0.42399	0.80813	14.08148	2.08	17.56	1.6809	247.2708	124.476
Feb-00	1 - 7	0.09417	0.42572	0.12182	9.59478	2.65	20.51	0.3228	196.7889	98.556
	8 - 14	0.05132	0.37422	0.04973	6.47123	1.75	8.01	0.0870	51.8346	25.961
	15 - 21	0.03763	0.37675	0.04530	0.53829	1.48	9.24	0.0670	4.9738	2.520
	22 - 28	0.14625	0.48311	0.35183	1.14280	4.45	20.51	1.5656	23.4388	12.502
Mar-00	1 - 7	0.10288	0.37274	0.16989	0.50621	2.79	7.95	0.4740	4.0244	2.249
	8 - 14	0.20995	0.58798	0.48053	1.13559	6.10	21.55	2.9312	24.4720	13.702

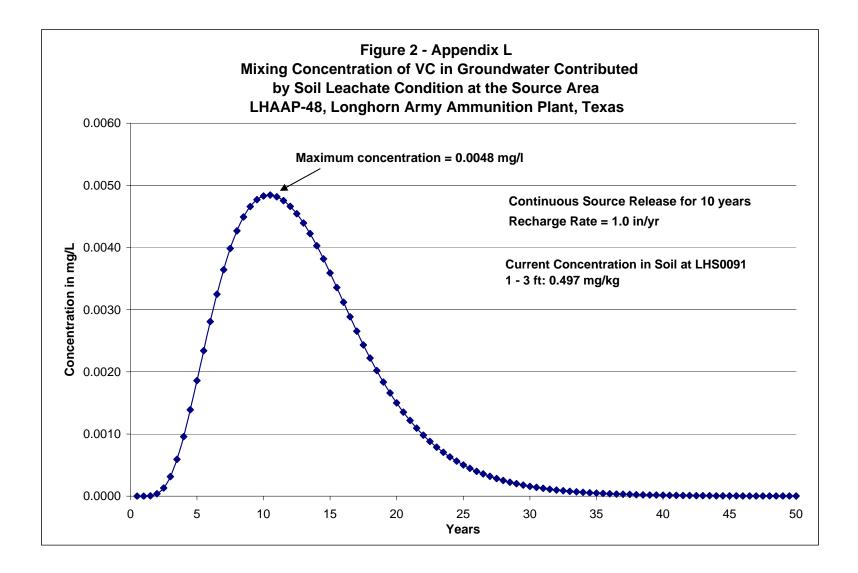
Notes and Abbreviations:

Measured depths and measured velocities are averaged values over every seven days.

Average flow discharges are the average values of upstream and downstream discharges.

cfs cubic feet per second


Month-Year	Day of Month	Measured Depth	Measured Velocity	Cross Sectional Area	Calculated Discharge
		(ft)	(ft/s)	(ft ²)	(cfs)
		Downstream	Downstream	Downstream	Downstream
Dec-99	3 - 9	1.11074	1.29100	6.31	8.1462
	10 - 16	1.48660	0.25542	7.30	1.8646
	17 - 23	1.46344	0.73705	7.25	5.3436
	24 - 30	1.32520	0.23729	7.00	1.6610
Jan-00	1 - 7	1.06090	0.29642	11.90	3.5274
	8 - 14	1.62076	0.19877	10.80	2.1467
	15 - 21	1.48365	0.15027	7.20	1.0819
	22 - 28	1.36087	3.31644	11.00	36.4808
Feb-00	1 - 7	1.63820	0.54047	6.12	3.3077
	8 - 14	1.51571	0.25153	11.70	2.9429
	15 - 21	1.44892	1.64454	7.26	11.9394
	22 - 28	1.55024	0.25240	7.15	1.8047
Mar-00	1 - 7	2.07625	3.62250	17.90	64.8428
	8 - 14	2.40898	2.59353	25.30	65.6163


Table 4
Calculation of Flow Discharge in the Central Creek (Downstream)
(Data Collected from Dec 1, 1999 to March 15, 2000)

Notes:

Measured depths and measured velocities are averaged values over every seven days Cross sectional areas are based on the measured depths and cross sections cfs = cubic feet per second

Figure 1 - Appendix L Low Flow Analysis Probability vs Flow Discharge for Goose Prairie Creek Based on December 1999 to March 2000 Flow Derivation

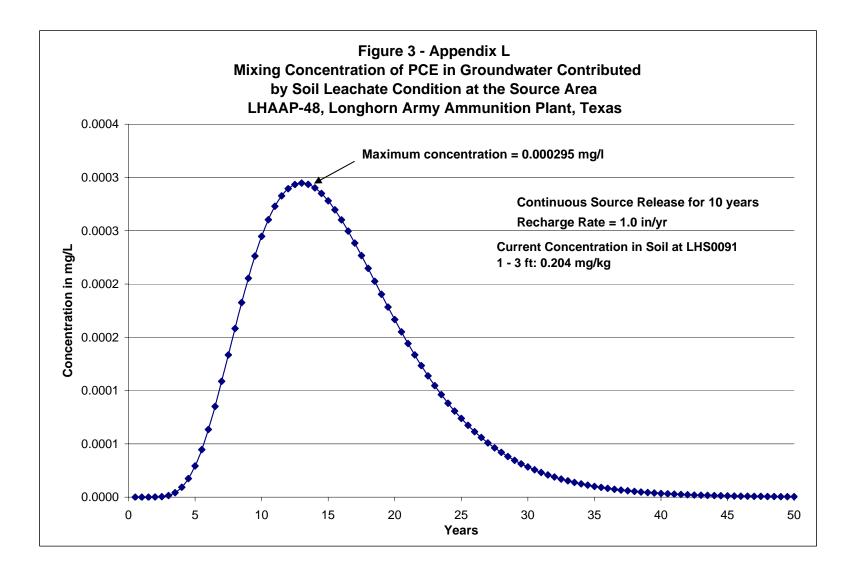
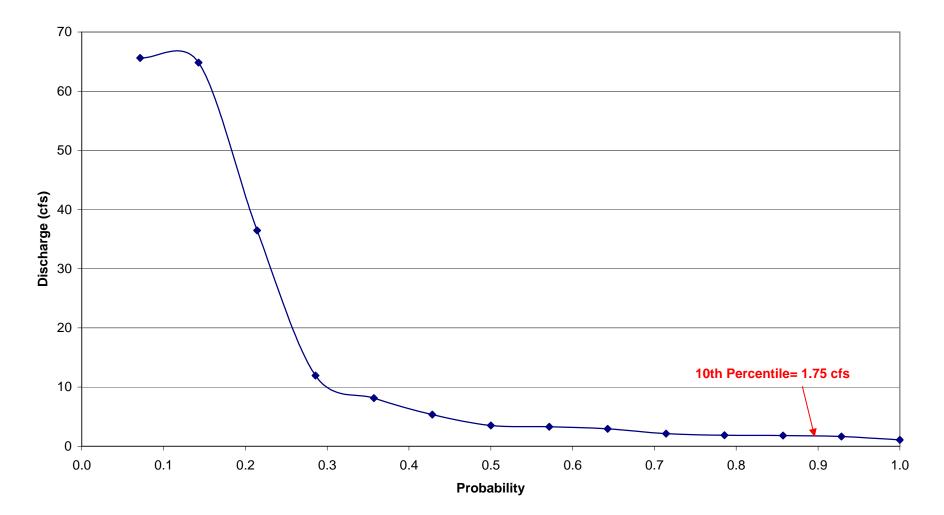



Figure 4 - Appendix L Low Flow Analysis Probability vs Flow Discharge for Central Creek (Downstream) Based on December 1999 to March 2000 Flow Derivation

00043504

Attachment A

Computer Printout for the Mixing Concentration of Bis(2-ethylhexyl)phthalate in Groundwater Caused by Leachate from Soil at LHAAP-35A(58)

SATURATED GW CONCENTRATION (underneath columns) DUE TO' MIXING SOIL COLUMNS ARE ARRANGED 90 DEGREE TO GROUND-WATER DIRECTION Liquid Phase Concentrations [mg/L]

Soil Colum	n 1 [mg/L]		
TIME	Cin(vadose)	Cin(aquifer)	Cout(mixed)
0.50	0.00000E+00	0.00000E+00	0.00000E+00
1.00	0.00000E+00	0.00000E+00	0.00000E+00
1.50	0.00000E+00	0.00000E+00	0.00000E+00
2.00	0.00000E+00	0.00000E+00	0.00000E+00
2.50	0.00000E+00	0.00000E+00	0.00000E+00
3.00	0.00000E+00	0.00000E+00	0.00000E+00
3.50	0.00000E+00	0.00000E+00	0.00000E+00
4.00	0.00000E+00	0.00000E+00	0.00000E+00
4.50	0.00000E+00	0.00000E+00	0.00000E+00
5.00	0.00000E+00	0.00000E+00	0.00000E+00
5.50	0.00000E+00	0.00000E+00	0.00000E+00
6.00	0.00000E+00	0.00000E+00	0.00000E+00
6.50	0.00000E+00	0.00000E+00	0.00000E+00
7.00	0.00000E+00	0.00000E+00	0.00000E+00
7.50	0.00000E+00	0.00000E+00	0.00000E+00
8.00	0.00000E+00	0.00000E+00	0.00000E+00
8.50	0.00000E+00	0.00000E+00	0.00000E+00
9.00	0.00000E+00	0.00000E+00	0.00000E+00
9.50	0.00000E+00	0.00000E+00	0.00000E+00
10.00	0.00000E+00	0.00000E+00	0.00000E+00
10.50	0.00000E+00	0.00000E+00	0.00000E+00
11.00	0.00000E+00	0.00000E+00	0.00000E+00
11.50 12.00	0.00000E+00	0.00000E+00	0.00000E+00
	0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00
12.50 13.00	0.00000E+00	0.00000E+00	0.00000E+00 0.00000E+00
13.00	0.00000E+00	0.00000E+00	0.00000E+00
14.00	0.00000E+00	0.00000E+00	0.00000E+00
14.50	0.00000E+00	0.00000E+00	0.00000E+00
15.00	0.00000E+00	0.00000E+00	0.00000E+00
15.50	0.00000E+00	0.00000E+00	0.00000E+00
16.00	0.00000E+00	0.00000E+00	0.00000E+00
16.50	0.00000E+00	0.00000E+00	0.00000E+00
17.00	0.00000E+00	0.00000E+00	0.00000E+00
17.50	0.00000E+00	0.00000E+00	0.00000E+00
18.00	0.00000E+00	0.00000E+00	0.00000E+00
18.50	0.00000E+00	0.00000E+00	0.00000E+00
19.00	0.00000E+00	0.00000E+00	0.00000E+00
19.50	0.00000E+00	0.00000E+00	0.00000E+00
20.00	0.00000E+00	0.00000E+00	0.00000E+00
20.50	0.00000E+00	0.00000E+00	0.00000E+00
21.00	0.00000E+00	0.00000E+00	0.00000E+00
21.50	0.00000E+00	0.00000E+00	0.00000E+00
22.00	0.00000E+00	0.00000E+00	0.00000E+00
22.50	0.00000E+00	0.00000E+00	0.00000E+00
23.00	0.00000E+00	0.00000E+00	0.00000E+00
23.50	0.00000E+00	0.00000E+00	0.00000E+00
24.00	0.00000E+00	0.00000E+00	0.00000E+00
24.50	0.00000E+00	0.00000E+00	0.00000E+00
25.00	0.00000E+00	0.00000E+00	0.00000E+00
25.50	0.00000E+00	0.00000E+00	0.00000E+00
26.00	0.00000E+00	0.00000E+00	0.00000E+00

26.50	0.00000E+00	0.00000E+00	0.00000E+00
27.00	0.00000E+00	0.00000E+00	0.00000E+00
27.50	0.00000E+00	0.00000E+00	0.00000E+00
28.00	0.54370E-42	0.00000E+00	0.00000E+00
28.50	0.15344E-41	0.00000E+00	0.00000E+00
29.00	0.25237E-41	0.00000E+00	0.00000E+00
29.50	0.35131E-41	0.00000E+00	0.49045E-43
30.00	0.45038E-41	0.00000E+00	0.49045E-43
30.50	0.54931E-41	0.00000E+00	0.49045E-43
31.00	0.64824E-41	0.00000E+00	0.49045E-43
31.50	0.74731E-41	0.00000E+00	0.49045E-43
32.00	0.88086E-41	0.00000E+00	0.99492E-43
32.00	0.10789E-40	0.00000E+00	0.99492E-43
32.50	0.12767E-40	0.00000E+00	0.99492E-43
33.50	0.14747E-40	0.00000E+00	0.14854E-42
34.00	0.16874E-40	0.00000E+00	0.14854E-42
34.50	0.19844E-40	0.00000E+00	0.19758E-42
35.00	0.22813E-40	0.00000E+00	0.19758E-42
35.50	0.26031E-40	0.00000E+00	0.24803E-42
36.00	0.29989E-40	0.00000E+00	0.24803E-42
36.50	0.33948E-40	0.00000E+00	0.29708E-42
37.00	0.38847E-40	0.00000E+00	0.34612E-42
37.50	0.43943E-40	0.00000E+00	0.39657E-42
38.00	0.49882E-40	0.00000E+00	0.44561E-42
38.50	0.56364E-40	0.00000E+00	0.49466E-42
39.00	0.63441E-40	0.00000E+00	0.54370E-42
39.50	0.71360E-40	0.00000E+00	0.64320E-42
40.00	0.80217E-40	0.00000E+00	0.69224E-42
40.50	0.89966E-40	0.00000E+00	0.79173E-42
41.00	0.10070E-39	0.00000E+00	0.89123E-42
41.50	0.11248E-39	0.00000E+00	0.98932E-42
42.00	0.12560E-39	0.00000E+00	0.10888E-41
42.50	0.13990E-39	0.00000E+00	0.12373E-41
43.00	0.15564E-39	0.00000E+00	0.13859E-41
43.50	0.17290E-39	0.00000E+00	0.15344E-41
44.00	0.19181E-39	0.00000E+00	0.16830E-41
44.50	0.21259E-39	0.00000E+00	0.18805E-41
45.00	0.23536E-39	0.00000E+00	0.20781E-41
45.50	0.26020E-39	0.00000E+00	0.22757E-41
46.00	0.28727E-39	0.00000E+00	0.25237E-41
46.50	0.31686E-39	0.00000E+00	0.27718E-41
47.00	0.34908E-39	0.00000E+00	0.30688E-41
47.50	0.38416E-39	0.00000E+00	0.33645E-41
48.00	0.42242E-39	0.00000E+00	0.37120E-41
48.00 48.50	0.46398E-39	0.00000E+00	0.40582E-41
	0.46398E-39 0.50897E-39		
49.00		0.00000E+00	0.44533E-41
49.50	0.55786E-39	0.00000E+00	0.48989E-41
50.00	0.61086E-39	0.00000E+00	0.53446E-41
50.50	0.66826E-39	0.00000E+00	0.58883E-41
51.00	0.73037E-39	0.00000E+00	0.64334E-41
51.50	0.79747E-39	0.00000E+00	0.70275E-41
52.00	0.87007E-39	0.00000E+00	0.76203E-41
52.50	0.94846E-39	0.00000E+00	0.83139E-41
53.00	0.10330E-38	0.00000E+00	0.90566E-41
53.50	0.11243E-38	0.00000E+00	0.98974E-41
54.00	0.12227E-38	0.00000E+00	0.10738E-40
54.50	0.13286E-38	0.00000E+00	0.11678E-40
55.00	0.14426E-38	0.00000E+00	0.12669E-40
55.50	0.15652E-38	0.00000E+00	0.13757E-40

56.00	0.16968E-38	0.00000E+00	0.14896E-40
56.50	0.18383E-38	0.00000E+00	0.16133E-40
57.00	0.19902E-38	0.00000E+00	0.17469E-40
57.50	0.21531E-38	0.00000E+00	0.18904E-40
58.00	0.23277E-38	0.00000E+00	0.20438E-40
58.50 58.50	0.25148E-38	0.00000E+00	0.220438E-40 0.22070E-40
59.00	0.27152E-38	0.00000E+00	0.23853E-40
59.50	0.29297E-38	0.00000E+00	0.25733E-40
60.00	0.31591E-38	0.00000E+00	0.27763E-40
60.50	0.34043E-38	0.00000E+00	0.29890E-40
61.00	0.36662E-38	0.00000E+00	0.32216E-40
61.50	0.39458E-38	0.00000E+00	0.34640E-40
62.00	0.42443E-38	0.00000E+00	0.37263E-40
62.50	0.45627E-38	0.00000E+00	0.40084E-40
63.00	0.49022E-38	0.00000E+00	0.43053E-40
63.50	0.52639E-38	0.00000E+00	0.46220E-40
64.00	0.56492E-38	0.00000E+00	0.49635E-40
	0.60593E-38		
64.50		0.00000E+00	0.53197E-40
65.00	0.64955E-38	0.00000E+00	0.57058E-40
65.50	0.69595E-38	0.00000E+00	0.61116E-40
66.00	0.74526E-38	0.00000E+00	0.65470E-40
66.50	0.79766E-38	0.00000E+00	0.70073E-40
67.00	0.85332E-38	0.00000E+00	0.74922E-40
67.50	0.91240E-38	0.00000E+00	0.80118E-40
68.00	0.97508E-38	0.00000E+00	0.85661E-40
68.50	0.10416E-37	0.00000E+00	0.91501E-40
69.00	0.11121E-37	0.00000E+00	0.97686E-40
69.50	0.11868E-37	0.00000E+00	0.10422E-39
70.00	0.12659E-37	0.00000E+00	0.11120E-39
70.50	0.13497E-37	0.00000E+00	0.11852E-39
70.50	0.14383E-37		0.12634E-39
		0.00000E+00	
71.50	0.15321E-37	0.00000E+00	0.13455E-39
72.00	0.16313E-37	0.00000E+00	0.14326E-39
72.50	0.17362E-37	0.00000E+00	0.15247E-39
73.00	0.18470E-37	0.00000E+00	0.16222E-39
73.50	0.19641E-37	0.00000E+00	0.17251E-39
74.00	0.20877E-37	0.00000E+00	0.18335E-39
74.50	0.22181E-37	0.00000E+00	0.19483E-39
75.00	0.23558E-37	0.00000E+00	0.20690E-39
75.50	0.25010E-37	0.00000E+00	0.21967E-39
76.00	0.26541E-37	0.00000E+00	0.23313E-39
76.50	0.28155E-37	0.00000E+00	0.24728E-39
77.00	0.29855E-37	0.00000E+00	0.26223E-39
77.50	0.31646E-37	0.00000E+00	0.27796E-39
78.00	0.33532E-37	0.00000E+00	0.29449E-39
	0.35518E-37	0.00000E+00	
78.50			0.31196E-39
79.00	0.37607E-37	0.00000E+00	0.33032E-39
79.50	0.39805E-37	0.00000E+00	0.34962E-39
80.00	0.42116E-37	0.00000E+00	0.36991E-39
80.50	0.44545E-37	0.00000E+00	0.39124E-39
81.00	0.47099E-37	0.00000E+00	0.41366E-39
81.50	0.49782E-37	0.00000E+00	0.43721E-39
82.00	0.52599E-37	0.00000E+00	0.46195E-39
82.50	0.55558E-37	0.00000E+00	0.48799E-39
83.00	0.58664E-37	0.00000E+00	0.51525E-39
83.50	0.61922E-37	0.00000E+00	0.54386E-39
84.00	0.65341E-37	0.00000E+00	0.57389E-39
84.50	0.68927E-37	0.00000E+00	0.60537E-39
			0.63842E-39
85.00	0.72687E-37	0.00000E+00	0.00042E-09

85.50	0.76628E-37	0.00000E+00	0.67301E-39
86.00	0.80757E-37	0.00000E+00	0.70929E-39
86.50	0.85083E-37	0.00000E+00	0.74729E-39
87.00	0.89615E-37	0.00000E+00	0.78708E-39
87.50	0.94359E-37	0.00000E+00	0.82875E-39
88.00	0.99325E-37	0.00000E+00	0.87235E-39
88.50	0.10452E-36	0.00000E+00	0.91802E-39
89.00	0.10996E-36	0.00000E+00	0.96578E-39
89.50	0.11565E-36	0.00000E+00	0.10157E-38
90.00	0.12160E-36	0.00000E+00	0.10680E-38
90.50	0.12781E-36	0.00000E+00	0.11225E-38
91.00	0.13431E-36	0.00000E+00	0.11797E-38
91.50	0.14110E-36	0.00000E+00	0.12393E-38
92.00	0.14820E-36	0.00000E+00	0.13016E-38
92.50	0.15561E-36	0.00000E+00	0.13667E-38
93.00	0.16335E-36	0.00000E+00	0.14347E-38
93.50	0.17142E-36	0.00000E+00	0.15056E-38
94.00	0.17985E-36	0.00000E+00	0.15797E-38
94.50	0.18865E-36	0.00000E+00	0.16569E-38
95.00	0.19783E-36	0.00000E+00	0.17375E-38
95.50	0.20740E-36	0.00000E+00	0.18216E-38
96.00	0.21739E-36	0.00000E+00	0.19093E-38
96.50	0.22779E-36	0.00000E+00	0.20007E-38
97.00	0.23864E-36	0.00000E+00	0.20959E-38
97.50	0.24994E-36	0.00000E+00	0.21953E-38
98.00	0.26172E-36	0.00000E+00	0.22987E-38
98.50	0.27399E-36	0.00000E+00	0.24065E-38
99.00	0.28677E-36	0.00000E+00	0.25187E-38
99.50	0.30007E-36	0.00000E+00	0.26355E-38
100.00	0.31392E-36	0.00000E+00	0.27572E-38
100.50	0.32834E-36	0.00000E+00	0.28838E-38
101.00	0.34334E-36	0.00000E+00	0.30156E-38
101.50	0.35895E-36	0.00000E+00	0.31526E-38
102.00	0.37518E-36	0.00000E+00	0.32952E-38
102.50	0.39207E-36	0.00000E+00	0.34435E-38
103.00	0.40963E-36	0.00000E+00	0.35977E-38
103.50	0.42788E-36	0.00000E+00	0.37580E-38
104.00	0.44685E-36	0.00000E+00	0.39247E-38
104.50	0.46657E-36	0.00000E+00	0.40978E-38
105.00	0.48705E-36	0.00000E+00	0.42778E-38
105.50	0.50833E-36	0.00000E+00	0.44647E-38
106.00	0.53044E-36	0.00000E+00	0.46588E-38
106.50	0.55339E-36	0.00000E+00	0.48604E-38
107.00	0.57722E-36	0.00000E+00	0.50697E-38
107.50	0.60196E-36	0.00000E+00	0.52870E-38
108.00	0.62764E-36	0.00000E+00	0.55125E-38
108.50	0.65429E-36	0.00000E+00	0.57466E-38
		0.00000E+00	0.59894E-38
109.00	0.68194E-36		
109.50	0.71062E-36	0.00000E+00	0.62413E-38
110.00	0.74037E-36	0.00000E+00	0.65027E-38
110.50	0.77122E-36	0.00000E+00	0.67736E-38
111.00	0.80321E-36	0.00000E+00	0.70546E-38
111.50	0.83638E-36	0.00000E+00	0.73459E-38
112.00	0.87076E-36	0.00000E+00	0.76478E-38
112.50	0.90638E-36	0.00000E+00	0.79607E-38
113.00	0.94330E-36	0.00000E+00	0.82849E-38
113.50	0.98154E-36	0.00000E+00	0.86208E-38
114.00	0.10212E-35	0.00000E+00	0.89688E-38
114.50	0.10622E-35	0.00000E+00	0.93292E-38

115.00	0.11047E-35	0.00000E+00	0.97025E-38
115.50	0.11487E-35	0.00000E+00	0.10089E-37
116.00	0.11942E-35	0.00000E+00	0.10489E-37
116.50	0.12414E-35	0.00000E+00	0.10903E-37
117.00	0.12902E-35	0.00000E+00	0.11332E-37
117.50	0.13407E-35	0.00000E+00	0.11775E-37
118.00	0.13929E-35	0.00000E+00	0.12234E-37
118.50	0.14470E-35	0.00000E+00	0.12709E-37
119.00	0.15029E-35	0.00000E+00	0.13200E-37
119.50	0.15607E-35	0.00000E+00	0.13707E-37
120.00	0.16205E-35	0.00000E+00	0.14232E-37
120.50	0.16823E-35	0.00000E+00	0.14775E-37
121.00	0.17462E-35	0.00000E+00	0.15336E-37
121.50	0.18122E-35	0.00000E+00	0.15916E-37
122.00	0.18805E-35	0.00000E+00	0.16516E-37
122.50	0.19510E-35	0.00000E+00	0.17135E-37
123.00	0.20238E-35	0.00000E+00	0.17775E-37
123.50	0.20991E-35	0.00000E+00	0.18437E-37
123.50	0.21769E-35	0.00000E+00	0.19119E-37
124.00	0.22572E-35	0.00000E+00	0.19825E-37
124.50	0.23401E-35	0.00000E+00	0.20553E-37
125.00			
	0.24258E-35	0.00000E+00	0.21305E-37
126.00	0.25142E-35	0.00000E+00	0.22082E-37
126.50	0.26054E-35	0.00000E+00	0.22883E-37
127.00	0.26996E-35	0.00000E+00	0.23711E-37
127.50	0.27968E-35	0.00000E+00	0.24564E-37
128.00	0.28971E-35	0.00000E+00	0.25445E-37
128.50	0.30006E-35	0.00000E+00	0.26354E-37
129.00	0.31074E-35	0.00000E+00	0.27292E-37
129.50	0.32175E-35	0.00000E+00	0.28259E-37
130.00	0.33311E-35	0.00000E+00	0.29257E-37
130.50	0.34482E-35	0.00000E+00	0.30285E-37
131.00	0.35690E-35	0.00000E+00	0.31346E-37
131.50	0.36935E-35	0.00000E+00	0.32440E-37
132.00	0.38219E-35	0.00000E+00	0.33567E-37
132.50	0.39542E-35	0.00000E+00	0.34730E-37
133.00	0.40906E-35	0.00000E+00	0.35927E-37
133.50	0.42311E-35	0.00000E+00	0.37162E-37
134.00	0.43760E-35	0.00000E+00	0.38434E-37
134.50	0.45252E-35	0.00000E+00	0.39744E-37
135.00	0.46789E-35	0.00000E+00	0.41094E-37
135.50	0.48372E-35	0.00000E+00	0.42485E-37
136.00	0.50003E-35	0.00000E+00	0.43918E-37
136.50	0.51683E-35	0.00000E+00	0.45393E-37
137.00	0.53412E-35	0.00000E+00	0.46912E-37
137.50	0.55193E-35	0.00000E+00	0.48476E-37
138.00	0.57027E-35	0.00000E+00	0.50086E-37
138.50	0.58914E-35	0.00000E+00	0.51744E-37
139.00	0.60857E-35	0.00000E+00	0.53450E-37
139.50	0.62856E-35	0.00000E+00	0.55206E-37
140.00	0.64914E-35	0.00000E+00	0.57013E-37
140.50	0.67031E-35	0.00000E+00	0.58873E-37
141.00	0.69209E-35	0.00000E+00	0.60786E-37
141.50	0.71451E-35	0.00000E+00	0.62755E-37
142.00	0.73756E-35	0.00000E+00	0.64779E-37
142.50	0.76127E-35	0.00000E+00	0.66862E-37
143.00	0.78566E-35	0.00000E+00	0.69004E-37
143.50	0.81074E-35	0.00000E+00	0.71207E-37
144.00	0.83653E-35	0.00000E+00	0.73472E-37

144.50	0.86305E-35	0.00000E+00	0.75801E-37
145.00	0.89031E-35	0.00000E+00	0.78195E-37
145.50	0.91833E-35	0.00000E+00	0.80657E-37
146.00	0.94714E-35	0.00000E+00	0.83187E-37
146.50	0.97674E-35	0.00000E+00	0.85787E-37
147.00	0.10072E-34	0.00000E+00	0.88459E-37
147.50	0.10384E-34	0.00000E+00	0.91205E-37
148.00	0.10706E-34	0.00000E+00	0.94027E-37
148.50	0.11036E-34	0.00000E+00	0.96926E-37
149.00	0.11375E-34	0.00000E+00	0.99904E-37
149.50	0.11723E-34	0.00000E+00	0.10296E-36
150.00	0.12081E-34	0.00000E+00	0.10610E-36
150.50	0.12448E-34	0.00000E+00	0.10933E-36
151.00	0.12826E-34	0.00000E+00	0.11265E-36
151.50	0.13213E-34	0.00000E+00	0.11605E-36
152.00	0.13611E-34		
		0.00000E+00	0.11954E-36
152.50	0.14019E-34	0.00000E+00	0.12313E-36
153.00	0.14439E-34	0.00000E+00	0.12681E-36
153.50	0.14869E-34	0.00000E+00	0.13059E-36
154.00	0.15311E-34	0.00000E+00	0.13447E-36
154.50	0.15764E-34	0.00000E+00	0.13846E-36
155.00	0.16229E-34	0.00000E+00	0.14254E-36
155.50	0.16707E-34	0.00000E+00	0.14674E-36
156.00	0.17197E-34	0.00000E+00	0.15104E-36
156.50	0.17700E-34	0.00000E+00	0.15545E-36
157.00	0.18215E-34	0.00000E+00	0.15998E-36
157.50	0.18744E-34	0.00000E+00	0.16463E-36
158.00	0.19287E-34	0.00000E+00	0.16939E-36
158.50	0.19843E-34	0.00000E+00	0.17428E-36
159.00	0.20414E-34	0.00000E+00	0.17930E-36
159.50	0.20999E-34	0.00000E+00	0.18444E-36
160.00	0.21599E-34	0.00000E+00	0.18971E-36
160.50	0.22215E-34	0.00000E+00	0.19511E-36
161.00	0.22846E-34	0.00000E+00	0.20065E-36
161.50	0.23493E-34	0.00000E+00	0.20633E-36
162.00	0.24156E-34	0.00000E+00	0.21216E-36
162.50	0.24835E-34	0.00000E+00	0.21813E-36
163.00	0.25532E-34	0.00000E+00	0.22424E-36
	0.26245E-34	0.00000E+00	0.22424E-36
163.50			
164.00	0.26977E-34	0.00000E+00	0.23694E-36
164.50	0.27727E-34	0.00000E+00	0.24352E-36
165.00	0.28495E-34	0.00000E+00	0.25027E-36
165.50	0.29282E-34	0.00000E+00	0.25718E-36
166.00	0.30088E-34	0.00000E+00	0.26426E-36
166.50	0.30914E-34	0.00000E+00	0.27151E-36
167.00	0.31760E-34	0.00000E+00	0.27894E-36
167.50	0.32626E-34	0.00000E+00	0.28655E-36
168.00	0.33513E-34	0.00000E+00	0.29435E-36
168.50	0.34422E-34	0.00000E+00	0.30233E-36
169.00	0.35353E-34	0.00000E+00	0.31050E-36
169.50	0.36306E-34	0.00000E+00	0.31887E-36
170.00	0.37282E-34	0.00000E+00	0.32744E-36
170.50	0.38280E-34	0.00000E+00	0.33621E-36
171.00	0.39303E-34	0.00000E+00	0.34520E-36
171.50	0.40350E-34	0.00000E+00	0.35439E-36
172.00	0.41422E-34	0.00000E+00	0.36380E-36
172.50	0.42518E-34	0.00000E+00	0.37344E-36
173.00	0.43641E-34	0.00000E+00	0.38330E-36
173.50	0.44790E-34	0.00000E+00	0.39339E-36
	5	5.000002.00	3.00000E 00

174.00	0.45966E-34	0.00000E+00	0.40371E-36
174.50	0.47169E-34	0.00000E+00	0.41428E-36
175.00	0.48399E-34	0.00000E+00	0.42509E-36
175.50	0.49659E-34	0.00000E+00	0.43615E-36
176.00	0.50947E-34	0.00000E+00	0.44747E-36
176.50	0.52265E-34	0.00000E+00	0.45904E-36
177.00	0.53614E-34	0.00000E+00	0.47088E-36
177.50	0.54993E-34	0.00000E+00	0.48300E-36
178.00	0.56403E-34	0.00000E+00	0.49539E-36
178.50	0.57846E-34	0.00000E+00	0.50806E-36
179.00	0.59321E-34	0.00000E+00	0.52102E-36
179.50	0.60830E-34	0.00000E+00	0.53427E-36
180.00	0.62373E-34	0.00000E+00	0.54782E-36
180.50	0.63950E-34	0.00000E+00	0.56167E-36
181.00	0.65563E-34	0.00000E+00	0.57584E-36
181.50	0.67212E-34	0.00000E+00	0.59032E-36
182.00	0.68897E-34	0.00000E+00	0.60512E-36
182.50	0.70620E-34	0.00000E+00	0.62025E-36
			0.63572E-36
183.00	0.72382E-34	0.00000E+00	
183.50	0.74182E-34	0.00000E+00	0.65153E-36
184.00	0.76022E-34	0.00000E+00	0.66769E-36
184.50	0.77902E-34	0.00000E+00	0.68421E-36
185.00	0.79824E-34	0.00000E+00	0.70109E-36
185.50	0.81787E-34	0.00000E+00	0.71833E-36
186.00	0.83794E-34	0.00000E+00	0.73596E-36
186.50	0.85844E-34	0.00000E+00	0.75396E-36
187.00	0.87938E-34	0.00000E+00	0.77236E-36
187.50	0.90078E-34	0.00000E+00	0.79115E-36
188.00	0.92264E-34	0.00000E+00	0.81035E-36
188.50	0.94497E-34	0.00000E+00	0.82996E-36
189.00	0.96778E-34	0.00000E+00	0.85000E-36
189.50	0.99108E-34	0.00000E+00	0.87046E-36
190.00	0.10149E-33	0.00000E+00	0.89136E-36
190.50	0.10392E-33	0.00000E+00	0.91270E-36
191.00	0.10640E-33	0.00000E+00	0.93450E-36
191.50	0.10893E-33	0.00000E+00	0.95676E-36
192.00	0.11152E-33	0.00000E+00	0.97949E-36
192.50	0.11416E-33	0.00000E+00	0.10027E-35
193.00	0.11686E-33	0.00000E+00	0.10264E-35
193.50	0.11962E-33	0.00000E+00	0.10506E-35
194.00	0.12243E-33	0.00000E+00	0.10753E-35
194.50	0.12530E-33	0.00000E+00	0.11005E-35
195.00	0.12823E-33	0.00000E+00	0.11262E-35
195.50	0.13122E-33	0.00000E+00	0.11525E-35
196.00	0.13427E-33	0.00000E+00	0.11793E-35
196.50	0.13739E-33	0.00000E+00	0.12067E-35
197.00	0.14057E-33	0.00000E+00	0.12346E-35
197.50	0.14381E-33	0.00000E+00	0.12631E-35
198.00	0.14713E-33	0.00000E+00	0.12922E-35
198.50	0.15050E-33	0.00000E+00	0.13219E-35
199.00	0.15395E-33	0.00000E+00	0.13522E-35
199.50	0.15747E-33	0.00000E+00	0.13831E-35
200.00	0.16106E-33	0.00000E+00	0.14146E-35
200.00	5.10100L-00	5.0000L+00	5.17170L-00

00043512

Appendix M

Creeks Survey and Water Elevation Data

Table of Contents_

	Tables Figures	
1.0	Introduction	1

List of Tables _____

Table 1	Comparison of Groundwater and Central Creek Surface Water Elevations – LHAAP-12
Table 2	Comparison of Groundwater and Goose Prairie Creek Surface Water Elevations LHAAP-35B(37)
Table 3	Comparison of Groundwater and Central Creek and Harrison Bayou Surface Water Elevations LHAAP-35C(53)
Table 4	Comparison of Groundwater and Goose Prairie Creek Surface Water Elevations LHAAP-46
Table 5	Comparison of Groundwater and Central Creek Surface Water Elevations LHAAP-48
Table 6	Survey Points for Saunders Branch

List of Figures _____

Figure 1Creek Survey Location MapFigure 2Creek Survey

1.0 Introduction

Potential groundwater discharge into creeks was interpreted site by site using the creek survey data and groundwater elevation data from wells located within the vicinity of the creek. Groundwater elevation data from a single well alone was not the mitigating criteria for determining potential discharge, rather, consideration was given to the general groundwater flow direction at a site and by utilizing elevation data from all well groupings at that site.

Table 1
Comparison of Groundwater and Central Creek Surface Water Elevations - LHAAP-12

Compans	on or Grou	nuwater and	Central Creek 3		ievations.	
Well ID	TOC Elevation (feet)	Ground Elevation (feet)	Depth to Water Dry Sept. 2002 Wet March 2002 (feet)	Groundwater Elevations Dry Sept. 2002 Wet March 2002 (feet)	Surveyed Point in the Well Vicinity	Groundwater Discharge to the Creek
Dry Season Centr	ral Creek					
12WW01	204.19	201.61	22.4	181.79	CC2	
12WW05	190.52	188.39	9.05	181.47	CC1	
12WW10	203.21	200.3	21.5	181.71	CC1	
12WW11	203.51	199.91	22.22	181.29	Deep	
12WW12	203.04	200.34	21.1	181.94	CC1	No
12WW13	203.24	200.08	21.73	181.51	CC1	
12WW17	203.5	199.96	22	181.5	CC1	
12WW18	204.26	201.13	23.4	180.86	CC2	
Wet Season Cent	ral Creek					
12WW01	204.19	201.61	22.5	181.69	CC2	
12WW05	190.52	188.39	5.6	184.92	CC1	
12WW10	203.21	200.3	21.45	181.76	CC1	
12WW11	203.51	199.91	22.3	181.21	Deep	Potential
12WW12	203.04	200.34	20	183.04	CC1	discharge
12WW13	203.24	200.08	21.55	181.69	CC1	
12WW17	203.5	199.96	21	182.5	CC1	
12WW18	204.26	201.13	23.7	180.56	CC2	
Dry Season Harris	,	001 (1		101.70		
12WW01	204.19	201.61	22.4	181.79	HB	
12WW05	190.52	188.39	9.05	181.47	HB	
12WW10	203.21	200.3	21.5	181.71	HB	
12WW11	203.51	199.91	22.22	181.29	Deep	Yes
12WW12	203.04	200.34	21.1	181.94	HB	
12WW13	203.24	200.08	21.73	181.51	HB	
12WW17 12WW18	203.5 204.26	199.96 201.13	22 23.4	181.5 180.86	HB HB	
12 00 00 10	204.20	201.13	23.4	100.00	пр	
Wet Season Harri	, ,				L	
12WW01	204.19	201.61	22.5	181.69	HB	
12WW05	190.52	188.39	5.6	184.92	HB	
12WW10	203.21	200.3	21.45	181.76	HB	
12WW11	203.51	199.91	22.3	181.21	Deep	Yes
12WW12	203.04	200.34	20	183.04	HB	
12WW13	203.24	200.08	21.55	181.69	HB	
12WW17 12WW18	203.5 204.26	199.96 201.13	21 23.7	182.5 180.56	HB HB	
Notes and Abbrevi		201.15	23.1	100.30	TID	
Survey Point		CC1	CC1	CC2	CC2	
,	<i>.</i>	188.2	188.37	185.09	185.19	
Top of Creek Bank: Bottom of Creek		182.01	181.9	183.41	182.92	
Survey Point		CC3	CC3	HB	HB	
Top of Creek Bank		171.99	171.91	167.85*	166.73*	
Bottom of Creek 168.54		168.54	168.77			
* Not top of creek	bank but edge o	f the swamp				

 * Not top of creek bank but edge of the swamp

TOC Top of Casing

CC Central Creek

HB Harrison Bayou

Table 2
Comparison of Groundwater and Goose Prairie Creek Surface Water Elevations
LHAAP-35B (37)

Well ID	TOC Elevation (feet)	Ground Elevation (feet)	Depth to Water Sept. 2004 (feet)	Groundwater Elevations Sept. 2004 (feet)	Surveyed Point in the Well Vicinity	Groundwater Discharge to the Creek
35BWW01	202.88	200.24	12.90	189.98	GPS	
35BWW02	203.95	201.06	Dry	Dry	GPS	
35BWW03	203.56	201.34	21.68	181.88	GPS	No
LHSMW58	203.56	200.20	17.25	186.31	GPS	
LHSMW59	204.18	201.07	17.89	186.29	GPS	
Notes and Abbrevia	Notes and Abbreviations:					

Survey Point	GPS	GPS
Top of Creek Bank	194.27	194.75
Bottom of Creek	187.21	187.50

TOC Top of Casing

GPS Goose Prairie Creek South

 Table 3

 Comparison of Groundwater and Central Creek and Harrison Bayou Surface Water Elevations

 LHAAP-35C (53)

				1 /		
Well ID	TOC Elevation (feet)	Ground Elevation (feet)	Depth to Water Sept. 2004 (feet)	Groundwater Elevations Sept. 2004 (feet)	Surveyed Point in the Well Vicinity	Groundwater Discharge to Central Creek/ Harisson Bayou
106	179.05	175.65	12.82	166.23	CC3	No
107	178.32	175.73	10.22	168.10	HB	
LHSMW67	185.57	182.64	17.11	168.46	HB	
LHSMW68	189.65	186.69	20.71	168.94	HB	Yes
LHSMW69	183.27	180.16	15.22	168.05	HB	105
LHSMW70	183.62	180.54	14.79	168.83	HB	
LHSMW71	183.73	181.00	16.23	167.50	HB	
Notes and Abbreviations:						
Survey Point		CC3	CC3	HB	HB	
Top of Creek Bank		171.99	171.91	167.85*	166.73*	
Bottom of Creek		168.54	168.77			

TOC Top of Casing

CC Central Creek

HB Harrison Bayou

* Not top of creek bank but edge of the swamp

^a - Main channel center line of creek

Groundwater will not discharge to Central Creek but may potentially discharge to Harrison Bayou.

Table 4
Comparison of Groundwater and Goose Prairie Creek Surface Water Elevations
LHAAP-46

Well ID	TOC Elevation (feet)Ground Elevation (feet)Depth to Water Dry Sept. 2002 Wet March 2002 (feet)Groundwater Elevations Dry Sept. 2002 Wet March 2002 (feet)		Surveyed Point in the Well Vicinity	Groundwater Discharge to the Creek		
Dry Season						•
46WW01	212.82	209.71	17.87	194.95	GPN2	
46WW02	212.21	209.16	26.06	185.61	GPN2	Yes
LHSMW19	212.96	209.74	16.31	196.65	GPN2	res
LHSMW22	209.6	206.16	18.87	190.73	GPN2	
Wet Season						-
46WW01	212.82	209.71	17	195.82	GPN2	
46WW02	212.21	209.16	26.8	185.41	GPN2	Vac
LHSMW19	212.96	209.74	16.6	196.36	GPN2	Yes
LHSMW22	209.6	206.16	19.6	190	GPN2]

Notes and Abbreviations:

Survey Point	GPN2	GPN2
Top of Creek Bank	182.74	182.27
Bottom of Creek	179.94	180.06

TOC Top of Casing

GPN Goose Prairie Creek North

Table 5
Comparison of Groundwater and Central Creek Surface Water Elevations
LHAAP-48

Well ID	TOC Elevation (feet)	Ground Elevation (feet)	Depth to Water Sept. 2004 (feet)	Groundwater Elevations Sept. 2004 (feet)	Surveyed Point in the Well Vicinity	Groundwater Discharge to the Creek
48WW01	193.24	190.81	22.32	170.92	CC3	
LHSMW62	192.20	189.06	20.91	171.29	CC3	
LHSMW63	194.06	191.01	21.60	172.46	CC3	Yes
LHSMW64	191.42	188.23	21.33	170.09	CC3	163
LHSMW65	194.31	191.80	19.93	174.38	CC3	
LHSMW66	195.11	192.23	19.97	175.14	CC3	
Notes and Abbrevi	ations:					

Survey Point	CC3	CC3
Top of Creek Bank	171.99	171.91
Bottom of Creek	168.54	168.77

TOC Top of Casing

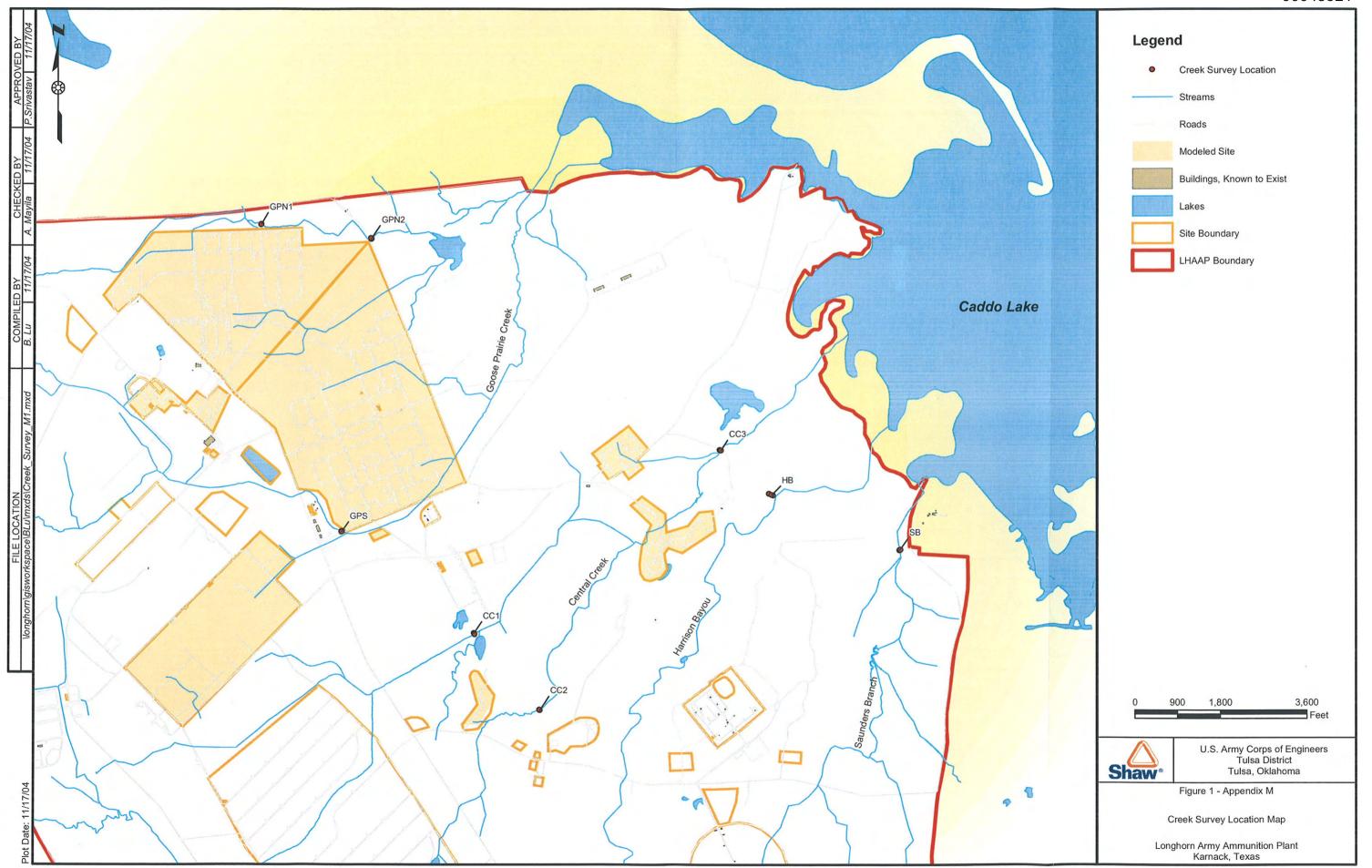
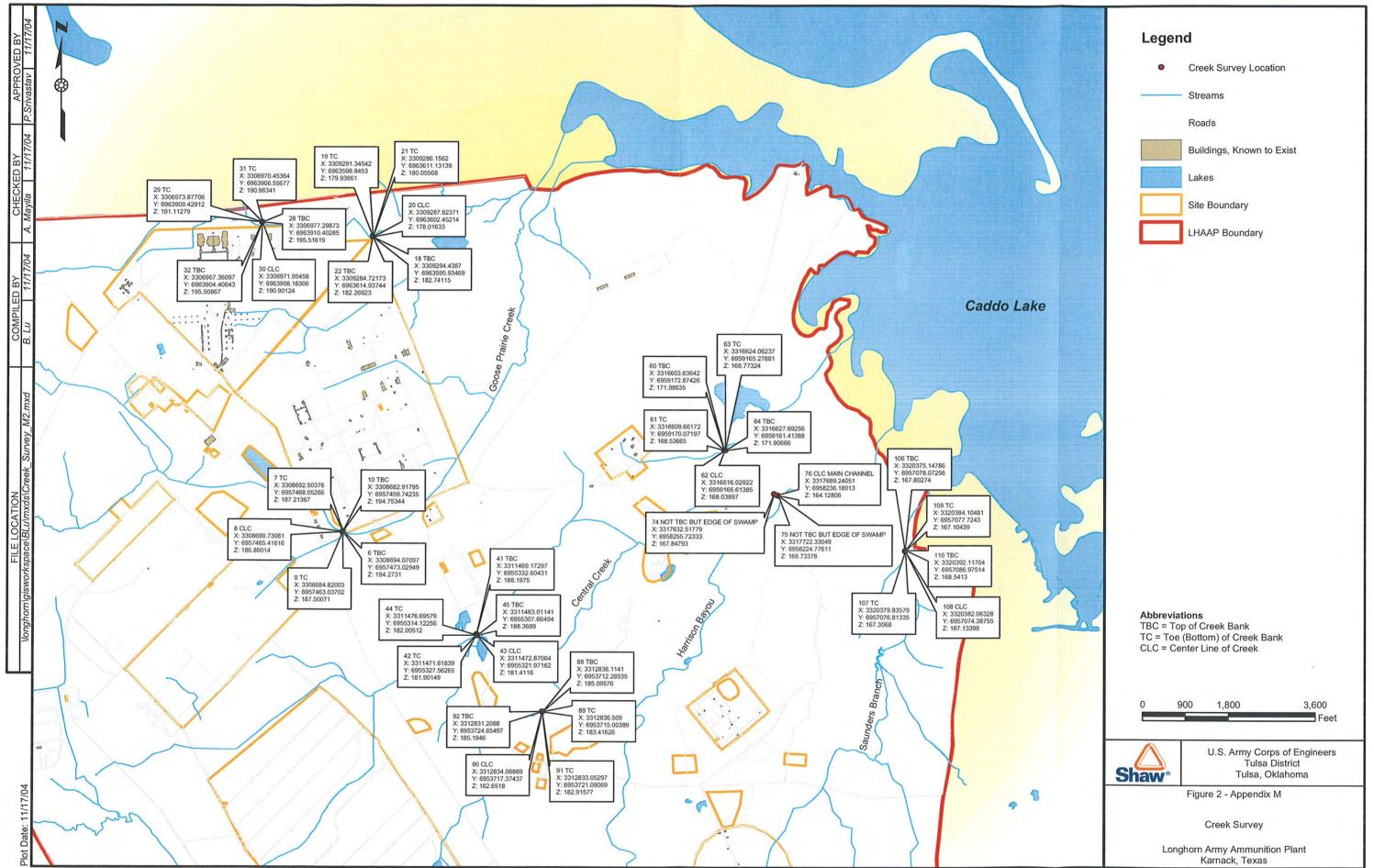

CC Central Creek

Table 6
Survey Points for Saunders Branch

Survey Point	SB	SB
Top of Creek Bank	167.80	168.54
Bottom of Creek	167.31	167.10


Abbreviation:

SB Saunders Branch

(

00043521

Subject:Draft Final Minutes, Monthly Managers Meeting,
Longhorn Army Ammunition Plant (LHAAP)

Location of Meeting: Teleconference Date of Meeting: February 13, 2007, 1:00 PM – 3:30 PM

Meeting Participants:

BRAC:	Rose M. Zeiler
USACE-Tulsa:	Cliff Murray, Rick Smith, John Lambert
USAEC	Jeff Armstrong
Shaw Environmental:	Dave Cobb, Praveen Srivastav, John Elliott, Kay Everett, Van
	Vangala, Greg Jones
USEPA Region 6:	Chris Villarreal, Steve Tzhone, Scott Harris, Raji Josiam
TCEQ:	Fay Duke

Prior to the meeting Shaw and Army had distributed via e-mail: meeting agenda, minutes of January 24, 2007 Monthly Managers' Meeting, and the document status tables for the TERC and PBC projects.

Rose Zeiler opened the meeting and welcomed those in attendance. Rick Smith with the USACE-Tulsa District announced that John Lambert would be replacing him as the Longhorn project manager after a suitable transition period. John Lambert introduced himself to the group.

Shaw Action Items: Shaw PBC

- Inform Jeff Armstrong regarding expected end of February 2007 submittal date of BERA Vol. II so he can inform Larry Tannenbaum. Dave Cobb said that comments are back on the Baseline Ecological Risk Assessment Volume II from the Army. They expect to submit Volume II in the last week of February or first week of March.
- Set up a conference call with TCEQ and EPA to discuss GWTP sampling modification memo. Dave indicated that a conference call had been conducted discussing the GWTP sampling memo.
- Shaw to submit a memo presenting information to support the proposal to shut down extraction wells at LHAAP-16. A memo has been submitted regarding the proposal to shutdown the extraction system at LHAAP-16.
- Send an e-mail with proposed day and time for weekly or biweekly call with regulators. Dave indicated that the weekly call program with the stakeholders has been

set up to help facilitate site work. The initial meeting walked through the modification sampling memo at LHAAP-18/24 and the memo requesting the shutdown of the system at LHAAP-16 for site sampling.

• Provide a brief tech/design memo summarizing re-injection system at LHAAP-18/24 for Shaw's use in the field and for information to Army and regulators. The design process has been started for the groundwater treatment plant's re-injection system/optimization.

Shaw TERC

- Send response to comments on LHAAP- 37/67 Proposed Plan and Data Gaps Investigation Report to Raji Josiam (EPA) with copy to Chris Villarreal. John Elliott informed the group that both documents were forwarded to the regulators on February 12, 2007
- Send a revised table of MNA results, incorporating the Dec 2006 data, to EPA and TCEQ. The revised table will be submitted on Thursday, February 15, 2007 and has been expanded to a technical memo with the table, data, and a figure.
- Send revised risk evaluation for LHAAP-48/53 electronically to TCEQ with copy to EPA. John Elliott informed the group that the report on LHAAP-48/53 would be submitted electronically on Thursday, February 15, 2007.
- Shaw and Army to decide how to roll up MNA data and modeling for LHAAP-37 and 67 and inform regulators. To be discussed.

USACE Action Item:

• Cliff Murray to look up any documentation or background information that supported installation of extraction system at LHAAP-16. Also check with Jeff Armstrong to see if he has any information. Cliff Murray briefly discussed the history of the LHAAP-16 extraction system pilot study. It originally was a 2-year pilot study from an Army document. An email explaining this history was issued. Fay Duke said she did not get the email. Chris Villarreal said some discussion was brought up during the 5-year review. The remedy for site 16 is the landfill cap so the extraction system itself was not the remedy.

TCEQ Action Items:

- Dale Vodak/Fay Duke to find out requirements for IHW permit for the landfill at LHAAP-19. Fay Duke indicated that what needs to be done regarding the construction landfill was completed.
- Dale Vodak/Fay Duke to check on the permit requirements, if any, for dewatering of pits and use of a portable air stripping unit. Still an item as Army will review relevant data to make a determination if a portable stripping unit is feasible to use in remediating the water from the pits.
- Fay Duke to provide comments on perimeter well sampling frequency memo. Completed.
- Fay Duke to provide comments or concurrence for LHAAP-18/24 GWTP Sampling Modification Memo based on the outcome of the call (to be scheduled, see Shaw's action item)

EPA Action Items:

- Raji Josiam to confirm the availability of conference room for February 13, 2007 monthly managers' meeting in Dallas. Completed, however, meeting was changed to teleconference.
- **Raji Josiam to check with Chris Villarreal regarding the status of ECOP IV review by EPA and inform Rose Zeiler.** Chris indicated that a letter is being drafted regarding ECOPIV. Rose said that she will revise the ECOPIV and send up to BRAC headquarters for signature. Chris indicated that he would wait until all revisions are incorporated in the document before getting the signatures needed.
- Raji Josiam to check on the schedule for the EPA website on Longhorn. Pending.
- Chris Villarreal to call Susan Roddy and Marc Greenberg to make sure that the review of the BERA is on their schedule. Done.

Steve Tzhone indicated that a new document will be available via the EPA website regarding MNA guidance and MNA determination. Vince Malott is the EPA's contact working on this document. This MNA guidance will be used to determine if MNA is working or not. There is some controversy on current guidance.

USGS and TVA are scheduled to conduct a flyover and an installation-wide water level event for March 18-24. USGW is waiting for the last download from Shaw. They are trying to determine wow many wells are present, screening information, well surveys, well levels, etc. There are about 200-400 wells being looked at; however, water level data will not be collected from all wells, especially those in clusters. Some wells are just missing some information. Notification to Army and coordination with USFWS is necessary to enter the installation after March 14, the last day there will be security at the gate.

Defense Environmental Restoration Program (DERP) PBC Update (Dave Cobb/Praveen Srivastav)

Dave briefly hit the highlights on the document status table. He indicated that BERA Volume I document is being looked at by regulators. Dave said that Volume II will probably be available by the end of February to the regulators. Fay Duke indicated that comments were coming soon regarding the GWTP sampling optimization memo. The LHAAP-35/36 SI report is being prepared.

GWTP. Van Vangala provided an update on the GWTP operation. He indicated that the INF pond is almost empty. Shaw discharged water to the pond over the weekend. During the month, there were no major problems. The plant did have a freeze which knocked the system off for a short time. They have a roll off box of filter cake ready to dispose March 13, 2007, when Rose will be onsite to sign the manifest. Scott and Ray repaired the Army trailer plumbing that broke during freezing conditions.

The MNA sampling event is starting February 19, 2007. Creek sampling results from the end of December 2006 sampling data indicated non detect for perchlorate at 5 locations. Three were located in Harrison Bayou and 2 in Goose Prairie Creek. The map showing the sampling locations and data will be provided soon.

Fay Duke expressed concern over the calibration used in the MNA modeling. Praveen Srivastav said that "calibration" for this modeling was not the correct term and that a "field verification" check was conducted to compare simulated model results at appropriately located wells with actual observed results.

Fay expressed her concern over the groundwater modeling report and its relationship to the requirements for surface water monitoring at individual sites. Fay asked if surface water then would not be monitored at individual sites where the model predicts no impact. Rose answered in the affirmative for TERC sites. Praveen said that Shaw will monitor the surface water at one location if the extraction system is turned off to evaluate MNA at Site 16.

Draft Final Feasibility Study LHAAP-16 report is being prepared. Fay Duke asked if groundwater is included in this FS. The answer was yes. No BERA impact is expected on the LHAAP-16 FS because the site is a landfill with a RCRA cover.

Defense Environmental Restoration Program (DERP) TERC Update (Praveen Srivastav and John Elliott)

For Sites 48 and 53, Praveen Srivastav indicated that the risk assessment appendices to the Site Evaluation Report are being revised and will be submitted this Thursday, 2/15/07, for an advance regulatory review before the report is finalized. Data from the new well at LHAAP-48 will be inserted in main text of the evaluation report.

For LHAAP-12, the information collected from the new wells will be included in LHAAP-12 Well Abandonment/Installation report. VOC (i.e. TCE, DCE) concentrations found in the new well 12WW24 were similar to the well 12WW12 that was abandoned. Two rounds of MNA data have been collected. The first set has already been provided to regulators for review in the MNA Evaluation Report for Sites 12, 37 and 67. The data from the most recent round completed in December 2006 will be submitted to the regulators soon. Rose provided a brief explanation as to why a number of TERC sites are following what seems to be a disjointed and convoluted path to remedy. In response to EPA's comments many sites are now looking at MNA as an option. Rose reminded the stakeholders that originally ACL was used but EPA made a comment on the ROD saying that ACL could no longer be used and that it must demonstrate that the selected remedy would achieve MCL. EPA requested that the Army estimate the time to MCL. The MNA modeling was conducted to address that comment. Subsequently, MNA data was collected to determine if conditions suitable for MNA existed at the site. Similar comments for LHAAP-37/67 were anticipated so these sites were also modeled to obtain estimated time to reach MCL and field data was collected to support MNA as a remedy.

New wells were installed at LHAAP-37/67. Rose made a clarification regarding groundwater flow direction and will respond in the RTC so that the explanation will be in the Admin Record.

The LHAAP-59 document got passed around at EPA and was reassigned. It was requested that EPA review and comment.

The Army received comments on Data Gaps report from Fay. Some of these responses to these comments are found in meeting minutes from 2002 and 2003. Rose said she will pass on.

MMRP Update

John Lambert said that the draft EE/CA comment/response table will be available by the end of the week. They expect a resolution within the next week or two. They would finish this discussion outside of this meeting.

IAP is scheduled for April 3 and 4 hosted by Shaw's Houston office. Participants expected tentatively are 3 from EPA, 2 from TCEQ, 2 from FWS, 3 or 4 from Army, and 4 from Shaw. The time of the meeting is estimated at 8AM both days and is expected to run about a day and a half.

Schedule

The date of RAB meeting has been changed to the 13th of March. A potluck dinner by the community has been planned. Shaw will send out an email notification that this change was made. A teleconference for the monthly managers meeting in March is scheduled for March 6, 2007, 1:00 PM.

Chris Villarreal requested a schedule covering several years. Dave Cobb stated that Shaw can either provide the schedule in PDF format or in another format that is compatible with EPA's system. Chris indicated that he and others at EPA use MS Project. Dave said that he would look into getting the Primavera schedule converted to MS Project.

Transfer Update

The Army has EPA comments on ECOP IV and the document is being revised and has gone to BRAC legal for signature then will be sent to USFWS ECOP III had 100 acres. There are 740 acres to be transfered with this ECOP III and IV and that puts the total transfer to close to 7000 acres. This latest document includes acreage from Plant 2 and 3 areas and the EFIA.

BRAC will have no need for electricity after March 14, 2007 (when security is removed from the front gate.) Rose indicated that if the power is off, the front gates won't open. Currently AEC is picking up the electric on the fire station building. At present USFWS still does not have separate power. There are currently 4 phone lines – one at the Longhorn trailer, one at the fire station, and 2 at the gate (one of these is on the gate). These will be discontinued after March 14.

Pits and Hazard Abatement

Nothing new to discuss at this time.

Demo Landfill

Discussions with the TCEQ and Army have resulted in the appropriate steps in regards to the closing of this landfill. Another inspection is needed and hopefully can be conducted in March, 2007. If not March, then the inspection would be kicked back until July 2007. Rose mentioned that a form will be prepared by BRAC with a letter to the state and will require a ROD and PP. Rose said a summary of what they talked about will be provided via email to Steve Tzhone.

Meeting Adjourned.

Action Items:

Army

- Provide 5-year review excerpt for LHAAP-16
- Forward MMRP report to EPA and TCEQ when available.

Shaw

- Send creek sampling results and figure to stakeholders
- Provide long range schedule for EPA in MS-Project compatible format

EPA

• Steve Tzhone will forward the MNA guidance when it becomes available.

Status of Technical Documents – 4 week look ahead Longhorn Army Ammunition Plant – PBC Contract March 06, 2007

No.	Documents in Progress	Submittal Date	Army	Regulator	Comments Due from USACE/ Regulators	Comment Resolution	Status	On Stakeholder's Portal?	Remarks
	ERA								
1	Draft Step 3 report (Vol I of BERA)	1/16/07		x	2/15/07		Under regulatory review		As discussed, report will be issued in two parts to expedite review. BERA (Volume 2) will follow later due to sampling analysis durations.
2	Draft BERA (Vol II of BERA)	1/31/07	х		2/16/07	In progress	Army comments received, resolution in progress		
-	ENVIRONMENTAL								
3	Draft Final SI/Evaluation Report, LHAAP-02	3/30/06		X			Comments rec'd from TCEQ 8/29/06. EPA comments rec'd 5/12/06.	x	Final will be issued when ERA information available.
4	Draft Final Proposed Plan, LHAAP-60	7/7/06		x			Comments rec'd from TCEQ 8/1/06. EPA comments rec'd 8/21/06.	x	Final to be submitted when ERA information available.
5	LHAAP-18/24 GWTP Sampling Optimization Memo	11/15/06		x	12/16/06		Under Stakeholders review	x	Comments pending from both TCEQ and EPA
6	Draft Final TCRA Memo – LHAAP-04, -49, -50, and Pistol Range	12/6/06	x				Under Army review		Currently undergoing resolution
7	Perimeter Well Sampling Optimization Memo	12/28/07		x	1/27/07		Comments received 2/6/07		Under Shaw review.
8	Draft Feasibility Study, LHAAP-58	TBD					On hold pending BERA		Draft versions 80% complete. Can not be finalized until eco issues resolved/ ERA further along.

Status of Technical Documents – 4 week look ahead Longhorn Army Ammunition Plant – PBC Contract March 06, 2007

No.	Documents in Progress	Submittal Date	Army	Regulator	Comments Due from USACE/ Regulators	Comment Resolution	Status	On Stakeholder's Portal?	Remarks
9	Draft Feasibility Study, LHAAP-17	TBD					On hold pending BERA		Draft versions 80% complete. Can not be finalized until eco issues resolved/ ERA further along.
10	Draft Feasibility Study, LHAAP-16	11/30/06	x		12/18/06 (Army)		Complete		
10	Draft Final Feasibility Study, LHAAP-16	TBD					On hold pending review of MNA evaluation proposal		Can not be finalized until eco issues resolved/ ERA further along.
11	Draft Final SI Report for LHAAP-06, 07, -51, -55, - 64, -66, -68 (combined)	1/11/07		x	2/10/07		In regulatory review	x	
12	Draft SI Report for LHAAP-35/36	3/15/07 (Army)					In preparation		Report that summarizes sampling data for sumps
13	Quarterly GWTP Report	1/31/07 (Army)	x	х			Complete		
14	Draft LHAAP-16 MNA Evaluation Proposal	2/21/07 (Army)	x				Complete		In Army review

00043531

Technical Document Status Table TERC Task Order N0. 0109 Longhorn Army Ammunition Plant

				Draft D	ocument						Draft Final D	ocument				Final Document
No.	Site	Documents in Progress	Draft Submittal Date	Army Comments	Shaw RTC	Comment Resolution	Draft Final Submittal Date	AEC Comments	EPA Comments	TCEQ Comments		Army Comments	Comment Resolution	Army forward RTC to TCEQ & EPA	Comment Resolution	Final Submittal Date
1	LHAAP- 12	Remedial Design Addendum, Rev 03, LHAAP- 12	07/14/06	08/11/06			08/17/06	None Required	09/05/06							
2	LHAAP- 12	Well Abandonment and Installation Report, LHAAP-12					06/07/06	None Required	07/17/06	09/27/06	10/19/06	10/31/06	11/07/06	11/20/06	TCEQ EPA	
3	LHAAP- 12	Results of Modeling for Natural Attenuation of TCE, LHAAP-12					05/15/06	None Required								
4	LHAAP- 32	Proposed Plan, LHAAP-32					07/21/06	08/25/06	09/05/06	09/12/06	09/19/06			11/21/06	TCEQ 12/07/06 EPA 01/26/07	
5		Evaluation of Perimeter Well Data for use as Groundwater Background					03/07/06	None Required	04/19/06	10/24/06	11/07/06	RMZ 11/07/2006 USACE 11/20/06	11/20/06	11/21/06	TCEQ 12/07/06 EPA 02/21/07	
6		Data Gaps Investigation Report					05/18/05	None Required	05/17/06	10/24/06	11/07/06	RMZ 11/09/2006 USACE 11/20/06	11/28/06	11/29/06	TCEQ 02/28/07 EPA 12/06/06	
7	LHAAP- 48/53	Site Evaluation Report, LHAAP-48/53					03/10/06	None Required	04/20/06	07/06/06	10/27/06	10/31/06	10/31/06	11/02/06	EPA concur 11/03/06 TCEQ comments 11/13/06	
8	LHAAP- 48/53	Revised Proposed Plan, LHAAP-48/53	09/25/06	10/31/06	11/14/06	01/12/07										
9	LHAAP- 37/67	Proposed Plan, LHAAP-37/67	05/02/06	05/24/06	06/06/06	06/22/06	07/18/06	08/25/06	09/05/06	09/20/06	10/19/06	10/31/06	11/07/06	11/21/06	TCEQ EPA 02/21/07	
10	LHAAP- 37/67	Natural Attenuation Modeling Report, LHAAP- 37/67	09/22/06	10/13/06	10/27/06	10/31/06	11/14/06									
11	LHAAP- 08	Proposed Plan, LHAAP-08	05/01/06	05/24/06			07/07/06	08/25/06	08/21/06	09/20/06	09/29/06			11/21/06	TCEQ 12/07/06 EPA 02/21/07	
12	LHAAP- 59	Site Investigation Report, LHAAP-59	11/02/06	11/07/06	11/09/06	11/15/06	11/21/06	None Required		01/11/07						
13	LHAAP- 12/37/67	Natural Attentuation Evaluation, LHAAP- 12/37/67	10/31/06	11/30/06	12/08/06	12/08/06	12/15/06	None Required								
14	LHAAP- 12/37/67	Memorandum regarding MNA Evaluation, LHAAP-12, 37, & 67	02/15/07	02/16/07	02/16/07	02/16/07	02/16/07									
15		Final Modeling Report (Revision 1)														02/09/07
	[Shaw Forecasted Submittal Date	I		Shaw Action Iten	n]		Army Action Iter	n]	EPA	& TCEQ Action	Item		

LONGHORN ARMY AMMUNITION PLANT,

Karnack, Texas

MONTHLY MANAGERS' MEETING

AGENDA

DATE: TIME: PLACE	Tuesday, 13 February 2007 1:00 – 3:00 p.m. Teleconference – Call-in-Number: 877-797-9304, Passcode 4155734	
1:00	Welcome New Tulsa PM, John Lambert	RMZ
1:05	 Review of January Meeting Minutes and Action Items Shaw PBC Inform Jeff Armstrong regarding expected end of February 2007 submittal date of BERA Vol. II so he can inform Larry Tannenbaum Set up a conference call with TCEQ and EPA to discuss GWTP sampling modification memo Shaw to submit a memo presenting information to support the proposal to shut down extraction wells at LHAAP-16 Send an e-mail with proposed day and time for weekly or biweekly call with regulators Provide a brief tech/design memo summarizing re-injection system at LHAAP-18/24 for Shaw's use in the field and for information to Army and regulators Shaw TERC Send response to comments on LHAAP-32 and 37/67 proposed plans to Raji Josiam (EPA) with copy to Chris Villarreal Send a revised table of MNA results, incorporating the Dec 2006 data, to EPA and TCEQ Send revised risk evaluation for LHAAP-48/53 electronically to TCEQ with copy to EPA Shaw and Army to decide how to roll up MNA data and modeling for LHAAP-37 and 67 and inform regulators Army Cliff Murray to look up any documentation or background information that supported installation of extraction system at LHAAP-16. Also check with Jeff Armstrong to see if he has any information. Rose Zeiler to send EPA CID email re mercury at Demolition LF TCEQ Dale Vodak/Fay Duke to find out requirements for IHW permit for the landfill at LHAAP-Dale Vodak/Fay Duke to check on the permit requirements, if any, for dewatering of pits a use of a portable air stripping unit Fay Duke to provide comments on perimeter well sampling frequency memo Fay Duke to provide comments on perimeter well sampling frequency memo 	nd

EPA

- Raji Josiam to confirm the availability of conference room for February 13, 2007 monthly managers' meeting in Dallas
- Raji Josiam to check with Chris Villarreal regarding the status of ECOP IV review by EPA and inform Rose Zeiler
- Raji Josiam to check on the schedule for the EPA website on Longhorn
- Chris Villarreal to call Susan Roddy and Marc Greenberg to make sure that the review of the BERA is on their schedule
- Steve Tzhone to check on MNA and OPS requirements.

1:30	Defense Environmental Restoration Program (DERP) PBC Update	00043533
1.50	 Document Status/Environmental Sites (Table) 	Dens
	• BERA update	
	• GWTP update	
	• Creek sampling results	
	GWTP/MNA Sampling	
	• LHAAP-18/24 – Optimization design	
	• LHAAP-16 – extraction system shut down, MNA sampling, feasibility stud addendum	dy
	• Status of Site Evaluation Report, LHAAP-6, 7, 51, 55, 64, 66, 68	
2:00	DERP Total Environmental Restoration Contract Update	PS
	Documents Status/Environmental Sites (Table)	
	• LHAAP-48/53 update	
	• LHAAP-12 update	
	• LHAAP-37/67 update	
	Approach to MNA modeling and MNA evaluations	
2:20	MMRP Update	СМ
2:30	Schedule – IAP (Who will attend?), March Managers & RAB Meetings (Shaw to confirm Community Center available on date change)	JL/CM
2:40	Transfer Update	RMZ
	ECOP IV End of Security Contract – Gate Access	
	Pits and Hazards Abatement	
3:00	Demolition Landfill Adjourn	RMZ

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Caddo Lake National Wildlife Refuge P.O. Box 230 Karnack, TX 75661-0230 Phone: 903.679.9144 – Fax: 903.679.9148 E-Mail mark_williams@fws.gov

February 15, 2007

Dr. Rose Zeiler Site Manager, BRAC Longhorn Army Ammunition Plant P.O. Box 220 Ratcliff, AR 72951

Dear Rose:

This letter is in response to e-mail, dated 2/14/07, concerning the Refuge's future plans for the Signal Test and South Test Areas on LHAAP.

The Caddo Lake National Wildlife Refuge (Refuge) can accommodate the level of public use on these two areas to whatever standard the U.S. Army (Army) deems appropriate. Installation of fencing, signage and other public use controls for dealing with health and safety issue may be required for the visiting pubic in the future. The Army is ultimately responsible for liability on these two areas (whether administered by the Army or the Refuge) and the Refuge will assist the Army with whatever controls it decides are necessary.

Refuge employees and their assigns will, in the future, access and utilize the areas unabated. The Refuge will control and complete management activities, conduct research, and perform law enforcement functions on the two sites once the administrative transfer is complete.

The Refuge will complete habitat management activities on the areas on a regular and reoccurring basis. These activities include prescribe fire activities, forest thinning (mechanized), and pest control as examples. If the Army decides the area can be open to the public, the Refuge will allow all of the "big six" public use activities that are compatible with the purpose and mission of the Refuge (hunting, fishing, wildlife observation, wildlife photography, wildlife education and wildlife interpretation). Any restrictions on implementation of the "big six" activities on these two sites will be coordinated with the Army prior their establishment. I hope this letter clarifies the Refuge plans for the future management, use and access of the Signal Test and South Test Areas on the LHAAP. If you have any questions or if I can be of further assistance concerning this matter, please contact me at (903) 679-9144 or (903) 407-0852.

Sincerely,

Williams

Mark Williams Refuge Manager

Subject:Draft Final Minutes, Monthly Managers Meeting,
Longhorn Army Ammunition Plant (LHAAP)

Location of Meeting: Teleconference Date of Meeting: March 6, 2007, 1:00 PM – 3:30 PM

Meeting Participants:	
BRAC:	Rose M. Zeiler
USACE-Tulsa:	Cliff Murray, John Lambert
USAEC	Jeff Armstrong
Shaw Environmental:	Dave Cobb, Praveen Srivastav, John Elliott, Van Vangala, Kay
	Everett, Greg Jones, Bob Culbertson
USEPA Region 6:	Chris Villarreal, Steve Tzhone, Scott Harris, Raji Josiam
TCEQ:	Fay Duke
USFWS:	Paul Bruckwicki, Barry Forsythe

Prior to the meeting Shaw and Army had distributed via e-mail: meeting agenda, minutes of February 13, 2007 Monthly Managers' Meeting, and the document status tables for the TERC and PBC projects.

Stephen Tzhone informed the group that he has been assigned as the primary EPA remedial project manager for Longhorn, replacing Chris Villarreal. Chris has many projects and some of his other projects have become very active. Steve requested a meeting so he has an idea of the responsibilities, document schedules and goals for each site. Rose Zeiler suggested meeting the following week before or after the RAB meeting. She suggested that, during the meeting, she would also go over site access issues after security has been removed from the front gate on March 14, 2007. The meeting was scheduled for the morning of March 14, 2007 at 9 AM.

Shaw Action Items from 13 Feb 2007 Managers' Meeting: <u>Shaw PBC</u>

- Send creek sampling results and figure to stakeholders: Sent out by Greg Jones on 1 Mar 2007.
- **Provide long range schedule for EPA in MS-Project compatible format:** Dave Cobb provided a PDF file on 6 Mar 2007. Praveen Srivastav inquired if EPA was looking for a 1 year, 5 year or 10 year schedule. Steve Tzhone indicated that a 5-year look ahead was needed and said he would check with his headquarter to see what else would be needed. Dave said that Shaw uses Primavera and they are still working on converting the schedule to a form that EPA can use and that it might take some time.

Army Action Items:

- Forward MMRP report to EPA and TCEQ when available: Report was not available as of the time of the meeting.
- Forward LHAAP-59 Report and other RTCs to EPA: Sent out by Rose Zeiler on 15 Feb 2007.

EPA Action Items:

- **Provide 5-year review excerpt for LHAAP-16:** Sent out by Chris Villarreal on 13 Feb 2007.
- Steve Tzhone will forward the MNA guidance when it becomes available: Regarding the 1999 Guidance, Chris Villarreal said that there was an update. He also indicated that technical guidance documents on metals MNA and capture zone analysis are expected to be out soon. On 14 Feb, Steve provided links to websites concerning information on OPS, MNA and MNA remedies. Steve will send out updated information on MNA guidance.
- **Reports in EPA Review**: A few outstanding reports are in review with Raji Josiam and Scott Harris who are assisting Steve.

Defense Environmental Restoration Program (DERP) PBC Update (Dave Cobb/Praveen Srivastav)

Dave Cobb briefly went over the highlights on the document status table. He indicated that BERA Volume II document was being shipped out on the day of the meeting (March 6) and that the stakeholders should receive it the next day.

GWTP. Van Vangala indicated that there were no major problems at the Groundwater Treatment Plant (GWTP) and that operations were proceeding normally. Shaw is discharging water currently to the creek since there is still flowing water in Harrison Bayou. Over the weekends, the water is discharged to the INF pond, and then released to Harrison Bayou on the following Mondays after flow is verified. There were 3 call outs, outside of normal operating hours. One of the calls pertained to a power outage and the others were due to mechanical issues (pumps freezing). A roll off of filter cake material is scheduled for disposal on March 14, 2007, when Rose Zeiler is expected to be onsite to sign the manifest.

Creek Sampling Results. Samples collected during December 2006 indicated nondetect for perchlorate at 3 locations in Harrison Bayou. Five sampling locations were initially identified with 3 sample locations in Harrison Bayou and 2 in Goose Prairie Creek. However, no samples could be collected from Goose Prairie Creek because there was no flow in the creek at the time of sampling. A map showing the sampling locations and a table of data were provided to the stakeholders prior to the meeting.

Fay Duke asked a question as to how the creek sampling locations were picked. Praveen Srivastav and Rose Zeiler replied that locations were based on previous locations sampled by USACE and that they were approved by regulators prior to the sampling by Shaw. The sampling is a continuation of the sampling program conducted by the USACE. **GWTP/MNA Sampling**. Shaw completed the sampling of wells at LHAAP-18/24 and MNA sampling at a number of sites (e.g. LHAAP-17, 29, 46, 47, 58) in February; 2007. MNA sampling at LHAAP-16 was not conducted because the proposal to shut down the system in order to sample for MNA was with the Army for review. The proposal is to be submitted to the regulators after Army's review and comment resolution.

LHAAP-18/24 optimization Design. The optimization design plan was scheduled to go out to for the Army's review in 1-2 weeks.

LHAAP-16 Extraction System Shut Down/MNA Sampling Proposal. As indicated above, the proposal was in Army's review at the time of the meeting. It would be submitted to the regulators after Army's review and comment resolution.

Status of Site Investigation (SI) Report for LHAAP-06, -07, -51, -55, -64, -66, and -68. The report was awaiting comments from TCEQ and EPA. Steve Tzhone planned to talk with TCEQ later in the day and expected to send EPA's comments in 1-2 weeks. Fay Duke indicated that she had not reviewed the document because she had a lot of TERC site documents to review.

Defense Environmental Restoration Program (DERP) TERC Update (Praveen Srivastav/John Elliott)

Refer to Document Status Table:

- 1. Remedial Design Addendum for LHAAP-12 was pending Fay's review.
- 2. Fay Duke indicated that she was reviewing the RTC on LHAAP-12 well abandonment and MNA reports. She indicated that she was looking at all of them and that she had a few minor comments on the design document.
- 3. Fay asked Rose to send her the July 26, 2006 submittal of the "Results of Modeling for Natural Attenuation of TCE, LHAAP-12", but then noted that since it had been sent electronically she would have it already.
- 4. Shaw was resolving comments on Proposed Plan for LHAAP-32 and planned to submit to the Army electronically by the Friday of the week (March 9). Shaw was also working on items no. 9 and 11, Proposed Plans for LHAAP-08 and LHAAP-37/67. Shaw to send RTC for LHAAP-37/67 proposed plan by March 7.
- 8. The site evaluation report for LHAAP-48/53 and the Proposed Plan were to go out with revised RTC.

LHAAP-48/53 Monitoring Well Abandonment. Rose Zeiler stated that the Army planned to abandon all wells at LHAAP48/53, including those with stainless steel casings, under the PBC. However, that might not happen for many years. Rose Zeiler asked the regulators if they preferred to have the stainless steel wells abandoned sooner. She asked if the regulators saw an urgency to the abandonment of the stainless steel wells. Rose said that if the wells had to be abandoned soon, then the Army would have to find funds under the TERC for the abandonment. Fay Duke indicated that the wells should be abandoned as soon as possible now

that they have been identified as a source of contamination. EPA agreed. Rose asked USACE to look into funding this activity.

LHAAP-12 Update. Fay Duke said the RTCs for the well abandonment report were good and put everything into context. She asked if the Army could put the RTC in the report. Rose replied that the Army would make the RTCs a part of the document by placing them in an appendix along with the hand drawn maps. TCEQ agreed.

Rose indicated that approach for the proposed plans for LHAAP-37/67, 08, and 32 was similar. The Army will hold them as draft final until the BERA is completed. At that time the results of the BERA will be incorporated into these documents and the documents finalized.

MMRP Update

John Lambert said that the contractor was completing the RTC for the draft EE/CA. Resolution of the comments was expected in about a week and then the document would be revised. John indicated that the Army should get the revised document in 1-2 weeks.

Schedule

IAP is scheduled for April 3 and 4 hosted by Shaw's Houston office. A part of the time will be used as the monthly managers meeting. Rose indicated that the IAP workshop would begin at 9:00 AM on April 3rd and is expected to conclude by noon on April 4th. Cliff Murray informed that the IAP contractor for AEC had its own wireless access and would not be dependent upon access to Shaw's network.

Transfer Update.

Electric Utilities. Rose Zeiler indicated that she had been under the impression that there was no Army action required for SWEPCO to install the power lines to the Admin Area and Fire Station for USFWS. However, she found out recently that USFWS decided to use existing power lines instead of building new ones as originally planned. Now SWEPCO will need an easement from Army for the use of the existing line where it lies on Army land along the way to the Fire Station. They prefer installing both sections of the line (the one to the Admin Area and the one to the Fire Station) at the same time, instead of in two actions. As soon as USFWS begins paying for their own power, Army will transfer the Fire Station to them. The Army will have to check with TCEQ regarding their air quality station to see to make them aware of the situation.

Paul Bruckwicki said that the administration building infrastructure has been transferred to SWEPCO. SWEPCO is waiting on an easement from the gate to the Fire Station and then to the GWTP. However Rose Zeiler noted that SWEPCO has not yet cleared the USFWS easement through their legal. Army and GSA have initiated paper work for that easement. Shaw needs to discuss with USFWS as to how to cover the power for the extraction wells. More discussion is needed.

ECOP IV. The public review period for ECOPIV has started. The public review is not typically done for ECOPs but it seemed like a good idea here because there is such strong public interest.

Security contract. Army's contract for the security at the front gate ends on March 14. At that time some of the phone lines may be taken over by USFWS, as has been expressed previously by Mark Williams (of USFWS) who still intends to use the card access reader. All the card files will be turned over to Mark along with all the paperwork that Jim, the security guard, has maintained. Jim can explain the process to USFWS.

Pits and Hazards.

Nothing new to report.

Refuge Opening

Rose Zeiler indicated that tours on Army land may begin as soon as a tour map has been received and approved by Tom Lederle. It had not been received as yet, so no tours should be taking place at this time.

TVA was scheduled for the week of March 25th to conduct their flyover and water level measurements.

Meeting Adjourned.

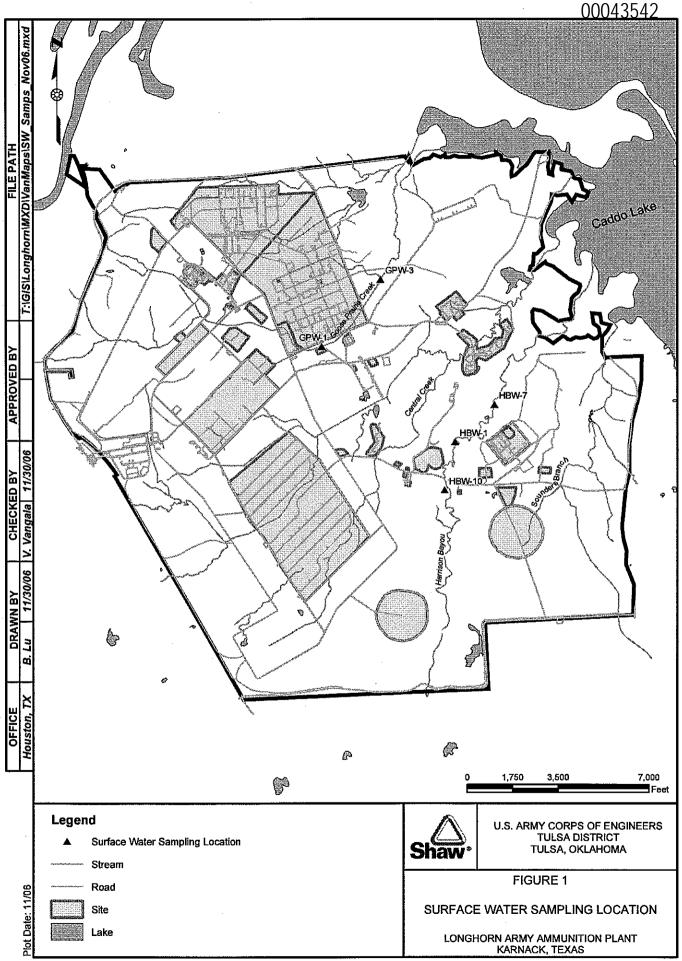
Action Items:

Army

• Forward MMRP report to EPA and TCEQ when available.

Shaw

- Provide map and hotel information for IAP meeting in April, 2007.
- Send current schedule to EPA and TCEQ.


EPA

• Steve Tzhone to forward the MNA guidance when it becomes available.

Harrison Bayou and Goose Prairie Creek¹ **Perchlorate Sample Results** December 20, 2006

LOCATION CODE					HBW-1			HBW-10			HBW-7	
SAMPLE NO				Ī	HBW-1-122006	36	Ŧ	HBW-10-122006	06	ヹ	HBW-7-122006	J6
SAMPLE DATE					20-Dec-06			20-Dec-06			20-Dec-06	
SAMPLE PURPOSE	SE				REG			REG			REG	
						Validation			Validation			Validation
Test Group	Parameter	Units	Units Filtered	Result	Qualifier	Qualifier	Result	Qualifier	Qualifier Qualifier	Result	Qualifier Qualifier	Qualifier
PERC	Perchlorate	hg/L	z	1	n	n	1	n	D	۲	n	n

Notes ¹The proposed Goose Prairie Creek sample locations (GPW-1 and GPW-3) were not sampled due to lack of flow in the creek. N not filtered U below detection limit; result is detection limit µg/L microgram per liter

_____t.

.

Status of Technical Documents – 4 week look ahead Longhorn Army Ammunition Plant – PBC Contract March 06, 2007

No.	Documents in Progress	Submittal Date	Army	Regulator	Comments Due from USACE/ Regulators	Comment Resolution	Status Status Dorral?		Remarks
	ERA								
1	Draft Step 3 report (Vol I of BERA)	1/16/07		x	2/15/07		Under regulatory review		As discussed, report will be issued in two parts to expedite review. BERA (Volume 2) will follow later due to sampling analysis durations.
2	Draft BERA (Vol II of BERA)	1/31/07	х		2/16/07	In progress	Army comments received, resolution in progress		
	ENVIRONMENTAL								
3	Draft Final SI/Evaluation Report, LHAAP-02	3/30/06		X			Comments rec'd from TCEQ 8/29/06. EPA comments rec'd 5/12/06.	x	Final will be issued when ERA information available.
4	Draft Final Proposed Plan, LHAAP-60	7/7/06		X			Comments rec'd from TCEQ 8/1/06. EPA comments rec'd 8/21/06.	x	Final to be submitted when ERA information available.
5	LHAAP-18/24 GWTP Sampling Optimization Memo	11/15/06		X	12/16/06		Under Stakeholders review	x	Comments pending from both TCEQ and EPA
6	Draft Final TCRA Memo – LHAAP-04, -49, -50, and Pistol Range	12/6/06	x				Under Army review		Currently undergoing resolution
7	Perimeter Well Sampling Optimization Memo	12/28/07		x	1/27/07		Comments received 2/6/07		Under Shaw review.
8	Draft Feasibility Study, LHAAP-58	TBD					On hold pending BERA		Draft versions 80% complete. Can not be finalized until eco issues resolved/ ERA further along.

Status of Technical Documents – 4 week look ahead Longhorn Army Ammunition Plant – PBC Contract March 06, 2007

No.	Documents in Progress	Submittal Date	Army	Regulator	Comments Due from USACE/ Regulators	Comment Resolution	Status	On Stakeholder's Portal?	Remarks
9	Draft Feasibility Study, LHAAP-17	TBD					On hold pending BERA		Draft versions 80% complete. Can not be finalized until eco issues resolved/ ERA further along.
10	Draft Feasibility Study, LHAAP-16	11/30/06	x		12/18/06 (Army)		Complete		
10	Draft Final Feasibility Study, LHAAP-16	TBD					On hold pending review of MNA evaluation proposal		Can not be finalized until eco issues resolved/ ERA further along.
11	Draft Final SI Report for LHAAP-06, 07, -51, -55, - 64, -66, -68 (combined)	1/11/07		x	2/10/07		In regulatory review	x	
12	Draft SI Report for LHAAP-35/36	3/15/07 (Army)					In preparation		Report that summarizes sampling data for sumps
13	Quarterly GWTP Report	1/31/07 (Army)	x	х			Complete		
14	Draft LHAAP-16 MNA Evaluation Proposal	2/21/07 (Army)	x				Complete		In Army review

00043545

Technical Document Status Table TERC Task Order N0. 0109 Longhorn Army Ammunition Plant

No. Site 1 LHAAP- 12 2 LHAAP- 12 3 LHAAP- 12 4 LHAAP- 32 5	Documents in Progress Remedial Design Addendum, Rev 03, LHAAP-12 Well Abandonment and Installation Report, LHAAP-12 Results of Modeling for Natural Attenuation of TCE, LHAAP-12 Proposed Plan, LHAAP-32 Evaluation of Perimeter Well Data for use as Groundwater Background Data Gaps Investigation Report	Draft Submittal Date 07/14/06	Army Comments 08/11/06	ocument Shaw RTC	Comment Resolution	Draft Final Submittal Date 08/17/06 06/07/06 05/15/06 07/21/06	AEC Comments None Required None Required 08/25/06	EPA Comments 09/05/06 07/17/06	TCEQ Comments 09/27/06	Draft Final D Shaw RTC 10/19/06	Army Comments 10/31/06	Comment Resolution 11/07/06	Army forward RTC to TCEQ & EPA 11/20/06	Comment Resolution	Final Submittal Date
1 12 2 LHAAP- 12 3 LHAAP- 12 4 LHAAP- 32 5	12 Well Abandonment and Installation Report, LHAAP-12 Results of Modeling for Natural Attenuation of TCE, LHAAP-12 Proposed Plan, LHAAP-32 Evaluation of Perimeter Well Data for use as Groundwater Background	07/14/06	08/11/06			06/07/06	Required None Required None Required	07/17/06		10/19/06	10/31/06	11/07/06	11/20/06		
2 12 3 LHAAP- 12 4 LHAAP- 32 5	LHAAP-12 Results of Modeling for Natural Attenuation of TCE, LHAAP-12 Proposed Plan, LHAAP-32 Evaluation of Perimeter Well Data for use as Groundwater Background					05/15/06	Required None Required			10/19/06	10/31/06	11/07/06	11/20/06		
³ 12 4 LHAAP- 32 5	TCE, LHAAP-12 Proposed Plan, LHAAP-32 Evaluation of Perimeter Well Data for use as Groundwater Background						Required	09/05/06							
4 32 5	Evaluation of Perimeter Well Data for use as Groundwater Background					07/21/06	08/25/06	09/05/06							
-	Groundwater Background								09/12/06	09/19/06			11/21/06	TCEQ 12/07/06 EPA 01/26/07	
6	Data Gaps Investigation Report					03/07/06	None Required	04/19/06	10/24/06	11/07/06	RMZ 11/07/2006 USACE 11/20/06	11/20/06	11/21/06	TCEQ 12/07/06 EPA 02/21/07	
						05/18/05	None Required	05/17/06	10/24/06	11/07/06	RMZ 11/09/2006 USACE 11/20/06	11/28/06	11/29/06	TCEQ 02/28/07 EPA 12/06/06	
7 LHAAP- 48/53	Site Evaluation Report, LHAAP-48/53					03/10/06	None Required	04/20/06	07/06/06	10/27/06	10/31/06	10/31/06	11/02/06	EPA concur 11/03/06 TCEQ comments 11/13/06	
8 LHAAP- 48/53	Revised Proposed Plan, LHAAP-48/53	09/25/06	10/31/06	11/14/06	01/12/07										
9 LHAAP- 37/67	Proposed Plan, LHAAP-37/67	05/02/06	05/24/06	06/06/06	06/22/06	07/18/06	08/25/06	09/05/06	09/20/06	10/19/06	10/31/06	11/07/06	11/21/06	TCEQ EPA 02/21/07	
10 LHAAP- 37/67	Natural Attenuation Modeling Report, LHAAP- 37/67	09/22/06	10/13/06	10/27/06	10/31/06	11/14/06									
11 LHAAP- 08	Proposed Plan, LHAAP-08	05/01/06	05/24/06			07/07/06	08/25/06	08/21/06	09/20/06	09/29/06			11/21/06	TCEQ 12/07/06 EPA 02/21/07	
12 LHAAP- 59	Site Investigation Report, LHAAP-59	11/02/06	11/07/06	11/09/06	11/15/06	11/21/06	None Required		01/11/07						
13 LHAAP- 12/37/67	Natural Attentuation Evaluation, LHAAP- 12/37/67	10/31/06	11/30/06	12/08/06	12/08/06	12/15/06	None Required								
14 LHAAP- 12/37/67	Memorandum regarding MNA Evaluation, LHAAP-12, 37, & 67	02/15/07	02/16/07	02/16/07	02/16/07	02/16/07									
15	Final Modeling Report (Revision 1)														02/09/07
	Shaw Forecasted Submittal Date	· · · · ·		Shaw Action Iter		1		Army Action Iter	n	1	EPA	& TCEQ Action	tem		

LONGHORN ARMY AMMUNITION PLANT,

<u>Karnack, Texas</u>

MONTHLY MANAGERS' MEETING

AGENDA

DATE: TIME: PLAC	1:00 - 3:00 p.m.	
1:00	Welcome Change in EPA POC	RMZ
1:05	 Review of February 2007 Meeting Minutes and Action Items Shaw PBC Send creek sampling results and figure to stakeholders Provide long range schedule for EPA in MS-Project compatible format Army Provide 5-year review excerpt for LHAAP-16 Forward MMRP report to EPA and TCEQ when available Forward Site 59 Report and other RTCs to EPA 	RMZ
	EPA - Steve Tzhone will forward the MNA guidance when it becomes available	
1:30	 Defense Environmental Restoration Program (DERP) PBC Update Document Status/Environmental Sites (Table) BERA update GWTP update Creek sampling results GWTP/MNA Sampling LHAAP-18/24 – Optimization design LHAAP-16 – Extraction system shut down/MNA sampling proposal 	DC/PS
	• Status of Site Evaluation Report, LHAAP-6, 7, 51, 55, 64, 66, 68	
2:00	 DERP Total Environmental Restoration Contract Update Documents Status/Environmental Sites (Table) LHAAP-48/53 monitoring well abandonment LHAAP-12 update LHAAP-37/67 update 	PS/JE

2:20 MMRP Update

2:30	Schedule – IAP, March Managers & RAB Meetings	00043547 JL/СМ
2:40	Transfer Update Electrical Utilities ECOP IV progress End of Security Contract – Gate Access Pits and Hazards Abatement	RMZ
3:00	Adjourn	RMZ

Subject:Draft Final Minutes, Monthly Managers Meeting,
Longhorn Army Ammunition Plant (LHAAP)

Location of Meeting: Shaw offices, Houston, Texas Date of Meeting: April 4, 2007, 08:00 PM – 11:30 PM Post IAP Work Shop

Meeting Participants:	
BRAC:	Rose M. Zeiler
USACE-Tulsa:	Cliff Murray, John Lambert, Rick Smith
USAEC	Jeff Armstrong
Shaw Environmental:	Dave Cobb, Praveen Srivastav, John Elliott, Van Vangala, Kay
	Everett, Greg Jones, Frank Eidson, Amar Bumb (phone)
USEPA Region 6:	Steve Tzhone, Scott Harris (phone), Raji Josiam (phone)
TCEQ:	Fay Duke
USFWS:	Paul Bruckwicki, Barry Forsythe

Prior to the start of the meeting, Jeff Armstrong led a discussion on some funding issues regarding TERC and MMRP. He mentioned that the AEC has earmarked money for MMRP for this fiscal year. Rose Zeiler stated that Shaw's rate adjustment on the TERC task order has resulted in the overall cost for the task order to be higher than previously known. This may make it difficult to complete the scope of work with available funds. Rick Smith said that money can be added to the Longhorn TERC task order with a modification as long as the scope of work does not change.

Rose Zeiler asked Steve Tzhone if a NFA ROD can be submitted for the MMRP sites following an NTCRA Action Memorandum without having to go through a proposed plan. Steve Tzhone said he would check on this. He further added that while the Action Memo can normally be the final decision document, LHAAP is an NPL site and may require a ROD because of that. Rose said that Army requires a ROD after a removal action for NPL sites. Praveen Srivastav asked how the use of a non-TCRA was justified for MMRP work. Rose responded that UXO was a safety issue, especially with the public asking for access. It is within DOD's removal authority. Praveen asked if Army legal may foresee a problem using non-TCRA. Jeff Armstrong replied that this approach can be used in other places if successful and they were moving very carefully through this process.

There was a short discussion regarding the utilities at the installation. Rose Zeiler stated that the details are yet to be ironed out with SWEPCO, Shaw, AEC, and Tulsa Corps regarding line installation and payment.

Action Items from 6 March 2007 Managers Meeting

Army Action Items:

- **Forward MMRP report to EPA and TCEQ when available:** Report was not available at the time of the meeting and is currently due out at the end of April 2007.
- Forward March 2007 Monthly Manager's Meeting minutes to stakeholders: Rose Zeiler will forward to team.

EPA Action Items:

• Steve Tzhone to forward the MNA guidance when it becomes available. Steve forwarded links to the 2004 guidance.

Shaw Action Items:

• Send current schedule to EPA and TCEQ: Sent out by Dave Cobb.

Defense Environmental Restoration Program (DERP) PBC Update (Dave Cobb/Praveen Srivastav)

Dave Cobb briefly went over the highlights on the document status table. EPA's Steve Tzhone indicated that Susan Roddy, Marc Greenberg, Vicki Reat (TCEQ), and Barry Forsythe (USFWS) are planning to get comments back on the BERA Volume II by April 23. They have some internal calls to make to each other and may invite Shaw on these calls to see what comments are coming up and hopefully get some questions resolved.

GWTP. Van Vangala indicated that there were no major problems at the Groundwater Treatment Plant (GWTP) last month and that operations were proceeding normally. Filter cake was disposed within the last month. The INF pond is still empty and there is water in the creek. An excursion took place on March 6 for perchlorate with a value of 53 ppb. It was ND on March 5 and March 7. Shaw is investigating the reason for the excursion. The FBR will be serviced within the next few weeks.

Rose Zeiler asked if there have been any unwanted visitors at the plant. Van Vangala responded in the negative.

The optimization work plan for LHAAP-18/24 will soon be submitted to the Army. It should be sent out to all stakeholders within a couple weeks.

Delivery of packages at Longhorn is an issue since the front gate is no longer manned and UPS/FedEx will not leave packages without a signature. At present, there are no package pickups and drop offs conducted at the installation. Paul Bruckwicki said they are looking into this and may work something out regarding drop off locations.

Status of Site Evaluation Report, LHAAP-06, -07, -51, -55, -64, -66, -68

Praveen Srivastav indicated there has been some discussion regarding the use of Risk Reduction Standard 2 versus Standard 3 based on previous conversations with stakeholders. At LHAAP-59, screening was initially done using: Standard 3 RBSVs and Standard 2 MSCs, however, RBSVs are meant for use only with Standard 3, so the RBSV step will be dropped for LHAAP-59 if the site is to be closed under Standard 2. For site LHAAP-59, the Army is considering Standard 2 as the best way to move forward. At LHAAP-59, Shaw will collect SPLP samples at or near the location where the maximum detection was found for chemicals above the ground water protection MSC (GWP).

Fay Duke stated that under Standard 2 a deed restriction and land use controls would be required if industrial MSCs are used. Rose Zeiler pointed out that deed restriction and LUCs will not be required for LHAAP-59 because of the installation's designation as a wildlife refuge. Industrial use is consistent with the RAFU – reasonably anticipated future use of the former installation. Under a no further action ROD, limited monitoring is allowed, so five-year reviews would be conducted to ensure continued industrial use. An installation-wide land use control document will contain maps of all land use control sites and 5-year review sites.

A question was raised by Praveen Srivastav regarding the use of Standard 2 MSCs to screen new data at sites that already have a risk assessment conducted under Standard 3. Fay Duke indicated that Standard 2 MSCs can be used to screen new data even though there is a risk assessment under Standard 3. (Note: Fay Duke further clarified via e-mail that TCEQ would like to see if additional data would increase the cumulative risk of the site, requiring risk calculations). Further, the Army can decide to close out individual sites under Standard 2 or 3 within the installation. The whole installation does not have to be under one standard or the other.

Praveen Srivastav also inquired regarding the use of Standard 3 MSC equations. The consistency memo is not clear as to when these MSCs should be calculated, after a risk assessment or Standard 3 MSCs can be calculated as an alternative to a risk assessment.

LHAAP-16: Proposal to shut down the extraction system to evaluate MNA as a remedy for the site. Amar Bumb of Shaw explained the modeling conducted for LHAAP-16 and the conservative approach used to come up with the modeling results. Fay Duke indicated that the well in LHAAP-16 closest to the creek (16WW12) may be monitored for GWTP effluent criteria. She said that since there is dilution in the creek, sampling the surface water does not suffice. By the time it is found in the creek, it may already have impacted the water quality of the creek and the state does not consider that an adequate measure. Amar indicated that the attenuation goes down between 16WW12 and the creek, about 90 feet, and that the capture zone of the extraction wells does not extend to the creek.

Jeff Armstrong discussed some early issues and the "why" the system was installed at LHAAP-16. He indicated that there was no order to run this extraction system and that it was put in place for a limited time to gather data for a treatability study. Rose Zeiler read from an Army letter to regulators in which Army agreed that the wells would be pumped until the RI/FS was in place.. The state believes that the extraction system is keeping the groundwater plume at bay and, therefore, has necessitated the continued operation of this extraction system.

Fay indicated that she would place priority on any additional information provided and would try to get comments back to Shaw by week's end. Shaw will provide historical data for samples from the creek, and data from adjacent wells as soon as possible. Fay said that to show that MNA is a final remedy; we have to show plume stability as well as the presence of other lines of evidence. Fay expressed that there is uncertainty in the model used to calculate MSCs protective of surface water because of calibration issues. Praveen Srivastav indicated that Y-direction calculations were performed for LHAAP-16, however, wells are not available in the proper location for calibration of the model. Shaw will inform Fay if review by Chuck Stone should proceed.

Fay also stated that PQL versus SQL for LHAAP-03, -06, -07, -51, and -55 should be corrected or explained. This will be clarified in the response to comment (RTC) as appropriate and the lab will be informed as to which rules should be followed.

Defense Environmental Restoration Program (DERP) TERC Update (Praveen Srivastav/John Elliott)

John Elliott discussed the highlights of the Document Status Table. He said that the RTC table for SI LHAAP-59 was submitted the day before. He indicated that a document would be submitted about once a week in the near future.

MQL versus SQL were also discussed. MSC can be replaced by MQL but not by SQL, if MQL is higher than MSC. These issues will be clarified in the RTC.

MMRP Update

John Lambert expects that a draft final of the EE/CA will go out by late April. There had been some issues regarding the comment responses that had to be dealt with. The Army expects comments from regulators in 30-45 days. Scott Harris thought that the review would go quicker than that and it is his priority.

Rose Zeiler read a signed letter from the Refuge Manager Mark Williams to Army regarding the Refuge's future plans for the Signal Test and Static Test Areas at LHAAP. In the letter it was stated that the Refuge would assist the Army with whatever controls it decides are necessary and that if the Army decides that the areas can be open to the public the Refuge will allow all of the "big six" public use activities that are compatible with the purpose and mission of the Refuge (hunting, fishing, wildlife observation, wildlife photography, wildlife education and wildlife interpretation). Additionally, it was stated that any restrictions on the implementation of the "big six" activities on the two sites would be coordinated with the Army prior to their establishment. It was also reiterated that the Army is ultimately responsible for the liability on these two areas.

Transfer Update

Electric Utilities. SWEPCO came out on March 14, 2007. They have installed a temporary primary meter at the Army's transformer that will allow USFWS to be billed for their power usage, thus paving the way for transfer of the Fire Station.

ECOP IV

The ECOPIV is ready and the public review period for ECOPIV is over. Rose Zeiler noted that a public review is not typically done for ECOPs but she has done it at Longhorn because of strong public interest. The Army is waiting on an approval letter from the EPA. Steve said that he expedited this and indicated it is in legal review. Raji Josiam checked the status and confirmed that a letter should be mailed out the next day. Rose Zeiler indicated that ECOPIV encompasses about 640 acres and that a total of 6954.4 acres would be transferred with 1,462 acres remaining. She expects the 50-acre LHAAP-12 Parcel to be transferred later this year, bringing the total transferred acreage to in excess of 7000. She said that it is down to the environmental sites now remaining and future parcel transfers will be small.

Pits and Hazards.

Rose Zeiler indicated the contractor was ready to move sometime this month. Although the issue regarding disposal of contaminated water found in some of the pits is still being addressed. The Army will be removing the physical hazards where possible, including rebar.

Refuge Opening

Paul Bruckwicki said that the Refuge is open only on a limited basis and that they are still providing guided tours. Paul indicated that visitors to the Refuge should not impact Shaw's activities and the environmental sites.

Demolition Landfill

Rose indicated that the landfill failed the inspection because of settling and some ruts.

Next monthly manager's meeting is scheduled for May 15, 2007 at 1:00 PM via teleconference. The June 2007 month managers' meeting coincides with the RAB meeting scheduled for June 12, 2007, at 3:00 PM (the time was later changed to 2:30 PM) with the RAB meeting following at 6:30.

Meeting Adjourned.

Action Items:

Army

• Forward MMRP report to EPA and TCEQ when available.

Shaw

• Provide additional information on LHAAP-16 to TCEQ.

EPA

• Steve Tzhone to determine if a proposed plan and public comment period is required with an NFA ROD that follows implementation of an Action Memorandum and EE/CA

that had already undergone public review – this question relates to the NTCRA at MMRP sites.

TCEQ

- Fay Duke will find out how Standard 3 MSC equations are to be used. Are they to be used to calculate clean up goals after a risk assessment or they can be used in lieu of a risk assessment?
- Fay Duke to respond to Shaw's request to use actual data for calculation of a dilution factor after reviewing data to be provided by Shaw

LONGHORN ARMY AMMUNITION PLANT MONTHLY MANAGERS' MEETING

 Location
 Shaw E & I, Inc. Houston, Texas

 Date
 4-Apr-2007
 Time
 8:00 AM

ATTENDEES

Name (printed)	Signature	Organization	Phone	E-mail
Longhorn Team Men	nbers			vs.
Rose M. Zeiler	KMDO	BRAC	(479) 635-0110	rose.zeiler@rennee.army.mil
Jeff Armstrong	am	USAEC	(410) 436-1516	Jeffrey.armstrong@us.army.mil
Cliff Murray	Callmin	USACE, Tulsa	(918) 669-7573	cliff.murray@usace.army.mil
Rick Smith	V745 0	USACE, Tulsa	(918) 669-4956	richard.p.smith@usace.army.mil
Chris Villarreal	4 .	USEPA, Dallas	(214) 665-6758	villarreal.chris@epa.gov
Stephen Tzhone	MP	USEPA, Dallas	(214) 665-8409	tzhone.stephen@epa.gov
Scott Harris	phone	USEPA, Dallas	(214) 665-7114	harris.scott@epa.gov
Raji Josiam	Phone	USEPA, Dallas	(214) 665-8529	josiam.raji@epa.gov
Fay Duke 🤇	tupente	TCEQ, Austin	(512) 239-2443	fduke@tceq.state.tx.us
Dale Vodak	in	TCEQ	(903) 535-5142	dvodak@tceq.state.tx.us
Barry Forsythe	La MI.	USFSW	(214) 665-8467	forsythe.barry@epa.gov
Paul Bruckwicki	BAT	USFSW	(903) 679-4536	paul_bruckwicki@fws.gov
Mark Williams	0	USFSW	(903) 679-9144	mark_williams@fws.gov
Praveen Srivastav	Annlo	SHAW	(713) 996-4588	praveen.srivastav@shawgrp.com
David Cobb	Mand Call	SHAW	(617) 589-5561	david.cobb@shawgrp.com
John Elliott	tellitt	SHAW	(713) 996-4517	john.elliott@shawgrp.com
Kay Everett	KAD.	SHAW	(713) 996-4421	kay.everett@shawgrp.com
Van Vangala	and Unter	SHAW	(713)996-4459	van.vangala@shawgrp.com
Greg Jones	Lignon M. Hone	SHAW	(713)996-4472	greg.n.jones@shawgrp.com
ARTHUR R. E. DEON	Alter Fi Eideon	SHAW	713-996-4416	Frank. Cidson ashawarp. a
John Lambert	John Janbert	USACE, Tolsa	918.669.4992	john.r. 19
Amar Bumb	Phone	Shaw		frank. Cidson ashawarp. a john. n. 19 awar. burns @Shawgrp. C
				0

Shaw* Shaw Environmental, Inc.

Status of Technical Documents – 4 week look ahead Longhorn Army Ammunition Plant – PBC Contract April 03, 2007

ERA ERA 2/15/07 Draft Final Step 3 report (Vol I of BERA) 1/16/07 x 2/15/07 Draft BERA (Vol II of BERA) 1/31/07 x 2/16/07			io¶
nal Step 3 report 1/16/07 x f BERA) ERA (Vol II of 1/31/07 x			
ERA (Vol II of 1/31/07 ×		Under regulatory review x	As discussed, report will be issued in two parts to expedite review. BERA (Volume 2) will follow later due to sampling analysis durations.
		Complete	
Draft Final BERA (Vol II 3/6/07 x 4/6/07		Under regulatory review x	
ENVIRONMENTAL			
Draft Final SI/Evaluation 3/30/06 × × × ×		Comments rec'd from TCEQ 8/29/06. EPA comments rec'd 5/12/06.	Final will be issued when ERA information available.
Draft Final Proposed Plan, 7/7/06 x		Comments rec'd from TCEQ 8/1/06. EPA comments rec'd 8/21/06.	Final to be submitted when ERA information available.
LHAAP-18/24 GWTP 2ampling Optimization 11/15/06 x 12/16/06 Memo		Complete	Informational workplan to be provided.
Draft Final TCRA Memo LHAAP-04, -49, -50, 12/6/06 x and Pistol Range		Currently undergoing resolution between Army and Shaw.	
Perimeter Well Sampling 12/28/07 x 1/27/07 Optimization Memo	Comments rec'd from EPA 1/22/07 and TCEQ 2/8/07 and agreed to.	Complete	

00043555

Status of Technical Documents – 4 week look ahead Longhorn Army Ammunition Plant – PBC Contract April 03, 2007

Remarks Braft versions 80% complete. Can not be finalized until eco issues resolved/ ERA further along. Draft versions 80% complete. Can not be finalized until eco issues resolved/ ERA further along. ERA further along. Report that summarizes sampling data for sumps	1st quarter 2007 report covering Jan - Mar			Report that summarizes sampling data
Draft versi be finalize ERA furth Draft versi be finalize ERA furth Report tha for sumps				Report that sum
× On Stakeholder's Portal?			×	
Status Status On hold pending BERA On hold pending BERA Complete Complete Complete In regulatory review. In regulatory review. No comments rec'd. In preparation	Complete	Complete	In regulatory review	In preparation
Comment Resolution			EPA comments rec'd 3/28/07, TCEQ comments pending.	
Comments Due from USACE/ Regulators 12/18/06 (Army) 2/10/07			4/2/07	
× gegulator			×	
× yumy		×		
Submittal Date TBD TBD 11/30/06 11/30/06 11/1/07 1/11/07 (Army)	4/21/07 (Army)	2/21/07 (Army)	3/2/07	4/17/07 (Army)
Documents in Frogress Draft Feasibility Study, LHAAP-58 Draft Feasibility Study, LHAAP-17 Draft Feasibility Study, LHAAP-16 Draft Final Feasibility Study, LHAAP-16 Draft Final SI Report for LHAAP-66, 07, -51, -55, - 64, -66, -68 (combined) Draft SI Report for LHAAP-35/36	Quarterly GWTP Report	Draft LHAAP-16 MNA Evaluation Proposal	Draft Final LHAAP-16 MNA Evaluation Proposal	Draft SI Report for LHAAP-03
No. 10 10 9 11 11 11 11 11 11 11 11 11 11 11 11 1	15	16	17	18

00043556

Ч

Technical Document Status Table TERC Task Order No. 0109 Longhorn Army Ammunition Plant

																00043557
Final Document	Final Submittal Date		04/12/07			04/25/07	05/17/07	04/05/07								Current Action item
П	Comment Resolution		TCEQ 03/06/07 EPA 03/06/07		TCEQ 12/07/06 EPA 01/26/07	TCEQ 12/07/06 EPA 02/21/07	TCEQ 02/28/07 EPA 12/06/06	EPA concur 11/03/06 TCEQ comments 11/13/06		TCEQ EPA 02/21/07		TCEQ 12/07/06 EPA 02/21/07				Current A
Autors Countrated	Army torward RTC to TCEQ & EPA		11/20/06		11/21/06	11/21/06	11/29/06	11/02/06		11/21/06		11/21/06				
Commont	Comment Resolution		11/07/06			11/20/06	11/28/06	10/31/06		11/07/06						Action Item
ocument	Army comments		10/31/06	61/		RMZ 11/07/2006 USACE 11/20/06	RMZ 11/09/2006 USACE 11/20/06	10/31/06		10/31/06						EPA & TCEQ Action Item
Draft Final Document	Shaw HIC	04/19/07	10/19/06	04/19/07	09/19/06	11/07/06	11/07/06	10/27/06		10/19/06		09/29/06	04/02/07			_
	Comments	03/15/07	09/27/06	03/15/07	09/12/06	10/24/06	10/24/06	07/06/06		09/20/06	FAY	09/20/06	01/11/2007, 8 03/20/07, & 03/22/07			
10.4	Comments	09/02/06	90/11/00	03/27/07	09/02/06	04/19/06	05/17/06	04/20/06		09/05/06	SCOTT	08/21/06	03/20/07	RAJI	03/27/07	Army Action Item
210	Comments	None Required	None Required	None Required	08/25/06	None Required	None Required	None Required		08/25/06		08/25/06	None Required	None Required		Army Ac
Parts Final	Draft Final Submittal Date	08/17/06	06/07/06	05/15/06	07/21/06	03/07/06	05/18/05	03/10/06	04/05/07	07/18/06	11/14/06	90//0//08	11/21/06	12/15/06	02/16/07	
1	Comment Resolution								01/12/07	06/22/06	10/31/06		11/15/06	12/08/06	02/16/07	
Draft Document	Shaw HIC								11/14/06	06/06/06	10/27/06		11/09/06	12/08/06	02/16/07	ion Item
Draft Do	Comments	08/11/06							10/31/06	05/24/06	10/13/06	05/24/06	11/07/06	11/30/06	02/16/07	Shaw Action Item
4000	Dratt Submittal Date	07/14/06							09/25/06	05/02/06	09/22/06	05/01/06	11/02/06	10/31/06	02/15/07	
	Documents in Progress	Remedial Design Addendum, Rev 03, LHAAP-12	Well Abandonment and Installation Report, LHAAP-12	Results of Modeling for Natural Attenuation of TCE, LHAAP-12	Proposed Plan, LHAAP-32	Evaluation of Perimeter Well Data for use as Groundwater Background	Data Gaps Investigation Report	Site Evaluation Report, LHAAP-48/53	Revised Proposed Plan, LHAAP-48/53	Proposed Plan, LHAAP-37/67	Natural Attenuation Modeling Report, LHAAP. 37/67	Proposed Plan, LHAAP-08	Site Investigation Report, LHAAP-59	Natural Attenuation Evaluation, LHAAP- 12/37/67	Memorandum regarding MNA Evaluation, LHAAP-12, 37, & 67	Shaw Forecasted Submittal Date
	Site	LHAAP- 12	LHAAP- 12	LHAAP- 12	LHAAP- 32			LHAAP- 48/53	LHAAP- 48/53	LHAAP- 37/67	LHAAP- 37/67	LHAAP- 08	LHAAP- 59	LHAAP- 12/37/67	LHAAP- 12/37/67	
	No.	-	N	ო	4	ŝ	9	2	œ	თ	10	Ħ	12	13	14	

LHAAP TERC Technical Document Status Table (2).xls 4/2/2007 4:30 PM

LONGHORN ARMY AMMUNITION PLANT,

Karnack, Texas

MONTHLY MANAGERS' MEETING

AGENDA

DATE: TIME:	Tuesday, 03 April 2007 TBD	
PLACE:	Shaw Office, Houston, TX	
Wel	come	RMZ
Rev	iew of March 2007 Meeting Minutes and Action Items	RMZ
Arn •]	ny Forward MMRP report to EPA and TCEQ when available.	
	w Provide map and hotel information for IAP meeting in April, 2007. Send current schedule to EPA and TCEQ.	
EPA • \$	Steve Tzhone to forward the MNA guidance when it becomes available.	
	ense Environmental Restoration Program (DERP) PBC Update Document Status/Environmental Sites (Table)	DC/PS
•	BERA update	
•	GWTP update	
•	LHAAP-16 – Extraction system shut down/MNA sampling proposal	
•	• Status of Site Evaluation Report, LHAAP-6, 7, 51, 55, 64, 66, 68	
DEI	RP Total Environmental Restoration Contract Update	PS/JE
•	Documents Status/Environmental Sites (Table)	
•	LHAAP-48/53 update	
•	LHAAP-12 update	
•	LHAAP-37/67 update	
MM	IRP Update	СМ
Tra	nsfer Update ECOP IV Pits and Hazards Abatement Refuge Opening Demolition Landfill	RMZ

April 9, 2007

DAIM-BD-LO

Mr. Steve Tzhone US Environmental Protection Agency Superfund Division (6SF-AT) 1445 Ross Avenue Dallas, TX 75202-2733

Re: Final Site Evaluation Report LHAAP-48 (Y-Area) and LHAAP-35C(53) (Static Test Area), Longhorn Army Ammunition Plant, Karnack, Texas, April 2007

Dear Mr. Tzhone,

The above-referenced document is being transmitted to you for your files.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at <u>rose.zeiler@us.army.mil</u>.

Sincerely,

Rose M. Zjiler

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

Copies furnished: Fay Duke, TCEQ, Austin, TX Paul Bruckwicki, Caddo Lake NWR, TX Cliff Murray, COE – Tulsa District, OK John R. Lambert, COE – Tulsa District, OK P. Srivastav, Shaw – Houston, TX (for project files)

April 9, 2007

DAIM-BD-LO

Ms. Fay Duke Texas Commission on Environmental Quality TCEQ Environmental Cleanup Section II MC-221 12100 Park 35 Circle Austin, TX 78753

Re: Draft Final Proposed Plan for LHAAP-48 (Y-Area) and LHAAP-35C(53) (Static Test Area), Longhorn Army Ammunition Plant, Karnack, Texas, April 2007

Dear Ms. Duke,

The above-referenced document is being transmitted to you for your review. Your comments are due on May 9, 2007.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at <u>rose.zeiler@us.army.mil</u>.

Sincerely,

Rose M. Zjiler

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

Copies furnished: Stephen Tzhone, USEPA Region 6, Dallas, TX Paul Bruckwicki, Caddo Lake NWR, TX Cliff Murray, COE – Tulsa District, OK John Lambert, COE – Tulsa District, OK P. Srivastav, Shaw – Houston, TX (for project files)

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			TCEQ Review Comments			
1		Section 2.2	It is stated that chromium in unfiltered samples collected in 2005 from two wells (LHSMW 62 and 63) significantly exceeded its federal maximum contaminant level (MCL), and exceeded its MCL by 3.8 times in a filtered sample collected from one well (LHSMW 62). Additionally, it is suggested that elevated chromium groundwater levels are associated with suspended sediments and corrosion of the stainless steel well screen. As chromium was used in the manufacture of hand-held signals and illuminating projectiles, the TCEQ cannot concur with this conclusion without further study and data. Additionally, if the corrosion of the stainless steel well screen is suspected in contaminating the groundwater, it is imperative that corrective action be taken immediately.	D	Chromium concentrations at LHAAP 48 have been evaluated previously. The question was addressed in the <i>Final Remedial Investigation Report, Vol. 1, for</i> <i>the Group 4 Sites, Sites 35A, 35B, 35C, 46, 47, 48,</i> <i>50,60, and Goose Prairie Creek, Longhorn Army</i> <i>Ammunition Plant, Karnack, Texas, January 2002,</i> prepared by the Jacobs Engineering Group, Inc. The Jacobs (2002) report characterized 50 soil samples and 10 groundwater samples for contamination associated with sumps and other potential sources and concluded (Section 10.5) that chromium was not found in soil near the sumps at LHAAP-48, and " may have been a limited source of a variety of contamination. However, there is no widespread soil contamination or significantly organic-contaminated groundwater, which indicates that the sources are probably small and isolated and have not contributed to significant migration of contaminants." Regarding metals, the report found, "The low levels of metals contaminants in the Site 48 soils are mostly barium, cadmium, and lead.", and "The soil metals may migrate slowly via infiltrating precipitation. The low metals levels of these metals in groundwater suggest no significant leaching. However, the presence of elevated chromium levels in groundwater suggests an unidentified or no longer remaining source in the soils at Site 48."	
					A later assessment was prepared by Plexus	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					Scientific Corp. (Plexus) in 2005, <i>Final</i> <i>Environmental Site Assessment, Phase I and II</i> <i>Report, Production Areas, Longhorn Army</i> <i>Ammunition Plant, Karnack, Texas.</i> The purpose of the Plexus investigation was, in part, to address the potential sources near LHAAP-48.	
					The Plexus report (Section 6.10) describes the LHAAP-48 (Area Y) buildings, which were used initially for production of illuminating devices. In later years the site was dedicated to preparation of black powder, and buildings and equipment were periodically washed as a safety measure to reduce accumulation of hazardous dusts. Because these washings were collected in some of the 12 Area Y waste sumps, it is reasonable to expect that LHAAP-48 contaminants identified in groundwater would be found in soil near the sumps also.	
					The Plexus report included a building-by-building discussion of materials processed at Area Y activities. This discussion identifies Building 34-Y as the mixing area for pyrotechnic materials for hand signals, " which consisted of various combinations of strontium nitrate, zirconium hydride, silicon, organic peroxides, polyester resins, barium nitrate, polyvinyl chloride, TNC [tetranitrocarbizole], cobalt, magnesium, and potassium perchlorate." The M583, M661 illuminants, Signal, Smoke, and Illumination Marine materials, MK 120 MOD O (Green) and MK 121 MOD O (Yellow), were prepared in Building 34-Y, as were Solvent Green #3 and Solvent Yellow #3 smoke powders. None of these illuminants included chromium compounds (see Table 4-3. <i>Chemical</i>	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
	Page		Comment		Composition of Device Components, Plexus, 2005). MK 120 MOD O (Green) and MK 121 MOD O (Yellow) were handled in Building 16-Y. Building 38-Y was used for consolidation of illuminants and black powder, as was Building 45-Y. Building 48-Y was used as a magazine for metal powders and green and yellow smoke compositions [MK 120 MOD O (Green) and MK 121 MOD O (Yellow)]. Buildings 38-Y, 45-Y, and 48-Y contain references to delay composition, which contains barium chromate. In summary, the results of Jacobs (2002) and Plexus (2005) evaluations indicate detections of	A or D ²
					barium, cadmium, and lead in soil, but chromium was not detected in soil. Chromium was detected in groundwater, but, because it was not detected in sumps or soils, the source the source was described (Jacobs, 2002) as " unknown or no longer remaining in soils at Site 48." Data from analysis of groundwater from wells at LHAAP 48 and 35C(53) are shown in Table 2-1 and	
					Table 3-1. All of the wells have 316 stainless steel screens except for Well 48WW01, Well 107, and the piezometer wells, which have polyvinyl chloride (PVC) screens. Well construction diagrams will be included in the revised report as Appendix E. The samples with chromium concentrations above the MCL are from stainless steel-screened wells only. All groundwater from PVC-screened wells contains	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					undetected or low estimated (J-qualified) chromium and nickel concentrations, including the highly turbid samples from wells PZ002 and PZ004.	
					The observations that chromium was not detected in soil associated with the expected source sumps, but elevated chromium concentrations were detected only in wells with stainless steel screens, suggest that the chromium is associated with corroded screens and represents the unknown source suggested in the Jacobs (2002) report.	
					A meeting was held in Austin on August 11, 2006 to resolve regulatory comments on the Draft Final Site Evaluation Report. The meeting was attended by representatives from the Army, Shaw, EPA and TCEQ. It was agreed that, in an effort to achieve a final resolution regarding elevated chromium at certain wells, the Army would install and sample a new PVC well near LHSMW62. If this well does not contain elevated chromium, the chromium issue will be considered resolved and the Army will abandon all stainless steel wells at LHAAP-48 and 53.	
					The new well 48WW02 was installed and sampled in September 2006. Chromium concentrations in samples from this well are shown in Table 2-2 of the revised report and the text has been revised as follows: "Of the metals detected in filtered samples, only chromium in water from monitoring well LHSMW62 exceeded the MCL of 100 μ g/L (379 μ g/L), approximately one-half of the concentration in the unfiltered sample (715 μ g/L). The chromium concentration in filtered water from LHSMW63 was 60.7 (below the MCL) compared to the value in the	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					unfiltered sample of 2,510 µg/L as shown in Table 2-1 . The source of chromium in groundwater from LHAAP-48 wells has been discussed previously. The Jacobs (2002) report characterized 50 soil samples and 10 groundwater samples for contamination associated with sumps and other potential sources and concluded in Section 10.5 that chromium was not found in soil near the sumps at LHAAP-48, and that the sumps " may have been a limited source of a variety of contamination. However, there is no widespread soil contamination or significantly organic-contaminated groundwater, which indicates that the sources are probably small and isolated and have not contributed to significant migration of contaminants." Regarding metals, the report found, "The low levels of metals contaminants in the Site 48 soils are mostly barium, cadmium, and lead.", and "The soil metals may migrate slowly via infiltrating precipitation. The low metals levels of these metals in groundwater suggests an unidentified or no longer remaining source in the soils at Site 48." The Plexus (2005) report (Section 6.10) describes the LHAAP-48 (Area Y) buildings, which were used initially for production of illuminating devices. In later years the site was dedicated to preparation of black powder, and buildings and equipment were periodically washed as a safety measure to reduce accumulation of hazardous dusts. Because these washings were collected in some of the 12 Area Y waste sumps, it is reasonable to expect that	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					LHAAP-48 contaminants identified in groundwater would be found in soil near the sumps also. The Plexus (2005) report identifies Building 34-Y as the mixing area for pyrotechnic materials for hand signals, colored smokes, and illuminant materials, although none of the materials handled in this building contained chromium compounds. The report references Buildings 16-Y, 38-Y, and 48-Y as locations where illuminants, colored smoke compositions were handled, and delay composition, which contains barium chromate.	
					In summary, the results of Jacobs (2002) and Plexus (2005) evaluations indicate that chromium may have been handled in some LHAAP-48 buildings, and would be expected to be included in building washings diverted to sumps, but chromium was not detected in soil.	
					Data from analysis of groundwater from wells at LHAAP 48 and 53(35C) are shown in Table 2-1 and Table 3-1 . All of the wells have 316 stainless steel screens except for Well 48WW01, Well 107, and the piezometer wells, which have polyvinyl chloride (PVC) screens. Well construction diagrams are included in Appendix E. Groundwater samples with chromium concentrations above the MCL are from stainless steel-screened wells only. All groundwater from PVC-screened wells contains undetected or low estimated (J-qualified) chromium and nickel concentrations, including the highly turbid samples from wells PZ002 and PZ004.	
					The observations that chromium was not detected in soil associated with the expected source sumps, and elevated chromium concentrations were detected only in wells with stainless steel screens, suggest that the chromium in groundwater is	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					associated with corroded screens and represents the unknown source suggested in the Jacobs (2002) report.	
					To test this hypothesis, a new well with PVC casing material (48WW02) was installed near LHSMW62 and sampled in September 2006. Chromium concentrations in groundwater samples from this well (Table 2-2) indicate undetected or low estimated concentrations well below the MCL for chromium and well below the concentrations observed in well LHSMW62. These results support the hypothesis that chromium concentrations in groundwater from LHSMW62 originated from stainless steel casing used in that well (Table 2-1), and not from chromium in soil."	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
2		Section 3.2	It is reported that arsenic and chromium in unfiltered samples collected in 2005 from two wells (well 106 and LHSMW 71) exceeded their respective MCLs; antimony exceeded its MCL in a filtered sample from one well (LHSMW 67); antimony, arsenic, and lead exceeded their respective MCLs in unfiltered piezometer samples (PZ002 and PZ004); and arsenic and lead exceeded their respective MCLs in a filtered piezometer sample (e.g., arsenic was 3 times the MCL in PZ004). Section 3.2 suggests that chromium is not a site-related Chemical of Potential Concerns (COPC) and that elevated chromium groundwater levels are associated with corrosion of the stainless steel well screen. Please see above comments regarding the chromium issue. Additionally, we are concerned that some filtered samples still contained levels of contaminants other than chromium (i.e., arsenic, lead, antimony) greater than their respective MCLs.	D	See response to Comment 1 for discussions of previous studies. The static test area was used in the manufacture of explosives, assembly of CS rounds, testing of pyrotechnics and to test fire rocket engines. Four waste sumps are located at this site. Isolated contamination was detected in soil and groundwater; however, the constituents are not the same (Section 6.14, Plexus, 2005). Soil contained beryllium, cadmium, lead, selenium and silver; groundwater contained aluminum, chromium, iron, nickel, silver, and thallium. As indicated by groundwater concentrations, the metals detected in soil are unlikely to affect the underlying groundwater (Jacobs, 2002; Plexus, 2005). The Plexus (2005) report indicates that elevated chromium and nickel concentrations usually are associated with elevated iron concentrations, such as those that occur at this site (Plexus, 2005). The Jacobs (2002) report describes elevated chromium concentrations in groundwater from well LHSMW71, which is not accompanied by a source in soil, and the report suggested the possibility of an, as yet, undetected source. Well LHSMW71 is located southeast of Building 23- T, which is an HMX manufacturing building described in Section 6.11 of the Plexus (2005) report. Four soil borings and temporary monitoring wells (1010SB/TW001 through 1010SB/TW004) were installed surrounding Building 23-T to investigate possible sources of chromium contamination. No metals were detected in groundwater from these wells (Section 6.11.4,	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					Plexus, 2005). Because these additional wells failed to confirm another source of chromium in soil or groundwater associated with Building 23-T soil at LHAAP-53(35C), these results support the hypothesis that the source of elevated chromium concentrations in groundwater at LHSMW71 is the well material itself.	
					See response to Comment 1 regarding further resolution of chromium issue.	
					The site evaluation report will be revised to include the above information and to clarify the conclusion that corroded stainless steel screens are the source of chromium.	
					Well 106 is 1,600 to 2,000 feet downgradient from both LHAAP-48 and LHAAP-53(35C) sites, and is not a source of groundwater contamination for either site. Potential impacts of arsenic chromium concentrations above MCL levels in groundwater at Well 106 probably reflect turbid samples and are not likely to affect surface water quality at Caddo Lake, the most immediate downgradient receptor. Well 106 is located in an area that has been transferred to the USFWS. References to Well 106 were removed from the revised report.	
				С	Antimony does not exceed the MCL in any filtered sample except at well LHSMW67, but it was not detected in the unfiltered sample. This result is anomalous and possibly results from misidentified filtered and unfiltered samples.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					Arsenic and lead do not exceed MCL concentrations in any filtered sample except samples from piezometer wells PZ004. These concentrations are not detected in nearby wells completed in the same groundwater bearing unit (107, LHSMW70, or LHSMW71). Arsenic and lead are not identified as a chemical of potential concern in soil samples associated with sumps that are known to have received waste from site operations. It is likely that the samples from these piezometer wells reflect the condition of the temporary wells that were designed to provide groundwater gauging or screening level information and not confirmatory groundwater analytical data.	
3		Appendix C and D	TCEQ staff of the Toxicology Section (TS) reviewed the Draft Final Site Evaluation Report to ensure compliance with Standard No. 3 of the 1993 Risk Reduction Rule (RRR) and the July 23 rd , 1998 memorandum entitled, "Implementation of the Existing Risk Reduction Rule," hereafter referred to as the Consistency Document (available on the internet at <u>http://www.tceq.state.tx.us/remediation/rrr.html</u>). More specifically and as requested, TS's review focused on portions of the DFSER dealing with human health risks and hazards associated with potential residential exposure to site-related contaminants in soil and groundwater (i.e., Appendices C and D).	С	See responses to specific comments below.	

Appendix C	Appendix C: Baseline Risk Assessment for Residential Use of LHAAP-48					
4	2.4 Evaluation of Dioxins and Furans	This section indicates that a 2,3,7,8-TCDD toxicity equivalency quotient (TEQ) was calculated based on the sample results and toxicity equivalency factors (TEFs) for the individual dioxin/furan congeners. However, supporting calculations were not provided. Additionally, please provide	С	The comment seems to refer to the 2003 Jacobs Engineering Group, Inc. risk assessment cited in the draft document as Jacobs, 2003.		

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

	clarification as to the reason that the value of soil source term concentration for 2,3,7,8-TCDD is different in this report as those value used in the 2002 risk assessment report.	The 2003 risk assessment for dioxins is based on 7 samples (48SB01, SUMP094, SUMP095, SUMP098, SUMP100, WRSUMP001, and WRSUMP003).	
		The assessment included calculation of the 2,3,7,8- TCDD TEQ concentration in each depth interval using toxicity equivalent factors (TEF) given in Section 3.2.4. Details of the calculation are not shown, but the calculations were limited to samples from the 0–0.5 depth from the 6 sumps (SUMP094, SUMP095, SUMP098, SUMP100, WRSUMP001, and WRSUMP003) and 1 soil boring (48SB01) (see Table 3-26 of the 2003 document). The maximum 2,3,7,8-TCDD TEQ concentration (1.58E-05 mg/kg at SUMP094 was used as the exposure point concentration for all exposures to dioxins in the LHAAP-48 risk assessments (Table 3-95, Jacobs, 2003).	
		The TCEQ has determined that it is appropriate to assess the applicable soil column to a depth that is reasonably likely to be encountered as a result of excavation activities which could bring contaminated materials to the surface. For a residential land-use scenario, this surface soil extends from ground surface to 15 feet in depth or to the top of the groundwater-bearing unit, whichever is less in depth (TCEQ Consistency Memorandum, 1998).	
		Therefore, Shaw has calculated 2,3,7,8-TCDD TEQ values using the same method and TEF values and soil concentrations used in the Jacobs (2003) risk assessment, but included 15 samples collected from the upper 5 feet of the soil column (the deepest samples taken). The maximum 2,3,7,8-	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

				TCDD TEQ concentration calculated for the 15 samples differs slightly from the value used in the 2003 risk assessment, but the the difference in values does not affect the conclusions of the LHAAP-48 risk assessment. The detailed 2,3,7,8- TCDD TEQ calculations have been included in the revised final report as Section 2.4	
5	2.5 Identification of Chemicals of Potential Concern	This section indicates that risk-based screening values (RBSVs) for soil are also protective of groundwater. Although TS does not evaluate groundwater protection, the RBSVs for most chemicals of potential concern (COPCs) are not considered protective of residential groundwater. For example, the RBSVs for chromium VI (20 mg/kg) and chromium III (5,900 mg/kg) are higher than the residential soil groundwater protection value (10 mg/kg).	С	Agree. The sentence "The RBSVs for soil are also protective of groundwater (TCEQ, 2004)." will be deleted in the revised document.	
6	2.5.2 Organic Chemicals in Soil	This section indicates that four polycyclic aromatic hydrocarbons (PAHs) were eliminated as COPCs since they were not considered associated with site operations. The TCEQ does not agree. We believe it is appropriate to include PAHs (i.e., benzo(a)anthracene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene) in the list of COPCs. The maximum soil concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene exceed their respective Standard 2 residential soil medium-specific concentrations (MSCs). Additionally, the 95 percent upper confidence limit (95% UCL) calculated for benzo(b)fluoranthene exceeds its residential soil MSC, and the 95% UCLs calculated for benzo(a)anthracene and indeno(1,2,3-cd)pyrene (which are below their respective residential soil MSCs) are likely calculated over an exposure area larger than that considered acceptable for risk assessments under the RRR (see comments below on Section 3.3).	D	The Army believes that the PAH compounds are associated with asphalt residues from paving at the sites, which is not expected to be removed prior to transfer of the property to the USFWS. It was agreed during the August 11, 2006 meeting in Austin that PAHs will be excluded from the risk assessment, as described in paragraph 3 of the revised Appendix C.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

7	3.1 Land and Water Uses	This section indicates that surface water runoff from the northern portion enters an <i>Unnamed Creek</i> to the south, and runoff from the southern portion enters <i>Central Creek</i> to the southeast and on to <i>Caddo Lake</i> , but that no major surface water bodies exist at the site. Additionally, shallow groundwater flow is to the southeast toward <i>Central Creek</i> . Therefore, surface water protection shall be evaluated to ensure no contaminates above health base levels enters the surface water bodies.	С	Potential risks associated with migration of shallow groundwater from LHAAP-48 and surface water runoff are not overlooked at LHAAP. The LHAAP-48 site is located within Section 1009 at LHAAP. The Plexus (2005) report states, "No surface water bodies were visible on Section 1009. Numerous manmade drainage ditches were observed in the production area. No standing water was observed in the drainage ways at the time of the site reconnaissance." Transport by surface water runoff and discharge of shallow groundwater to the above surface water bodies is evaluated in a separate report entitled, <i>Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface</i>	
				Water and Sediment, Longhorn Army ammunition Plant, Karnack, Texas, September 2006. Paragraph 2 of Section 3.1 of the risk assessment was revised to read," The perimeter of LHAAP-48 is a mixture of heavily wooded areas and grasslands. The topography slopes gently to the southeast, and surface runoff from the northern part of the site enters an unnamed rainwater drainage ditch to the south. Numerous manmade drainage ditches were observed in the production area (Plexus, 2005) but no standing water was observed in the drainage ways at that time. Runoff from the southern portion of LHAAP-48 eventually enters Central Creek to the southeast and on to Caddo Lake. Transport by surface water runoff and discharge of shallow groundwater to other surface water bodies is evaluated in a separate report (Shaw, 2006)."	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

8	3.2 Site Conceptual	This section indicates that residential exposure to COPCs in fish was not assessed as site surface water does not	С	The most stringent TSWQS apply to Caddo Lake, a drinking water source, which is considered in earlier	
	Model	support a fish population. However, if Texas Surface Water Quality Standards (TSWQS) are determined to be applicable to surface water at the site, it is TS's understanding that TSWQS consider at least incidental fish ingestion regardless of whether a fish population is actually present. More stringent TSWQS apply to sustainable fisheries and surface water which is a source of drinking water as determined under TSWQS.		 The revised report will state that because the intermittent unnamed creek at LHAAP-48 is in reality a rainwater ditch, it does not support a fish population, and a potential resident would have ready access to fish from Caddo Lake, potential risk from ingestion of fish from the unnamed creek will be considered negligible and not evaluated in the risk assessment. The third bullet in the second paragraph of Section 3.2 of Appendix C was revised to read, "Exposure of the resident to COPCs in fish is not assessed. Because the ephemeral unnamed creek at LHAAP-48 is in reality a rainwater ditch (Section 3.1), it does not support a fish population, and a potential resident would have ready access to fish from Caddo Lake. or one of the other watersheds, potential risk from ingestion of fish from the unnamed creek would represent the trespasser scenario evaluated in previous risk assessments (Jacobs, 2002, 2003). Therefore, the potential ingestion of fish from this ditch is not evaluated in this risk assessment.' 	
9	3.3 Determination o Source-Term Concentrations	The acreage of the areas used to calculate 95% UCLs is not indicated. However, as the site is approximately 16 acres (see Section 3.1) and soil samples were collected across the site (see Figure C-1), it appears that 95% UCLs were calculated over an area larger than the default exposure areas considered acceptable for risk assessments under the RRR. Please note that per Section IV.3.1.1 of the Consistency Document, the exposure area for a residential scenario should be assumed to be 1/8 acre for undeveloped	С	The report has been revised to include the maximum concentrations of COPCs as the reasonable maximum exposure (RME) for residential risk assessment. The TCEQ (1998) guidance specifies an exposure area of 1/8 acre for use in residential risk assessments. There is a probability that a	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		property. Alternatively, a party may be able to demonstrate that a larger exposure area is appropriate based on <i>documented</i> and <i>verifiable</i> information for future residential development (e.g., zoning requirements). Use of maximum detected concentrations as exposure point concentrations would satisfy TS concerns regarding calculating 95% UCLs over exposure areas exceeding those considered acceptable for risk assessments under the RRR.		hypothetical resident could locate a 1/8 acre site at the locations sampled, and incur an exposure to COPCs higher than other locations at LHAAP-48. Therefore, the use of the maximum COPC concentrations to represent the exposure point concentration at any LHAAP-48 location represents the RME approach for this assessment, as consistent with EPA (1989) and TCEQ (1998) guidance.	
10	Table C-2	This table appears to eliminate benzo(a)pyrene, dibenzo(a,h)anthracene, and vinyl chloride as COPCs based on frequency of detection alone (see footnote "d" to Table C-2), which is inconsistent with the Consistency Document. This appears to be a misunderstanding of Section III.1 of the Consistency Document, which indicates that a COPC may be eliminated from further consideration in the BLRA if it meets <i>all</i> the following criteria: (1) it is detected in less than 5% of at least 20 samples; (2) it is only detected in one media; (3) its maximum concentration (i.e., the higher of the maximum detected concentration or the appropriate proxy value for non-detects per Section II.4.3) is less than its Standard 2 MSC; and (4) there is no reason to believe it is present at the site. However, the maximum levels for benzo(a)pyrene, dibenzo(a,h)anthracene, and vinyl chloride exceed their respective Standard 2 residential soil MSCs, so criterion (3) above is not met.	С	See response to Comment 6 regarding the PAH compounds benzo(a)pyrene, dibenzo(a,h)anthracene. Vinyl chloride was included in the revised risk assessment and evaluated at the maximum concentration, as described in Sections 3.2 through 3.4 of the revised Appendix C.	
11	Table C-3	Please use an age-adjusted dermal factor of 352 mg-yr/kg- event. Additionally, an adult exposure duration of 30 years may be used.	С	Comment refers to Table C-5 of the revised Appendix C. The age-adjusted dermal factor was changed to 352 mg-yr/kg-event, and the adult exposure duration of 30 years, were used in the revised risk assessment, although they are not specified in the Consistency Document cited in comment 3.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

12	Table C-5	A reference dose (RfD) of 0.2 mg/kg-day may be used for barium.	С	The RfD of 0.2 mg/kg-day was used for barium in Table C-6 of the revised risk assessment.	
13	Table C-9a	The cumulative cancer risk presented in this table is 2E-07. The risk calculated from the incidental ingestion of 2,3,7,8- TCDD in soil alone is 2.19E-06. Therefore, the cumulative risk total of 2E-07 (which is less than 2.19E-06) is incorrect.	С	This error was corrected in Table 10a of the revised risk assessment.	

Appendix D): Baseline Risk Asse	ssment for Residential Use of LHAAP-35C(53)			
14	2.4 Evaluation of Dioxins and Furans	This section indicates that a 2,3,7,8-TCDD toxicity equivalency quotient (TEQ) was calculated based on the sample results and toxicity equivalency factors (TEFs) for the individual dioxin/furan congeners. However, supporting calculations were not provided. Additionally, please provide clarification as to the reason that the value of soil source term concentration for 2,3,7,8-TCDD is different in this report as those value used in the 2002 risk assessment report.	С	See response to comment 4. Shaw has calculated 2,3,7,8-TCDD TEQ values for 5 samples collected from the upper 5 feet of the soil column. The maximum 2,3,7,8-TCDD TEQ concentration calculated for the 5 samples differs slightly from the value used in the 2003 risk assessment, but the difference in values does not affect the conclusions of the LHAAP-53/35(C) risk assessment. The detailed 2,3,7,8-TCDD TEQ calculations are included in Section 2.4 of the revised final Appendix D.	
15	2.5 Identification of Chemicals of Potential Concern	This section indicates that RBSVs for soil are also protective of groundwater. Although TS does not evaluate groundwater protection, the RBSVs for most COPCs are not considered protective of residential groundwater.	С	Agree. The sentence "The RBSVs for soil are also protective of groundwater (TCEQ, 2004)." will be deleted in the revised document.	
16	3.1 Land and Water Uses	This section indicates that surface water runoff is towards <i>Central Creek</i> and <i>Harrison Bayou</i> . Surface water protection should be evaluated.	С	See responses to comment 7.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

17	3.2 Site Conceptual Model	This section indicates that residential exposure to COPCs in fish were not assessed as site surface water sources do not support a fish population. However, if TSWQS are determined to be applicable to surface water at the site, it is TS's understanding that TSWQS consider at least incidental fish ingestion regardless of whether a fish population is actually present. More stringent TSWQS apply to sustainable fisheries and surface water which is a source of drinking water as determined under TSWQS.	С	See responses to comment 8. The second bullet of Paragraph 2 of Section 3.2 has been revised to read, "Exposure of the resident to dioxins in fish is not assessed. Because available surface water sources at LHAAP-35C(53) do not support a fish population, and a potential resident would have ready access to fish from Caddo Lake, or one of the other watersheds, potential risk from ingestion of fish from the unnamed creek would represent the trespasser scenario evaluated in previous risk assessments (Jacobs, 2002, 2003). Therefore, the potential ingestion of fish from this ditch is not evaluated in this risk assessment."	
18	Table D-2	This table appears to eliminate benzo(a)pyrene and mercury as COPCs based on frequency of detection alone (see footnote "d" to Table D-2), which is inconsistent with the Consistency Document. This appears to be a misunderstanding of Section III.1 of the Consistency Document, which indicates that a COPC may be eliminated from further consideration in the BLRA if it meets <i>all</i> the following criteria: (1) it is detected in less than 5% of at least 20 samples; (2) it is only detected in one media; (3) its maximum concentration (i.e., the higher of the maximum detected concentration or the appropriate proxy value for non-detects per Section II.4.3) is less than its Standard 2 MSC; and (4) there is no reason to believe it is present at the site. However, the maximum levels for benzo(a)pyrene and mercury exceed their respective residential soil MSCs, so criterion (3) above is not met.	С	See response to Comment 6 regarding the PAH compound benzo(a)pyrene Mercury was included in the revised risk assessment and evaluated at the maximum concentration, as described in Sections 3.2 through 3.4 of the revised Appendix D.	
19	Table D-3	Please use an age-adjusted dermal factor of 352 mg-yr/kg- event. An adult exposure duration of 30 years may also be used.	С	The age-adjusted dermal factor was changed to 352 mg-yr/kg-event, and the adult exposure duration of 30 years, were used in the revised risk assessment in Table D-4, although they are not specified in the Consistency Document cited in comment 3.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

EPA Review Comments					
1	Pg. 2-5	Section 2.2	One duplicate value was reported as J-qualified (234.41 pg/L) and the other was reported as U-qualified (50.505 pg/L). Was unable to find the U-Qualified value of 50.505 pg/L	С	The interpretation of uncertainties associated with dioxin and furan data has been revised in paragraph 5 of Section 2.2 of the revised report was revised to read," Filtered samples collected in May 2005 contained concentrations of dioxin or furan congeners ranging from 0.82 pg/L (intermediate monitoring well 48WW01) to 234.41 pg/L, which is a J-qualified concentration of octachlorodibenzo-p- dioxin measured in shallow monitoring well LHSMW64. Because the toxicity equivalency factor (TEF) value of octachlorodibenzo-p- dioxin contribution to the 2,3,7,8-TCDD TEQ concentration would be 0.0234, which is an insignificant contributor to the derived TEQ concentration and well below the MCL for 2,3,7,8- TCDD (30 pg/L). Therefore, the uncertainty associated with the range of dioxin and furan concentrations does not influence the interpretation of the groundwater data for dioxins/furans."
2			 Elevated chromium concentrations in wells LHSMW62 and LHSMW63 appears to be associated with suspended sediments, and its source is suspected to be the stainless steel screen of the wells. The increase in chromium concentrations was attributed to corrosion of the stainless steel screen, which was accompanied by increases in iron and aluminum concentrations (Table 2-1). Increased chromium levels were detected in wells LHSMW62 and LHSMW63 due to the Stainless Steel screens. Why were they not seen in other wells? Also, the high levels of chromium seen unfiltered samples do not correlate with the filtered samples. For example, the highest chromium level for the unfiltered sample was for LHSMW63 (2510.0). However, the highest chromium level 	С	Samples with chromium concentrations above the MCL (100 µg/L) are from stainless steel-screened wells only (LHSMW62, LHSMW63, and LHSMW71). Other wells with stainless steel screens contained groundwater with detectable levels below the MCL ranging from 13.6 µg/L in well LHSMW68 to 66.80 µg/L in well LHSMW66. Water from other wells with stainless steel casings did not contain detectable chromium. These results indicate that corrosion is more advanced in wells LHSMW62, LHSMW63, and LHSMW71 than the other wells.

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

	for the filtered sample was for LHSMW62 (379.0). Why is this the case?	screened wells before and after filtration. The percentage of chromium concentration removed by filtration ranges from 47% at LHSMW62 to 98% at LHSMW71. It is also reasonable to expect that the groundwater samples contained variable amounts of undissolved solids. A stronger correlation would be expected between the reduction of chromium concentration and the amount of solids removed by filtration. However, the mass of solids collected on the filter is not
Toxicology Section Rev	iew received by email on January 22, 2007	recorded in the analytical methods used. Section 2.2 of the report was revised to clarify the role of stainless steel casing on groundwater as described above in responses to TCEQ comment 1.
	Staff of the Toxicology Section (TS) have reviewed the USArmy Corps of Engineers' responses to TS comments ofAugust 9, 2006 on the Draft Final Site Evaluation ReportLHAAP-48 (Former Igniter Production Area) and LHAAP-35C(53) (Former Static Test Area) for the Longhorn ArmyAmmunition Plant (LHAAP) located in Karnack, Texas. Theresponses were provided in a November 2, 2006 e-mail tothe TCEQ project manager. Previous TS comments wereprovided to the TCEQ project manager in an August 9,2006 interoffice memorandum. TS reviewed the responsesto ensure compliance with Standard No. 3 of the 1993 RiskReduction Rule (RRR) and the July 23 rd , 1998memorandum entitled, "Implementation of the Existing RiskReduction Rule," hereafter referred to as the ConsistencyDocument(availableatwww.tceq.state.tx.us/remediation/rrr.htmlNew tree not deferred to the TCEQ project manager.Previous TS comments concerning issueswhich were not deferred to the TCEQ project manager.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		the TCEQ project manager appear in <i>italics</i> below and are followed by comments on the US Army Corps of Engineers' responses. Issues deferred to the TCEQ project manager are not addressed (e.g., surface water protection and applicability of TSWQS to various waterbodies, whether PAHs in soil and chromium in some groundwater wells are site related).	
1	Appendix C, Section 2.4 Evaluation of Dioxins and Furans	This section indicates that a 2,3,7,8-TCDD toxicity equivalency quotient (TEQ) was calculated based on the sample results and toxicity equivalency factors (TEFs) for the individual dioxin/furan congeners. However, supporting calculations were not provided.	These calculations are provided in revised Appendix C.
		Comment: The response to this comment indicates that the US Army Corps of Engineers concurs with the comment (as denoted by "C" in the fifth column of their response table for comment no. 4). However, the response does not provide supporting TEQ calculations or indicate that supporting calculations are forthcoming.	
		Comment: In response, supporting TEQ calculations were provided in Table 1, which adequately addressed TS's concern.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

2	Appendix C, Section 3.3 Determinatio n of Source- Term Concentratio ns	TS did not evaluate the bootstrap method used to calculate 95% UCLs on the mean COPC concentrations. The acreage of the areas used to calculate 95% UCLs is not indicated. However, as the site is approximately 16 acres (see Section 3.1) and soil samples were collected across the site (see Figure C-1), it appears that 95% UCLs were calculated over an area larger than the default exposure areas considered acceptable for risk assessments under the RRR. Please note that per Section IV.3.1.1 of the Consistency Document, the exposure area for a residential scenario should be assumed to be 1/8 acre for undeveloped property. Alternatively, a party may be able to demonstrate that a larger exposure area is appropriate based on documented and verifiable information for future residential development (e.g., zoning requirements). Use of maximum detected concentrations as exposure point concentrations would satisfy TS concerns regarding calculating 95% UCLs over exposure areas exceeding those considered acceptable for risk assessments under the RRR.	Shaw Response: The first sentence of the response states, "The report will be revised to include the maximum concentrations of COPCs as the reasonable maximum exposure (RME) for residential risk assessment." This approach is consistent with the baseline risk assessment methodology described in the TCEQ Risk Reduction Rules under Risk Reduction Standard 3. The application of Risk Reduction Standard 3 guidance to LHAAP is consistent with baseline risk assessments conducted using commercial/industrial land use assessments in 2002 and 2003. The above mention of surface soil as represented by 0 to 5 feet is a typographical error. The correct reference to surface soil for a residential risk assessment is correctly made in Shaw's response to TCEQ's original comment number 4. The surface and subsurface soil will be aggregated and statistical methods will be applied as described in Section IV.3.2.3 of the Consistency Document if a most likely exposure (MLE) estimate is made in the revised Appendix C, April 2007.	
		Comment : TS has not yet received a revised BLRA which incorporates maximum concentrations (per the response) to address this concern. TS notes that the response provided for comment no. 9 has been revised since August 2006 to indicate that the residential scenario assumes excavation and mixing of the soil within the upper 5 feet. TS disagrees. Surface soil for the residential scenario is from 0-15 feet and does not assume mixing. In fact, unless		

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		the contamination is demonstrated to be relatively homogeneous over a maximum of the top 2 feet, statistics (e.g., 95% UCLs) should not be used to dilute higher concentrations which may be present at the surface with lower concentrations at greater depths. Please see Section IV.3.2.3 of the Consistency Document for more information on appropriately aggregating data by depth.	
3	Appen Table		Shaw Response: See response to TCEQ comment 6 regarding the PAH compounds benzo(a)pyrene and dibenzo(a,h)anthracene. Vinyl chloride will be included in the revised Appendix C, April 2007.
		Comment: The response (comment no. 10 in the response table) will adequately address TS's concern if the risk assessment is revised to	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		include these COCs per the response.	
		include linese COCs per line response.	
		Comment: The determination as to whether PAHs are site related was deferred to the TCEQ project manager. In regards to vinyl chloride, the above comment has not yet been addressed.	
4	Appendix C, Table C-3	Please use an age-adjusted dermal factor of 352 mg-yr/kg- event. Additionally, an adult exposure duration of 30 years may be used. Comment: The response (comment no. 11 in the response table) will adequately address TS's concern if the risk assessment is revised per the response. Comment: TS has not yet received a revised BLRA with the above-referenced changes (per the response) to address this comment.	Shaw Response: The response to the original TCEQ comment states, "The age-adjusted dermal factor will be changed to 352 mg-yr/kg-event and the adult exposure duration of 30 years will be used in the revised Appendix C, April 2007"
5	Appendix C, Table C-9a	The cumulative cancer risk presented in this table is 2E-07. The risk calculated from the incidental ingestion of 2,3,7,8- TCDD in soil alone is 2.19E-06. Therefore, the cumulative risk total of 2E-07 (which is less than 2.19E-06) is incorrect. Comment: The response (comment no. 13 in the response table) will adequately address TS's concern if the risk assessment is revised per the response. Comment: TS has not yet received a revised BLRA which incorporates risk from dioxin into the cumulative assessment (per the response) to address this concern.	Shaw Response: The response to the original TCEQ comment states, "This error will be corrected in the revised Appendix C, April 2007."

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

6	Appendix D, Section 2.4 Evaluation of Dioxins and Furans	This section indicates that a 2,3,7,8-TCDD toxicity equivalency quotient (TEQ) was calculated based on the sample results and toxicity equivalency factors (TEFs) for the individual dioxin/furan congeners. However, supporting calculations were not provided. Comment: The response to this comment indicates that the US Army Corps of Engineers concurs with the comment (as denoted by "C" in the fifth column of their response table for comment no. 14). However, the response does not provide supporting TEQ calculations are forthcoming. Comment: In response, supporting TEQ calculations were provided in Table 2, which adequately addressed TS's concern.	These calculations are provided in revised Appendix D.	
7	Appendix D, Table D-2	This table appears to eliminate benzo(a)pyrene and mercury as COPCs based on frequency of detection alone (see footnote "d" to Table D-2), which is inconsistent with the Consistency Document. This appears to be a misunderstanding of Section III.1 of the Consistency Document, which indicates that a COPC may be eliminated from further consideration in the BLRA if it meets all the following criteria: (1) it is detected in less than 5% of at least 20 samples; (2) it is only detected in one media; (3) its maximum concentration (i.e., the higher of the maximum detected concentration or the appropriate proxy value for non-detects per Section II.4.3) is less than its Standard 2 MSC; and (4) there is no reason to believe it is present at the site. However, the maximum levels for benzo(a)pyrene and mercury exceed their respective residential soil MSCs, so criterion (3) above is not met.	Shaw Response: See response to TCEQ comment 6 regarding benzo(a)pyrene. Mercury will be included in the revised Appendix D, April 2007.	

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality USEPA Reviewer: Raji Josiam, Remedial Project Manager, USEPA Region 6 Respondents: Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

8	Appendix D, Table D-3	response table) will adequately address TS's concern if the risk assessment is revised to include these COCs per the response. Comment: The determination as to whether PAHs are site related was deferred to the TCEQ project manager. In regards to mercury, the above comment has not yet been addressed. Please use an age-adjusted dermal factor of 352 mg-yr/kg- event. An adult exposure duration of 30 years may also be used. Comment: The response (comment no. 19 in the response table) will adequately address TS's concern if the risk assessment is revised per the	<u>Shaw Response:</u> The response to the original TCEQ comment states, <i>"The age-adjusted dermal</i> factor will be changed to 352 mg-yr/kg-event and the adult exposure duration of 30 years will be used in the revised Appendix D, April 2007"
		<i>response.</i> Comment : TS has not yet received a revised BLRA with the above-referenced changes (per the response) to address this comment.	
Toxicolog	y Section Question ree	ceived by email on February 23, 2007	
1	Appendix D	Please also ask how they treated nondetects in calculating the mean for Hg for LHAAP-35(C).	For nondetected (U-qualified) values, ½ of the MQL was substituted as a proxy value in statistical calculations. In the case of mercury, the low frequency of detection (1 detection among 32 samples analyzed) precludes use of this calculated mean as a representative concentration over the site. Therefore, neither the calculated mean, nor any other statistically derived value for mercury, was used in the risk assessment, and does not influence risk assessment conclusions. The maximum mercury concentration was chosen

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		as the Source Term Concentration (see Table D-3) and was used as the basis of the revised Appendix D, April 2007. The use of the maximum concentration for all chemicals in the risk assessment is consistent with earlier TCEQ comments dated July 6, 2006.
TCEQ Questions	s on the Appendix D Risk Assessment for LHAAP-35C(53)	from a conference call on February 28, 2007
1	Question regarding the effect of pH on the risk assessment for mercury	The maximum mercury concentration was compared to the mercury MSC for soil given in current TCEQ Risk Reduction Rules tables. The tables indicate that the MSC (1.1E-01 mg/kg) is pH- dependent, and the tabulated value is based on pH 4.9, representing relatively acidic conditions. The pH-dependence of the soil-water partition coefficient (Kd) is described in TRRP guidance [Figure: 30 TAC §350.73(e)(1)(C)]. (Use of physical/chemical properties given in TRRP guidance for assessments conducted under the Risk Reduction Rule is consistent with TCEQ policy). Information from the TRRP figure shows the following Kd values for soil pH: Soil Mercury Mercury pH Kd Soil MSC (mg/kg) * 4.9 4.0E-02 1.1E-01 5.0 6.0E-02 1.5E-01 5.1 9.0E-02 2.1E-01 5.2 1.4E-01 2.9E-01 5.3 2.0E-01 3.6E-01 5.4 3.0E-01 4.7E-01 5.5 4.6E-01 6.1E-01 * MSC calculated for residential land use using TCEQ equations and default parameters given in the Consistency Memorandum. Boldface type indicates values shown in the TCEQ Consistency Memorandum

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

	The above table includes Soil MSC values that were calculated for each Kd value using the equations, default exposure values, and toxicity values given in the TCEQ Consistency Memorandum. The table shows that Kd and MSC values for mercury increase with increasing pH, but are relatively insensitive to pH in the acidic range.
	The pH of soil was not measured in samples collected at LHAAP-35(C)53. However, pH data are available for local soil from the background area, and from LHAAP-49, which was an acid storage area.
	Soil pH in Background Area
	Standard
	MeanDeviationMedianMinimumMaximum5.200.395.204.406.5
	Soil pH at LHAAP-49
	Standard <u>Mean Deviation Median Minimum Maximum</u> 5.72 0.86 5.63 4.26 7.09
	This pH information shows that soil in the background area is somewhat more acidic than soil at LHAAP-49 as indicated by the mean and median values, although there is considerable overlap in the pH ranges. Therefore, pH data for the background soil would lead to more conservative MSC values for screening of mercury concentrations at LHAAP-53.
	Mercury was detected in only 1 of 32 samples collected at LHAAP-35(C)53, representing a

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		frequency of detection of less than 5%. However, screening of chemicals based on frequency of detection is not allowed according to the TCEQ Consistency Memorandum if the maximum detected concentration exceeds the MSC value for the chemical. Because no soil pH data are available for LHAAP-35(C)53 soil, and the maximum mercury concentration (2.4E-01 mg/kg) exceeds the MSC provided in current TCEQ tables (1.1E-01 mg/kg at pH 4.9), mercury was retained in the risk assessment. If the mean or median pH for background soil were assumed for LHAAP-35(C)53, mercury would be screened from the risk assessment according to TCEQ criteria by comparison of the maximum concentration at (2.4E-01 mg/kg) to the calculated residential MSC (2.9E-01 mg/kg). The observation of pH values below 4.9 in both background and LHAAP-49 soil would confirm our decision to retain mercury in the risk assessment, and pH values above pH 5.2 would remove mercury from the risk assessment. Either result would not change the conclusion of the risk assessment, nor provide it more support.
2	Question regarding the assessment of mercury inhalation	The draft risk assessment evaluated the inhalation pathway for mercury in airborne dust suspended from soil. The calculated hazard quotient (HQ) was 1.66E-07, below the acceptable level of 1. This approach is consistent with assessment of ionic forms of mercury as implied by use of pH- dependent Kd values.
		If the conservative assumption is made that the mercury is in the more volatile metallic form, inhalation of mercury vapor would be included in the assessment. The calculated HQ would be 2.6E-01,

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

		still below the acceptable value of 1. The assumption that mercury is present at the maximum concentration in the more volatile form over the entire site results in an assessment that conservatively overestimates the HQ. Because the resulting HQ is still less than 1, the assumption does not change the risk assessment conclusions.	
Toxicology Section Question re-	ceived by email on March 6, 2007		
	This memorandum contains a revised section on <i>Appendix</i> <i>D:</i> Baseline Risk Assessment for Residential Use of <i>LHAAP-35C(53)</i> as compared to the TS memorandum dated February 27, 2007. The revisions are in response to additional information supplied on March 1, 2007. Staff of the Toxicology Section have reviewed the US Army Corps of Engineers' responses to TS comments of November 10, 2006 on the <i>Draft Final Site Evaluation Report LHAAP-48</i> (<i>Former Igniter Production Area)</i> and <i>LHAAP-35C(53)</i> (<i>Former Static Test Area)</i> for the Longhorn Army Ammunition Plant (LHAAP) located in Karnack, Texas. Previous TS comments on the baseline risk assessments (BLRAs) for LHAAP-48 (Appendix C) and LHAAP-35C(53) (Appendix D) were provided to the TCEQ project manager in an August 9, 2006 interoffice memorandum. TS reviewed responses and revised sections of the BLRAs to ensure compliance with Standard No. 3 of the 1993 Risk Reduction Rule (RRR) and the July 23 rd , 1998 memorandum entitled, "Implementation of the Existing Risk Reduction Rule," hereafter referred to as the Consistency Document (available at www.tceq.state.tx.us/remediation/rrr.html). Issues previously deferred to the TCEQ project manager are not addressed (e.g., surface water protection and applicability of TSWQS to various waterbodies, whether PAHs in soil and chromium in some groundwater wells are site related). For this memorandum, TS concentrated on sections of the BLRAs which were the subject of comments		

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commenter Agrees (A) with response, or Does not Agree (D) with response.

	in the November 10, 2006 TS memorandum and BLRA conclusions.	
Appendix C, Section 5.3 Risks Associated with Exposure to Soil	The last paragraph of this section draws the conclusion of acceptable risk/hazard for soil constituents at LHAAP-48 based solely upon cumulative risk and hazard considerations. However, the RRR also has target individual-chemical risk (1E-06 for class A and B carcinogens, 1E-05 otherwise) and hazard (HQ of 1) levels. Based on the risks presented in Table C-10a, which were calculated using maximum concentrations, the excess cancer risk calculated for vinyl chloride from exposure to soil (i.e., 1.16E-06 (soil ingestion) + 5.64E-05 (inhalation) = 5.76E-05) exceeds the RRR individual-chemical target risk for class A carcinogens (1E-06). However, based on the surface soil sample results provided in Table C-3, vinyl chloride was detected in only 1 of 48 samples, and the reporting limits for the other 47 samples were adequate (i.e., below the SAI-Res MSC). Therefore, for most of the site appears that vinyl chloride would not represent unacceptable risk under the RRR. The one detect is approximately 14 times the residential cleanup value. The site appears too large and the nondetects too numerous to appropriately use the other available sample results in a statistical calculation (95% UCL) of an exposure concentration (i.e., the exposure area would be very large), and the one detected high sample result would likely cause the 95% UCL to exceed the cleanup value anyway. <i>TS defers to the TCEQ project manager in regards to what actions, if any, are necessary to address vinyl chloride in the area of the one sample where it was detected.</i>	Because the risk assessments described in Appendices C and D are based on maximum detected concentrations, no 95% UCL was used. A Section 7.0 (Risk Management) was added to the main document to describe risk management decisions based on the risk assessment results and Risk Reduction Standard 3 requirements.

August 2006 through March 2007

TCEQ Reviewer: Team 2, Environmental Cleanup Section II, Fay Duke, Project Manager, Texas Commission on Environmental Quality **USEPA Reviewer:** Raji Josiam, Remedial Project Manager, USEPA Region 6 **Respondents:** Arthur F. Eidson, Praveen Srivastav, Shaw E & I

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).

2	Appendix D, Section 5.3 Risks Associated with Exposure to Soil and Table D-7b	The last paragraph of Section 5.3 draws risk/hazard conclusions for soil constituents at LHAAP-35C(53) based solely upon cumulative risk and hazard considerations. Discussions of acceptable risk and hazard in future BLRAs should include not only RRR target cumulative risk (1E-04) and hazard (HI of 1) levels, but RRR target individual-chemical risk (1E-06 for class A and B carcinogens, 1E-05 otherwise) and hazard presented in Table D-7b for mercury in soil is less conservative than TS's calculation because although mercury is a volatile metal (see the vapor pressure in the RRR chemical/physical parameter table), the volatilization factor (VF) for mercury was not considered in the BLRA. Available data indicate that the mean pH for soils in this area may be in the range of 5.2-5.7 (mean). If the <i>TCEQ project manager determines that these pH results are likely representative of site conditions, even if the VF is considered, it appears that mercury is unlikely to represent an unacceptable hazard at this site and could have been screened from the BLRA.</i>	the d the re See r 2007	response to the above comment 1 regarding discussion of risk management in Section 7.0 of revised report. response to TCEQ comment 3 of February 28, 7 comments regarding the mercury inhalation uation.	

FINAL SITE EVALUATION REPORT LHAAP-48 (FORMER IGNITER PRODUCTION AREA) AND LHAAP-35C(53) (FORMER STATIC TEST AREA) LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared for U.S. Army Corps of Engineers Tulsa District 1645 South 101st Avenue Tulsa, Oklahoma

Prepared by Shaw Environmental, Inc. 3010 Briarpark Houston, Texas 77042

TERC No. DACA56-94-D-0020, Project No. 845714 Task Order No. 0109

April 2007

Table of Contents_

	of Figuresii of Appendicesii						
Acrony	ms an	u Abbiev	viations	III			
1.0	Introd	uction		1-1			
	1.1	LHAAP	Description and History	1-1			
	1.2		-48 Description and History				
		1.2.1	Previous Investigations.				
		1.2.2	Industrial Risk Assessment at LHAAP-48				
	1.3	LHAAP	-35C(53) Description and History	1-4			
		1.3.1	Previous Investigations				
		1.3.2	Industrial Risk Assessment at LHAAP-35C(53)	1-4			
	1.4	Rationa	le for Additional Groundwater Sampling in 2004 and 2005	1-4			
2.0	LHAA	P-48 Gr	oundwater Sampling in 2004 and 2005	2-1			
	2.1	Ground	water Sampling and Analytical Methods	2-1			
	2.2		ary of Analytical Results				
3.0	LHAA	P-35C(5	i3) Groundwater Sampling in 2004 and 2005	3-1			
	3.1	Ground	water Sampling and Analytical Methods	3-1			
	3.2	Summa	ary of Analytical Results				
4.0	Summ		ne Residential Risk Assessment for Hypothetical Residential Use				
	4.1	Elemen	ts of the Residential Risk Assessment	4-1			
	4.2	Results	of the Residential Risk Assessment				
5.0	Conclusions						
6.0	Risk Management						
7.0	References						

List of Tables _____

Table 2-1	Groundwater Sampling Results from May 2005, LHAAP-48	
-----------	--	--

- Table 2-2 Groundwater Sampling Results from Well Installed Near LHSMW62, LHAAP-48
- Table 3-1Groundwater Sampling Results from May 2005, LHAAP-35C(53)
- Table 6-1a
 Cancer Risk from Exposure to Chemicals in Soil at LHAAP-48 and LHAAP-35C(53)
- Table 6-1b
 Noncancer Hazard from Exposure to Chemicals in Soil at LHAAP-48 and LHAAP-35C(53)

List of Figures _____

Figure 1-1	LHAAP Location Map
	LUAD 40 and LUAD 250(52) Manitaria

Figure 2-1 LHAAP-48 and LHAAP-35C(53) Monitoring Well Location Map

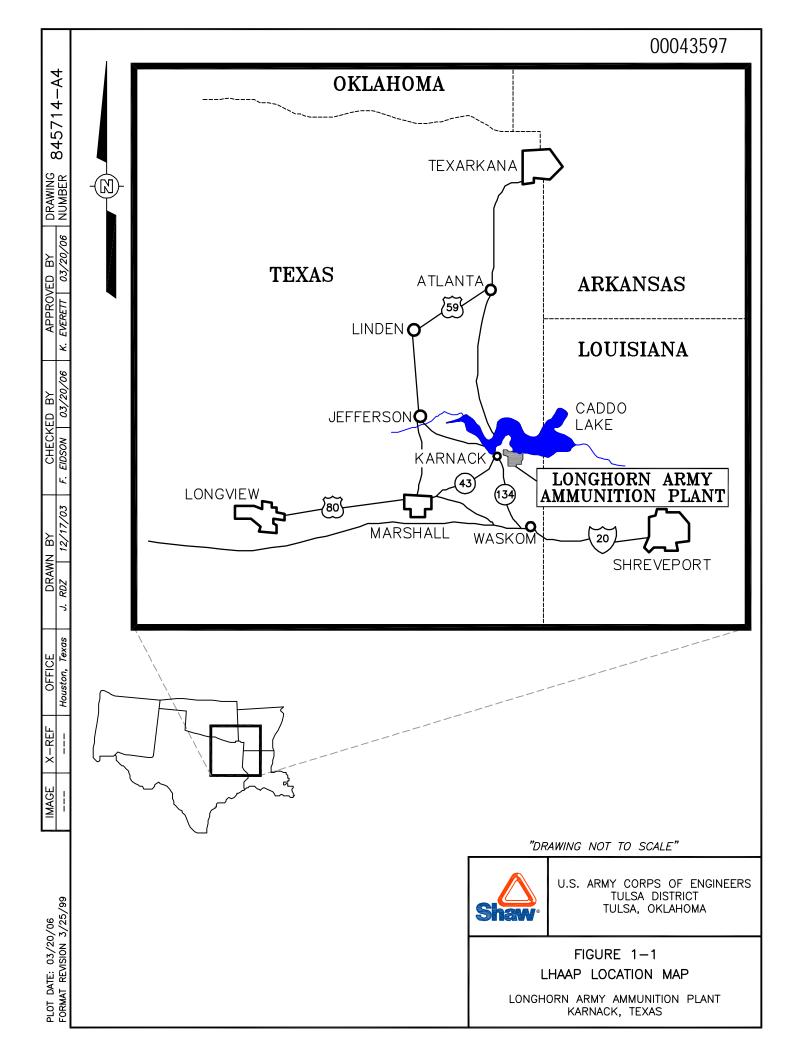
List of Appendices_____

- Appendix A Groundwater Sampling Forms LHAAP-48
- Appendix B Groundwater Sampling Forms LHAAP-35C(53)
- Appendix C Baseline Risk Assessment for Residential Use of LHAAP-48
- Appendix D Baseline Risk Assessment for Residential Use of LHAAP-35C(53)
- Appendix E Construction Diagrams for Groundwater Wells at LHAAP-48 and LHAAP-35C(53)

Acronyms and Abbreviations_

BHHRA	baseline human health risk assessment
DCA	dichloroethane
HI	hazard index
LHAAP	Longhorn Army Ammunition Plant
LUC	land use controls
MCL	maximum contaminant level
mg/kg	milligrams per kilogram
NTU	nephelometric turbidity units
μg/L	micrograms per liter
pg/L	picograms per liter
PVC	polyvinyl chloride
Shaw	Shaw Environmental, Inc.
TAL	target analyte list
TCE	trichloroethylene
TCEQ	Texas Commission on Environmental Quality
TEF	toxicity equivalency factor
TERC	Total Environmental Restoration Contract
TNT	trinitrotoluene
ТО	Task Order
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency

1.0 Introduction


This site evaluation, prepared by Shaw Environmental, Inc. (Shaw) for the U.S. Army Corps of Engineers (USACE), Tulsa District, under Total Environmental Restoration Contract (TERC) DACA56-94-D-0020, Task Order (TO) No. 0109, presents a baseline risk assessment for residential use of LHAAP-48 and LHAAP-35C(53) based on existing information and the results of groundwater sampling activities at LHAAP-48 and LHAAP-35C(53) conducted by Shaw in 2004 and 2005.

Longhorn Army Ammunition Plant (LHAAP) is a former Army installation that occupied nearly 8,500 acres between State Highway 43, in Karnack, Texas, and the southwestern shore of Caddo Lake, as shown on **Figure 1-1**, LHAAP Location Map. The nearest cities are Marshall, Texas, approximately 14 miles to the southwest, and Shreveport, Louisiana, approximately 40 miles to the southeast. Caddo Lake, a large freshwater lake situated on the Texas-Louisiana border, bounds LHAAP to the north and east.

This site evaluation is presented in several sections and appendices. Section 1.0 consists of site descriptions, a summary of previous investigations and the industrial risk assessment at sites LHAAP-48 and LHAAP-35C(53), and the rationales for additional groundwater sampling conducted by Shaw in 2004 and 2005. Section 2.0 presents a summary of the results from the 2004 and 2005 groundwater sampling at LHAAP-48. Section 3.0 presents a summary of the results from the 2004 and 2005 groundwater sampling at LHAAP-48. Section 3.0 presents a summary of the results from the 2004 and 2005 groundwater sampling at LHAAP-48. Section 3.0 presents a summary of the results from the 2004 and 2005 groundwater sampling at LHAAP-48. Section 3.0 presents a summary of the results from the 2004 and 2005 groundwater sampling at LHAAP-48. Section 3.0 presents a summary of the results from the 2004 and 2005 groundwater sampling at LHAAP-35C(53). Section 4.0 summarizes the results of the baseline risk assessment for hypothetical residential use of LHAAP-48 and LHAAP-35C(53), incorporating the results of groundwater sampling. The residential risk assessments are presented in their entirety in Appendix C and D. Section 5.0 presents conclusions for residential risk at LHAAP-48 and LHAAP-35C(53). Section 6.0 discusses risk management associated with total cancer risk estimates. Section 7.0 is a list of references.

1.1 LHAAP Description and History

LHAAP was established in December 1941, near the beginning of World War II, when the Army issued a contract to build a six-line production facility for manufacturing trinitrotoluene (TNT). LHAAP ultimately produced 414 million pounds of TNT before production was halted in August 1945, near the end of the war, and the facility (Plant 1) went on standby status. In 1952, during the Korean War, the government reactivated and refitted Plant 2 for pyrotechnics production and Plant 3 was designed and built for producing solid-fuel rocket motors for tactical missiles. Actual rocket motor production began in December 1954; and the last major propellant loading activity in Plant 3 occurred in 1980.

1.2 LHAAP-48 Description and History

LHAAP-48, known as the former igniter production area or "Y-Area," covers an area of approximately 16 acres, and was built during the construction of Plant 3, from 1953 through 1955. It was used for the production of igniters and illumination devices and was active until about 1997 (Jacobs Engineering Group, Inc. [Jacobs], 2003). There were nine waste process sumps and three waste rack sumps associated with this area. Environmental sampling was conducted to evaluate the nature and extent of contamination adjacent to the sump locations.

1.2.1 Previous Investigations

Previous investigations were conducted by Jacobs and others from 1982 through 2000 (Jacobs, 2002a, 2002b) culminating in the *Final Baseline Human Health and Screening Ecological Risk* Assessment for the Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunder's Branch, Central Creek, and Caddo Lake, Longhorn Army Ammunition Plant, Karnack, Texas, June, 2003, which is summarized in **Sections 1.2.2** below.

Jacobs calculated the noncancer hazard indices (HIs) and cancer risks for current trespassers and future industrial worker. Hazards and risks under the reasonable maximum exposure calculations are considered acceptable if the HI is less than 1.0 and the cancer risk is between 1×10^{-6} and 1×10^{-4} (U.S. Environmental Protection Agency [USEPA], 1994).

1.2.2 Industrial Risk Assessment at LHAAP-48

The BHHRA by Jacobs (2003) indicated acceptable cancer risk and non-cancer hazard from the soil at LHAAP-48. The calculated risk was 1.4×10^{-5} , within the acceptable range, and the HI was 0.88, which is less than 1. However, the cancer and non-cancer hazard risk were unacceptable for groundwater.

Groundwater ingestion accounted for over 99 percent of the groundwater noncancer hazard, generating an HI of 36 which is above the benchmark of 1. Thallium generated an HI of 25 and accounted for approximately 69 percent of the HI. 2,3,7,8-TCDD (1.2×10^{-4}) accounted for approximately 95 percent of the total groundwater cancer risk. Tetrachloroethene (1.8×10^{-6}) and TCE (1.7×10^{-6}) generated cancer risk in excess of 1×10^{-6} and accounted for approximately 3 percent of the cancer risk (Jacobs; 2002b, 2003). Therefore, the cancer risk and the noncancer HI for groundwater were unacceptable.

In addition to the risk contributors mentioned above, TCE [9 micrograms per liter (μ g/L) at location LHSMW63] and bis(2-ethylhexyl) phthalate [7.7 μ g/L at location LHSMW66] exceeded the MCL values of 5 μ g/L and 6 μ g/L, respectively. Antimony [51J μ g/L at location LHSMW63], arsenic [12 μ g/L at location LHSMW64], chromium [54,000 μ g/L at location LHSMW63], and thallium [205 μ g/L at location LHSMW64] exceeded the MCLs of 6, 10, 100, and 2 μ g/L, respectively (Jacobs, 2002a).

1.3 LHAAP-35C(53) Description and History

LHAAP-35C(53) was the former static test area that was used for testing of illumination devices and static test firing of rocket motors. Structures for this site included a test tunnel and a data acquisition system for flares, rocket motor test stands of earth and concrete and conditioning facilities for reproducing arctic and tropical temperatures. The site was active through 1998. Four waste process sumps were associated with this area (Jacobs 2002a).

1.3.1 Previous Investigations

Previous investigations were conducted by Jacobs and others from 1982 through 2000 (Jacobs, 2002a) culminating in a BHHRA which is summarized in **Section 1.3.2** below.

1.3.2 Industrial Risk Assessment at LHAAP-35C(53)

The BHHRA by Jacobs (2003) indicated that the soil cancer risk was acceptable with an estimated value of 1×10^{-5} and the HI was acceptable at 0.05 for the future maintenance worker. The groundwater had a cancer risk estimated at 8×10^{-5} , within the acceptable range, and an HI of 22, which is above the acceptable benchmark of 1. Thallium primarily accounted for the unacceptable HI (Jacobs; 2002b, 2003).

In addition to the risk contributors mentioned above, 1,2-dichloroethane (DCA) [8 μ g/L at location LHSMW67] and trichloroethylene (TCE) [7 μ g/L at location LHSMW67] exceeded MCLs of 5 μ g/L in groundwater. Arsenic [16 μ g/L at location LHSMW69], chromium [43,000 μ g/L at location LHSMW71], and thallium (134 μ g/L) exceeded the MCL of 10, 100, and 2 μ g/L, respectively (Jacobs, 2002a).

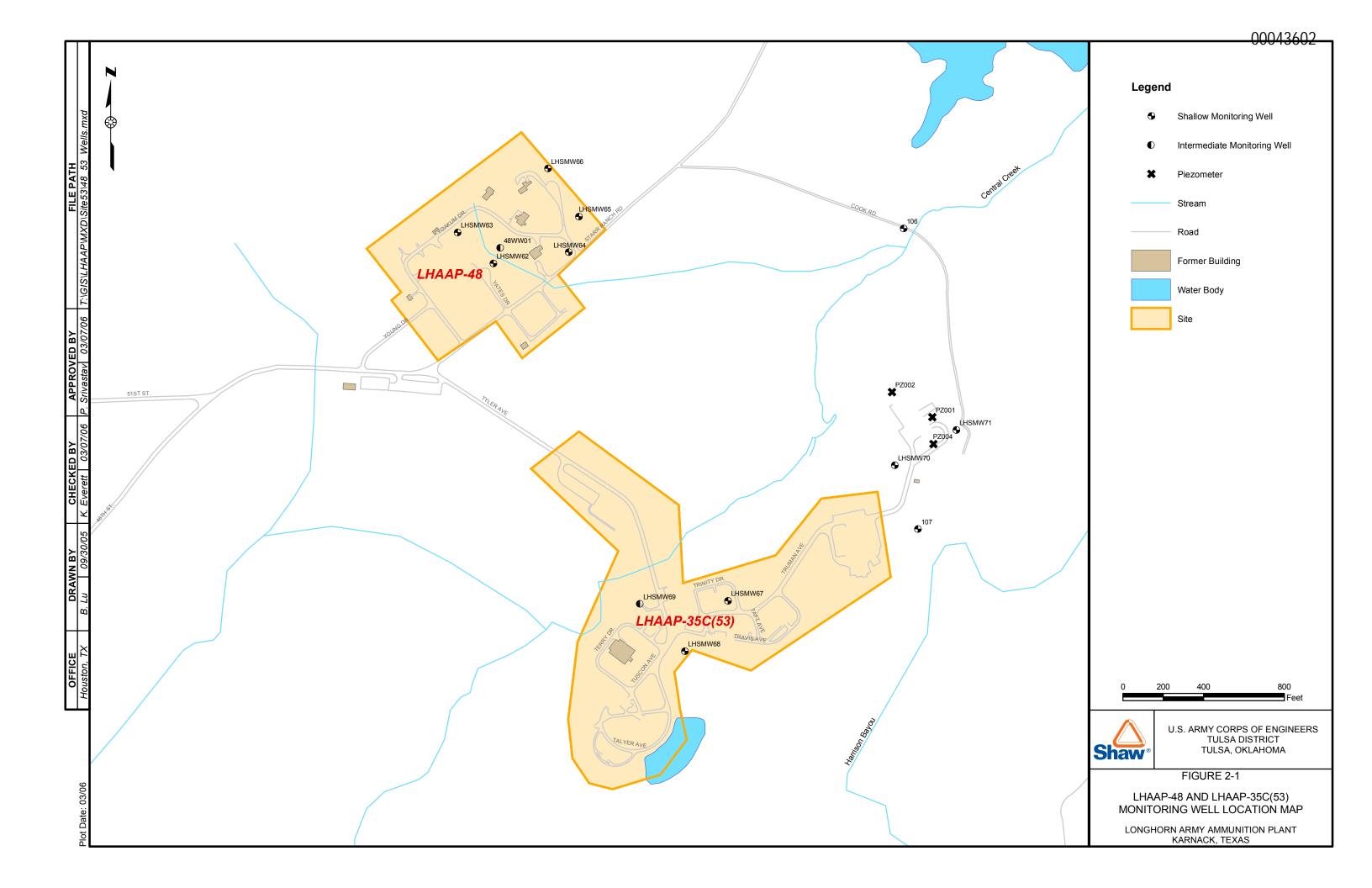
1.4 Rationale for Additional Groundwater Sampling in 2004 and 2005

Previous investigations and the industrial risk assessment (Jacobs 2002a, 2002b, 2003) indicate that metals (i.e., thallium) and dioxins are primarily responsible for causing unacceptable cancer risk or noncancer hazard to the future maintenance worker at LHAAP-48 and LHAAP-35C(53). Other chemicals, such as chromium, antimony, TCE, and 1,2-DCA, exceeded their respective maximum contaminant levels (MCLs), though they were not major risk contributors. Experience at other sites has shown that some of these chemicals (e.g., metals and dioxins) can be elevated by high turbidity of the samples.

Because of the uncertainty of previous results, Shaw resampled the wells at LHAAP-48 and LHAAP-35C(53) using low-flow sampling methods in September 2004 and May 2005. Low-flow methods typically yield high-quality samples with low turbidity.

In September 2004, three monitoring wells at LHAAP-48 were sampled for dioxins/furans, perchlorate, and thallium, and seven monitoring wells at LHAAP-35C(53) were sampled for volatile organic compounds (VOCs) and perchlorate. Perchlorate was included for analysis

because of recent interest in this chemical and the potential for its presence at LHAAP-48 and LHAAP-35C(53). The results are presented in the *Draft Final Data Gaps Investigation Report*, *Longhorn Army Ammunition Plant, Karnack, Texas* (Shaw, 2005).


In May 2005, five monitoring wells were sampled for dioxins/furans, VOCs, perchlorate, and metals at LHAAP-48. Seven monitoring wells, including three temporary wells (piezometers), were sampled for dioxins/furans, metals, VOCs, and perchlorate at LHAAP-35C(53). The results are presented in **Tables 2-1** and **3-1** of this document.

2.0 LHAAP-48 Groundwater Sampling in 2004 and 2005

Monitoring well 48WW01 was installed as an intermediate-depth well in 2004 (Figure 2-1). An attempt to sample all six groundwater monitoring wells (48WW01, LSHMW62, LHSMW63, LHSMW64, LHSMW65, and LHSMW66) at the site was made in September 2004. Due to insufficient recharge conditions, groundwater samples could only be collected from 48WW01, LHSMW62, and LHSMW64. The samples were analyzed for dioxins/furans, perchlorate, and thallium, and showed elevated concentrations of dioxins and thallium. Although the turbidity of groundwater samples was quite low (10 to 20 nephelometric turbidity units [NTU] measured using a water-quality meter during sampling), it was suspected that elevated dioxin and thallium detections were related to the turbidity of the samples. Since the samples were not analyzed for aluminum and iron, these data were not available to evaluate the influence of turbidity on the sample results (Shaw, 2005). Therefore, additional sampling was conducted in May 2005 to collect and analyze filtered and unfiltered samples for metals and dioxins/furans from wells 48WW01, LHSMW62, LHSMW63, LHSMW64, LHSMW65, and LHSMW66. Samples collected from monitoring wells 48WW01, LHSMW62, and LHSMW64 were analyzed for VOCs, metals, dioxins/furans, and perchlorate. Because of insufficient monitoring well recharge rates, a sample could not be obtained from LHSMW65, and limited analyses were performed on the available amount of groundwater collected from LHSMW63 and LHSMW66. Groundwater samples from LHSMW63 were analyzed for VOCs and metals; and samples from LHSMW-66 were analyzed for VOCs, metals, and perchlorate. Results of the May 2005 sampling and analysis effort are discussed below.

2.1 Groundwater Sampling and Analytical Methods

In May 2005, Shaw sampled one intermediate and four shallow groundwater monitoring wells at LHAAP-48 (48WW01, LHSMW62, LHSMW63, LHSMW64, and LHSMW66). The wells were gauged for water levels and the well bottom depths were verified. Low-flow sampling methods were employed on 48WW01, using a downhole bladder pump and disposable tubing. Because of insufficient recharge, peristaltic pumps were used to purge and sample monitoring wells LHSMW62, LHSMW63, LHSMW64, and LHSMW66. Using a water-quality meter with a flow-through cell, water quality measurements were recorded that included turbidity, dissolved oxygen, pH, conductivity, temperature, and oxidation reduction potential. Groundwater samples were collected after stable readings indicated that appropriate water quality objectives had been met according to the site-specific standard operating procedures (Shaw, 2004). Monitoring wells LHSMW63 and LHSMW66 were purged dry prior to sampling because of a low recharge rate, and samples could not be obtained. Sampling activities were completed on May 16, 2005. Copies of the groundwater sampling forms are included as **Appendix A**.

Filtered (filter size 0.45 microns) and unfiltered groundwater samples were analyzed for dioxins/furans and target analyte list (TAL) metals using USEPA SW-846 Methods 8290 and 6010B, respectively. Samples were also analyzed for mercury using Method 7470A; antimony, selenium, and thallium using Method 6020; perchlorate using Method 314; and VOCs using Method 8260B. Quality control and quality assurance (QC/QA) samples included 10% replicates and one trip blank for each cooler containing samples for VOC analysis. Samples were packed in ice for shipment to the analytical laboratory as described in the Work Plan (Shaw, 2004).

Samples were packaged with a completed request for analysis and chain of custody records in each sample cooler and shipped to the Kemron Environmental Services laboratory in Marietta, Ohio. Proper personal protective equipment, including hard hat, safety glasses, steel-toed boots, and rubber nitrile gloves were worn during well purging and sampling activities.

2.2 Summary of Analytical Results

The September 2004 sampling data indicated a total of 13 dioxin and furan congeners in the groundwater samples collected from LHSMW62 and LHSMW64 with concentrations ranging from 0.153 JK pico grams per liter (pg/L) to 35.034 pg/L (Shaw, 2005). (The JK data qualifier indicates that the value is an estimate of the maximum concentration in the sample). Thallium was also detected at concentrations ranging between 0.142 μ g/L and 0.465 μ g/L, below the MCL of 2.0 μ g/L. Perchlorate was not detected at LHAAP-48. At the intermediate monitoring well 48WW01, dioxins/furans were detected at estimated concentrations ranging between 2.178 J pg/L and 36.101 pg/L (Shaw, 2005).

Analysis of the unfiltered samples collected in May 2005 indicated no detections of dioxin or furan congeners in samples from 48WW01 and LHSMW62. Two congeners were detected in unfiltered samples from LHSMW64, ranging from 2.277 to 3.04 pg/L (**Table 2-1**). Both congener concentrations are below the MCL for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) of 30 pg/L. Samples were not collected from LHSMW63 and LHSMW66 for dioxin and furan analysis due to inadequate recharge.

VOCs, including TCE, that exceeded MCL concentrations in earlier studies (Jacobs, 2002a) were undetected in all unfiltered samples or detected at concentrations below their respective MCLs (**Table 2-1**).

Of the metals measured above detection limits in unfiltered samples, all concentrations were below their respective MCL values except chromium (**Table 2-1**). Chromium exceeded the MCL of 100 μ g/L in two monitoring wells, LHSMW62 (715 μ g/L) and LHSMW63 (2,510 μ g/L). Perchlorate was not detected in unfiltered water from 48WW01, LHSMW64, or LHSMW66. Antimony, arsenic, and thallium, which exceeded MCLs during the previous

Shaw Environmental, Inc.

Table 2-1
Groundwater Sampling Results from May 2005, LHAAP-48

LOCATION_CODE Hawwon LHSMW62 LHSMW63 LHSMW64 SAMPLE_DATE 5/12/2005 5/12/2005 5/12/2005 5/12/2005 5/12/2005 SATURE SATURE 3/16 Stainless Steel	LHSMW66 5/12/2005 REG 316 Stainless Steel SHALLOW Result Qual NA NA NA NA NA NA NA NA NA NA NA NA NA
SAMPLE_PURPOSE CONSTRUCTION MATERIAL SAMPLING_ZONE Image: Filtered MCL REG Polyvinyl Chloride INTERMEDIATE NTERMEDIATE REG S16 Stainless Steel SHALLOW S16	REG 316 Stainless Steel SHALLOW Result Qual NA NA NA NA NA NA NA NA NA NA NA NA NA
CONSTRUCTION MATERIAL SAMPLING_ZONE n Polyvinyl Chloride INTERMEDIATE 316 Stainless Steel SHALLOW 316 Stainless Steel SHALDOW 316 Stainles	316 Stainless Steel SHALLOW Result Qual NA NA NA NA NA NA NA NA NA NA NA NA NA
SAMPLING_ZONE Inits Filtered MCL INTERMEDIATE Result Qual SHALLOW Result Qual SHALLOW Result Qual SHALLOW Result Qual Vater Quality - Unfiltered Intu N 3.9 4.4 NA 8.6 DIOXINSFURANS - Unfiltered Intu NA 3.9 4.4 NA 8.6 DIOXINSFURANS - Unfiltered Intu N 55.555 U 25.51 NA 26.041 1.2,3,4,7,8,9-Heptachicorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1.2,3,4,7,8,9-Heptachicorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1.2,3,4,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1.2,3,4,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1.2,3,6,7,8-Hexachlorodibenzofuran pg/L N 55.555	SHALLOW Result Qual NA NA NA NA NA NA NA NA NA NA NA NA NA
Parameter Units Filtered MCL Result Qual Result Qual Result Qual Water Quality - Unfiltered NTU NA 3.9 4.4 NA 8.6 Turbidity NTU NA 3.9 4.4 NA 8.6 12,3,4,6,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7.8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8.9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51	Result Qual NA NA NA NA NA NA NA NA NA NA NA NA NA
Water Quality - Unfiltered Image: Control of the control	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Water Quality - Unfiltered Image: Control of the control	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Turbidity NTU NA 3.9 4.4 NA 8.6 DIOXINS/FURANS - Unfiltered 1,2,3,4,6,7,8-Heptachlorodibenzofuran pg/L N 55.555 25.51 U NA 26.041 U 1,2,3,4,6,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7.8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Petachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8	NA NA NA NA NA NA NA NA NA NA NA NA NA N
DIOXINS/FURANS - Unfiltered N 55.555 U 25.51 NA 26.041 U 1.2.3.4,6.7.8-HpcDD pg/L N 55.555 U 25.51 U NA 1.013 B 1.2.3.4,6.7.8-HpcDD pg/L N 55.555 U 25.51 U NA 1.013 B 1.2.3.4,7.8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1.2.3.4,7.8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1.2.3.6,7.8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1.2.3.6,7.8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1.2.3,7.8.9-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1.2.3,7	NA NA NA NA NA NA NA NA NA NA NA NA NA N
1,2,3,4,6,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,6,7,8-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 1.013 B 1,2,3,4,7,8,9-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzop-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7.8-Hexachlorodibenzop-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N
1,2,3,4,6,7,8-HpCDD pg/L N 55.555 U 25.51 U NA 1.013 B 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 <td>NA NA NA NA NA NA NA NA NA NA NA NA NA N</td>	NA NA NA NA NA NA NA NA NA NA NA NA NA N
1,2,3,4,7,8,9-Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzop-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzop-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA <	NA NA NA NA NA NA NA NA NA NA NA NA
1,2,3,4,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA	NA NA NA NA NA NA NA NA NA NA NA
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Petachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Petachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA	NA NA NA NA NA NA NA NA NA NA
1,2,3,6,7,8-Hexachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,6,7,8-Hexachlordibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlordibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlordibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,6,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26	NA NA NA NA NA NA NA NA NA
1,2,3,6,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 3.00E+01 22.22 U 10.20 UJ NA<	NA NA NA NA NA NA NA
1,2,3,7,8,9-Hexachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8,9-Hexachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlordibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlordibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.20 UJ NA	NA NA NA NA NA NA
1,2,3,7,8,9-Hexachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.42 U 2,3,7,8-TCDF pg/L N 25.555 U 25.51 U NA 26.041	NA NA NA NA NA NA
1,2,3,7,8-Pentachlordibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 26.041 U 1,2,3,7,8-Pentachlordibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,6,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,6,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.42 U 2,3,7,8-TCDF pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.416 U 2,3,7,8-TCDF pg/L N 55.555 U 25.51 U NA 26.041	NA NA NA NA NA
1,2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.04 U 2,3,4,6,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,4,6,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.02 UJ NA 10.416 U 2,3,7,8-TCDF pg/L N 25.555 U 25.51 U NA 10.416 U 2,3,7,8-TCDF pg/L N 25.555 U 25.51 U NA 26.041 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U <	NA NA NA NA
2,3,4,6,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 2,5.1 U NA 26.04 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 2,5.51 U NA 26.041 U 2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.20 UJ NA 26.041 U 2,3,7,8-TCDF pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.416 U 1,451,657,657 pg/L N 55.555 U 25.51 U NA 26.041 U 1,451,657,657 pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 3.04	NA NA NA
2,3,4,6,7,8-Hexachlorodibenzofuran pg/L N 55.555 U 2,5.1 U NA 26.041 U 2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-Pentachlorodibenzofuran pg/L N 3.00E+01 22.22 U 10.20 UJ NA 26.041 U 2,3,7,8-TCDF pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.416 U Application pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 3.04	NA NA NA
2,3,4,7,8-Pentachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U 2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.42 U 2,3,7,8-TCDF pg/L N 22.222 U 10.20 UJ NA 10.42 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 V NA 26.041 U Heptachlorodibenzorp-p-dioxin pg/L N 55.555 U 25.51 V NA 26.041 U	NA NA
2,3,7,8-TCDD pg/L N 3.00E+01 22.22 U 10.20 UJ NA 10.42 U 2,3,7,8-TCDF pg/L N 22.222 U 10.204 UJ NA 10.42 U 2,3,7,8-TCDF pg/L N 22.222 U 10.204 UJ NA 10.416 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 3.04	NA NA
2,3,7,8-TCDF pg/L N 22.222 U 10.204 UJ NA 10.416 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzor-p-dioxin pg/L N 55.555 U 25.51 U NA 3.04	NA
Heptachlorodibenzofuran pg/L N 55.555 U 25.51 U NA 26.041 U Heptachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 3.04 3.04	
Heptachlorodibenzo-p-dioxin pg/L N 55.555 U 25.51 U NA 3.04	NA
	NA
	NA
Hexachionadibenzofinan pg/L N 55:55 U 25:51 NA 26:041	NA
	NA
	NA
	NA
Pentachlorodibenzo-p-dioxin pg/L N 55,555 U 25,51 U NA 26,041 U	NA
Tetrachlorodibenzofuran, Total pg/L N 22.222 U 10.204 U NA 10.416 U	NA
Tetrachlorodibenzo-p-dioxin pg/L N 22.222 10.204 V NA 2.277	NA
METALS - Unfiltered	
Aluminum ug/L N 500.00 JH 230.00 B 2,100.00 69.60 B	2,100.00 JH
Antimony ug/L N 6 1.00 U 1.00 U 1.02 1.00 U	1.00 U
Arsenic [®] ug/L N 10 4.00 U 4.00 U 20.00 U 2.28 J	4.00 U
Barium ug/L N 2000 171.00 29.10 68.80 79.00	1,140.00
Beryllium ug/L N 4 10.00 U 10.00 U 10.00 U 10.00 U 10.00 U	10.00 U
Cadmium ug/L N 10.00 U 10.00 U 10.00 U 10.00 U 10.00 U	10.00 U
Calcium ug/L N 10,600.00 70,000.00 6,300.00 3,020.00	44,400.00
Chromium ug/L N 100 20.00 U 715.00 2,510.00 20.00 U	66.80
Cobalt ug/L N 9.72 J 93.80 3.43 J 20.00 U	2.54 J
Copper ug/L N 1300 20.00 U 10.60 J 45.70 20.00 U	5.50 J
Iron uu/L N 3,800.00 14,400.00 5,440.00 1,850.00	2,480.00
Lead uq/L N 15 5.00 U 4.22 J 5.00 U 5.00 U 5.00 U	3.47 J
Unit Unit <thunit< th=""> Unit Unit <thu< td=""><td>31.600.00 JH</td></thu<></thunit<>	31.600.00 JH
Maganese ug/L N (52.00 1, 22.00 3, 30.00 3, 10.00 3, 10.00	29.20
Maringariese ug/L N 032.00 1,22.00 33.30 103.00 Mercury ug/L N 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	0.20 U
	25.80 J
	6,030.00
Selenium uğ/L N 50 3.15 16.20 0.99 J 0.76 J	1.00 U
Silver ug/L N 10.00 U 10.00 U 10.00 U 10.00 U	10.00 U
Sodium ug/L N 129,000.00 JH 440,000.00 JH 112,000.00 53,000.00	176,000.00 JH
Thallium ug/L N 2 0.20 U 0.20	0.11 J
Vanadium ug/L N 10.00 U 10.00 U 8.99 J 10.00 U	10.00 U
Zinc ug/L N 5.18 J 62.50 20.00 U 20.00 U	10.40 J

Shaw Environmental, Inc.

Table 2-1
Groundwater Sampling Results from May 2005, LHAAP-48

			Froundwater S		•			
LOCATION_CODE				48WW01	LHSMW62	LHSMW63	LHSMW64	LHSMW66
SAMPLE_DATE				5/12/2005	5/12/2005	5/12/2005	5/12/2005	5/12/2005
SAMPLE_PURPOSE				REG	REG	REG	REG	REG
CONSTRUCTION MATERIAL				Polyvinyl Chloride	316 Stainless Steel	316 Stainless Steel	316 Stainless Steel	316 Stainless Steel
SAMPLING_ZONE				INTERMEDIATE	SHALLOW	SHALLOW	SHALLOW	SHALLOW
Parameter PERSUL OPATE Unfilment	<u>Units</u>	Filtered	MCL	Result Qual	<u>Result</u> Qual	Result Qual	<u>Result</u> Qual	<u>Result</u> Qual
PERCHLORATE - Unfiltered		NI		1.00	[]		1.00	1.00 11
Perchlorate	ug/L	N		1.00 U			1.00 U	1.00 U
VOLATILES - Unfiltered		N	20	1.00	1.00	1.00	1.00.111	1.00 [1]
1,1,1,2-Tetrachloroethane	ug/L	N N	33 200	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L ug/L	N	4.3	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2,2-Tetrachloroethane	ug/L ug/L	N	4.3	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1.1-Dichloroethane	ug/L	N	3650	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1-Dichloroethene	ug/L	N	5050	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1-Dichloropropene	ug/L	N	0.85	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,3-Trichlorobenzene	ug/L	N	110	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,3-Trichloropropane	ug/L	N	0.012	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene	ug/L	N	70	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trimethylbenzene	ug/L	Ν	1825	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane	ug/L	N	0.2	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dibromoethane	ug/L	Ν	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene	ug/L	N	600	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichloroethane	ug/L	N	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichloropropane	ug/L	N	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dimethylbenzene (o-Xylene)	ug/L	Ν	10000	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3,5-Trimethylbenzene	ug/L	N	1825	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene	ug/L	N	1095	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3-Dichloropropane	ug/L	N	8.5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	ug/L	N	75	1.00 U	1.00 U 1.00 UJ	1.00 U 1.00 UJ	1.00 U	1.00 U 1.00 U.J
2,2-Dichloropropane	ug/L	N N	13	1.00 UJ 10.00 U			1.00 U	
2-Butanone	ug/L ug/L	N		10.00 U 10.00 U	10.00 U 10.00 U	10.00 U 10.00 U	10.00 UJ 10.00 U	10.00 U 10.00 U
2-Chloroethyl vinyl ether 2-Chlorotoluene	ug/L ug/L	N	730	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
2-Hexanone	ug/L	N	2200	10.00 UJ	10.00 UJ	10.00 UJ	10.00 UJ	10.00 UJ
4-Chlorotoluene	ug/L	N	730	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Acetone	ug/L	N	33000	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
Benzene	ug/L	N	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromobenzene	ug/L	Ν	730	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromochloromethane	ug/L	Ν		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	ug/L	Ν	1.4	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromoform	uğ/L	N	11	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromomethane	ug/L	N	51.1	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Carbon disulfide	ug/L	Ν	3650	1.00 U	1.00 U	1.00 U	1.00 UJ	1.00 U
Carbon tetrachloride	ug/L	Ν	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chlorobenzene	ug/L	N	100	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloroethane	ug/L	N	14600	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloroform	ug/L	N	365	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloromethane	ug/L	N	66	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis-1,2-Dichloroethene	ug/L	N	70	1.00 U	1.00 U	1.00 U 1.00 U	0.61 JH	1.00 U
cis-1,3-Dichloropropene Dibromochloromethane	ug/L ug/L	N N	1.6 10	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U
Dibromocniorometnane	ug/L ug/L	N	10	1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U	1.00 U 1.00 U
Dichlorodifluoromethane	ug/L ug/L	N	7300	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Ethylbenzene	ug/L ug/L	N	700	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Hexachlorobutadiene	ug/L	N	7.3	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Isopropylbenzene	ug/L	N	7.5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
m,p-Xylenes	ug/L	N	10000	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methyl isobutyl ketone	ug/L	N	2920	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
meany isobally relate	uyr	IN	2720	10.00	10.00 0	10.00 0	10.00	10.00

Shaw Environmental, Inc.

Table 2-1
Groundwater Sampling Results from May 2005, LHAAP-48

		-			om May 2005, LHA			
LOCATION_CODE				48WW01	LHSMW62	LHSMW63	LHSMW64	LHSMW66
SAMPLE_DATE				5/12/2005	5/12/2005	5/12/2005	5/12/2005	5/12/2005
SAMPLE_PURPOSE				REG	REG	REG	REG	REG
CONSTRUCTION MATERIAL				Polyvinyl Chloride	316 Stainless Steel	316 Stainless Steel	316 Stainless Steel	316 Stainless Steel
SAMPLING_ZONE				INTERMEDIATE	SHALLOW	SHALLOW	SHALLOW	SHALLOW
Parameter	Units	Filtered	MCL	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Methylene chloride	ug/L	Ν	5	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Naphthalene	ug/L	Ν	730	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
n-BUTYLBENZENE	ug/L	Ν	1460	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
n-PROPYLBENZENE	ug/L	Ν	1460	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
p-ISOPROPYLTOLUENE	ug/L	Ν		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
sec-BUTYLBENZENE	ug/L	Ν	1460	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Styrene	ug/L	Ν	100	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
tert-BUTYLBENZENE	ug/L	Ν		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Tetrachloroethene	ug/L	Ν		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Toluene	ug/L	Ν	1000	1.00 U	1.00 U	0.36 J	1.00 U	0.40 J
trans-1,2-Dichloroethene	ug/L	Ν	100	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
trans-1,3-Dichloropropene	ug/L	Ν	8.5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Trichloroethene	ug/L	N	5	1.00 U	1.00 U	1.00 U	0.45 JH	1.00 U
Trichlorofluoromethane	ug/L	Ν	10950	1.00 UJ	0.28 J	1.00 UJ	1.00 U	1.00 UJ
Vinyl acetate	ug/L	N	36500	10.00 U	10.00 U	10.00 U	10.00 UJ	10.00 U
Vinyl chloride	ug/L	Ν	2	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
DIOXINS/FURANS - Filtered			-					
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,4,6,7,8-HpCDD	pg/L	Y		0.82 B	25.77 U	NA	14.73 J	NA
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1.2.3.4.7.8-Hexachlorodibenzofuran	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,6,7,8-Hexachlordibenzo-p-dioxin	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,7,8,9-Hexachlordibenzo-p-dioxin	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L	Ý		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,7,8-Pentachlordibenzo-p-dioxin	pg/L	Y		27.78 U	25.77 U	NA	26.32 U	NA
1,2,3,7,8-Pentachlorodibenzofuran	pg/L	Ý		27.78 U	25.77 U	NA	26.32 U	NA
2.3.4.6.7.8-Hexachlorodibenzofuran	pg/L	Ý		27.78 U	25.77 U	NA	26.32 U	NA
2,3,4,7,8-Pentachlorodibenzofuran	pg/L	Ý		27.78 U	25.77 U	NA	26.32 U	NA
2,3,7,8-TCDD	pg/L	Ý	3.00E+01	11.11 U	10.31 U	NA	10.53 U	NA
2,3,7,8-TCDF	pg/L	Ŷ	01002101	11.11 U	10.31 U	NA	10.53 U	NA
Heptachlorodibenzofuran	pg/L	Ý		27.78 U	25.77 U	NA	26.32 U	NA
Heptachlorodibenzo-p-dioxin	pg/L	Ý		0.82	25.77 U	NA	14.73	NA
Hexachloridibenzo-p-dioxin	pg/L	Ŷ		27.78 U	25.77 U	NA	3.90	NA
Hexachlorodibenzofuran	pg/L	Ŷ		27.78 U	25.77 U	NA	26.32 U	NA
Octachlorodibenzofuran	pg/L	Ŷ		55.56 U	51.55 U	NA	52.63 U	NA
Octachlorodibenzo-p-dioxin	pg/L	Ŷ		4.63 B	4.43 B	NA	142.45 J	NA
Pentachlorodibenzofuran	pg/L	Ŷ		27.78 U	25.77 U	NA	26.32 U	NA
Pentachlorodibenzo-p-dioxin	pg/L	Ŷ		27.78 U	25.77 U	NA	26.32 U	NA
Tetrachlorodibenzofuran, Total	pg/L	Ý		11.11 U	10.31 U	NA	10.53 U	NA
Tetrachlorodibenzo-p-dioxin	pg/L	Ý		11.11 U	10.31 U	NA	10.53 U	NA
METALS - Filtered	r 3 ' -		4	····· 1-				
Aluminum	ug/L	Y		66.60 B	93.90 B	1,030	72.00 B	95.10 B
Antimony	ug/L	Y	6	1.00 U	1.00 U	0.84 J	1.00 U	0.52 J
Arsenic	ug/L	Ý	10	4.00 U	4.00 U	4.00 U	2.36 J	4.00 U
Barium	ug/L	Ŷ	2000	188.00	84.40	95.10	160.00 J	1,200.00
Beryllium	ug/L	Ŷ	4	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
Cadmium	ug/L	Ŷ		10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
Calcium	ug/L	Ŷ		11,400	67.000	7.380	4.850	49,100
Chromium	ug/L	Ý	100	20.00 U	379.00	60.70	20.00 U	12.00 J
Cobalt	ug/L	Ý	100	8.42 J	113.00	20.00 U	20.00 U	20.00 U
Copper	ug/L	Ý	1300	20.00 U	12.70 J	11.80 J	20.00 U	20.00 U
	∽g/∟		1000	20.00 0	12.10 J	11.00 5	20.00 0	20.00 0

Final Site Evaluation Report, LHAAP-48 and LHAAP-35C(53)

Shaw Environmental, Inc.

Table 2-1 Groundwater Sampling Results from May 2005, LHAAP-48

Groundwater Damping Results from May 2005, EFFAAT -40													
LOCATION_CODE				48WW01	LHSMW62	LHSMW63	LHSMW64	LHSMW66					
SAMPLE_DATE				5/12/2005	5/12/2005	5/12/2005	5/12/2005	5/12/2005					
SAMPLE_PURPOSE				REG	REG	REG	REG	REG					
CONSTRUCTION MATERIAL				Polyvinyl Chloride	316 Stainless Steel	316 Stainless Steel	316 Stainless Steel	316 Stainless Steel					
SAMPLING ZONE				INTERMEDIATE	SHALLOW	SHALLOW	SHALLOW	SHALLOW					
Parameter	Units	Filtered	MCL	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual					
Iron	ug/L	Y		83.60 B	17,800	832.00	1,750	57.90 B					
Lead	ug/L	Y	15	5.00 U	4.02 J	5.00 U	5.00 U	3.07 J					
Magnesium	ug/L	Y		7,170	45,800	3,870.00	3,110	34,300 JH					
Manganese	ug/L	Y		593.00	1,420.00	17.00	104	10.00 U					
Mercury	ug/L	Y		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U					
Nickel	ug/L	Y		12.60 J	3,580	217.00	22.00 J	14.20 J					
Potassium	ug/L	Y		8,430	1,360.00 B	1,000 J	498 J	6,070					
Selenium	ug/L	Y	50	2.63	13.70	0.77 J	1.03	0.62 J					
Silver	ug/L	Y		10.00 U	10.00 U	10.00 U	10.00 U	10.00 U					
Sodium	ug/L	Y		131,000	424,000	122,000	62,900	219,000 JH					
Thallium	ug/L	Y	2	0.20 U	0.20 U	0.20 U	0.20 U	0.10 J					
Vanadium	ug/L	Y		10.00 U	10.00 U	10.00 U	10.00 U	10.00 U					
Zinc	uğ/L	Y		53.80	77.90	41.90	72.30 J	67.70					

Notes and Abbreviations

Results are reported to Method Detection Limit

B The analyte was detected in an associated method blank, equipment rinsate blank, or trip blank (5X/10X rule was applied).

J The analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed.

U Not detected. The analyte was analyzed for but not detected above the associated reporting limit.

MCL EPA's Maximum Contaminant Level

NA Not analyzed

pg/L picograms per liter

µg/L micrograms per liter

sampling round (Jacobs 2002a), were either undetected or were detected below their respective MCLs (**Table 2-1**).

Filtered samples collected in May 2005 contained concentrations of dioxin or furan congeners ranging from 0.82 picograms per liter (pg/L) (intermediate monitoring well 48WW01) to 234.41 pg/L, which is a J-qualified concentration of octachlorodibenzo-p-dioxin measured in shallow monitoring well LHSMW64. Because the toxicity equivalency factor (TEF) value of octachlorodibenzo-p-dioxin is 0.0001 (Van den Berg, 1998), the octachlorodibenzo-p-dioxin contribution to the 2,3,7,8-TCDD TEQ concentration would be 0.0234, which is an insignificant contributor to the derived TEQ concentration and well below the MCL for 2,3,7,8-TCDD (30 pg/L). Therefore, the uncertainty associated with the range of dioxin and furan concentrations does not influence the interpretation of the groundwater data for dioxins/furans.

Of the metals detected in filtered samples, only chromium in water from monitoring well LHSMW62 exceeded the MCL of 100 μ g/L (379 μ g/L), approximately one-half of the concentration in the unfiltered sample (715 μ g/L). The chromium concentration in filtered water from LHSMW63 was 60.7 (below the MCL) compared to the value in the unfiltered sample of 2,510 μ g/L as shown in **Table 2-1**.

The source of chromium in groundwater from LHAAP-48 wells has been discussed previously. The Jacobs (2002) report characterized 50 soil samples and 10 groundwater samples for contamination associated with sumps and other potential sources and concluded in Section 10.5 that chromium was not found in soil near the sumps at LHAAP-48, and that the sumps "... may have been a limited source of a variety of contamination. However, there is no widespread soil contamination or significantly organic-contaminated groundwater, which indicates that the sources are probably small and isolated and have not contributed to significant migration of contaminants."

Regarding metals, the report found, "The low levels of metals contaminants in the Site 48 soils are mostly barium, cadmium, and lead.", and "The soil metals may migrate slowly via infiltrating precipitation. The low metals levels of these metals in groundwater suggest no significant leaching. However, the presence of elevated chromium levels in groundwater suggests an unidentified or no longer remaining source in the soils at Site 48."

The Plexus (2005) report (Section 6.10) describes the LHAAP-48 (Area Y) buildings, which were used initially for production of illuminating devices. In later years the site was dedicated to preparation of black powder, and buildings and equipment were periodically washed as a safety measure to reduce accumulation of hazardous dusts. Because these washings were collected in some of the 12 Area Y waste sumps, it is reasonable to expect that LHAAP-48 contaminants identified in groundwater would be found in soil near the sumps also.

The Plexus (2005) report identifies Building 34-Y as the mixing area for pyrotechnic materials for hand signals, colored smokes, and illuminant materials, although none of the materials handled in this building contained chromium compounds. The report references Buildings 16-Y, 38-Y, and 48-Y as locations where illuminants, colored smoke compositions were handled, and delay composition, which contains barium chromate.

In summary, the results of Jacobs (2002) and Plexus (2005) evaluations indicate that chromium may have been handled in some LHAAP-48 buildings, and would be expected to be included in building washings diverted to sumps, but chromium was not detected in soil.

Data from analysis of groundwater from wells at LHAAP 48 and 53(35C) are shown in **Table 2-1** and **Table 3-1**. All of the wells have 316 stainless steel screens except for Well 48WW01, Well 107, and the piezometer wells, which have polyvinyl chloride (PVC) screens. Well construction diagrams are included in **Appendix E**. Groundwater samples with chromium concentrations above the MCL are from stainless steel-screened wells only. All groundwater from PVC-screened wells contains undetected or low estimated (J-qualified) chromium and nickel concentrations, including the highly turbid samples from wells PZ002 and PZ004.

The observations that chromium was not detected in soil associated with the expected source sumps, and elevated chromium concentrations were detected only in wells with stainless steel screens, suggest that the chromium in groundwater is associated with corroded screens and represents the unknown source suggested in the Jacobs (2002) report.

To test this hypothesis, a new well with PVC casing material (48WW02) was installed near LHSMW62 and sampled in September 2006. Chromium concentrations in groundwater samples from this well (**Table 2-2**) indicate undetected or low estimated concentrations well below the MCL for chromium and well below the concentrations observed in well LHSMW62. These results support the hypothesis that chromium concentrations in groundwater from LHSMW62 originated from stainless steel casing used in that well (**Table 2-1**), and not from chromium in soil.

To summarize, the chemicals that accounted for the human health risk and hazard from groundwater were either nondetect or below MCLs when analyzed in groundwater collected by low-flow methods (see **Section 2.2**). The detection of chromium at one well, marginally exceeds the MCL concentration, but appears to be associated with sediments, and associated well construction materials. These detections do not provide a strong indication of a release of chromium associated with LHAAP-48 operations.

Table 2-2 Groundwater Sampling Results from Well Installed Near LHSMW62, LHAAP-48

	Location Code Sample No Sample Date	48WW02 48WW02-092006 20-Sep-06				
Test Group	Parameter	Filtered	Units	Result	Qual	ValQual
METALS	Chromium	N	µg/L	6.24	J	J
METALS	Chromium	Y	µg/L	20	U	U

Notes and Abbreviations:

N Sample was filtered before analysis

J Estimated result detected above the method detection limit but below the method quantitation limit

Qual Data qualifier provided by analytical laboratory

U Chromium was not detected below the sample quantitation limit shown

ValQual Data validation qualifier assigned during data validation process

Y Sample was not filtered before analysis

3.0 LHAAP-35C(53) Groundwater Sampling in 2004 and 2005

In September 2004 groundwater samples were collected from all seven monitoring wells at LHAAP-35C(53) (Figure 2-1). Samples from monitoring wells 107, LHSMW68, LHSMW69, and LHSMW70 were analyzed for VOCs and perchlorate. The sample from monitoring well LHSMW67 was analyzed for VOCs, perchlorate, and dioxins/furans, and the sample from monitoring well LHSMW71 was analyzed for VOCs, perchlorate, and metals (filtered and unfiltered). Detections of dioxins/furans and metals were suspected to be related to sample turbidity (Shaw, 2005). Previous sampling events had indicated elevated chromium in well LHSMW71. Therefore, an additional sampling event was conducted in May 2005 in order to analyze for filtered and unfiltered metals. Groundwater samples were collected from all seven monitoring wells and were analyzed for dioxins/furans and metals, filtered and unfiltered, and VOCs in order to confirm the presence and current concentrations of these compounds. Groundwater samples were also collected from three piezometers (PZ001, PZ002, and PZ004) present at the site to determine if chromium and VOCs were pervasive at the site. Results of the May 2005 sampling and analysis are discussed below.

3.1 Groundwater Sampling and Analytical Methods

In May 2005, Shaw sampled seven groundwater monitoring wells and three piezometers at LHAAP-35C(53). Prior to sampling, the wells were gauged for water levels and the well bottom depths were verified. Low-flow sampling methods were employed, using downhole bladder pumps and disposable tubing. Prior to sampling, water quality measurements were recorded including turbidity, dissolved oxygen, pH, conductivity, temperature, and oxidation reduction potential using a water quality instrument with a flow-through cell. After stable readings indicated that appropriate water quality objectives have been met according to the site-specific standard operating procedures established for LHAAP groundwater sampling activities (Shaw, 2004), groundwater samples were collected. The recharge rate at monitoring well LHSMW71 did not sustain low-flow sampling and the well was purged dry prior to sampling with a peristaltic pump the following day (within 24 hours). Sampling activities were completed on May 13, 2005. Copies of the groundwater sampling forms are included as Appendix B. Piezometer sampling was conducted using a peristaltic pump because low-flow sampling could not be sustained. Samples were limited due to slow recharge rates. Water quality parameters could not be measured and the piezometer samples were not analyzed for dioxins/furans.

Filtered and unfiltered groundwater samples were analyzed for dioxins/furans and metals using USEPA SW-846 Methods 8290 and 6010B, respectively (USEPA, 1983). Samples were also analyzed for mercury using Method 7470A, and antimony, selenium, and thallium using Method 6020. Groundwater samples collected from the piezometers were analyzed for TAL Metals

using Methods 6010B, 6020, 7470A, and VOCs using Method 8260B. Quality control and quality assurance (QC/QA) samples included 10% replicates and one trip blank for each cooler containing samples for VOC analysis. Samples were packed in ice for shipment to the analytical laboratory as described in the Work Plan (Shaw, 2004).

Samples were packaged with a completed request for analysis and chain of custody records in each sample cooler and shipped to the Kemron Environmental Services laboratory in Marietta, Ohio. Proper personal protective equipment, including hard hat, safety glasses, steel-toed boots, and rubber nitrile gloves were worn during development and sampling activities.

3.2 Summary of Analytical Results

In September 2004, groundwater samples were collected from all seven monitoring wells at LHAAP-35C(53) and analyzed for dioxins/furans, perchlorate, VOCs, and metals. A total of six dioxins/furans were detected in the groundwater samples, with concentrations ranging from 0.934 pg/L to 67.19 pg/L at shallow monitoring well LHSMW67 located on the northern portion of LHAAP-35C(53). VOCs and perchlorate were not detected in any of the groundwater samples collected at LHAAP-35C(53) (Shaw, 2005). Samples from well LHSMW-71 showed detections of thallium and chromium. Thallium was detected at concentrations of 0.276 μ g/L and 0.224 μ g/L in unfiltered and filtered samples, respectively, below the MCL of 2.0 μ g/L. Chromium was detected at a concentration of 83,300 μ g/L in the unfiltered sample from LHSMW71. However, the concentration in the filtered sample was much lower at 16 J μ g/L, indicating that chromium was attached to particulates (Shaw, 2005).

In May 2005 seven monitoring wells and three piezometers were sampled for dioxins/furans and metals (filtered and unfiltered), and VOCs. Sampling results from the unfiltered samples indicated detections of dioxin/furans ranging from 1.013B pg/L (shallow monitoring well LHSMW67) to 93.325 pg/L (shallow monitoring well LHSMW68); however, none were above MCLs (Table 3-1). The results also showed detections of several metals, including antimony (6.58 µg/L, well LHSMW67), and chromium (171 µg/L, well LHSMW71), above their MCLs of 10 μ g/L and 100 μ g/L, respectively. Thallium, which was the primary driver for non-cancer hazard during the industrial risk assessment by Jacobs (2003) was nondetect or below the MCL (Table 3-1). There were no VOCs observed above the detection limits in the seven monitoring wells. The filtered groundwater sampling results from May 2005 sampling of the seven monitoring wells indicate several detections of dioxin/furans in each monitoring well, but none above the MCL (Table 3-1). Antimony slightly exceeded the MCL of 6 µg/L in monitoring well LHSMW67 (6.58 μ g/L). Note that antimony was not detected in the unfiltered sample; thus, the results of the filtered sample analysis are suspect. Cis-1,2-dichloroethylene (1.19 μ g/L) was detected below the MCL of 70 μ g/L and TCE (5.01 μ g/L) was detected near the MCL concentration (5.0 µg/L). Antimony, arsenic, and lead were above MCLs in the unfiltered

Table 3-1 Groundwater Sampling Results from May 2005, LHAAP-35C(53)

						suits from May 20	•				
LOCATION_CODE			107	LHSMW67	LHSMW68	LHSMW69	LHSMW70	LHSMW71	PZ001	PZ002	PZ004
FK_SAMPLE_DATE			20050512	20050513	20050511	20050512	20050512	20050514	20050513	20050513	20050513
SAMPLE NO			35CWW107-MAY05	LHSMW67-MAY05	LHSMW68-MAY05	LHSMW69-MAY05	LHSMW70-MAY05	LHSMW71-MAY05	PZ001-MAY05	PZ002-MAY05	PZ004-MAY05
SAMPLE DATE			5/12/2005	5/13/2005	5/11/2005	5/12/2005	5/12/2005	5/14/2005	5/13/2005	5/13/2005	5/13/2005
SAMPLE_PURPOSE			REG	REG	REG	REG	REG	REG	REG	REG	REG
CONSTRUCTION MATERIAL			316 Stainless Steel		Polyvinyl Chloride	Polyvinyl Chloride					
									Polyvinyl Chloride		
SAMPLING_ZONE			SHALLOW	SHALLOW	SHALLOW	INTERMEDIATE	SHALLOW	SHALLOW	N/A	N/A	N/A
Parameter	Units	MCL	Result Qual	Result Qual	Result Qual	Result Qual					
WATER QUALITY - UNFILTERED											
TURBIDITY	NTU		10.2	31.2	5.1	1.4	-2.5	NA	10.1	82.2	431
DIOXINS/FURANS - UNFILTERED											
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L		2.49 U	0.354 U	1.386 B	0.322 U	0.544 UJ	0.265 U	NA	NA	NA
1,2,3,4,6,7,8-HpCDD	pg/L		3.512 U	1.013 B	8.736 B	0.257 U	5.921 BJ	2.084 B	NA	NA	NA
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L		4.572 U	0.457 U	0.536 U	0.452 U	0.764 UJ	0.342 U	NA	NA	NA
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/L		1.733 U	0.274 U	0.242 U	0.186 U	0.253 U	0.279 U	NA	NA	NA
			3.1 U	0.455 U	0.242 U	0.331 U	0.395 U	0.441 U	NA	NA	NA
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L										
1,2,3,6,7,8-Hexachlordibenzo-p-dioxin	pg/L		3.014 U	0.41 U	0.357 U	0.319 U	0.38 U	0.397 U	NA	NA	NA
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L		1.617 U	0.271 U	0.253 U	0.194 U	0.265 U	0.276 U	NA	NA	NA
1,2,3,7,8,9-Hexachlordibenzo-p-dioxin	pg/L		3.213 U	0.423 U	0.352 U	0.315 U	0.376 U	0.41 U	NA	NA	NA
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L		2.676 U	0.324 U	0.312 U	0.239 U	0.326 U	0.33 U	NA	NA	NA
1,2,3,7,8-Pentachlordibenzo-p-dioxin	pg/L		2.869 U	0.517 U	0.311 U	0.47 U	0.377 U	0.441 U	NA	NA	NA
1,2,3,7,8-Pentachlorodibenzofuran	pg/L		1.951 U	0.355 U	0.261 U	0.265 U	0.23 U	0.317 U	NA	NA	NA
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/L		1.895 U	0.289 U	0.271 U	0.207 U	0.283 U	0.295 U	NA	NA	NA
2,3,4,7,8-Pentachlorodibenzofuran	pg/L		1.956 U	0.332 U	0.251 U	0.255 U	0.222 U	0.296 U	NA	NA	NA
		3.00E+01	2.937 U	0.965 UJ	0.598 U	0.537 U	0.222 U 0.267 U				NA
2,3,7,8-TCDD	pg/L	3.00E+01						0.681 U	NA	NA	
2,3,7,8-TCDF	pg/L		2.437 U	1.215 UJ	0.706 U	0.859 U	0.492 U	0.67 U	NA	NA	NA
Heptachlorodibenzofuran	pg/L		2.49 U	0.354 U	5.886	0.322 U	0.544 U	0.265 U	NA	NA	NA
Heptachlorodibenzo-p-dioxin	pg/L		3.512 U	2.191	22.633	0.257 U	9.768	4.91	NA	NA	NA
Hexachloridibenzo-p-dioxin	pg/L		3.014 U	0.41 U	0.357 U	0.319 U	0.38 U	0.397 U	NA	NA	NA
Hexachlorodibenzofuran	pg/L		1.617 U	0.274 U	0.242 U	0.186 U	0.253 U	0.279 U	NA	NA	NA
Octachlorodibenzofuran	pg/L		9.814 U	0.702 U	8.803 B	0.531 U	1.153 U	0.448 U	NA	NA	NA
Octachlorodibenzo-p-dioxin	pg/L		20.638 J	17.253 B	93.325 B	9.246 B	79.658 BJ	27.25 B	NA	NA	NA
Pentachlorodibenzofuran			1.956 U	0.332 U	0.251 U	0.255 U	0.222 U	0.296 U	NA	NA	NA
	pg/L										
Pentachlorodibenzo-p-dioxin	pg/L		2.869 U	0.517 U	0.311 U	0.47 U	0.377 U	0.441 U	NA	NA	NA
Tetrachlorodibenzofuran, Total	pg/L		2.437 U	1.215 U	0.706 U	0.859 U	0.492 U	0.67 U	NA	NA	NA
Tetrachlorodibenzo-p-dioxin	pg/L		2.937 U	0.965 U	0.598 U	0.537 U	0.267 U	0.681 U	NA	NA	NA
METALS - UNFILTERED											
Aluminum	ug/L		1270 JH	8210 JH	1120	69.1 J	61.3 B	98.6 B	288 JH	13300 JH	13000 JH
Antimony	uğ/L	6	0.5 U	0.5 U	5.77	6.17					
Arsenic	ug/L ug/L	10	2 U	2.83 J	2 U	2 U	2 U	2 U	2 U	31.3	34.8
Barium	ug/L	2000	91.6	168	15	99.6	163	33.6	71.4	138	264
Beryllium	ug/L	4	0.25 U	0.25 U	0.414 J	1.6 J					
Cadmium	ug/L		2.5 U	2.5 U	2.5 U	2.5 U					
Calcium	ug/L		8690	4470	234	3810	14100	6010	36300	11000	10900
Chromium	ug/L	100	2.5 U	40	13.6 J	2.5 U	2.5 U	171	2.5 U	23.5	15.1 J
Cobalt	ug/L		17.4 J	4.94 J	2.5 U	2.5 U	3.85 J	12.8 J	2.5 U	13.9 J	29.7
Copper	ug/L	1300	50	6.06 J	5 U	5.0	5 U	5 U	5 U	11.5 J	9.46 J
Iron	ug/L		2860	6940	993	464	9170	1100	313	15600	10200
Lead	ug/L	15		3.66 J	2.5 U	2.5 U	2.5 U	2.5 U	2.7 J	18.9	19
		10									
Magnesium	ug/L		7660 JH	3060 JH	758	3030	6630	6190	20100 JH	5950 JH	6440 JH
Manganese	uğ/L		258	31	8.19 B	82.5	480	121	68.6	101	180
Mercury	ug/L		0.1 U	0.971	1.32	0.1 U	0.1 U				
Nickel	ug/L		8.08 J	218	5 U	20.9 J	30 J	516	37.8 J	48.3	30.9 J
Potassium	ug/L		2750	860 J	495 J	278 J	1790 B	715 B	2030	2450	2540
Selenium	ug/L	50	4.05	5.32	0.5 U	3.14	1.5	3.82	12.6	2.89	6.64
Silver	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Sodium	ug/L		141000 JH	142000 JH	15200	59600	97100	252000	594000 JH	88500 JH	163000 JH
Thallium	ug/L	2	0.1 U	0.1 U	0.188 J	0.225					
Vanadium	ug/L		5 U	11.6	5 U	5 U	5 U	5 U	5 U	26.4	23.4
Zinc	ug/L		17.7 J	53.1	5 U	36.7	50.2	5 U	5 U	55.5	56.3
								- 9		22:2	

Table 3-1 Groundwater Sampling Results from May 2005, LHAAP-35C(53)

LOGATION CODE			46-		ater Sampling Res	-	-	-	67	Dates	07/11
LOCATION_CODE			107	LHSMW67	LHSMW68	LHSMW69	LHSMW70	LHSMW71	PZ001	PZ002	PZ004
FK_SAMPLE_DATE			20050512	20050513	20050511	20050512	20050512	20050514	20050513	20050513	20050513
SAMPLE_NO			35CWW107-MAY05	LHSMW67-MAY05	LHSMW68-MAY05	LHSMW69-MAY05	LHSMW70-MAY05	LHSMW71-MAY05	PZ001-MAY05	PZ002-MAY05	PZ004-MAY05
SAMPLE_DATE			5/12/2005	5/13/2005	5/11/2005	5/12/2005	5/12/2005	5/14/2005	5/13/2005	5/13/2005	5/13/2005
SAMPLE_PURPOSE			REG	REG	REG	REG	REG	REG	REG	REG	REG
CONSTRUCTION MATERIAL			316 Stainless Steel	Polyvinyl Chloride	Polyvinyl Chloride	Polyvinyl Chloride					
SAMPLING_ZONE			SHALLOW	SHALLOW	SHALLOW	INTERMEDIATE	SHALLOW	SHALLOW	N/A	N/A	N/A
Parameter	Units	MCL	Result Qual	Result Qual	Result Qual	Result Qual					
VOLATILES - UNFILTERED											
1,1,1,2-Tetrachloroethane	ug/L	33 200	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U 0.25 U	0.25 UJ	0.25 U 0.25 U	0.25 U	0.25 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L	200	0.25 U 0.125 U	0.25 U 0.125 U	0.25 U 0.125 U	0.25 U 0.125 U					
1,1,2,2-Trichloroethane	ug/L	4.3	0.25 U	0.25 U	0.125 U 0.25 U	0.125 U 0.25 U	0.125 U	0.25 U	0.25 U	0.25 U	0.125 U
1,1-Dichloroethane	ug/L ug/L	3650	0.25 U 0.125 U	0.125 U	0.25 U	0.125 U	0.125 U	0.125 U	0.125 U	0.125 U	0.125 U
1,1-Dichloroethene	ug/L	3030	0.5 U	0.5 U	0.5 U	0.125 U	0.125 0	0.125 U	0.125 U	0.125 U	0.5 U
1,1-Dichloropropene	ug/L	0.85	0.25 U	0.25 U	0.25 U	0.25 U					
1,2,3-Trichlorobenzene	ug/L	110	0.125 U	0.125 U	0.125 U	0.125 U					
1,2,3-Trichloropropane	ug/L	0.012	0.75 U	0.75 U	0.75 U	0.75 U					
1,2,4-Trichlorobenzene	uğ/L	70	0.2 U	0.2 U	0.2 U	0.2 U					
1,2,4-Trimethylbenzene	ug/L	1825	0.25 U	0.25 U	0.25 U	0.25 U					
1,2-Dibromo-3-chloropropane	ug/L	0.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	ug/L	5	0.25 U	0.25 U	0.25 U	0.25 U					
1,2-Dichlorobenzene	ug/L	600	0.125 U	0.125 U	0.125 U	0.125 U					
1,2-Dichloroethane	ug/L	5	0.25 U 0.125 U	2.45	0.25 U	0.655 JH 0.125 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloropropane 1,2-Dimethylbenzene (o-Xylene)	ug/L	5 10000	0.125 U 0.25 U	0.125 U 0.25 U	0.125 U 0.25 U	0.125 U 0.25 U					
1,3,5-Trimethylbenzene	ug/L ug/L	10000	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U					
1,3-Dichlorobenzene	ug/L ug/L	1825	0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U				
1,3-Dichloropropane	ug/L ug/L	8.5	0.25 U 0.2 U	0.2 U	0.2 U	0.25 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,4-Dichlorobenzene	ug/L	75	0.125 U	0.125 U	0.125 U	0.125 U					
2,2-Dichloropropane	ug/L	13	0.25 UJ	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 UJ	0.25 UJ	0.25 UJ	0.25 UJ
2-Butanone	ug/L	-	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
2-Chloroethyl vinyl ether	ug/L		2 U	2 U	2 UJL	2 U	2 U	2 U	2 U	2 U	2 U
2-Chlorotoluene	ug/L	730	0.125 U	0.125 U	0.125 U	0.125 U					
2-Hexanone	ug/L	2200	2.5 UJ	2.5 UJ	2.5 U	2.5 UJ	2.5 UJ	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ
4-Chlorotoluene	ug/L	730	0.25 U	0.25 U	0.25 U	0.25 U					
Acetone	ug/L	33000	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.8 J	2.5 U	2.5 U	2.5 U
Benzene	ug/L	5	0.125 U	0.125 U	0.125 U	0.125 U					
Bromobenzene Bromochloromethane	ug/L	730	0.125 U 0.2 U	0.125 U 0.2 U	0.125 U	0.125 U 0.2 U					
Bromodichloromethane	ug/L ug/L	1.4	0.2 U 0.25 U	0.2 U 0.25 U	0.2 U 0.25 U	0.25 U	0.25 U	0.25 U	0.2 U 0.25 U	0.2 U 0.25 U	0.25 U
Bromoform	ug/L	11	0.54 U	0.54 U	0.54 U	0.54 U					
Bromomethane	ug/L	51.1	0.5 U	0.5 U	0.5 U	0.5 U					
Carbon disulfide	ug/L	3650	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	ug/L	5	0.25 U	0.25 U	0.25 U	0.25 U					
Chlorobenzene	ug/L	100	0.125 U	0.125 U	0.125 U	0.125 U					
Chloroethane	ug/L	14600	0.5 U	0.5 U	0.5 U	0.5 U					
Chloroform	ug/L	365 66	0.125 U	0.125 U	0.125 U	0.125 U					
Chloromethane	ug/L	66	0.25 U	0.25 U	0.25 U	0.25 U					
cis-1,2-Dichloroethene	ug/L	70	0.25 U	0.25 U	0.25 U	1.19					
cis-1,3-Dichloropropene	ug/L	1.6 10	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U
Dibromochloromethane Dibromomethane	ug/L ug/L	10	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U					
Dichlorodifluoromethane	ug/L ug/L	7300	0.25 U	0.25 U	0.25 U	0.25 U					
Ethylbenzene	ug/L	700	0.25 U	0.25 U	0.25 U	0.25 U					
Hexachlorobutadiene	ug/L	7.3	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Isopropylbenzene	ug/L		0.25 U	0.25 U	0.25 U	0.25 U					
m,p-Xylenes	ug/L	10000	0.5 U	0.5 U	0.5 U	0.5 U					
Methyl isobutyl ketone	ug/L	2920	2.5 U	2.5 U	2.5 U	2.5 U					
Methylene chloride	ug/L	5	0.25 U	0.25 U	0.863 B	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Naphthalene	ug/L	730	0.2 U	0.2 UJ	0.2 U	0.2 U	0.2 U				
n-BUTYLBENZENE	ug/L	1460	0.25 U	0.25 U	0.25 U	0.25 U					
n-PROPYLBENZENE	ug/L	1460	0.125 U	0.125 U	0.125 U	0.125 U					
p-ISOPROPYLTOLUENE	ug/L	14/0	0.25 U	0.25 U	0.25 U	0.25 U					
sec-BUTYLBENZENE Styrene	ug/L	1460 100	0.25 U 0.125 U	0.25 U 0.125 U	0.25 U 0.125 U	0.25 U 0.125 U					
tert-BUTYLBENZENE	ug/L ug/L	100	0.25 U	0.25 U	0.125 U 0.25 U	0.125 U 0.25 U	0.125 U	0.25 U	0.25 U	0.25 U	0.125 U
Tetrachloroethene	ug/L ug/L		0.25 U 0.25 U	0.25 U 0.25 U	0.25 U	0.25 U	0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.25 U	0.25 U 0.969 J
Toluene	ug/L	1000	0.25 U	0.322 J	0.25 U	0.25 U	0.25 U				
trans-1,2-Dichloroethene	ug/L	1000	0.25 U	0.25 U	0.25 U	0.25 U					
trans-1,3-Dichloropropene	ug/L	8.5	0.5 U	0.5 U	0.5 U	0.5 U					
Trichloroethene	ug/L	5	0.25 U	0.25 U	0.25 U	0.8 JH	0.25 U	0.25 U	0.25 U	0.25 U	5.01
Trichlorofluoromethane	ug/L	10950	0.25 UJ	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 UJ	28.8 J	0.25 UJ	0.25 UJ
Vinyl acetate	ug/L	36500	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
Vinyl chloride	ug/L	2	0.25 U	0.25 U	0.25 U	0.25 U					

Table 3-1 Groundwater Sampling Results from May 2005, LHAAP-35C(53)

					ter oumpring rec	,		,			
LOCATION_CODE			107	LHSMW67	LHSMW68	LHSMW69	LHSMW70	LHSMW71	PZ001	PZ002	PZ004
FK_SAMPLE_DATE			20050512	20050513	20050511	20050512	20050512	20050514	20050513	20050513	20050513
SAMPLE_NO			35CWW107-MAY05	LHSMW67-MAY05	LHSMW68-MAY05	LHSMW69-MAY05	LHSMW70-MAY05	LHSMW71-MAY05	PZ001-MAY05	PZ002-MAY05	PZ004-MAY05
SAMPLE DATE			5/12/2005	5/13/2005	5/11/2005	5/12/2005	5/12/2005	5/14/2005	5/13/2005	5/13/2005	5/13/2005
SAMPLE_PURPOSE			REG	REG	REG	REG	REG	REG	REG	REG	REG
CONSTRUCTION MATERIAL			316 Stainless Steel	Polyvinyl Chloride	Polyvinyl Chloride	Polyvinyl Chloride					
SAMPLING ZONE			SHALLOW	SHALLOW	SHALLOW	INTERMEDIATE	SHALLOW	SHALLOW	N/A	N/A	N/A
Parameter	Units	MCL	Result Qual	Result Qual	Result Qual	Result Qual					
DIOXINS/FURANS - FILTERED	onits	MOL	Result Quar	Result Qual	Result Qual	Result Quar	Result 200	Result 200	Result 2001	Result Quai	Result Quar
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/L		0.302 U	0.352 U	0.388 U	0.276 U	0.372 U	0.411 U	NA	NA	NA
1,2,3,4,6,7,8-HpCDD	pg/L		2.491 B	0.524 U	0.227 U	0.594 B	2.776 B	1.059 B	NA	NA	NA
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/L		0.424 U	0.455 U	0.544 U	0.387 U	0.522 U	0.531 U	NA	NA	NA
1.2.3.4.7.8-Hexachlorodibenzofuran	pg/L		0.424 U	0.38 U	0.2 U	0.184 U	0.143 U	0.304 U	NA	NA	NA
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L		0.421 U	0.553 U	0.399 U	0.378 U	0.278 U	0.369 U	NA	NA	NA
1.2.3.6.7.8-Hexachlordibenzo-p-dioxin	pg/L		0.405 U	0.497 U	0.385 U	0.364 U	0.278 U	0.332 U	NA	NA	NA
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/L		0.181 U	0.376 U	0.209 U	0.192 U	0.149 U	0.3 U	NA	NA	NA
1,2,3,7,8,9-Hexachlordibenzo-p-dioxin	pg/L		0.4 U	0.514 U	0.38 U	0.359 U	0.265 U	0.343 U	NA	NA	NA
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/L		0.223 U	0.449 U	0.257 U	0.236 U	0.184 U	0.359 U	NA	NA	NA
1,2,3,7,8-Pentachlordibenzo-p-dioxin	pg/L		0.419 U	0.606 U	0.389 U	0.319 U	0.287 U	0.392 U	NA	NA	NA
1,2,3,7,8-Pentachlorodibenzofuran	pg/L		0.22 U	0.308 U	0.262 U	0.19 U	0.178 U	0.315 U	NA	NA	NA
2.3.4.6.7.8-Hexachlorodibenzofuran	pg/L		0.194 U	0.401 U	0.224 U	0.205 U	0.16 U	0.32 U	NA	NA	NA
2,3,4,7,8-Pentachlorodibenzofuran	pg/L		0.212 U	0.288 U	0.252 U	0.183 U	0.171 U	0.294 U	NA	NA	NA
2.3.7.8-TCDD	pg/L	3.00E+01	0.365 U	0.624 U	0.426 U	0.348 U	0.316 U	0.478 U	NA	NA	NA
2.3.7.8-TCDF	pg/L		0.837 U	0.763 U	0.745 U	0.859 U	0.543 U	0.564 U	NA	NA	NA
Heptachlorodibenzofuran	pg/L		0.302 U	0.352 U	0.388 U	0.276 U	0.372 U	0.411 U	NA	NA	NA
Heptachlorodibenzo-p-dioxin	pg/L		4.63	1.948	0.227 U	0.173 U	2.776	0.335 U	NA	NA	NA
Hexachloridibenzo-p-dioxin	pg/L		0.405 U	0.497 U	0.385 U	0.364 U	0.268 U	0.332 U	NA	NA	NA
Hexachlorodibenzofuran	pg/L		0.174 U	0.38 U	0.2 U	0.184 U	0.143 U	0.304 U	NA	NA	NA
Octachlorodibenzofuran	pg/L		0.701 U	0.807 U	0.564 U	0.437 U	0.519 U	0.677 U	NA	NA	NA
Octachlorodibenzo-p-dioxin	pg/L		21.886 B	13.794 B	7.952 B	12.916 B	34.013 B	16.161 B	NA	NA	NA
Pentachlorodibenzofuran	pg/L		0.212 U	0.288 U	0.252 U	0.183 U	0.171 U	0.294 U	NA	NA	NA
Pentachlorodibenzo-p-dioxin	pg/L		0.419 U	0.606 U	0.389 U	0.319 U	0.287 U	0.392 U	NA	NA	NA
Tetrachlorodibenzofuran, Total	pg/L		0.837 U	0.763 U	0.745 U	0.859 U	0.543 U	0.564 U	NA	NA	NA
Tetrachlorodibenzo-p-dioxin	pg/L		0.365 U	0.624 U	0.426 U	0.348 U	0.316 U	0.478 U	NA	NA	NA

00043616 Shaw Environmental, Inc.

Final Site Evaluation Report, LHAAP-48 and LHAAP-35C(53)

Table 3-1 Groundwater Sampling Posults from May 2005 1 HAAP-35C(53)

				Groundwa	ter Sampling Res	Sults from May 20	005, LHAAP-35C(53)			
LOCATION_CODE			107	LHSMW67	LHSMW68	LHSMW69	LHSMW70	LHSMW71	PZ001	PZ002	PZ004
FK_SAMPLE_DATE			20050512	20050513	20050511	20050512	20050512	20050514	20050513	20050513	20050513
SAMPLE_NO			35CWW107-MAY05	LHSMW67-MAY05	LHSMW68-MAY05	LHSMW69-MAY05	LHSMW70-MAY05	LHSMW71-MAY05	PZ001-MAY05	PZ002-MAY05	PZ004-MAY05
SAMPLE DATE			5/12/2005	5/13/2005	5/11/2005	5/12/2005	5/12/2005	5/14/2005	5/13/2005	5/13/2005	5/13/2005
SAMPLE_PURPOSE			REG	REG	REG	REG	REG	REG	REG	REG	REG
CONSTRUCTION MATERIAL			316 Stainless Steel	Polyvinyl Chloride	Polyvinyl Chloride	Polyvinyl Chloride					
SAMPLING_ZONE			SHALLOW	SHALLOW	SHALLOW	INTERMEDIATE	SHALLOW	SHALLOW	N/A	N/A	N/A
Parameter	Units	MCL	Result Qual	Result Qual	Result Qual	Result Qual					
METALS - FILTERED											
Aluminum	ug/L		145 B	11100 JH	979	52.6 J	80.1 B	82.6 B	94.7 B	2110 JH	5460 JH
Antimony	ug/L	6	0.5 U	6.58	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.83
Arsenic	ug/L ug/L	10	2 U	2.09 J	2 U	2.83 J	2 U	2 U	2 U	2.63 J	29.4
Barium	ug/L	2000	96.2	113	36.6	140 J	12.7 J	91.6	122	125	251
Beryllium	ug/L	4	0.25 U	0.25 U	0.25 U	0.579 J					
Cadmium	ug/L		2.5 U	2.5 U	2.5 U	2.5 U					
Calcium	ug/L		9740	3700	1060	13900	271 B	6670	37000	7140	11400
Chromium	ug/L	100	2.5 U	34.1	2.5 U	8.53 J	2.5 U	3.39 J	2.5 U	2.5 U	5.25 J
Cobalt	ug/L		16.3 J	5.69 J	2.5 U	4.65 J	30.4	10.8 J	2.5 U	5.01 J	21.6
Copper	ug/L	1300		6.33 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Iron	ug/L		1030	9010	705	16400	82.8 B	64.4 B	85.2 B	2490	3980
Lead	ug/L ug/L	15		3.82 J	2.5 U	2.5 U	2.5 U	2.5 U	2.63 J	2.7 J	15.7
Magnesium	ug/L		7620	3340 JH 28.7	772	6960 535	521 496	5980 101	20300 JH 51	4330 JH	5530 JH
Manganese	ug/L		243		4.88 B				0.	54.2	148
Mercury Nickel	ug/L		0.1 U 10.6 J	0.1 U 239	0.10	0.1 U 30.7 J	0.1 U	1.15 488	1.16 37.6 J	0.1 U 27.2 J	0.1 U
	ug/L		2520	239 977 J	388 J	30.7 J 2030	332 B	488 774 B	37.6 J 2370	27.2 J 839 J	22 J 1750
Potassium Selenium	ug/L ug/L	50		3.59	388 J 0.5 U	1.62	332 B 1.74	13.3	13.6	839 J 1.88	10.6
Silver	ug/L	50	4.17	5.07	5.0	511	511	511	511	5.11	511
Sodium	ug/L		147,000	170,000 JH	21,100	100,000	37,500	242,000	605,000 JH	105,000 JH	171,000 JH
Thallium	ug/L	2	0.1 U	0.103 J	0.111	0.1 U	0.1 U	0.1 U	003,000 JH	0.1 11	0.127 J
Vanadium	ug/L	2	511	15.1	511	511	511	511	511	511	9.3 J
Zinc	ug/L		32.1	54.6	511	10.9 J	5.33 J	50	50	44.1	40.2
LIIIG	uy/L		JZ. 1	JT.U	50	10.7 J	0.00 J	50	50	1.77	70.2

Notes and Abbreviations

Results are reported to Method Detection Limit

B The analyte was detected in an associated method blank, equipment rinsate blank, or trip blank (5X/10X rule was applied).

J The analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed.

U Not detected. The analyte was analyzed for but not detected above the associated reporting limit.

MCL EPA's Maximum Contaminant Level

NA Not analyzed

pg/L picograms per liter

µg/L micrograms per liter

piezometer samples at maximum concentrations of 6.17 μ g/L, 34.8 μ g/L, and 19 μ g/L, respectively. Elevated concentrations of the three metals were observed in piezometers PZ002 and PZ004 that had elevated high turbidity values of 82.2 and 431 NTUs, respectively, during sampling (**Table 3-1**). Arsenic was observed in the filtered sample collected from PZ004 at a concentration of 29.4 μ g/L, which is above the MCL of 10 μ g/L; and lead was detected at a concentration of 15.7 μ g/L, which is slightly above the MCL of 15 μ g/L. Elevated concentrations of organic chemicals and lead are considered turbidity related. Nevertheless, the 2005 analysis indicated that chromium was not a site-related contaminant and was attributed to corrosion of the stainless steel screen material used in construction of these wells. The increases in chromium concentration were accompanied by increases in iron and aluminum concentration. **Table 3-1** summarizes the May 2005 groundwater sampling results for LHAAP-35C(53).

To summarize, the chemicals that accounted for the human health risk and hazard to a future maintenance worker (Jacobs, 2003) were shown to be associated with turbidity in the samples. When collected using low flow methods, these chemicals were either not detected or were below MCLs. Detections of other metals were sporadically present but marginally exceeded the MCLs.

4.0 Summary of the Residential Risk Assessment for Hypothetical Residential Use

The baseline risk assessments for residential use of LHAAP-48 and LHAAP-35C(53) (**Appendix C** and **D**, respectively), completed by Shaw supplement the information presented in the industrial risk assessment (Jacobs, 2003) and provides risk managers information about whether the sites can be released for unrestricted use (no land use controls [LUCs]). The baseline risk assessments for residential use of LHAAP-48 and LHAAP-35C(53) (**Appendix C** and **D**, respectively) use the same methods employed for the industrial risk assessment (Jacobs, 2003), so the two assessments are consistent. Some adjustments to the methods used for the industrial risk assessment were made, as appropriate, to present a residential assessment that is consistent with other risk assessments being conducted for LHAAP sites, and with current regulatory guidance. The assessment of potential risk to residents was based on Texas Commission on Environmental Quality (TCEQ) Risk Reduction Rules (TCEQ, 1998, 2004) and USEPA guidance.

4.1 Elements of the Residential Risk Assessment

The residential risk assessments for LHAAP-48 and LHAAP-35C(53) (**Appendix C** and **D**, respectively) were conducted using data reported in the industrial risk assessment (Jacobs, 2003) supplemented by data from the 2004 and 2005 groundwater sampling by Shaw. The elements of the residential risk assessments include a data evaluation in which chemicals of potential concern (COPC) were identified by comparing soil concentrations (Jacobs, 2003) to LHAAP background concentrations and risk-based screening criteria. Also included in **Appendix C** and **D** are an exposure assessment that describes land use assumptions, plausible human exposure scenarios and receptors, and quantitative estimates of their potential exposure. In addition, a toxicity evaluation is included that briefly describes the adverse health effects associated with each COPC and provides references for further details; a risk characterization that qualitatively describes the uncertainties associated with the components of the risk assessment and their impact on the conclusions and future decisions regarding the site. A detailed account of the residential BHHRA process is included in **Appendix C** for LHAAP-48 and **Appendix D** for LHAAP-35C(53).

4.2 Results of the Residential Risk Assessment

The assessment of risk to a hypothetical resident from exposure to chemicals in soil at LHAAP-48 and LHAAP-35C(53) indicate that potential risks are within the acceptable range established by USEPA (1994) guidance.

All cancer risk estimates that exceed 1E-06 for potential residential use of LHAAP-48 are associated with exposure to dioxins (2,3,7,8-TCDD-TEQ), and vinyl chloride, and primarily to vinyl chloride by the inhalation pathway (Table C-10a). The total estimated cancer risk for exposure to all chemicals by all pathways is within the acceptable risk range of 1E-06 to 1E-04 established in USEPA (1994) guidance. No noncancer hazard estimates exceed the acceptable hazard quotient (HQ) level of one (USEPA, 1994), and the calculated hazard index (HI) for exposure to all chemicals is below 1 (Table C-10b).

All cancer risk estimates that exceed 1E-06 for potential residential use of LHAAP-35C(53) are associated with exposure to dioxins (2,3,7,8-TCDD-TEQ), and primarily by the soil ingestion pathway (Table D-9a). No noncancer hazard estimates exceed the acceptable hazard quotient (HQ) level of one, and the calculated hazard index (HI) for exposure to all chemicals is below 1 (Table D-9b).

Groundwater concentrations associated with human health risk in the industrial risk assessment (Jacobs, 2003) were either not detected in additional groundwater sampling performed by Shaw in 2004 and 2005 (see **Sections 2.0** and **3.0**) or were below MCLs and, thus, pose no unacceptable risk to a potential resident.

5.0 Conclusions

The baseline risk assessment for LHAAP-48 and LHAAP-35C(53) (**Appendix C** and **D**, respectively) indicate that cancer risk and noncancer HI posed by the soil to a hypothetical resident are within the acceptable range established by the USEPA, and no further action is necessary for soil at LHAAP-48 and LHAAP-35C(53) (USEPA, 1994).

The industrial risk assessment (Jacobs, 2003) for a future maintenance worker, however, showed unacceptable risk and hazard at LHAAP-48 due to elevated concentrations of thallium and dioxins in the groundwater. Additional groundwater sampling conducted at LHAAP-48 in May 2005 indicated that elevated concentrations of dioxins/furans and metals were due to the high turbidity of the groundwater samples. For example, the maximum chromium concentration of 2,510 μ g/L was observed in the unfiltered groundwater sample collected from LHSMW63 but was not detected in the filtered sample. Although the chromium concentration observed in LHSMW62 had a concentration of 715 μ g/L in the unfiltered sample, the filtered sample indicated an almost two-fold reduction in concentration (379 μ g/L), indicative of turbidity and the possible attachment of chromium to particulates within the sample. The chromium detected in groundwater at these wells was shown to be associated with stainless steel construction material (**Section 2.2**), and was likely the result of corrosion of the stainless steel screen. VOCs such as tetrachloroethene and TCE that were detected at very low levels (Jacobs, 2003), either were not detected or were detected at very low concentrations below MCLs. Perchlorate was not detected in any of the samples.

At LHAAP-35C(53), unacceptable non-cancer hazard was caused by thallium. During the 2005 sampling performed by Shaw (see Section 3.0), thallium was detected at concentrations below the MCL. Other metals such as arsenic, lead, and chromium were detected above MCLs in the unfiltered sample; however, in most cases the concentrations were below the detection limits or MCLs in the filtered samples, or marginally exceeded the MCLs, indicating association of these metals with particulates. Perchlorate was not detected in any of the samples and VOCs that were detected at low concentrations in previous sampling rounds either were not detected or were detected at very low levels below the MCLs.

6.0 Risk Management

Although the total cancer risk estimates to a hypothetical resident at both LHAAP-48 or LHAAP-35C(53) are within the acceptable range of 1E-06 to 1E-04, estimated risks associated with dioxins and vinyl chloride exceed 1E-06.

The total cancer risk from exposure to vinyl chloride at LHAAP-48 was estimated using one sample among 48 that contained a detected concentration. Use of the only detected concentration, 4.97E-01 mg/kg located at SUMP099, as representative of the entire LHAAP-48 site represents a conservative overestimation of vinyl chloride cancer risk. As required by Risk Reduction Standard 3 rules, a remediation level of 1.87E-01 mg/kg was calculated for vinyl chloride using equation provided in TCEQ (1998) guidance, which corresponds to a target risk level of 1E-06 (**Table 6-1a**). This remediation level is exceeded in samples taken near SUMP099 (Table C-2, Figure C-1). It is unlikely that a hypothetical resident would establish a residence at this location among all others at LHAAP-48, and, if that were to occur, the total risk associated with soil exposure would be within the acceptable range.

The total cancer risk from exposure to dioxins at LHAAP-48 was estimated using the maximum 2,3,7,8-TCDD TEQ concentration calculated as described in Section 2.4 of **Appendix C**. Use of the maximum detected concentration, 1.55E-05 mg/kg located at SUMP094, as representative of the entire LHAAP-48 site represents a conservative overestimation of dioxin cancer risk.

A remediation level of 3.6E-06 mg/kg was calculated for 2,3,7,8-TCDD using Risk Reduction Standard 3 equations provided in TCEQ (1998) guidance, which corresponds to a target risk level of 1E-06 (**Table 6-1a**). This remediation level is exceeded in samples at six locations, 48SB01, SUMP094, SUMP095, SUMP098, SUMP100, and WRSUMP003 (Table C-2, Figure C-1). If a hypothetical resident were to establish a residence at any of these locations, the total risk associated with soil exposure would be within the acceptable range. In the unlikely event that the residence was located near SUMP098 and SUMP099, where both vinyl chloride and dioxins were detected, the total cancer risk would still be well within the acceptable range.

Because the concentrations of all chemicals that exceed a risk level of 1E-06 do not correspond to a total cancer risk above the upper limit of the acceptable range (1E-04), a risk management approach to take no further action at LHAAP-48 meets the Risk Reduction Standard 3 requirement that the cumulative excess cancer risk to exposed populations (including sensitive subgroups) shall not be greater than one in 10,000 [30 TAC §335.563(b)].

The total cancer risk from exposure to dioxins at LHAAP-35C(53) was estimated using the maximum 2,3,7,8-TCDD TEQ concentration calculated as described in Section 2.4 of

Appendix D. Use of the maximum detected concentration, 3.04E-05 mg/kg located at 35CSB01, as representative of the entire LHAAP-35C(53) site represents a conservative overestimation of dioxin cancer risk.

This maximum concentration exceeds the remediation level for dioxins (**Tables 6-1a** and **6-1b**) only at the 35CSB01 location, (Table D-2, Figure D-1). In the unlikely event that the residence was located at 35CSB01, the total cancer risk would be within the acceptable range.

Because the concentration of the only chemical that exceeds a risk level of 1E-06 does not correspond to a total cancer risk above the upper limit of the acceptable range (1E-04), a risk management approach to take no further action at LHAAP-35C(53) meets the Risk Reduction Standard 3 requirement that the cumulative excess cancer risk to exposed populations (including sensitive subgroups) shall not be greater than one in 10,000 [30 TAC §335.563(b)].

Table 6-1a TCEQ Risk Reduction Standard 3 Medium Specific Concentration for Soil - Residential Land-Use Scenario Cancer Risk from Exposure to Chemicals in Soil at LHAAP-48 and LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

CARCINOGENIC EFFECTS

		Ingestion	Inhalation	Dermal		Relative Dermal					Soil-Water		Soil-Air Partition	า				
	Weight	Slope Factor	Unit Risk	Slope Factor	GI Absorption	Absorption	Molecular	Henry's Law	Organic Carbon	Effective	Partition		Partition	Volatilization	Inhalation	Ingestion	Dermal	Soil
	of	SFo	Factor, URF	SFd	Factor, ABS.gi	Factor, ABS.d	Diffusivity, Di	Constant, H	Partition Coefficient	Diffusivity	Coefficient	α	Coefficient	Factor, VF	MSC	MSC	MSC	MSC
Chemical Name	Evidence	1/(mg/kg-day)	1/(ug/m3)	1/(mg/kg-day)	(unitless)	(unitless)	(cm²/s)	(atm-m ³ /mol)	Koc (cm³/g)	Dei (cm²/s)	Kd (cm³/g)	(cm²/s)	Kas (cm ³ /g)	m³/kg	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
2,3,7,8-TCDD-TEQ (Dioxin) ^a	ND	1.50E+05	4.29E+01	3.00E+05	5.00E-01	3.00E-02	4.70E-02	3.59E-05	2.40E+07	3.32E-02	4.80E+05	2.07E-11	3.06E-09	2.69E+08	1.44E-02	4.27E-06	2.30E-05	3.60E-06
Vinyl chloride ^b	Α	1.50E+00	8.80E-06	1.50E+00	1.00E+00	0.00E+00	1.06E-01	8.52E-02	1.10E+01	7.50E-02	2.19E-01	5.73E-02	1.59E+01	1.21E+03	3.34E-01	4.27E-01	NA	1.87E-01

Table 6-1b TCEQ Risk Reduction Standard 3 Medium Specific Concentration for Soil - Residential Land-Use Scenario Noncancer Hazard from Exposure to Chemicals in Soil at LHAAP-48 and LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

NON-CARCINOGENIC EFFECTS

	Ingestion	Inhalation	Dermal		Relative Dermal													Applicable
	Reference	Reference	Reference	GI Absorption	Absorption	Molecular	Henry's Law	Organic Carbon	Effective	Soil-Water Partition		Soil/air Partition	Volatilization	Inhalation	Ingestion	Dermal	Soil	Soil
	Dose, RfDo	Conc., RfC	Dose, RfDd	Factor, ABS.gi	Factor, ABS.d	Diffusivity, Di	Constant, H	Partition Coefficient,	Diffusivity,	Coefficient, Kd	α	Coefficient, Kas	factor, VF	MSC	MSC	MSC	MSC	MSC
Chemical Name	(mg/kg-day)	(mg/m3)	(mg/kg-day)	(unitless)	(unitless)	(cm²/s)	(atm-m ³ /mol)	Koc (cm³/g)	Dei (cm²/s)	(cm³/g)	(cm²/s)	(cm³/g)	m3/kg	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
2,3,7,8-TCDD-TEQ (Dioxin) ^a	ND	ND	ND	5.00E-01	3.00E-02	4.70E-02	3.59E-05	2.40E+07	3.32E-02	4.80E+05	2.07E-11	3.06E-09	2.69E+08	NA	NA	NA	NA	3.60E-06
Vinyl chloride ^b	3.00E-03	1.00E-01	3.00E-03	1.00E+00	0.00E+00	1.06E-01	8.52E-02	1.10E+01	7.50E-02	2.19E-01	5.73E-02	1.59E+01	1.21E+03	1.26E+02	8.23E+02	NA	1.09E+02	1.87E-01

Notes and Abbreviations: ^a Applicable Soil MSC applies to soil at both LHAAP-48 and LHAAP-35C(53).

^b Applicable Soil MSC applies to soil at LHAAP-48 only.

ug/m³ micrograms per cubic meter

atm-m³/mol atmosphere cubic meters per mole

cm²/s centimeter square per second

cm³/g cubic centimeters per gram

mg/kg milligrams per kilogram

m³/kg cubic meters per kilogram

MSC medium specific concentration

ND no data

RME reasonable maximum exposure

URF unit risk factor

7.0 References

Jacobs Engineering Group, Inc. (Jacobs), 2002a, *Final Remedial Investigation Report, Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Volume 1: Report, Longhorn Army Ammunition Plant, Karnack, Texas, January.*

Jacobs, 2002b, Draft Feasibility Study, Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunder's Branch, Central Creek, and Caddo Lake, August.

Jacobs, 2003, Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunder's Branch, Central Creek, and Caddo Lake, Longhorn Army Ammunition Plant, Karnack, Texas, Oak Ridge, Tennessee, June.

Shaw Environmental, Inc. (Shaw), 2004, *Final Work Plan Groundwater Data Gaps Investigation Groups 2 and 4, Longhorn Army Ammunition Plant, Karnack, Texas*, February.

Shaw, 2005, Draft Final Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, May.

Texas Commission on Environmental Quality (TCEQ) 1998, Interoffice Memorandum from Ronald R. Pedde to Remediation Division Staff regarding implementation of the existing risk reduction rules (a.k.a. TNRCC Consistency Memorandum), July.

TCEQ, 2004, Texas Risk Reduction Rules (30TAC§335) as updated through March 2006.

U.S. Environmental Protection Agency (USEPA), 1983, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-0202, March.

USEPA, 1994, National Oil and Hazardous Substances Pollution Contingency Plan, 40 Code of Federal Regulations Part 300, 59 Federal Register 47384, October 10.

Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F. and Zacharewski, T., 1998, *Toxic Equivalency Factors (TEFs) for PCBs, PCDDs,PCDFs for Humans and Wildlife*, Environmental Health Perspectives 106(12):775-792.

Appendix A

Groundwater Sampling Forms LHAAP-48

00043626

Page 1 of 2

845714 LONGHORN AAP

Manager:

Praveen Srivastav

48-091304- CO RFA / COC Number: 48-091364- KE

Location Code:	48WW01	Task:	GW DATA GAPS AUG04
Sample Number:	L0001-48WW01	Collection Date:	9/13/04
Sample Name:	L0001-48WW01-00	Collection Time:	1345
Sampling Method:	BA	Start Depth:	22.94
Sample Type:	GW Sample Purpose: REG	End Depth:	2294
Sampling Equip: CPartners:	Bladder prnp	Sample Matrix:	WATER D. Holderfield
(TB) ~//	(ER) <u>N A</u> (FB) <u>N 7</u>	Sample Team:	A. Willmore
Analytical Suite	Containers Flt Frtn Qty Size Units Type	ERPIMS	S Values: Sacode:
METALS W PERC Distant Futants	N A L 500 mb $HDPE_{23} + FAO_{24-23}$ N B L L T HDPE N C 22 L A Ante Gase	Lot	Control#:
<u>Groundwater Info</u> Measured Wo		32	
Comments:			
Sketch Locati	00.		

Logged BY / Date: Defeld 1/15/04

Reviewed BY / Date: Alf 1/15(04

Shaw -
Shaw E & I, Inc.

00043627

4

Page 1 of 2

845714

LONGHORN AAP

Manager:

Praveen Srivastav

				-041204 - 60
Location Code:	48WW01		RFA / COC Number: <u>19</u>	041304 -KE
'	L0001-48WW01		Task-	GW DATA GAPS AUG
Sample Name:	L0001-48WW01-00	-OC	Collection Date:	9/13/04
Sampling Method:			Collection Time:	
Sample Type:		Sample Purpose: FD	Start Depth:	22.94
Sampling Equip:		bumple I in pose. FD	End Depth:	22.94
Partners:	Bladderpump		Sample Matrix:	WATER
(TB) 170	(ER) <u>)</u> <u>A</u>	(FB) N/4	Sample Team:	D. Holdesfield A. Willmore
Analytical Suite	······································	Units Type	ERPIMS	S Values: Sacode:
Diprins Furrans METALS-WE PERC	N A' 2 1 N B' P 500° N' C L 1	1 Amb Glass oil HDPE L HDPE	Lot	Control#:
<u>Groundwater Info</u> Measured We		Depth To Water	22.32	• •
Comments:				
			~	
Sketch Locatio				

Logged BY / Date:

Dato Half 4/15/04 Reviewed BY / Date: Dato Half the in

Page 2 of 2

00043628

845714 Manager:

LONGHORN AAP Praveen Srivastay

Location Code: 48WW01 Sample Number: L0001-48WW01 L0001-48WW01-9C F (FD)

Initiał	<u>GE REC(</u> Time(24hr)	DepthtoWater (ft)	Eh (mV)	pH (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gal)
		2.2.44						~	

Logged BY / Date: Salfor 1/13/04

Reviewed BY / Date: Ja Ho ell 9/15/04

GROUNDWATER SAMPLING FORM

Sheet_1_of_&

00043629

Operabl	le Unit/Site	ID: 48		······································	<u> </u>	S annu ll		- DE -	······					
	Name/#:		···			Sampling location ID: <u>Yowytoj</u> Sample ID: <u>Yowwo</u> i								
Weather			90.							·				
r						Collecti	on Time/Dat	e:						
		-		Pun	np Ins	tallation								
Pump in	stallation cr	ew: A.W	ilmore D	Holevi	eld	hand Hatt to a second second								
PID/FID	reading (w	ell head/bac	kground):	0.0		Installation date/completion time: 7/13/04 12:63								
Casing c	Jiameter (in	ches):4	ມັ /		<u> </u>	Installation date/completion time: 7/13/04 12:04								
Total we	Total well Depth (ft. BTOC): 57-14						Screen Interval (ft. BTOC): <u>47.14</u> to <u>4.51.14</u> Pump intake depth (ft BTOC): <u>52.14</u>							
Initial (pr	nitial (pre-installation) DTW/time: 72.32						tallation DT	RBIOC):	<u>52.k</u>	L				
Final (aft	Final (after pump priming) DTW/time:						Post-installation DTW/time: 21.80 12:00 Max. sustainable pump rate (mL/min):							
Free pro	Free product (circle): LNAPL / DNAPI						ance of produ	mp rate (m	L/min):					
Volume e	of water ren	noved during	a primina (n	nL):	-									
Discharg	e tube leng	th (ft.):(, б.		-	iplot rod	ge tube diarr ucer used ()	ieter (3/8" (//N)		18"				
Pneuma	tic Control	ler Tuning:		· <u> </u>		metreu	ucei usea ()	/N):	·•					
Initial air	pressure =	H (ft.) X 0.4	3 = 22.42	psi						•				
j	·······	Initial		·······			·							
Pressure (p	i)	Initiat	2		4	5	6	7	8	Final				
Refill Settin														
Discharge S														
Flow rate (n														
						<u> </u>				-				
Initial (pre Calculated Pneumati	-purging) D d tubing + p ic Controlle) time: <u>9/i</u> TW (ft. BTC ump volume e r Tuning: I (ft.) X 0.43	0C) <u>: 22.31</u> e:		- -	Purge da Final (pos	te/completio st-purging) E ving + pump	n time: <u> </u>	ground): [\$/6422 OC):22 urged:	6 13:35				
		Initial	r		T	<u> </u>								
Pressure (ps			2	3	4	5	6	7	8	Final				
Refill Setting		30	3021	26					7	26				
Discharge Se		5	14	15]	<u> </u>	- <u> </u>		-	15				
Flow rate (ml	<u> </u>		·	5						5				
			50	110						110				
	······	•	Water	Quality Pa	ramete	r Measure	ements							
Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	рН	Eħ						
	(ft. BTOC)	(mL/min)	Volume (y	(degree C)		ductivity	P11		DO	Turbidity				
			Purged (L)	- ,		hos/cm)	į į	(mv)	(mg/L)	(NTU)				
12.25	22.41	50	0.1	27.44		380	6.48	131.1						
12:30	22.49	110	0.3	22.41		016			6.23	9.4				
12:35	22.69	110	0.4	12.42		52	6.56	138.2	3.53	21.4				
12:40	2291	110	0.6	22.03		50	<u>6.51</u>	- 139.7	2.26	19.9				
12:45	22.93	110	0.8	21.42		148		138.5	1.71	19.4				
12:50	12.94	110	1.0	22.35		50	6.51	12.0	1.53	19.7				
12:55	82.94	110	12	22.56		046	6.52	56.0	1.49	19.8				
15:00	27.94	10	1.3	12.63		146	6.52	50.0	1.15	19.3				
		· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>		34-4	101	<u>4.</u>				

))

GROUNDWATER SAMPLING FORM

Sheet _____of ____

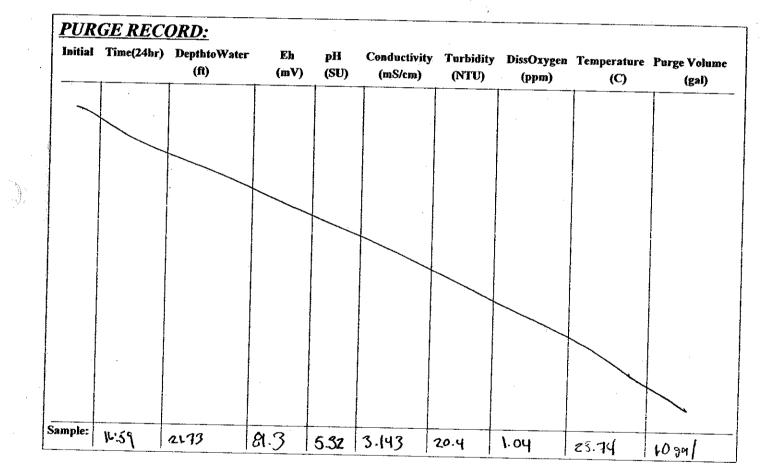
Instruction of the properties of the pro					ity Paramet	er Measurement	s (continue	ed)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time	DTW	-	1		+ Electrical	pH	Eb	DO	Turbidity	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(fl. BTOC)	(mL/min)			Conductivity	tai	(mv)			
13:10 22.94 10 1.7 22.46 1.040 6.952 6.14 0.960 14.3 13:15 22.44 10 1.8 22.45 1.037 6.92 6.00 0.97 12.3 13:20 22.44 110 1.8 22.45 1.037 6.92 6.00 0.97 12.3 13:20 22.44 110 2.1 22.47 1.032 6.51 6.4 0.94 100 13:25 22.44 110 2.1 22.47 1.032 6.51 6.54 10.0 13:25 22.44 110 2.4 22.58 1.032 6.51 2.1 0.53 9.4 13:25 22.44 110 2.4 22.58 1.032 6.51 2.1 0.83 10.0 13:25 10 2.4 10 2.4 10 2.4 10 10.0 10.0 14:32 10 2.4 10 2.4 10 2.4 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	121-5	02 04							± 10%	10%	
St.15 22.44 IIO I.B. 22.45 0.37 0.52 0.46 0.46 0.44 0.44 0.6 IB: ZO 22.44 IIO Z.1 22.47 100 22.47 0.352 0.51 0.44 0.64 0.0 0.97 16.7 IB: ZO 22.44 IIO 2.1 22.47 100 22.47 0.944 0.444 0.0 IB: ZO 22.44 IIO 2.1 22.435 1.052 0.511 0.44 0.644 0.0 IB: ZO 22.44 IIO 2.435 1.052 0.511 0.43 0.644 0.0 IB: ZO 22.44 IIO 2.435 1.052 0.511 2.11 0.743 0.010 IB: ZO 2.445 0.244 0.025 0.251 0.512 12.474 0.025 Sampling beginning time: 5745 Sampling completion time: 13.322 $14'.40$ Water Quality Parameter Measurements Image dPI En DO DO								29,0	1.00	17.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						and the second	6.52		8.90	14.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			the second se							12.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						<u> </u>		04		10.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 1.						0.8%		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1		72.80	1.036		6.3	6.86	<u>q.q</u>	
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged #D Conductivity (mV) (mV) Turbidity Value of the formation Sample collection date/time: 13:45 Duplicate sample collected (Y/N): Me Sample collection date/time: 16:61 13:46 OC No(s): Containers Requested Analysis Method	-1325	201-1-1	110	2.9	12.80	1.018	6.51	2.1	0.13	9.6	
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged #D Conductivity (mV) (mV) Turbidity Value of the formation Sample collection date/time: 13:45 Duplicate sample collected (Y/N): Me Sample collection date/time: 16:61 13:46 OC No(s): Containers Requested Analysis Method			<u></u>				<u> </u>	<u> </u>			
Sampling beginning time: 13:52 14:40 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged RD Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged RD Cumulative Temp. Clease Cle							<u> </u>	ļ			
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged #D Conductivity (mV) (mV) Turbidity Value of the formation Sample collection date/time: 13:45 Duplicate sample collected (Y/N): Me Sample collection date/time: 16:61 13:46 OC No(s): Containers Requested Analysis Method							<u></u>				
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged RD Conductivity (mV) (MTV) Value Rate Cumulative Turbidity Value Rate Cumulative Conductivity (mV) (MTV) Conductivity (mV) Cumulative Conductivity (mV) <th col<="" td=""><td></td><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td></th>	<td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td>			<u> </u>	<u> </u>				ļ		
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged #D Conductivity (mV) (mV) Turbidity Value of the formation Sample collection date/time: 13:45 Duplicate sample collected (Y/N): Me Sample collection date/time: 16:61 13:46 OC No(s): Containers Requested Analysis Method		<u> </u>	<u> </u>			·					
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged #D Conductivity (mV) (mV) Turbidity Value of the formation Sample collection date/time: 13:45 Duplicate sample collected (Y/N): Me Sample collection date/time: 16:61 13:46 OC No(s): Containers Requested Analysis Method			<u> </u>				· · · · · · · · · · · · · · · · · · ·				
Sampling beginning time: 13:45 Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity (ML/min) Purged #D Conductivity (mV) (mV) Turbidity Value of the formation Sample collection date/time: 13:45 Duplicate sample collected (Y/N): Me Sample collection date/time: 16:61 13:46 OC No(s): Containers Requested Analysis Method			L	1	l			·			
Sampling completion time: 13:52 14:40 Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity Ime DTW Purge Rate Cumulative Temp. Electrical pH Eh DO Turbidity IM Electrical pH Eh DO Turbidity (mV) (mg/L) (mV) IM Electrical pH Eh DO Turbidity (mV) (mg/L) (mV) (mg/L) (mV) IM Electrical pH Eh DO Turbidity (mV) (mg/L) (mV) </td <td></td> <td>• • •</td> <td>Bras</td> <td>-</td> <td>· Sa</td> <td>mpling</td> <td></td> <td>6</td> <td>Ne</td> <td></td>		• • •	Bras	-	· Sa	mpling		6	Ne		
Time DTW (ft. BTOC) Purge Rate (mL/min) Cumulative Volume 9 (degree C) Temp. (degree C) Electrical Conductivity (uMhos/cm) pH Eh DO (mg/L) Turbidity (MTU) [H:50] 22.94 MO 3.3 22.90 1.051 6.51 4.6 0.84 9.7 [H:50] 22.94 MO 3.3 22.90 1.051 6.51 4.6 0.84 9.7 [H:50] 22.94 MO 3.3 22.90 1.051 6.51 4.6 0.84 9.7 [H:50] 22.94 MO 3.3 22.90 1.051 6.51 4.6 0.84 9.7 [Sample ID: 49/40.01 Sample Information Sample collection date/time: 9/10/01 13:45 Duplicate sample collected (Y/N): No No Sample ID: 460/04 13:45 Coc No(s):	sampling b	eginning til	ne:	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Sampling c	completion t	ime: 13	14:4	0	
Time DTW (ft. BTOC) Purge Rate (mL/min) Cumulative Volume 9 (mged K2) Temp. (degree C) (uMhos/cm) Electrical Conductivity (uMhos/cm) pH Eh DO (mg/L) Turbidity (MTU) N:50 22.94 NO 3.3 22.90 1.051 4.6 0.84 9.7 N:50 22.94 NO 3.3 22.90 1.051 4.651 4.6 0.84 9.7 MO 3.33 22.90 1.051 4.651 4.6 0.84 9.7 MO 3.33 22.90 1.051 4.651 4.6 0.84 9.7 MO 3.33 22.90 1.051 4.651 4.6 0.84 9.7 Sample ID: 49/401 Sample collection date/time: 9/10/01 13:45 9/10/1 13:45 Duplicate sample collected (Y/N): No No Sample collection date/time: 9/10/01 13:45 OC No(s): No Split sample ID: 4/16 Containers Requested Analysis Method Containers Provins / Forwards 31.4 1.4 1.062 1.4 1.06 <td></td> <td></td> <td></td> <td>Water</td> <td>Quality Pa</td> <td>rameter Measure</td> <td>ments</td> <td></td> <td></td> <td></td>				Water	Quality Pa	rameter Measure	ments				
(ft. BTOC) (mL/min) Volume 9 (degree C) Conductivity (mv) (mg/L) (NTU) 14:50 22.94 NO 3-3.3 22.90 1.031 (a.51 4.5 0.84 9.7 14:50 22.94 NO 3-3.3 22.90 1.031 (a.51 4.5 0.84 9.7 Sample ID: 1900 Sample collected (Y/N): No Sample collection date/time: 9/10/101 13:45 Duplicate sample collected (Y/N): No Sample collection date/time: 9/10/101 13:45 Sourcise Collected (Y/N): No No Sample collection date/time: 9/10/101 13:45 Duplicate sample ID: 45 Wwol-Qcc Sourcise Collected (Y/N): No No Split sample ID: 13:45 Duplicate sample ID: 13:45 Coc No(s): No Split sample ID: 14 14 13:45 Split sample ID: 14 Dioxing / Forang 3W 8240 2+1-1 Ambe v Image: Ambe v	Time	DTW	Purge Rate					Eh	DO	Turbidity	
Purged KO (uMhos/cm) H1:50 22.94 No 3.3 22.90 1.031 4.51 4.5 0.84 9.7 Sample Information Sample Information Sample collected (Y/N): Mo Yc5 Sample collection date/time: 9/0/16/13:45 Duplicate sample collected (Y/N): Mo Yc5 Sample collection date/time: 9/0/16/13:45 Solution Sample collected (Y/N): Mo Yc5 Sample collection date/time: 9/0/16/13:45 Duplicate sample collected (Y/N): No Solution and the figure of the sample ID: 9/0/16/13:45 Requested Analysis Method Containers Requested Analysis Method Containers Provide y for angle in the y Analysis Method Containers Requested Analysis Method Containers Provide y for angle in the y Yes	İ	(ft. BTOC)	(mL/min)		(degree C)	Conductivity		(mv)			
Sample ID: 4800 1 Sample ID: 4800 1 Sample ID: 4800 1 Sample ID: 4800 1 Sample collected (Y/N): 10 Split sample collected (Y/N): No Solution Solution Sample ID: 4800 1 13:45 Sample collected (Y/N): No Solution Solution Solution Sample collection date/time: 410 400 1 Solution Solution Solution Solution Sample collection date/time: 410 13:45 Solution S						(uMhos/cm)				,	
Sample ID: Yes Yes Sample ID: Yes Yes Suplicate sample collected (Y/N): No Sample collection date/time: If yot Split sample collected (Y/N): No Duplicate sample ID: Yes Yes Solution collected (Y/N): No Sample collection date/time: If you Yes Split sample collected (Y/N): No Split sample ID: Yes Yes Solution collected (Y/N): No Split sample ID: Yes Yes Solution collected (Y/N): No Split sample ID: Yes Yes Solution collected (Y/N): No Split sample ID: Yes Yes Solution collected (Y/N): No Split sample ID: Yes Yes Solution collected (Y/N): No Split sample ID: Yes Yes Solution collected (Yes State Split sample ID: Yes Yes Solution collected (Yes State Split sample ID: Yes Yes Solution collected (Yes State Split sample ID: Yes Yes Solution collected (Yes	<u></u>	22 94	NO	2.3.3	22.90	1.031	6.51	4,5	0.84	9.7	
Sample ID:											
Sample ID:											
Sample ID:											
Sample ID:					Sample	Information					
Duplicate sample collected (Y/N): No Split sample collected (Y/N): No Duplicate sample collected (Y/N): No COC No(s): Split sample ID: Cock (S): Method Containers Requested Analysis Dioxing / Forance 31 4 Cock (S): 31 4 Containers Requested Analysis Method Containers Proving / Forance 31 4 Containers Containers	ample ID:	4800	61		oumpro	Sample coll	loction data	4/13/	of sources	-	
Split sample collected (Y/N): No Split sample ID: No COC No(s): Split sample ID: N/A Requested Analysis Method Containers Dioxins / Forans W 8290 2+1-L Amber 314 Lx HDPć	uplicate sa			No. Ye	5	Dunlicate c	amnia ID-	une:	<u>- 1 13-45</u>		
COC No(s): lequested Analysis Method Containers Requested Analysis Method Containers Dioxins / Forans SW 8290 2+1-L Amber Perchlowne 314 1-X HDPE	plit sample	e collected	(Y/N):						<u>4</u>		
Requested AnalysisMethodContainersRequested AnalysisMethodContainersDioxins / ForansSW 82902+1-LAmber22Perchlosse31-41-XHDPć2	OC No(s):		. ,			opin dampin		<u> </u>			
Dioxins/Forang SW 8290 221-L Amber Perchlosse 314 2×HDPE	<u> </u>						· · · · · · · · · · · · · · · · · · ·				
Perchlomete 314 1× HDPE						Requested	Analysis	Method	Contai	ners	
RCRA Metals STY IX HDPE RCRA Metals State X 250ml HDPE + HNO,					nber						
KCKA Metals 74700 K 250ml HIDPE + HNO,		<u>k</u>	34								
	icka me	1815	74754	* 250mL	HOPE THI	NO,					
				·							
		1		·	•••						

previations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

	Sa	mple (Collection Log	00043631 Page 1 of 2
haw E & I, Inc.		845714 Manager:	LONGHORN AAP Praveen Srivastav	
		÷	49	-091404-KF
Location Code.	THEMAN	-	RFA / COC Number: 48	-091404-60
	LHSMW62 L0001-LHSMW6			GW DATA GAPS AUG
		•	Collection Date:	9/13/04
	L0001-LHSMW62-0	U	Collection Time:	
Sampling Method:			Start Depth:	21.45
Sample Type:	GW	Sample Purpos	e: REG End Depth:	21.73
Sampling Equip: Partners:	1" PVc Baiky		Sample Matrix:	
(TB)	(ER)	(17 1)		WAIER
	<u> </u>	(FB)	Sample Team:	A. Willmore, B. Ansley
Analytical Suite	Fit Frin Qty Size U	nits Type	ERPIMS	S Values: Sacode:
MELALS W		TE HOPE PLA	Lot	Control#:
PERC	N B LS S	ls-suider an		<u> </u>
Dioxins Furans	NGC 64 BUDD	E. Amb Lilass		
<u>Groundwater Inf</u> Measured W	170001/	Depth T	o Water: 2091	
Comments:	Had to pail well	due to St	low recharge characteristly	

Logged BY / Date: <u>M. Ill (~</u> 9/11/1011

Reviewed BY / Date: Alford [1/14/01


00043632

Page 2 of 2

LONGHORN AAP 845714 **Manager:**

Praveen Srivastav

Location Code: LHSMW62 Sample Number: L0001-LHSMW6

Logged BY / Date: <u>M. Ill</u>

Reviewed BY / Date: A Mar 9/4/04

.13^{5%}

GROUNDWATER SAMPLING FORM

Sheet 1 of 2

Project N	e Unit/Site II Name/#:		•			Sampling	Jiocation IL): 6 46	T LHEN	Noz		
	: CLEAR			·······	<u> </u>	Sample ID: LHSM LT Collection Time/Date: 9/13/0-1 10:57						
медыст	. <u> (CC Ap</u>	<u>_</u>	<u>o 103</u>			Collectio	n Time/Date	s: 4/13/0-1	16:52			
				Pum	p Inst	allation						
Pump ins	stallation cre	w: A. IA	illmore n	Holentia	į.	Installatio	n date/heoi	innina time:	applat	8:58		
PID/FID	reading (we	ll head/back	(ground):	0.0	-	Installation date/beginning time: <u>9664</u> 8:53 Installation date/completion time: 91564 8:59						
	iameter (inc			·····				TOC):				
Total wel	l Depth (ft. 1	STOC): 7	4.45		-	Pumn int	ako donth (i	t BTOC):	74 UF	<u> <u> </u></u>		
Initial (pr	e-installatior	n) DTW/time	: 20.91	8.48	Post-inst	alletion DTV	V/time:	<u> </u>	-1.03			
Final (aft	er pump prir	ning) DTW/	time:	4:01	- 10			np rate (mL		0.0		
Free proc	duct (circle):		PL/DNAPL	#2-24	-			nprate (mt ici:	///initj. <u> </u>			
	of water rem				-			eter (3/8" or	- 1/Am)- 3/	4		
	e tube lengt			_/		Inlet redu	Cerused (V	/N):	14) <u>-74</u>	3		
	lic Controll			·····		moticuu		/ · · · J	MO			
	pressure = I		3= <u> 0.51</u>	psi			•	I				
		Initial	2	3	4	5	6	7	8	Final		
Pressure (p	si)				1	1	-		- 	C mai		
Refill Settin	9						1					
Discharge S	Setting					1						
Flow rate (n	nL/min)					1		·	· [
nitial (pre	ampling cre e/beginning -purging) D d tubing + p	ume: TW (ft. BTO	C):	. Hatter fi		PID/FID re Purge date Final (pos	e/completio t-purging) D	head/backon n time:_ <u>9//</u>)TW (ft. BTC	3/01 DC):	0.0		
Purge dat Initial (pre Calculated Pneumati	e/beginning -purging) D d tubing + p ic Controlle	ume: TW (ft. BTO ump volume r Tuning:	C):	va Na	cld	PID/FID re Purge date Final (pos	e/completio t-purging) D	n time: <u>9/1</u>	3/01 DC):	0.0		
Purge dat Initial (pre Calculated Pneumati	erbeginning -purging) D d tubing + pi	ume: TW (ft. BTO ump volume r Tuning:	C):	va Na	cld	PID/FID re Purge date Final (pos	e/completio t-purging) D	n time: <u> ⁹/1</u> TW (ft. BTC	3/01 DC):	0.0		
ruige dai Initial (pre Calculated Pneumati Initial air p	erbeginning -purging) D d tubing + pi ic Controlle pressure = H	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initlal	C): :1 =_ <u>_10.51</u> 2	va Na	cld	PID/FID re Purge date Final (pos	e/completio t-purging) D	n time: <u> ⁹/1</u> TW (ft. BTC	3/01 DC):	D. () Final		
Porge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps	erbeginning -purging) D d tubing + p ic Controlle pressure = H 	ume: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial	C):1 = 10.51 2 17	<u>. alt = u fi</u> <u>NA</u> _psi	c/c/	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump	n time: <u>9//</u> ITW (ft. BTC volumes pu	3/07)C): rged:			
Porge dan Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting	erbeginning -purging) D d tubing + p ic Controlle pressure = H	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initlal	C):I :I =_ <u>_I0.5</u>] I I I.4	<u>. alt = u fi</u> <u>NA</u> _psi	c/c/	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump	n time: <u>9//</u> ITW (ft. BTC volumes pu	3/07)C): rged:	Final		
rutge dat Initiał (pre Calculated Pneumati nitiał air p ressure (ps Refill Setting Scharge So	erbeginning -purging) D d tubing + pi ic Controlle pressure = H 	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial I 77 IO 5	C):1 = 10.51 2 17 1.4 1.4 4.6	<u>. alt = u fi</u> <u>NA</u> _psi	c/c/	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump	n time: <u>9//</u> ITW (ft. BTC volumes pu	3/07)C): rged:	Fina) 17 11.4		
rutge dat Initiał (pre Calculated Pneumati nitiał air p ressure (ps Refill Setting Scharge So	erbeginning -purging) D d tubing + pi ic Controlle pressure = H 	ume: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial	C):I :I =_ <u>_I0.5</u>] I I I.4	<u>. alt = u fi</u> <u>NA</u> _psi	c/c/	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump	n time: <u>9//</u> ITW (ft. BTC volumes pu	3/07)C): rged:	Final 17		
Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Tow rate (m	erbeginning -purging) D d tubing + pi ic Controlle pressure = H 	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial I 77 IO 5	C): = = 17 17 17 1.4 4.6 105	<u>. alt = u fi</u> <u>NA</u> _psi	4	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump 6	n time: <u>9//</u> ITW (ft. BTC volumes pu	3/07 DC): rged:	Finat 17 11.4 4.4		
Purge dat Initial (pre Calculated Pneumati	erbeginning -purging) D d tubing + pi ic Controlle pressure = H ii) etting Umin) DTW	time: TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 Initial IT IO 5 Zvo	C): = <u>10.5</u>] <u>2</u> <u>17</u> <u>1.4</u> <u>4.6</u> 105 Water Cumulative	NA	4 ramete	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump 6	n time: <u>9//</u> ITW (ft. BTC volumes pu	3/07 DC): rged:	Final 17 11.7 4.6 105		
Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Tow rate (m	erbeginning -purging) D d tubing + pi ic Controlle pressure = H 	time: TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 Initial I T IO 5 Zuo	C): = [2] [1.4 17 17 17 17 U.4 U.5 Volume g	VA psi Quality Pa	4 ramete	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump 6 6 ments	n time:_ <u>9//</u> TW (ft. BTC volumes pu	3/04 DC): rged:	Final 17 11.9 4.6 105		
Time	erbeginning -purging) D d tubing + pu ic Controlle pressure = H i) etting L/min) DTW (fL BTOC)	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initlal I'T IO 5 Zuo Purge Rate (mL/min)	C): = 10.5 $= 10.5$ 2 17 1.4 4.6 105 Water Cumulative Volume 3 Purged (L)	A psi Quality Pa Temp. (degree C)	4 ramete Ele Con (UM	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump 6 6 ments	n time: <u>9//</u> DTW (ft. BTC volumes pu 7 Eh	3/04 DC): rged: 8 DO	Final 17 11.9 4.9 Io.5		
Purge data nitial (pre Calculated Pneumati nitial air p Pressure (ps Refill Setting Nischarge St low rate (m Time	erbeginning -purging) D d tubing + pi ic Controlle pressure = H ii) etting Umin) DTW (fL BTOC) 21 - 27	time: TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 Initial I'T IO 5 ZUO Purge Rate (mL/min) 05	C): = 10.5 $= 10.5$ 2 17 105 Water Cumulative Volume g Purged (L) 0.2	A psi Quality Pa Temp. (dégree C) 2 1.78	4 ramete Ele Con (UM) 3, 16	PID/FID re Purge data Final (pos No. of tubi 5 5 r Measure ectrical ductivity hos/cm) 3	e/completio t-purging) D ing + pump 6 6 ments	n time: <u>9//</u> DTW (ft. BTC volumes pu 7 Eh	3/04 DC): rged: 8 DO (mg/L)	Final 17 11.9 4.9 10.5 Turbidity (NTU)		
Putge data nitial (pre Calculated Pneumati nitial air p Pressure (ps Refill Setting Nischarge Si low rate (mi Time 9:27 9:27	etting $L_{1} + 27$ $L_{1} + 27$ $L_{1} + 27$ $L_{1} + 27$ $L_{1} + 27$ $L_{1} + 27$	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial IT IO 5 TWO Purge Rate (mL/min) 105 105	C): = 10.5 $= 10.5$ $= 10.5$ $= 10.5$ $= 10.5$ $= 10.5$ Water Cumulative Volume 2 Purged (L2) $= 0.3$		c/c/ 4 ramete Ek Con	PID/FID re Purge data Final (pos No. of tubi 5 5 r Measure ectrical ductivity hos/cm) 3	e/completio t-purging) D ing + pump 6 6 ments pH	n time: <u>9//</u> DTW (ft. BTC volumes pu 7 Eh (mv)	3/04 DC): rged: 8 DO	Final 17 11.4 4.4 10.5 Turbidity (NTU) 108.6		
Putge dat nitial (pre Calculated Pneumatinitial air p Pressure (ps Refill Setting Nischarge Schow rate (m) Time 9:27 9:27 9:27 9:27	$\begin{array}{c} Problem in the second state of the se$	time: TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial I'T IO 5 ZUO Purge Rate (mL/min) 105 105	C): = 10.5 = 10.5 2 17 1.4 4.6 105 Water Cumulative Volume 2 Purged (L) 0.2 0.3 0.4	<u>VA</u> _psi 3 Quality Pa Temp. (degree C) 21.78 21.93 22.17	4 ramete Ele Con (UM) 3, 16	PID/FID re Purge data Final (pos No. of tubi 5 5 er Measure ectrical ductivity hos/cm) 3	e/completio t-purging) D ing + pump 6 ments pH 5.29	n time: <u>9/1</u> TW (ft. BTC volumes pu 7 Eh (mv) 75.3	3/04 DC): rged: B DO (mg/L) 1.26 1.19	Final 17 11.9 4.4 10.5 Turbidity (NTU) 108.6 100.9		
Purge data nitial (pre Calculated Pneumati nitial air p Pressure (ps Refill Setting Discharge So low rate (m Time q:2-7 q:3-7 q:3-7 q:3-7 q:3-7 q:2-7	erbeginning -purging) D d tubing + purging) D d tubing + purging) D ic Controlle pressure = H ii) etting L/min) DTW (ft. BTOC) $L_1 \cdot L_7$ $Z_1 \cdot Z_1$ $Z_1 \cdot Z_1$	time: TW (ft. BTO timp volume r Tuning: I(ft.) X 0.43 Initial I^{-1} IO 5 200 Purge Rate (mL/min) 05 105 105 105 105	C): = 10.5 = 10.5 2 17 1.4 4.6 105 Water Cumulative Volume 9 Purged (L) 0.2 0.4 0.5		4 ramete Ek Con (UM 3.16 3.16	PID/FID re Purge data Final (pos No. of tubi 5 5 r Measure ectrical ductivity hos/cm) 3	e/completio t-purging) D ing + pump 6 6 ments pH 5.29	n time: <u>9/1</u> DTW (ft. BTC volumes pu 7 Eh (mv) 75.3 74.4 73.6	3/04 DC): rged: B DO (mg/L) 1.26 1.19 1.23	Final 17 11.9 4.6 10.5 Turbidity (NTU) 108.6 100.9 73.9		
Provide data Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Nischarge Si Now rate (mi Time q: 121 q: 32 q: 32 q: 33 q: 4; 92 q: 47	erbeginning -purging) D d tubing + purging) D ic Controller pressure = H ii) d tubing + purging) ic Controller pressure = H ii) (IL BTOC) $1 \cdot 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	time: TW (ft. BTO timp volume r Tuning: I (ft.) X 0.43 Initial I^{T} IO 5 2vo Purge Rate (mL/min) 05 105 105 105 105 105 105 105 105	C): = 10.5 = 10.5 2 17 1.4 4.6 105 Water Cumulative Volume 2 Purged (L) 0.2 0.3 0.4	<u>VA</u> _psi 3 Quality Pa Temp. (degree C) 21.78 21.93 22.17	4 ramete Ele Con (uM 3.16 3.16 3.17	PID/FID re Purge data Final (pos No. of tubi 5 5 r Measure actrical ductivity hos/cm) 3 4 1	e/completio t-purging) D ing + pump 6 6 ments pH 5.29 5.29 5.30 5.30	n time: <u>9/1</u> DTW (ft. BTC volumes pu 7 Eh (mv) 75.3 74.4 73.6 76.3	3/04 DC): rged: B DO (mg/L) 1.26 1.19 1.23 1.04	Final 17 11.4 4.5 10.5 Turbidity (NTU) 108.6 108.6 100.9 73.9 71.4		
Pressure (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sc Time q:127 q:37 q:37 q:47 q:47 q:52	erbeginning -purging) D d tubing + purging) D ic Controlle pressure = H ii) umin) DTW (fL BTOC) $L_1 \cdot L_7$ $Z_1 \cdot J_7$ $Z_1 \cdot J_7$ $Z_1 \cdot J_7$ $Z_1 \cdot J_7$ $Z_1 \cdot J_7$	time: TW (ft. BTO timp volume r Tuning: I (ft.) $X 0.43$ Initial IT IO 5 200 Purge Rate (mL/min) 105 105 105 105 105 105 105 105	C): = 10.5 = 10.5 2 17 1.4 4.6 105 Water Cumulative Volume 2 Purged (L) 0.2 0.3 0.4 0.5 0.9		4 ramete Ek Con (UM 3.14 3.17 3.17 3.17	PID/FID re Purge data Final (pos No. of tubi 5 r Measure ectrical ductivity hos/cm) 3 9 1 6 4	e/completio t-purging) D ing + pump 6 6 ments pH 5.29 5.30 5.30 5.30 5.31	n time: <u>9/1</u> DTW (ft. BTC volumes pu 7 Eh (mv) 75.3 74.4 75.3 74.4 73.6 76.3 71.7	3/04 DC): rged: rged: B DO (mg/L) 1.26 1.19 1.24 1.04 1.04	Final 17 11.4 4.4 105 Turbidity (NTU) 108.6 100.9 73.9 71.4 645		
Provide data Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Nischarge Si Now rate (mi Time q: 121 q: 32 q: 32 q: 33 q: 4; 92 q: 47	erbeginning -purging) D d tubing + purging) D ic Controller pressure = H ii) d tubing + purging) ic Controller pressure = H ii) (IL BTOC) $1 \cdot 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	time: TW (ft. BTO timp volume r Tuning: I (ft.) X 0.43 Initial I^{T} IO 5 2vo Purge Rate (mL/min) 05 105 105 105 105 105 105 105 105	C): = 10.5 = 10.5 2 17 1.4 4.6 105 Water Cumulative Volume 2 Purged (L) 0.2 0.3 0.4 0.5 0.1		4 ramete Ele Con (uM 3.16 3.16 3.17 3.17	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) D ing + pump 6 6 ments pH 5.29 5.29 5.30 5.30	n time: <u>9/1</u> DTW (ft. BTC volumes pu 7 Eh (mv) 75.3 74.4 73.6 76.3	3/04 DC): rged: B DO (mg/L) 1.26 1.19 1.23 1.04	Final 17 11.4 4.5 10.5 Turbidity (NTU) 108.6 108.6 100.9 73.9 71.4		

GROUNDWATER SAMPLING FORM

Sheet ____of __

	I				ter Measurement	s (continue	d)		
Time	DTW	Purge Rate	Cumulative	Temp.	± 3 7. Conductivity	pH	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	ł	1+ al	(mv)	(mg/L)	(NTU)
to: A	21-91	1.5	Purged (12)		(uMhos/cm)	±0.1	±10	±10%	±10%
10:07		103	1.4	23.29	J.143	5.32	993	0.87	35.0
W-11	21 98	105		23.30	3110	5.32	79.5	0.86	34.5
10:17 A:22	22.03	105	1.7	23.47	3.110	5.33	80.Z	0.94	29.3
<u> </u>	2.14	105	1.9	23.02	3.102	5.33	80.4	0.93	26.3
	C4-311	103	2.0	23.77	3.101	5.53	805	0.80	22.7
	+							·	
					······································				
							· · · · · · · · · · · · · · · · · · ·		
					<u> </u>	<u> </u>		<u>_</u>	
~~ ·			VIJS	Dai					
				<u> </u>					
				Sa	mpling			5	
Sampling	beginning tin	ne:				completion ti	me:		
			Water	Quality Pa	rameter Measure				
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	77 1 1 1 1
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity	pri	(mv)		Turbidity
			Purged (12)	, , ,	(uMhos/cm)		(1114)	(mg/L)	(NTU)
4.57	21.73	100	10 gal.	23.74	3.143	5.32	81.3	1.04	20.4
				Sample	Information				1
ample ID	LHSM	12				lection date/	time:		
	ample collec		Y			ample ID:			——— I
	e collected (Y/N):			Split sample				
OC No(s)									
equested	Analysis	Method		ntainers	Demuseter	A			[
				namers	Requested	Analysis	Method	Contai	ners
			<u> </u>						
· ·									
· ·									
omments	•								
	•								
									ļ

	Sample (Collection Log	00043635
Shaw E & I, Inc.	845714 Manager:	LONGHORN AAP Praveen Srivastav	Page 1 of 2
Analytical Suite Flt Frin Qty METAIN W N A D PERC N B 1 Dioxins Furans N C 2 <u>Groundwater Information:</u> Measured Well Depth: 2: <u>Comments:</u> D845- Left 	1W63-00 Sample Purpos (FB) cainers Size Units Type 500 ml HDPE Care The HDP	Collection Time: Start Depth: End Depth: Sample Matrix: Sample Team: ERPIM NO3 Low Fo Water: 21.60 weter Bailed Dry -	9/1.3/04 WATER

Logged BY / Date:

۰. -

00043636

Page 2 of 2

845714 LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW63 Sample Number: L0001-LHSMW6

Initial	Time(24hr)	DepthtoWater (ft)	Eh (mV)	рН (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gal)
						-	İ		
			、 _						
mple:									

Logged BY / Date:

GROUNDWATER SAMPLING FORM

00043637 Sheet <u>1</u> of

								<u>C</u> I	do	NI
Operabl	e Unit/Site I	D:				Samplin	d location l	<u></u>	<u>- 48</u>	Net bok
	Name/#:		AAP			Samplin				
Weather	:_ Clear				·	•	on Time/Dat	<u> </u>	······································	
Dump in	ntoRetter	KEnn	TT IP	Pum <i>Vigrz</i> 1.6/0.1	ip Inst	tallation				· · · · · · ·
	stallation cre	ew. <u>L</u>	W V 101	ngrz	<u>_</u>	Installati	on date/beg	jinning time	: <u>9/13</u>	โกป
PID/FID	reading (we	il head/bac	kground): <u>(</u>	<u>,,670,6</u>	-	Instaliati	on date/cor	npletion time	e:	- 1
Total wo	liameter (inc Il Depth (ft. 1	nes): <u>4</u>	Pye	<u></u>		Screèn I	nterval (ft. I	3TOC):	t	o
Initial (pr	n Depui (it. : Ainstallatia	DIUU;	20.0	<u> </u>	-	Pump in	take depth	(ft BTOC):		0
Final (aft	er pump pri	n) D F W/UM mina) DTIM		,0	- ·					
Free pro	duct (circle):	· INN INN () INN			-	Max. sus	stainable pu	mp rate (ml	./min):	· · · · · · · · · · · · · · · · · · ·
Volume	of water rem	· <u>LIV</u>	<u>VFL / DIVAP</u>	L	- .		nce of prod			
Discharg	e tuhe lenat	10 VCQ Q011111(15 /ft }-	a burund (u	n_):	-	Discharg	e lube dian	neter (3/8" o	r 1/4"):	
Pneuma	tic Controll	er Tunina:	·		<u> </u>	Inlet redu	icer used (`	Y/N):	·	
	pressure =			psi				. •		~
	······································	Initial	2	3	4	5	6	7		
Pressure (p	si)				1		- 		- 8	Final
Refill Settin	9							-	-}	
Discharge S						1				
Flow rate (n	nL/min)						1 .			
					Purgin	าต				
	ampling cre				Ū	-	eading (wel	i head/back	around).	
Purge dat	e/beginning	time:				Purge dat	le/completio	n time:	gioanaj	
Initial (pre	-purging) D	TW (ft. BTC)C):					DTW (ft. BTO		·····
Calculate	d tubing + p	ump volume	e:	NA	-	No. of tub	ing + pump	volumes pu	irged;	
	ic Controlle							.•	•	
nunai air b	pressure = H	i (ft.) X 0.43		_psi						
		Initial	2	3	4	5	6	7	8	
Pressure (ps									· · · · · ·	Final
Refill Setting		<u> </u>					1		<u> </u>	
Discharge Se			· ·					1	<u> </u>	
Flow rate (m	L/min)	I						1	†	
•	·····		Water	Quality Pa	ramete	r Measure	ments			
Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	pH	Eh	DO	Toublett
	(fl. BTOC)	(mL/min)	Volume	(degree C)	Con	ductivity		(mv)	(mg/L)	Turbidity (NTU)
			Purged (L)		(uM	hos/cm)			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(4410)
		<u>a.</u> ,	7			·····				+
		Dail	Day	18	50		Ngn	T-		-}]
							2			
				Retur	n	2 1030		W=21	2.02	<u>+</u>
						134		N=2	210D	*
						50 55		W = 2	1.00	<u>†</u>]
					9 4	104 69	45 D	W= 2	1. 99	††
				No sa	mak	. Wheel	4.		····	11

shaw.

......

))

GROUNDWATER SAMPLING FORM

Sheet ____of_

00043638

Time	DTW	Purge Rate		Temp.	er Measurement	Hq	1		
	(fl. BTOC)	(mL/min)	Volume	(degree C)	± 3%. Conductivity	pri .	Eh	DO	Turbidity
			Purged (L)	土10%	(uMhos/cm)	±0.1	(mv) ±10	(mg/L)	(NTU)
	1	<u> </u>	T III God (Lef	21010	(unarritosi citity		1-10	± 10%	±10%
	· [<u> </u>			<u> </u>				+
	•					·			<u> </u>
									<u> </u>
· · · · · · · · · · · · · · · · · · ·						·[ļ
	·			·			┢┅┈┈		
					· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	· 	
							<u> </u>		
							<u> </u>	<u> </u>	
					<u>=.</u>		<u> </u>		
			····				<u> </u>	<u> </u>	
·							<u> </u>	ļ	
·			_				_	 	
									·
				Sa	mpling				
mpling l	beginning tin	1e:		·	Sampling c	completion i	ime:		
			Water	Quality Par	ameter Measure			· · · · · · · · · · · · · · · · · · ·	
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity	P.1.1	(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)		()	(mg/1-)	(1410)
							· · · · · · · · · · · · · · · · · · ·		[
				Comula	h				
mple ID:				Sample	Information				1
	ample collec	tod (V/NI).	····-	·	Sample coll				
lit samnl	e collected (∧eu (1/1¥) V/NI)-			Duplicate sa				
C No(s)	·	LINY)			Split sample	e ID:			
0 110(3)	·								
quested	Analysis	Method	Cor	otainers	Requested	Analysis	Method	Contai	
							meanou	conta	iners
		·							
			·····	· · · · · · · · · · · · · · · · · · ·					
nments	22.12	२ ^१	Bail Di situ (6	M	Return Return Return	a 10	30 0	w = 20	.021
	2160	N	~ • +	د د	V) I			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	SUPP (· •		-	Komm	(C), 1940.($r \sim r$	ณเร แก	$\lambda O \cap I$

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

00043639

Page 1 of 2

845714 LONGHORN AAP Manager: Praveen Srivastav

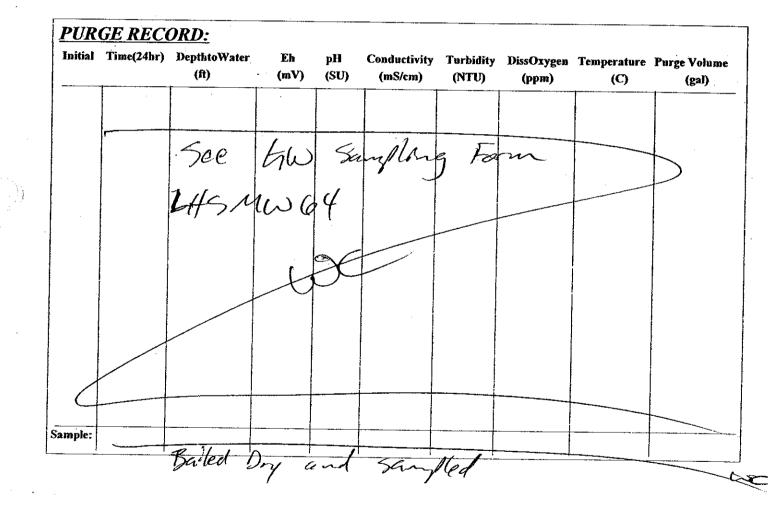
48-091404-KE RFA / COC Number: 48-091404-00 Location Code: LHSMW64 GW DATA GAPS AUGO Task: Sample Number: L0001-LHSMW64 nŲ Collection Date: Sample Name: L0001-LHSMW64-00 Collection Time: 1540 + MS, MSD Sampling Method: BA Start Depth: 21.23 Sample Type: GW Sample Purpose: REG End Depth: Sampling Equip: PVC Disposable bailer Sample Matrix: WATER **QC Partners:** (TB) (ER) (FR) Sample Team: D. Crite M. Matin Containers **ERPIMS Values: Analytical Suite** Flt Frtn Qty Size Units Type Sacode HNOZ MERNES Lot Control#: 11.00 RARG al and a second Dioxins Furan **Groundwater Information:** Measured Well Depth: 27, 75 Depth To Water: 21, 33 **Comments:** Briled Well Dry (Approx 5 gal.) Returned and sampled well - MSMSD also collected from the

Sketch Location:

Logged BY / Date:

THE 9/13/04 Reviewed BY / Date: Ja for 1/19/04

00043640


Page 2 of 2

845714 LONGHORN AAP

Manager:

Praveen Srivastav

Location Code: LHSMW64 Sample Number: L0001-LHSMW6

Logged BY / Date. 9/13

GROUNDWATER SAMPLING FORM

Sheet _1_of _2

Operable	Unit/Site ID	Aca 41	5 congly	m the		Sampling	location ID	LHSA	16.04	
Project Na	ame/#: <u></u>	uglan	AAP		~	Sample II	: LHS	MWC	74	
Weather:_	·	<u></u>			<u> </u>	Collection	Time/Date	: 9-13-04 /	1548	
		·		Pum	p Insta	llation				
Pump inst	allation crev	N. M.Ma	line/w	Cite		Installatio	n date/begii	nning time:_	9-13-01/	C917
	eading (well				•	Installatio	n date/com	pletion time:	9-13-04/0	1914
	ameter (inch		· · · ·	- r	-	Screen In	terval (ft. B	ГОС): <u>г</u>	7.75 10	27-75
•	Depth (ft. B	/	7.75 -		-	Pump inta	ake depth (f	BTOC):	25	,
	-installation			10900		Post-insta	Illation DTM	//time: ?//	5/0915	· ·
	r pump prim				3145	Max. sust	ainable pun	np rate (mL/	/min): ~/	1
	uct (circle):				1940	Appearan	ce of produ	ct: er	· · · ·	Fa
Volume of	water remo	wed during	priming (ml	_):	-			eter (3/8" or	1/4"): 3/6	•
	tube length			, <u> </u>	_		cer used (Y/	•	/	· · · -
Pneumati	c Controlle	r Tuning:		•	_		•	/		
Initial air p	ressure = H	l (ft.) X 0.43	=	_ psi						
	·····	Initial	2	3	4	5	6	7	8	Final 🔿
Pressure (ps			ļ			\square				
Refill Setting					10	EN/			·	
Discharge Se				· · · · · · · · · · · · · · · · · · ·	C					
Flow rate (m	L/min)	<u> </u>	<u> </u>	<u> </u>	1	l <u></u>	<u> </u>			
Initial (pre- Calculated	e/beginning -putging) D1 I tubing + pu	TW (ft. BTO ump volume	C): <u>-7-1-7-</u>		- -	Final (post	t-purging) D	n time: <u>01-</u> TW (ft. BTC volumes pu)C)://	<i>I</i>
	c Controlle ressure = H	•	=	_psi						
		Initiat	2	3	4	5	6	7	8	Final
Pressure (psi	<u>) </u>	.20	20	ļ		·				+
Refill Setting	<u> </u>	12.0	B.O							
Discharge Se		30	2.0							
Flow rate (mt	_/min)	160	100	<u> </u>			1	<u> </u>		<u> </u>
	·····		· · · · · · · · · · · · · · · · · · ·	Quality Pa	aramete	er Measure	ments			
Time	DTW	Purge Rate	Cumulative	Temp.	Ek	ectrical	рН	Eh	DO	Turbidity
	(fL BTOC)	(mL/min)	Volume	(degree C)	Con	ductivity		(mv)	(mg/L)	(NTU)
			Purged (L)			hos/cm)		<u> </u>		
0950	21.87	100	0	21.47	$\mathcal{O}^{\frac{3}{2}}$		5.84	344.8	1.22	137,3
0955	22.01	100	0.5	21.55		324	587	322,0		124,8
1000	22.18	100		21.57		25	545	302,1	0,97	109,8
1005	22,26	100	1,5	21.75		25	5.89	284.0	0.88	96 C
1010	22.34	100	2.0	21.80	0.3	25	5.87	297.2	0.87	89,7
				Hand	1 00				,	
				Mana						

shaw.

GROUNDWATER SAMPLING FORM

Sheet 2_of 2

00043642

	1						s (continue	1	· · · ·	<u> </u>	-
Time	DTW	Purge Rate	: .	Temp.	±3튁	ectrical ductivity	рН	Eh	DO	Turbidity	
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Čor	ductivity	+ 1	(mv)	(mg/L)	(NTU)	K
	<u> </u>		Purged (L)	±10%	(uM	lhos/cm)	±0.1	±10	土10%	10%	12
		,									
							1	1			1-
· · · · · · · · · · · · · · · · · · ·							1				1
<u>. </u>					[1	1
					<u> </u>				1		1
	· ·		·····			\geq	·[<u> </u>	1
·····								[1
···········								<u></u>		<u>-</u>	ł
				< -	fre-	<u>y</u> <u>y</u>	· ·	<u> </u>			
<u> </u>					-	·		_			-
			<u> </u>		[·					ļ	1
	· · · · · · · · · · · · · · · · · · ·				ļ					<u> </u>	1
	\vdash				ļ		<u> </u>	ļ	<u> </u>	<u> </u>	I
1		· ·			İ		<u> </u>	L	I	L	
\sim	· ·			• _					ļ.		
	-			S	amplir	na			· · ·	······································	Ĩ
ampling l	beginning tir	no: 1	run		•	-	completion (imor	1550		
ampingi	ւշվություն ա	ne7						me	1330		
·····	r	· · · · · · · · · · · · · · · · · · ·		Quality Pa	ramete	r Measure	ments				I
Time	DTW	Purge Rate	Cumulative	Temp.	Ék	ectrical	pH	Eh	DO	Turbidity	l ·
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Con	ductivity		(mv)	(mg/L)	(NTU)	ł
			Purged (L)		Top	hos/cm)	· ·	_	-		
)						
				-/Z	ry_						
\sim						*					ł
							· · · · · · · · · · · · · · · · · · ·				í
				Sample					1		
	LHS					Sample co	llection date	/time: <u> </u>	3-04/		
uplicate s	ample colle	cted (Y/N):_	~ 0			Duplicate s	ample ID:_	here			1
plit sampl	e collected	(Y/N): 🗡	U			Split samp	ہمle ID	y i			1
OC No(s)):										ĺ
	l Analysis	Method	Co	ntainers		Requested	I Analysis	Method	Conta	niners	l
<u>Cerls</u> e	010	514	1 250	Jan			/	Λ			
terals			1 250,	~ C CHR	102)		7	6V			İ
Heating				Ansker				ug -			
			<u></u>		†					··· ··· · ····	
			· · · · · · · · · · · · · · · · · · ·		ł		<				l
											1
omments	5.										İ
											l
											ł
						-					

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

845714 LONGHORN AAP

Manager:

Praveen Srivastav

48

1 of 2

00043643

Page

		RFA /	COC Number:	
Location Code: Sample Number:	LHSMW65 L0001-LHSMW6			GW DATA GAPS AUGO
-	L0001-LHSMW65-	-00	Collection Date: Collection Time:	
Sampling Method: Sample Type:		Sample Purpose: REG	Start Depth:	
Sampling Equip: QC Partners:			End Depth: Sample Matrix:	WATER
(ТВ)	(ER)	(FB)	Sample Team:	W. Critz M. Martinez, 9/14/04 KErmethy L. Radrique;
Analytical Suite	Containers Flt Frtn Qty Size	Units Type	ERPIMS	
METALESW THE PERCENCE FERCES Dissing Failure	N. A. I. SHE. N. D. I. J. N. D. L. J. N. C. M. Z. J. J.	E HDPE	Lot	Control#:
<u>Groundwater Info</u> Measured W		Depth To Water:		
Comments:		1/14/04 DTW = 20		,45
· · · · · · · · · · · · · · · · · · ·	Not enough to	Sample - No sample	. collectel.	

Sketch Location:

Logged BY / Date:

Page 2 of 2

00043644

845714 LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW65 Sample Number: L0001-LHSMW6

Initial	Time(24hr)	DepthtoWater (ft)	Eh (mV)	рН (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gal)
						-			
	- -	-	-						
							1		
	Ĩ								
				.					
mple:									

Logged BY / Date:

ş•

GROUNDWATER SAMPLING FORM

а.

Sheet 1_of 2

Operable	Unit/Site ID	Acres 4	8 locuel	IN IN	3	Samplin	locotion ID	. 1.44		
Project N	ame/#:	A	AAN			Sampla) location ID		4005	<u>_</u>
Weather:		regular			— ·	Collection	D: <u> </u>	ML G	<u> </u>	···
						Collectio	n Time/Date	NO.	Saught	> *****
				Pum	p Inst	allation				
Pump ins	tallation cre	w. Ma	risoc/	J. Crin		Installatio	on date/begi	nnina time:	1-1A	•
PID/FID r	eading (wel	l head/back	ground): o	010.0			on date/com			
Casing di	ameter (incl	hes): 4'	i i		<u> </u>	Screen In	nterval (ft. B		1043 to	30.447
	Depth (ft. E			· · · · · · · · · · · · · · · · · · ·	-	Pump int	ake depth (f	BTOC)	<u> </u>	ac vs
	installation				-	Post-inst	allation DTW	//time [.]	A	
Final (afte	er pump prin	ning) DTW/	time: ~/	1/1			tainable pun			2.A
Free prod	uct (circle):	LNA	H-/DNAPL		-		ice of produ			
	f water rem				-		e tube diame			4
Discharge	e tube lengti	n (ft.):	NIA				cer used (Y)			<u> </u>
Pneumat	ic Controlle	er Tuning:								
	pressure = H		3 =	psi						
		Initial	2	3	4	5	6	7	8	Final
Pressure (ps				· ·		$D \leftarrow$				
Refill Setting					Tus	el/				
Discharge S				ļ	7					
Flow rate (m	L/min)	<u> </u>	<u> </u>		\square	Ľ				
Pneumati	l tubing + pu c Controlle ressure = H	r Tuning:		NA	-	No. of tub	t-purging) D ing + pump	volumes pu	يمrged	<i> </i> #
		Initial	F	1	r	F	1	r	.	
Pressure (ps		wikuai	2	3	4	5	6	7	8	Final
Refill Setting	<u>, </u>	 		h			<u> </u>			<u> </u>
Discharge Se	ttino	<u> </u>		F	port	$n_{\mathcal{I}}$	<u> </u>			
How rate (mL					F		· · · · ·		<u> </u>	<u> </u>
		L,,	Wato	r Quality Pa		Magaine	L		l	<u>}</u>
Time	DTW	Purge Rate		Temp.	1	ectrical	· · · · · · · · · · · · · · · · · · ·			r
	(ft. BTOC)	(mL/min)	Volume	(degree C)		ductivity	pH	Eh	DO	Turbidity
		(Purged (L)	(ucgiee c)		hos/cm)		(mv)	(mg/L)	(ΝΤυ)
			r diget (L)		<u>[um</u>	1		<u> </u>		
					ne	. [
				d Bai	ue			Du		
		····	flo			0.	100	<u> [10</u>]	ω_{-}	· · · · · · · · · · · · · · · · · · ·
				il. air	- fr (s fe			·····	
			-fu	ficer						
								·		
										· · · · · · · · · · · · · · · · · · ·

. . .

.

GROUNDWATER SAMPLING FORM

Sheet 2 of 2

Time npling beg	DTW (ft. BTOC)	Purge Rate (mL/min)	Cumulative Volume Purged (L)	Temp. (degree C) ±10%	± 3 ⁻ J. Conductivity (uMhos/cm)	±0.1	Eh (mv) ±10	DO (mg/L) ± 10%	Turbidity (NTU) <u>+ (07</u>
npling beg			l	±10%	(uMhos/cm)	±0.1		(mg/L) ± 10%	(NTU) <u>+</u> 1072
<u>`</u>					+				
<u>`</u>				fus (
<u>`</u>				fns					
<u>`</u>				fue Me	ar and a second se				
<u>`</u>				fus					
<u>`</u>				fue (w			-	
<u>`</u>				fue (<u> </u>	·	
<u>`</u>				~ [M8					
<u>`</u>							1	+	<u> </u>
<u>`</u>		\geq		- \			<u> </u>	<u> </u>	
<u>`</u>					J			ļ	}
<u>`</u>					<u> </u>		<u> </u>		
<u>`</u>			····		<u> </u>	+	<u>├</u>		
<u>`</u>					<u> </u>	<u> </u>			
<u>`</u>					·		<u> </u>		
<u>`</u>					men lin e		l 	L	
<u>`</u>	ainnina tim			04	mpling				
Time	anund nu	ie:				completion t	ime:		
Time				Quality Par	ameter Measure	ements			
		· · ·	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity
0	(fL BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)				
<u> </u>					(MEN)				
licate sam t sample c	nple collect	<u>44 Cc5</u> ted (Y/N): Y/N):	NG		Information Sample col Duplicate s Split sample	llection date ample ID: e ID:	/time: <u>//</u> ~///	S	
C No(s):					-pire contripi		-//		
		T.		<u> </u>			· · ·		
uested A	nalysis	Method	Col	ntainers	Requested	I Analysis	Method	Conta	iners
			\rightarrow				_		
		- Co	nt_						
							ag		
	\leq								
			·						
ments:	20.43	19.93	0.5	0.32	5 0.9				
	70	NW		100	368				E E
nd ba			_	, v -	2-2-				

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

845714

4 LONGHORN AAP

Manager:

Praveen Srivastav

			RFA	A / COC Number:	
Location Code: Sample Number: Sample Name:	L0001-LHSI			Task: Collection Date: Collection Time:	GW DATA GAPS AUG04
Sampling Method: Sample Type: Sampling Equip:		Sam	ple Purpose: REG	Start Depth: End Depth: Sample Matrix:	WATER
QC Partners: (TB)	(ER)		(FB)	Sample Team:	
Analytical Suite METALS-W PERC Dioxing-Furgues	Fit Frtn Qty	tainers Size Units 500 ml 7 f 7 f	HDPL HDO STATE	ERPIMS Loi (Values: Sacode: Control#:
<u>Groundwater Inf</u> Measured W Comments:		20.45 20.45	Depth To Water: $)9'30 \sim 19$	19.97	
	No Sa	imple.	Collector	(

Sketch Location:

Reviewed BY / Date:

48

Page 1 of 2

00043648

Page 2 of 2

845714 LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW66 Sample Number: L0001-LHSMW6

Initial	Time(24hr)	DepthtoWater (ft)	Eh (mV)	pH (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gal)
									-
							- - -		-
								· ·	
1	ŀ								
			1						
mple:									

Logged BY / Date: KEvent 9/13/04

)

GROUNDWATER SAMPLING FORM

Sheet 1_of 2

		· · · · · · · · · · · · · · · · · · ·	· · ·				Nec.	ds Lock		
in the second	le Unit/Site II		,			Samplin	g location II): Site	<u>+8 / ц</u>	SMWIL
roject	Name/#:	LHHHT		<u> </u>						
vveathe	r hot	deel_				Collectio	n Time/Dat	e: <u>No s</u> an	ple-wel	1 Dru
				Dur	n Inct	allation				
Pump in	nstallation cre reading (we	w DC	++ 1	\mathcal{D}	ih mer	anauon	.		01.01	.1
PID/FID	reading (we	m <u>- ja e</u> v	GOT U.	hoarig	CZ_	Installation (on date/beg	inning time	<u> </u>	24
Casing	diameter (inc	hoch 4	" PVC	<u>,,,,,,,,,</u>	<u>T</u> (-~)~	ンInstallatio	on date/com	pletion time	»:	
	ell Depth (ft. I			•		Screen II	nterval (ff. B	STOC):	to	
	re-installation			an	_	Pump int	ake depth (ft BTOC): _		· · · · · · · · · · · · · · · · · · ·
Final (af	ter pump prir				<u> </u>		allation DT			
Free pro	duct (circle):	inngj D τ γγ. ΓΝΙΔ		<u> </u>	-		tainable pu		./min):	
Volume	of water rem	oved during	<u>u L/DIVAFI</u> 1 ozimina (m	L	-	Appearar	nce of produ	ict:		<u> </u>
Discharc	je tube lengt	h (ft)·	i ponony (m 301	12.): _	-	Discharg	e tube diam	eter (3/8" o	r 1/4"): <u>3</u>	8
	tic Controll				~~~	iniet redu	icer used (Y	'/N):	N	<u></u>
	pressure = }			nei						
				hai	···		-			
		<u>Initial</u>	2	3	4	5	6	7	8	Final
Pressure ()					<u> </u>	ļ				
Refill Settin					- <u> </u>	<u> </u>				
Discharge Flow rate (r		·	·							
iow rate (i	анслава)		<u> </u>							
	ite/beginning				-	PID/FID re Purge dat	eading (well e/completio	head/back n time:	ground):	
nitial (pre Calculate 'neumat	e-purging) D ed tubing + pu tic Controlle	TW (ft. BTC ump volume r Tuning:	e:	NA	-	Purge dat Final (pos	eading (well e/completio t-purging) E ing + pump	n time: TW (ft. BT(DC):	
nitial (pre Calculate 'neumat	e-purging) D d tubing + pr	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	<u>NA</u> psi	- - -	Purge dat Final (pos	e/completio t-purging) [n time: TW (ft. BT(DC):	
nitial (pre Calculate Ineumat nitial air j	e-purging) D d tubing + pu tic Controlle pressure = H	TW (ft. BTC ump volume r Tuning:	e:	NA	-	Purge dat Final (pos	e/completio t-purging) [n time: TW (ft. BT(DC):	Final
nitial (pre Calculate neumat nitial air p ressure (p:	e-purging) D ed tubing + pu tic Controlle pressure = H si)	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	<u>NA</u> psi	4	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: PTW (ft. BT(volumes pu	DC): irged:	
nitial (pre Calculate Pneumat nitial air j ressure (p efill Setting	e-purging) D ed tubing + pr tic Controlle pressure = H si)	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	<u>NA</u> psi	4	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: PTW (ft. BT(volumes pu	DC): irged:	
nitial (pre Calculate Preumat Ditial air p ressure (pr efill Setting ischarge S	e-purging) D ed tubing + pu tic Controlle pressure = H si) si) g setting	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	<u>NA</u> psi	4	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: PTW (ft. BT(volumes pu	DC): irged:	
nitial (pre calculate naumat nitial air p ressure (p efill Setting scharge S	e-purging) D ed tubing + pu tic Controlle pressure = H si) si) g setting	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	NA		Purge dat Finał (pos No. of tubi	e/completio t-purging) E ing + pump 6	n time: PTW (ft. BT(volumes pu	DC): irged:	
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting ischarge S ow rate (m	e-purging) D ed tubing + pu tic Controlle pressure = H si) g etting etting	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	<u>NA</u> psi		Purge dat Finał (pos No. of tubi	e/completio t-purging) E ing + pump 6	n time: PTW (ft. BT(volumes pu	DC): irged:	
nitial (pre Calculate 'neumat	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial	e:	NA	aramete	Purge dat Finał (pos No. of tubi	e/completio t-purging) E ing + pump 6	n time: PTW (ft. BT(volumes pu	DC): rged: 	Final
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting ischarge S ow rate (m	e-purging) D ed tubing + pu tic Controlle pressure = H si) g etting etting	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	e:	NA _ psi 	aramete	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: DTW (ft. BTC volumes pu	DC): rged: DO	Final
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting scharge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial	e:	NApsi 	aramete Ele Con	Purge dat Finał (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: DTW (ft. BT(volumes pu 7 Eb	DC): rged: 	Final
nitial (pre calculate ineumat nitial air p ressure (pr efill Setting scharge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial	e:	NA _ psi 	aramete Ele Con	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: DTW (ft. BT(volumes pu 7 Eb	DC): rged: DO	Turbidity
nitial (pre calculate ineumat nitial air p ressure (pr efill Setting scharge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial	2 2 Water Cumulative Volume Purged (L)	NApsi 	aramete Ele Con	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: DTW (ft. BT(volumes pu 7 Eb	DC): rged: DO	Final
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting scharge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial	2 2 Water Cumulative Volume Purged (L)	NA _psi 3 Quality Pz Temp. (degree C) 0930	aramete Ele Con (uM	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: DTW (ft. BT(volumes pu 7 Eb	DC): rged: DO	Turbidity
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting ischarge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	FW (ft. BTC ump volume or Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min)	2 2 Water Cumulative Volume Purged (L)	NApsi 	aramete Ele Con (uM	Purge dat Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments pH	n time: DTW (ft. BT(volumes pu 7 Eb	DC): rged: DO	Final
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting ischarge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	FW (ft. BTC ump volume or Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min)	2 2 Water Cumulative Volume Purged (L)	NA psi 3 Quality Pa Temp. (degree C) 0930 035 035 035 035 035	aramete Ele Con (uM	Purge dat Final (pos No. of tubi 5 st Measure ectrical ductivity hos/cm) $1 - 9 \omega \alpha rT$ $T \omega s$	e/completio t-purging) E ing + pump 6 ments pH	n time: DTW (ft. BT(volumes pt 7 Eh (mv)	DC): rged: DO	Turbidity
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting ischarge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	FW (ft. BTC ump volume or Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min)	2 2 Water Cumulative Volume Purged (L)	NA _psi 3 Quality Pa Temp. (degree C) 0930 035 1035	aramete Ek Con (uM)	Purge dat Final (pos No. of tubi 5 F Measure actrical ductivity hos/cm) 1 9 0 0 T T S T S	e/completio t-purging) E ing + pump 6 6 ments pH 20, 33 20, 33	n time: DTW (ft. BT(volumes pt 7 Eh (mv)	DC): rged: DO	Turbidity
nitial (pre Calculate Pneumat nitial air p ressure (pr efill Setting ischarge S ow rate (m	e-purging) D ed tubing + pr tic Controlle pressure = H si) g setting sL/min) DTW	FW (ft. BTC ump volume or Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min)	2 2 Water Cumulative Volume Purged (L)	NA psi 3 Quality Pa Temp. (degree C) 0930 035 035 035 035 035	aramete Ek Con (uM)	Purge dat Final (pos No. of tubi 5 F Measure actrical ductivity hos/cm) 1 9 0 0 T T S T S	e/completio t-purging) E ing + pump 6 ments pH	n time: DTW (ft. BT(volumes pt 7 Eh (mv)	DC): rged: DO	Turbidity

1 .0815 gr 13 15 65

 \sim 1 \cdot

GROUNDWATER SAMPLING FORM

Sheet ____of

Time	DTW	Purge Rate	Cumulative	Temp.	ter Measurement			·	
	(fl. BTOC)	(mL/min)	Volume	(degree C)	± 3%. Conductivity	pH	Eh	DO	Turbidity
		(indimity)	Purged (L)	10°%		±0.1	(mv)	(mg/L)	(NTU)
			raiged (L)	106	(uMhos/cm)	2011	±10	± 10%	10%
		<u> </u>			<u>.</u>		_ ·		
						- 			
		<u> </u>		· · · · · · · · · · · · · · · · · · ·		. <u> </u>		<u>. </u>	
		<u> </u>		· · · ·		<u> </u>	· · · · ·		
	· [·	·			· · · · · · · · · · · · · · · · · · ·				<u> </u>
		·····			<u></u>	<u> </u>			
					· · · · · · · · · · · · · · · · · · ·	ļ			
						<u> </u>			
		· · · · ·			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
				·					
·			——		· · · · · · · · · · · · · · · · · · ·		L		
				Sa	mpling				
mpling	beginning tim	ie:			Sampling o	ompletion i	ime		
			Water	Quality Day	ameter Measure		мис. <u> </u>		
Time	DTW	Purge Rate	Cumulative	Temp.			r <u> </u>	1	
	(ft. BTOC)	(mL/min)	1	(degree C)	Electrical Conductivity	pН	Eh	DÓ	Turbidity
_		· · · ·	Purged (L)	(degree of	(uMhos/cm)		(mv)	(mg/L)	(NTU)
					(unnos/cm)	······		┨───────────────────────────────	
								┢───╁	
								┢┈┈┈┨	
								┟────┟	
nnlà ID:				Sample	information				
nplė ID;					Sample coll	ection date	/time:	<u> </u>	
olicate s	ample collect	led (Y/N):			Sample coll Duplicate sa	mple ID:			
olicate s t sampl	ample collect	ted (Y/N):				mple ID:			
blicate s t sampl C-No(s)	ample collect e collected () :	ted (Y/N):			Sample coll Duplicate sa	mple ID:			
blicate s t sampl C-No(s)	ample collect e collected () :	led (Y/N): //N): Method	·		Sample coll Duplicate sa Split sample	mple ID:			
blicate s t sampl C-No(s)	ample collect e collected () :	(/N):	·		Sample coll Duplicate sa	mple ID:		Contair	ners
blicate s t sampl C-No(s)	ample collect e collected () :	(/N):	·		Sample coll Duplicate sa Split sample	mple ID:			ners
blicate s t sampl C-No(s)	ample collect e collected () :	(/N):	·		Sample coll Duplicate sa Split sample	mple ID:			ners
blicate s t sampl C-No(s)	ample collect e collected () :	(/N):	·		Sample coll Duplicate sa Split sample	mple ID:			ners
blicate s t sampl C-No(s)	ample collect e collected () :	(/N):	·		Sample coll Duplicate sa Split sample	mple ID:			ners
plicate s t sampl C ⁻ No(s) uested	ample collect e collected () : Analysis	Method	Con	tainers	Sample coll Duplicate sa Split sample	mple ID:			ners
blicate s t sampl C-No(s)	ample collect e collected () : Analysis	Method	Con	tainers	Sample coll Duplicate sa Split sample	mple ID:			ners
plicate s t sampl C ⁻ No(s) uested	ample collect e collected () : Analysis	Method	Con	tainers	Sample coll Duplicate sa Split sample	mple ID:			ners

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

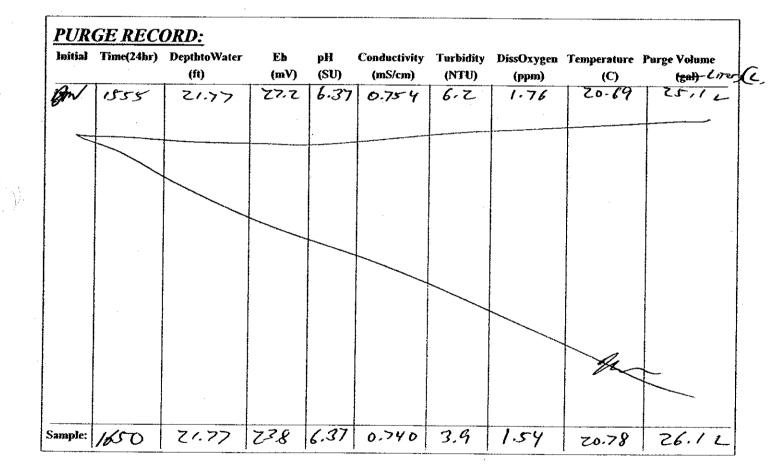
845714 - LONGHORN AAP

Manager: Praveen Srivastav

00043653

Page 1 of 2

			RFA	/ COC Number:	
Location Code: Sample Number: Sample Name: Sampling Method: Sample Type: Sampling Equip:	48WW01-F 48WW01-F SP GW	MAY05-GW-RI Sampi	le Purpose: REG	Collection Date: Collection Time: Start Depth:	GW-MAY05
Partners: FB)	(ER)	BLAder	(FB)	Sample Matrix: Sample Team:	• 1
Analytical Suite		ontainers ty Size Units		ERPIMS	7
VOC-FULL METALS-W	NA3 NB1	40 mL V 1000.30 mL H	'OA VIAL IDPE	Lot	Control#:
METALS-DIS Dioxins-Furans	N C 1 N D 2	1999520ml H 1 L A	IDPE 1mb. Glass		
Dioxins-Fur-DIS PERC	NE2 NF1		mb. Glass IDPE		
<u>Groundwater Info</u> Measured W Comments:		66	Depth To Water:	20.42	
·		7			
Sketch Locati					


Logged BY / Date:

00043654 Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: 48WW01 Sample Number: 48WW01-MAY05

GROUNDWATER SAMPLING FORM

Sheet 1 of 6

Operable v	11.4/04.20.		48			Compline	antion ID:	48 h	WAT	
Dunin of him	Unit/Site ID:	LHA	<u> 70</u> A P		-	Sampang I	ocation id.	48WW	TI- MAN	<u> </u>
			RCHR78	High & Tolow	Q. 2 c	Sample ID	Time/Date:	<u>78ww</u>	<i>J ///49</i>	05
weather:	Clear	, segui	<u></u>	min an Tacina	701	Collection	nme/Date:			
			1	Pump	Insta	lation				
Pump inst:	allation crev	r. JMYAL	esky/M.	Brown		Installation	date/begin	ning time:		
PID/FID re	eading (well	head/backg	round):	0-0		Installation	date/comp	letion time:	<u>.</u>	
		es):				Screen Int	erval (ft. BT	0C): 🥂 🛓	D_to_	60
		TOC):				Pump intai	ke depth (ft	OC): BTOC): /time:	<u>ک ک</u>	
		DTW/time:								
		ing) DTW/ti					•	p rate (mL/r	,	
		LNAP				Appearance	e of produc	t: <u>//</u>	1	
		ved during p				Discharge	tube diame	ter (3/8" or	1/4"): <u> </u>	18
-		(ft.):	58		-	Infet reduc	er used (Y	ý <u>.</u> N	0	<u> </u>
	c Controlle	r Tuning: (ft.) X 0.43	= 22/0	nei						
ninicai dii pi		T	r		· · · · · ·			r	, T	·r · · · · ·
		Initial	2	3	4	5	6	7	8	Final
Pressure (psi		30	25	25,0	30	30	30	30	30	
Refill Setting		10	20	13.5	<u>13.1</u> 2.2	2.3	14 Z,4	2.3	14	
Discharge Se Flow rate (mi		200	< 50	100	900	100	100	100	22	
			1.50		Purging		100	100	,	
						-	/completion	time: 5-	12-05	0.0
Purge date Initial (pre- Calculated	e/beginning purging) DT I tubing + pu	time: <u>5/11</u> W (ft. BTO(Imp volume:	5' 1100 C): ZO,			Purge date Final (post	/completion purging) D		12-05 C): 71.	1555 77
Calculated Pneumatic	e/beginning purging) DT I tubing + pu c Controlle	time: <u>5/11</u> W (ft. BTO(Imp volume:	5 1100 C): Zo, N	42 IA		Purge date Final (post	/completion purging) D	i time: <u></u> TW (ft. BTO	12-05 C): 71.	1555 77
Purge date Initial (pre- Calculated Pneumatio	e/beginning purging) DT I tubing + pu c Controlle	time: <u>F(1)</u> W (ft. BTOC Imp volume: r Tuning:	5 1100 C): Zo, N	42 IA		Purge date Final (post	/completion purging) D	i time: <u></u> TW (ft. BTO	12-05 C): 71.	1555 77
Purge date Initial (pre- Calculated Pneumatic Initial air p	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: <u>F/II /</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43	5 1/00 C): Zo, = Z ³ .(S	УŻ IA _psi		Purge date Final (post No. of tubi	/completion purging) D ng + pump v	i time: TW (ft. BTO /olumes pur	 C): ged:	<u>1555</u> .77 6. / [
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: <u>F/II /</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43	5 1/00 C): Zo, = Z ³ .(S	УŻ IA _psi		Purge date Final (post No. of tubi	/completion purging) D ng + pump v	i time: TW (ft. BTO /olumes pur	 C): ged:	<u>1555</u> .77 6. / [
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: <u>F/II /</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43	5 1/00 C): Zo, = Z ³ .(S	УŻ IA _psi		Purge date Final (post No. of tubi	/completion purging) D ng + pump v	i time: TW (ft. BTO /olumes pur	 C): ged:	<u>1555</u> .77 6. / [
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: <u>F/II /</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43	5 1/00 C): Zo, = Z ³ .(S	УŻ IA _psi		Purge date Final (post No. of tubi	/completion purging) D ng + pump v	i time: TW (ft. BTO /olumes pur	 C): ged:	<u>1555</u> .77 6. / L
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: <u>F/II /</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43	2 2 2 2 2 2 2 2 2 2 2 2 2 2	УŻ IA _psi	4	Purge date Final (post No. of tubi 5	/completion purging) D ng + pump v	i time: TW (ft. BTO /olumes pur	 C): ged:	<u>1555</u> .77 6. / [
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: <u>F/II /</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43	2 2 2 2 2 2 2 2 2 2 2 2 2 2	УZ IA _psi 	4 rameter	Purge date Final (post No. of tubi 5	/completion purging) D ng + pump v	i time: TW (ft. BTO /olumes pur	 C): ged:	15 55 .77 6. / [
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se Flow rate (mL	e/beginning purging) DT I tubing + pu c Controller ressure = H	time: <u>Fill</u> W (ft. BTOC imp volume: r Tuning: (ft.) X 0.43	$\frac{1}{2}$ $\frac{1}$	۶⁄۲ JA _ psi Quality Pa	4 rametei Ele	Purge date Final (post No. of tubin 5	/completion purging) D ng + pump v 6 6 ments	time: <u>5</u> - TW (ft. BTO volumes pur	- 12-05 C): 71, ged: 2	15 55 .77 6. / L
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se Flow rate (mL	e/beginning purging) DT I tubing + purce c Controller ressure = H)) etting _/min) DTW (ft. BTOC)	time: <u>Flif</u> W (ft. BTOO imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min)	5 / 1200 C): Zo, 2 2 2 2 2 2 2 2 2 2 2 2 2	ダブ IA _ psi _ 3 Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5	/completion purging) D ng + pump v 6 6 ments	time: <u>5</u> - TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	1555 77 6. / (Final
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refil Setting Discharge Se Flow rate (mL	e/beginning purging) DT I tubing + pu c Controller ressure = H i) etting _/min) DTW (ft. BTOC) ````	time: <u>F(II)</u> W (ft. BTOC Imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 200	$\frac{1}{2}$ $= \frac{7^3 \cdot 6^5}{2}$ $= \frac{7^3 \cdot 6^5}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ ブ IA _ psi _ 3 Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	time: <u>5</u> - TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	15 55 77 6. / (Final	
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se Flow rate (mL Time	e/beginning purging) DT I tubing + purging) DT I tubing + purging c Controller ressure = H i) etting Jmin) DTW (ft. BTOC) 20. J.S Z 0. & Z	time: <u>Flif</u> W (ft. BTOC imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 200 <50	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	γζ IA _psi Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	1555 77 6. / (Final
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refil Setting Discharge Se Flow rate (mt Time	e/beginning purging) DT I tubing + purging) DT I tubing + purging c Controller ressure = H)) etting ./min) DTW (ft. BTOC) 	time: <u>F(I)</u> W (ft. BTOO Imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 200 <50 /00 ¥	$\frac{5}{100} \frac{100}{100}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$ $= \frac{73.05}{2}$	γζ IA _psi Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	15 55 77 6. / (Final
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refil Setting Discharge Se Flow rate (mL Time Id 02 I6 1 0 16 3 3	e/beginning purging) DT I tubing + purging) C Controller ressure = H i) etting	time: <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	$\frac{1}{6} \frac{1}{100}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$ $= \frac{1}{2} \frac{3}{6} \frac{5}{6}$	γζ IA _psi Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	1555 77 6. / (Final
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se Flow rate (mL Time $\frac{1602}{1620}$ $\frac{1633}{1636}$	e/beginning purging) DT I tubing + purging) DT I tubing + purging c Controller ressure = H i) etting Jmin) DTW (ft. BTOC) CO. J.S ZO. J. OY Z/. O7	time: $f(t) = f(t)$ W (ft. BTOO imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) zoo $< S^{-}o$ $100 \neq$ $1 \circ \odot \neq$ $1 \circ \odot \neq$ $1 \circ \odot \neq$	$ \frac{5}{1600} = \frac{73.65}{2} $ $ = \frac{73.65}{2} $ $ 2 $ $ \frac{2}{5} + \frac{3}{6} + \frac{5}{6} + $	γζ IA _psi Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	1555 77 6. / 2 Final
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refil Setting Discharge Se Flow rate (mt Time $\frac{1600}{160}$ $\frac{1600}{160}$ $\frac{1600}{160}$	beginning purging) DT I tubing + purging) DT I tubing + purging) DT c Controller ressure = H i) etting Jmin) DTW (ft. BTOC) 20.35 20.35 20.35 20.82 20.83 21.07 21.07 21.07 21.11	time: $\underline{f(I)}$ W (ft. BTOO imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) $\overline{>00}$ $<\underline{>00}$ $<\underline{>00}$ $100 \pm$ $100 \pm$ $100 \pm$ $j = 0 \pm$	$\frac{1}{100} = \frac{1}{100} = \frac{1}{200} = \frac{1}{200} = \frac{1}{100} = \frac{1}$	γζ IA _psi Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	time: <u>5</u> - TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	1555 77 6. / (Final
Purge date Initial (pre- Calculated Pneumatic Initial air pr Pressure (psi Refill Setting Discharge Se Flow rate (mL Time $\frac{1602}{1633}$ $\frac{1633}{1639}$ $\frac{1639}{1692}$	e/beginning purging) DT I tubing + purging) DT I tubing + purging c Controller ressure = H i) etting Jmin) DTW (ft. BTOC) CO. J.S ZO. J. OY Z/. O7	time: $f(t)$ W (ft. BTOO Imp volume: r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 200 <50 $100 \pm$ $100 \pm$ $100 \pm$ $100 \pm$ $100 \pm$	$\frac{5}{100} \frac{1}{100}$ $= \frac{2}{3.65}$	ダブ IA _ psi _ 3 Quality Pa Temp.	4 rameter Ele Conc	Purge date Final (post No. of tubin 5 5 r Measure ctrical luctivity	/completion purging) D ng + pump v 6 6 ments	time: <u>5</u> - TW (ft. BTO volumes pur	12-05 C): 71. ged: 2 8	1555 77 6. / (Final

¥

Purge RATE FLUCTOATING WHILE ADJUSTING CONTACTS & Thus No READING

GROUNDWATER SAMPLING FORM

Sheet_Zof_6

00043656

(ft. BTOC) (mL/min) 1135 20.46 Priôr 1375 20.38 90 1375 20.38 90 1375 20.38 90 1355 20.36 140 1455 20.36 140 1255 20.36 100 1200 20.95 180 1205 21.05 180 1210 21.05 180 1220 21.20 100 1220 21.33 100 1220 21.33 100 1230 21.33 100 1235 21.31 70 1230 21.38 100 1245 21.43 100 1245 21.43 100 Sampling beginning time:	Volume Purged (L) $\overline{10}$ 57 450 1.5 2.0 2.5 3.0 3.5 4.5 5.45 5.45 5.45 5.45 5.45	(degree C) 3177.26 22.64 21.21 21.82 22.9 21.75 21.75 21.73 21.67 21.29 21.13 20.87 21.43 21.43 21.43 Sa	Electrical Conductivity (uMhos/cm) $P \sqrt{m} p - 7$ O.837 O.837 O.846 O.846 O.846 O.846 O.847 O.847 O.847 O.847 O.847 O.847 O.847 O.837 O.837 O.837 O.837 O.837 O.837 O.837 O.837 O.823 O.823 O.823 mpling Sampling c ameter Measures Electrical Conductivity (uMhos/cm)	pH <i>STA</i> -Te <i>6.53</i> <i>6.53</i> <i>6.53</i> <i>6.53</i> <i>6.48</i> <i>6.48</i> <i>6.44</i> <i>6.44</i> <i>6.44</i> <i>6.44</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.43</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.443</i> <i>6.444</i> <i>6.444</i> <i>6.444</i> <i>6.444</i> <i>6.444</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.445</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i> <i>6.455</i>	159,9 1945 1945 170.4 159,1 148.0 139,2 130,1 114,7 107.0 97.4 94.6 91.1	DO (mg/L) V a 45 6.89 6.89 6.04 4.47 4.52 5.23 4.97 4.55 4.55 4.75 3.82 3.68 3.59 3.59 DO (mg/L)	114 1. 1. 1. 1. 1. 1. 2. 2. 2. 3. 4. 7. 6. 1. 2. 7. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0						
$1/35$ 20.46 $Pri\deltaR$ 12.75 20.78 90 12.55 20.76 100 12.55 20.75 100 12.00 $z0.95$ 100 12.05 $z1.05$ 100 12.05 $z1.05$ 100 12.05 $z1.20$ 100 12.25 $z1.20$ 100 12.25 $z1.20$ 100 12.25 $z1.33$ 100 12.30 $z1.33$ 100 12.35 $z1.31$ 70 12.45 $z1.31$ 70 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$ 100 12.45 $z1.93$	Purged (L) T = 5; 4/5 = 0 1, 5 = 0 1, 5 = 0 2, 5 = 3, 0 2, 5 = 3, 0 2, 5 = 3, 0 3, 0 = 3, 5 4, 0 = 5, 75 5, 95 = 5, 95 6, 95 = 6, 95 Water Cumulative Volume	22.64 22.64 21.21 21.82 22.4 21.75 21.75 21.75 21.29 21.29 21.13 20.87 21.43 21.43 21.43 21.43 Sa Quality Par Temp.	(uMhos/cm) PVmp -7 0.837 0.842 0.846 0.846 0.846 0.847 0.847 0.847 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.829 0.829 0.829 0.829 0.820 mpling Sampling c ameter Measure Electrical Conductivity	6.53 6.57 6.48 6.48 6.44 6.44 6.44 6.44 6.44 6.43 6.43 6.43	 ▶ Amp 159.1 194.5 194.5 194.4 170.4 159.1 148.0 139.2 130.1 114.7 107.0 97.4 94.6 91.1 	No 45 6.89 6.89 6.04 4.47 4.52 5.23 4.97 4.65 4.26 4.12 3.82 3.68 3.59	1. 6. 1. 1. 2. 2. 3. 4. 7. 6. 7. 6. 7. 10. 10. 10. 10. 10. 10. 10. 10						
I_{4} γ_{5} $Z \circ X_{8}$ 4ϑ I_{4} σ $Z \circ X_{8}$ 100 I_{5} σ $Z \circ X_{8}$ 100 I_{5} σ $Z \circ X_{8}$ 100 I_{2} σ $Z \circ Y_{8}$ $I00$ I_{2} σ $Z \circ Y_{8}$ $I00$ I_{2} σ $Z \circ Y_{8}$ $I00$ I_{2} σ $Z \circ Y_{8}$ $I00$ I_{2} Z_{9} $Z \circ Y_{8}$ $I00$ I_{2} Z_{9} $Z \circ Y_{8}$ $I00$ I_{2} Z_{9} $Z \circ Y_{8}$ $I00$ I_{2} Z_{9} $Z \circ Y_{1}$ Y_{9} I_{2} Y_{9} $Z \circ Y_{1}$ Y_{9} I_{2} $Z \circ Y_{1}$ Y_{9} Y_{9} I_{1} Y_{1} $Y_$	$ \begin{array}{r} T \circ & S; \\ 4' S \circ O \\ 1, S \circ O \\ 2.0 \\ 2.5 \\ 3.0 \\ 7.5 \\ 4.0 \\ 7.5 \\ 4.5 \\ 5.0 \\ 5.45 \\ 5.95 \\ 6.45 \\ 5.95 \\ $	27.26 22.67 21.21 21.82 22.4 21.75 21.75 21.75 21.75 21.29 21.13 20.87 21.43 21.43 21.43 5a Quality Par Temp.	P v m p - 7 O.837 O.847 O.847 O.847 O.847 O.847 O.847 O.847 O.847 O.837 O.837 O.837 O.837 O.837 O.837 O.837 O.837 O.829 O.820 mpling Sampling c ameter Measure Electrical Conductivity	6.53 6.57 6.48 6.48 6.44 6.44 6.44 6.44 6.43 6.43 6.43 6.43	159,9 1945 1945 170.4 170.4 159.1 148.0 139,2 130,1 114.7 107.0 97.4 94.6 91.1	6.89 6.89 6.04 4.47 4.52 5.23 4.52 4.52 4.52 4.52 4.55 4.55 4.72 3.82 3.68 3.59	114 1. 1. 1. 1. 1. 1. 2. 2. 3. 4. 7. 6. 7. 0. 4. 7. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0						
I_{LSO} 20.76 $I/0$ I_{LSS} 20.83 $I00$ I_{200} $Z0.95$ $ID0$ I_{205} $Z_{1:00}$ $ID0$ I_{205} $Z_{1:00}$ $ID0$ I_{205} $Z_{1:05}$ $ID0$ I_{205} $Z_{1:05}$ $ID0$ I_{205} $Z_{1:05}$ $ID0$ I_{205} $Z_{1:20}$ $I00$ I_{205} $Z_{1:20}$ $I00$ I_{230} $Z_{1:33}$ $I00$ I_{230} $Z_{1:33}$ $I00$ I_{240} $Z_{1:38}$ $I00$ I_{245} $Z_{1:43}$ $I00$ Sampling beginning time:	450 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.45 5.45 5.95 6.45 6.45 Water Cumulative Volume	22.64 21.21 21.82 22.4 21.75 21.73 21.73 21.73 21.29 21.13 20.87 21.43 21.43 Sa Quality Par Temp.	0.837 0.842 0.846 0.846 0.846 0.847 0.847 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.829 0.829 0.820 mpling Sampling c cameter Measure Electrical Conductivity	6.53 6.57 6.48 6.48 6.44 6.44 6.44 6.44 6.43 6.43 6.43 6.43	159,9 1945 1945 170.4 170.4 159.1 148.0 139,2 130,1 114.7 107.0 97.4 94.6 91.1	6.89 6.89 6.04 4.47 4.52 5.23 4.52 4.52 4.52 4.52 4.55 4.55 4.72 3.82 3.68 3.59	1. 6. 1. 1. 2. 2. 2. 3. 0. 4. 7. 6. 7. 0. 10. 10. 10. 10. 10. 10. 10.						
$I_{2:SS}$ $2o_1 k3$ IOO $IZOS$ $ZO.9S$ IBO $IZOS$ ZI_iOO IBO $IZOS$ ZI_iOO IBO $IZOS$ ZI_iOO IBO $IZOS$ ZI_iOO IBO $IZOS$ $ZI.0S$ IBO $IZOS$ $ZI.0S$ IBO $IZOS$ $ZI.2O$ IOO $IZZS$ $ZI.2O$ IOO $IZOS$ $ZI.33$ IOO $IZOS$ $ZI.33$ IOO $IZOS$ $ZI.33$ IOO $IZOS$ $ZI.33$ IOO $IZOS$ $ZI.38$ IIO $IZOS$ $ZI.38$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO $IZOS$ $ZI.9$ IOO	/.0 1.5 2.0 2.5 3.0 2.5 4.5 5.0 5.45 5.95 6.45 5.95 6.45 Volume	21.21 21.82 22.4 21.75 21.73 21.73 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.29 21.43 Sa Quality Par Temp.	0.842 0.846 0.846 0.847 0.847 0.847 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.829 0.823 0.823 0.824 0.820 mpling Sampling c ameter Measure Electrical Conductivity	6.84 6.57 6.48 6.44 6.44 6.44 6.44 6.43 6.43 6.43 6.43	1945 194,4 170,4 159,1 148,0 139,2 130,1 114,7 107,0 97,4 94,6 91,1	6.80 6.04 4.47 4.52 5.23 4.97 4.65 4.72 4.65 4.72 3.82 3.68 3.59	6.1 1.2 1.2 2.2 3.0 4. 7.0 6.7 9.5 10.0 Turbid						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1, 5 2.0 2.5 3.0 7.5 4.0 4.5 5.0 5.45 5.95 6.95 6.95 Water Cumulative Volume	21.82 EZ,4 Z1,75 Z1,73 Z1,79 Z1,29 Z	0.848 0.849 0.849 0.849 0.849 0.837 0.837 0.837 0.837 0.837 0.837 0.829 0.823 mpling Sampling c ameter Measure Electrical Conductivity	$\begin{array}{c} 6:57\\ 6:48\\ 6:44\\ 6:44\\ 6:44\\ 6:44\\ 6:43\\$	74,4 70.4 39,1 148.0 39,2 30,1 14,7 07.0 97.4 94.6 91.1	6.04 4.47 4.52 5.23 4.97 4.65 4.26 4.26 4.12 3.68 3.68 3.59	1.0 1.0 2.0 3.0 4. 7.0 4. 7.0 6. 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5 3.0 3.5 4.5 5.45 5.45 5.45 5.45 6.45 6.45 Water Cumulative Volume	EZ.4 Z1.75 Z1.73 Z1.67 Z1.29 Z1.13 Z0.87 Z1.91 Z1.58 Z1.43 Sa Quality Par Temp.	0.845 0.847 0.847 0.837 0.837 0.837 0.837 0.830 0.823 0.823 0.824 0.828 mpling Sampling c ameter Measure Electrical Conductivity	6. 48 6. 44 6. 44 6. 44 6. 43 6. 43 6. 43 6. 43 6. 43 6. 43 6. 43 6. 43 6. 43 6. 43	170.4 139.1 148.0 139.2 130,1 114.7 107.0 97.4 94.6 91.1 me:	4.47 4.52 5.23 4.97 4.65 4.72 3.82 3.68 3.59	1.0 2.0 3.0 4. 7.0 6.7 10.0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5 3.0 3.5 4.5 5.45 5.45 5.45 5.45 6.45 6.45 Water Cumulative Volume	21,75 21,73 21,67 21,29 21,29 21,29 21,29 21,29 21,43 21,43 Sa Quality Par Temp.	0,844 0,841 0,837	6.44 6.44 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43	159.1 148.0 139.2 130.1 114.7 107.0 97.9 97.4 94.6 91.1 me: Eh	4.52 5.23 4.97 4.65 4.26 4.12 3.82 3.68 3.59	1.0 2.0 3.0 4. 7.0 6. 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.						
172.15 21.13 100 12.20 21.20 100 12.25 21.28 100 12.30 21.33 100 12.30 21.33 100 12.35 21.31 70 12.90 21.38 110 12.90 21.38 100 12.45 21.43 100 Sampling beginning time:	3.0 3.5 4.5 5.0 5.45 5.95 6.95 Water Cumulative Volume	2/173 21,67 21,29 21,13 20,87 21,97 21,97 21,97 21,43 Sa Quality Par Temp.	0,84/ 0,837 0,837 0,837 0,837 0,837 0,837 0,830 0,823 0,824 0,820 mpling Sampling c ameter Measure Electrical Conductivity	$6 \cdot 4 \cdot 4$ $6 \cdot 4 \cdot 4 \cdot 3$ $6 \cdot 4 \cdot 3$	148.0 /39,2 /30,1 //4,7 /07.0 97.9 97.9 94.6 91.1 me:	5.23 4.97 4.65 4.26 4.12 3.82 3.68 3.59	2: Z. 3. 4, 7: 6; 7: 10;						
1220 Z1.20 100 1225 Z1.28 100 1230 Z1.33 100 1235 Z1.31 90 1290 Z1.38 110 1245 Z1.43 100 Sampling beginning time:	$\frac{4, b}{4.5}$ $\frac{5, 0}{5.45}$ $\frac{5, 95}{6.45}$ Water Cumulative Volume	21,67 21,29 21,13 20,87 21,91 21,58 21,43 Sa Quality Par Temp.	O, 839 O, 837 O, 837 O, 837 O, 830 O, 829 O, 829 O, 820 mpling Sampling c rameter Measure Electrical Conductivity	6,44 6,43 6,43 6,43 6,43 6,43 6,43 6,43	/39,2 /30,/ //4,7 /07.0 97.4 94.6 91.1 me:	4.97 4.65 4.26 4.12 3.82 3.68 3.59	Z. (3. (4, 7. (9, 3 10,						
1225 21.28 100 1230 21.33 100 1235 21.31 70 1240 21.38 100 1245 21.43 100 Sampling beginning time:	$\frac{4, b}{4.5}$ $\frac{5, 0}{5.45}$ $\frac{5, 95}{6.45}$ Water Cumulative Volume	21:29 21:13 20:87 21:41 21:58 21:43 Sa Quality Par Temp.	0.837 0.837 0.830 0.822 0.824 0.824 0.820 mpling Sampling c rameter Measure Electrical Conductivity	6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43	130,1 114,7 107.0 97.4 94.6 91.1 me:	4.65 4.26 4.12 3.82 3.68 3.59	3. (4, 7, 6, 9, 10, 10,						
12.30 ZI.33 100 12.35 ZI.31 70 12.40 ZI.38 100 12.45 ZI.43 100 12.45 ZI.43 100 Sampling beginning time:	$\frac{4.5}{5.0}$ $\frac{5.45}{5.95}$ $\frac{5.45}{6.45}$ Water Cumulative Volume	Z1, 13 Z0,87 Z1,97 Z1,58 Z1,43 Sa Quality Par Temp.	0:83/ 0:830 0:822 0:824 0:824 0:820 mpling Sampling c rameter Measure Electrical Conductivity	6, 43 6, 43 6, 43 6, 43 6, 43 6, 43 6, 43 completion timents	1/4,7 107.0 97.4 94.6 91.1 me:	4.26 4.12 3.82 3.68 3.54	4, 7, 6, 9, 10, Turbid						
12.35 Z1.31 9 P 12.40 21.38 110 12.45 21.43 100 12.45 21.43 100 Sampling beginning time:	5.45 5,95 6,95 Water Cumulative Volume	20.87 21.91 21.58 21.43 Sa Quality Par Temp.	0 · 830 0 · 872 0 · 972 0 · 97	6, 43 6, 43 6, 43 6, 43 6, 43 completion timents	107.0 47.4 94.6 91.1 me:	4.12 3.82 3.68 3.54	7.0 6 9 10 Turbid						
1240 21.38 110 1245 21.43 100 Sampling beginning time:	5.45 5,95 6,95 Water Cumulative Volume	2/.9/ 2/.58 2/.43 Sa Quality Par Temp.	0.823 0.824 0.820 mpling Sampling c ameter Measure Electrical Conductivity	6.43 6.43 6.43 completion timents	97.4 94.6 91.1 me:	3.82 3.68 3.59 2.59	Gr 9r 10r Turbid						
IZ45 ZI:43 IPO Sampling beginning time:	5,95 6,45 Water Cumulative Volume	Z1.58 Z1.43 Sa Quality Par Temp.	C · 8 Z 4 O · 8 Z 4 Mpling Sampling c ameter Measure Electrical Conductivity	$\frac{6 \cdot 43}{6 \cdot 43}$ completion timents	94.6 91.1 me: Eh	3.68 3.59 DO	9. 10. Turbid						
IZ45 21:43 100 Sampling beginning time:	Water Cumulative Volume	Z1.43 Sa Quality Par Temp.	O,820 mpling Sampling c rameter Measure Electrical Conductivity	6, <u>4</u> ,3 completion ti ments	97, 7 me:	359 DO	10,0 Turbid						
Time DTW Purge Rate C (ft_BTOC) (mL/min) F	Water Cumulative Volume	Sa Quality Par ^{Temp.}	mpling Sampling c ameter Measure Electrical Conductivity	completion ti ments	me:	DO	Turbid						
Time DTW Purge Rate C (ft_BTOC) (mL/min) F	Cumulative Volume	Quality Par Temp.	Sampling c ameter Measure Electrical Conductivity	ments	Eh								
Time DTW Purge Rate C (ft_BTOC) (mL/min) F	Cumulative Volume	Temp.	ameter Measure Electrical Conductivity	ments	Eh								
(ft_BTOC) (mL/min) F	Cumulative Volume	Temp.	Electrical Conductivity	· · · · · · · · · · · · · · · · · · ·	1								
(ft_BTOC) (mL/min) F	Volume		Conductivity	рН	1								
	1	(degree C)			(mv)	(mg/L)							
	Purged (L)		(uMhos/cm)	-			·····						
ample ID:													
ample ID:													
ample ID:													
ample ID:	- T		·····										
Sample ID:													
ample ID:	Sample Information												
	Sample ID:												
uplicate sample collected (Y/N):			Duplicate sa										
plit sample collected (Y/N):			Split sample										
OC No(s):			-										
equested Analysis Method	 Coz	tainers	D										
	00/	namer 5	Requested	Analysis	Method	Contai	ners						
							· <u> </u>						
				· · ·									
		· · · · · · · · · · · · · · · · · · ·		<u> </u>									
						. <u> </u>							
mmonte													
omments:													

00043657

Sheet 3_of 6

Operable	Unit/Site ID	:£	18	· · ·	_	Sampling	location ID:	LAWE	201	
Project N	ame/#:	2	HAAP			Sample II	location ID: D:	1301-M	AYOS	
Weather:	Unit/Site ID ame/#: /cAr	SUNNY	90 <u>1</u>	the Bree	<u>u</u> e	Collection	Time/Date	: 1555	- 5-	12-05
$\overline{\langle}$						allation				
Pump inst	tallation crev	w:				Installatio	n date/begir	nning time:		
	equing (well				_	Installatio	n date/comp	pletion time:		
Casing dia	amoter (inct	nes):			-	Screen In	terval (ft. B7	FOC):	to	
Total well	Depth (ft. B	TOC):								
Initial (pre	-installation) DTW/time	:		_	Post-insta	ike depth (fl Illation DTW	//time:		
Final (afte	r pump prin	ຟ້ອງ) DTW/t	ime:				ainable pur			
Free prod	uct (circle):	<u> </u>	PL / DNAPL		_		ce of produ		/	
	f water remo					Discharge	tube diame	eter (3/8" or	1/4"):	······································
Discharge	tube length	o (ft.):			_		cer used (Y/			
Pneumati	ic Controlle	er Tuning:	\backslash	•						
Initial air p	ressure = H	l (ft.) X 0.43	;=	- ^{psi} A						
·		Initial	2	/3	4	5	6	7	8	Final
Pressure (ps	ā)			$\sqrt{1}$		1	1			
Refil Setting				Nn		7				
Discharge Se	etting			1/N/	M					
Flow rate (m	L/ເກ ^າ ສາ)	, in the second se								
					1 Artin	na				
Puraina/sa	ampling crev	w.					ading (well	hood/book	round):	
	e/beginning				1		e/completior			
	purging) D1		ር.				-purging) D			
Calculated	l tubing + pu	imo volume	· ·	 JA		No of tubi	ng + pump v		лој reod:	
	c Controlle		••	•/ •	-	110. 01 10.00	ing - bound -	volumes pu	iyeu	
	ressure = H	-	=	DSi			\mathbf{i}			
		Initial	2	3	4	5	6			
Pressure (psi	n	muar	<u> </u>				- °)	7	8	Final
Refill Setting	/	<u> </u>			<u> </u>				 	<u> </u>
Discharge Se	ttina					-			 	
Flow rate (mt			l						[
		L)6/		L	l	L	l <u></u>	<u>N</u>	· · ·
Time	DTW	Purge Rate	vvater Cumulative	Quality Pa Temp.		er Measure ectrical	· ····	F •		
I MILE	(fL BTOC)	rurge Kate (m∐min)	Volume	(degree C)			рН	Eh	DO	Turbidity
	fir proof	/201720041)		(neduee c)		ductivity		(mv)	(mg/L)	(NTU)
1250	24,42	100	Purged (L) 6.95	21,73		1hos/cm) 819	6.44	84.9	3.37	10.5
1255			7.45					84.5	3.34	
1300	21.44 21.45	100	7.95	21.74 21.74		817 815	6.44	81.6	326	11.0
1305	21.45	100	8.48	21.74		813	844			134
1310	21.44	100	8.95			806	6.43	78.6	51.2	12.6
	21.49	100		Z1.63 Z1168			6.43	74.7	3.07	10.4
<u>1315</u> 1320			9.45	21.89		804	6.43	72.6	2.99	9.8
1325	21.49	100	9.15			802	6.42	69.7	2.58	12.5
12 65	21.50	100	10.45	CI.89	ø.,	800	6.42	66.8	2.78	12.5

Temp.

Water Quality Parameter Measurements (continued)

00043658

Sheet 9 of 6

	l	
44.) 144		W

DTW

Purge Rate

Cumulative

Time

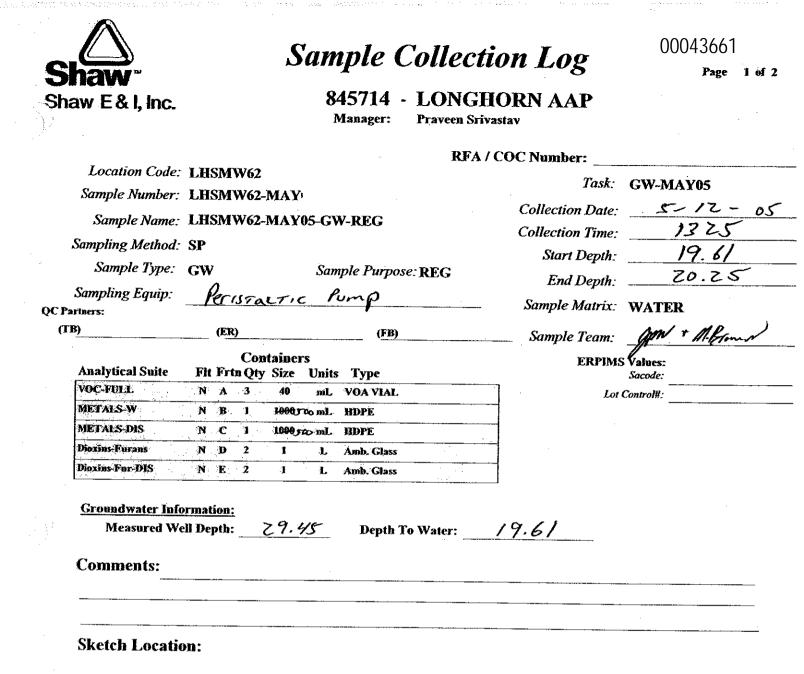
Electrical pH Eh DO Turbidity (fL BTOC) (mL/min) Volume (degree C) Conductivity (mv) (mg/L)(NTU) Purged (L) (uMhos/cm) 1330 z1.52 100 10,95 ZI ,6**9** 0.776 6.42 63.5 フィラフ 9.7 13 25 Z1.53 100 11.45 21.75 0.793 6.42 60 2.65 95 40 21.54 100 11.95 0.792 71.77 6.42 58.6 2.62 9.9 12.45 40 71.56 100 21.82 0.791 6.42 56. Z 2.60 10.5 ۰Ď 21.57 ? TC.95 100 71.66 0.788 6.41 54.4 5.60 í0, 2 55 7 21.57 100 13.45 21-82 0.786 41 51.7 2.54 10.1 M 0Ù 21.5 100 13.95 21.98 De 784 49.7 7.32 6141 16.1 105 2.15 100 1岁. 44 0.78 21,99 6.41 45.6 2.32 16-2 410 21.61 14. 160 96 てト・ Ø, 779 6,40 41 6.6 2.25 8. 4 115 71.67 100 15 21.51 ۳. 50 0.7 6. 40 2.23 7.8 45 71.6 100 21.66 00 Ø, 7.8 40 45 6. 2.20 21.56 90 72.29 45 टतरु 0 17 13 6.41 39.6 0 7. 1430 21.56 100 95 6 ZZ.3 0.773 6.40 37,9 2,10 7.2 1435 21.59 100 45 22.03 ハフ 61773 37. 2.04 6. 40 7.4 Sampling Sampling beginning time: Sampling completion time: Water Quality Parameter Measurements Time DTW Purge Rate Gumulative Temp. Electrical pН Eh DO Turbidity (ft. BTOC) (mUmin) Volume (degree C) Conductivity (mv) (mg/L)(NTU) Purged (L) (uMhos/cm) Sample Information Sample ID: Sample collection date/time: Duplicate sample collected (Y/N): Duplicate sample ID: Split sample collected (Y/N): Split/sample ID: COC No(s): **Requested Analysis** Method Containers **Regulasted Analysis** Method Containers Comments:

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

GROUNDWATER SAMPLING FORM

00043659 Sheet_<u>5_</u>of_<u>6</u>

			110	·.						
Operable	Unit/Site ID		48			Sampling	location ID:	<u> </u>	NW01	
Project N	ame/#:		<u>A/t /</u>	1/0		Sample II	D: <u>48</u> W I Time/Date	WOI- MAY	105	
Weather:	Unit/Site ID ame/#: (أدمح	<u> </u>	70 , 10	ight tore	28	Collection	Ime/Date	/33.	5 / 5-	12-05
$\overline{\mathbf{n}}$		· · · · · · · · · · · · · · · · · · ·				allation				
Pump iqs	tallation cre	w:					n date/begii	nning time:		
PID/FID	eading (well	head/back	ground):				n date/com			
	ameter (incl						terval (ft. B1			
Total well	Depth Kft. B	TOC):								
Initial (pre	installation) DTW/time					llation DTW			
Final (afte	r pump prin	າໄກg) DTW/	lime:		_	Max. sust	ainable pun	np rate (mL	/min):	
	luct (circle):				-		ce of produ			
	f water remo		priming (m	L):		Discharge	tube diame	eter (3/8" or	1/4"):	
_	e tube lengtf		_		<u>.</u>	Inlet reduc	cer used (Y/	'N):		
	ic Controlle	-								
Initial air p	pressure = H	I (ft.) X 0.43	¹ =	_psi						
•		Initial	2	3 /	4	5	6	7	8	Final
Pressure (pe	si)	<u> </u>		$ \Sigma / $						
Refill Setting	<u>}</u>			\square						
Discharge S					Ma /			<u> </u>		
Flow rate (m	L/min)	<u> </u>	<u> </u>	L(////				<u> </u>		<u> </u>
				1/1	Purgin	g				
Purging/sa	ampling crev	N:		<u> </u>	[U]	RID/FID re	eading (well	head/back	ground):	
-	e/beginning					Purge date	e/completio	n time:		
Initial (pre	-purging) D1	FW (ft. BTO	C):	·	_	Final (post	t-purging) D	TW (fl. BTC	DC):	
	1 tubing + pi		:l	NA	-	No. of tubi	ng + pump	volumes pu	rged:	
	c Controlle						\mathbf{X}			
Initial air p	ressure = H	(ft.) X 0.43	=	_psi						
		Initial	2	3	4	5	6	7	8	Final
Pressure (ps	i)							\square		
Refill Setting										
Discharge Se	etting									
Flow rate (m	L/min)		<u> </u>	<u> </u>					\square	
			Water	r Quality Pa	aramete	er Measure	ments			
Time	DTW	Purge Rate	Cumulative	Temp.	E	ectrical	рН	Eh	DO	Turbidity
	(fL BTOC)	(mL/min)	Volume	(degree C)	Сол	ductivity		(mv)	(mg/L)	(NTU)
		18.4	Purged (L)		(uM	hos/cm}				
1440	21.59	100	VESS	21.80	0	573	6.40	36.00	2,06	6.6
1445	21.62	100	10 cont	21. 4	9.	772	6.40	36,1	2:02	8.5
1450	21.62	100	21.52	21.52	Ø	768	6,39	35-6	1.99	8.8
1455	21.65		20.	21,24	10		6.38	34.2	1.94	7.3
1500	7.69	110	20.55	21.09	' O.		6,39	33.1	1.92	8.1
505	Z1.71	140	21,10	Z1,02	0	.762	6.38	32,8	1,90	6,8
530	24,74	100	3115	20.88	0.	159	6.38	31,1	1.87	6.7
625	2,25	U0O	22.1	20.87	0.	158	6.28	31.0	1.84	58

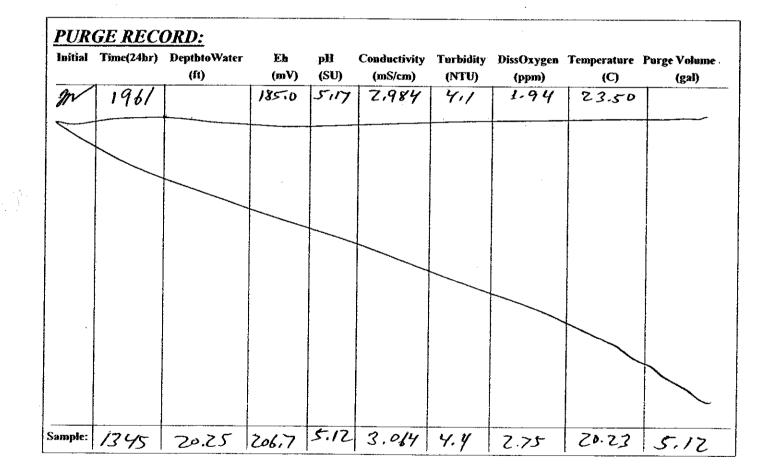

00043660

Sheet Lof 6

Water Quality Parameter Measurements (continued) Time DTW Purge Rate Cumulative Temp. Electrical pH Eb DO Turbidity (fL BTOC) (mL/min) Volume (degree C) Conductivity (mv) (mg/L) (NTU) Purged (L) (uMhos/cm) 21,74 1530 100 02.25 20.88 0.758 29.8 *दे(* 1,84 21.74 36 23.1 ĺØΛ 70.85 0,757 29.5 6.38 183 - AR 21. 74 Z3.6 20,80 ION 156 O. 76 28.4 21.70 1545 100 24,1 **20.**72 0.755 Co. 28. 35 5 550 21,77 24.6 100 20.65 754 0. 27a Z 76 Ø) 15.65 ¥ 21 100 2511 20,69 0.754 Ľ 2 76 1557 21. 77 25.6 100 0.753 21.75 61 37 175 6.9 **6**1 650 21-28 100 26. 20,78 Ôř 740 37 27, g 8 6.1. 1,54 Sampling 1650 Sampling beginning time: 1555 Sampling completion time: Water Quality Parameter Measurements DTW Time Purge Rate Cumulative Temp. Electrical pН Eh DO Turbidity (ft. BTOC) (mL/min) Volume (degree C) Conductivity (mv) (mg/L) (NTU) Purged (L) (uMhos/cm) 555 アノ・フフ 100 2511 20.69 0.754 6.37 27,7 1.76 6.2 650 こんフフ 100 26.1 50.78 0.740 6.37 23.8 3.9 1.5 Sample Information 48NW01 Sample ID: Sample collection date/time: /555 0511 Duplicate sample collected (Y/()) Duplicate sample ID: NO Split sample collected (Y/N) Split sample ID: ND COC No(s): **Requested Analysis** Method Containers **Requested Analysis** Method Containers VOC 8760 B 30 Youl perch, race 214 250 m P TIOXIN/FURA Dis 5~8250 20 12 DIDY, N/FURAN Se290 20 12 RCRA METAL Dis 60103/1000 10 500 ml RChA metal 7 + 60100/6020 500 m 1 @ Comments: **⊮**¥ SAMPLING . STACT

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

Logged BY / Date:



00043662

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW62 Sample Number: LHSMW62-MAY

Logged BY / Date:

00043663

Sheet _1_of ___

Operable	e Unit/Site II Name/#: :C/eer-	D:	48		· · · · · · · · · · · · · · · · · · ·	Sampling	Location II): LH.S.	MULZ	
Project N	Vame/#:	LA	+ AAF	,				LASMA		AN A T
Weather	: Clear	1900	F		-	Collection	n Time/Dat	<u>: 1325</u>	<u> </u>	1703
L		/				Conection		<u>. /363</u>	7	12/05
		_		Pum	p Inst	allation				
Pump in:	stallation cre	ew <i>Qm</i> /	- M.	Brown	_	Installatio	on date/beg	inning time:	NIA	
PID/FID	reading (we liameter (inc	ll head/bacl	(ground):	0,0	_			pletion time	/// //	
Casing d	liameter (inc	hes):	4	h	_		nterval (ft. B	· /	to	
Total we	ll Depth (ft. l	BTOC):	29.5	15	_			ft BTOC):		·····
Initial (pr	e-installation	n) DTW/time	: <u>19</u> .s	71				V/time:		
	er pump pri							np rate (mL		
Free proc	duct (circle):	LNA	<u>PL / DNAPL</u>		_		nce of produ		<u> </u>	1
Volume o	of water rem	oved during	priming (m	L):			•	eter (3/8" o	r 1/4"):	M
Discriarg	e une lengi	л (я.): <u></u>		"AL			cer used (Y		1	M/
	tic Controll			NT.				,		- W
Initial air	pressure =	H (ft.) X 0.4:	3=	_ psi					-	
		Initial	2		4	5	6	7	8	Final
Pressure (p	si)				$ \rightarrow $				- 	11110
Refill Setting	ģ.				± 7		4	· [· • • •	
Discharge S	Setting				$ \forall$		\sim			-{
Flow rate (n	nL/min)			1	1 1			\		
							a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l			
Purging/s Purge dat	e/beginning	time: <u>5/</u>	11/05	Mark Bown	Purgin)	PID/FID re		head/back		
Purging/s Purge dat Initial (pre Calculated Pneumat i	le/beginning ⊢purging) D d tubing + p ic Controlle	time: <u>5//</u> TW (ft. BTC) ump volume er Tuning:	i 16.5 (C): 19, 2:	Ngrk Borry .5-1 NA	Purgin	PID/FID re Purge date Final (pos	e/completio t-purging) E	n time: <u>5</u> - TW (ft. BT(-/ii/os DC):9,	
Purging/s Purge dat Initial (pre Calculated Pneumat i	le/beginning ⊢purging) D d tubing + p	time: <u>5//</u> TW (ft. BTC) ump volume er Tuning:	i 16.5 (C): 19, 2:	Ngrk Borry .5-1 NA	Purgin	PID/FID re Purge date Final (pos	e/completio t-purging) E	n time: <u>5</u> - TW (ft. BT(-/ii/os DC):9,	1345 51 (2Ry)
Purging/s Purge dat Initial (pre Calculated Pneumat i Initial air p	te/beginning -purging) D d tubing + p ic Controlle pressure = H	time: <u>5//</u> TW (ft. BTC) ump volume er Tuning:	i 16.5 (C): 19, 2:	Ngrk Borry .5-1 NA	Purgin	PID/FID re Purge date Final (pos	e/completio t-purging) E	n time: <u>5</u> - TW (ft. BT(-/ii/os DC):9,	1345 51 (2Ry)
Purging/s Purge dat Initial (pre Calculated Pneumat i Initial air p Pressure (ps	te/beginning -purging) D d tubing + p ic Controlle pressure = F	time: <u>5</u> TW (ft. BTC ump volume er Tuning: I (ft.) X 0.43	=A	Mark Binsu ST NA _psi	- - -	PID/FID re Purge date Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: <u>5</u> TW (ft. BT(volumes pu	711. <i>fos</i> DC): <u>19</u> . irged: <u>3</u> 3	1345 51 (2004) 13 Lirurs
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting	te/beginning -purging) D d tubing + p ic Controlle pressure = H	time: <u>5</u> TW (ft. BTC ump volume er Tuning: I (ft.) X 0.43	=A	Mark Binsu ST NA _psi	- - -	PID/FID re Purge date Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: <u>5</u> TW (ft. BT(volumes pu	711. <i>fos</i> DC): <u>19</u> . irged: <u>3</u> 3	1345 51 (2004) 13 Lirurs
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	te/beginning -purging) D d tubing + p ic Controlle pressure = H	time: <u>5</u> TW (ft. BTC ump volume er Tuning: I (ft.) X 0.43	=A	Mark Binsu ST NA _psi	- - -	PID/FID re Purge date Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: <u>5</u> TW (ft. BT(volumes pu	711. <i>fos</i> DC): <u>19</u> . irged: <u>3</u> 3	1345 51 (2004) 13 Lirurs
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting	te/beginning -purging) D d tubing + p ic Controlle pressure = H	time: <u>5</u> TW (ft. BTC ump volume er Tuning: I (ft.) X 0.43	=A	Mark Binsu ST NA _psi	- - -	PID/FID re Purge date Final (pos No. of tubi	e/completio t-purging) E ing + pump	n time: <u>5</u> TW (ft. BT(volumes pu	711. <i>fos</i> DC): <u>19</u> . irged: <u>3</u> 3	1345 51 (2004) 13 Lirurs
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	te/beginning -purging) D d tubing + p ic Controlle pressure = H	time: <u>5</u> TW (ft. BTC ump volume er Tuning: I (ft.) X 0.43	$= \mathcal{M}_{1}^{2}$	Mark Binsu ST NA _psi	4	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) E ing + pump 6	n time: <u>5</u> TW (ft. BT(volumes pu	711. <i>fos</i> DC): <u>19</u> . irged: <u>3</u> 3	1345 51 (2004) 13 Lirurs
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	te/beginning -purging) D d tubing + p ic Controlle pressure = H ii) etting L/min) DTW	time: <u>5</u> TW (ft. BTC ump volume er Tuning: I (ft.) X 0.43	(165 (C): 19. = <u>MA</u> 2 Water	Mark Binsu ST NA psi 3	4 Aramete	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) E ing + pump 6	n time: <u>5</u> TW (ft. BT(volumes pu	711. <i>fos</i> DC): <u>19</u> . irged: <u>3</u> 3	13 45 51 (2Ry) 13 Cirers
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Tow rate (m	te/beginning -purging) D d tubing + p ic Controlle pressure = F 	time: <u>5</u> TW (ft. BTC) ump volume er Tuning: I (ft.) X 0.43	C): 19, C): 19, =A 2 Water	Agent Riman S / NA psi 3 Quality Pa	4 L/ aramete Ek	PID/FID re Purge data Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: <u>5</u> DTW (ft. BTC volumes pu	-/11/65 DC): Irged:35	Final
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge So Tow rate (ml	te/beginning -purging) D d tubing + p ic Controlle pressure = H ii) etting L/min) DTW (ft. BTOC)	time: <u>5</u> TW (ft. BTC) ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min)	(6.5 (C): 19, = 14 2 Water Cumulative	Ample Riman S / NA psi 3 Quality Pa (degree C)	4 Tamete Ek Con	PID/FID re Purge data Final (pos No. of tubi 5	e/completio t-purging) E ing + pump 6 ments	n time: <u>5</u> DTW (ft. BTC volumes pu 7 Eh	711 /05 DC):	13 45 51 (2Ry) 13 Cirers
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Tow rate (m Time	e/beginning -purging) D d tubing + p ic Controlle pressure = H ii) etting Umin) DTW (ft. BTOC) Z.P. / §	time: <u>5</u> / TW (ft. BTC) ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 480	2 2 Water Cumulative Volume Purged (L) 1740	Amark Birrau ST NA psi 3 Quality Pa Temp. (degree C) 19.97	4 L/ Ele Con (uM 3,	PID/FID re Purge date Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments	n time: <u>5</u> DTW (ft. BTC volumes pu 7 Eh	711 /05 DC):	Final
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Tow rate (ml Time <u>1138</u> 1145	e/beginning -purging) D d tubing + p ic Controlle pressure = F ii) etting L/min) DTW (ft. BTOC) Z.P. 1 % Z.O. 7 4	time: <u>5</u> TW (ft. BTC) ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) <u>480</u> <u>490</u>	16.5 19. 19. 2 2 Water Cumulative Volume Purged (L) 1440 4936	Mark Binsu .S NA psi 3 Quality Pa Temp. (degree C) J97.97 19.97 19.42	4 L/ Ele Con (uM 3,	PID/FID re Purge date Final (pos No. of tubi	e/completio t-purging) E ing + pump 6 ments pH	n time: <u>5</u> DTW (ft. BTC volumes pu 7 Eh (mv)	/0_5 DC):/0_, irged:3 B (mg/L)	17 45 51 (200 y) 13 Cirers Final Turbidity (NTU) 2555
Purging/s Purge dat Initial (pre Calculated Preumati Initial air p Pressure (ps Refill Setting Discharge Se Tow rate (ml Time 138 1145 1204	e/beginning -purging) D d tubing + p ic Controlle pressure = H ii) etting L/min) DTW (ft. BTOC) Z.D. 1 % Z.O. 7 4 Z.O. 7 4 Z.O. 7 4	time: <u>5</u> / TW (ft. BTC) ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 780 490 780	1/6.5 (C): 19, (C): 14,00 (C):	Mark Binsu .5 NA psi 3 Quality Pa Temp. (degree C) J9.97 19.97 19.57	4 Finance of the second	PID/FID re Purge data Final (pos No. of tubi 5 1 1 1 1 1 1 1 1 1 1	e/completio t-purging) E ing + pump 6 ments pH	n time: <u>5</u> DTW (ft. BTC volumes pu 7 Eh (mv) 200.6		17 45 51 (200 yr) 13 (17 or) Final Final (NTU) 25 5 24.8
Purging/s Purge dat Initial (pre Calculated Preumati Initial air p Pressure (ps Refil Setting Discharge S Tow rate (m Time 138 11 4 5 1204 12 16	te/beginning -purging) D d tubing + p ic Controlle pressure = H ii) etting Umin) DTW (ft. BTOC) Zp. 1% Zo.74 Z2.45 Z3.45	time: $5/2$ TW (ft. BTC) ump volume or Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 780 470 790 490	$\frac{1}{16.5} - \frac{19}{19.5}$ = MA = MA = 2 Water Cumulative Volume Purged (L) $\frac{1740}{4836}$ $\frac{18950}{18950}$ $\overline{1770}$	Mark Binsu .5 NA _psi 3 Quality Pa Temp. (degree C) 19.97 19.42 19.57 19.48	4 Finance of the second	PID/FID re Purge data Final (pos No. of tubi 5 7 7 7 7 7 7 7 8 7 7 8 7 7 8 7 7	e/completio t-purging) E ing + pump 6 ments pH 4.36 5.15	n time: DTW (ft. BTC volumes pu 7 Eh (mv) 200.6 145	-/11. fo.5 DC):	17 45 51 (Sey) 13 Lirers Final Turbidity (NTU) 255 24.8 18.9
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sc Tow rate (ml Time 1/38 1/45 1/204 1/2/6 2.35	te/beginning -purging) D d tubing + p ic Controlle pressure = F ii) tubing	time: $5/2$ TW (ft. BTC) tump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 480 490 780 490 780 480	$\frac{1}{16.5} - \frac{19}{19.5}$ $= \underline{NA}$ $= \underline{NA}$ $= \underline{NA}$ $= \underline{VA}$	Ample Binsu .ST/ NA psi 3 Quality Pa Temp. (degree C) 19.97 19.97 19.47 19.57 19.48 19.61	4 File Con (uM 3, 2, 7	PID/FID re Purge data Final (pos No. of tubi 5 1 1 1 1 1 1 1 1 1 1	e/completio t-purging) E ing + pump 6 ments pH 4.36 5.15 5.25	n time: DTW (ft. BTC volumes pu 7 Eh (mv) Z00.6 145.5	-/11. fo.5 DC):	17 45 51 (200 yr) 13 (17 or) Final Final (NTU) 25 5 24.8
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Tow rate (m) Time 1138 1145 1235 1294	te/beginning -purging) D d tubing + p ic Controlle pressure = H ii) etting L/min) CTW (ft. BTOC) ZD. 18 Z.0.74 Z2.45 Z3.45 Z.3.45 Z.45 Z.45 Z.45 Z.45 Z.45 Z.45 Z.45 Z	time: $3/2$ TW (ft. BTC) ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 480 490 780 490 780 480 580	$\frac{1}{16.5} = \frac{19}{19.5}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$ $= \frac{19}{2}$	MA psi 3 Quality Pa Temp. (degree C) 19.97 19.42 19.57 19.48 19.61 19.60	4 L Con (uM 3, 2, 2, 2, 2,	PID/FID re Purge data Final (pos No. of tubi 5 1 1 1 1 1 1 1 1 1 1	e/completio t-purging) E ing + pump 6 ments pH 4.36 5.15 5.25 5.25 5.62	n time: <u>5</u> DTW (ft. BTC volumes pu 7 <u>7</u> Eh (mv) <u>200.6</u> <u>145</u> <u>155.5</u> <u>142.8</u> <u>138.7</u>	11, 105 DC): .19, Irged: .33 8	17 45 51 (200 yr) 13 Cirers Final Final Turbidity (NTU) 25.5 24.8 18.9 21.5 19.9
Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sc Tow rate (ml Time 1/38 1/45 1/204 1/2/6 2.35	te/beginning -purging) D d tubing + p ic Controlle pressure = F ii) tubing	time: $5/2$ TW (ft. BTC) tump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 480 490 780 490 780 480	$\frac{1}{16.5} - \frac{19}{19.5}$ $= \underline{NA}$ $= \underline{NA}$ $= \underline{NA}$ $= \underline{VA}$	Ample Binsu .ST/ NA psi 3 Quality Pa Temp. (degree C) 19.97 19.97 19.47 19.57 19.48 19.61	4 File Con (UM 3, 2, 2, 2, 2, 2, 2, 2,	PID/FID re Purge data Final (pos No. of tubi 5 1 1 1 1 1 1 1 1 1 1	e/completio t-purging) E ing + pump 6 ments pH 4.36 5.15 5.25 5.25 5.25 5.25 5.25 5.25	n time: <u>5</u> DTW (ft. BTC volumes pu 7 Eh (mv) 200.6 145 155.5 742.8	711 fos DC): .19, rrged: .33 8	17 45 51 (200 y) 13 Lirers Final Turbidity (NTU) 25.5 24.8 18.9 21.5

00043664 Sheet_Zof_⁷

		<u> </u>	Vater Quali	ty Paramet	er Measurements	s (continue	d)		
Time	DTW (ft. BTQC)	Purge Rate (mL/min)	Cumulative Volume	Temp. (degree C)	Electrical Conductivity	рH	Eh (mv)	DO (mg/L)	Turbidity (NTU)
			Purged (L)		(uMhos/cm)				
						1			
<u></u>									
······································	1					V			
				\square		1			
				Xh					
					h				
			7	TTX	\square				
- · ·				11.1	∇				
	1			1/ '					
	ļ			/					
	[· · · · · · · · · · · · · · · · · · ·					\mathbf{N}			
				S	ampling				
Sampling I	peginning tir	ne: 1352	25			completion t	ime: <u>13</u> .	45	.
			Water	Quality Pa	rameter Measure	ements			
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Éh	DO	Turbidity
	(fl. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(UTV)
			Purged (L)		(uMhos/cm)				
325	19.61				2,984	5,17	185.0	1.94	4,1
1345	20,26	50ml	400mL	2023	3064	512	206.7	2.75	604
				* - 1 84					
				Sample	Information				
Sample ID	:1.HSMI	N 67			Sample co	llection date	/time 13	35 5/I	2/05
	sample colle		<u>N/</u>	,	Duplicate :	sample ID:	, unot <u> </u>	NA	
•	le collected		/	-		le ID:			
COC No(s		(). <u></u>				· · ·			~~;
	/	· · · · · · · · · · · · · · · · · · ·							
Requeste	d Analysis	Method	Co	ontainers	Requeste	d Analysis	Method	Cont	ainers
Otorin/Fu	ran Dissolution	<u> </u>	20011						
Dionin/r			201						
RCP Meet	1. Disolog		10 50					· · · · · · · · · · · · · · · · · · ·	
RCRA m	etal		1 50	OML					
VOIA+1+	<u>×</u>		300 40	ml_					
				ampling					·

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

00043665

Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav

. •	RFA / CO	OC Number:
Location Code: Sample Number:	LHSMW63 LHSMW63-MAY	Task: GW-MAY05 Collection Date: 5/12/05 5/13/05 5/15/1
	LHSMW63-MAY05-GW-REG	Collection Time: 1025 0915- 1230
Sampling Method:	SP	Start Depth: 21.78 21.79 21.79
Sample Type:	GW Sample Purpose: REG	End Depth: Try Jry Dry
Sampling Equip: QC Partners:	PETISTALTIC Pump	Sample Matrix: WATER
(TB)	(FB)	_ Sample Team: JMV, M.Brs +5. Mello
Analytical Suite	Containers Flt Frtn Qty Size Units Type	ERPIMS Values: Sacode:
VOC-FULL	N A 3 40 mil VOAVIAL	Lot Control#:
METALS-W	N B 1 1000500ml HDPE 5/13/5+5/5/05	· · ·
METALS-DIS	N C 1 1000 500 mL HDPE 5 12/05 1 5 /15/05	
Dioxins-Furans	N D 2 1 L Amb. Glass NO SAMPLE	2
Dioxins-Fur-DIS	NE 2 I L Amb. Glass No Strafe	1
PERC	NFI I L'HOPE NO GAMPLE	۶
<u>Groundwater Info</u> Measured W Comments:	ell Depth: 22.12 Depth To Water: 2	20,90 TO COLLPCT + MEAN VRF
WATEr Q	VALITY NATAMETEL DIAVIALS FUTAN	S DIOVIOS-ENDIS AND
ferchlo	INSUFFICIENT WATER RECHA VALITY PARAMETERS, DIOXINS FURAM. RATE	<u> </u>

Sketch Location:

Logged BY / Date: M. 5/16/05

Page 2 of 2

Sample Collection Log

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW63 Sample Number: LHSMW63-MAY

Initial		DepthtoWater (ft)	Eh (mV)	pH (SU)	Conductivity (mS/cm)	(NTU)	(ppm)	Temperature) (C)	Purge Volume (gal) _
101	1/0/	20.92	Z43.S	6.75	0.594	18.0	7.16	20.66	0,4
						-			
				·					
mple:	10501	FIGENT	WATER	Re	charge	TO M	CAURE		

1 5/16/05 Logged BY / Date:

00043667

Sheet 1 of 2

Operable	Unit/Site ID:		48			Sampling	location ID:	LHSK	hw (3	
	ame/#:	I_H	AAP		_	• •		SM4(3-		<u> </u>
Weather:	CLA	- IS-NY	A 8	07.90"				5-12-05		<u></u>
		//			_					
		/.	1	/ Pumj	pJnsta	allation			_	
Pump inst	allation crev	v. /1. 144	N/ Carles	1/Srow		Installation	n date/begii	nning time:_	<u> </u>	5
PID/FID re	eading (well	head/backg	pround):	0.0	_	Installation	n date/comj	pletion time:	NA	
Casing dia	ameter (inch	es):	<u> </u>	pre		Screen Int	terval (ft. B]	TOC): 17	,00 to	22.12
Total well	ameter (inch Depth (ft. B	TOC):	_Za.1	2.		Pump inta	ke depth (fl	BTOC):	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Initial (pre	-installation)	DTW/time:	20.9	10 spale	5 4017	Post-insta	llation DTM	//time:	NA	
	r pump prim				_	Max. susta	ainable pun	np rate (mL/i	min):	
Free prod	uct (circle):	LNAF	L/DNAPL	-				ct:		
Volume of	water remo	ved during	priming (ml	_):		Discharge	tube diame	eter (3/8" or	1/4"): 3/	?"
	tube length							/N):		
Pneumati	c Controlle	r Tuning:			_		-			
Initial air p	ressure = H	(ft.) X 0.43	= <u>NA</u>	_psi						
		Initial					T	1 -	1 -	T
Pressure (ps		minai	2	3		₽	6	7	8	Finat
Refill Setting		[<u> </u>	
Discharge Se			<u> </u>		F K	$\forall \rightarrow$	∮		 	
Flow rate (m				- 4	1					
r ion rate (in			L	<u> </u>	Purgin					
	ampling crev e/beginning purging) DT			hury M. 11.50		PID/FID re Purge date	e/completion	head/backg n time: <u></u> TW (ft. BTO	11.05 @	0.0 1108
	l tubing + pu				-			volumes pu		3.56
	c Controlle				-		-3 FF	pai		
Initial air p	ressure = H	(ft.) X 0.43	= NA	psi						
		I		1	r				i ———	·····
	3	Initial	2	3			6	7	8	Final
Pressure (psi Refill Setting	2				\sim	6	<u> </u>			<u> </u>
Discharge Se	tina									
				6	F					
Flow rate (mt	.//////			I	•		l			<u> </u>
			Water	Quality Pa	aramete	er Measure	ments			
Time	DTW	Purge Rate	Cumulative	Temp.	Eł	ectrical	рH	Eh	DO	Turbidity
	(fl. BTOC)	(mL/min)	Volume	(degree C)	Con	ductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uM	hos/cm)	ſ			
101	20.92	400	0.400	20.66	D,	594	6.75	2435	7.16	18.0
1108	Pur	167 D	RY							
	TOTAL	PUSAED	35							
		<u> </u>								
									·	
								<u> </u>		[

GROUNDWATER SAMPLING FORM

Sheet ____of ___

Time					er Measurements	E CONTRACTOR	T	,	<u> </u>
- E	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidi
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)				
	/					<u> </u>			
			/			1			
				/	h l				
				∇	$\sqrt{1}/\sqrt{2}$				
					Nev-		· ·		
· · · · ·									
·									
							\vdash		
							<u>├</u> `		
					· · · ·	†	t		
 								<u> </u>	
			I	L	L	F	<u>.</u>	I	t
			- 1	Sa	ampling				
Sampling t	eginning tir	ne: <u>5-120</u>	5/1035		Sampling	completion t	ime:		
1			, Water	· Quality Pa	arameter Measure	ments			
Time	DTW	Purge Rate		Temp.	Electrical	pH	Eh	DO	Turbidi
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
	,		Purged (L)	((uMhos/cm)				
1035	21.78	10	220	INSUE	FICIENT WA	Ver To	TAKE .	ATEr CD	16.75
10.00				000	meter ME	sultema	TI		
				<u>F7R /</u>			<u></u>		·
		•							
		· · · · · · · · · · · · · · · · · · ·		Sample	e Information		_		
Sample ID	_ <u>_</u> #S	m.~63	-MAYOS		Sample co	llection date	e/time:		
Sample ID. Duplicate s	ample colle	cted (Y/N):	N		Duplicate :	sample ID:	\sim N	7	
Split samp	e collected	(Y/N):	N		Split samp	ie ID:	\sim	1	
COC No(s)	:								
					n a second			•	
Requested	I Analysis	Method		ontainers	Kequeste	d Analysis	Method	Conta	ners
		9260 B		10 me	$ \rightarrow $				
METAL		60 pz/020		500ml	<u> </u>		(h)	·	
	1-34	1 11	1 C	000 m	<u> </u>	7			
METAL									
METAL								\geq	

00043669

Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav

·		RFA / COC Number:	
Location Code: Sample Number:	LHSMW64 LHSMW64-MAY		GW-MAY05
	LHSMW64-MAY05-GW-REG		5-12-05
Sampling Method:	SP		19.85
Sample Type:	, , ,	G End Depth:	23.28
Sampling Equip:	PERISTALTIC PUMP	Sample Matrix-	
(TB)	(ER) (FB)	Sample Team:	J.M. VALESKy /M. Brown
Analytical Suite	Containers Flt Frtn Qty Size Units Type	ERPIMS	S Values: Sacode:
VOC-FULL	N A 3 40 mL VOA VIAL	Lot	Control#:
METALS W	N B 1 30005 COml. HDPE		
METALS DIS	N C 1 1000 500 mL HDPE		
Dioxins-Furans	N D 2 1 L Amb. Glass		
Dioxins-Fnr-DIS	N E 2 1 L Amb. Glass		
PERC	N F I 1250 ML HDPE		
<u>Groundwater Infe</u> Measured We	ormation: Il Depth: <u>778</u> Depth To Wat	ler: 19, 85	
Comments:			
Sketch Locatio		· · · · · · · · · · · · · · · · · · ·	

Logged BY / Date:

00043670

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW64 Sample Number: LHSMW64-MAY

Initial	Time(24br)	DepthtoWater (ft)	Eh (mV)	pH (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gal)
Jun	0912	19.85	2.36	6.22	9.270	23.5	4.87	19.4	125
					Jo	×			
ample:	0915	23.28	7771	6.24	6.700	81	5,43		15/2ps Z12

i

GROUNDWATER SAMPLING FORM

Sheet 1_of

	Unit/Site ID	:	48			Sampling	location ID:	LAS	SMW64	r
Project Na		L	HAAP		_			SMN64		
Weather:	clear			0 90'	-			5/12/		
					Inct	allation				
Dump incl	tallation area	۹. ۱۳	\	rung	111219		a data/baair	ning time:		
+	tallation crev	-	<u></u>				-			
	eading (well				-			letion time: OC):		
-	ameter (inch	•					-			
	Depth (ft. B		· · · · · · · · · · · · · · · · · · ·					BTOC):		
	-installation)	•		\				/time: p rate (mL/		
_	r pump prim uct (circle):			<u> </u>	-	. /	ce of produc		nmij	
	f water remo				-	/· ·		ter (3/8" or	1//"\-	
	i water remo tube length		եւ ուսում (ոստ	"── \ /	ו גן	-	er used (Y/	•	11 ⁴ 5 J	· · ·
_	ic Controlle				∜I /	************		··/·		
	pressure = H	-	-	psi 🖌	\mathbb{N}			·		
andrat all h	100016 - U	i (ii.)∧ 0.43 T		- ^µ				. <u> </u>	1	
		Initial	2	<u> 3 '</u>	4	5	6	7	8	Final
Pressure (ps	· · · · · · · · · · · · · · · · · · ·		ļ	└	1	<u> }</u>	ļ	·	ļ <u> </u>	ļ
Refill Setting					 		 	<u> </u>		ļ
Discharge Se					_		ļ			<u> </u>
Flow rate (m	L/min)	<u> </u>	<u> </u>				<u> </u>	L		
Purge date	e/beginning	time: 09/	10 / 5	-11-05		Purge date	e/completion	head/backg	11/25	0-0 1020
Purge date Initial (pre- Calculated Pneumati	e/beginning -purging) D7 I tubing + pu ic Controlle	time: <u>09</u> FW (ft. BTO Imp volume r Tuning:	10 / 5- C): / :	- <i>11-05</i> 7 • 8 VA		Purge date Final (post	e/completior -purging) D		1,1,6,5-)C): DRY	10,20
Initial (pre- Calculated Pneumati	e/beginning -purging) D1 I tubing + pu	time: <u>09</u> FW (ft. BTO Imp volume r Tuning:	10 / 5- C): / :	- <i>11-05</i> 7 • 8 VA		Purge date Final (post	e/completior -purging) D	time: TW (fL BTC	1,1,6,5-)C): DRY	10,20
Purge date Initial (pre- Calculated Pneumati Initial air p	e/beginning -purging) D7 I tubing + pu ic Controlle vressure = H	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	10 / 5- C): / = //A	- <i>11-05</i> 7 , <u>8</u> VA _psi	-	Purge date Final (post No. of tubi	e/completior -purging) D ng + pump	time: TW (fL BTC volumes put	и 163- h 163- DC): DRу rged:	0.20
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi	e/beginning -purging) D1 I tubing + pu c Controlle ressure = H	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	10 / 5- C): / = //A	- <i>11-05</i> 7 , <u>8</u> VA _psi	-	Purge date Final (post No. of tubi	e/completior -purging) D ng + pump	time: TW (fL BTC volumes put	и 163- h 163- DC): DRу rged:	0.20
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting	e/beginning -purging) D1 I tubing + pu c Controlle ressure = H	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	10 / 5- C): / = //A	- <i>11-05</i> 7 , <u>8</u> VA _psi	-	Purge date Final (post No. of tubi	e/completior -purging) D ng + pump	time: TW (fL BTC volumes put	и 163- h 163- DC): DRу rged:	0.20
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se	e/beginning -purging) D7 I tubing + pu c Controlle ressure = H i)	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	10 / 5- C): / = //A	- <i>11-05</i> 7 , <u>8</u> VA _psi	-	Purge date Final (post No. of tubi	e/completior -purging) D ng + pump	time: TW (fL BTC volumes put	и 163- h 163- DC): DRу rged:	020
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se	e/beginning -purging) D7 I tubing + pu c Controlle ressure = H i)	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	$\frac{10 \int 5}{10}$ $\frac{10 \int 5}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$	- <i>11-05</i> 7 , <u>8</u> VA _psi	4	Purge date Final (post No. of tubi	e/completior -purging) D ng + pump v	time: TW (fL BTC volumes put	и 163- h 163- DC): DRу rged:	020
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se	e/beginning -purging) D7 I tubing + pu c Controlle ressure = H i)	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	C): 7 C)	- <i>11-05</i> 7 . 8 NA _ psi 	4 A aramete	Purge date Final (post No. of tubi	e/completior -purging) D ng + pump v	time: TW (fL BTC volumes put	и 163- h 163- DC): DRу rged:	/0.20 Final
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (ml	e/beginning -purging) D7 I tubing + pu c Controlle ressure = H 	time: <u>09</u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43	C): 7 C)	- <i>11- 05</i> 7 . 8 NA _ psi 	4 Aramete El	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 6 ments	time:	8	/0,20 Final
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	0 / 5- C): / / = MA 2 / Water Cumulative	- <i>11- 05</i> - 7 - 8 NA _ psi _ 3 	4 Aramete El Con	Purge date Final (post No. of tubi 5	e/completior -purging) D ng + pump v 6 6 ments pH	time:	BO (mg/L) 7 - / / /	/0,20 Final
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (ml	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)	time: <u>09</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43	0 / 5- C): / / = ///A 2 / Water Cumulative Volume	- <i>11- 05</i> 7 . 8 NA _ psi 3 Quality Pa Temp.	4 Aramete El Con (UM	Purge date Final (posl No. of tubi	e/completion -purging) D ng + pump 6 6 ments	time:	BO (mg/L) 7 - / / /	/0_20 Final Turbidity (NTU)
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (ml	e/beginning -purging) D1 I tubing + pu c Controlle ressure = H i) i) etting L/min) DTW (ft. BTOC)	time: <u>09</u> IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min)	C): C): C): C): C): C): Cumulative Volume Purged (L)	- <i>11- 05</i> - 7. 8 NA - psi 3 Quality Pa Temp. (degree C) - 19. 16 - 18. 5	4 Aramete El Con (uM O). O).	Purge date Final (post No. of tubi 5 5 cr Measure ectrical ductivity thos/cm) 2 5 7 . 2 5 7	e/completior -purging) D ng + pump v 6 6 ments pH	time:	BO (mg/L)	/0,20 Final Turbidity (NTU)
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (mt Time	e/beginning -purging) D1 I tubing + pu ic Controlle ressure = H i) etting Umin) DTW (ft. BTOC) Zo.69	time: <u>09</u> IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) Z <i>S</i> O	0 / 5 C): / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <	- <i>11- 05</i> 7 , 8 NA _ psi 3 Quality Pa Temp. (degree C) 19 , 16	4 Aramete El Con (uM O). O).	Purge date Final (post No. of tubi 5 2 Final (post tubi 5 Final (post 5 Final (post tubi 5 Final (post final (post final (post final (post final (post final (post fi	e/completion -purging) D ng + pump 6 6 ments pH	Eh (mv)	BO (mg/L) Z-/_/	/0_20 Final Turbidity (NTU) 5560.0
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time 09/2 09/2	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) Z0.69 Z3.8/	time: 09/ IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 250 480	0 / 5 C): / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <	- <i>11- 05</i> - 7. 8 NA - psi 3 Quality Pa Temp. (degree C) - 19. 16 - 18. 5	4 aramete Con (uM D)	Purge date Final (post No. of tubi 5 5 cr Measure ectrical ductivity thos/cm) 2 5 7 . 2 5 7	e/completion -purging) D ng + pump 6 6 ments pH 5.99 6.0	Eh (mv) (186,4 (7)	BO (mg/L) Z-1) 1.8%	/0_20 Final Turbidity (NTU) 5_60.0](.0
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refil Setting Discharge Se Flow rate (mt Time $09/\partial_{1}$ 100	e/beginning -purging) DT I tubing + purging) DT c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) 20.69 23.8/ 24.65	time: 09/ W (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 250 480 490	0 / 5 C): / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <	- <i>11- 05</i> - 7. 8 NA - psi 3 - Quality Pa - (degree C) - - - - - - - - - -	4 Aramete El Con (uM O. O.	Purge date Final (posl No. of tubi 5 2 er Measure ectrical aductivity thos/cm) 2 2 7 2 5 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 7 2 7 7 7 7 7 7 7 7	e/completion -purging) D ng + pump 6 ments pH 5.99 6.0 6.04	Eh (mv) / <i>36,4</i> / <i>39,7</i>	DO (mg/L) Z-1_2) 	10,20 Final Turbidity (NTU) 5,60.0 11.0 7.1
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time $09/\partial_{1}$ $10 \circ \circ$ $10 \circ 1$ $10 \circ 1$	e/beginning -purging) D1 1 tubing + purging) D1 c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) 20.69 23.6/ 2.5.76	time: 09/ IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 250 480 480 495	0 / 5 C): / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <	- <i>II- 05</i> - <i>I</i> - <i>I</i>	4 Aramete El Con (uM O. O.	Purge date Final (post No. of tubi 5 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	e/completion -purging) D ng + pump 6 ments pH 5.99 6.0 6.04 6.04 6.04	Eh (mv) / <i>36.4</i> / <i>39.7</i> / <i>39.7</i>	BO (mg/L) Z-1 	10,20 Final Turbidity (NTU) 550.0 11.0 7.1 8.6
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time $09/\partial_{1}$ $10 \circ \circ$ $10 \circ 1$ $10 \circ 1$	e/beginning -purging) D1 1 tubing + purging) D1 c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) 20.69 23.6/ 2.5.76	time: 09/ IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 250 480 480 495	0 / 5 C): / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <	- <i>II- 05</i> - <i>I</i> - <i>I</i>	4 Aramete El Con (uM O. O.	Purge date Final (post No. of tubi 5 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	e/completion -purging) D ng + pump v 6 ments pH 5.99 6.0 6.04 6.06 6.06	Eh (mv) / <i>36.4</i> / <i>39.7</i> / <i>39.7</i>	BO (mg/L) Z-1 	10,20 Final Turbidity (NTU) 550.0 11.0 7.1 8.6

* INDICATES STOP PUTTING TO Fix TUDING W PERISTALTIC JUMP. @ 0938

))

GROUNDWATER SAMPLING FORM

Sheet ____of ____

00043672

			Hatan Owali	te Devenuet	or Mocouromonto	lcontinuor	n.		<u></u>
	r				er Measurements		ij Eh	DO	Turbidity
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН		-	(NTU)
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	fieros
			Purged (L)		(uMhos/cm)				
					· · · ·				· · · · · ·
					·				
									· ·
		·						· · · · · · · · · · · · · · · · · · ·	
					Ar	/			
				(Inte				
				l					
· · ·	l — — — —								<u>``</u>
				S	ampling	. ···			
			DIT					745	
Sampling t	peginning tir	me: <u>(</u>	3915			completion ti	me	//\	
			Water	Quality Pa	rameter Measure	ments		r	
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidity
	(fL BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)				
09	19,85	51	150	19.4	0.270	6.22	236,0	4.22	235
0915		58	1740-	18.98	0.272	6.24	227.1	5.43	8.6
0945	23.28	Past	SAND	Lina					
			· · · ·						
				<u> </u>	1.5.				
			_		e Information			bylor -	0915
Sample ID	: LHSM	w 64 - M ected (WN):	4405		Sample co	llection date sample ID:	/tume: <u>>/</u>	VCU M	Aver D
Duplicate s	sample colle	cted (WN):			Duplicate s	sample ID:	Lromu	va7-m	1/10-2
	le collected	(YO):			Split samp	le ID:		. <u> </u>	. <u></u>
COC No(s)):				-				
-			C	ontainers	Pequeste	d Analysis	Method	Cont	ainers
Requested	a Analysis	Method		Sintamers	Requester	a minarysis	mennu	00/10	411013
							· · · · · · · · · · · · · · · · · · ·		
			L						
Comment	s:								
******					bead above numn inta		or Liter	····	

845714 - LONGHORN AAP

Manager: Praveen Srivastav

		RFA / C	OC Number:	
Location Code: Sample Number:	LHSMW6 5 LHSMW6 5 MAY	·	Task:	GW-MAY05
	LHSMW65-MAY05-0	GW-REG	Collection Date: Collection Time:	See Comment See Comment
Sampling Method: Sample Type: Sampling Equip: artners:		ample Purpose: REG	Start Depth:	zo.37 zo.37
B)	(ER)	(FB)	Sample Team:	phil Milson
Analytical Suite	Containers Fit Frtn Qty Size Un	uits Type	ERPIMS	
VOC-FULL	NA 3 40 m	L VOA VIAL	Lot	Control#:
METALS-W	N B I 1999 m	al HDPE	1	
METALS-DIS	N C 1 1990 m	1. HDPE		
Dioxins-Furans	ND 2 1 1	L Amb. Glass		
Dioxins-Fur-DIS	NE 2 1 1	. Amb. Glass		
PERC	NFII	L. HDPE		

Sketch Location:

Logged BY / Date: Milly 5/10/05

Reviewed BY / Date:

00043673

Page 1 of 2



00043674

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW65 Sample Number: LHSMW65-MAY

Logged BY / Date: SM AUSKy 5/10/05

Shaw.

GROUNDWATER SAMPLING FORM

Operable	Unit/Site ID		218			Compline	locotion ID	. 7.25	Min 122	
Project N:	ame/#:	 	AAP			Sampling Sample li		:H HSM~~~L,S	17065	CANNO
Weather		18.1000	11- 9	YOOK		Calleetter		: 5/11	- 10	JANNER I
freditier.	$-\underline{Our}$		/11/			Collection	1 Time/Date	<u></u>	pas 1	VU SAMPLE
PID/FID re Casing dia Total well Initial (pre Final (afte Free prod	tallation crev eading (well ameter (inch Depth (ft. B installation) r pump prim uct (circle): f water remo	head/backy nes): TOC):) DTW/time: hing) DTW/ti LNAF	ground): <i>4</i> " <i>20, 5</i> : <i>20, </i>	Mark Bro 0-0 pm 		Installatio Screen In Pump inta Post-insta Max. sust Appearan	n date/comj iterval (ft. B ake depth (fi allation DTW ainable pun ice of produ	nning time:_ pletion time FOC):/0 t BTOC): //time:7 np rate (mL/ ct: eter (3/8" or	- <u>NA</u> - <u>S</u> to <u>NA</u> 	20.5 78.37 JA A
	tube length			/				/N):		<u> </u>
	ic Controlle	• • •				metreuu	cei useu (17		///	
Initial air p	ressure = H	l (ft.) X 0.43	=_ <i>N</i> A	_ psi						
		Initial	2	3	4	5	6	7	8	Finat
Pressure (ps	i)						3-		1	
Refill Setting							Pe		1	
Discharge Se	etting						1			
Flow rate (m)	L/min)							1		
Initial (pre- Calculated Pneumati	ampling crev e/beginning -purging) D1 I tubing + pu c Controlle ressure = H	W (ft. BTÓ) Imp volume r Tuning:	C): :1	0.37 NA	-	Final (pos	t-purging) D	n time: TW (ft. BTC volumes pu)C): See lon	mit AZ
·		Initial	2	3	4	\sum_{5}	6	7	8	Finat
Pressure (psi	i)				Z	h/1.		<u> </u>	t	1 11(6)
Refill Setting				/	1	Well-		<u> </u>		<u> </u>]
Discharge Se	tting			<i>L</i>				<u> </u>		┼───┨
Flow rate (mL	./min)					· · · · · ·				
	· · · · · · · · · · · · · · · · · · ·		Water	Quality Pa	ramete	r Measure	ments		t	
Time	DTW (fl. BTOC)	Purge Rate (mL/min)	Cumulative Volume Purged (L)	Temp. (degree C)	Con	ectrical ductivity hos/cm)	рН	Eh (mv)	DQ (mg/L)	Turbidity (NTU)
1520	75.05	- 0	OULD A	or pur	•	H2 D From	n MARL	L		<u> </u>]
										<u> </u>]
		1			1					
				\rightarrow	Ŧ F					
				-(A	4 <i>4</i> 4					
				·····×						
		L				1				

00043676

Sheet $\angle of \geq$

	X	1	Nater Quali	ty Parame	er Measurement	e (continue	od)		
Time	DTW	Purge Rate			Electrical	1			
	(ft. BTOC)	(mL/min)	1	(degree C)	Conductivity	рН	Eh	DO	Turbidity
	(Purged (L)	(ucgree of			(mv)	(mg/L)	(NTU)
			- unseu (L)		(uMhos/cm)				· [
·			<u> `</u>				···[- 	<u> </u>
									
				\rightarrow	K -	<u> </u>	<u></u>		,
					F-{		Í	·	
					- A Aran	\leq			
	<u> </u>				<u> </u>	ļ			
· · · · · ·									
							1		
······					·				
								1	
······································	ļ							$\overline{\mathbf{k}}$	
···········.	ļ	· · · ·							
							1		
e.				S -	mpling			.L.	
amolton	peginning tin	יסי		04		1.4			
Jumping	a garanig ta	·····			Sampling c		tme:		····
	ı			Quality Pa	rameter Measure	ments			
Time	DTW	1	Culturalative	Temp.	Electrical	рН	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Contractivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(Minos(cm)				. ,
•				/					
							/		
									~
-				0	2 6				
iomalia ID.	No	(AMANI)	- (Sample	Information Sample coll Duplicate sa Split sample			~	
anpie ID.	100	1 pr	<u>ou</u>	<u>, e c / j</u>	Sample coll	ection date	e/time:	114	·
upicale s	ample collec		-Ar	4	Duplicate sa	ample ID:	/	1/H	
pin sampi	e conectea (1/N):	<u> </u>	T	Split sample	e ID:		VII	
OC No(s)	·		10	• 					
equested	Analysis	Method		ntainers	Designed				
			00	namers	Requested	Analysis	Method	Conta	iners
· · · · · · · · · · · · · · · · · · ·					-12				
					- XAL	7			
_			······			\leq		·	
					4				
		<u></u> <u>l</u>							
omments	UNAR	E To	Dice H-	A (WELL J.A	Pag. m.		··· A 4/	
	/ .	····· /0	J_ Z		WELL VIA Likely IN BO	555JA		TP. NOTE	WATE
	LOCUM,	J IN WEI	ic line o	r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LIKELY N BO	Tom CAP	BELOW B	ASC. IT S.	· · · ·
	てわら /	No SAMP	Lee Could	arD.					

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

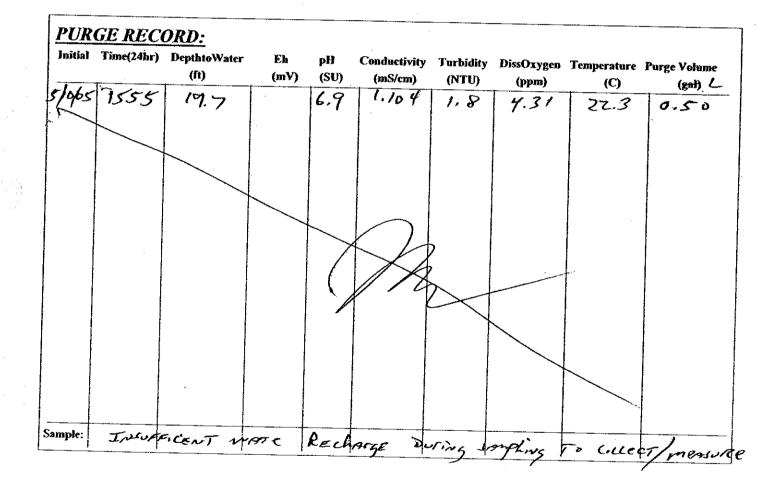
Page 1 of 2

00043677

845714 - LONGHORN AAP Manager: Praveen Srivastav

Loudin C. I		RFA/	COC Number:	·
	LHSMW6-MAY		Task:	GW-MAY05 5-1405 1510 405 5- 1205
Sample Name:	LHSMW66-MAY0	-GW-REG	Collection Date:	n
Sampling Method:	SP	,	Collection Time:	
Sample Type:		Samula Duma Dong	Start Depth:	19.97 19.92
		Sample Purpose: REG	End Depth:	Dry Dry
Sampling Equip: C Partners:	PERISTACTIO	Pump	Sample Matrix:	, .
(TB)	(ER)	(FB)	Sample Team:	J-MVALESK, M. Brod
Analytical Suite	Containers Fit Frtn Qty Size	Units Type	ERPIMS	Values: Sacode:
VOC-FULL	N A 3 40	mL VOA VIAL	Int	Control#:
METALS-W	N B I 1000 574	mL HDPE		
METALS-DIS	N C 1 1000 500	mL HDPE		
Dioxins-Forans	N D 2 1	L Amb. Glass A/1) (A.M.	77 0	
Dioxins-Fur-DIS	NE 2 1	L Amb. Glass No SAM	No.	· .
PERC	NF 1 1	L HDPE	æ	
<u>Groundwater Info</u> Macoured We	·		J	
measureu we	ll Depth:	Depth To Water:		
Comments:	INSUFFICIE	avarity paramet	GE TO LO	LLECT +
Men	SURE WATER	QUALITY PARAMPT	ers Diovin-	FURANC DUN
Fur-	-Dis #			, wixon-
Sketch Locatio	•			

Logged BY / Date: Mr 5/15/05



Page 2 of 2

00043678

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW66 Sample Number: LHSMW66-MAY

Logged BY / Date: AW 5/15/05

00043679

Sheet 1 of 7

Operable Unit/Site ID: Sampling location ID: LHSMUL Project Name/#: Sample ID: it SMN 6 - MAY Weather: Clear-Richs Break Collection Time/Date: Pump Installation Pump installation crew: M. VALTSP M RESULT Installation date/beginning time: PERISTACTIC IU PID/FID reading (well head/background): Installation date/completion time: NA Casing diameter (inches): ID Screen Interval (ft. BTOC): to 20.45 Total well Depth (ft. BTOC): Pump intake depth (ft BTOC): Initial (pre-installation) DTW/time: 19.4 Post-installation DTW/time: Final (after pump priming) DTW/time: Max. sustainable pump rate (mL/min) M Free product (circle): _____LNAPL / DNAPL Appearance of product: Volume of water removed during priming (mL): // Discharge tube diameter (3/8" or 1/4"): Discharge tube length (ft.): Inlet reducer used (Y/N):_ Jr Pneumatic Controller Tuning: Initial air pressure = H (ft.) X 0.43 = psi Initial 2 3 4 5 6 7 8 Final Pressure (psi) Refili Setting Discharge Setting Flow rate (mL/min) Purging Purging/sampling crew: Mike VA45Ky/Mark Brow PID/FID reading (well head/background): 0.0 Purge date/beginning time: 5/10/05- @ 155-4 Purge date/completion time: 5/10/05 -1558 Initial (pre-purging) DTW (ft_BTOC): 19.4 Final (post-purging) DTW (ft. BTOC): 19.93 Calculated tubing + pump volume: NA No. of tubing + pump volumes purged: 1.442 Pneumatic Controller Tuning: Initial air pressure = H (ft.) X 0.43 = ______ psi Initial 2 3 4 5 6 7 8 Final Pressure (psi) Refili Setting Discharge Setting Flow rate (mL/min) Water Quality Parameter Measurements Time DTW Purge Rate Cumulative Temp. Electrical рH Eh DO Turbidity (ft. BTOC) (mUmin) Volume (degree C) Conductivity (mv) (mg/L) (NTU) Purged (L) (uMhos/cm) \$1550 19.4 NA NA 2230 1554 Purli STATT well 22.9 10.4 15:5 520 19.7 360 0.50 ZZ. ? (.G Юł 4.71 1558 Purge DRY 44 1559 19.93 NDICATES ENITIAL DEPTH TO WATER prior To purging y

GROUNDWATER SAMPLING FORM

Sheet_Zof_Z

)/ .										
1			v	Vater Quali	ty Paramet	er Measurement	s (continue	d)		
	Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidity
		(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C)	Conductivity (uMhos/cm)		(mv)	(mg/L)	(UTN)
:			\sim							
								1		
							1			
							1	1		
					\searrow	7				
					\longrightarrow	\checkmark				
	 		-	- /	1/-1			<u> </u>		
	 				4					
							<u> </u>			
	·						<u> </u>			
						· · · · · · · · · · · · · · · · · · ·				
							ļ>		•••···	
	ļ	l					1			
	1		5-11-0	d	Sa	ampling		, `		
	Sampling b	eginning tin		[Sampling	completion t	ime:		
				/ Water	Quality Pa	rameter Measure	ments			
<u>.</u>	Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	Hq	Eh	DO	Turbidity
		(fl. BTOC)	(mL/min)	Volume	(degree C)	Conductivity	, Pro-	(mv)	(mg/L)	(NTU)
				Purged (L)		(uMbos/cm)		()	(()
spilor	15-10 15-38	19.97	<50	40, mL	upper 10	SUARCIENT	WATER			······
5/12/05	18 38	19.92	50	0.790	INS	SFACENT 1	NATE			
	2m									
	Samula ID-	LHSM	WLL-N	TAYD &	Sample	Information	lla sata sa ta	-		
		ample colle					llection date		<u> </u>	
	Solit camp	e collected (ω ου (17Νβ (Υ/ΝΝ·	//	2		sample ID: le ID:			
	COC No(s)		(1//N)	N		Spiit samp	ie iD:			
			T		<u> </u>	<u> </u>		T		
1.1	Requested	Analysis	Method		ntainers	Requested	l Analysis	Method	Conta	iners
5/11/05			82603	1-40mc 5/	11/5/1-40-	+ strpe				
5/17/5	RILA D.J.	Netals -	LOED TYTON	1-50	ome					
5/2/5	RCRA TOT-	METALS	6108 16000	1-59						
5/145	Percher	7	314.0	1-2	so me					
j										
	Comments	: 2200	FICIEN	5 WATE	r rech	NGE TO C	OLLECT	- SAMPLE	S For	1
		Diskin	JI-Furan	V, DIOK	NFUR	-Dis Ant	goon	v 47-6-	QJALIT.	~
		PARAM	erers, t	virion J	Trymp2in	NGE TO C -Dis, AND 3		-		
				/		-				
-										

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

Appendix B

Groundwater Sampling Forms LHAAP-35C(53)

Page 1 of 1

Sample Collection Log 845714 LONGHORN AAP

Manager: Praveen Srivastav

RFA / COC Number: 35C-091504-MK

Location Code: FIELDQC Sample Number: 091404-ER Sample Name: FIELDQC-BW-091404-ER-ER Sampling Method: GRAB Sample Type: BW Sample Purpose: ER

Task: Collection Date: 14-SEP-04 Collection Time: 17:30 Start Depth: End Depth: Sample Matrix: WQ Sample Team: KE

Sumpre ream. My	Containers
ERPIMS Values:	Analytical Suite Flt Frin Qty Size Units Type
Sacode:	
Let Control#:	
-	PERC N D 1 250 ML HDDE

Comments:

DI RINSATE THROUGH BLADDER PUMP AND TUBING

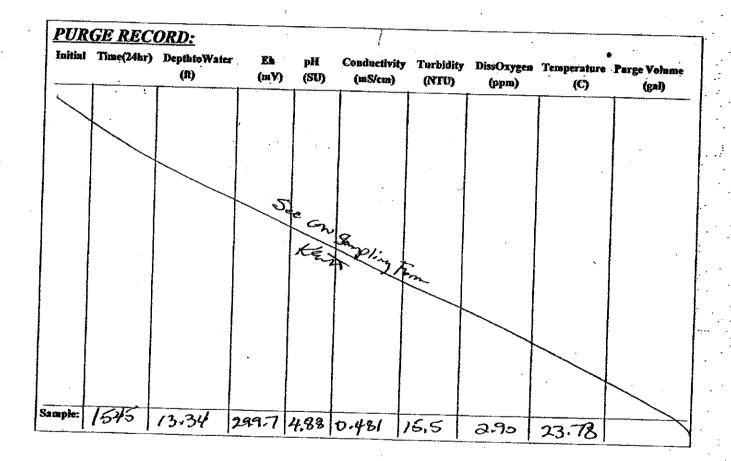
Sketch Location:

Logged BY / Date: All ght ght ght

Reviewed BY / Date: Add grafe

· · · · · · · · · · · · · · · · · · ·	 	• *	- - -	•	(0043683
	S	ample (Collecti	on Log		Page 1 of 2
haw E & I, Inc.		845714 Manager:	LONGH Praveen Sriva	ORN AAP stav		
	• -		RFA/	COC Number:	35<-091	504-mK
Location Code: 1 Sample Number: 1				-		ATA GAPS AUGO
Sample Name: 1				Collection D	aie: 9/14	Int
Sampling Method: B				Collection Ti	me: 15	30
Sample Type: G		a . 7 b		Start Dep	th. ja.	82,
Sampling Equip:		Sample Purpos	e: REG	End Dep	nh. <u>13.</u>	34
Partners:	Bladder punp)		Sample Mat	rix: WATE	R ·
TB) 091504-7B	(ER) 091404	(~ <i>FR</i> (FB)	with :	Sample Tea	m: VT.	the loss'
	Container	-			PIMS Values:	ett J Rodrigue
	Flt FrinQty Size		-		Sacode:	· · · · ·
	N A 3 1 10			· · ·	Lot Control#:	
PERC					-	- <u> </u>
Measured Well Comments:				2182	rented and	(or
	ed their semp	ger (Project c	conist; Show	E+4)	in the second	
					ż	······································
Sketch Location	*					
· · ·						· · ·
			<i>.</i>		-	
		: .			-	
				· ·		
-		•				
•			· ·			
			4			
			· ·	<u>.</u> *		
		* 	·	· .,		
	•					-
	· · · 2					

Logged BY / Date: KEventt 9/14/01


Reviewed BY / Date: Ja for alistor

Sample Collection Log

845714 LONGHORN AAP Manager: Praveen Srivastav

Location Code: 106 Sample Number: L0001-106QC

Logged BY / Date: KEverett 9/14/94

Reviewed BY / Date: De stall giller

Page

1 of 1

Sample Collection Log 845714 LONGHORN AAP

Manager: Praveen Srivastav

RFA / COC Number: 35C-091504-MK

Location Code: FIELDQC Sample Number: 091504-ER Sample Name: FIELDQC-BW-091504-ER-ER Sampling Method: GRAB Sample Type: BW Sample Purpose: ER Task: Collection Date: 15-SEP-04 Collection Time: 13:15 Start Depth: End Depth: Sample Matrix: WQ Sample Team: WC ERPIMS Values:

> Sacode: Lot Control#:

Containers								
Analytical Suite	Fit Frin Qty Size Units Type							
VORTENE								
BURC								
PRE	N A 24 40 mL VOA VIAL N B I 250 ME HDDP							

Comments:

DI RINSATE THROUGH BLADDER PUMP AND TUBING ASSX- W/ Ltfs mW69

Sketch Location:

Logged BY / Date: Deffel tholog

Reviewed BY / Date: Differ

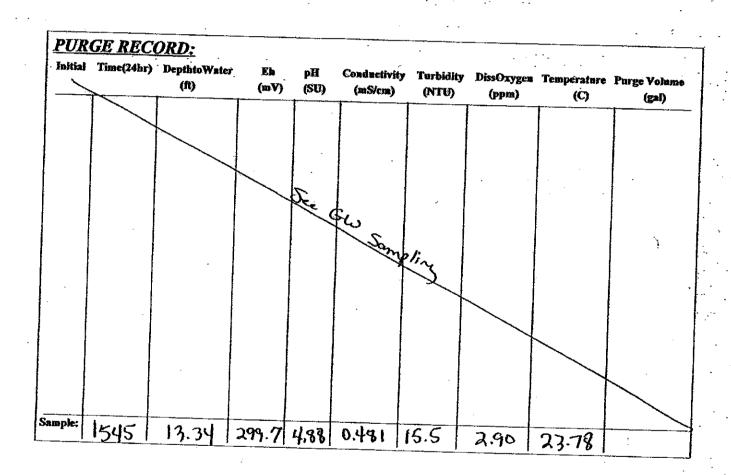
Sample Collection Log

Page 1 of

LONGHORN AAP 845714 Manager: Praveen Srivastay

Location Code: 106		RFA/COC Number: 35	<u>C-091504" mje</u>
Sample Number: L0001-1	06OC		GW DATA GAPS AUG04
Sample Name: L0001-1	-	Collection Date:	
Sampling Method: BA	www.Xe	Collection Time:	- LICIE I
Sample Type: GW		Start Depth-	12.82
	Sample Purpose: F	D End Depth:	13.34
Sampling Equip: Partners:	lacklor pump	Sample Matrix:	
^(TB) 091504-7B (ER)	091404-ER (FB) A	-	
· · ·	Containers Qty Size Units Type	ERIMS	Sacode:
PARCE IN D		Lot	Control#:
<u>Groundwater Information:</u> Measured Well Depth:	_23.9D_ Depth To W	ater: 12.82	
Comments:			
	······································		<u> </u>
	· · · · · · · · · · · · · · · · · · ·		
Sketch Location:			, · · ·
· · ·			•
	· ·		
· .		•	
. ,			
•			•
			· · · ·
			· · · ·

Logged BY / Date: KEvent 9/14/04


Reviewed BY / Date: Defferdent 9/15/11

00043687 .

845714 LONGHORN AAP Manager: Praveen Srivastay

Location Code: 106 Sample Number: L0001-106

Logged BY / Date: KEventt 9/14/04

Reviewed BY / Date: A total 9/15/04

GROUNDWATER SAMPLING FORM

Sheet_1_of

Operable U Project Nor	Unit/Site	ID:	· · · · · · · · · · · · · · · · · · ·			Samplin	g location	ID: S.L	2501	53) #10
Project Nan	me/#:	LHAAP		·····		Sample	ID: In	001-10		23/ #10
Weather:	not, si	my no	squitos	abound		Collectio	on Time/D	ate:	0	
				Pun	no Inst	allation				
Pump instal	ullation cr	ew. K.Ev	with JR	7 . 1			on data B.			
riuriu iea	aoing (w	ell head/ba	ckoround)-	o/opp	•	HIOLENED	on oate/de	ginning tim	e:_ <u>9/14 </u> 4	4 1300
						mstanan Saman i	on date/co	mpletion tir	ne: <u>9/14/</u> 0	4 1330
Total well D)epth (ft.	BTOC);	23.90	CTOC PL	- Dece	Screen I	nterval (ft.	BTOC): _	<u>3.5</u> 1	9 23.5
Initial (pre-in	nstallatio	n) DTW/thr	ne: 12.8	1	4 639	/ rump in	take depth	(ft BTOC):	19'	
Final (after p	pump pri	imina) DTM	l/time 14	20		Post-insi	tallation D	W/time:		
Free produc	ct (circle)	EN/	API / DNAL	2	-	Max. Sus	itainable p	ump rate (n	ol./min):	
Volume of w	vater ren	loved durin	a orimina (r			Appeara	nce of pro	tuct <u>NA</u>		
Discharge tu	ube leng	<u> </u>		····		UISCHARG	e tube dia	meter (3/8*	or 1/4") <u>: 3</u>	8
Pneumatic (Control	ler Tuning				inlet redu	icer used ((Y/N): N		
nitial air pre	SSUre =	H(AL) X 0.4	13 =	DSI						
	······································				· · · · · · · · · · · · · · · · · · ·					
ressure (psi)	-	<u>Initial</u>	15	3	4	5	6	7.	8	Final
efill Setting		10	17	12	20	20	20			
ischarge Settin		5	9		11/4	<u>n</u>	11			
kw rate (mL/m		380	280	280	_	9	9			
					330	192	120			
mainala		w. A	10	1	Purgin	g	-			
www.cvsamr										
urging/samp urge date/b/	pring cre pedianing	W. Pr			-	PID/FID re	ading (we	li head/bac	(ground):	
urge date/be	eginning	time:			.	Purge date	e/completi	li head/baci on time:		
urge date/be itial (pre-pu	eginning Irging) D	time: TW (ft. BT(DC):		-	Purge dati Final (posi	e/completi t-purging)	on time: DTW (ft. BT	OC):	
urge date/ba itial (pre-pu alculated tul	eginning Irging) D Ibing + p	time: TW (ft. BT(ump volum	DC):	NA	-	Purge dati Final (posi	e/completi t-purging)	on time: DTW (ft. BT	OC):	
urge date/be itial (pre-pu alculated tul neumatic C	eginning Irging) D Ibing + p Controlle	i time: TW (ft. BT(ump volume r Tunina:)C): e:		-	Purge dati Final (posi	e/completi t-purging)	on time:	OC):	
urge date/ba itial (pre-pu alculated tul	eginning Irging) D Ibing + p Controlle	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43)C): e:	NA psi	-	Purge dati Final (posi	e/completi t-purging)	on time: DTW (ft. BT	OC):	
urge date/be itial (pre-pu alculated tul neumatic C itlal alr press	eginning Irging) D Ibing + p Controlle	i time: TW (ft. BT(ump volume r Tunina:)C): e:		-	Purge dati Final (posi	e/completi t-purging)	on time: DTW (ft. BT	OC): urged:	Ebook
urge date/be itial (pre-pu alculated tul neumatic C itial alr press ssure (psi)	eginning Irging) D Ibing + p Controlle	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43	DC): #:	_psi	- -	Purge data Final (post No. of tubl	e/completi t-purging) ng + pump	on time: DTW (ft. BT) volumes p	OC):	Final
urge date/be itial (pre-pui alculated tul neumatic C itlal alr press ssure (psi) fill Setting	veginning Irging) D Ibing + p Sontrolie Isure = H	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43	DC): #:	_psi	- -	Purge data Final (post No. of tubl	e/completi t-purging) ng + pump	on time: DTW (ft. BT) volumes p	OC): urged:	Final
urge date/be itial (pre-pui alculated tul neumatic C itlal alr press ssure (psi) fill Setting charge Setting	eginning Irging) D Ibing + p Sontrolle Issure = H	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43	DC): #:	_psi	- -	Purge data Final (post No. of tubl	e/completi t-purging) ng + pump	on time: DTW (ft. BT) volumes p	OC): urged:	Final
urge date/be itial (pre-pui alculated tul neumatic C itlal alr press ssure (psi) fill Setting	eginning Irging) D Ibing + p Sontrolle Issure = H	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43	DC): #:	_psi	- -	Purge data Final (post No. of tubl	e/completi t-purging) ng + pump	on time: DTW (ft. BT) volumes p	OC): urged:	Final
urge date/be itial (pre-pu) alculated tul neumatic C itlal alr press ssure (psi) fill Setting charge Setting w rate (mL/min	eglinning Irging) D Ibing + p Controlle isure = H g n)	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43	DC): B: B: B:	psi		Purge date Final (posi No. of tubl	e/completi t-purging) ng + pump 6	on time: DTW (ft. BT) volumes p	OC): urged:	Final
urge date/be itial (pre-pu) alculated tul neumatic C itlal alr press ssure (psi) fill Setting charge Setting w rate (mL/min	eginning Irging) D Ibing + p Sontrolle Issure = H	time: TW (ft. BTC ump volum r Tuning: I (ft.) X 0.43	DC): B: B: B:	psi 3 Quality Pa	4 rameter	Purge date Final (post No. of tubl 5 Measure	e/completi t-purging) ng + pump 6 6 nents	on time: DTW (ft. BT) volumes p	OC): urged:	Final
urge date/be itial (pre-pu) alculated tul neumatic C itial alr press itial	eglinning Irging) D Ibing + p Controlle isure = H g n)	time: TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43	DC): B: B: 2 Wate	psi 3 Guality Pa Temp.	4 rameter Elec	Purge data Final (post No. of tubi 5 5 Measurer trical	e/completi t-purging) ng + pump 6	en time: DTW (ft. BT > volumes p 7 7 Eh	OC); urged; B	Final
urge date/be itial (pre-pu) alculated tul neumatic C itial alr press ssure (psi) fill Setting charge Setting charge Setting Time (ft.	eglinning irging) D ibing + p Controlle isure = H Sontrolle isure = H g n) DTW L BTOC)	Purge Rate	C): = 2 Wate Cumutative Volume		4 rameter Elec Cond	Purge date Final (posi No. of tubi 5 5 Measures trical uctivity	e/completi t-purging) ng + pump 6 6 nents	on time: DTW (ft. BT) volumes p	OC): urged:	
urge date/be itial (pre-pun alculated tul neumatic C itial alr press ssure (psi) fill Setting charge Setting wrate (mL/min Time (fL	eginning Irging) D Ibing + p Controlle Sure = H 9 n) DTW	Purge Rate	C): = 2 Wate Wate Cumulative Volume Purged (L)	psi 	4 rameter Elec Cond	Purge date Final (post No. of tubl 5 Measures trical petivity ps/cm)	e/completi t-purging) ng + pump 6 6 ments pH	Eh (mv)	OC); urged; B	Turbidity
urge date/be itial (pre-pun alculated tul neumatic C itial alr press ssure (psi) fill Setting charge Setting mrate (mL/min Time (ft. 3-40 /4	eglinning irging) D ibing + p Controlle isure = H Sontrolle isure = H g n) DTW L BTOC)	Purge Rate (mL/min)	C):	psi 	4 rameter Elec Condi (UMh O.5	Purge data Final (post No. of tubl 5 Measures trical uctivity ps/cm) /8	e/completi- t-purging) ng + pump 6 6 ments pH	Eh (mv) 246.3	OC); urged; B	Turbidity (NTU)
urge date/be itial (pre-pu) alculated tul neumatic C itial alr press itial alr press	eginning irging) D ibing + p Controlie isure = H g n) DTW L BTOC) 4.20	Purge Rate (mL/min) 280 297	C): = 2 Vate Volume Purged (L) 0.5 1.8	psi 	A rameter Elec Cond (uMh O.5 Q.5	Purge data Final (post No. of tubl 5 Measures trical trical uctivity ps/cm) 18	e/completi- t-purging) ng + pump 6 6 ments pH 4.87 4.81	Eh (mv) 246.3 256.2	DC); urged; DO (mg/L)	Turbidity (NTU) 357.2
urge date/be itial (pre-pu) alculated tul neumatic C itial alr press itial alr press itial setting charge Setting charge Setting charge Setting (fr. 3-40 14 45 14 50 14	eglinning irging) D ibing + p Controlle sure = H Sontrolle sure = H DTW L BTOC) 4.20 4.20	Purge Rate (mL/min) 280 280 280	C): B: B:	psi 	4 rameter Elec Cond (uMh 0.5 0.5 (0,5	Purge date Final (posi No. of tubi 5 Measurer trical uctivity ps/cm) 18 28	e/completi- t-purging) ng + pump 6 6 ments pH 4. 87 4. 81 4, 84	Eh (mv) 246.3	DO (mg/L) 4.63 4.60	Turbidity (NTU) 357.2 352.0
urge date/be itial (pre-pun alculated tul neumatic C itial alr press itial alr press	eginning Irging) D Ibing + p Controlle isure = H g n) DTW L BTOC) 4.20 4.20 4.20 4.29	Purge Rate (mL/min) 280 297 330	C): = 2 Wate: Cumutative Volume Purged (L) 0.9 1.9 2.7 4.35	psi 	4 rameter Elec Cond (uMh 0.5 0.5 0.5 0.5 0.5	Purge date Final (post No. of tubl 5 Measures tuical uctivity ps/cm) 18 18 28 27	e/completi t-purging) ng + pump 6 6 ments pH 4.87 4.81 4.81 4.83	Eh (mv) 246.3 256.2	DO (mg/l.) 4.64	Turbidity (NTU) 357.2 352.0 246.7
urge date/be itial (pre-pun alculated tul neumatic C itial alr press sssure (psi) fill Setting charge Setting w rate (mL/min Time (ft. 3.40 14 50 50 14 50 50 50 50 50 50 50 50 50 50	eginning Irging) D Ibing + p Controlle isure = H 9 n) DTW L BTOC) 4.20 4.20 4.27 4.29 4.29 4.29	Purge Rate (mL/min) 280 297 290 330 /fr	C): = 2 Wate Volume Purged (L) 0.5 1.8 2.7 4.35 5.3	psi 	4 rameter Elec Cond (uMh 0.5 0.5 0.5 0.5 0,5	Purge date Final (post No. of tubl 5 Measurer trical uctivity ps/cm) 18 28 27 54	e/completi- t-purging) ng + pump 6 6 ments pH 4. 87 4. 81 4, 84	Eh (mv) 246.3 256.2 274.5	DO (mg/l.) 4.64 4.67	Turbidity (NTU) 357.2 352.0 246.7 (G2.8
urge date/be itial (pre-pun alculated tul neumatic C itial air press assure (psi) fill Setting charge Setting wrate (mL/min Time (ft. 50 /4 50 /4 50 /4 50 /4 50 /4 50 /4 50 /4 50 /4 50 /4	beginning irging) D ibing + p Controlle isure = H g n) DTW L BTOC) $\frac{4.20}{4.29}$ $\frac{4.29}{4.29}$ $\frac{4.29}{4.29}$ $\frac{4.29}{4.29}$	time: TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 280 280 280 280 280 280 280 280	C): = = Wate: Volume Purged (L) O.9 1.9 2.7 4.35 5.3 L.1	psi 	4 rameter Elec Condi (UMh 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Purge date Final (post No. of tubl 5 Measures trical petivity ps/cm) 18 18 28 27 22	e/completi- t-purging) ng + pump 6 6 ments pH 4.87 4.81 4.81 4.83 4.83 4.83 4.83	Eh (mv) 246.3 267.6	DO (mg/L) 4.63 4.67 4.83	Turbidity (NTU) 357.2 352.0 246.7 (92.8 168.2
urge date/be itial (pre-pun alculated tul neumatic C itial air press sssure (psi) iii Setting charge Setting wrate (mL/min Time (ft. 340 455 50 14 55 465 465 465 465 465 470	beginning irging) D ibing + p Controlle issure = H g n) DTW L BTOC) 4.20 4.20 4.20 4.20 4.20 4.29	time: TW (ft. BT(ump volume r Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 280 290 290 290 290 290 330 /fr /LO /GO	C):	_psi 3 7 Quality Pa Temp. (degree C) 21.34 21.45 21.45 21.45 21.45 21.97 22.08	4 rameter Elec Cond (uMh 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Purge date Final (post No. of tubl 5 Measures trical petivity ps/cm) 18 18 28 27 22 2	e/completi- t-purging) ng + pump 6 6 ments pH 4.87 4.81 4.81 4.83 4.83 4.83 4.84 4.84 4.84	Eh (mv) 246.3 256.2 267.6 278.3	DO (mg/L) 4.63 4.67 4.83 5.07	Turbidity (NTU) 357.2 352.0 246.7 (G2.8 168.2 150.3
urge date/be itial (pre-pun alculated tul neumatic C itial air press sssure (psi) iii Setting charge Setting wrate (mL/min Time (ft. 340 455 50 14 55 465 465 465 465 465 470	beginning irging) D ibing + p Controlle isure = H g n) DTW L BTOC) $\frac{4.20}{4.29}$ $\frac{4.29}{4.29}$ $\frac{4.29}{4.29}$ $\frac{4.29}{4.29}$	time: TW (ft. BTC ump volume r Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min) 280 280 280 280 280 280 280 280	C): = = Wate: Volume Purged (L) O.9 1.9 2.7 4.35 5.3 L.1	psi 	4 rameter Elec Condi (UMh 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Purge date Final (post No. of tubl 5 Measures trical petivity ps/cm) 18 18 28 27 22 2	e/completi- t-purging) ng + pump 6 6 ments pH 4.87 4.81 4.81 4.83 4.83 4.83 4.83	Eh (mv) 246.3 256.2 267.6 274.5 281.4	DO (mg/L) 4.63 4.67 4.83	Turbidity (NTU) 357.2 352.0 246.7 (92.8 168.2

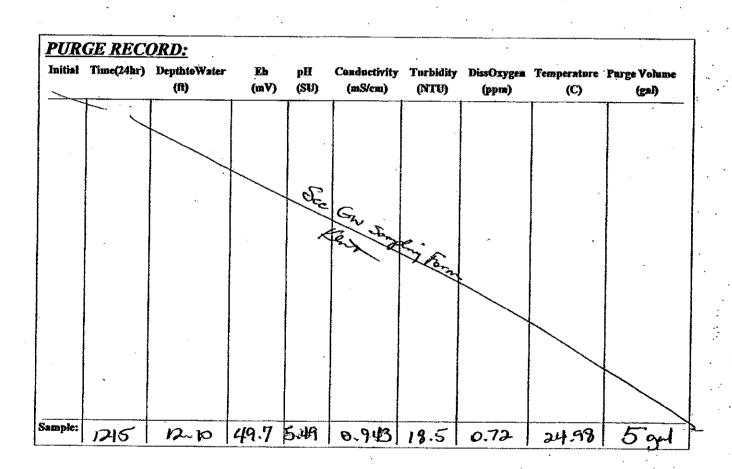
GROUNDWATER SAMPLING FORM

Sheet ____of ___

		<u> </u>	Nater Quali	ity Paramel	er Measurement	s (continue	ed)		•
Time	DTW	Purge Rate	Cumulative	Temp.	± 3 ^{Electrical} to Conductivity	Hq	Eh	DO	Turbidity
	(ft. BTOC)	(mUmin)	Volume	(degree C)	Conductivity	1. I'	(nov)	(mg/L)	(NTU)
			Purged (L)	±10%	(uMhos/cm)	±0.1	±10	土10%	10%
420	13.29	100	7.9	22.94	0.430	4,85	289.4	4.3	95.7
1425	13.49	120	3.5	23.09	0.439	4.85	292.6	3.82	59.1
1430	13.49	1:20	9.1	22.89	0.438	4.85	293.3	3.75	489
1435	13.34	120	9.7	23.20	0.436	4.86	298.3	3.72	465
1440	13.34	20	10.3	2349	0.496	4.91	299.2	3.54	39.4
1445	13.34	n0	10.9	23.52	0.496	4.87	299.6	353	37.3
1450	13.34	10	11.45	23.43	0.495	4.86	299.2	3.3	32.0
1455	13-34	ho	12	2329	0.494	4.81	299.6	3.26	331
1500	13.34	110	12.55	23.93	0.490	4.86	299.L	3.16	22.3
1505	13.34	112	13.1	23.06	0.483	4.87	300.2	3.06	20.2
1510	13:34	41	13.65	23.09	0.487	4.81	300	302	20.5
1515	3.34	110	14.2	23.07	0.486	4.87	2995	2.96	17.3
1520	13.34	110	<u>14.75</u>	22.98	0.493	481	300.0	2.48	15.3
1525	13.34		153	23.04	0.482	4,87	301.7	2.83	13,9
	-	100		Sa	mpling				
Sampling h	peginnling tin	10: 153	>		Sampling o	completion ti	me: 164	5	
			Water	Quality Pa	ameter Measure			<u> </u>	
Thme	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity	P	(mv)	(mg/L)	Turbidity (NTV)
			Purged (L)		(uMhos/cm)		(OHY)	. (m.84r.)	(MO)
1645	13.34	110	15.85	23.78	0.48	4.88	29.7	2.90	15.5
				ų				·····	
			-	Sample	Information				
Sample ID:	LOOD	$-)\alpha_{-}$		Samhia					12
•	ample collec		V	·····	Sample con	ection date/	time: <u>9/11</u> 0001-10	104 124	<u>łs </u>
	e collected (N		Solit compt	ampie itr. T	0001-10	6.60	
OC No(s)			×		Split sample	- M			l
						r			
lequested		Method		ntainers	Requested	Analysis	Method	Contai	ners
<u>-</u>	÷		<u>3vb</u>	As	9)			· · · · · · · · ·	
Ver	ula			astic \	(\mathcal{I})				
				·					
<u></u>			•						
ي المركز المركز المركز المركز المركز المركز المركز المركز المركز المركز المركز المركز المركز المركز المركز الم المركز المركز						· · ·			
omments:	Van -	011	1.						
	rery s	ort bo	them; a	redient	d bailer i	n well			
									1

				00043	5070
	Sample C	ollection	t Log	P	₽`. 'age 1.0
16144 aw E & I, Inc.	845714 Manager:	LONGHOF Praveen Srivastav	RN AAP		
tionation of the sec	-	RFA / COO	Number: <u>353</u>	-091504-1	mk
Location Code: 10 Sample Number: LA		2	Task:	GW DATA (GAPS A
Sample Name: L0	· · ·		Collection Date:	9/16/24	!
Sampling Method: BA	·. ·	· · ·	Collection Time:	1210	· · · · · · · · · · · · · · · · · · ·
Sample Type: GY		REG	Start Depth:	11.98	
Sampling Equip: Q	ED Bladder Rump		End Depth: Sample Matrix:	12, 10 ·	
rtners:) 091504-TB	(ER) N/A (FB)				
	Containers	<u>~ []1</u>	Sample Team: ERPIMS	Kytverett	1.Kodri
Contraction of the second second second second second second second second second second second second second s	t Frin Qty Size Units Type			Sacode:	-
	ALCON OF MILLION VALUE		Lot	Control¥:	
<u>Groundwater Inform</u> Measured Well D Comments:		• Water: <u>10.2</u> 2	2 (initial)		,
Measured Well D		• Water: <u>10.22</u>	<u>L (initial)</u>		
Measured Well D		9 Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		9 Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		0 Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		9 Water: <u>10 22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		9 Water: <u>10 22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		9 Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		• Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		9 Water: <u>10 22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		• Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		9 Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		• Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		• Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		• Water: <u>10.22</u>	<u>2 (initial)</u>		
Measured Well B Comments:		• Water: <u>10.22</u>	<u>2 (initial)</u>		

..


14 A.

00043691

845714 LONGHORN AAP Manager: **Praveen Srivastav**

Location Code: 107 Sample Number: L0001-107

Logged BY / Date: KEventt 9/15/04 Reviewed BY / Date:

GROUNDWATER SAMPLING FORM

Sheet_1_of_3

	Unit/Site ID					Sampling	location ID:	Sik 3	<u>SC(5</u> 8	<u>s) lor</u>	
Project Name/#:					Sampling location ID: <u>Sile 35C (53)</u> 107 Sample ID:						
Weather: het summy						Collection Time/Date:					
				Deene		Hattaw					
.			11 10			allation				•••	
Pump inst	allabon crev	N. K. Even	11-26	diavez	r .	Installation	n date/begir	ning time:_	<u> 9/15/01</u>		
PID/FID re	eading (well	head/back(nes): 2 TOC): 2	pround): <u>3</u>	<u>0 [4.5</u>	-5.7	Installation	n date/comp	pletion time	<u>1/15/04</u>	094	
Casing dia	ameter (inch	ies): <u>2</u>	<u>" Pvl</u>			Screen Int	lerval (ft. B1	ГОС): <u> </u>	<u>2 (est. jo</u> _	22	
Total well	Depth (ft. B	TOC): <u>2</u>)) DTW/time:	<u>2.46 (</u>	TOC)	sther	Pump inta	ke depth (ft	: BTOC):	17'		
Initial (pre	-installation) DTW/time:	10.22	<u>- 438</u>	Pint	Post-insta	llation DTW	//time:	· -		
rmai (ane	r pump pnn	nng) D i w/a	mo: <u>11,44</u>	1005	70 M-	Max. sust		np rate (mL	'min):		
		LNAF			•		ce of produc		·····		
		oved during		-);		-		eter (3/8" or	,1/4"): <u>3</u> /	/3	
) (ft.):	30		_	Inlet reduc	er used (Y/	N): <u>//</u>			
	c Controlle							-			
inidal air p	ressure = F	l (ft.) X 0.43	=	_psi							
		Initial	2	3	4	5	8	. 7	8	Final	
Pressure (ps	<u>i)</u>	20	17	10	10	10		1	1		
Refill Setting		10		12	IA.	12		1			
Discharge Se	etting	5	9	8	8	- 4		1	1		
Flow rate (mi	L/min)		280	45	100	120			1	1	
Purge date nitiat (pre-	e/beginning purging) Di	W (fl BTO	C):	~	Purgin	PID/FID re Purge date Final (post	completion -purging) D	TW (ft. BTC)C):		
Purge date Initiat (pre- Calculated	e/beginning purging) D1 I tubing + pu	time: IW (fl. BTO Imp volume	C):	~	Purgin	PID/FID re Purge date Final (post	completion -purging) D	n time:)C):		
Purge date Initiat (pre- Calculated Pneumati	e/beginning purging) Di tubing + pu c Controlle	time: IW (fl. BTO Imp volume	C): :	••••••••••••••••••••••••••••••••••••••	Purgin	PID/FID re Purge date Final (post	completion -purging) D	n time: TW (ft. BTC)C):		
Purge date Initiat (pre- Calculated Pneumati	e/beginning purging) Di tubing + pu c Controlle	time: IW (fl. BTO Imp volume r Tuning:	C): :	••••••••••••••••••••••••••••••••••••••	Purgin	PID/FID re Purge date Final (post	completion -purging) D	n time: TW (ft. BTC)C):	Final	
Purge date Initiat (pre- Calculated Pneumati Initial air p	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: IW (fL BTOU Imp volume r Tuning: (fL) X 0.43	C): : =	NA		PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump v	1 time: TW (ft. BTC volumes pu)C): rged:	Final	
Purge date Initiat (pre- Calculated Pneumati Initial air p Pressure (psi	e/beginning purging) DT I tubing + pu c Controlle ressure = H	time: IW (fL BTOU Imp volume r Tuning: (fL) X 0.43	C): : =	NA		PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump v	1 time: TW (ft. BTC volumes pu)C): rged:	Filoai	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting	a/beginning purging) D1 I tubing + pu c Controlle ressure = H	time: IW (fL BTOU Imp volume r Tuning: (fL) X 0.43	C): : =	NA		PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump v	1 time: TW (ft. BTC volumes pu)C): rged:	Final	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se	e/beginning purging) D1 I tubing + pu c Controlle ressure = H	time: IW (fL BTOU Imp volume r Tuning: (fL) X 0.43	C): : =	NA		PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump v	1 time: TW (ft. BTC volumes pu)C): rged:	Final	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se	e/beginning purging) D'i l tubing + pu c Controlle ressure = H	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43	C):1 =1 =2 Water	NA	4	PID/FID re Purge date Final (post No. of tubin	e/completion -purging) D ng + pump	1 time: TW (ft. BTC volumes pu)C): rged:	Final	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (psi Refill Setting Discharge Se	beginning purging) D'i tubing + pu c Controlle ressure = H	time: IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 [ft.] X 0.43 [ft.] X 0.43	C):1 =1 =2 Water	VA _ psi 	4 ramete	PID/FID re Purge date Final (post No. of tubin	e/completion -purging) D ng + pump	1 time: TW (ft. BTC volumes pu)C): rged:		
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (ml	e/beginning purging) D'i l tubing + pu c Controlle ressure = H	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43	C): = 2 	VA _ psi 	4 ramete	PID/FID re Purge date Final (pest No. of tubin 5	e/completion -purging) D ng + pump 6 6 ments	n time: TW (ft. BTC volumes pu 7	C): rged:		
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (mil Time	beginning purging) D' tubing + pu c Controlle ressure = H) titing /min) (ft. BTOC)	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 (ft.) X 0.43 (ft.) X 0.43 (nt.) X 0.43 [nitial	C):	VA _psi 3 Quality Pa Temp. (degree C)	4 ramete Ex Con (uM	PID/FID re Purge date Final (post No. of tubin 5 5 r Measure actrical ductivity hos/cm)	e/completion -purging) D ng + pump 6 6 ments	n time: TW (ft. BTC volumes pu 7 7 Eh (mv)	DC): rged: 8 DO {mg/L}	Turbidity (NTU)	
Purge date Initial (pre- Calculated Pneumati- Initial air pu- Pressure (psi Refill Setting Discharge Se How rate (mi Time	beginning purging) D'i tubing + pu c Controlle ressure = H) titing /min) (ft. BTOC)	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 <u>Initial</u> Purge Rate (mL/min)	C):	VA _psi 3 Quality Pa Temp. (degree C) 2 2 . 65	4 ramete Ek Con (uM	PID/FID re Purge date Final (post No. of tubin 5 5 r Measure ectrical ductivity hos/cm) 40	e/completion -purging) D ng + pump v 6 ments pH 5,64	time:	DC): rged: 8	Turbidity	
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se How rate (mi Time	beginning purging) D' tubing + pu c Controlle ressure = H) tting /min) (ft. BTOC) [2:70 [12:70 [11.98]	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Initial Purge Rate (mL/min) 280 /00	C):	VA _psi 3 Quality Pa Temp. (degree C) 22.65 23,70	4 ramete Ek Con (uM	PID/FID re Purge date Final (post No. of tubin 5 5 r Measure ectrical ductivity hos/cm) 40	e/completion -purging) D ng + pump v 6 ments pH 5.64 5.63	n time:	DC): rged: 8 DO (mg/L) 	Turbidity (NTU) 71.8 123.7	
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Row rate (ml Time	beginning purging) D' tubing + pu c Controlle ressure = H) tting /min) (ft. BTOC) [2.75 [1.98] /1.98	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 280 /00 /00	C): = 2 Water Cumutative Volume Purged (L) 1.9 2.4	VA _psi 	4 ramete Ek Con (uM /./	PID/FID re Purge date Final (post No. of tubin 5 5 F Measure ectrical ductivity hos/cm) 40 40	6 6 6 6 6 6 6 6 6 6 6 6 6 6	eh (mv) 19.24.6	DC): rged: 8 DC (mg/L) _/, 50	Turbidity (NTU) 71.8 123.7	
Purge date Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Sa Time Time	beginning purging) D' lubing + pu c Controlle ressure = H) titing /min) (ft. BTOC) [2,70 [1,98 [1,98 [1,90]	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 (ft.)	C):	VA _psi 3 Quality Pa Temp. (degree C) 22.65 23,70 23,70 23,44 23,58	4 ramete Ek Con (uM /-/ /.) /.	PID/FID re Purge date Final (post No. of tubin 5 5 r Measure ectrical ductivity hos/cm) 40 4/ 1/40 1/3/8	e/completion -punging) D ng + pump 6 6 ments pH 5.64 5.63 5.62 5.61	n time: TW (ft. BTC volumes pu 7 Eh (mv) 76.4 19.9 21.6 23.9	DC): rged: 8 DO (mg/L) 	Turbidity (NTU) 71.8 123.7 103.2 918.3	
Purge date initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Tow rate (mil Time IQ.CTO $IO OIO OIO 15IO 20$	a/beginning purging) D'i tubing + pic c Controller ressure = H	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 280 /00 /00 /00	C): = 2 Water Cumutative Volume Purged (L) 1.9 2.4 2.9 2.4 2.9 2.4 2.9 2.4	VA _psi 3 Quality Pa Temp. (degree C) 22.65 23,/o 23,40 23,58 23,79	4 ramete Ek Con (uM /./ /./ /./	PID/FID re Purge date Final (post No. of tubin 5 5 r Measure ectrical ductivity hos/cm) 40 4/ 138 133	e/completion -purging) D ng + pump 6 6 ments pH 5.64 5.62 5.62 5.62 5.60	Eh (mv) 19.54	DC): rged: 8 DO (mg/L) 1,50 1,41 1.3C	Turbidity (NTU)	
Purge date nitial (pre- Calculated Pneumati- nitial air pur- Pressure (psi- Refill Setting Discharge Se- Row rate (mi- Time IQ.CTO $IDDODOO$	9/beginning purging) D' i tubing + pu c Controlle ressure = H) tting /min) (ft. BTOC) [2.78 [1.98 [1.98 [1.97 [1.87] [1.87]	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 280 //00 /00 /00 /00	C): = 2 Water Volume Purged (L) 1.9 2.4 2.9 2.4 2.9 2.4 2.9 2.4 2.9 2.4 2.9	VA psi 	4 ramete Ek Con (uM /./ /./ /. /.	PID/FID re Purge date Final (post No. of tubin 5 F Measure ectrical ductivity hos/cm) 40 4/ 740 138 126	e/completion -purging) D ng + pump 6 6 ments pH 5.64 5.62 5.62 5.62 5.60 5.60 5.60	time: TW (ft. BTC volumes pu 7 Eh (mv) 76.4 19.9 21.6 23.9 25.7 26.5	DC): rged: B DC (mg/L) 1.50 1.41 1.32 1.35	Turbidity (NTU) 71.8 123.7 103.2 918.3	
Purge date nitial (pre- Calculated Pneumati- nitial air p Pressure (psi Refill Setting Discharge Se Time IQ.CTO IDDO DO	a/beginning purging) D'i tubing + pic c Controller ressure = H	time: IW (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial Purge Rate (mL/min) 280 /00 /00 /00	C): = 2 Water Cumutative Volume Purged (L) 1.9 2.4 2.9 2.4 2.9 2.4 2.9 2.4	VA _psi 3 Quality Pa Temp. (degree C) 22.65 23,/o 23,40 23,58 23,79	4 ramete Ek Con (uM /./ /./ /. /.	PID/FID re Purge date Final (post No. of tubin 5 5 r Measure ectrical ductivity hos/cm) 40 4/ 138 133	e/completion -purging) D ng + pump 6 6 ments pH 5.64 5.62 5.62 5.62 5.60	n time: TW (ft. BTC volumes pu 7 Eh (mv) Ho.4 19.9 21.6 23.9 25.7	DC): rged: B DO (mg/L) 1.50 1.41 1.35 1.15	Turbidity (NTU) 71,8 123.7 123.7 123.7 123.7 84.7	

1400

Sheet 2 of 3

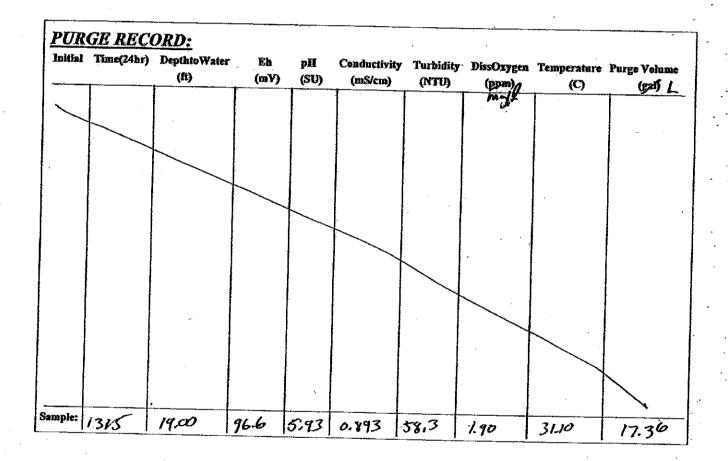
Thur -	DTW						continue	r		
Time		Purge Rate	Cumulative	Temp.	土ずい	strical uctivity	pH	Eh	DO	Turbidity
-	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C) +/- 10%		uctivity os/cm)	土0.1	(mv) 亡(O	(mg/L) 土(0L	(NTU) エイップ
1040	il.55	100	5.40	23.90		77	5.58	22.8	0.97	94.7
1045	1.55	100	6,9	23,98		64	5.58	21.8	0,96	94.8
050	1155	100	7,4	24.12		52	558	20,3	0.94	929
1055	1157	100	8.9	24.34		742	5158	21.0	0.93	91.6
100	11.59	110	9.4.5	. 24.36		738	5.57	241	0.93	8517
1105	11.62	120	10.05	2421		008	5.56	23.1	0.85	40.7
1110	11.62	120	10105	24.18		้ารม	5.55	26.7	0.87	ma
211	1192	120	11.25	23.98		983	5.53	29.7	0.85	60.0
1120	1292	120	11.85	23~3	· o	.973	6.52	24.4	0.91	54.4
1125	11 97	<u>40</u>	12.45	23-75	Ø.	969	5.52	36.9	0.81	48.7
1130	12.10	120	13.05	23,77		969	5.52	37.5	0.78	43.0
14.35	Parlo	120	13.65	23.68		968	5.51	379	0.73	40,9
<u>F140</u>	Brlo	120	14,25	23.7)		966	55	39.1	0.78	39.2
1145	12.10	120	14.85	23.71		164	5.51	39.4	0.75	34.2
amplina k	eginning tin	ne:		Ji	ampling S	-	ompletion ti	ma.		
angang b	ையாளது ய		Water				•	nit		·····
Time	DTW	Purge Rate	Cumulative	Quality Pa Temp.		measure trical	ř	Eh	DO	T
. comp	(fl. BTOC)	(mL/mln)	Volume	(degree C)		octivity	рН	сл (mv)	(mg/L)	Turbidity (NTU)
		(Purged (L)	lacine of		os/cm)		()//*)	(mgar)	(MID)
				Sample	Inform	nation				·····
ample ID:	LOOOL	- 107					lection date	/time:		
-	ample collect	• • -	<u>N</u>		D	uplicate s	ample ID:			
plit sampl	e collected ((Y/N):	_N		S	plit sample	e ID:			
	·		; 							
OC No(s)			Ca	ntainers	R	ennested	Analysis	Method	Conta	inere
OC No(s)	Analysis	Method			f	equested	Fuldiy 513	Inetriod (oonta	11013
equested	l Analysi s	Method	3	-\mA-x						
equested	-	Method	3	<u>-VOA></u> -Phsti						
equested	-	Method	3	-VOA> -Plastic,	upp					
equested	-	Method	3		upp.				***	
equested	-	Method	3		upp.					
Cequested Voc. Perre	- h.		I		upp.					
Cequested Voc. Perre	-		I		- upp					
Cequested Voc. Perre	- h.		I		- upopa					
Cequested Voc. Perre	- h.		I		, upoga					
equested Voc. Perce	- h.	bstrution	- 2 7'	-Phstic						

GROUNDWATER SAMPLING FORM Site 35C (53) Sheet 3 of 3

						Well D	107		
			Vater Quali	ty Parame	ter Measurement	s (continue	d)		
Time	DTW	Purge Rate	Cumulative	Тетр.	+ Electrical - 3 % Conductivity	pH	Eh	DO	Turbidity
	(ft. BTOC)	(mi./min)	Volume	(degree C)		1 to.1	(mv)	(mg/L)	(NTU)
11000	b		Purged (L)	±10%	(uMhos/cm)	-	± 10	102	±102
HGO	12.10	120	15 45	23,73	CAST	6.50	42.2	075	27.2
<u> 155</u> 200	12.10	120	16.05	23.89	0.957	5.50	44.3	0.75	25.2
1205	12.10	120	16.65	24.06	0.956	5:49	46.7	0,76	21.0
1210	12.10	120	17.25	24.13	0.952	5.49	48.2	0.72	20.4
1000	10.		17.85	2427	0.950	5.49	489	0.74	18.7
<u></u>				·····	·			[[
								ļ	
					· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u> </u>
	·								
						╊	· · · · · · · · · · · · · · · · · · ·	·	<u> </u>
	<u> </u>			·				······································	
			-	-	·				·
							··		
				C.	ampling				
ampling	beginning tin	ne: <u>1210</u>			• •	completion ti	me: <i>16</i>	500 12	15
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity
	(fL BTOC)	(mL/mln)	Volume	(degree C)	Conductivity	,	(mv)	(mg/L)	(NTU)
1215			Purged (L)		(uMhos/cm)]		((inter
732.00	terro	720-	21,99	2498	-0.943	5.49	-49.7-	0.72	+8 5
1215	12.15	120	18,45	24.98	0443	549	49.7	0.72	18.5
.,			•	Sample	Information			<i>{</i>	
ample ID						lection date/	time.		-
uplicate s	ample colle	cted (Y/N):				ample ID:	unito		:
	e collected (Y/N):			Split sampl				;
OC No(s)		·							
oonostor	I Analysis	Method	^						
equester	- ADdiysis	Manag		ntainers	Requested	Analysis	Method	Conta	iners
	·	<u> </u>							
	·								
			······						
		1							
	f								
omments	: Soft o	botnetiv	• • 7'	~ moved	writer level aro	und until	slipped t	through	· · · · ·
omments	: soft o	botnetier	v e 7'	~ moved	wher level aro	und unstil	slipped t	hrough	

Appreviaeons: BiOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - militer; L - Liter

			00043695
Shaw~	Sample Colle	ection Log	Page
Shaw E & I, Inc.	·	IGHORN AAP n Srivastav	-
Ste 350	I	33 RFA / COC Number: <u>35</u>	~-091504-CO
Location Code: LHSMW67 Sample Number: L0001-LHS	· · · · · · · · · · · · · · · · · · ·		GW DATA GAPS
Sample Name: L0001-LHS	· · · · ·	Collection Date:	
Sampling Method: BA		Collection Time. Start Depth:	····
Sample Type: GW	Sample Purpose: REG	End Depth:	
Sampling Equip: Bladder Pr Partners: OP1504-78	unp vild	Sample Matrix:	WATER
	<u>M/V</u> (FB) <u>M/f</u>	Sample Team:	A-Willmore, B
Analytical Suite Flt Frtn Qty	y Size Units Type	ERPIM	S Values: Sacode:
YOC POLI N & J	39. ME YOAVNA 1. B. HDPR	Lo	Control#:
			• .
	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth:			
Groundwater Information: Measured Well Depth:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		
Groundwater Information: Measured Well Depth: Comments:	<u>22.69</u> Depth To Water:		


91 Kfor

00043696

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW67 Sample Number: L0001-LHSMW67

Logged BY / Date: <u>M. M.</u> 9415 704

Reviewed BY / Date: Offer a forfor

Page 2 of 2

GROUNDWATER SAMPLING FORM

Sheet_1_of_2_

- 12

): -4-38	۲ د		<u> </u>	Sampling	location II): LH3M	1		1
	lame/#: <u>L</u>		. <u> </u>			Sample	D: 416	m 67	-		1
Weather	- Party C	ion for the	<u>}r </u>		<u></u>			e: 9h510	4. 1Z:	30	İ.
				Pum	o Insí	allation			:		1
Pump ins	stallation cre	w. h.will	Mar B.	Andre	F		n databaa	inning time:	9/sta	à,	40
PID/FID	reading (we	l head/back	(ground):	0.0				pletion time			<u>41,</u>
Casing d	lameter (inc	hes); 4	l ⁴		_			TOC):			
	l Depth (ft. 1		(.09					ft BTOC);			
initial (pr	e-installation	n) DTW/time	a: 17.11		•	Post-inst	allation DTV	V/time:	2.05	9.	1
	er pump pri				_			np rate (mL		· · · · ·	
Free proc	iuct (circle):	LNA	PL/DNAPL				ice of proch				[
Volume c	of water rem	oved during	ved during priming (mL):					eter (3/8" o	r 1/4") 1/0	20	<u> </u> .
Discharg	e tube lengt	h (fl.):	(化):				cer used (Y		· · · / <u>· · · · · · · · · · · · · · · ·</u>	·	<u> </u>
Pneumal	lic Controll	er Tuning:	Tuning:					· · · · ·	<u> </u>		<u> </u>
Initial air i	pressure = l	$(fL) \times 0.43 = 8.65^{-1}$ psi						-			
	·	Initial 2 3			4	5	6	7	-8	-1-	Final
Ртеззите (р				<u> </u>						╈	
Refit Settin		-									
Discharge S		-	- <u></u>	<u> </u>	<u> </u>			-	i		
n) elet wol ⁻	H_/IFAIN)	<u> </u>	-	<u> </u>	<u> </u>			l.			
Virge dat	ampling cre e/beginning -purging) D	time: ^Q t	sloy	Anter -	Purgir	PID/FID re Purge date	e/completio	head/back	15/04	0.0)
Purge dat nitial (pre Calculateo Pneumati	e/beginning -purging) D I tubing + pu ic Controlle	time: ⁹ /1 TW (ft. BTC ump volume r Tuning:	s <i> 6</i> 4)C): (7.1):1	Anticy 10:05	- urgn - -	PID/FID re Purge data Final (pos	e/completio I-purging) D		16/04 DC):	0.0	>
Purge dat Initial (pre Calculated Pneumati	e/beginning -purging) D I tubing + pu ic Controlle	time: 41 TW (ft. BTC ump volume r Tuning: 1 (ft.) X 0.43	s/64 C): (1.1	Anticy 10:05	- - -	PID/FID re Purge data Final (pos	e/completio I-purging) D	n time:9)TW (ft. BT(16/04 DC):	0.0	
Purge dat Initial (pre Calculated Pneumati Initial air p	e/beginning -purging) D d tubing + pu ic Controlle ressure = H	time: 4/1 TW (ft. BTC ump volume or Tuning: (ft.) X 0.43	s/64 ¹)C): <u>(3,1</u>): <u> </u>	Antiky 10:05 VA _psi _3	- - -	PID/FID re Purge data Final (pos	e/completio I-purging) D	n time:9)TW (ft. BT(16/04 DC):	0.0	Finat
Purge dat nitial (pre Calculated Pneumati nitial air p	e/beginning -purging) D I tubing + pu ic Controlle ressure = H	time: <u>Ap</u> TW (ft. BTC ump volume r Tuning: (ft.) X 0.43	s/orf C): [7].[] : = <u>8,55</u>] 2 16	Antley 10:05 VA psi 	-	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D Ing + pump	n time: 9 TW (ft. BTC volumes pu	16 04 DC): Irged:		
Purge dat nitial (pre Calculated Pneumati nitial air p Tessure (ps celli Setting	e/beginning -purging) D I tubing + pu ic Controlle ressure = H	time: <u>Ap</u> TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 [htta]] [0	s/64 ¹)C): <u>(3,1</u>): <u> </u>	Antiky 10:05 VA psi 3 14 H.a	-	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D Ing + pump	n time: 9 TW (ft. BTC volumes pu	16 04 DC): Irged:		
Purge dat nitlal (pre Calculated Initial air p ressure (ps ressure (ps telli Setting Ischarge Se	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) :tling	time: <u>Ap</u> TW (ft. BTC ump volume r Tuning: (ft.) X 0.43	$\frac{s_{6}}{c} + \frac{s_{1}}{c} + $	Antley 10:05 VA _psi 3 14 H.a 3.4	-	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D Ing + pump	n time: 9 TW (ft. BTC volumes pu	16 04 DC): Irged:		
Purge dat Initial (pre Calculated Pneumati	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) :tling	time: <u>Ap</u> TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 [htta]] [0	5/64 C): [7].[] = <u>8.55</u> 2 16 16 16 16 10 5 110	Antiky 10:05 VA _psi 3 14 4.4 3.4 10.2	4	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D ng + pump	n time: 9 TW (ft. BTC volumes pu	16 04 DC): Irged:		
Purge dat nitial (pre Calculated Pneumati nitial air p ressure (ps te Mi Setting tischarge Se kw rate (mi	e/beginning -purging) D I tubing + pr ic Controlle ressure = H i) - tling Limin)	time: 4/1 IW (ft. BTC ump volume r Tuning: (ft.) X 0.43 [Initial]] [0 5 55	S 64 C): (7]. [] :	Antipy p:05 VA _psi 3 14 H.a 3.4 10. Quality Pa	4 ramete	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D ng + pump	n time: 9 TW (ft. BTC volumes pu	16 04 DC): Irged:		
Purge dat Initial (pre Calculated Pneumati nitial air p ressure (ps telli Setting Ischarge Se	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) i) etting L/min)	time: 4/1 TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 initial 1 5 5 Purge Rate	S/64 C): (7].1 :	Anticy b:05 VA _psi 3 14 H.4 3.4 _0. Quality Pa Temp.	4 ramete	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D ng + pump	n time: 9 TW (ft. BTC volumes pu	16 04 DC): Irged:		
Purge dat nitial (pre Calculated Pneumati nitial air p ressure (ps te Mi Setting tischarge Se kw rate (mi	e/beginning -purging) D I tubing + pr ic Controlle ressure = H i) - tling Limin)	time: 4/1 IW (ft. BTC ump volume r Tuning: (ft.) X 0.43 [Initial]] [0 5 55	S 64 C): (7.1) = 8.557 2 16 16 16 16 16 10 Water Cumulative Volume	Antipy p:05 VA _psi 3 14 H.a 3.4 10. Quality Pa	4 ramete Ek Con	PID/FID re Purge data Final (post No. of tub)	e/completio I-purging) D Ing + pump 6 6 ments	n time:9 TW (ft. BTo volumes pu	16 04 DC): rrged:		Finat
Purge dat nitlal (pre Calculated Initial air p ressure (ps telli Setting Ischarge Se kow rate (mi	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) :tling Umin) (ft. BTOC)	time: <u>An</u> TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 [Initial] [0 5 55 Purge Rate (mL/min)	S 64 C): (7.1) = 8.557 2 16 16 16 10 Water Cumulative J Volume, Purged B3	Anticy p:os VA _psi 3 ly y.a 3.y 10. Quality Pa Tomp. (degree C)	4 ramete Con (uM	PID/FID re Purge data Final (post No. of tub)	e/completio h-purging) D ing + pump 6 6 ments pH	n time: 9 TW (ft. BTC volumes pu 7 Fh (mv)	16 64 DC): rged: 8 DO (mg/L)		Finat
Purge dat nitlal (pre Calculated Ineumati nitial air p ressure (ps telli Setting tscharge Se kow rate (mi Time	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) i) etting L/min)	time: <u>An</u> TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 [Initial] [0 5 55 Purge Rate (mL/min)]	S 64 C): (].] :	Anticy 10:05 14 14 14 14 14 10: Quality Pa Tomp. (degree C) 30.44	4 ramete Ek Con (uM 0_5/	PID/FID re Purge data Final (post No. of tubi 5 5 cr Measure actrical ductivity hos/cm) 7 2	e/completio I-purging) D Ing + pump 6 6 ments pH 5.45	Eh (mv)	16 64 DC): rged: 8 	T	Final Final wbidity NTU)
Purge dat nitlal (pre Calculated Pneumati nitlal air p ressure (ps celli Setting Ischarge Sc kow rate (mi Time	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) :tling Umin) (ft. BTOC)	time: 4/1 TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 initial 1 55 Purge Rate (mL/min) 55	S/64 C): (]. = 8,55 2 16 16 10 Water Comutative JVolumes Purged B1 0,110 2450,385	Antley h:05 VA _psi 3 V4 H.4 3.4 10 Quality Pa Tomp. (degree C) 30.14 27.44	A Famete El Con (uM 0. \$J 0. 8	PID/FID re Purge data Final (post No. of tub) 5 5 cr Measure actrical ductivity hos/cm) / 2 5 7	e/completio i-purging) D ing + pump 6 6 ments pH 5.95	Eh (mv) 124-5-65-	16 04 DC):	TI- 775. 7355	Final wbidity NTU) 74.7 7.9
Purge dat nitlal (pre Calculated Pneumati nitial air p ressure (ps telli calr p ressure (ps telli calr p ressure (ps telli calr p telli call p telli	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) :tling Umin) (ft. BTOC)	time: 4/1 TW (ft. BTC Jmp volume r Tuning: (ft.) X 0.43 [Initial] [0 5 55 Purge Rate (mL/min) 55 55 51	S/64 C): (]. = 8,55 2 16 16 10 Water Comutative JYolume Purged B2 0,110 2750,365 0.160	Antley 10:05 VA psi 3 14 4.4 3.4 10: Quality Pa Tomp. (degree C) 70.1/4 27.74 29.32	4 rametc El Con (uM 0_6/ 0_6	PID/FID re Purge data Final (post No. of tub) 5 5 er Measure actrical ductivity hos/cm) 7 2 5 7	e/completio (-purging) D ng + pump 6 6 ments pH 5.45 5.94	Eh (mv) 16.5 16.5	16 04 DC):	TE 335 3394	Final Final wbidity NTU) 71. 4 71. 4 71. 4
Purge dat nitial (pre Calculated Pneumati nitial air p ressure (ps ressure (ps) ressure (ps ressure (ps) ressure (e/beginning -punging) D I tubing + pu ic Controlle ressure = H i) etting Umin) (ft. BTOC) [] 1.2.1/ [] [] 2.1/ []	time: 4/1 TW (ft. BTC JIMP volume r Tuning: (ft.) X 0.43 initial 1 io 5 F Purge Rate (mL/min) 5 5 7 (20	S_{0}^{+} $C): (1,1)$ $= 8.557$ 2 16 10 $Water$ Cumulative $Volume_{1}$ $Purged P_{1}$ 0.110 2758.365 0.660 $W12.60$	Anticy p:05 VA psi 3 ly y.a 3.y 10. Quality Pa Tomp. (degree C) 70.1/4 27.74 29.32 29.61	4 ramete Ek Con (UM 0.5 ¹ 0.8 0.8	PID/FID re Purge data Final (post No. of tub) 5 r Measure actrical ductivity hos/cm) 7 2 5 7 4 % 6 (e/completio (-purging) D (ng + pump (Eh (mv) 24-5-65- 16-5 7.6.6	DO (mg/L) 233 1.71 1.97 2.05	775 775 7359 7359 7359 7359 7359 7359 73	Final wbidity NTU) 74.7 7.9 7.9 7.9 7.9
Purge dat nitial (pre Calculated Pneumati nitial air p ressure (ps telli Setting tischarge Se kow rate (mi Time 10 4 0 Kor 15 0 5 3 0 5 3 0 5 7	e/beginning -purging) D I tubing + pu ic Controlle ressure = H i) etting Umin) (ft. BTOC) (ft. BTOC) (ft. BTOC) (7.53	time: 9/1 TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 initial 1 io 5 5 5 5 5 5 5 5 5 5 5 5 5	S_{0} C): (3.1) C): (3.	Anticy p:05 NA _psi 3 ly y.a 3.y 10. Quality Pa Temp. (degree C) 30.1/4/ 27.1/1/ 29.32 29.61 26.93	4 Framete Ek Con (uM 0. §J 0. § 0. § 0. § 0. § 0. § 0. § 0. §	PID/FID re Purge data Final (post No. of tub) 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	e/completio (-purging) D ng + pump 6 6 ments pH 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.4	n time: 9 TW (ft. BTC volumes pu 7 Fh (mv) 22-5-65- 16.5 76-5 76-6 78-0	DC):	TI 335 339 735 339	Final wbidity NTU) <i>PLY</i> <i>T.Y</i> <i>Y.Y</i> <i>T.Y</i> <i>Y.J</i> <i>Y.J</i>
Purge dat nitlal (pre Calculated Pneumati nitial air p ressure (ps terili Setting ischarge Se kw rate (mi Time P0 4 0 10:15 0 5 5 0 5 5	e/beginning -punging) D I tubing + pu ic Controlle ressure = H i) etting Umin) (ft. BTOC) [] 1.2.1/ [] [] 2.1/ []	time: 9/1 TW (ft. BTC ump volume r Tuning: (ft.) X 0.43 initial 1 io 5 5 5 5 5 5 5 5 5 5 5 5 5	S_{0}^{+} $C): (1,1)$ $= 8.557$ 2 16 10 $Water$ Cumulative $Volume_{1}$ $Purged P_{1}$ 0.110 2758.365 0.660 $W12.60$	Anticy p:05 VA psi 3 ly y.a 3.y 10. Quality Pa Tomp. (degree C) 70.1/4 27.74 29.32 29.61	4 Famete Con (uM 0.5) 0.8 0.8 0.8 0.8 0.8 0.8	PID/FID re Purge data Final (post No. of tub) 5 r Measure actrical ductivity hos/cm) 7 2 5 7 4 % 6 (e/completio (-purging) D (ng + pump (Eh (mv) 24-5-65- 16-5 7.6.6	DO (mg/L) 233 1.71 1.97 2.05	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Final wbidity NTU) 74.7 7.9 7.9 7.9 7.9

GROUNDWATER SAMPLING FORM

Sheet 2 of 14

		- }	Nater Quali	ity Paramet	er Measurement	<u>s (continue</u>	d)	<u>.</u>	
Time	. DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidit
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)	•	(uMhos/cm)			}	• ·
11:20	18.39	100	3,560	28.07	0.793	5.95	74.8	190	791.7
1/4.25	18.98	60	4.300	28.67	0.994	5.95	90.9	1.53	659.0
11:30	18.67	60	4,860	29.18	0.994	5.95	90.9	1.59	515.7
11:35	10.76	100	5.360	29.51	6.88Ko	5.95	90.2	155	951.0
1 AD	19.81	00	5.840	29.30	0.997	3.94	:43.6	1.59	700-1
11:45	8.94	. 100 -	6.360	29.55	0.974	5.94	62.8	1.68	1.83,2
11.50	18.97	16.0	6.960	30.01	.0.895	5.94	61.8	1.71	6.81.4
11:65	14.00	100	7.360	30.03	0.996	5.91	10.8	1.71	678.1
12:00	19.03	100	7.960	36,11	0.987	5.94	61.0	1.73	375
12:05	19.04	100	8.360	31.14	6.997	5.94	60.9	1.74	374.0
12:10	19.16	100	8.860	31.13	0.867	5.94	60.9	1.75	380.4
12:15	19.07	100	9.310	31.13	0.287	5.94	61.5	1.78	381.3
		$ \rightarrow $	- Low						7
ampling b	eginning tin	10: 2:3		Quality Pa	Sampling (rameter Measure	completion ti	ime: <u>13:</u> .o	0	
Time	DTW	Purge Rate	Cumulative	Temp.	Electricat	pH	Eh		T . 11.000
	(ff. BTOC)	(mL/min)	Volume	(degree C)	Conductivity	pri		DO.	Turbidity
		*	Purged (L)	1003100 01	(uMhos/cm)		(mv)	(mg/L)	(NTU)
13:15	19.00	100	11.36	31.10	0.893	5.93	96.6	1.90	58.3
					YCK 2 1			1.10	
	· · ·				······································				
uplicate sa	LKGMUT ample collected (:ted (Y/N):	N ¹ 0 No	Sample	Information Sample col Duplicate s Split sample		1ime: 9/15	104 12:4	50
equested	Analysis	Method	Co	ntainers	Requested	Analysis	Method	Contai	ners
Perchlore	xir I	314 h	> HOPE						
Voc.	·	A	· Vog vligt				·····		····
Dionins	Grant		le FL Amb.	ý					
	1								
		•			••••••••••••••••••••••••••••••••••••••	fr			<u> </u>
omments:	Cularter	Decame	clear a	filer flow	u-throught c	ા તે તે તે તે તે તે તે તે તે તે તે તે તે	emptied	and re-	r,hed.
				-	• •				٠

	· ·						
	Sam	ple C	Collecti	on La	g		
1aw*	-		•		0	-	Page 1 of
w E & I, Inc.		5714 anager:	LONGH		AP	•	
		-	RFA/(COC Num]	er: 33	50-091	504-MR
Location Code: LHSMV Sample Number: L0001-L				•	Task:		FA GAPS AU
Sample Name: L0001-I					on Date:		v
Sampling Method: BA			-		on Time: 1 Depth:	_14_2	
Sample Type: GW	Samp	ole Purpose	REG		d Depth:		and Dry
Sampling Equip: 1" Di	is possible puc b	a:lev	· · ·		-	WATER	
) 091504-70 (ER))	(FB)	·	Sampl	e Team:	A.VCD.	nere B. Mast
Analytical Suite Fit Fri	Containers Qty Size Units	Type				S Values: Sacode:	
VICTURE		VOA VIALE		1	Lot	Control#:	
PERCENT AND A DE		iinne s			•		- ,
<u>Groundwater Information:</u> Measured Well Depth:	2.4.68		o Water: <u>20</u>				•
Measured Well Depth:					Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth:	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		
Measured Well Depth: Comments: Bailed	2.4.68				Side		
Measured Well Depth: Comments: Bailed	2.4.68				Site .		

Logged BY / Date: M, MC Reviewed BY / Date: Appleff 9/15/04

00043700.

845714 Manager: LONGHORN AAP Praveen Srivastav

Location Code: LHSMW68 Sample Number: L0001-LHSMW6

Initial	Time(24hr)	DepthtoWater (ft)	Eh (mV)	рН (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Parge Volame (gal)
	-								
			·					•	
				•					
aple:									
"PIC.	NA	NA	NA	NA	NA	NA	NA	MA	NA

Logged BY / Date: 9/ŀ

Reviewed BY / Date: July 9/15

00043701

. se underse

-

. .

GROUNDWATER SAMPLING FORM

Sheet 1_of 2

	e Universe i	D:35C				Sampling	location IT): LHSMG		
Project	Name/#:	IPAP				Sample I	D:LHSw	· LO		
Weather	: Porty C	lender 96	5		· · ·			0: 15-30	givije	4
	······		······································	Pun	np Inst	allation		-		
Pump in	staliation cre	ew: A.Will	More B. 1	Inster	_ ·	Installatio	n date/beci	inning time;	PA	
PID/FID	reading (we	ll head/back	kground);	0.0				pletion time		
Casing c	liameter (inc	:hes):	4"			Screen In	terval (ft. B	-	14.68 to	2110
Total we	ll Depth (ft.	BTOC); <u>2</u>	4.68		-			ft BTOC):	<u>11.60</u> 10	61.60
Initial (pr	e-installation	n) DTW/time	e: 20.71	12:41	-	Post-inst	Ilation DTV	NHimor	<u>NA</u>	
Final (afl	er pump pri	ming) DTW/	time: N₩					mp rate (mL		
Free pro	duct (circle):	LNA	PL / DNAPI		 .	Appearan	ce of produ	nda tere (titt" Lida tere (titt"	//////	<u>JA.</u>
Volume (of water rem	loved during	priming (m	L): NH		Discharge	tible diam	eter (3/8* o	4/47%	R + K
Discharg	e tube lengt	h (fl.):	MM		-	inlet redu	cer used (Y	(N)+ N	1 #4 J	UA
Pneuma	tic Controll	er Tuning:						//1/. <u>N</u>	4 A .	
Initial air	pressure =	H (fl.) X 0.4:	3 = <u>ph</u>	_ psi	•		•			
Pressure (p		Initial	2	3	4	5	6	7	8	Final
Reful Settin					<u> </u>					
Discharge S	7				-					
Flow rate (n		·			\square					
	m-many		<u> </u>		1	<u>I</u>				
Purge dat nitial (pre	le/beginning ⊢purging) D	i time: <u> </u>	C):	· · /	- -	Purge date	completion	head/back(n time: TW (ft_ BTC	NN	3. <u>0 ×</u>
Purge dal Initial (pre Calculate P neumat i	le/beginning -purging) D d tubing + p ic Controlle	time: <u>414</u> TW (ft. BTO ump volume r Tuning:	401 WA 40 <u>1</u>	20:71 NA	- - 	Purge date Final (post-	/completion -purging) D	head/back(n time: TW (fL BTC volumes pu	NA DC}: NI	X
Purge dal nitial (pre Calculate Pneumati	te/beginning ⊢purging) D d tubing + p	time: <u>414</u> TW (ft. BTO ump volume r Tuning:	<mark>₩ UA UA UA UA UA UA UA UA UA UA UA UA UA </mark>	/ ₩ 20-71 ₩A _psi	-	Purge date Final (post No. of tubir	/completion -purging) D ng + pump	n time: TW (ft. BTC volumes pu	NA DC): VI rged: N	AA
Purge dal Initial (pre Calculate Pneumat nitial air p	le/beginning ⊢purging) D d tubing + p ic Controlle pressure = H	time: <u>444</u> TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43	401 WA 40 <u>1</u>	20:71 NA	-	Purge date Final (post-	/completion -purging) D	n time: TW (ft. BTC	NA DC}: NI	A
Purge dal initial (pre Calculate Pneumati nitial air p	le/beginning ⊢purging) D d tubing + p ic Controlle pressure = H	time: <u>444</u> TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43	<mark>₩ UA UA UA UA UA UA UA UA UA UA UA UA UA </mark>	/ ₩ 20-71 ₩A _psi	4	Purge date Final (post No. of tubir	/completion -purging) D ng + pump	n time: TW (ft. BTC volumes pu	NA DC): VI rged: N	AA
Purge dal nitial (pre Calculate Incumati nitial air p ressure (pa cetti Setting	le/beginning ⊢purging) D d tubing + p ic Controlle pressure = H	time: <u>444</u> TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43	<mark>₩ UA UA UA UA UA UA UA UA UA UA UA UA UA </mark>	/ ₩ 20-71 ₩A _psi	4	Purge date Final (post No. of tubir	/completion -purging) D ng + pump	n time: TW (ft. BTC volumes pu	NA DC): VI rged: N	AA
Purge dat Initial (pre Calculater Pneumat Initial air p Tessure (ps Lefill Setting Ischarge S	le/beginning -purging) D d tubing + p ic Controlle pressure = H d) etting	time: <u>444</u> TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43	<mark>₩ UA UA UA UA UA UA UA UA UA UA UA UA UA </mark>	/ ₩ 20-71 ₩A _psi	4	Purge date Final (post No. of tubir	/completion -purging) D ng + pump	n time: TW (ft. BTC volumes pu	NA DC): VI rged: N	AA
Purge dat Initial (pre Calculater Pneumat Initial air p Tessure (ps Lefill Setting Ischarge S	le/beginning -purging) D d tubing + p ic Controlle pressure = H d) etting	time: <u>444</u> TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43	(64 UA C): 121 :1 =NA 2	/ 20-71 NA _ psi 		Purge date Final (post No. of tubin	(completion purging) D ng + pump	n time: TW (ft. BTC volumes pu	NA DC): VI rged: N	AA
Purge dal Initial (pre Calculate P neumat i	le/beginning -purging) D d tubing + p ic Controlle pressure = H d) etting	time: 4/44 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43	(64 UA C): 121 :1 =NA 2	- 20-71_ NA _ psi 	ramete	Purge date Final (post No. of tubin	recompletion purging) D ng + pump 6 6 nents	n time: TW (ft. BTC volumes pu	NA C):N rged:N	A Final
Purge dat Initial (pre Calculate Pneumat Initial air p Tressure (pa Tressure (pa Tr	le/beginning -purging) D d tubing + p ic Controlle pressure = H d) etting L/min)	time: 4/44 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43	+694 UA (C):994 ::! ::_! ::! ::	- 20-71 NA _ psi 	aramete Ele Con	Purge date Final (post No. of tubin 5	(completion purging) D ng + pump	n time: TW (ft. BTC volumes pu	NA DC): VI rged: N	AA
Purge dat Initial (pre Calculate Pneumat Initial air p Tressure (pa Tressure (pa Tr	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 4/14 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial	God UA C):	- 20-71 NA _ psi 	aramete Ele Con	Purge date Final (post No. of tubin 5	recompletion purging) D ng + pump 6 6 nents	n time: TW (ft. BTC volumes pu 7 Eh	DC): VI rged: V 8	Final Final
Purge dat Initial (pre Calculate Pneumat Initial air p Tressure (pa Tressure (pa Tr	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 4/14 TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 initial Purge Rate (mL/min)	€64(UA C); :: <td::< td=""> ::<td>- 20-71 NA _ psi </td><td>aramete Ele Con</td><td>Purge date Final (post No. of tubin 5</td><td>recompletion purging) D ng + pump 6 6 nents</td><td>n time: TW (ft. BTC volumes pu 7 Eh</td><td>DC): VI rged: V 8</td><td>Final Final</td></td::<>	- 20-71 NA _ psi 	aramete Ele Con	Purge date Final (post No. of tubin 5	recompletion purging) D ng + pump 6 6 nents	n time: TW (ft. BTC volumes pu 7 Eh	DC): VI rged: V 8	Final Final
Purge dat Initial (pre Calculate Pneumat Initial air p Tressure (pa Tressure (pa Tr	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 4/14 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial	God UA C):	- 20-71 NA _ psi 	aramete Ele Com (UM	Purge date Final (post No. of tubin 5 5 r Measurer betrical ductivity hos/cm)	/completion -purging) D ng + pump 6 6 nents pH	Eh (mv)	DC): VI rged: N BC (mg/L)	Final Final
Purge dat Initial (pre Calculate Pneumat Initial air p Tressure (pa Tressure (pa Tr	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 444 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min)	€64(UA C):	- 20-71 VA _psi 3 Guality Pa Temp. (degree C) 6 V Y	aramete Ele Con	Purge date Final (post No. of tubin 5 5 r Measurer betrical ductivity hos/cm)	/completion -purging) D ng + pump 6 6 nents pH	n time: TW (ft. BTC volumes pu 7 Eh	DC): VI rged: N BC (mg/L)	Final Final
Purge dat initial (pre Calculate Pneumat nitial air p hessure (pa tofil Setting tischarge S kow rate (mi	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 4/14 TW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 initial Purge Rate (mL/min)	€64(UA C):	- 20-71 VA _psi 3 Guality Pa Temp. (degree C) 6 V Y	aramete Ele Com (UM)	Purge date Final (post No. of tubin 5 5 r Measurer betrical ductivity hos/cm)	/completion -purging) D ng + pump 6 6 nents pH	Eh (mv)	DC): VI rged: N BC (mg/L)	A Final Turbidity
Purge dat initial (pre Calculate Pneumat nitial air p hessure (pa tofil Setting tischarge S kow rate (mi	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 444 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min)	€64(UA C):	- 20-71 VA _psi 3 Guality Pa Temp. (degree C) 6 V Y	aramete Ele Com (UM	Purge date Final (post No. of tubin 5 5 r Measurer betrical ductivity hos/cm)	/completion -purging) D ng + pump 6 6 nents pH	Eh (mv)	DC): VI rged: N BC (mg/L)	Final Final
Purge dat initial (pre Calculate Pneumat nitial air p hessure (pa tofil Setting tischarge S kow rate (mi	te/beginning ⊢purging) D' d tubing + pr ic Controlle pressure = H i) it it in it in it in it controlle pressure = H it it it it it it it it it it	time: 444 TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial Purge Rate (mL/min)	€64(UA C):	- 20-71 VA _psi 3 Guality Pa Temp. (degree C) 6 V Y	aramete Ele Com (UM)	Purge date Final (post No. of tubin 5 5 r Measurer betrical ductivity hos/cm)	/completion -purging) D ng + pump 6 6 nents pH	Eh (mv)	DC): VI rged: N BC (mg/L)	Final Final

Location Code: 106

Sampling Method: SP

Sampling Equip:

QC Partners: (TB)

Sample Collection Log

00043703 Page 1 of 2

- LONGHORN AAP 845714

RFA / COC Number:

Praveen Srivastav Manager:

Locuiton Coue.	100	Task: GW-MAY05
Sample Number:	35CWW106-MAY	Collection Date: 5-17-05
Sample Name:	35CWW106-MAY05-GW-REG	Collection Time: 1613
ampling Method:	SP	Start Depth: 184
Sample Type:	GW Sample Purpose: REG	End Depth: 13/4
Sampling Equip: tners:	Bladder Pmp/air	Sample Matrix: WATER
)	(FB) (FB)	Sample Team: J Regers I Machine 2
Analytical Suite	Containers Flt Frtn Qty Size Units Type	ERPIMS Values: Sacode:
VOC-FULL	N A 3 49 ml. VOAVIAL	Lot Control#:
METALS-W	N B I 1000 mL HDPE	
METALS-DIS	N C 1 1000 mL HDPE	
Dioxins-Furans	N D 2 1 L Amb. Glass	
Dioxins-Fur-DIS	N E 2 1 L Amb. Glass	

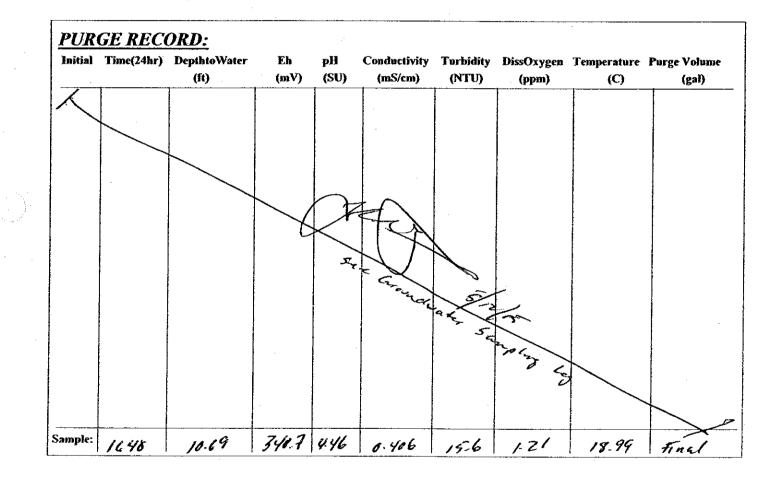
Groundwater Information:

Measured Well Depth: 23.94

Depth To Water: 10.15

Comments: For et least 45mins Given the go alead to semple.

Sketch Location:


Logged BY / Date:

00043704 Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: 106 Sample Number: 35CWW106-MAY

Logged BY / Date: 5/. 1/or

Shaw.

GROUNDWATER SAMPLING FORM

00043705 Sheet_1_of_Z

Project N	e Unit/Site I Name/#: <u>§</u>	D: <u>Linn</u> 45714 Jonia	A 35C	(53)		Sample	ID: <u>35(</u>	D: WW 104	may	05
weamer	<u></u>	JUMIA	Party C	Tosty		Collectic	on Time/Dat	le: <u>5-17-</u>	15 161	3
				Pun	np Inst	allation				
Pump ins	stallation cr	ew: J Raze	rs J Ka	drawt	•		on date hav	inning time	·	. 7.6
PID/FID 1	reading (we	I head/bac	karound):	0,0/0.0		Installation date/beginning time: <u>5-12-55</u> 1300 Installation date/completion time: <u>5-2-65</u> 1303				
Casing di	iameter (inc	ches): BTOC):	2"			Screen Interval (ft. BTOC): 132×1323				
Total well	l Depth (ft.)	BTOC):	23.98	e.f	\overline{t}	Superinterval (II. BIUC): 73 to 23 Pump intake denth (ft BTOC): 12				
Initial (pre	e-installation	n) DTW/tim	e: 9,16	1115	<u>·</u>	Pump intake depth (ft BTOC): //				
Final (afte	er pump pri	ming) DTW	/time:	<u> </u>	_	Post-installation DTW/time: 10.69 1640				
Free prod	fuct (circle)	: <u></u> NA	PL/DNAP	L		Max. sustainable pump rate (mL/min): MM Appearance of product: MM				
Volume o	of water rem	moved during priming (mL): ACN							NA	
Discharge	e tube lengi	th (ft.):/.	5		-			neter (3/8" o		9
		er Tuning:				nnet tedu	icer usea ()	(/N):		
		H (fL) X 0.4	3 =	psi						
•	······································	Initial	2	3	4	5	6	-1		
Pressure (ps	si)				+			7	8	- Fina
Refill Setting)	1	-							
)ischarge S	etting	1								
low rate (m	nL/min)	1								<u> </u>
					-			the second second second second second second second second second second second second second second second s		
Purging/sa Purge date	ampling cre e/beginning	w: <u>) kay</u> time: <u>5-12</u>	1-05 130	<u>dr.5v17</u> 06	Purgir - -	PID/FID re	eading (wel e/completio	l head/back	ground):_@	. 8 [-10
nitial (pre-	-purging) D	w: time: <u></u> TW (ft. BTO	C):	dr.5v+7 26 5	-	PID/FID re Purge dat Final (pos	e/completic t-purging) [on time: <u>5-/</u> DTW (ft. BT(- <u>7-15 </u> DC):0	69
nitial (pre- Calculated	-purging) Đ I tubing + pi	TW (ft. BTO ump volume	C):	dr.5v+7 26 5	-	PID/FID re Purge dat Final (pos	e/completic t-purging) [on time: <u>5-/</u>	- <u>7-15 </u> DC):0	69
ntial (pre- Calculated I <mark>neumati</mark>	-purging) D I tubing + pi c Controlle	TW (ft. BTO ump volume e r Tuning:)C): <u>// : / :</u> :	dr.5v+7 26 5 NA	-	PID/FID re Purge dat Final (pos	e/completic t-purging) [on time: <u>5-/</u> DTW (ft. BT(- <u>7-15 </u> DC):0	69
nitial (pre- Calculated 'neumati	-purging) D I tubing + pi c Controlle	TW (ft. BTO ump volume e r Tuning: I (ft.) X 0.43	=	dr.sprt 26 5 NA _psi	-	PID/FID re Purge dat Final (pos No. of tubi	e/completic t-purging) [ing + pump	on time: <u>5-/</u> DTW (ft. BT(- <u>7-15 </u> DC):0	69
nitial (pre- Calculated 'neumati	-purging) D I tubing + p c Controlle ressure = H	TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43)C): <u>// : / :</u> :	<u>dr.sprt</u> 26 5 NA _psi 3		PID/FID re Purge dat Final (pos No. of tubi	e/completic it-purging) [ing + pump 6	n time: <u>5-0</u> DTW (ft. BTC volumes pu	2-25 10 DC): 10 Irged: 22	<u>L-10</u> .69 M
nitial (pre- Calculated Ineumation Nitial air pr	-purging) D I tubing + pi c Controlle ressure = H	TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43	<pre>(C): // : /: ::; :: _; ::; :: _; :: _: :: _: :: _: :: _: :: _: :: _: :: :</pre>	dr.5rr7 26 5 NA 	4	PID/FID re Purge dat Final (pos No. of tubi	e/completic t-purging) [ing + pump 6 20	n time: <u>5-7</u> DTW (ft. BTC volumes pu 7 <u>7</u>	12-25 11 DC): 10 Irged: 22	6 -10 -69 M Final
nitial (pre- Calculated Ineumation nitial air pro- ressure (psi	-purging) D I tubing + pi c Controlle ressure = H	TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial 2 Ø J I. o	<pre>C): // : /: ::; ::; ::; ::; ::;</pre>	dr.5rr7 26 5 NA _psi 3 26 11	4 Z6 //	PID/FID re Purge dat Final (pos No. of tubi	e/completic t-purging) [ing + pump 6 20 it	n time: <u>5-7</u> DTW (ft. BTC volumes pu <u>7</u> <u>75</u> 5	2-25 10 DC): 10 Irged: 22	6 -10 -69 H Final 15 5
nitial (pre- calculated neumation nitial air pro- ressure (psi effi Setting scharge Se	-purging) D I tubing + pi c Controlle ressure = H	TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial この ノノ、ロ タープ	<pre>C): // : /: : = 2 2* 11 1</pre>	dr.spr.7 26 5 NA _psi 3 26 11 9	4 26 11 9	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9	e/completic t-purging) f ing + pump 6 Zo ic 9	n time: <u>5-7</u> DTW (ft. BT(volumes pu <u>7</u> <u>75</u> <u>5</u> <u>7</u> <u>7</u>	8 15	L -10 .69 M Final 15 5 13
nitial (pre- calculated neumation nitial air pro- ressure (psi effi Setting scharge Se	-purging) D I tubing + pi c Controlle ressure = H	TW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial 2 Ø J I. o	C): <u>/f</u> : /f = <u>2</u> 2* 11 1 1 5 - - - - - - - - - - - - -	dr.srrt 26 5 NA _psi 3 26 11 9 180	4 20 11 9 150	PID/FID re Purge dat Final (pos No. of tubi	e/completic t-purging) f ing + pump 6 20 i i 9 i 1 f 0	n time: <u>5-7</u> DTW (ft. BTC volumes pu <u>7</u> <u>75</u> 5	2-25 10 DC): 10 Irged: 22	6 -10 -69 H Final 15 5
nitial (pre- calculated neumation nitial air pro- ressure (psi effi Setting scharge Se pow rate (mL	-purging) D I tubing + pi c Controlle ressure = H	IW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 Initial 2 0 / 1. 0 9 0 1 8 0	C): <u>/e</u> : /: = <u>2</u> <i>2</i> <i>11</i> <i>1</i> <i>1</i> % ⁶ Water	dr.srr7 26 5 NA psi 3 26 11 9 180 Quality Pa	4 20 11 9 150 aramete	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 0 r Measure	e/completic t-purging) f ing + pump 6 20 i i 9 i 1 f 0	n time: <u>5-7</u> DTW (ft. BT(volumes pu <u>7</u> <u>75</u> <u>5</u> <u>7</u> <u>7</u>	8 15	L -10 .69 M Final 15 5 13
nitial (pre- calculated neumation nitial air pro- ressure (psi effi Setting scharge Se	-purging) D I tubing + pi c Controlle ressure = H) 	IW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial 2 & I 1. o 9 - d I 8 O Purge Rate	C): <u>// :</u> // = <u>2</u> <i>2</i> <i>11</i> 1 1 5 Water Cumutative	dr.sprf 26 3 26 3 26 3 26 3 26 1 9 1 9 1 9 1 7 Quality P: Temp.	4 20 11 9 150 aramete	PID/FID re Purge dat Final (pos No. of tubi	e/completic t-purging) f ing + pump 6 20 i i 9 i 1 f 0	n time: <u>5-7</u> DTW (ft. BT(volumes pu <u>7</u> <u>75</u> <u>5</u> <u>7</u> <u>7</u>	8 15	6-10 -69 M Final 15 5 13 130
nitial (pre- calculated neumation nitial air pro- ressure (psi effi Setting scharge Se pow rate (mL	-purging) D I tubing + pi c Controlle ressure = H	IW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 Initial 2 0 / 1. 0 9 0 1 8 0	C): <u>/f</u> : / = 2 2 x 11 1 x Water Cumutative Volume	dr.srr7 26 5 NA psi 3 26 11 9 180 Quality Pa	4 2.6 11 9 1.40 aramete Ele	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 0 r Measure	e/completic t-purging) f ing + pump 6 20 1(9 1 f d ments	n time: <u>5-7</u> DTW (ft. BTC volumes pu <u>7</u> <u>75</u> <u>75</u> <u>75</u> <u>75</u> <u>730</u>	8 15 17 17	6 -10 6 9 M Final 15 5 15 130
nitial (pre- calculated neumation nitial air pro- ressure (psi efil Setting scharge Se ow rate (mt Time	-purging) D I tubing + pi c Controlle ressure = H) 	IW (ft. BTO ump volume r Tuning: I (ft.) X 0.43 Initial 2 J 1. 0 9 - 0 I 8 0 Purge Rate (mL/min)	C): <u>/e</u> : <u>/e</u> = <u>2</u> <u>2</u> <u>7</u> <u>11</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>	dr. 5 m 7 26 5 NA psi 3 2 6 11 9 1 8 0 Cuality Pa Temp. (degree C)	4 26 11 9 140 aramete Ele Com	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 Yo r Measure sctrical	e/completic t-purging) f ing + pump 6 20 1(9 1 f d ments	n time: <u>5-7</u> DTW (ft. BTC volumes pt 7 <u>75</u> <u>75</u> <u>75</u> <u>730</u> Eh	12-15 10 DC): 10 Irged: 10 8 15 1 15 1 36	6-10 -69 M Final 15 5 13 130
nitial (pre- calculated ineumation itial air po ressure (psi effi Setting scharge Se ow rate (mL Time	-purging) D I tubing + pi c Controlle ressure = H) 	IW (ft. BTO ump volume er Tuning: I (ft.) X 0.43 Initial 2 & 1 1. o 9 d I 8 O Purge Rate (mL/min) 1 8 O	C): <u>// :</u> // = <u>2</u> 2 # 11 1 * 0 Water Cumutative Volume Purged (L) <u>-</u> 5 */	dr.sprf 26 3 26 3 26 3 26 3 26 11 9 130 Quality Pa Temp.	4 26 11 9 140 aramete Ele Com	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 6 r Measure ectrical ductivity hos/cm)	e/completic t-purging) f ing + pump 6 20 1(9 1 f d ments	n time: <u>5-7</u> DTW (ft. BTC volumes pt 7 <u>75</u> <u>75</u> <u>75</u> <u>730</u> Eh	12-15 10 DC): 10 Irged: 10 8 15 1 15 1 36	6 -10 6 9 M Final 15 15 13 13 13 NTU)
Time	-purging) D I tubing + pi c Controlle ressure = H i) 	IW (ff. BTO ump volume er Tuning: I (fL) X 0.43Initial $2 \ \mathcal{O}$ I (fL) X 0.43Initial $2 \ \mathcal{O}$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $g \cdot d$ $j l. \ \mathcal{O}$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$ $f \cdot d$	C): <u>/e</u> : <u>/e</u> = <u>2</u> <u>2</u> <u>7</u> <u>11</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>	dr. 5 m 7 26 5 NA psi 3 2 6 11 9 1 8 0 Cuality Pa Temp. (degree C)	4 20 11 9 190 aramete Con (uM	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 0 r Measure ectrical ductivity hos/cm)	e/completic t-purging) f ing + pump 6 20 it 9 it 9 it 9 it 9 it 9 it 9 it P H	n time: <u>5-7</u> DTW (ft. BT(volumes pu <u>7</u> <u>75</u> <u>75</u> <u>75</u> <u>75</u> <u>730</u> Eh (mv)	12-r5 10 DC): 10 irged: 10 15 1 15 1 15 1 138 100 (mg/L) 3.14	L -10 .69 M Final 15 15 130 Turbidit (NTU) 109. T
Alternation Calculated Ineumation Initial air program ressure (psi effil Setting scharge Se ow rate (mt) Time 310 313 316	-purging) D I tubing + pi c Controlle ressure = H i) 	IW (ft. BTO ump volumeImportant volume <tr< td=""><td>C): <u>// :</u> // = <u>2</u> 2 # 11 1 * 0 Water Cumutative Volume Purged (L) <u>-</u> 5 */</br></td><td>dr.sprf 26 3 26 3 26 3 26 3 26 1 9 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 <tr< td=""><td>4 20 11 9 150 aramete Ele Com (uMi 0.42</td><td>PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 0 7 Measure ctrical ductivity hos/cm)</td><td>e/completic t-purging) f ing + pump 6 20 i(9 i(9 i(9 i(9 i(9 i(9 i(9 i(</td><td>n time: <u>5-7</u> DTW (ft. BT(volumes pt 15 15 / 30 Eh (mv) 297.1 305-7</td><td>1 1 DC): 10 Irged: 10 If 1 <t< td=""><td>L -10 .69 M Final 15 5 130 Turbidit (NTU) 109.7 1225</td></t<></td></tr<></td></tr<>	C): <u>// :</u> // = <u>2</u> 	dr.sprf 26 3 26 3 26 3 26 3 26 1 9 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 <tr< td=""><td>4 20 11 9 150 aramete Ele Com (uMi 0.42</td><td>PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 0 7 Measure ctrical ductivity hos/cm)</td><td>e/completic t-purging) f ing + pump 6 20 i(9 i(9 i(9 i(9 i(9 i(9 i(9 i(</td><td>n time: <u>5-7</u> DTW (ft. BT(volumes pt 15 15 / 30 Eh (mv) 297.1 305-7</td><td>1 1 DC): 10 Irged: 10 If 1 <t< td=""><td>L -10 .69 M Final 15 5 130 Turbidit (NTU) 109.7 1225</td></t<></td></tr<>	4 20 11 9 150 aramete Ele Com (uMi 0.42	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$ 0 7 Measure ctrical ductivity hos/cm)	e/completic t-purging) f ing + pump 6 20 i(9 i(9 i(9 i(9 i(9 i(9 i(9 i(n time: <u>5-7</u> DTW (ft. BT(volumes pt 15 15 / 30 Eh (mv) 297.1 305-7	1 1 DC): 10 Irged: 10 If 1 =""><td>L -10 .69 M Final 15 5 130 Turbidit (NTU) 109.7 1225</td></t<>	L -10 .69 M Final 15 5 130 Turbidit (NTU) 109.7 1225
Time	-purging) D I tubing + pi c Controller ressure = H) 	$\frac{1}{1} (ft. BTO)$ $\frac{1}{1} (ft. BTO)$ $\frac{1}{1} (ft. X 0.43)$ 1	C): 10: 10 $= 2$ $2 = 2$ 11 $1 = 4$ $Vater$ $Vater$ $Volume$ $Purged (L)$ $5 = 4$ $1, 0 = 7$	$\frac{dr.srrt}{26}$ NA psi 3 $2 6$ 11 9 $1 8 0$ $(degree C)$ $21. c 2$ $2e. 1 8$	4 20 11 9 140 aramete Conu (uMi 0.42 0.42	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 1 \$rô r Measure ectrical ductivity hos/cm) 7 5 z	e/completic t-purging) f ing + pump 6 20 it 9 if 9 if 0 ments pH 4. 34 4. 34 4. 35	n time: <u>5-7</u> DTW (ft. BT(volumes pu <u>7</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u> <u>730</u> Eh (mv) <u>297.1</u> <u>305.7</u> <u>307.4</u>	1 1 DC): 10 Irged: 10 I 1 I 1 I 3 I 3 I 2 I 2 I 3	L -10 .69 M Final 15 5 13 130 Turbidit (NTU) 109.7 127.5 135.0
nitial (pre- calculated neumation nitial air pole ressure (psi efill Setting ischarge Se ow rate (mt Time Time 710 717 716 716 719 722	-purging) D I tubing + pi c Controller ressure = H)	IW (ft. BTO ump volume er Tuning: I (ft.) X 0.43Initial $2 o$ $1 (ft.) X 0.43$ Initial $2 o$ $1 l. o$ $9 \cdot d$ $1 l. o$ $9 \cdot d$ $1 g 0$ Purge Rate (mL/min) $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$ $1 g 0$	C): <u>10</u> : <u>11</u> 2 2 2 11 <u>7</u> <u>13</u> <u>0</u> Water Volume Purged (L) <u>5</u> <u>1</u> , <u>0</u> <u>7</u> <u>1</u> , <u>0</u> <u>7</u>		4 20 11 9 19 19 19 19 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19 0 10 10 10 10 10 10 10 10 10	PID/FID re Purge dat Final (pos No. of tubi 5 Zo 11 9 150 r Measure ctrical ductivity hos/cm) 7 2 5	e/completic t-purging) f ing + pump 6 20 14 9 170 ments pH 4. 84 4. 84 4. 85 4. 85 4. 85 4. 85 4. 85	n time: <u>5-7</u> DTW (ft. BT(volumes pu 15 15 15 15 15 297.1 307.9 307.9 314.6	2-r5 /1 DC): 10 Irged: 17 IS IS IS IS DO (mg/L) Z. 80 2-69 Z-36	L -10 .69 M Final 15 15 130 Turbidit (NTU) 109.7 127.5 135.0 121.9
nitial (pre- calculated neumation nitial air pole ressure (psi efill Setting ischarge Se ow rate (mt Time Time Time 710 717 716 716 716 717 72 72 72 72 72 72	-purging) D I tubing + pi c Controller ressure = H) 	IW (ft. BTO ump volume r Tuning: I (ft.) X 0.43Initial $2 \emptyset$ $I (ft.) X 0.43$ Initial $2 \emptyset$ $I (ft.) X 0.43$ Initial $2 \emptyset$ $I (ft.) X 0.43$ $I ft.) X 0.43$ Initial $2 \emptyset$ $I (ft.) X 0.43$ Purge Rate (mL/min) $I \$ 0$ $I \$ 0$ $I \$ 0$ $I \$ 0$ $I \$ 0$ $I \$ 0$ $I \$ 0$	C): 10: 10 $=$	dr. 5 r f 7 26 3 NA psi 2 6 11 9 180 Quality Pa 180 Quality Pa (degree C) 21. f 2 20. f 9 18 5	4 20 11 9 150 aramete Cond (uMi 0.42 0.	PID/FID re Purge date Final (pos No. of tubi 5 20 11 9 150 r Measure ectrical ductivity hos/cm) 7 5 27 15	e/completic t-purging) f ing + pump 6 20 11 7 1 F0 ments pH 4. 84 4. 84 4. 88 4. 88	n time: <u>5-7</u> DTW (ft. BT(volumes pt 15 15 15 /30 Eh (mv) 297.1 305-7 307.4 317.2	2-r5 11 DC): 10 Irged: 10 Irged: 10 If 15 If 130 DO (mg/L) 3.14 2.80 2.48 2.48 Z-36 2.32	L -10 .69 M Final 15 15 130 Turbidit (NTU) 109: 7 122 5 135: 0 124: 9 116: 1
Altial (pre- calculated Calculated Ineumation Itial air pre- ressure (psi effil Setting scharge Se ow rate (mt Time 310 313 316 322 325	-purging) D I tubing + pi c Controller ressure = H)	IW (ft. BTO ump volume er Tuning:I (ft.) X 0.43Initial $2 \emptyset$ I (ft.) X 0.43Initial $2 \emptyset$ I (ft.) X 0.43Initial $2 \emptyset$ I (ft.) X 0.43Initial $2 \emptyset$ I (ft.) X 0.43Initial $2 \emptyset$ I (ft.) X 0.43I ft. 0I ft. 0I ft. 0	C): $10: 10$ 2 2 2 2 11 1 1 1 5 0 0 0 0 0 0 0 0		4 Z 6 11 9 140 aramete Con (uM 0.42 0.44 0.4	PID/FID re Purge date Final (pos No. of tubi 5 2o 11 9 150 r Measure extrical ductivity hos/cm) 7 35 21 45 15 15 15	e/completic t-purging) f ing + pump 6 20 14 9 170 ments pH 4. 84 4. 84 4. 85 4. 85 4. 85 4. 85 4. 85	n time: <u>5-7</u> DTW (ft. BT(volumes pu 15 15 15 15 15 297.1 307.9 307.9 314.6	2-r5 /1 DC): 10 Irged: 17 IS IS IS IS DO (mg/L) Z. 80 2-69 Z-36	L -10 .69 M Final 15 15 13 130 Turbidit (NTU) 109.7 127.5 135.0

00043706 Sheet_Zof_Z

	A A								
	· .	. 1	Nater Quali	ity Parame	ter Measurements	s (continue	d)		
Time	WTO	Purge Rate	1	F	Electrical	Hq	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)				
1455	10.69	130	14.94	12.74	0.414	4.67	330.2	1.94	31.5
1525	10.69	130	18.84	19-18	0.411	4.51	358.6	1.49	18.7
1550	10.69	130	22.74	19.06	0.409	4.52	346.2		19.8
1400	10.69	130	24.04		0.408	4.50	345.7	1	174
16.03	10.69	130	24.43		0.407	449	346.6	0.99	17.1
1606	10.69	130	24.82	18.79	0.406	4.49	3463	0.99	Ka. Y
1419	10.49	130	25.21	18.79	0.407	4.49	346.4	0.95	16.5
1612	10.69	130	25.60	18.81		4.49	346.9	0.96	16-3
	T				•		· ·		
								[
							[
		-							
		-		Sa	ampling				
Samalina I	ooinnina tii	me: 1 <i>64</i>	3		• •	completion t	ime: 14	40	
Jamping	ວວິດສາຫາຜິ ຫ	nc. / 4//				-	nne. / 00		
<u> </u>	·	I			rameter Measure	T			······
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
11.17	1010	130	Purged (L)		(uMhos/cm)		- 110	101	
1413	10.69		25.73		1.406			0.95	16.4
14.40	10.69	130	Finel	18.99	0.406	4.46	341.7	1.21	15.6
	· · · · · · · · · · · · · · · · · · ·								
			l			L			
				Sample	Information				
		106 mi			Sample col	lection date	/time:		
Duplicate s	ample colle	cted (Y/N):_	4		Duplicate s	ample ID:	Not		
		(Y/N):	/		Split sampl	e ID: 🔨	la-		
COC No(s)	:								
	Anatoria		<u> </u>		D				
	I Analysis			ntainers	Requested	Analysis	Method	Conta	iners
Noc	T :	Blacker							
metals_		TStodal		NO3					
mila kr-		Budder		A /					
		Biodeks							
0 serie-		Buddes	ZY/L A						
.omments	: 1325	- Back	Asi dew	a, will	make record alles Pleas re turk. dity of secutions 3 m	ding ev.	cry 15,	AINS- 30	mins
Hpina	ing on the	v b. d. H	reading	5 Will	allow Plaw n	te to a	emain a	Bow	/
Determ	in the	v 3 hou	is of a	mapine	toop. dity in	carbory h	ave first	helow	251554
for a	1 beat	12 hr. W.	Il take	5 lea	sective 3m	m lead	mys in	1 stangs	
bbreviations:	BTOC - Belo	w top of casing	; DTW - Depth	to water; H - I	head above pump intal	ke; mL - millilite	er; L - Liter		

00043707

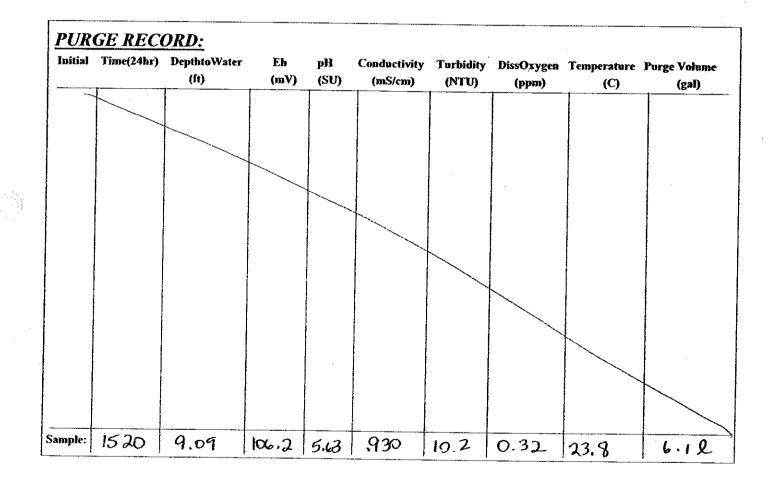
Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav

1	RFA/C	OC Number:
Location Code: Sample Number:	107 35CWW107-MAY	Task: GW-MAY05
	35CWW107-MAY05-GW-REG	Collection Date: <u>5/12/5</u>
Sampling Method:	SP	Collection Time: 14/30
Sample Type:	GW Sample Purpose: REG	Start Depth: <u>9.09</u>
Sampling Equip: Partners:		End Depth: <u>9.23</u> Sample Matrix: WATER
аныеть: ГВ)	(ER) (FB)	_ Sample Team: _ Anster /Allow
Analytical Suite	Containers Flt Frtn Qty Size Units Type	ERPIMS Values:
VOC-FULL	N A 3 40 ml VOAVIAL	Sacode: Lot Control#:
METALS-W	N B 1 1000 mL HDPE	
METALS-DIS	N C 1 1908 mL HDPE	
Dioxins-Furans	N D 2 1 L Amb. Glass	
Dioxins-Fur-DIS	N E 2 1 L Amb. Glass	
<u>Groundwater Info</u> Measured We	rmation: 11 Depth: 22.47 Depth To Water: 6.58	· ·
Comments:		

Logged BY / Date:



00043708

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: 107 Sample Number: 35CWW107-MAY

: ;

GROUNDWATER SAMPLING FORM

Sheet 1_of ___

- <u>)</u>	Operable	Unit/Site I): <u>35(</u>				Sampling	location ID	: j0	7	· ·
	Project N	lame/#:	LHAN!				Sample I	location ID D:35 Cm	-107-M	Aros	<u>_</u>
	Weather:	ple	85°F			_	Collection	n Time/Date	1470 /	5-12-5	· · ·
		<u></u>			Pum	o Inst	allation				
	Pump ins	stallation cre	w. Ans	ky / Alla,	 -			n date/begi	nning time:		
		reading (we				-		in date/com	•		
		iameter (inc					Screen In	iterval (ft. R		- <u>0</u> /	<u>. </u>
SINIS		Depth (ft. F					Pump int	iterval (ft. B ake depth (f	•00) FRTOCY	1451	· · · · · · · · · · · · · · · · · · ·
ייי, לי לי		e-installation			1/1043)		Post-inst:	allation DTV	//time- /	$\frac{1}{60}$	172
		er pump prir				-		ainable pun			
		luct (circle):				-		ce of produ		/mare)	
		f water rem				-		e tube diam			·····
		e tube lengt		P				cer used (Y			
		ic Controll	• /			-	anet redu	cei asca (i)			
		pressure = 1		3 =	nsi						
	·····			-r						•	
	· · · · · · · · · · · · · · · · · · ·		Initial	2	3	4	5	6	7	8	Final
	Pressure (p		12/		<u> </u>	_					
	Refill Settinę		1/2-			_		_			
	Discharge S		/8		<u> </u>	_					
	Flow rate (m	nL/min)	<u> </u>			I	I				
					F	Purgin	g				
	Purging/s	ampling cre	N:			-	-	eading (well	head/back	around):	
1	Purge dat	e/beginning						e/completion			•
	Initial (pre	-purging) D	TW (ft. BTO	C):				t-purging) D			
	Calculated	d tubing + p	ump volume	:l	NA			ng + pump			
	Pneumati	ic Controlle	r Tuning:					• • •	•	·	
	Initial air p	oressure = H	l (ft.) X 0.43	=	_psi						
•	}		Initial	2	3	4	5	6	7		
	Pressure (ps	i)	12	12			3	· · · · ·	<u> </u>	8	Final
	Refill Setting		12						<u> </u>	 	<i>(</i>
	Discharge Se		4	9		·····			<u> </u>	<u> </u>	<u> </u>
	Flow rate (m		130	100							
	·····				łł			· · · · · · · · ·	L	L	L
				Water	Quality Pa	ramata	r Measura	monte			
		I	r			lamete	measure	inens			
	Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	pH	Eh	DO	Turbidity
	Time	DTW {fL BTOC}	Purge Rate (mL/min)			Ek		· · · · · · · · · · · · · · · · · · ·	Eh (mv)	DO (mg/L)	Turbidity (NTU)
		(fL BTOC)	(mUmin)	Cumulative Volume Purged (L)	Temp. (degree C)	Ek Con (uM	ectrical ductivity hos/cm)	· · · · · · · · · · · · · · · · · · ·			(⁻)
	ß 30	(fl. BTOC)	(mL/min) flew (c/1	Cumulative Volume Purged (L)	Temp. (degree C) 24.44	Ek Con (uM	ectrical ductivity	· · · · · · · · · · · · · · · · · · ·			(⁻)
	13 30 1 3 33	(fl. BTOC) 9.50 8.60	(mUmin)	Cumulative Volume Purged (L)	Temp. (degree C)	Ek Con (uM	ectrical ductivity hos/cm)	pH	(mv)	(mg/L)	(NTU)
	130 1333 1336	(n. btoc) 8,5-0 8.60 5.87	(mL/min) flew (c/1	Cumulative Volume Purged (L) C. J	Temp. (degree C) 24.41% 23.10 23.473	Ek Con (uM	ectrical ductivity hos/cm) 7/ 76	pH 5.54 5.52 5.52	(mv) 13.6	(mg/L) /- 77	(NTU)
-	1330 1333 1336 1339	(n. btoc) 9.50 8.60 8.97 6.89	(mL/min) flew (11) 230	Cumulative Volume Purged (L) C. 1 <i>D. 700</i>	Temp. (degree C) 24.44 23.10	Ek Çon (uM 91 91 91	ectrical ductivity hos/cm) 76 78	рн 5.54 5.52	(mv) 130 13°.2	(mg/L) /- 72 /- 12	(NTU) 17.5 20.5
	1330 1333 1336 1339 1339	(n. btoc) 9.5-0 8.60 6.87 6.87 6.87 6.56	(mL/min) flew (c/1 230 130 130 130 130	Cumulative Volume Purged (L) C. 1 U. 700 I. 100 I. 500 I. 500	Temp. (degree C) 24.41% 23.10 23.473	Ek Con (uM 91) 91	ectrical ductivity hos/cm) 76 78	pH 5.54 5.52 5.52	(mv) 130 130.2 129.7	(mg/L) - 77 - 12 - 90	(NTU) 17.5 20.5 20.6
-	1330 1333 1336 1339 13472 13475	(n. btoc) 8.50 8.60 8.77 8.87 4.56 6.130	(mUmin) flew (d) 230 130 130 130 130 140 66	Cumulative Volume Purged (L) C.] U. 700 I. 100 I. 100 I. 520 I. 520 I. 520 I. 520 I. 520 I. 520	Temp. (degree C) 24.41% 23.10 23.4/3 23.7%	Ek Çon (uM 91 91 91 91 91 91	ectrical ductivity hos/cm) 1/ 76 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	pH 5.54 5.52 5.52 5.54	(mv) 13 c 13 o. 2 12 9. 7 12 3. 1	(mg/L) 1. 77 1. 12 0. 90 0. 71	(NTU) 17.5 20.5 20.6 17.9 17.1
	1330 1333 1336 1339 1339	(n. btoc) 9.5-0 8.60 6.87 6.87 6.87 6.56	(mL/min) flew (c/1 230 130 130 130 130	Cumulative Volume Purged (L) C. 1 U. 700 I. 100 I. 500 I. 500	Temp. (degree C) 24.41% 23.10 23.41% 23.7% 23.7% 24.37	Ek Çon (uM 91 91 91 91 91 91	ectrical ductivity hos/cm) 77 76 79 77 76	pH 5.54 5.52 5.52 5.54 5.54 5.55	(mv) 13 c 13 o. 2 12 9. 7 12 9. 7 12 9. 7 12 9. 7 12 9. 7	(mg/L) 1.77 1.12 0.90 0.71 0.76	(NTU) 17.5 20.5 20.6 179

GROUNDWATER SAMPLING FORM

Sheet ____of __

		V	Nater Qual	ity Paramet	er Measurement	s (continue	ed)		
Time	DTW (fl. BTOC)	Purge Rate (mL/min)	Cumulative Volume	Temp. (degree C)	Electrical Conductivity	рН	Eh (mv)	DO (mg/L)	Turbidit (NTU)
12	6.2.41	100	Purged (L)		(uMhos/cm)			<u> </u>	
135 4	8-2.4	{	2.8	26.39	949	5.55	136.1	0.55	12.4
1357 1400	8.20	100	3.1	26.56	951	5.55	134.9	0.56	13.1
1403	8.23	100 100	3.4 3.7	26.69	952	5.55	135.0	0.54	11.7
1405	8-25	100	1.1 4.0	26.74	152	5.54	133.5	0.51	9.1
1400	6.99			25,84	169	5.53	12.8-8	0.111	8.9
1412	9-021	14	4,3 4,6	24,07	<u> </u>	5.53	126.0	0.39	13.3
1415	9.09	100	49	22.95	95-2	5,57	121.1	0.38	16.0
14118	9.10	100	5.2	23.11	138	5.62	114.4	a 38	15-9
1421	211	100	5.5	23.72	934	5-63	110.6	0.38	13,6
1+124	1.13	100	5.8		<u>931'</u> 931	5-63	109.3	0.34	12.7
1427	9.04	ja	61	23.75	930	5.63	107-8	0.37	11.0
<u> </u>	- <u></u>		<u>0~1</u>	25.00	1.7-	5.63	106.2	0.37	Lon 2
						·			
					mpling	1			[
ampling b	eginning tim	ne: <u>143</u> 0				completion t	ime: <u>151</u>	0	
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	1			
		-		(degree C)	Conductivity	рH	Eh	DO	Turbidity
	(ft_BTOC)	(mL/min)	voxane t						
	(fL BTOC)	(mL/min)	Volume Purged (L)	(uegree c)	-		(mv)	(mg/L)	(NTU)
1520	(fl. BTOC)	(mL/min)	Purged (L)		(uMhos/cm)	5.72			
1520	•		1	23.19	-	5.72	(mv) 8 g	(mg/L)	4.9
1520	•		Purged (L)		(uMhos/cm)	5.72			
1520	•		Purged (L)		(uMhos/cm)	5.72			
1520	•		Purged (L)	23.19	(uMhos/cm) 928	5.72			
	•		Purged (L)	23.19	(uMhos/cm) 928 Information	· ·	88	0.38	
ample ID:	9.23		Purged (L)	23.19	(uMhos/cm) 928 Information Sample col	lection date	88	0.38	
ample ID: uplicate sa	9.23	199 ted (Y/N):	Purged (L)	23.19	(uMhos/cm) 92-8 Information Sample col Duplicate s	lection date, ample ID:	88	0.38	
ample ID: uplicate sa plit sample	9.23 ample collected (199 ted (Y/N):	Purged (L)	23.19	(uMhos/cm) 928 Information Sample col	lection date, ample ID:	88	0.38	
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Purged (L)	23.19 Sample	(uMhos/cm) 92-8 Information Sample col Duplicate s	lection date, ample ID:	88	0.38	
ample ID: uplicate sa plit sample	9.23 ample collected (199 ted (Y/N):	Purged (L)	23.19	(uMhos/cm) 92-8 Information Sample col Duplicate s	lection date, ample ID:	88	0.38	<u>4.9</u>
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s):	9.23 ample collected (Analysis		Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s): equested	9.23 ample collected (Analysis		Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>
ample ID: uplicate sa plit sample OC No(s): equested	9.23 ample collected (Analysis		Purged (L)	23.19 Sample	(uMhos/cm) 928 Information Sample col Duplicate s Split sampl	lection date, ample ID:	<u></u>	0.38	<u>4, 9</u>

1

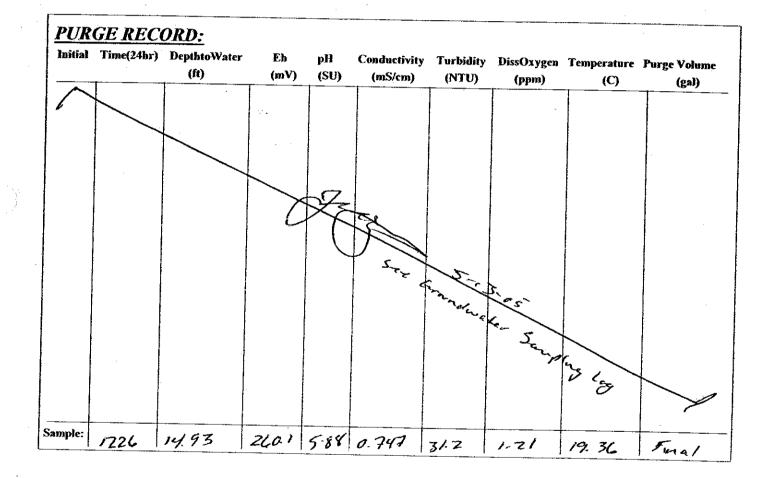
Sample Collection Log

00043711

Page 1 of 2

845714 - LONGHORN AAP

Manager: **Praveen Srivastav**


]	RFA / COC Number:	
Location Code:			Task:	GW-MAY05
	LHSMW67-MAY		Collection Date:	
Sample Name:	LHSMW67-MAY	05-GW-REG	Collection Time:	
Sampling Method:	SP		Start Depth:	-
Sample Type:	GW	Sample Purpose: REG	-	
Sampling Equip:	Est. Ide R.		End Depth:	
rtners:	Bladder P.		Sample Matrix:	WATER
B)	(ER)	(FB)	Sample Team	s pagers Shedriger
	Containe	rs	ERPIMS	
Analytical Suite	Flt Frtn Qty Size		ERTIME	Sacode:
VOC-FULL	NA 3 40	mL VOA VIAL	Lot	Contro##:
METALS W	N B I 1000	mL HDPE		
METALS-DIS	N C 1 1000	mL HDPE	· · · · · · · · · · · · · · · · · · ·	
Dioxins-Furans	N D 2 1	L Amb. Glass		
Dioxins-Fur-DIS	NE 2 1	L Amb. Glass		
Sketch Locatio		For net	AILA	A 4.
	For and Filds	- D- while T	Ave	
	Au Steak Formed	Wesder Anco		
	Ŭ		·	
ogged BY / 1	Date:	<u>} 5/13/05</u> R	eviewed BY / Date:	· · · · · · · · · · · · · · · · · · ·

00043712

845714 - LONGHORN AAP Manager: Praveen Srivastav Page 2 of 2

Location Code: LHSMW67 Sample Number: LHSMW67-MAY

Logged BY / Date:

Project N	Linglen in					· · ·				
		- 643	356 (53	· >	_			LHSMM		
					<u>.</u>			N67 M		~
Weather:	cludy	Warm	theme of	·······		Collection	Time/Date	5-13-11	189	15
		<u> </u>	1		o Insta	llation				
Pump inst	tallation crea	Nr. Ansley	Allain			Installation	n date/begii	nning time:_	5-13-06 0	875
PID/FID r	eading (well	head/back	ground):	611A 10.0	LEL	Installation	n date/com	pletion time:	5-13-15	03 3 D
Casing di	ameter (incl	nes):4	, 4					FOC):		
Total well	Depth (ft. B	TOC): 2	2.09			Pump inta	ke depth (f	BTOC):	11	
Initial (pre	installation) DTW/time	: 14.1.1/	1/1018)		Post-insta	llation DTM	//time: /77	6 M.9	3
Final (afte	er pump prin	ning) DTW/t	ime: 44	Ĺ		Max. susta	ainabte pun	np rate (mL/	'min): ~	1A
Free prod	uct (circle):	LNAF	PL/DNAPL			Appearan	ce of produ	ct:	AL.	
Volume of	f water remo	oved during	priming (ml): NA		Discharge	tube diame	eter (3/8" or	1/4"): 3/4	,
Discharge	e tube lengt	n (ft.):			_	Inlet reduc	er used (Y)	N):	م آ	
Pneumat	ic Controlle	r Tuning:		•			-			
lnitial air p	pressure = H	i (f l.) X 0.43	=	_psi						
,		Initial	2	3	4	5	6	7	8	Final
Pressure (ps	sî)				<u> </u>					
Refill Setting	j .			<u> </u>	<u> </u>		<u> </u>			
Discharge S	etting			<u> </u>			<u> </u>			
Flow rate (m	L/min)									1
T	-purging) Di 1 tubing + pu ic Controlle	ump volume				FILIAL (DOSL	~~			67
Initial air p	oressure = H	-	=_ <u>`</u>	_psi	-			volumes pu)C):4. rged:41	
Initial air p		(ft.) X 0.43	F	_psi	-	No. of tubi	ng + pump	volumes pu	rged: 41	,
	oressure = H	(ft.) X 0.43	2	_psi 3	4	No. of tubi	ng + pump 6	volumes pu	rged: 41	
Pressure (ps	i)	(ft.) X 0.43 Initial	2 15	_psi	15	No. of tubi	ng + pump 6 7 5	volumes pu	rged:#/ 	,
Pressure (ps Refill Setting	eressure = H	(ft.) X 0.43 Initial 15 11. 4	2 15 11.4	_psi 3 		No. of tubi	6 6 6	7 7 75 6	rged: 41	,
	oressure = H i) ietting	(fl.) X 0.43 Initial 15 11.4 3.6	2 15 11.4 3.6	_psi 3 16 	15	No. of tubi	6 15 6 14.0	volumes pu	rged:#1 	,
Pressure (ps Refill Setting Discharge Se	oressure = H i) ietting	(ft.) X 0.43 Initial 15 11. 4	2 15 11.4 3.6 60	_psi 3 16 14.0 140	15 6.e 14.0 140	5 15 [.e 145 140	6 15 14.0 120	7 7 7 7 7 7 7 7 7 7 7 7	rged: #1 8 15 6 14	,
Pressure (ps Refill Setting Discharge So	oressure = H i) ietting	(fl.) X 0.43 Initial 15 11.4 3.6	2 15 11.4 3.6 60	_psi 3 18 14 14 14 14 14 0 2 Quality Pa	15 6.0 14.0 14.0 14.0	5 15 [.e 145 140	6 15 14.0 120	7 7 7 7 7 7 7 7 7 7 7 7	8 15 6 17 170	final
Pressure (ps Refill Setting Discharge So Flow rate (m	eressure = H 4) etting L/min)	(ft.) X 0.43 Initial 15 11.4 3.6 10 0	2 15 11.4 3.6 4.0 Water	_psi 3 18 14 14 14 14 14 0 2 Quality Pa	15 6.8 14.0 140 140 File	5 15 2.0 14.5 140 r Measure	6 15 6 140 120 ments	7 15 6 14 170	rged: #1 8 15 4 14 170 DO	f Final
Pressure (ps Refill Setting Discharge So Flow rate (m	etting Umin) DTW	(fl.) X 0.43 Initial 15 11.4 3.6 10 C	2 <i>if</i> <i>Ji. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>Water</i> <i>Volume</i>	_psi 3 1 5 . C . 4 . C	15 6.2 14.0 140 ramete Ele Con	No. of tubi	6 15 6 140 120 ments	7 7 7 7 75 6 74 720 Eh	8 15 6 17 170	final
Pressure (ps Refill Setting Discharge Sc Flow rate (m	etting Umin) DTW	(fl.) X 0.43 Initial 15 11.4 3.6 10 C	2 <i>if</i> <i>J. 4</i> <i>J. 6</i> <i>J. 6</i> <i>Volume</i> Purged (L)	_psi 3 1 5 . C . 4 . C	15 6.2 14.0 140 ramete Ele Con	5 15 14 14 14 14 14 14 14 14 14 14	6 15 6 14.0 120 ments pH	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rged:/ 8 / \$ / \- / \- / \- / \- DO (mg/L)	f Final Turbidity (NTU)
Pressure (ps Refill Setting Discharge So Flow rate (m Time Time	etting Umin) (ft_BTOC)	(ft.) X 0.43 Initial /5 //.4 3.6 /o 6 Purge Rate (mL/min) /00	2 <i>is</i> <i>Ji. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J. 4</i> <i>J.4</i>	_psi 3 18 .4.0 .4.0 .4.0 .4.0	15 6.2 14.0 140 140 140 140 140 140 140 140 140 14	5 15 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 15 14 14 15 14 15 14 14 14	ng + ритр 6 15 6 120 лч. 0 120 ments рн	7 15 6 14 170 Eh (mv) 361.6	8 15 6 14 170 DO (mg/L) 1.94	Final Final Turbidity (NTU) Zg: Q
Pressure (ps Refill Setting Discharge Se Flow rate (m Time	etting Umin) (ft. BTOC)	(ft.) X 0.43 Initial /5 //. 4 3. 6 / 0 6 Purge Rate (mL/min)	2 /f /l. 4 J. 6 <u>/</u> Water Water Cumulative Volume Purged (L) , J 0	_psi 3 15 	15 6.e 14.0 140 140 Ek Con (uM 0: 7 0. 7	No. of tubit 5 15 145	6 15 6 140 120 ments pH 6.13 6.09	7 15 6 14 120 Eh (mv) 361.6 357.4	rged: #1 8 15 4 14 17 17 DO (mg/L) 1.94 1.94 1.76	f Final Turbidity (NTU)
Pressure (ps Refill Setting Discharge S Flow rate (m Time 0 \$ 33 0 \$ 34 0 \$ 34 0 \$ 39	DTW (ft. BTOC)	(ft.) X 0.43 Initial 15 11.4 3.6 700 Purge Rate (mL/min) 100 4.0	2 <i>if</i> <i>/1. 4</i> <i>J. 6</i> <i>L.D</i> Water Cumulative Volume Purged (L) <i>. J. 0</i> <i>. 4/8</i>	_psi 3 16 .4.0 .4.0 .40 Quality Pa Temp. (degree C) .18.84 .18.67 .18.41	15 6.2 14.0 14.0 14.0 14.0 14.0 Elit Con (uM 0: 7 0: 7	No. of tubit 5 15 2.6 74.5 14.5	ng + ритр 6 15 6 120 лч. 0 120 ments рн	7 15 6 14 170 Eh (mv) 361.6	rged: Al 8 15 6 14 17 17 0 00 (mg/L) 1.94 1.94 1.76 1.67	Turbidity (NTU) 29:0 29:1 30.9
Pressure (ps Refit Setting Discharge Se Flow rate (m Time 0 \$ 33 0 \$ 34 0 \$ 34 0 \$ 42	i) etting L/min) DTW (ft. BTOC) Iff. 6 9 Iff. 34 Iff. 34	(fl.) X 0.43 Initial 15 11.4 3.6 100 Purge Rate (mL/min) 100 4.0 140	2 <i>i</i> \$ <i>j</i> 1. 4 <i>ž</i> 6 <i>k</i> 2 Wates Wates Volume Purged (L) <i>, z</i> 0 <i>,</i> 4 <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i>	_psi 3 15 	15 6.e 14.0 140 140 Ek Con (uM 0: 7 0. 7	No. of tubit 5 15 145	6 15 6 14.0 17.0 ments pH 6.13 6.09 5.99	7 15 6 14 170 Eh (mv) 361.6 357.4 349.6 349.6 342.2	8 15 15 1 17 1 170 1 00 (mg/L) 1.94 1 1.94 1 1.67 1	Final Final Turbidity (NTU) Z.Y. 0 Z.Y. 1 30. 9 31. 0
Pressure (ps Refill Setting Discharge So Flow rate (m Time Time 0 \$ 33 0 \$ 34	etting L/min) (ft. BTOC) (ft. BTOC) (ft. 34 (ft. 772 (ft. 72 (ft. 72)	(ft.) X 0.43 Initial 15 11.4 3.6 10 6 Purge Rate (mL/min) 100 4.0 140 140 140 140	2 <i>i</i> \$ <i>j</i> \$- <i>j</i> \$- <i>j</i> \$- <i>j</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$- <i>k</i> \$-	psi 3 16 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	15 6.2 14.0 14.	No. of tubit 5 15 145	6 15 6 14.0 120 ments pH 6.13 6.09 5.99 5.99	7 15 0 14 170 Eh (mv) 361.6 357.4 349.6	rged: Al 8 15 6 14 17 17 0 00 (mg/L) 1.94 1.94 1.76 1.67	Final Final Turbidity (NTU) Zq. 0 Zq. 1 30. 4 31. 0 3 0. 9
Pressure (ps Refill Setting Discharge S Flow rate (m Time 0 \$ 33 0 \$ 34 0 \$ 34 0 \$ 42 0 \$ 45	DTW (ft. BTOC)	(ft.) X 0.43 Initial 15 11.4 3.6 100 Purge Rate (mL/min) 100 40 140 140 140 140 140 140	2 <i>if</i> <i>J</i> 1. <i>J</i> <i>J</i> . <i>G</i> <i>LD</i> Water Volume Purged (L) <i>, J</i> 0 <i>, J</i> 7 <i>J</i> , <i>J</i> 7 <i>J</i> , <i>J</i> 7 <i>J</i> . <i>J</i> 4	psi 3 18 4.0 140 Quality P2 Temp. (degree C) 18.84 18.67 18.41 18.41 18.41 18.41 18.51	15 6.2 14.0 14.	No. of tubit 5 15 2.0 745 145	6 15 6 140 120 ments pH 6.13 6.09 5.99 5.99 5.99 5.99	7 15 6 14 170 Eh (mv) 361.6 351.4 349.6 3-12.2 338.6	8 15 6 14 17 DO (mg/L) 1.94 1.94 1.94 1.67 1.67 1.62	Final Final Turbidity (NTU) Z.Y. 0 Z.Y. 1 30. 9 31. 0

00043714 Sheet_7_of_2_

	·	V	Vater Quali	ty Parame	er Measurement	s (continue	<u>d)</u>		_
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity
	(ft. BTOC)	(ຫປາກສາ)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(UTU)
-			Purged (L)		(uMhos/cm)		I		
0957	14 94	170	9.32	19.09	0.746	5.91	2799	1.26	32-1
1012	14.96	100	10.9Z	19.41	0.749	5.90	273.4	1.24	32.1
1027	14.86	100	12.32	19.78	0.750	5.99	248.5	1.27	31.4
1030	14.86	100	12.62	19.26	0.749	5-89	268.2	1.27	30.9
1038	14.88	100	17.92	19.29	0.748	5-89	269.1	1.25	36.2
1034	14.88	200	13.22	19.31	0.748	5.88	267.6	125	31.1
10 91	14.89	110	13.52	19.27	0.749	5-89	267.9	1.24	31.3
1042	14.79	14.0	13.82	19.35	0.748	5.89	Z61.7	1.24	31.1
								· · · · · · · · · · · · · · · · · · ·	
					· · · ·				-
<u>.</u>	· .					1			
<u></u>		· · · · ·				<u> </u>			
	[·	 		
				· · · · ·		<u></u>	<u> </u>	I	<u> </u>
				S	ampling			-	
Sampling Ł	beginning tir	ne: <u>/</u> 04	5		Sampling	completion t	ime: 17	25	
	- J - J		-	Ouslity Ps	rameter Measure				
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity
10116	(fL BTOC)	(mi./min)	Volume	(degree C)	Conductivity	p n	(mv)	(mg/L)	(NTU)
	(if D100)	կուսույ	Purged (L)	(uegree o)	(uMhos/cm)		(0114)	linairi	(into)
1045	14.89	100	14.1Z	19.78	0.748	5-89	7623	1.25	31.5
1226	14.93	100	Final	19.36	0747	5-88	7601		31. Z
	<u> </u>		11000	11-28	W = T = T		- 60 -	7.21	<u> </u>
		.6		Sample	Information				
	LHSP				-	llection date		7-05 10	×75
	ample colle			·····		sample ID:			
•	e collected	(Y/N): _ _	145		Split samp	le ID:	LHSMWL	7 May 05	MS
COC No(s)	Ľ		·		_		Litsmw	67Moy0	5 11513
Requester	l Analysis	Method	Co	ontainers	Requeste	d Analysis	Method	Conta	iners
Vac		Gladeter	7×40			- /			
indel T		Bladder	·····	HOE HALO3					
Metal 1		Bladdir	1500 mint						
proven i		Bledder	2 × 11 /						
Dice in		Bladder	2-16 4						
					I				
omments	· 0848	: W.11	take in	coding -	lusery Viz have	vahi 1	tor hid.	ly appr	rachs
	~			1				· / ·	
(25	NTU. 09	42: 13-15	n 13 m		lines Tripled. 4	y has no	t moved		

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

00043715

Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav

		RFA	/ COC Number:	
Location Code:	LHSMW68		Task:	GW-MAY05
Sample Number:	LHSMW68-MAY		Collection Date:	5/11/5
Sample Name:	LHSMW68-MAY05-	GW-REG	Collection Time:	
Sampling Method:	SP			19.32/
Sample Type:		Sample Purpose: REG	-	
Sampling Equip:	QED pay		~ • • • •	-
artners:			-	
TB)	(ER)	(<u>FB</u>)	Sample Team:	Amby/Allain
Analytical Suite	Containers Flt Frtn Qty Size U	nits Type	ERPIMS	S Values: Sacode:
-	N A 3 40 4	mL VOA VIAL	Lot	Control#:
METALS W	N B I 1009	mL HDPE		
METALS-DIS		mL HDPE		
Dioxins-Furans	N D 2 1	L Amb. Glass		
Dioxius-Fur-DIS	N E 2 1	L Amb. Glass		
		hased in previous, reser failed quited	<i>program</i>	
Sketch Locatio	on:			
			\sim	
	Дэ			
	(† 68			
	<i>n</i> D			*

Logged BY / Date:

00043716

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW68 Sample Number: LHSMW68-MAY

Initial	Time(24br)	DepthtoWater (ft)	Eh (mV)	pH (SU)	Conductivity (m8/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volumo (gal)
11424	1424		44 287	5:14	94	7.6	11.71	20.50	3-9
	14127	18.31	2828	5.11	94	4.1	4.71	20.56	4.2
	1+130	18.32	290.1	5.15	94	7.7	4169	20.57	4.5
	1433	-	241.0	5.14	94	8.0	41.67	20.53	4.8
	1-136	18.37	291.9	5.15	94	7.4	4.69	20.48	5-1
	1439	~	2915	5.15	94	7.0	4.70	20.412	5.4
							•		
							:		
							~		
				:					
Sample:	1525	18.31	292.1	5.16	94	5.1	41.75	20.5\$	Q.

Logged BY / Date:

5/115

/#

hla

GROUNDWATER SAMPLING FORM

Sheet 1 of 2

Operable	e Unit/Site II	1						r / 10(M		
	ame/#:						location ID		1-03	~
Weather	<u> </u>	Sunna "	70"F	<u>, , , , , , , , , , , , , , , , , , , </u>				<u>= 14/50</u>	101.15	
					_	-			7 3/11/3	
		л,	1 1.1		o Insta	allation				•
Pump ins	stallation cre	W. Hasty	/ Allain						5/11/5	
PID/FID	reading (wel	I head/back	ground):	1.0151 10.0	151	Installatio	n date/com	pletion time	5/10/5	0935
	iameter (inc		11 7			Screen In	terval (ft. B	TOC):	to variable of	
	l Depth (ft. E					Pump inta	ake depth (f	t BTOC): _	variable \$	¥ 20
	e-installation				-				17.50 10	
				<u> 5/11/5- 0930</u> A	e				/min): <u>/</u> @	ø
	luct (circle):				-		ce of produ			
	f water rem			L):		Discharge	tube diam	eter (3/8" o	r 1/4"): <u> </u>	8''
-	e tube lengtl		•		_	Inlet reduc	cer used (Y	/N): <u>/</u> /	,	
	tic Controlle									
initial air	pressure = 	1 (IL) X 0.43	s =	_psi						
1	· · · · · · · · · · · · · · · · · · ·	Initial	2	3	4	5	6	7	8	Final
Pressure (p	si)	<u> </u>						1		1
Refit Setting	9					Seel	Notes			
Discharge S	Setting							1		-
Flow rate (n Purging/s Purge dat	ampling crev le/beginning	time: 57	1015 09	1+10	l Purgin	PID/FID re Purge date	completio	n time: <u>5</u>	ground):	439
Flow rate (n Purging/s Purge dat Initial (pre Calculate Pneumat	ampling crev	time: <u>5</u> 7 TW (ft. BTO ump volume r Tuning:	////5 ⁻ 04 C): <u> 7.80</u> ::	NA	l Purgin	PID/FID re Purge date Final (post	e/completio -purging) D	n time: <u>5</u>	1115 /	439
Flow rate (n Purging/s Purge dat Initial (pre Calculate Pneumat	ampling cre le/beginning purging) D d tubing + pu ic Controlle	time: <u>57</u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43	////5 ⁻ 05 C): <u>17.80</u> E:	NA psi		PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump	n time: <u>5</u> TW (ft. BT(volumes pu	//////////////////////////////////////	1
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumat Initial air p	ampling cre te/beginning +purging) D d tubing + pu ic Controlle pressure = H	time: <u></u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43	/////5 C):/7. 80 :: = 2	NA _psi 3	l Purgin	PID/FID re Purge date Final (post	e/completio -purging) D	n time: <u>5</u> TW (ft. BT(1115 /	1
Flow rate (n Purging/s Purge dat Initial (pre Calculate Pneumat	ampling cre te/beginning ⊢purging) D d tubing + pu ic Controlle pressure = H	time: <u>57</u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43	////5 ⁻ 05 C): <u>17.80</u> E:	NA _psi 3		PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump	n time: <u>5</u> TW (ft. BTC volumes pu 7	//////////////////////////////////////	1.139 Final S
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumat Initial air p Pressure (ps	ampling create te/beginning purging) D d tubing + pu ic Controlle pressure = H	time: <u>5</u> 7 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial	/////5 C):/7. 80 :: = 2	NA _psi 3		PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump	n time: <u>5</u> TW (ft. BT(volumes pu	//////////////////////////////////////	<i>LJ 3 9</i>
Flow rate (n Purging/s Purge dat Initial (pre Calculate Pneumati Initial air p Pressure (ps Refill Setting	ampling cret te/beginning +purging) D d tubing + pu ic Controlle pressure = H si)	time: <u></u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10	/////5 C):/7. 80 :: = 2	_psi3		PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump	n time: <u>5</u> TW (ft. BTC volumes pu 7	//////////////////////////////////////	Final [] [] [] [] [] []
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S	ampling cret te/beginning +purging) D d tubing + pu ic Controlle pressure = H si)	time: <u></u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10	/////5 09 C):7.80 E: = 2 2	NA _psi 	4	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6	n time: <u>5</u> TW (ft. BTC volumes pu 7	//////////////////////////////////////	1. Final
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S	ampling cret te/beginning +purging) D d tubing + pu ic Controlle pressure = H si)	time: <u>5</u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5	////15 0 4 C): 17.80 :: 1 = 2 Q 0 Water	NA _psi 	4 ramete	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 6 ments	n time: <u></u>	////// DC):/83 Irged: 8	Final IS II ICC
Flow rate (n Purging/s Purge dat Initial (pre Calculater Pneumati Initial air p Pressure (ps Refill Setting Oischarge S Flow rate (m	ampling cret te/beginning +purging) D d tubing + pu ic Controlle pressure = H si) t etting L/min)	time: <u></u> TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10	/////5 09 C):7.80 E: = 2 2	VA psi 3 Quality Pa Temp.	4 ramete	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6	n time: <u></u> TW (ft. BTC volumes pu 7 Eh	///// DC):/ Irged: 8 	Final IS II IJ ICC Turbidity
Flow rate (n Purging/s Purge dat Initial (pre Calculater Pneumati Initial air p Pressure (ps Refill Setting Oischarge S Flow rate (m	ampling cret te/beginning +purging) D d tubing + pu ic Controlle pressure = H si) L etting L/min) DTW	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate	////15 0 g C): 17. \$0 : 17. \$0 <td>NA _psi </td> <td>4 ramete Ek Con</td> <td>PID/FID re Purge date Final (post No. of tubi</td> <td>e/completio -purging) D ng + pump 6 6 ments</td> <td>n time: <u></u></td> <td>////// DC):/83 Irged: 8</td> <td>Final 18 11 11 11 100</td>	NA _psi 	4 ramete Ek Con	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 6 ments	n time: <u></u>	////// DC):/83 Irged: 8	Final 18 11 11 11 100
Flow rate (n Purging/s Purge dat Initial (pre Calculater Pneumati Initial air p Pressure (ps Refill Setting Oischarge S Flow rate (m	ampling cret te/beginning +purging) D d tubing + pu ic Controlle pressure = H si) L etting L/min) DTW	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate	//// 5 0 9 C):7 & 0 :1 =2 C Water Cumulative Volume	VA psi 3 Quality Pa Temp.	4 ramete Ek Con	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 6 ments	n time: <u></u> TW (ft. BTC volumes pu 7 Eh	///// DC):/ Irged: 8 	Final IS II IJ ICC Turbidity
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Flow rate (m	ampling creater te/beginning t-purging) D d tubing + pu ic Controlle pressure = H si) t tubing L/min) DTW (ft. BTOC)	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate	//// 5 0 9 C):7 & 0 :1 =2 C Water Cumulative Volume	VA psi 3 Quality Pa Temp.	4 ramete Ek Con	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 ments pH	n time: <u></u> TW (ft. BTC volumes pu 7 	////// DC):/83 Irged: 8 8 00 (mg/L}	Final IS II ICC Turbidity (NTU)
Flow rate (n Purging/s Purge dat Initial (pre Calculater Pressure (pe Refill Setting Oischarge S Flow rate (m Time	ampling crev te/beginning +purging) D d tubing + pu ic Controlle pressure = H si) t etting L/min) DTW (ft. BTOC) 17. %	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate (mL/min)	////15 0 g C): 17. \$0 : 17. \$0	NA psi 3 Quality Pa Temp. (degree C)	4 ramete Ek Con	PID/FID re Purge date Final (post No. of tubi 5 5 er Measure ectrical ductivity hos/cm)	e/completio -purging) D ng + pump 6 6 ments pH	n time: <u>5</u> TW (ft. BTC volumes pu 7 Eh (mv) 2.641 9	///// DC):/8 3 irged: 8 B _	Final IS II IS II ICC Turbidity (NTU) 3. 9
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Flow rate (m Time	ampling cret te/beginning +purging) D' d tubing + pu ic Controlle pressure = H si) L etting L/min) DTW (ft. BTOC) 17. %~ 18. 1%	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate (mL/min) 250	//// 5 0 9 C):7 & 0 :1 =2 2 2 2 Water Cumulative Volume Purged (L) 2 2	via via psi 3 Quality Pa Temp. (degree C) 2 v. 8 (4.6 [±])	4 ramete Ek Con (UM 79 94	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 ments pH 5.37 6.53	n time:	////5 //// DC):/ // // // // // // // //	Final Final 1 S 1 I 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Flow rate (m Time	ampling creater te/beginning purging) D d tubing + purging) D d tubing + purging) tic Controlle pressure = H si) tic Controlle tic Controlle pressure = H si (the BTOC) tis tic Controlle	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate (mL/min) 250 600	//// 5 0 C): 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 1 :: 1 :: 1 :: 7	VA psi 3 Quality Pa Temp. (degree C) 2 v. 8	4 ramete Ek Con (uM	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 6 ments pH	n time: <u>5</u> TW (ft. BTC volumes pu 7 Eh (mv) 2.641 9	///// DC):/8 3 irged: 8 B _	Final IS II IS II ICO Turbidity (NTU) 3. 9
Flow rate (n Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S Flow rate (m Time	ampling creater te/beginning purging) D d tubing + purging) D d tubing + purging) tic Controlle pressure = H si) tic Controlle tic Controlle pressure = H si (the BTOC) tis tic Controlle	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate (mL/min) 250 600	//// 5 0 C): 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 1 :: 1 :: 1 :: 7	via via psi 3 Quality Pa Temp. (degree C) 2 v. 8 (4.6 [±])	4 ramete Ek Con (UM 79 94	PID/FID re Purge date Final (post No. of tubi	e/completio -purging) D ng + pump 6 ments pH 5.37 6.53	n time:	////5 //// DC):/ // // // // // // // //	Final Final 18 11 14 100 11 100 100 100 100 1
Flow rate (n Purging/s Purge dat Initial (pre Calculate Pneumati Initial air p Pressure (ps Refill Setting Discharge S Flow rate (m Time	ampling crev te/beginning + purging) D' d tubing + pu ic Controlle pressure = H si) t etting L/min) DTW (ft. BTOC) 17. % (ft. BTOC) 17. % 18. 13 18. 13 19. 0%	time: 57 TW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 18 10 5 Purge Rate (mL/min) 250 600	//// 5 0 C): 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 17. \$0 :: 1 :: 1 :: 1 :: 7	via via psi 3 Quality Pa Temp. (degree C) 2 v. 8 (9.6 [±])	4 ramete Ek Con (UM 79 94	PID/FID re Purge date Final (post No. of tubi 5 sr Measure ectrical ductivity hos/cm)	e/completio -purging) D ng + pump 6 ments pH 5.37 6.53	n time:	////5 //// DC):/ // // // // // // // //	Final IS II IS II IU IU IU IU IU IU IU IU I I I I I I I I I I I I I

))

00043718 sheet_zof_3

68

		V	Vater Quali	ty Paramet	er Measurements	s (continue	d)		
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	j pH	Eh	DO	Turbidit
	(ft_BTOC)	(mUmin)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)	<u> </u>		· 	L
1156	-	100	,600	23.06	.96	5.14	276.8	4.78	12.5
1159	18.15	100	900	23.03	96	5.14	177.6	4.7.Z	12.6
1202			-	p	y .ft				
1205	18.13	100	1200	23,59	76 - FF	5.15	280.7	4.63	13.0
1208	18.17	100	1500	27.76	96	5.15	241.6	4.67	11.6
	-		- par	1 .F	<i>F</i>	·			<u> </u>
1216	18.05	-	1500 1	23,84	93	5.16	280.4	462	6.3
1219		juu	1.8	23.16	16	5.17	278.1	497	13.1
1222	18:2 -1	106	2.1	27.07	94	5.18	278.5	4.89	12.4
1725	18.31	100	2.4	21.58	_ <u>44</u> '	5-17	283.Z	4.91	11.5
12291235			m						
+2-15 1238	~	100	2.7	2212	92	5-18	288.7	6.13	11.3
1241	19-32	100	3.0	21.22	92	5.17	288.7	6.42	11.7
1244	. ـــ	140	7.3	21.08	93	5.18	288.8	5.11	7.4
Sampling b		-	Water	Quality Pa	rameter Measure	completion ti ments			
Time	DTW	Purge Rete	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidi
	(ff. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		: (mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)				
			· · · · ·						
				Sample	Information		>		
Sample ID:			·····		Sample col	llection date	/time:		
Duplicate s	mple colle	cted (Y/N):_			Duplicate s	•			<u> </u>
Split sample		(X/N):		·····	Split sampl	le ID:	··		
COC No(s):		$ \longrightarrow$							
Requested	Analysis	Method	C0	ntainers	Requested	l Analysis	Method	Conta	iners
					<u> </u>			<u></u>	
			- ,						
····									·
						<u> </u>			
Comments:	* har	dor pre.	ins luci	1 -1 -	my low recting	re - prime	I dure .	1 premps	1 tx
10	1	- heat	overke	ating -	couldn't g	tabilize		,	
/. · V	Coogratia								

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliter; L - Liter

00043719 Sheet______of_____

68

Time	DTW (ft. BTOC)	Purge Rate (mL/min)	Cumulative Volume	1	er Measurement Electrical Conductivity	pH	Eh (mv)	DO (mg/L)	Turbid (NTU
1.1.1.7			Purged (L)		(uMhos/cm)				
1247	18.112	100	3.6	20.02	55 93	5.16	293.9	5.021	9-3
1250	<u> </u>	100	3.1	19.79	93	5.16	247.7	4.80	9.4
1253		, ar	42	. /			· · · ·	· · · · · · · · · · · · · · · · · · ·	
12-2	211		<u> </u>	Alue_	Comptel son				
1353	17.85			2000		<u> </u>			<u> </u>
1400	18.24	W780 B	.850	20,98	95	5,10	222.7	5.42	7.2
14-3	10,04			24.83		5.11		4.87	7.9
1+106		83	1.3	21.61	25	5.11	253.5	4.77	4.1
	18.16				911	5.12	261.4	4.7.7	4.3
14/69	14211	200	1.9 2-7	21.32	76	5.13		4.80	8.1
1412	18.31		3.0	20.03	94	5-12	272.1	4.79	7.9
1415	18.27	100		20.03	94	5.13	2768	4.73	7.9
1412 1	1126	100	3.3	2]./]		5.14	281.0	4.74	7.6
	18.26		3.6	21.41	94 ampling	5.14	282.1	4.73	7.5
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	Ъ	Eh	DO	Turbidi
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTV)
1.50 -			Purged (L)		(uMhos/cm)	L		<u> </u>	
1525	<i>F8</i> 18.31	100	5.4	20.58	-094	5.15	291.5	4.70	7.0
								·	
						<u></u>			
				Sample	Information	<u>t</u>			
Sample ID:	LHSI	Mm 68		oumpic		llection date	e/time: <u>///</u>	50 /511	5
Duplicate s	ample colle	cted (Y/N):_	N			sample ID:_			
		(Y/N): <u> </u>	٧		Split samp	le ID:			
Split sampl							r		
					Requester	l Analysis	Method	Conta	iners
Split sampl COC No(s) Requested		Method		ntainers	requester				
Split sampl COC No(s) Requested V or (- 1	Full	Method	3 4 4	un L					
Split sampl COC No(s) Requested V o (- ft l -	Full	Method	3 y 11 1 x 50	v_L v_L				· · · · · · · · · · · · ·	
Split sampl COC No(s) Requested Vo(-1 ft, f. f. If, f. k	Full - Dis	Method	3 y 112 1 x 50 1 x 50	v_l v_l w_l					
Split sampl COC No(s) Requested Vo(-) It la h It la h Dive	Full - Dis - Formy	Method	3 y 44 1 x 50 1 3 50 2 x 1 1	v_L w_l w_n L L					·
Split sampl COC No(s) Requested Vo(-) ft.h.l If.h.k Druk.vs	Full - Dis	Method	3 y 112 1 x 50 1 x 50	v_L w_l w_n L L					
Split sampl COC No(s) Requested Vo(-) ftels(Iftels(Iftels(Iftels())	Full - Ois - Formy For- Nis	Method	3 y 44 1 x 50 1 3 50 2 x 1 1	v_L w_l w_n L L					
Split sampl COC No(s) Requested V o (- 1 ft l - h If t - k If t - k If t - k If t - k	Full - Ois - Formy For- Nis	Method	3 y 44 1 x 50 1 3 50 2 x 1 1	v_L w_l w_n L L					

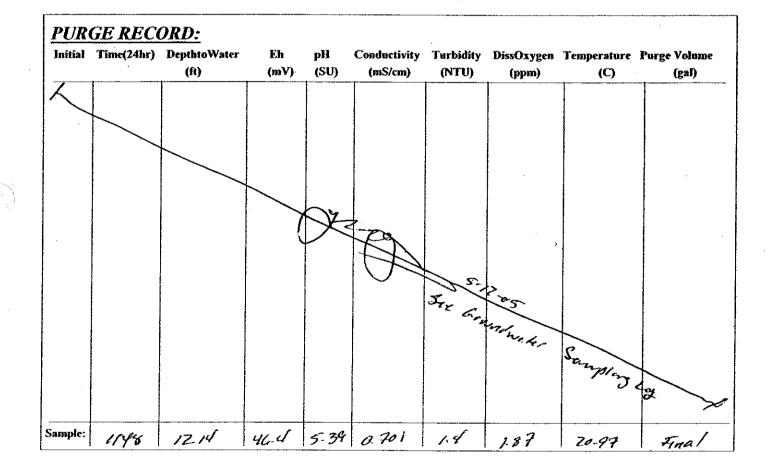
Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

00043720

Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav


			RFA / COC Number:	
Location Code:	LHSMW69		Task:	GW-MAY05
Sample Number:	LHSMW69-MAY	,	Collection Date:	
Sample Name:	LHSMW69-MAY	05-GW-REG	Collection Time:	
Sampling Method:	SP			
Sample Type:	GW	Sample Purpose: RI	Start Depth:	46 H bloc 46 H bloc
			End Depth:	
QC Partners:	Bladdes Korp	1000	Sample Matrix:	WATER
(ТВ)	(ER)	(<u>FB)</u>	Sample Team:) Regers Skidnigset
	Container		ERPIM	S Values:
Analytical Suite	Flt Frtn Qty Size			Sacode:
VOC-FULL	N A 3 40	mł. VOA VIAL	Loi	Control#:
METALS-W	N B 1. 1000	mL HDPE		
METALS DIS	N C 3 1000	mL HDPE		
Dioxins-Furans Dioxins-Fur-DIS	N D 2 1	L Amb. Glass		,
Di93105-P UF-D15	N E 2 1	L Amb. Glass		
Sketch Locati	on: Vierdand få	40 Tyler Au	e NA Swisalish Avea	- -
• .		-10-141	Former Billgs	
`)	\$°,		· · · · ·	
Logged BY /	Date: Atox	- spales	Reviewed BY / Date	e:

00043721 Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW69 Sample Number: LHSMW69-MAY

the strong Logged BY / Date:

GROUNDWATER SAMPLING FORM

00043722

Sheet _1_of _3

		11 2/021 30	1 JAAB	ari le			0 "	1 12 10	defe 1	14	
		Unit/Site ID		132 (3	3)	-			LASMN (
		ame/#: <u>59</u>		<u> </u>	1 1,	-	•		why m		<u> </u>
	Weather:	HOTA	IVMID	Party C.	localy		Collection	Time/Date	5-17-13	1175	
	1				Pum	o Insta	llation				
	Pump ins	tallation crev	N. Ande	/ Alla:	h,			n date/begii	nning time:_	8-17-05	1835
	PID/FID r	eading (well	head/backg	pround): Ø	0/0.0	•		+	pletion time		
·	Casing di	ameter (incl	nes): <u>4</u>						FOC): <u>4</u>		
1015		Depth (ft. B			.		Pump inta	ke depth (f	t BTOC):	46	
		installation				-	Post-insta	llation DTM	//time: 4 /4	18 12.1	<u> </u>
		r pump prin							np rate (mLi	/min): 🗾 🛋	A
	_	uct (circle):				-		ce of produ		NA	
		f water remo	-	priming (ml	L): <u>UA</u>		Discharge	tube diame	eter (3/8* or	1/4"): <u>7/8</u>	-
	-	tube lengt				_	Inlet reduc	er used (Y/	/N):	IA	
		ic Controlle	-		÷						
	Initial air p	pressure = H	I (ft.) X 0.43	=	_psi		· .			1.1	
	-		Initial	2	3	4	5	6	7	8	Final
	Pressure (pa	sī)				1		1			
	Refill Setting	l i				1					
	Discharge S	etting									1
			1								
	Flow rate (m	L/min)	.l								
	Flow rate (m	L/min)	1	L	<u></u>	Purain				······	· · ·
	<u> </u>		N I Tree	s) Rod	, I	Purgin	-	liew) paine	head/back	mound): A	<u>.</u>
-	Purging/s	ampling crev	1 w:j <u>Zezze</u> time:	5 3 Rod	rsurt	Purgin	PID/FID re		head/back		
	Purging/sa Purge dat	ampling crev e/beginning	time: 0840	7 5-12-1	r: 5.477 - 5	Purgin	PID/FID re Purge date	e/completio	n time: 5-)	2-15 1141	r
	Purging/sa Purge dat Initial (pre	ampling crev e/beginning -purging) Di	time:_ <u>0 </u>	<u>ר-/ז-י</u> (2): <u>/2</u> , ו	r 5077 5 10	Purgin	PID/FID re Purge date Final (post	completion -purging) D	n time: <u></u> 5-7 TW (fL BT(Z-#5 1141 DC):1Z-1	r 4
	Purging/sa Purge dat Initial (pre Calculated	ampling crev e/beginning -purging) Di I tubing + pu	time:_ /} IW (fL BTO Imp volume	<u>ר-/ז-י</u> (2): <u>/2</u> , ו	r 5077 5 10	Purgin	PID/FID re Purge date Final (post	completion -purging) D	n time: 5-)	Z-#5 1141 DC):1Z-1	r
	Purging/sa Purge dat Initial (pre Calculated Pneumat i	ampling crev e/beginning -purging) Di	time:_ <u>01746</u> IW (fL BTO ump volume r Tuning:	2 <i>5-12-4</i> C): <i>12. 1</i> : I	r 5077 5 10	Purgin	PID/FID re Purge date Final (post	completion -purging) D	n time: <u></u> 5-7 TW (fL BT(Z-#5 1141 DC):1Z-1	r 4
	Purging/sa Purge dat Initial (pre Calculated Pneumat i	ampling crev e/beginning -purging) Dï I tubing + pu c Controlle	time:_ <i>p</i> _ <u>r</u> _4(IW (ft. BTO) ump volume r Tuning: (ft.) X 0.43	2	- 5077 - 5 - 70 - NA _ psi	-	PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump	n time: TW (ft. BTC volumes pu	Z →5 //41)C): <u>/</u> Z-/ irged: ^-	r √ //4
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time:_ ør 4(IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial	2 5-72-4 C): 72-7 C): - 5077 - 5 - 70 - 70 - 75 - 75 - 75 - 75	4	PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6	n time: <u>57</u> TW (fL BTC volumes pu	Z-#5 //41)C): / <i>Z-1</i> irged: /*	r 4	
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time:_0sy(IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 3Z_	2 5-72-4 C): 12. 1 C):	- 5077 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4	PID/FID re Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 32	n time: <u>57</u> TW (fL BTC volumes pu 7 3 Z	z - +5 //41)C): /2-/ irged: /- 8 32	r √ //4
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p <u>Pressure (ps</u> Refill Setting	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time:_0sy(IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 3Z 17	2 C): 12. 1 C): 12.	- 5077 - 5 - 70 VA _ psi _ 3 _ J2 _ 72 _ 72	4 37 77	PID/FID re Purge date Final (post No. of tubi 5	e/completion -purging) D ng + pump 6 32 + 2	n time: <u>57</u> TW (fL BTC volumes pu 7 <u>3</u> 2 , 2	z - +5 //47)C): /2-/ irged: /- 8 32 / 2	r √ //4
	Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S	ampling crev e/beginning -purging) Dī I tubing + pu c Controlle ressure = H i)	time: <u>0 F 40</u> IW (ft. BTO0 Imp volume r Tuning: (ft.) X 0.43 Initial <u>3Z</u> IZ 3	2 C): 12.1 : 12.1 : 1 = 1 2 3 Z 1 Z 3	- 5	4 37 12 3	PID/FID re Purge date Final (post No. of tubi 5 	6 3 <i>2</i> 3 <i>2</i> 3 <i>2</i> 3	n time: 5-2 TW (fL BTC volumes pu 7 3 Z 2 3	z -+5 //41)C): /2-/ rrged: /~ 8 32 / 2 3	r √ //4
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p <u>Pressure (ps</u> Refill Setting	ampling crev e/beginning -purging) Dī I tubing + pu c Controlle ressure = H i)	time:_0sy(IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 3Z 17	2 C): 12. 1 C): 12.	- 5	4 37 77	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 32 + 2	n time: <u>52</u> TW (fL BTC volumes pu 7 <u>3</u> 2 , 2	z - +5 / / / / /)C): / / - / rged: /- / 8 32 / 2	r √ //4
	Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S	ampling crev e/beginning -purging) Dī I tubing + pu c Controlle ressure = H i)	time: <u>0 F 40</u> IW (ft. BTO0 Imp volume r Tuning: (ft.) X 0.43 Initial <u>3Z</u> IZ 3	2 2 3 2 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	- 5	4 37 12 3 205	PID/FID re Purge date Final (post No. of tubi 5 	6 3 2 2 05	n time: 5-2 TW (fL BTC volumes pu 7 3 Z 2 3	z -+5 //41)C): /2-/ rrged: /~ 8 32 / 2 3	r √ //4
	Purging/s Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge S	ampling crev e/beginning -purging) Dī I tubing + pu c Controlle ressure = H i)	time: <u>0 F 40</u> IW (ft. BTO0 Imp volume r Tuning: (ft.) X 0.43 Initial <u>3Z</u> IZ 3	\$ -72-4 C): 12.4 :	- 5077 - 5 - 0 VA - psi 3 - 2 - 2 - 3 - 2 - 5 - 7 - 2 - 7 - 2 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4 37 72 3 20%	PID/FID re Purge date Final (post No. of tubi 5 	6 3 2 2 05	n time: 5-2 TW (fL BTC volumes pu 7 3 Z 2 3	z -+5 //41)C): /2-/ rrged: /~ 8 32 / 2 3	Final
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p <u>Pressure (ps</u> Refill Setting Discharge Sa Flow rate (m	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) i)	time:_ 0 ± 4(IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 3Z 	\$ -72-4 C): 12.4 :	- 5077 - 5 - 0 VA - psi 3 - 2 - 2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	4 37 77 3 20 Framete	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 32 · 2 · 2 3 2 of ments	n time: <u>57</u> TW (fL BTC volumes pu 7 3 Z 7 L 3 2 3 C	Z-+5 //41 DC): /2-/ rged: /2 8 32 12 3 250	Final
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p <u>Pressure (ps</u> Refill Setting Discharge Sa Flow rate (m	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min) DTW	time: <u>0 ± 40</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 3Z 1Z 3 2 Z.0 Purge Rate	7 7 C): 12.1 : 1 : 1 : 1 : 1 : 1 : 1 : 2 : 3 : 2 : 3 : 2 : Water Cumulative	- 5077 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4 37 72 3 20 El Con	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 32 · 2 · 2 3 2 of ments	n time: <u>5-</u> TW (fL BTC volumes pu 7 <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u></u>	Z-#5 //47)C): /2-/ rrged: /~ 8 32 / 2 3 230 DO	Final
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p <u>Pressure (ps</u> Refill Setting Discharge Sa Flow rate (m	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min) DTW	time: <u>0 ± 40</u> IW (ft. BTO ump volume r Tuning: (ft.) X 0.43 Initial 3Z 1Z 3 2 Z.0 Purge Rate	x -/2-4 C): /2.4 :	- 5077 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4 37 72 3 203 Fil Con (uM	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 32 · 2 · 2 3 2 of ments	n time: <u>5-</u> TW (fL BTC volumes pu 7 <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u></u>	Z-+5 //41 C): /2-/ rged: /~ 8 32 / 2 3 230 DO	Final
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge So Flow rate (m	ampling crev e/beginning -purging) Dī I tubing + pu c Controlle ressure = H i) etting L/min) DTW (ft. BTOC)	time: <u>0 F 40</u> IW (ft. BTO0 Imp volume r Tuning: (ft.) X 0.43 Initial <u>3Z</u> IZ 3 Z Z O Purge Rate (mL/min)	? ? ? ? C): /2.// ? : /2.// ? : ?	¹ 5 √ 7 7	4 37 72 3 20% File Con (uM 0.6	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 3 Z 7 Z 3 2 o S ments pH	n time: 5-2 TW (fL BTC volumes pu 7 3 Z 2 Z 2 3 Eh (mv)	Z-#5 //4/1)C): /2-/ rged: /~ 8 32 / Z 3 2 3 0 00 (mg/L)	r // Final Turbidit (NTU)
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sa Flow rate (m Time	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) : :tting L/min) DTW (ft. BTOC) 17.14	time: $p_T y_{C}$ W (ft. BTO) mp volume r Tuning: (ft.) X 0.43 Initial 3Z 1Z 3 ZZO Purge Rate (mL/min) 2ZO 2ZO ZOS	> \$-72-4 C): 12.4 : 12.4 : 12.4 : 12.4 : 12.4 : 2.2 : 3 : 2.2 : Water Cumulative Volume Purged (L) .46	5077 5 0 VA psi 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 -	4 37 72 3 203 Fil Con (uM	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 32 - 2 3 205 ments pH 5. 57	n time: <u>57</u> TW (fL BTC volumes pu 7 3 Z 7 Z 7 Z 7 Z 7 Z 7 Z 7 Z 7 Z 7 Z 7 Z 7	Z-#5 //41 DC): /2-/ rged: /* 8 32 / Z 3 2 3 0 DO (mg/L) 7.79	Turbidit (NTU)
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sa Flow rate (m Time	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) 17-14 172-14	time: $p \pm y c$ W (ft. BTO) mp volume r Tuning: (ft.) X 0.43 Initial 3Z 1Z 3Z 2ZO Purge Rate (mL/min) 2ZO 2ZO 2ZO	> \$-72-4 C): 12.4 : 12.4 : 12.4 : 12.4 : 12.4 : 12.4 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : : <td:< td=""> : <tr td=""></tr></td:<>	5077 5 0 VA psi 3 2 	4 37 72 3 205 Framete El Com (uM 0.6 0.6	PID/FID re Purge date Final (post No. of tubi 5 	e/completion -purging) D ng + pump 6 3 Z + 2 3 2 o S ments pH \$. \$ 7 \$. 5 3	n time: 5-7 TW (fL BTC volumes pu 7 3 7 - 2 3 2 3 0 Eh (mv) 7 9. 6 7 9. 6 7 9. 3	Z-+5 //47 C): /2-/ rged: /~ 8 32 / 2 3 2 30 DO (mg/L) 7.79 7.79 7.72	r // Final Turbidit (NTU) 55.9 //9.0 39.5-
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sa Flow rate (m Time Osciarge Sa Flow rate (m Osciarge Sa Flow rate (m	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) / 7. /4 /7. /4	time: $p_T y_{C}$ W (ft. BTO) mp volume r Tuning: (ft.) X 0.43 Initial 3Z 1Z 3 ZZO Purge Rate (mL/min) 2ZO 2ZO ZOS	> \$-72-4 C): 12.4 : 12.4 : 12.7 3 2 1 2 3 2 2 3 2 3 2 2 3 2 Cumulative Volume Purged (L) .66 1.32 1.93	r 5077 s r vA psi 3 32 r 205 r Quality Pa Temp. (degree C) 19.05 18.94 15.75	4 37 12 3 205 Famete Con (uM 0.6 0.6 0.6	PID/FID re Purge date Final (post No. of tubi 5 2.2 2.45 er Measure ectrical eductivity thos/cm) 9.6 9.7 9.7	e/completion -purging) D ng + pump 6 3 Z 7 Z 3 2 o S ments pH 5 · 5 7 5 · 5 5 5 · 5 7	n time: 5-2 TW (fL BTC volumes pu 7 3 Z 2 Z 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	Z-+5 //47)C): /2-/ rged: /~ 8 32 / Z 3 2 30 DO (mg/L) 7.79 7.72 7.72 7.20	Turbidit (NTU) 55.9 49.0 39.5 65.5
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Sa Flow rate (m Time Discharge Sa Flow rate (m Time 05443 05446 05447 05452	ampling crev e/beginning -purging) DT I tubing + pu c Controlle ressure = H 	time: $p \pm y c$ W (ft. BTOO Imp volume r Tuning: (ft.) X 0.43 Initial 3Z. 1Z 3 2ZO Purge Rate (mL/min) 2ZO 2ZO 2OS 20S 20S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r 5.477 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	4 37 12 3 205 Fil Con (uM 0.6 0.6 0.6 0.6	PID/FID re Purge date Final (post No. of tubit 5 2 2 2 3 2 6 er Measure ectrical aductivity thos/cm) 2 4 6 2 7 7 7 7 7 7 7 7 7 7	e/completion -purging) D ng + pump 6 32 -2 3 205 ments pH 5.57 5.57 5.57 5.57 5.57	n time: <u>5-7</u> TW (ft. BTC volumes pu 7 3 Z - 2 3 2 3 C Eh (mv) 3 9. 6 7 7. 3 8 3. 7 8 3. 7 8 2. 6	Z-#5 1141 DC): 12-1 rged: 12 R 32 12 3 250 DO (mg/L) 7.79 7.79 7.72 7.20 7.06	7 11A Final Turbidit (NTU) 5559 1990 1990 3785
	Purging/sa Purge dat Initial (pre Calculated Pneumati Initial air p Pressure (ps Refiil Setting Discharge Sa Flow rate (m Time O_{X+4}^3 O_{X+4}^3 O_{X+4}^3 O_{X+4}^3 O_{X+4}^3 O_{X+4}^3	ampling crev e/beginning -purging) DT I tubing + purging) DT c Controlle ressure = H i) etting L/min) DTW (ft. BTOC) 17.14 17.14 17.14 17.14 17.14	time: $p_{\overline{x}} y_{\underline{\ell}}$ TW (ft. BTO) Imp volume r Tuning: (ft.) X 0.43 Initial 3Z 1Z 3Z 2ZO 2ZO 2ZO 2OS $2^{o}S$ $2^{o}S$ $2^{o}S$	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		4 37 12 3 20% File Con (uM 0.6 0.6 0.6 0.6 0.6	PID/FID re Purge date Final (post No. of tubit No. of tubit 5 22 22 22 22 22 22 22	e/completion -purging) D ng + pump 6 3Z +Z 3 ZoS ments pH 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	n time: <u>6-7</u> TW (ft. BTC volumes pu 7 3 Z - 2 3 2 3 C Eh (mv) 7 9. 6 9 7. 3 8 3. 7 7 2. 6 7 7. 4	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Turbidity (NTU) 55-9 49.0 39.5- 65.5- 64.6

00043723

Sheet Z of 3

		<u> </u>	Vater Quali	ity Paramet	er Measurements	s (continue	d)		
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO _	Turbidity
	(ft. BTOC)	(mUmin)	Volume	(degree C)	Conductivity	ļ	(mv)	(mg/L)	(NTU)
<u></u>			Purged (L)		(uMhos/cm)				
0907	17.14	230	5.61	18.78		5.38	71.9	5.08	54.1
0910	17.14	230	6.36	18.79	0.705	5.78	77.3	5.07	44.6
0913	17.14	230	7.05	18.82	0.704	5.39	712	4.97	37.4
1013	12.14	100	13.05	17.92	0.702	5.41	57.5	1.97	17.6
1033	17.14	100	11.05	20.10	0.704	5-34	58.3	1.75	14.4
10010	12.14	100	16.75	20.52	0.704	5-36	54. Z	1.77	15-2
1847	17-14	180	17.45	2056	0.704	5.37	54.2		15.8
1050	17.14	100	17.75	20.54	0. 701	5.37	54.1	1.79	141
1153	12.14	100	18.05	20.67	0.0704	5.37	539	1.81	13.6
1056	12.14	100	18-35	20.59		5-37	537	1.97	10.3
1159	12.14	100	18.45	20.72		5-57 5-37	53.7	1.86	10.9
1102	12.14	100	18.95	70.42 Zo.61	0.703	5 37	53.4 53.3	1.87	10.8
	12.14		19.55	20.46	0.703	5-37	53.1	1.87	10.2
1103	172.77	100			ampling	1.5- 51	<u> </u>		170.2
Sampling t	beginning tir	ne:0		Quality Pa	Sampling e rameter Measure	completion t	ime:		
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)	1			
• -									<u> </u>
						 		·	
		· · · · · · · · · · · · · · · ·							
	1			Sample	Information				
Sample ID:	•			oumpro		lection date	/time:		
-	ample colle	cted (Y/N):			•	sample ID:			
· · · ·	le collected	· · · · -			Split samp				
COC No(s)									
Requested	l Analysis	Method	Co	ontainers	Requested	d Analysis	Method	Cont	ainers
	·								
		2	0 - 4	~ ^	0/			4	
Comments	S: Dump v	Plos ut	Q 0850	8. Domp	1000 c+1 (20	1913. 14	cour p	++550/4	+0
Comments • h t a r Reeder	5: Dump +	Mow all man a	Q 0850 mp Flow apen un	7. Domp Celles til turke	Flow cell QC 0923. No cea duty approach	1913. 12. Lag he hes 10 N	tween c Tu co Pa	+ 55 0/4 0915 E 1	+0 e1 3

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

00043724

Sheet 3 of 3

		V	Vater Quali	ty Paramel	er Measurement	s (continue	d)	· · · · · · · · · · · · · · · · · · ·	·
Time	DTW (ft. BTOC)	Purge Rate (mL/min)	Volume	Temp. (degree C)	Electrical Conductivity	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
68.5	12.14	100	Purged (L)		(uMhos/cm) 0:702	a 71	57.9	1.91	9.9
HI	· · · · · · · · · · · · · · · · · · ·		19.45	20.58		5-37	52.8	1.90	10.0
1114	17.14	100	20.15		0.702 0.702	5.34	52.5	1.90	9.7
117	17.14	100		Ze. 69 21.72	0. 702	5.39	51.4	1.91	9.6
1/20	17.14	110	20.75	20.77	0.702	5.39	51.2	1.93	9.5
1123	12.14	100	20.69	20. 11			<u></u>		
·					s		·		· · · ·
<u> </u>	1								
	<u> </u>			9	ampling				
Sampling	beginning tir	me: <u>//2</u> 5			• •	completion i	lime:		
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity
Inte	(ff. BTOC)	(mL/min)	Volume Purged (L)	(degree C)	Conductivity (uMhos/cm)		(mv)	(mg/L)	(NTU)
1125	17-14	100	20.19	20.92	0.702	5.37	53.4	1.92	9.Z
1144	12-14	100	Final	20.97	0.701	5.39	44.4	1.97	1.4
	1/21/	100	,						
								[
				Sample	e Information				
Sample IE	: LHSM	w69 MA	405	•		ollection date	e/time: <u>5-/7</u>	-05 112	5
Duplicate	sample colle	ected (Y/N):	pl			sample ID:_			- <u>.</u>
	le collected				Split sam	ole ID:	liA		
COC No(s									
Requeste	d Analysis	Method	C	ontainers	Requeste	d Analysis	Method	Cont	ainers
VOL		Bledder							
Mulala	~W	134 d det							
Metals-		Buller							
Diavin-	Furan	Blodder							
Actor-	pis	BIJAAN			l				
Comment									
Johnnem									
			÷						

00043725

Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav

RFA	/COC	Number-

Sample Type: GW Sample Purpose: REG Start Depth: 14.90 Sampling Equip: QED block fund Sample Purpose: REG End Depth: 14.90 Sampling Equip: QED block fund fund Sample Purpose: REG End Depth: 14.90 Sampling Equip: QED block fund fund Sample Purpose: REG Sample Purpose: Sampling Equip: QED block fund fund Sample Purpose: REG Sample Purpose: Sample Type: QED block fund fund fund fund fund Sample Type: (ER) (FB) Sample Team: fund fund Containers Containers ERPIMS Values: Sacode: Sacode:					
Sample Number: LHSMW70-MAY9 Sample Name: LHSMW70-MAY95-GW-REG Sample Name: LHSMW70-MAY95-GW-REG Sample Number: Collection Date: Sample Number: Generation Sample Number: Generation Sample Number: Generation Sample Number: Generation Sample Nume: Generation Sample Nume: Generation Sample Nume: Generation Sample Nume: Generation Generation METALS-MIS N B 2 1 N B 2 1 METALS-DIS N C 1 N B 2 1 Lot Controlitic Metal Messured Well Depth: 2-4/-4/3 Depth To Water: 11. %0' Comments: J Masseried Well Depth: 2-4/-4/3 Metal Location: Metal J N B 2-1/-4/3 Depth To Water: 11. %0' N N N N Sketch Loccation: J				Task-	CW-MAV05
Sample Name: LHSNW V0-MAY05-GW-REG Sample Method: SP Sample Type: GW Sample Type: GW Sample Type: GW Sample Type: GW Sample Type: GW Sample Sample Type: GW Sample Sample Type: GW Sample Sample Type: GW Sample Sample Type: GW Sample Sample Type: GW Sample Sample Team: Ar. (f. / Allers Sample Sample Team: Ar. (f. / Allers Sample Sample Team: Ar. (f. / Allers Sample Sample Team: Ar. (f. / Allers Sample Sample Team: N B 3 40 mt. VOA VAL METALS N N B 1 000 mt. HDPE Biodins-Farass N D 2 1 3. Annb. Glass Biodins-Farass N D 2 1 3. Annb. Glass Biodins-Farasis Messured Well Depth: 24/24 Comments: Sketch Location: Image: Image: Image: Image: Image: Image: Image: Image: Image:	Sample Number:	LHSMW70-MA	AY'		
Sample Type: GW Sample Purpose: REG Start Depth: <u>14.75</u> Sample Type: GW Sample Purpose: REG End Depth: <u>14.90</u> Sample Matrix: WATER 3 <u>GEB</u> <u>GEB</u> <u>GEB</u> Sample Team: <u>A, L, / Alla.s.</u> Analytical Suite Flt Frin Qty Size Units Type Sacode: VOC:FULL N A 3 40 wit VOA VIAL METALS-W N B 1 1000 mit HDPE METALS-DIS N C 1 1000 mit HDPE Metrals-DIS N E 2 1 1 A Amb. Glass Groundwater Information: Measured Well Depth: <u>241.41</u> Depth To Water: <u>11.50</u> Sketch Location: t_2 71 t_1 N	Sample Name:	LHSMW70-MA	AY05-GW-REG		
Sample Type: GW Sample Purpose: REG End Depth: 19.49 Sampling Equip: QF B black property GEB Sample Matrix: WATER B (RB) (FE) Sample Team: Analytical Suite FH FrinQty Size Units Type Analytical Suite FH FrinQty Size Units Type Sample Team: ERPIMS Values: VOC:FULL N A 3 40 ml. VOA VAL ERPIMS Values: Sacode: VOC:FULL N A 3 40 ml. VOA VAL Lot Controll: Sacode: VOC:FULL N A 3 40 ml. VOA VAL Lot Controll: Sacode: VOC:FULL N A 3 40 ml. VOA VAL Lot Controll: Sacode: VOC:FULL N A 1 1000 nl. HDFE Sacode: Lot Controll: Disting-Evenans N D 2 1 1 Annb.Class Sacode: Bosines-Fur-DIS N E 2 1 1 Annb.Class Sacode: Groundwater Information: 241,413 Depth To Water: 11. §0	Sampling Method:	SP			
Sampling Equip: $q \notin d$ $h \ln d l l l l l l l l l l l l l l l l l l$	Sample Type:	GW	Sample Purnose DEC	-	
B) (ER) (FB) Sample Team: Aus () Aller Analytical Suite FH Frtu Qty Size Units Type Sacode:			compre s' in pose. ReG	End Depth:	19.90
Sample feam:A_s (/ / H/de.h. Containers Analytical Suite Flt Frin Qty Size Units Type ERPIMS Values: V0C:FUL1 N A 3 40 mit VQA VIAL ERPIMS Values: Sacode: Loc Controll: V0C:FUL1 N A 3 40 mit VQA VIAL ERPIMS Values: Sacode: Loc Controll: Loc Controll: WETALS-BUS N C 1 9000 mit. HDPE Loc Controll: Loc Controll: Loc Controll: Biosins-Furais N D 2 1 4. Amb. Class Distins-Furais Pice Plane Distins-Furais Groundwater Information: Measured Well Depth: 24/1417 Depth To Water: 11. §U Comments:	stners:	RE Blackell	prof	Sample Matrix:	WATER
Containers FRPIMS Values: Analytical Suite Fit Frtu Qty Size Units Type Sacode: V0C:FULI N A 3 40 mit VOA VIAL. Lor Controllt: Sacode: METALS-W N B 1 1000 mit HDPE Lor Controllt: Lor Controllt: METALS-DIS N C 1 4.000 mit HDPE Disins-Furans N D 2 3 4. Amb. Glass Disins-Fur-DIS N E 2 1 4. Amb. Glass Disins-Furans N D 2 1 4. Amb. Glass Disins-Furans N Disins-Furans Disins-Furans N Disins-Furans Disins-Furans N Disins-Furans Disins-Furans Disins-Furans Disins-Furans	3)	(ER)	(FB)	Sample Team:	Ansly / Allam
VOC-FULL N A 3 40 mit. VOA VIAL METALS-W N B 1 1000 mit. HDPE METALS-DIS N C 1 1000 and. HDPE Distins-Furans N D 2 1 L Amb. Glass Distins-Furans N D 2 1 L Amb. Glass Distins-Furans N E 2 1 L Amb. Glass Comments:	Analytical Suite				Values:
METALS-W N B 1 1000 nol. HDFE. METALS-DIS N C 1 4000 nol. HDFE. Dioxins-Furans N D 2 3 8. Anth. Glass Dioxins-Fur-DIS N E 2 1 3. Anth. Glass Groundwater Information: Measured Well Depth: 2 +1, +1 3 Depth To Water: 11. 80 Comments:		· · · · · · · · · · · · · · · · · · ·			
METALS DIS N C 1 1000 nd. HDPE Dioxins-Furans N D 2 3 L Annis Glass Dioxins-Fur-DIS N E 2 1 3. Amis Glass Dioxins-Fur-DIS N E 2 1 3. Amis Glass Groundwater Information: Measured Well Depth: 2.41, 413 Depth To Water: 11. 80 Comments:					<i>Comroi#:</i>
Dioxins-Furans N D 2 1 L Amb. Glass Bioxins-Fur-DIS N E 2 1 L Amb. Glass Groundwater Information: Measured Well Depth: 2 1 L Amb. Glass Comments: Depth To Water: 11. §0 Sketch Location: Image: Comment state of the st					
Diskins-Fur-DIS N E 2 1 3. Amb. Glass Groundwater Information: Measured Well Depth: 2.4/.413 Depth To Water: 11. §0 Comments: Sketch Location: Image: Sketch Location: Image: Sketch Location: Measured Well Depth: Depth To Water: II. §0 Optimize Sketch Location: Image: Sketch Location: Image: Sketch Location: Image: Sketch Location: Image: Sketch Location: Image: Sketch Location: Image: Sketch Location: Image: Sketch Location: Image: Sketch Location:	Dioxins-Furans				
Groundwater Information: Meassured Well Depth: 2-41,-413 Depth To Water: 11.80 Comments:	Dioxins-Fur-DIS				
K += 71 J N	Measured We		L1 3 Depth To Water:	11.80	
K += 71 J N	Measured We		L/3 Depth To Water:	11.80	
	Measured We		L13 Depth To Water:	11.80	
	Measured We	ell Depth: <u>24</u> ,	L13 Depth To Water:	11.80	
	Measured We	ell Depth: <u>24</u> ,	L13 Depth To Water:	11.80	
	Measured We	ell Depth: <u>24</u> ,	L/ 7 Depth To Water:	11.80	
	Measured We	ell Depth: <u>24</u> ,	L/ ? Depth To Water:	11.80	
#7.0	Measured We	ell Depth: <u>24</u> ,	L1 7 Depth To Water:	L	
BP 70	Measured We	ell Depth: <u>24</u> ,	L17 Depth To Water:	L	
	Measured We	ell Depth: <u>24</u> ,	L1 ? Depth To Water:	L	
	Measured We	ell Depth: <u>24</u> ,		L	
	Measured We	ell Depth: <u>24</u> ,		L	

Logged BY / Date:

00043726

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW70 Sample Number: LHSMW70-MAY

Initial	Time(24hr)	DepthtoWater (ft)	Eh (mV)	pH (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gał)
		500	Aurgi	En	2				
		Dee	10191	7					
						-			
]					
				Ţ					
ample:	1040	14,90	2119.6	227	227	-2.5	0.418	2157	9.2

GROUNDWATER SAMPLING FORM

Sheet 1_of _Z

D_{2}				1 3 5 1										
	Operable	Unit/Site ID	: iHAA	<u>r 350</u>		_			LINSM		<u>.</u>			
			HARP	84571	7	-	Sample ID: LHSH w70~14/203							
	Weather:	1/2 ~	SOF				Collection Time/Date: 0940-1 571215							
		Pump Installation /												
	Pump inst	allation crev	Nr. Austy	IAllo; r	-		Installation date/beginning time: 5/11/5 / 1640							
511019	PID/FID re	eading (well	head/backg	ground): <u>47</u>	5 pin/0.0	FEL	installation	n date/comp	pletion time:	5/11/5/	1700			
	Casing dia	amotor (inch	μ				 Installation date/completion time: <u><i>G/II 15 / 1260</i></u> Screen Interval (ft. BTOC): <u>II</u> to <u>21</u> Pump intake depth (ft BTOC): <u>16</u> 							
	Total well	Depth (ft. B	TOC):	24.43					· - · · · /					
•	Initial (pre	-installation)) DTW/time:	11.90	1 (1026)		Post-insta	llation DTW	//time:	41-98-7	<u> </u>			
Shus	Final (afte	r pump prim	ning) DTW/ti	ime: 12-53	1 08:10	flor			ip rate (mL/					
••	Free prod	uct (circle):	MAF	L/DNAPL		-f-II	Appearan	ce of produ	ct:					
	Volume of	water remo	oved during	priming (mL	.):		Discharge	tube diame	eter (3/8") or	1/4"):				
	Discharge	tube length	ı (ft.):			-	Inlet reduc	er used (Y/	N):					
	Pneumati	c Controlle	r Tuning:											
•	Initial air p	ressure = H	(ft.) X 0.43	=	_psi									
	•		Initial	2	3	4	5	6	7	8	Final			
	Pressure (ps	i)												
	Refit Setting	-				<u>-</u>								
	Discharge Se	etting						ţ	L					
	Flow rate (m	L/min)												
					F	Purgin	a				<			
	Purging/sa	amplina crev	N. Anster	/ Allain		.	=	llew) nnihe	head/backd	mund): A	1.0100			
(Purging/sampling crew: <u>Ansley / Allain</u> Purge date/beginning time: <u>5/12/5</u> 0834						PID/FID reading (well head/background): 0.0/0.0 Purge date/completion time: 5/12/5/0931							
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Pume date	-/heginning	time: C/											
1 ¹ .				12/5 0	1834		Purge date	e/completion	n time:	5/12/5	10931			
· · · ·	Initial (pre-	purging) D1	FW (ft. BTO	(12/5 1 C): 1198 1	25 <u>34</u> 1.18		Purge date Final (post	e/completion -purging) D	n time: TW (ft. BTC	5/12/5)C):14r	10931			
	Initial (pre- Calculated	purging) D1 I tubing + pu	FW (ft. BTO ump volume	(12/5 1 C): 1198 1	1834	-	Purge date Final (post	e/completion -purging) D	n time:	5/12/5)C):14r	10931			
	Initial (pre- Calculated Pneumati	purging) D1 I tubing + pu c Controlle	FW (ft. BTO Imp volume r Tuning:	/12/5 C):_ / :N	0534 178 NA	-	Purge date Final (post	e/completion -purging) D	n time: TW (ft. BTC	5/12/5)C):14r	10931			
	Initial (pre- Calculated Pneumati	purging) D1 I tubing + pu c Controlle	TW (ft. BTO ump volume r Tuning: (ft.) X 0.43	/12/5 { C): <u>49</u> 4/ :N	2534 178 NA _psi		Purge date Final (post No. of tubi	e/completion -purging) D ng + pump	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	/ 09 31 78			
	Initial (pre- Calculated Pneumati Initial air p	purging) D1 I tubing + pu c Controlle ressure = H	W (ft. BTO ump volume r Tuning: (ft.) X 0.43	/12/5 1 C): <u>H-9%</u> :N =	2534 178 NA _ psi _ 3	4	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6	n time: TW (ft. BTC	5/12/5)C):14r	/ 09 31 73 . Final			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (ps	purging) D1 I tubing + pu c Controlle ressure = H	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 initiat	/12/5 0 C): <u>499</u> / :N =N 10	2534 178 IA _ psi _ 3 _ 10	4	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 //	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	/ 09 31 73 			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting	purging) D1 I tubing + pu c Controlle ressure = H	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 initial 19 10	/12/5 1 C): <u>H-9%</u> :N =	2534 178 JA _ psi _ 3 _ 10 _ 6	12 8	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 //	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	10931 73 .Final .il 6			
	Initial (pre- Calculated Pneumatic Initial air p Pressure (psi Refill Setting Discharge Se	purging) DT I tubing + pu c Controlle ressure = H i)	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 hittiat 10 5	/12/5 0 C): <u>H-94/</u> :N =N =N 10 9 6	2534 178 NA _ psi _ 3 _ 10 _ 6 _ 7	12 8 7	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 // 6 9	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	/ 09 31 78 .Final .I 6 9			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting	purging) DT I tubing + pu c Controlle ressure = H i)	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 initial 19 10	/12/5 0 C): <u>499</u> / :N =N 10	2534 178 JA _ psi _ 3 _ 10 _ 6	12 8	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 //	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	10931 73 .Final .il 6			
	Initial (pre- Calculated Pneumatic Initial air p Pressure (psi Refill Setting Discharge Se	purging) D1 I tubing + pu c Controlle ressure = H i) : : : : : : : : : : : : :	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 hittiat 10 5	$\frac{12}{12} \frac{15}{15} \frac{10}{12} \frac{15}{14} \frac{14}{14} \frac{1}{15} \frac{15}{15} \frac{10}{15}	2534 178 NA _ psi _ 3 _ 10 _ 6 _ 7	12 8 7 200	Purge date Final (post No. of tubi	5/completion -purging) D ng + pump 6 // / / / / / / / / / / / / /	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	10931 73 Final <i>i1</i> 6 9 <i>i</i> ov			
	Initial (pre- Calculated Pneumatic Initial air p Pressure (psi Refill Setting Discharge Se	purging) DT I tubing + pu c Controlle ressure = H i)	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 hittiat 10 5	$\frac{12}{12} \frac{15}{15} \frac{10}{12} \frac{15}{14} \frac{14}{14} \frac{1}{15} \frac{15}{15} \frac{10}{15}	2534 1.78 NA psi 	12 8 7 2 <i>00</i> ramete	Purge date Final (post No. of tubi	5/completion -purging) D ng + pump 6 // / / / / / / / / / / / / /	n time: TW (ft. BTC volumes pu	5/12/5 DC):14r_ rged:	/ 09 31 78 .Final .I 6 9			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (mt	purging) D1 I tubing + pu c Controlle ressure = H i) : : : : : : : : : : : :	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 initiat 19 10 5 30°	/12./5 U C): <u>4.94</u> / :N =N =N 10 9 10 9 10 9 4 6 200 Water	2534 178 IA JA 3 10 6 7 115 Quality Pa	12 8 7 200 ramete	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 // 6 // 9 // / 30 ments	n time: TW (ft. BTC volumes pu	5 / 12 /5)C): 14/- rged:	10931 73 Final <i>i1</i> 6 9 <i>i</i> ov			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (mt	purging) DT I tubing + pu c Controlle ressure = H)) tung ./min) DTW	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 initial 10 5 30 ^{re} Purge Rate	/12./5 / C): <u>H-94</u> / :N = 10 9 6 200 Water Cumulative	2534 278 IA PSi 3 10 6 7 115 Quality Pa Temp. (degree C)	12 <u>8</u> 7 200 ramete Ele Con	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 // 6 // 9 // / 30 ments	n time: TW (ft. BTC volumes pu 7 7 Eh (mv)	5/12/5 DC): 14/- rged: 8 DO	10931 73 . Final <i>j1</i> 6 9 100 Turbidity			
0~1	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (mt Time	purging) DT I tubing + pu c Controlle ressure = H)) tung ./min) DTW	W (ft. BTO ump volume r Tuning: (ft.) X 0.43 initial 10 5 30 ^{re} Purge Rate	/12./5 C): <u>H.94</u> / :N = = 10 9 10 9 6 200 Water Cumulative Volume Purged (L)	2534 2534 178 IA IA IO 6 7 115 Quality Pa Temp. (degree C) 19.45	12 8 7 200 ramete Ek Con (uM	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 6 // 6 // 9 // / 30 ments	n time: TW (ft. BTC volumes pu 7 Eb	5/12/5 DC): 14/- rged: 8 DO	/ 09 31 73 . Final j/ 6 9 ,00 Turbidity (NTU) - 2, 3			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time Time Ø\\$\0 0\\$\13	purging) DT I tubing + pu c Controlle ressure = H)) :tting ./min) DTW (ft. BTOC) 12.53 12.79	W (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initiat 10 5 30° Purge Rate (mL/min)	112 /5 0 C): <u>4499 /</u> : = 2 10 9 6 200 Water Cumulative Volume	2534 278 IA PSi 3 10 6 7 115 Quality Pa Temp. (degree C)	12 8 7 200 ramete Ek Con (uM 2 2 2	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump ///////////////////////////////////	n time: TW (ft. BTC volumes pu 7 Eh (mv) 2 35.1 2 47	5/12/5)C): 14/- rged: 8 DO (mg/L)	/ 09 31 73 . Final <i>j1</i> 6 9 , cv Turbidity (NTU)			
the state	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (mt Time	purging) DT I tubing + pu c Controlle ressure = H) : : tting ./min) DTW (ft. BTOC) 	W (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initiat IG 10 5 30 ¹⁰ Purge Rate (mL/min) 	/12./5 C): <u>H.94</u> / :N = = 10 9 10 9 6 200 Water Cumulative Volume Purged (L)	2534 2534 178 IA IA IO 6 7 115 Quality Pa Temp. (degree C) 19.45	12 8 7 200 ramete Ek Con (uM 2 2 2	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump ///////////////////////////////////	n time: TW (ft. BTC volumes pu 7 Eh (mv) 2 35. /	5 /12 /5)C): 14/- rged: 8 8 00 (mg/L) 2-07 1-07 1-07 0.79	/ 09 31 73 . Final j/ 6 9 ,00 Turbidity (NTU) - 2, 3			
erani en	Initial (pre- Calculated Pneumatic Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (mt Time Time 05410 05413 05416 05419	purging) DT I tubing + pic c Controlle ressure = H i)	W (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initial IG 10 5 30 ¹⁰ Purge Rate (mL/min) 	112 /5 1 C): <u>44.99</u> // C):	2534 2534 178 IA IA IO 6 7 115 Quality Pa Temp. (degree C) 19.45 11.65	12 8 7 200 ramete Ele Con (uM 2 2 2 2 2 2 2 2 2 2 2 2 2	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump ///////////////////////////////////	n time: 1 TW (ft. BTC volumes put 7 1 8 1 1 1 1 1 2 3 2 3	5/12/5)C): 14/- rged: B DO (mg/L) 2-07 1-07 0-79 0-73	/ 09 31 73 .Final 11 6 9 ,00 Turbidity (NTU) - 2, 3 - 2, 2			
	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time 0%10 0%13 0%16 0%19 0%5 2-	DTW (ft. BTOC) 12-53 12-74 13-05 13-90	W (ft. BTO Imp volume r Tuning: (ft.) X 0.43 Initiat IG 10 5 30 ¹⁰ Purge Rate (mL/min) 	$\frac{12}{15} \frac{15}{12} 15$	2534 178 IA psi 3 10 6 7 115 Quality Pa Temp. (degree C) 19.95 11.65 19.77	12 8 7 200 ramete Con (uM 2 2 2 2 2 2 2 2 2 2 2 2 2	Purge date Final (post No. of tubi 5 11 7 $2 \approx$ $2 e/completion -purging) D ng + pump ///////////////////////////////////	n time: 4 TW (ft. BTC volumes put 7 7 Eh (mv) 235.1 2473 2572 2572	5 /12 /5)C): 14/- rged: 8 8 00 (mg/L) 2-07 1-07 1-07 0.79	$ \begin{array}{c} $				
121	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time Time 05410 05413 0546 0555	purging) DT I tubing + pic c Controlle ressure = H i)	W (ft. BTO) Imp volume r Tuning: (ft.) X 0.43 Initial 10 5 30° Purge Rate (mL/min) 	$\frac{12}{15} \frac{15}{14} \frac{14}{15} \frac{16}{15} \frac{16}{150} \frac{1}{150} 1$	$\frac{2534}{1.78}$ $\frac{1}{1.78}$ $\frac{3}{10}$ $\frac{10}{6}$ $\frac{7}{115}$ Quality Pa Temp. (degree C) $\frac{19.95}{11.65}$ $\frac{19.95}{19.77}$ 20.29 20.37	12 8 7 200 ramete Con (uM 2 2 2 2 2 2 2 2 2 2 2 2 2	Purge date Final (post No. of tubi 1 3 2 er Measure ectrical ductivity hos/cm) 2 3 2 4 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 2 5 2 2 5 2 2 2 2 2 2 2 2	e/completion -purging) D ng + pump 1 6 11 6 9 130 ments pH 	n time: 1 TW (ft. BTC volumes put 7 1 8 1 1 1 235.1 1 247 25% 253 1	5/12/5)C): 14/- rged: B DO (mg/L) 2-07 1-07 0-79 0-73	10931 73 .Final <i>j</i> / 6 9 100 Turbidity (NTU) - 2, 3 - 2, 2 - 2, 1 - 2, 2			
()~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Initial (pre- Calculated Pneumati- Initial air p Pressure (psi Refill Setting Discharge Se Flow rate (ml Time 0%10 0%13 0%16 0%19 0%5 2-	DTW (ft. BTOC) 12-53 12-74 13-05 13-90	W (ft. BTO) Imp volume r Tuning: (ft.) X 0.43 Initial IG IG IG IG IG IG IG IG IG IG	$\frac{12}{15} \frac{15}{12} 15$	$\frac{2534}{178}$ $\frac{1}{178}$ $\frac{3}{10}$ $\frac{10}{6}$ $\frac{7}{115}$ $\frac{115}{0}$ $\frac{115}{0}$ $\frac{115}{115}$ $\frac{115}{115}$ $\frac{19.95}{11.65}$ $\frac{19.95}{19.77}$ $\frac{20.29}{20.29}$	12 8 7 200 ramete Con (uM 2 2 2 2 2 2 2 2 2 2 2 2 2	Purge date Final (post No. of tubi	e/completion -purging) D ng + pump 1 6 1 1 6 9 1 3 0 ments pH - - - - - - - - - - - - - - - - - -	n time: 1 TW (ft. BTC volumes put 7 7 Eh (mv) 235.1 1 243 257 253 253.5	5 12 15 DC): 141- rged: 141- DO (mg/L) 2-07 1.07 0.77 0.73 0.66	$ \begin{array}{c} $			

00043728 Sheet_Zof_Z

		<u> </u>	vater Quali	ty Paramet	er Measurements	s (continue	u)	<u>, </u>		
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidity	
	(fL BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)	
	L		Purged (L)		(uMhos/cm)				_	
0904	12-89	200	1600	19.91	225	7.87	256.2	0.50	-2.1	
0907	14,19	260	5. Her	19-59	224	487	256.6	0.216	-2.1	
0910	14-26	200	6.000	19-69	1211	4.56	2567	0. 15	-7.0	
0913	14.33	160	6.500	20.02	123	4.87	256.4	0.45	-2-1	
0416	19.41	130	6.400	20.55	223	11.87	256.7	0.45	-2.1	
0919	14,47	130	7.300	20.81	224	4-87	255.3	6.45	-7.1	
0922	14.56	130	7,700	21.16	224	4.98	754.9	0.47	-7.1	
5425	JM61	100	8,000	21.40	224	4.88	254.4	0.47	-2.2	
0928	14.57	100	1.300	21-46	22+1	4.88	253.7	0.46	-2-2	
0431	14168	100	8.600	21.58	224 '	4.88	253	0.46	12.2	
0934	14.73	100	8,900	21.74	223	4-88	253	0.46	-2.1	
0437	141-78	100	9.200	21.84	223	4.88	2525	0.45	-2-1	
Contractor				·····		1.00	<u>_</u>		· · · · · · · · · · · · · · · · · · ·	
			~~	e,	mpling		A.			
		ne: 09		30		• • •		770		
ampling I	beginning tin	ne: / 09	10/	·	Sampling of	completion t	ime: <u>/</u>	130		
		<u> </u>	Water	Quality Pa	rameter Measure	ments				
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidity	
	(ft. BTOC)	(mL/min)	Votume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)	
			Purged (L)		(uMhos/cm)					
0437	14.78	14	<i>9.</i> 2	21.9.1	223	4.88	252.5	0.45	-2.1	
040	14.90	100		21.53	227	4.86	248.6	0.48	-2.5	
					1 <i>T t</i> T		·			
		_ _	-	Sample	Information		c/12/51	/		
•	: LHSM-				Sample col	lection date	/time: 5/12/5/	7940		
· · · · · ·			· •		Duplicate s	ample ID:	: IV/R 			
	le collected ((Y/N):	<u>N</u>		Split sampl	e ID:	NIA			
OC No(s)):	<u></u>	<u> </u>							
onvoctor	l Analysis	Method	<u> </u>	ntainers	Requested	1 Anobioio	Method	Conta	inore	
		method		inconce 5	inequester	1 /11101313	methou	00144	11161 5	
Hiven F.	mar AIS									
		•	····· · <u>-</u> ··-							
Valit 10	<u>'</u>									
Nehl		{		· · · · ·						
Dikk /	<u>n</u>									
omments	5:									

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

Sample Collection Log

00043729

Page 1 of 1

845714 · Longhorn Army Ammunition Plant

Manager:

RFA / COC Number:

Praveen Srivastav

Location Code:	LH	SM	W71				Task	GW-MAY05
Sample Number:	LH	SM	W71- J	MAY	l			•
Sample Name:	LH	LHSMW71-MAY05-D-GW-FD					Collection Date: Collection Time:	5/14/05
Sampling Method: Sample Type:		7			Sam	ple Purpose: FD	Start Depth: End Depth:	· · · · · · · · · · · · · · · · · · ·
Sampling Equip: Partners:							Sample Matrix:	WATER
(TB <u>)</u>		(ER))			(FB)	Sample Team:	
Analytical Suite	Flt	Frt		taineı Size		Туре	ERPIMS	Values: Sacode:
VOC-FULL		A	*****	40		VOA VIAL	Lot	Control#:
METALS-W	N	в	1	1000	mL	HDPE		
METALS-DIS	N	С	1	1000	mL	HDPE	<u></u>	
Dioxins-Furans	N	Ð	2	1	L	Amb. Glass		
Dioxins-Fur-DIS	N	E	2	1	L	Amb. Glass		
Groundwater Info		tion: ptb:		19. Š	50	Depth To Water:	12.86	

Logged BY / Date:

Reviewed BY / Date:

Sample Collection Log

00043730

Page 1 of 2

845714 - LONGHORN AAP

Manager: Praveen Srivastav

				RFA / C	OC Number:	
Location Code: Sample Number:	LHSMW71	-MAY			Task:	GW-MAY05
•	LHSMW71-MAY05-GW-REG					
Sampling Method: Sample Type: Sampling Equip: C Partners:					Start Depth:	· · · · · · · · · · · · · · · · · · ·
(TB)	(ER)		(FB)			
Analytical Suite		ntainers y Size Unit	s Type		ERPIMS	
VOC-FULL	NA 3	······································	VOA VIAL		Lot	Control#:
METALS-W	N B I	1000 mL	HDPE			
METALS-DIS	N C 1	1000 mL	HDPE			
Dioxias-Furans	ND 2	T L	Amb. Glass			
Dioxins-Fur-DIS	NE 2) L	Amb. Glass			
<u>Groundwater Info</u> Measured We			Depth To W	'ater:		
Comments:						
Sketch Locatio	ən:			, <u></u> , <u></u>		

Logged BY / Date:

Reviewed BY / Date:

Sample Collection Log

00043731

Page 2 of 2

845714 - LONGHORN AAP Manager: Praveen Srivastav

Location Code: LHSMW71 Sample Number: LHSMW71-MAY

lvitial	Time(24hr)	DeptbtoWater (ft)	Eb (mV)	рН (SU)	Conductivity (mS/cm)	Turbidity (NTU)	DissOxygen (ppm)	Temperature (C)	Purge Volume (gal)
			· -						
i									
	r T								
mple:			···· _ [

Logged BY / Date:

Reviewed BY / Date:

04373	000								
<u>1_</u> of	Sheet_		FORM	PLING	SAM	ATER	UNDW	GRO	
· .	· .		11315	5,		x			HW
	-7/	LHSH-	location ID:	Sampling	<u> </u>		· · · · · · · · · · · · · · · · · · ·	• • •	able Unit/Site ID
				Sample ID	_		1/	LHXA	ct Name/#:
		·	Time/Date:	Collection	_				her
/				allation	o Insta	Pum		·	
1700	5/11/5/	nning time:	n date/begin	Installation					o installation cre
	5/11/5/	pletion time:	n date/comp	Installation	7	0 10.0	ground) <u>: a.</u>	head/back	D reading (well
		TOC):	•					res): <u>4'</u>	ID reading (well ng diameter (incl
	1'	BTOC).	ke depth (ft	Pump intai			19.50	TOC): <u>(</u>	well Depth (ft. B
1815	12.18/	//time:	lation DTW	Post-instal		10:35	12.86 /) DTW/time:	(pre-installation
	min):	np rate (mL/	inable pum	Max. susta		13.05	ime: 17.49	ing) DTW/ti	(after pump prin
	-	-		_		<u>ــــــــــــــــــــــــــــــــــــ</u>	PL/DNAPL	-LNAF	product (circle):
	1/4"):	ct: eter (3/8° or	tube diame	Discharge		.):	priming (ml	wed during	ne of water remo
	· · · · · · · · · · · · · · · · · · ·	N):	er used (Y/I	Inlet reduc	-			(ft.):	arge tube lengt
			-		÷			r Tuning:	matic Controlle
						_psi	=	(ft.) X 0.43	air pressure = H
Fin	8	7	6	5	4	3	2	Initial	·
	<u> </u>	T	[1	<u> </u>	·		re (psi)
	1	1			<u> </u>			1	etting
1	1								
					[rge Setting
									rge Setting te (mL/min)
					Purgin				
010		boad/backg	ading (well)	-	Purgin	F	en lAlles	r Ansh	ıte (mL/min)
	· · · · · · · · · · · · · · · · · · ·	head/backg		PID/FID re	Purgin				ng/sampling crev
15	68 5/17	n time: <u>13</u>	completion	PID/FID re Purge date	Purgin	1115	215	time: 54	te (mL/min) ng/sampling crev date/beginning
15	<i>66</i> 570 C): <u>5/13/5</u>	n time: <u>13</u> TW (ft. BTO	/completion purging) D	PID/FID re Purge date Final (post	Purgin	1115	215 C): 12, 9 8	time: <u>ς</u> μ W (ft. BTO	ite (mL/min) ng/sampling crev date/beginning (pre-purging) D°
15	<i>66</i> 570 C): <u>5/13/5</u>	n time: <u>13</u>	/completion purging) D	PID/FID re Purge date Final (post	Purgin	1115	2 <i>15</i> C): 1 ² 3 9 8	time: <u>ç//</u> W (ft. BTO Imp volume	te (mL/min) ng/sampling crev date/beginning (pre-purging) D° lated tubing + pi
15	<i>66</i> 570 C): <u>5/13/5</u>	n time: <u>13</u> TW (ft. BTO	/completion purging) D	PID/FID re Purge date Final (post	Purgin	1115	2/5 C): <u>1²:</u> ¶8 :1	time: <u>ς</u> // W (ft. BTO imp volume r Tuning:	ite (mL/min) ng/sampling crev date/beginning (pre-purging) D°
15 18w	<i>66</i> 570 C): <u>5/13/5</u>	n time: <u>13</u> TW (ft. BTO	/completion purging) D	PID/FID re Purge date Final (post	Purgin	1115 VA	2/5 C): <u>1²:</u> ¶8 :1	time: <u>ς</u> // W (ft. BTO imp volume r Tuning:	te (mL/min) ng/sampling crev date/beginning (pre-purging) D lated tubing + pi matic Controlle
15 18w	68 5711 C): <u>571375</u> rged:	n time: <u>13</u> TW (ft. BTC volumes pu	/completion purging) D ng + pump v	PID/FID re. Purge date Final (post- No. of tubir	-	1115 NA _ psi _ 3 i//	2.15 C): <u>1²</u> , 1 8 :	time: <u>5//</u> W (ft. BTO imp volume r Tuning: (ft.) X 0.43	te (mL/min) ng/sampling crev date/beginning (pre-purging) D lated tubing + pi matic Controlle
15 18w	68 5711 C): <u>571375</u> rged:	n time: <u>13</u> TW (ft. BTC volumes pu	/completion purging) D ng + pump v	PID/FID re. Purge date Final (post- No. of tubir	4	1115 NA _ psi _ 3	2.15 C): 1 ² ; 9 8 : 1 = 11	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15	te (mL/min) ng/sampling crev date/beginning (pre-purging) D [*] lated tubing + pi matic Controlle air pressure = H
15 18w	68 5711 C): <u>571375</u> rged:	n time: <u>13</u> TW (ft. BTC volumes pu	/completion purging) D ng + pump v	PID/FID re. Purge date Final (post- No. of tubir	4	1115 NA _ psi _ 3 i//	2 /5 C): 1 ² 98 : =	time: <u>5 //</u> W (ft. BTO imp volume r Tuning: (ft.) X 0.43 <u>Initial</u> 15 10 5	te (mL/min) ng/sampling crev date/beginning (pre-purging) D lated tubing + pi matic Controlle air pressure = H
15 18w	68 5711 C): <u>571375</u> rged:	n time: <u>13</u> TW (ft. BTC volumes pu	/completion purging) D ng + pump v	PID/FID re. Purge date Final (post- No. of tubir	4 10 5	11 15 NApsi 	2.15 C): 1 ² ; 9 8 : 1 = 11	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15	te (mL/min) ng/sampling crev date/beginning (pre-purging) D lated tubing + pr matic Controlle air pressure = H re (psi) etting
15 18w	68 5711 C): <u>571375</u> rged:	n time: <u>13</u> TW (ft. BTC volumes pu	/completion purging) D ng + pump v	PID/FID re. Purge date Final (post No. of tubir	4 10 5 10	11 15 NA _psi 3 10 6 9 ~150	$= \frac{2}{11}$ $= \frac{2}{11}$ $= \frac{2}{11}$ $= \frac{2}{330}$	time: <u>5 //</u> W (ft. BTO imp volume r Tuning: (ft.) X 0.43 <u>Initial</u> 15 10 5	te (mL/min) ng/sampling crev date/beginning (pre-purging) D lated tubing + pr matic Controlle air pressure = H re (psi) etting ge Setting
Fin:	66 5 / 17 C): 5 /13/5 rged: 8	n time:	/completion purging) D ng + pump v 6 6 ments	PID/FID re. Purge date Final (post- No. of tubir	4 10 5 10 ramete	1115 NA _psi 3 10 6 9 ~150 Quality Pa	2.15 C): 1 ² ; 9 : 1 = 2 11 8 7 <u>330</u> Water	time: <u>5 //</u> W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 -357	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D lated tubing + pr matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min)
Fin:	ØØ 5 / 11 PC): 5 / 13 / 57 rged: 7 8 7 00 8	TW (ft. BTC volumes pur	/completion purging) D ng + pump v	PID/FID re. Purge date Final (post- No. of tubir 5	4 10 5 10 ramete Ek	11 15 JA psi 3 10 6 9 ~150 Quality Pa Temp.	2 15 C): 1 ² ;¶8 : 1 = 2 11 330 Water Cumulative	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 -35 ²⁰ Purge Rate	te (mL/min) ng/sampling crev date/beginning (pre-purging) D lated tubing + pi matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min)
Fin:	66 5 / 17 C): 5 /13/5 rged: 8	n time:	/completion purging) D ng + pump v 6 6 ments	PID/FID re. Purge date Final (post- No. of tubir 5	4 10 10 ramete Ele Con	1115 NA _psi 3 10 6 9 ~150 Quality Pa	2 /5 C): 1 ² ;¶8 : 1 = 2 11 & 7 330 Water Volume	time: <u>5 //</u> W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 -357	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D lated tubing + pr matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min)
/ 5 / 13 \u03cm	ØØ 5 / 17 PC): 5 / 13 / 57 rged: / 8 ////////////////////////////////////	Eh (mv)	/completion purging) D ng + pump v 6 6 ments pH	PID/FID re. Purge date Final (post- No. of tubir 5	4 10 5 10 ramete Ek Con (uM	11 15 NA _ psi 3 10 6 9 ~150 Quality Pa Temp. (degree C)	2 /5 C): 1 ² ;¶8 : 1 = 2 11 <u>8</u> 7 <u>3</u> 30 Water Cumulative Volume Purged (L)	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 -357 Purge Rate (mL/min)	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D' lated tubing + pu matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min) te DTW (fL BTOC)
Fina Turbid (NTU 79.0	ØØ 5 / 11 IC): 5 / 13 / 57 rged: ////////////////////////////////////	Eh (mv)	/completion purging) D ng + pump v 6 6 ments pH 57.69	PID/FID re. Purge date Final (post- No. of tubir 5 5 cr Measure ectrical kductivity lhos/cm)	4 10 5 10 ramete Ela Con (uM	11 15 IA _ psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) 11 LA 21311	2 15 C): 1 ² ;¶8 : 1 = 2 11 <u>8</u> 7 330 Water Cumulative Volume Purged (L) <i>C.11</i> f	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 357 Purge Rate (mL/min) F Icm	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D' lated tubing + pi matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min) te DTW (ft_BTOC) v 13, 34
Turbic (NTU 79.0 61-2	ØØ 5 / 17 PC): 5 / 13 / 57 rged: 7 B 7 Image: Constraint of the second seco	Eh (mv) (155.4/ (155.4/ (155.4/ (155.4/ (155.4/ (155.4/	/completion purging) D ng + pump v 6 6 ments pH 5-69 5-67	PID/FID re. Purge date Final (post- No. of tubir 5 5 cr Measure ectrical kductivity lhos/cm) 5 4/6 C 4/4/5	4 10 5 10 ramete Ek Con (uM),	11 15 IA _psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) 11 LA 21311 20.90	$\frac{2}{15}$ C): 1 ² ;¶8 : 1 = 2 11 8 7 330 Water Cumulative Volume Purged (L) 6.11 f 1,000	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 <u>Initial</u> 15 <u>10</u> 5 ·35 ²⁰ Purge Rate (mL/min) <u>F low</u> 3 30	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D' lated tubing + pi matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min) re DTW (ft_BTOC) 2 13.34 13.5 4
15 13 ω Fin: Γυνδικ (NTL 79.0 61.4] 52.1	ØØ 5 / 17 PC): 5 / 13 / 5/ rged: ////////////////////////////////////	Eh (mv) 1555.11 (mv) 1556.1 1566.1 1566.1	/completion purging) D ng + pump v 6 6 ments pH 5.69 5-67 5.67	PID/FID re. Purge date Final (post- No. of tubir 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 <u>10</u> 5 <u>10</u> Ela Con (uM <u>1</u> <u>1</u> <u>1</u>	11 15 IA psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) 11 W 21311 20.90 20.90 20.91	$\frac{2}{16}$ C): 1 ² : 9 % : 1 ² : 9 % : 1 = 1 2 11 3 3 Wate Wate Volume Purged (L) <i>L.11 f</i> 1 , 000 2 -0	time: <u>5</u> // W (ft. BTO imp volume r Tuning: (ft.) X 0.43 <u>Initial</u> 15 10 5 -357 Purge Rate (mL/min) F 10 3 30 3 30	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D' lated tubing + pi matic Controlle air pressure = H re (psi) etting ge Setting te (mL/min) te DTW (fL BTOC) 4/13, 3/1 $13, 5^{-1}/13, 7^{-1}/13$
15 13 cc/ 13 cc/ Fin: Fin: 10 10 10 10 10 10 10 10 10 10	BB 5 / 17 IC): 5 / 13 / 57 rged: - B - B - I.94/ - I.94/ - I.94/ - I.94/ - I.22 -	Eh (mv) 1558.4 184.1 192.3	/completion purging) D ng + pump v 6 6 ments pH 5.69 5.67 5.67 5.67 5.65	PID/FID re. Purge date Final (post- No. of tubir 5 5 5 5 5 5 5 6 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	4 10 5 10 ramete Ela Con (uM) 1, 1,	1115 IA psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) (110.1 21311 20.90 20.91 21.417	$\frac{2}{15}$ C): 1^{2} ; 9^{8} ; 9^{8} C): 1^{2} ; 9^{8} ;	time: $5/4$ W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 357 Purge Rate (mL/min) F low 330 330 330 175	te (mL/min) ng/sampling crew e date/beginning (pre-purging) D' lated tubing + purging) D' lated tubing + purging) matic Controller air pressure = H re (psi) etting ge Setting te (mL/min) te (mL/min) te DTW (ft. BTOC) u' 13.34 13.54 13.74 13.74 13.74 13.74
15 13 w 13 w Fina Fina 13 w 13 w 14 13 w 14 13 w 14 14 14 14 14 14 14 14 14 14	ØØ 5 / 17 PC): 5 / 13 / 57 rged: 7 ged: 7 I.94/ 1.94/ I.94/ 1.08 Ø.79 1.22 I.08 1.08	Eh (mv) 144.1 184.1 184.1 184.2 184.2	/completion purging) D ng + pump v 6 6 ments pH 5-69 5-69 5-67 5-69 5-69 5-69	PID/FID re. Purge date Final (post- No. of tubir 5 5 cr Measure ectrical kductivity lhos/cm) 5 160 1415 175 175 175	4 10 5 10 ramete Ela Con (uM) , 1, 1, 1, 1, 1,	11 15 IA psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) 11 LA 21311 20.90 20.91 21-91 21-91	$\frac{2}{15}$ C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{1} C): 1^{1} C): 1^{1} C): 1^{1} C): 1^{2} ; 1^{2	time: $5/1$ W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 35^{27} Purge Rate (mL/min) F low 330 330 330 175 145	te (mL/min) ng/sampling crew e date/beginning (pre-purging) D' lated tubing + pre- matic Controller air pressure = H re (psi) etting ge Setting te (mL/min) re DTW (ft. BTOC) u' 13.34' $13.5^{-u'}$ 13.7'' 13.7'' 13.7'' 13.7'' 13.7''
Fina Fina Fina Fina 52.1 40:8 35.1 34.1	BB 5 / 17 PC): 5 / 13 / 57 rged: 7 B 7 Image: 1	Eh (mv) 155.2 182.2 1845	/completion purging) D ng + pump v 6 6 ments pH 5.69 5.67 5.67 5.67 5.67 5.67 5.67 5.69 5.69 5.69 5.69	PID/FID re. Purge date Final (post- No. of tubir 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 10 5 10 ramete Ek Con (uM 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	11 15 IA psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) 11 LA 21311 20.90 20.91 21.91 21.71 22.73	$\frac{2}{2} \frac{15}{12} \frac{9}{3} \frac{9}{12} \frac{9}{3} \frac{9}{11} 9$	time: $5/4$ W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 35^{27} Purge Rate (mL/min) F low 330 330 330 175 145 150	te (mL/min) ng/sampling crev e date/beginning (pre-purging) D' lated tubing + pre- matic Controller air pressure = H re (psi) etting ge Setting te (mL/min) re DTW (fL BTOC) u' 13.34 13.54 13.74 14.95 14.20
15, 13 w/ Fin: Fin: 79.0 61.4 52.1 40.8 35.1	ØØ 5 / 17 PC): 5 / 13 / 57 rged: 7 ged: 7 I.94/ 1.94/ I.94/ 1.08 Ø.79 1.22 I.08 1.08	Eh (mv) 144.1 184.1 184.1 184.2 184.2	/completion purging) D ng + pump v 6 6 ments pH 5.69 5.67 5.67 5.67 5.67 5.67 5.67 5.69 5.69 5.69 5.69	PID/FID re. Purge date Final (post- No. of tubir 5 5 cr Measure ectrical kductivity lhos/cm) 5 160 1415 175 175 175	4 10 5 10 Famete Ele Con (uM 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	11 15 IA psi 3 10 6 9 ~150 Quality Pa Temp. (degree C) 11 LA 21311 20.90 20.91 21-91 21-91	$\frac{2}{15}$ C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{2} ; 9^{8} C): 1^{1} C): 1^{1} C): 1^{1} C): 1^{1} C): 1^{2} ; 1^{2	time: $5/1$ W (ft. BTO imp volume r Tuning: (ft.) X 0.43 Initial 15 10 5 35^{27} Purge Rate (mL/min) F low 330 330 330 175 145	te (mL/min) ng/sampling crew e date/beginning (pre-purging) D' lated tubing + pre- matic Controller air pressure = H re (psi) etting ge Setting te (mL/min) re DTW (ft. BTOC) u' 13.34' $13.5^{-u'}$ 13.7'' 13.7'' 13.7'' 13.7'' 13.7'' 13.7''

ing the second sec

00043733

GROUNDWATER SAMPLING FORM

Sheet ____of_

	1		1			s (continue	<u>aj</u>		
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	pH	Eh	DO	Turbidit
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)		· · ·	ļ	
1144	14.47	80	4.2	24.86	1,441	5.70	190.4	0.73	26.7
1147	14.54	100	4,5	25,40	1,440	5.70	180.1	0.74	24.7
1150	14.64	- 30	4.75	25.93	1,4133	5.70	1809	0.74	23.4
1153	14.70	80	4,900	26.12	1,432	5.71	182.8	0.71	21.7
1156	14.74	80	5.100	26.43	1,427	5.71	182.5	1.72	20.0
1151	141.86	100	5.400	27.01	1,422	5.71	182.4	0.71	18.6
1202	14.93	80 60	5.65		1.420	5.71	182.0	0.73	19.2
1205	15.01		5.85	27.26	1, 414	5,71	182.3	0.72	11-9
1208	15.16	40	6.100	27.37	1,409	5.71	182.5	0.72	15.3
<u>p1)</u>	15-25	130	6.500		· · · · · · · · · · · · · · · · · · ·			 	
	<u> </u>							 	
• • · ·							<u> </u>	· · · · · · · · · · · · · · · · · · ·	
•·· •				·····		<u> </u>			·
					mpling		I	<u> </u>	<u> </u>
	T				ameter Measure	T		·····	
Time	I DTW I	Purne Rate I	l Cumulative (i Temn i	Floctrical	I DH	E E B		
Time	DTW (ft. BTOC)	Purge Rate (mL/min)	Cumulative Volume	Temp. (dearee C)	Electrical	рН	Eh (my)	ĐQ (ma/li)	1 .
Time	DTW (ft. BTOC)	Purge Rate (mL/min)	Volume	Temp. (degree C)	Conductivity	рН	Eh (mv)	DO (mg/L)	l urbidity (NTU)
Time	1	-				рн		-	1 .
Time	1	-	Volume		Conductivity	рн		-	1 .
Time	1	-	Volume		Conductivity	pH		-	1
Time	1	-	Volume		Conductivity	pH		-	1 .
Time	1	-	Volume	(degree C)	Conductivity	pH		-	1 .
	(ft. BTOC)	(mL/min)	Volume Purged (L.)	(degree C) Sample	Conductivity (uMhos/cm)	pH	(mv)	-	ł
Sample ID Duplicate s	(ft. BTOC)	(mL/min)	Volume Purged (L.)	(degree C) Sample	Conductivity (uMhos/cm)		(mv)	(mg/L)	ł
iample ID Juplicate s plit samp	(ft. BTOC)	(mL/min)	Volume Purged (L.)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample col Duplicate s	lection date	(mv)	(mg/L)	ł
Sample ID Duplicate s	(ft. BTOC)	(mL/min)	Volume Purged (L.)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample col Duplicate s	lection date sample ID:	(mv)	(mg/L)	ł
Sample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C)	Conductivity (uMhos/cm) Information Sample co Duplicate s Split sampl	le ID:	(mv)	(mg/L)	
Sample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample col Duplicate s	le ID:	(mv)	(mg/L)	(NTU)
Sample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample co Duplicate s Split sampl	le ID:	(mv)	(mg/L)	(NTU)
Sample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample co Duplicate s Split sampl	le ID:	(mv)	(mg/L)	(NTU)
Sample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample co Duplicate s Split sampl	le ID:	(mv)	(mg/L)	(NTU)
Sample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L)	(degree C) Sample	Conductivity (uMhos/cm) Information Sample co Duplicate s Split sampl	le ID:	(mv)	(mg/L)	(NTU)
ample ID Duplicate s plit samp COC No(s)	(ft. BTOC)	(mL/min)	Volume Purged (L) Yes Co	(degree C) Sample	Conductivity (uMhos/cm)	llection date sample ID: le ID: I Analysis	(mv)	(mg/L)	(NTU)
ample ID Duplicate s plit samp COC No(s) equested	(ft. BTOC)	(mL/min)	Volume Purged (L) Yes Co	(degree C) Sample V	Conductivity (uMhos/cm)	llection date sample ID: le ID: I Analysis	(mv)	(mg/L)	(NTU)
ample ID Duplicate s plit samp COC No(s) equested	(ft. BTOC)	(mL/min)	Volume Purged (L) Yes Co	(degree C) Sample V	Conductivity (uMhos/cm)	le ID:	(mv)	(mg/L)	(NTU)

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

00043734 Piezometer Sampling Shaw Environmental & Infrastructure, Inc. 5/13/05 of. _ Subject Sheet No. . Date_ By. Chkd. By _____ Date Proi. No. .25 in. X .25 in. 35 C ta 11.46 1274 16.65 1118 nn= 16.65 5.31 1n= 21.96 5.31' colann F 151 5 えりり 785 in 2 1570 5 7 3 6280 . 00694 66.94 7650 3 ,735 131170 05:520 112 0 4 85 800 005 417 0,0 5 4.479.0 411 5.31 .005 begin page 1140 26 55 12 026 078 Ef 3 367118 078 purge a.6 galling ,078 Parates 598 ip 116 (mil 10 UR/ 26.32 6.41 3.383 7.21 1201 Turb 5-9 52360 has finge 58244 1144 1715 2345 6.32 3.227 4.91 145.4 10.1 Supro 1215 108A-05-02

	Shaw) ^{1°} Show En	Piezome	ter Sampling	00043	735
	JIIday	JIAW EIN	rironmental & Infrastructur 5	e, Inc. 1 13 105	· ·	
	Ву	Date	Subject		_ Sheet No	of R
	Chkd. By	Date		· · · · · · · · · · · · · · · · · · ·	Proj. No	
	,3550	Riezmety 1	NT~=13.55	6. 45 'ce lu-		.25 in. X .25
			TA = 20.00'	1765-72 ²		
				.005 6.415		
		••		de S		
. •			4 7 1 4 7.4 8	.03225	032	
			,096		3	
			, 47 8 8		076	
			67326	6.72 g. 1(-,))	
			716.08	N		
	14/02	begin punging	7			
	Li		purge 0.75galles			
	<u>17115</u>	parmily				
.*		1 enp p1 2351		10 Jackil'14 29 431.0		
	See a subserve and see and	and the second second second second second second second second second second second second second second second	- 1	11 74/.0		
		-				
	14120 Cill	let sayle				
	1412e culi	ket says 4				
	14120 Cult					
	Hermoter				3	
ТИ	Hormster 25 - pr	- 14,94	14.44 7.	76 Column To	3 96	
14	Hormster 25 - pr		and the second second second second second second second second second second second second second second second	96 Column 7.	15 3	
14	Hormster 25 - pr	- 14,94	14.44 7.	76 Column To	15 3	
14	Hormster 25 - pr	- 14,94	796	96 Column 7.	15 3	
14	Hormster 25 - pr	- 14,94	1-1-4-1 7-96 7.4-18 -12 1196	96 Column 7.	15 3	
14	Perimater 25 - pro I.D.	- 14,94 = 22,90	1-1-44 796 796 7248 12 1196 7480	96 Column 7.	15 3	
JH	Hormster 25 - pr	- 14, 941 - 22,90 - 4417-	1-1-94 796 796 7248 72 7196 7196 7430 8976	96 Column 7.	15 3	
J	Personator 25 - Dru I.D.	- 14.94 = 22.90 - 4477- 1477- 110132	1-1-94 796 796 7.418 12 1196 748 72 1196 748 12 1196 748 10 10 10 10 10 10 10 10 10 10	96 column 7. .00 .039 9	15 3	
14	Personator 25 - Dru I.D.	- 14.94 = 22.90 - 4477- 1477- 110132	1-1-94 796 796 7.418 12 1196 748 72 1196 748 12 1196 748 10 10 10 10 10 10 10 10 10 10	76 Column 72 .039 8 0.9	15 3	
14	Personator 25 - Dru I.D.	- 14.94 = 22.90 - 4477- 1477- 110132	1-1-44 796 796 	96 column 7. .00 .039 9	15 3	
	Personator 25 - Dru I.D.	1494 1494 22,90 22,90 	1-1-94 796 796 7.418 12 1196 748 72 1196 748 10 10 10 10 10 10 10 10 10 10	76 Column 72 .02 .039 1 D.9	15 3	

Appendix C

Baseline Risk Assessment for Residential Use of LHAAP-48

Table of Contents_

List of	Figure	S		ii
Acrony	ms an	d Abbre	viations	iii
1.0	Introd	uction		1 /
2.0			on	
2.0	2.1		tion of Analytical Methods	
	2.1			
	2.2		ary of Sampling Efforts	
	2.3 2.4		tion of Dioxins and Furans	
	2.4 2.5		cation of Chemicals of Potential Concern	
	Z.0	2.5.1		
		2.3.1	Comparison of Metals to LHAAP-Specific Background Concentrations in Soil 2.5.1.1 Statistical Distribution Tests	
			2.5.1.2 Statistical Comparisons	
			2.5.1.2 Statistical Comparisons	
		2.5.2	Organic Chemicals in Soil	
	2.6		ary	
3.0			sessment	
5.0	3.1		nd Water Uses	
	3.2		proceptual Model	
	3.3		ure Factors	
	5.5	3.3.1	Identification of Exposure-Point Concentrations	
	3.4		cation of Exposure Models and Assumptions	
	0.1	3.4.1	Ingestion Exposure to COPCs in Soil	3-5
		3.4.2	Inhalation Exposures to COPCs in Soil	00 3 <u>-</u> 5
		0.1.2	3.4.2.1 Volatilization Factor	
		3.4.3	Dermal Exposures to COPCs in Soil	
4.0	Тохісі		ssment	
	4.1		ogenic Effects	
	4.2		rcinogenic Effects	
5.0			erization	
	5.1		ogenic Effects Of Chemicals	
	5.2		ncer Effects of Chemicals	
	5.3		Associated With Exposure to Soil	
6.0	Uncer		nalysis	
7.0		5	·	

List of Tables _____

Table C-1	Soil Samples, LHAAP-48
Table C-2	2,3,7,8-TCDD Tocicity Equivalent Quotient Concentrations of Dioxin and Furan Congeners in Soil at LHAAP-48
Table C-3	Occurrence, Distribution, and Selection of Chemicals of Potential Concern (COPC), Soil, LHAAP-48
Table C-4	Comparison of Metal Concentrations in LHAAP-48 Soil Samples to Background Concentrations
Table C-5	Exposure Factors Used to Estimate Intake of Chemicals of Potential Concern, LHAAP-48 Site
Table C-6	Toxicity Values for Chemicals of Potential Concern, Baseline Risk Assessment for the LHAAP-48 Site
Table C-7a	Incremental Lifetime Cancer Risk (ILCR) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site
Table C-7b	Hazard Index (HI) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site
Table C-8a	Incremental Lifetime Cancer Risk (ILCR) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-48 Site
Table C-8b	Hazard Index (HI) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-48 Site
Table C-9a	Incremental Lifetime Cancer Risk (ILCR) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site
Table C-9b	Hazard Index (HI) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site
Table C-10a	Exposures and Incremental Lifetime Cancer Risks for Potential Exposure of Future Resident to Soil at the LHAAP-48 Site
Table C-10b	Exposures and Noncancer Hazards for Potential Exposure of Future Resident to Soil at the LHAAP-48 Site

List of Figures _____

Figure C-1 LHAAP-48 Sample Location Map

List of Attachments_____

Attachment 1	Statistical Comparison to Background Concentrations
Attachment 2	Geochemical Evaluation of Concentrations of Metals in Soil LHAAP-48

Acronyms and Abbreviations_

ABSd	dermal absorption factor
ABS _{GI}	gastrointestinal absorption factor
Bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
cm ²	centimeter square
cm ³	cubic centimeters
COPCs	Chemicals of Potential Concern
CSEM	conceptual site exposure model
g	gram
IRIS	integrated risk information system
LHAAP	Longhorn Army Ammunition Plant
m	meter
MCL	maximum contaminant levels
MDC	maximum detected concentrations
MSC	medium specific concentration
$\mu g/m^3$	micrograms per cubic meter
mg/kg	milligrams per kilogram
MLE	most likely exposure
MSSLs	medium-specific screening levels
ng/kg	nanograms per kilogram
RBSV	risk-based screening values
RfC	reference concentration
RfD	reference dose
RI	remedial investigation
RME	reasonable maximum exposure
sec	second
SF	slope factor
Shaw	Shaw Environmental, Inc.
STC	source-term concentration
TCE	trichloroethene
TCEQ	Texas Commission on Environmental Quality
TEF	toxicity equivalency factor
TEQ	toxicity equivalent quotient
UCL	upper confidence limit
UPL	upper prediction limit
URF	unit risk factor
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
UTL	upper tolerance limit

1.0 Introduction

This residential risk assessment for LHAAP-48, prepared by Shaw Environmental, Inc. (Shaw) for the U.S. Army Corps of Engineers (USACE), Tulsa District, under Total Environmental Restoration Contract DACA56-94-D-0020, Task Order 0109, describes the risk associated with residential use of LHAAP-48, Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. The results of this assessment will be used to support decisions related to future use of soil at LHAAP-48 (**Figure C-1**). Environmental sampling and analysis efforts were conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980.

The assessment of potential risk to current trespassers and future maintenance workers for exposure to chemicals in soil at LHAAP-48 in a hypothetical industrial scenario have been reported as acceptable by Jacobs in 2003. Estimated risk from potential groundwater ingestion by industrial workers was unacceptable and predominantly associated with thallium and dioxins, with lesser contributions from tetrachloroethene and trichloroethene (TCE). Antimony, arsenic, chromium, thallium, TCE, and bis(2-ethylhexyl)phthalate exceeded their respective maximum contaminant levels (MCLs) established by the Safe Drinking Water Act (Jacobs, 2003). Experience at other sites has shown that metals and dioxin concentrations in groundwater can be elevated due to high turbidity of the sample. Because of the uncertainty of these analysis results, additional samples were taken by Shaw in 2004 and 2005 using low-flow sampling methods to help ensure that samples have low turbidity (Shaw, 2004a, 2005).

The environmental data used in the Jacobs (2003) industrial risk assessment, entitled Draft Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites, that includes LHAAP-48 and additional groundwater data gathered by Shaw in 2004, 2005, and 2006 (see main volume, Section 2.0) were evaluated to supplement the industrial risk assessment (Jacobs, 2003) and provide risk managers information about the suitability of the site for hypothetical residential use. This baseline risk assessment for use of LHAAP-48 as a residential site follows guidance from the U.S. Environmental Protection Agency (USEPA) (1989;1992a,b,c;2002a,b) and the Texas Commission on Environmental Quality (TCEQ) (TCEQ, 1998, 2001, 2003, and 2004).

Because chemicals that contributed to health risk from groundwater used in previous assessments (Jacobs, 2003) were either not detected or were below maximum contaminant level (MCL) values when collected by low-flow groundwater sampling methods, risk from hypothetical residential use of the site was assessed only for exposure to chemicals detected in soil.

Figures and tables that support this appendix are presented at the end of the text portion. There are two attachments that follow the figures and tables: Attachment 1, Statistical Comparison to Background Concentrations; and Attachment 2, Geochemical Evaluation of Soil Concentrations of Metals in Soil at LHAAP-48.

2.0 Data Evaluation

Chemicals of potential concern (COPCs) for this evaluation were identified by comparing the results of chemical concentrations in soil (Jacobs, 2003) to LHAAP background concentrations, risk-based screening values, and other criteria.

2.1 Evaluation of Analytical Methods

Soil and water samples were analyzed according to USEPA methods (USEPA, 1983, 1992a). Evaluation of analytical data reported before June 2002 was described in the industrial risk assessment (Jacobs, 2003). After June 2002, additional groundwater samples were collected and analyzed as described in the work plans for LHAAP sites (Shaw, 2004a,b) and in this section.

2.2 Summary of Sampling Efforts

Soil and groundwater samples were collected between 1993 and 2005. Because no surface water bodies are located within the LHAAP-48 boundary, no surface water or sediment samples have been collected; samples collected from the surface ditch and drainage area were evaluated as soil samples in the industrial risk assessment (Jacobs, 2003).

Soil samples from LHAAP-48 were collected from depths less than 15 feet below ground surface (bgs) during three phases of a remedial investigation (RI) effort conducted from 1993 through 1998 (Jacobs, 2003). Soil samples were taken from 14 soil borings located adjacent to the 12 sump locations in the Phase I RI of 1993. In 1994 and 1995, the Phase II RI included installation of five monitoring wells and collection of soil and groundwater samples at those locations. Additional soil samples were collected, including samples from the surface ditch and drainage area in the Phase II RI (Jacobs, 2003). Two rounds of sampling were conducted at the 5 monitoring wells in 1996. The Phase III RI conducted in 1998 involved collection of soil samples near the sump locations and from an additional soil boring. Groundwater samples were collected from the five monitoring wells in the Phase III RI. Five were installed in the shallow subsurface that range from 18 to 28 ft bgs (Jacobs, 2003). One well (48WW01) was installed as an intermediate-depth well in 2004 (Shaw, 2004a, 2005). These six wells at LHAAP-48 (**Figure C-1**) were sampled in September 2004 and May 2005, as described in **Section 2.1** of the main text.

2.3 Data Reduction

Analytical data were evaluated as follows:

• Samples with all validation qualifiers were included in the residential risk assessment except for "R"-qualified data, which were rejected from the data set

- "J"- qualified data were included as detected concentrations
- "E"- qualified data were included as detected concentrations
- "B"- qualified data were treated as non-detected concentrations
- All non-detected concentrations were assigned a value equal to half the reporting limit.

A more detailed discussion of data qualifiers and their interpretation is given in the work plan (Shaw, 2004b).

The soil samples analyzed are presented in **Table C-1**. Fifty-one soil samples from 19 locations were evaluated. Duplicates were collected for seven samples for analytical quality control purposes (**Table C-1**), and the average concentration was evaluated as a single sample.

Chemicals detected in groundwater that contributed to health risk and hazard in previous assessments (Jacobs, 2003) were either not detected or were below MCLs when analyzed in groundwater collected by low-flow methods (see **Section 2.1** of the main text). The detection of chromium in one shallow well, which marginally exceeded the MCLs concentration, was believed to be associated with sediments and with corroded well construction materials. This hypothesis was tested by installing a new well (MW48WW02) having poly vinyl chloride (PVC) casing material, at the location of maximum chromium groundwater concentration. Groundwater from this well was shown to have chromium concentrations below the MCL (see **Section 2.2** of the main text). Because these results do not indicate of risk associated with groundwater at LHAAP-48, they are not considered further in the COPC selection.

2.4 Evaluation of Dioxins and Furans

Dioxins and furans were evaluated using the 2,3,7,8-TCDD toxicity equivalency (TEQ) approach. Individual congener concentrations were multiplied by toxicity equivalency factors recommended by Van den Berg et al. (1998), and then summed to describe a 2,3,7,8-TCDD TEQ concentration for each sample (**Table C-2**).

A total of 16 samples, 2 samples collected at 0 - 0.5 feet and 3 - 5 feet bgs from SUMP094, SUMP095, SUMP098, SUMP100, WRSUMP001, and WRSUMP003; and 4 samples (including one QC sample) collected at 0 - 0.5, 1 - 3, and 3 - 5 feet at boring 48SB01 were analyzed for dioxins/furans. Results of dioxins analysis were reported in the RI (Jacobs, 2002) and are shown in **Table C-2**. The concentrations reported as not detected (U-qualified) are shown in **Table C-2** as one-half of the reporting limit given in RI report. The value for the sample from 1 - 3 ft bgs at 48SB01 is the average of nondetected concentration (<0.124 ng/kg) and duplicate sample concentration (0.284 ng/kg).

2.5 Identification of Chemicals of Potential Concern

The COPCs were identified as chemicals that were detected at concentrations above one or more highly conservative criteria designed to eliminate from further evaluation those chemicals that are unlikely to cause adverse effects.

The COPCs for the residential risk assessment were identified using the following criteria:

- *Essential human nutrients* (calcium, chloride, iron, magnesium, phosphorus, potassium, and sodium) were eliminated as COPCs (TCEQ, 2001, 2003).
- *Risk-Based Screening*. A risk-based screening step was used to identify chemicals that would contribute significantly to human health risk. Chemicals with maximum detected concentrations (MDC) equal to or below risk-based screening concentrations were eliminated from further evaluation. The TCEQ risk-based screening values (RBSV) were used in this step (TCEQ, 2004). The RBSVs are concentrations that are protective of human health exposure via ingestion, inhalation, and dermal absorption pathways at a 1E-06 target risk level for carcinogens and a 0.1 target hazard quotient for noncarcinogens. Where contaminants have both cancer and noncancer toxicity factors, the RBSV represents the lower (i.e., more conservative) value. The RBSVs are protective of residential land-use scenarios. When an RBSV was not available for a chemical, other sources were consulted to develop risk-based screening concentrations such as the USEPA Region 6 medium-specific screening levels (MSSLs) (USEPA, 2004).
- *Frequency of Detection.* Chemicals were eliminated as COPCs if they were detected infrequently (5 percent or lower frequency of detection) at low levels, providing that at least 20 samples were analyzed for the chemical and the chemical is not known to be associated with site operations (TCEQ, 1998; USEPA, 1989). Chemicals detected infrequently, but at high concentrations, were retained in the evaluation unless their exclusion could be justified based on site process information or historical data.
- *Comparison to Background.* Concentrations of chemicals were compared to background concentrations specific to LHAAP by statistical methods and geochemical evaluations. The geochemical evaluations serve as an independent check of the statistical comparisons.

Results of soil analysis were evaluated as described above to provide the following characteristics of the data set (**Table C-3**):

- Number of samples, number of detects, number of non-detects, frequency of detection
- Minimum and maximum reporting limits

- Minimum and maximum detected values
- Mean, median, and standard deviation, as appropriate for the distribution
- 95 percent upper confidence limit (95% UCL) of the mean or median, as appropriate for the distribution
- 95 percent upper tolerance limit with 95 percent confidence (95%/95% UTL)
- 95 percent upper prediction limit (95% UPL).

2.5.1 Comparison of Metals to LHAAP-Specific Background Concentrations in Soil

A comparison to site-specific background concentrations was used to determine whether detected chemicals were related to LHAAP operations. The LHAAP-specific background concentrations for soil were developed using data that represent background concentrations for soil (Shaw, 2004c).

Concentrations of metals in soil samples shown to have at least one value that exceeds human health and ecological screening values were compared with LHAAP-specific background concentrations according to statistical methods described in USEPA (2002a) guidance.

2.5.1.1 Statistical Distribution Tests

The Shapiro-Wilk test was performed using USEPA (2002a) guidance to determine the statistical distribution of the data and to ensure that the assumptions inherent in later statistical calculations are valid. The Shapiro-Wilk test was also used to determine the distribution type of background data (Shaw, 2004c). These distribution tests were made to determine whether the normal or lognormal distribution, or a nonparametric distribution, could be used in comparisons with background data.

The Shapiro-Wilk test calculates the statistic W to test the null hypothesis H_0 : that the population has a normal distribution versus the alternate hypothesis H_A : that the population does not have a normal distribution. When applied to the logarithms of data values, the lognormality of the distribution is tested.

Two indicators of background concentration were used for screening purposes, the 95 percent upper tolerance limit with 95 percent confidence (95%/95% UTL), and the 95 percent upper prediction limit (95% UPL). Both the 95%/95% UTL and the 95% UPL can be used to screen the upper tail of the background concentration. The 95%/95% UTL value represents the background concentration below which 95 per cent of the concentrations can be said to fall with 95 percent confidence. The 95% UPL value represents the concentration that will be above the next single measurement with 95 percent confidence. Both screening values were used in this

screening evaluation (**Table C-3**). Both screening values result in the same identification of COPCs with the exception of aluminum, which was identified only by the 95% UPL value.

The 95%/95% UTL concentration of each metal was described for soil previously (Shaw, 2004c). The 95% UPL of the background concentration (**Table C-3**) was calculated as follows. If the background data followed either the normal or lognormal distribution the 95% UPL was calculated according to the equation (USEPA, 1992b):

UPL_{0.95} = X +
$$t_{n-1,0.95}$$
 x S x $(1+1/n)^{1/2}$ Equation C-1

where:

UPL _{0.95}	=	the 95% UPL
Х	=	mean background concentration
t _{n-1,0.95}	=	Student's t value for n-1 degrees of freedom and 95 percent confidence
S	=	standard deviation of the mean
n	=	number of samples

If the data were shown to be both normally and lognormally distributed, the distribution having the higher p value above 0.05 was used for the 95% UPL calculation. If the data were lognormally distributed, the 95% UPL value shown in **Table C-3** is the antilogarithm of the value calculated by Equation 1.

Nonparametric methods were used if the data do not follow either the normal or lognormal distribution. The 95% UPL concentration was determined by ranking the data from highest to lowest and calculating the 95th percentile rank according to the equation:

$$UPL_{0.95} = 95^{th}$$
 percentile = 0.95(n+1) Equation C-2

where:

UPL_{0.95} = concentration occupying the 95th percentile rank 95th percentile = the 95th percentile rank of the data set n = number of samples

This 95th percentile is the same as the 95% UPL according to the assumptions made in Equation C-1.

Comparison of MDC concentrations to RBSV values, to background screening concentrations represented by the 95%/95% UTL and 95% UPL values indicates that aluminum, antimony,

barium, cadmium, and mercury concentrations may exceed background levels (**Table C-3**) and, therefore, require direct statistical comparison to background data (USEPA, 2002a).

2.5.1.2 Statistical Comparisons

The 95%/95% UTL and the 95% UPL values were used for the initial screening of data (**Table C-3**). The statistical comparisons of LHAAP-48 samples with background were made according to USEPA (2002a) guidance.

All of the data sets in LHAAP-48 samples have either different distributions than the corresponding background data, or one distribution is nonparametric. Therefore, the data were compared using the Wilcoxon Rank Sum test (USEPA, 2002a), which tests for differences in median concentrations. All statistical inferences were made at the 95 percent confidence level. Tests were made using the Statistica[©] software package (StatSoft, 1997) at the 95 percent confidence level.

Box-and-whisker plots are a quick, robust graphical method recommended by the USEPA to visualize and compare two or more groups of data (USEPA, 1992b). These plots provide a summary view of the entire data set, including the overall location and degree of symmetry. The box encloses the central 50 percent of the data points so that the top of the box represents the 75th percentile and the bottom of the box represents the 25th percentile. The small box within the larger box represents the median of the data set. The upper whisker extends outward from the box to the maximum and minimum values.

For each metal, box plots of site and background data are placed side by side to visually compare the distributions and qualitatively determine whether the data sets are similar. Examination of the box plots confirms the results of statistical calculations by either of the tests employed. The results of statistical comparisons for soil are shown in **Attachment 1** and are summarized in **Table C-4**.

Statistical comparisons of aluminum, antimony, barium, cadmium, and mercury concentrations with their respective background concentrations (**Table C-4**) indicate that these metals occur above background levels at LHAAP-48.

2.5.1.3 Geochemical Evaluations

Certain data sets (aluminum, antimony, barium, cadmium, and mercury) contain a high proportion of undetected concentrations or have other limitations, such as a skewed distribution or high variability. Because natural background concentrations are inherently variable and span a wide range of concentrations, statistical evaluations alone (especially those based on univariate statistics) sometimes lead to misleading and high background concentrations. Therefore, a geochemical evaluation of data was used as an independent check of statistical conclusions.

Geochemical evaluations examine ratios of concentrations of selected metals to confirm that the samples have the expected geochemical relationships. Anomalous samples that may represent contamination can also be readily distinguished from uncontaminated samples. When properly evaluated, geochemistry can provide mechanistic explanations for the observed variability in yet naturally occurring metal concentrations and provide an independent check on purely statistical evaluations.

The results of geochemical evaluations indicate that aluminum and mercury concentrations are consistent with background and that three antimony samples, three barium concentrations and seven cadmium concentrations may reflect contamination (**Attachment 2**).

The three antimony samples having anomalous geochemical ratios were from borings LH-S95-01, LH-S98-01, and LH-S101-01 (**Attachment 2**, Table 1), which are located near Sumps 095, 098, and 101, respectively (**Figure C-1**). The three barium samples were from boring LH-S95-01, near Sump 095, and borings LH-S123-01 and LH-Y-06, both near Sump 123 (**Figure C-1**). The seven cadmium samples were from four locations: LH-S101-01 near Sump 101, from two depths at LH-123-01 near Sump 123, from two depths at LH-S94-01 near Sump 094, and two depths at LHWRS3-01 near WRS Sump 003 (**Attachment 2**, Table 1) (**Figure C-1**).

Of the three metals identified as COPCs (antimony, barium, and cadmium), barium is the metal most associated with flare and illuminator manufacturing at LHAAP-48 (main volume, Section 1.2). Because antimony compounds are used in pesticides and munitions, antimony could be related to LHAAP-48 operations. Cadmium is used in paint and other materials at industrial sites.

2.5.2 Organic Chemicals in Soil

Organic chemicals detected at concentrations above the screening criteria (**Table C-3**) are dioxins (as 2,3,7,8-tetracholor-p-dibenzo dioxin, TCDD toxicity equivalent), and polycyclic aromatic hydrocarbons (PAHs) (benzo(a)anthracene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and phenanthrene), and vinyl chloride.

Dioxins are not associated with LHAAP explosives manufacturing operations or manufacture of illumination devices at LHAAP-48 operations (see main volume, Section 1.2). The dioxins were detected at concentrations near the risk-based MSSL screening value for residential land use (3.90E-06 milligrams per kilogram [mg/kg], **Table C-3**), which is based on a cancer risk of 1E-06. Thus, it is unlikely that a residential risk assessment based on the maximum 2,3,7,8-TCDD equivalent concentration (1.55E-05 mg/kg, **Table C-3**) would represent a cancer risk to a hypothetical resident above the 1E-06 to 1E-04 risk range considered acceptable by the USEPA (USEPA, 1994). However, dioxins were conservatively identified as COPCs in soil for hypothetical residential use of LHAAP-48.

The PAH compounds were identified infrequently and at low concentrations relative to the RBSV values (**Table C-3**). These compounds are not associated with LHAAP or LHAAP-48 operations, but could be associated with the asphalt paving of roads at LHAAP-48. Therefore, these four PAH compounds are not identified as COPCs in soil for hypothetical residential use of LHAAP-48.

Vinyl chloride is a degradation product of TCE, which may have been used as a solvent at LHAAP-48. Although the frequency of vinyl chloride detection is less than 5 percent (1 of 48 samples), the single detected concentration (4.97E-01 mg/kg) exceeds the Tier 2 Medium specific Concentration (MSC) specified for vinyl chloride in soil for residential land use scenarios (3.6E-02 mg/kg, TCEQ, 2004). Therefore, vinyl chloride is included in the risk assessment for LHAAP-48.

2.6 Summary

Table C-3 illustrates the COPC screening process for surface soil based on comparison to conservative screening values, comparison with background concentrations, and weight of evidence criteria. Antimony, barium, and cadmium were identified as COPCs in soil associated with Sumps 094, 095, 101, 123, and WRSump 003, and dioxins were associated with soil boring 48SB01, and vinyl chloride was associated with Sump 99.

3.0 Exposure Assessment

An exposure assessment estimates the type and magnitude of potential exposure of receptors to COPCs associated with a site according to the following steps (USEPA, 1989):

- Description of land and water uses
- Identification of potential receptors and exposure scenarios
- Identification of exposure pathways
- Estimation of exposure point concentrations for COPCs
- Estimation of COPC intake rates for each exposure pathway

3.1 Land and Water Uses

The LHAAP-48 was built in 1953 to 1955 for the production of igniters for pyrotechnic and illuminating devices and was active until approximately 1997. The site, known as the igniter production area has an area of approximately 16 acres and is located northwest of LHAAP-35C(53), the Static Test Area, at the intersections of Yoakum Drive and Starr Ranch Road (**Figure C-1**).

The perimeter of LHAAP-48 is a mixture of heavily wooded areas and grasslands. The topography slopes gently to the southeast, and surface runoff from the northern part of the site enters an unnamed rainwater drainage ditch to the south. Numerous manmade drainage ditches were observed in the production area (Plexus, 2005), but no standing water was observed in the drainage ways at that time. Runoff from the southern portion of LHAAP-48 eventually enters Central Creek to the southeast and on to Caddo Lake. Transport by surface water runoff and discharge of shallow groundwater to other surface water bodies is evaluated in a separate report (Shaw, 2006).

Silty clay at the surface is underlain by clay to approximately 7-8 ft bgs. Below several feet of clay is silty clay with some silty sand to clayey sand layers that make up the shallow unsaturated zone. The sand layers are not continuous across the site; another clay layer lies below the sand.

The hydraulic conductivity in the shallow zone was estimated at 3.8E-5 centimeters per second and the groundwater flow direction in the shallow zone is to the southeast toward Central Creek (Jacobs, 2002).

There are nine process sumps and three waste rack sumps located at the LHAAP-48 site which could have been affected by the production of igniters for pyrotechnic and illuminating devices (Jacobs, 2002, 2003). Surface features include asphalt roads and parking areas. Chemicals that

may be related to LHAAP processes have been identified (Plexus, 2005) and those potentially related to LHAAP-48 operations are expected to include:

- Antimony: compounds are used in munitions, pesticides, and pigments.
- **Barium**: used as an oxidizer in the manufacture of illumination devices as barium chromate and barium nitrate.
- **Chromium**: used in the manufacture of hand-held signals and illuminating projectiles (e.g., barium chromate, lead chromate) as a component of red phosphorous.
- Lead: present in many industrial components, such as batteries and paints. Used in process components (e.g., lead thiocyanate in fuse primers, lead styphnate in trip flares, and lead chromate in delay assemblies).
- **Mercury**: Metallic mercury was used in instrument gauges at the laboratories where quality of ingredients was tested.
- Manganese: used in the delay assembly of 155 mm illuminating projectiles.
- **Hexachlorobenzene**: used as an ingredient of pyrotechnics in aircraft signal production.
- Other chemicals associated with the manufacture of munitions: 2,4,6-trinitrotoluene (TNT), 2,4- and 2-6-dinitrotoluene, 1,2,5-trinitrobenzene, and HMX.
- Chemicals associated with general industry: cadmium associated with paint, zinc associated with galvanized iron, chlorinated hydrocarbons uses as solvents and their degradation products.

3.2 Site Conceptual Model

The exposure assessment for soil and groundwater at LHAAP-48 incorporates a conceptual site exposure model (CSEM) to provide the basis for identifying and evaluating the potential risks to a hypothetical resident and helps verify that exposures are not overlooked. The elements of a CSEM include:

- Source of affected media
- Chemical release mechanisms
- Chemical transport pathways
- Transport media
- Exposure media
- Receptors
- Exposure pathways

The CSEM developed for the LHAAP-48 residential land-use scenario assessment is the same model developed for the current trespasser and future on-site worker (Figure 3-2 of Jacobs, 2003) with the following exceptions:

- The resident will exposed to COPCs in soil by incidental ingestion, inhalation of vapors and dust particles from soil and direct dermal contact.
- The resident will use shallow groundwater as a drinking water supply.
- Exposure of the resident to COPCs in fish is not assessed. Because the ephemeral unnamed creek at LHAAP-48 is in reality a rainwater ditch (Section 3.1), does not support a fish population, and a potential resident would have ready access to fish from Caddo Lake or one of the other watersheds, potential risk from ingestion of fish from the unnamed creek would represent the trespasser scenario evaluated in previous risk assessments (Jacobs, 2002, 2003). Therefore, the potential ingestion of fish from this ditch is not evaluated in this risk assessment.

The source-term concentration (STC) is the single concentration of a chemical that is representative of the environmental medium. Ideally, the STC should be the average concentration to which a receptor is exposed; i.e., the average calculated using all the samples taken from within a receptor's exposure area. Generally, the 95 percent upper confidence limit (95% UCL) on the arithmetic mean is estimated to account for uncertainty regarding adequacy of the sampling.

The 95% UCL was calculated using the bootstrapping technique for the residential risk assessment. Bootstrapping is a statistical technique where the given set of observations is resampled, with replacement (USEPA, 2002b). When repeated a large number of times, a relatively accurate estimation of the population variance can be determined, which allows for the development of confidence limits for the mean. Bootstrapping is considered a robust statistical method for calculating the UCL because it does not rely on assumptions on the distribution of the data set (USEPA, 2002b). Two thousand bootstrap replications were completed for each COPC. 95% UCLs were only developed for COPC, and only for chemicals with at least ten samples (TCEQ, 1998).

Information for COPCs in soil is summarized in **Table C-3**, which includes:

- Chemical name
- Frequency of detection
- Range of detected concentrations
- Range of laboratory reporting limit concentrations
- Type of statistical distribution of concentrations
- Arithmetic mean of site concentrations
- UCL on the arithmetic mean concentration

- Background screening concentration (the 95%, 95% upper tolerance limit (UTL, Shaw 2004c)
- The Texas RBSV concentration
- The 95% UPL concentration
- Identification of COPCs with the rationale for selection or rejection of a chemical as a COPC
- Source-term concentration used in the exposure assessment.

The 95% UCL or 95% UPL (**Table C-3**) could be used to estimate the most likely exposure (MLE) risk for hypothetical residents. Because the LHAAP-48 site area is larger than the expected area of a residential lot (1/8 acre, TCEQ, 1998), the maximum measure concentration of each COPC was selected as the STC for the risk assessment, and represents the reasonable maximum exposure (RME) scenario. This use of the maximum concentration includes the conservative assumption that the hypothetical resident could be exposed to the maximum concentration at any LHAAP-48 location. STC values for antimony, barium, cadmium, dioxins, and vinyl chloride were used in later exposure assessments for the hypothetical resident by the soil ingestion and dermal contact pathways. Use of the STC in the calculation of the airborne vapor and dust exposure concentration is described in **Section 3.5.2**.

3.3 Exposure Factors

This assessment is limited to the residential use of LHAAP-48. Assessments of maintenance workers and trespassers on LHAAP-48 were evaluated previously (Jacobs, 2003). If the LHAAP-48 resident visits other LHAAP sites or watersheds (Central Creek, Goose Prairie Creek, Harrison Bayou, or Saunder's Branch), those exposures are assumed to equal the trespasser scenario assessments reported for those sites (Jacobs, 2003).

The exposure factors used in the residential intake models are compiled in **Table C-5** (TCEQ, 1998; USEPA, 1989). Inhalation of vapor and dust emissions from soil and incidental ingestion and dermal contact pathways were assessed.

3.3.1 Identification of Exposure-Point Concentrations

The exposure-point concentrations of COPCs for direct exposure pathways for soil are the STCs estimated as described in **Section 3.2**. Exposure-point concentrations of COPCs for indirect inhalation exposure pathways that were estimated from soil STC are described in **Section 3.5.1**.

3.4 Identification of Exposure Models and Assumptions

The models used to quantify doses or intakes of the COPC by the identified exposure pathways were taken or modified from USEPA (1989) guidance and TCEQ (1998) guidance.

3.4.1 Ingestion Exposure to COPCs in Soil

The ingestion intake of carcinogenic COPCs in soil was estimated from the equation:

$$I_s = \frac{(C_s)(IRsadj)(EF)(CF)}{(AT)}$$
 Equation C-3

where:

Is	=	ingestion intake of COPC in soil (mg/kg-day, calculated)
Cs	=	concentration of COPC in soil (mg/kg)
IR _{sadj}	=	age-adjusted ingestion rate of soil (mg-year/kg-day)
EF	=	exposure frequency (days/year)
CF	=	conversion factor (1E-6 kg/mg)
ATc	=	averaging time for carcinogens (days; = 70 years \times 365 days/year).

The ingestion intake of noncarcinogenic COPCs in soil were calculated according to the equation:

$$I_s = \frac{(C_s)(IRsadj)(EF)(CF)}{(AT)}$$
 Equation C-4

where:

I_s	=	ingestion intake of COPC in soil (mg/kg-day, calculated)
Cs	=	concentration of COPC in soil (mg/kg)
IR _{sadj}	=	age-adjusted ingestion rate of soil (mg-year/kg-day)
EF	=	exposure frequency (days/year)
CF	=	conversion factor (1E-6 kg/mg)
AT	=	averaging time for exposure to noncarcinogen
		$(days; = 30 years \times 365 days/year).$

3.4.2 Inhalation Exposures to COPCs in Soil

The inhalation intake of carcinogenic COPCs in airborne vapor and dust suspended from soil is estimated from the equation:

$$C_a = \frac{(C_s)(CF)(EF)(ED)(1/VF+1/PEF)}{(AT_c)}$$
 Equation C-5

where:

Ca	=	concentration of COPC in airborne dust (micrograms per cubic meter [($\mu g/m^3$])
C_s	=	concentration of COPC in soil (mg/kg)
CF	=	conversion factor (1E3 µg/mg)
EF	=	exposure frequency (days/year)
ED	=	exposure duration (year)
VF	=	volatilization factor (m^3/kg) , chemical specific value calculated as described below
PEF	=	particulate emission factor ($4.63 \times 10^9 \text{ m}^3/\text{kg}$, TCEQ, 1998)
ATc	=	averaging time for carcinogens (days; = 70 years x 365 days/year).

The inhalation intake of airborne noncarcinogenic COPCs was calculated according to the equation:

$$C_a = \frac{(C_s)(EF)(ED)(1/VF + 1/PEF)}{(AT)}$$
 Equation C-6

where:

Ca	=	concentration of COPC in airborne dust (mg/m ³)
C_s	=	concentration of COPC in soil (mg/kg)
EF	=	exposure frequency (days/year)
ED	=	exposure duration (year)
AT	=	averaging time for exposure to noncarcinogens (days)
PEF	=	particulate emission factor ($4.63 \times 10^9 \text{ m}^3/\text{kg}$, TCEQ, 1998).

Because metals are not volatile, in inhalation exposure assessments for antimony, barium, and cadmium are based on the PEF only.

3.4.2.1 Volatilization Factor

The volatilization factor for the dioxin vapor inhalation assessment was calculated using the following equation (TCEQ, 1998):

$$VF = \frac{(LS \cdot V \cdot DH)}{A} x \frac{[3.14 \cdot a \cdot T]^{1/2}}{2 \cdot D_{ei} \cdot E \cdot K_{as}} x 10^{-3} kg / g$$
Equation C-7

and:

$$\alpha = \frac{D_{ei} \cdot E}{E + (p_s \cdot 1 - E) / K_{as}}$$
Equation C-8
$$K_{as} = (H/Kd)/41$$

where:

LS	=	the length of contaminated area (925 feet, 320 meters [m], Figure C-1)
V	=	wind speed in mixing zone (2.25 m/second [sec], TCEQ, 1998)
DH	=	diffusion height (2 m, TCEQ, 1998)
А	=	area of contamination, 578, 125 ft ² (6.45E+8 centimeter square [cm ²])
Т	=	exposure interval (sec, TCEQ, 1998)
D _{ei}	=	effective diffusivity (cm ² /s); equal to $[(D_i)(E^{0.33})]$, where D_i is the chemical specific molecular diffusivity in air (cm ² /s)
Е	=	default soil porosity (unitless, 0.35, TCEQ, 1998)
\mathbf{p}_{s}	=	soil or particulate density (2.65 grams [g]/cubic centimeters [cm ³], TCEQ, 1998)
K _{as}	=	soil to air partition coefficient (g soil/cm ³ air)
Н	=	chemical specific Henry's Law constant (atm-m ³ /mol)
K _d	=	chemical specific soil to water partition coefficient (cm ³ /g, $K_d = K_{oc} \times f_{oc}$
K _{oc}	=	organic carbon partition coefficient (cm^3/g)
\mathbf{f}_{oc}	=	fraction soil organic carbon content, (0.02, TCEQ, 1998).

3.4.3 Dermal Exposures to COPCs in Soil

Unlike the methods for estimating ingested intake of COPC, which quantify an administered dose, dermal dose is estimated as the dose that crosses the skin and is absorbed. For this reason, dermal toxicity values are also based on absorbed dose.

The absorbed dose of carcinogenic COPCs through contact with soil was estimated from the equation:

$$DAD = \frac{(C_s)(MCF)(DFadj)(ABSd)(EF)}{(ATc)}$$
 Equation C-9

where:

DAD	=	average dermally absorbed dose of COPC from soil exposure (mg/kg-day, calculated)
C_s	=	concentration of COPC in soil (mg/kg)
MCF	=	mass conversion factor (1E-6 kg/mg)
ABSd	=	dermal absorption fraction of chemical (unitless)
DFadj	=	age-adjusted dermal absorption factor (mg-yr/kg-day)
EF	=	exposure frequency (days/year)
ATc	=	averaging time for carcinogens (days; = 70 years x 365 days/year).

Dermal absorption factor (ABSd) values are provided in TCEQ (1998) guidance. The dermal absorbed doses of noncarcinogenic COPCs in soil (except cadmium) are usually calculated separately for children and adults according to the equation:

$$DAD = \frac{(C_s)(MCF)(ED)(EF)(SA)(AF)(ABSd)}{(BW)(AT)}$$
 Equation C-10

where:

DAD	=	average dermally absorbed dose of COPC to the child or the adult from exposure to soil (mg/kg-day, calculated)
MCF	=	conversion factor (1E-6 kg/mg)
ED	=	exposure duration; (6 years for child, 24 years for adult)

 SA = surface area of exposed skin (2200 cm² for child, 2500 cm² for adult) AF = adherence factor of soil to skin; (0.2 mg/cm²-day for both child and adult receptors) ABSd = dermal absorption fraction of chemical (unitless value same for both child and adult receptors) BW = body weight: (15 kg for child, 70 kg for adult) AT = averaging time for noncarcinogens (days; = 6 years x 365 days/year for child, 24 years x 365 days/year for adult). 	EF	=	exposure frequency (days/year)
ABSd =dermal absorption fraction of chemical (unitless value same for both child and adult receptors)BW =body weight: (15 kg for child, 70 kg for adult)AT =averaging time for noncarcinogens (days; = 6 years x 365	SA	=	1
both child and adult receptors)BW =body weight: (15 kg for child, 70 kg for adult)AT =averaging time for noncarcinogens (days; = 6 years x 365	AF	=	adherence factor of soil to skin; (0.2 mg/cm ² -day for both child and adult receptors)
AT = averaging time for noncarcinogens (days; = 6 years x 365	ABSd	=	1
	BW	=	body weight: (15 kg for child, 70 kg for adult)
	AT	=	

Because the surface area of skin exposed for the adult receptor is slightly higher than that of the child, the dermal DAD calculated for the adult is slightly higher than the child's DAD by a factor of $2500 \text{ cm}^2 / 2200 \text{ cm}^2$, or approximately 14%. However, this slightly greater adult exposure is more than offset by the lower body weight of the child, such that the DAD calculated for the child exceeds that of the child by a factor of 70 kg / 15 kg, or approximately 460%. Therefore, the exposures calculated for the child are protective of the adult.

The dermal absorbed dose of cadmium was calculated for both children and adults according to the equation (TCEQ, 1998):

$$DAD = \frac{(C_s)(MCF)(EF)(DFadj)(ABSd)}{(AT.AgeAdj)}$$
 Equation C-11

where:

DAD	=	average dermally absorbed dose of cadmium to the child or the adult from exposure to soil (mg/kg-day, calculated)
MCF	=	conversion factor (1E-6 kg/mg)
DFadj	=	age-adjusted dermal factor (mg-yr/kg-day)
ABSd	=	dermal absorption fraction of chemical (unitless value same for both child and adult receptors)
EF	=	exposure frequency (days/year)
AT.AgeAdj	=	age-adjusted averaging time for dermal exposure to cadmium (days; = 30 years x 365 days/year).

4.0 Toxicity Assessment

The toxicity assessment identifies the cancer and noncancer effects that may arise from exposure of humans to the COPC and provides an estimate of the quantitative relationship between the magnitude and duration of exposure and the probability or severity of adverse effects. The latter is accomplished by the derivation of cancer and noncancer toxicity values, as described in the following sections.

4.1 Carcinogenic Effects

The evaluation of the potential carcinogenicity of a chemical includes both a qualitative and a quantitative aspect (USEPA, 1989). The qualitative aspect is a weight-of-evidence evaluation of the likelihood that a chemical might induce cancer in humans. The USEPA recognizes six weight-of-evidence group classifications for carcinogenicity:

- Group A Human Carcinogen: human data are sufficient to identify the chemical as a human carcinogen
- Group B1 Probable Human Carcinogen: human data indicate that a causal association is credible, but alternative explanations cannot be dismissed
- Group B2 Probable Human Carcinogen: human data are insufficient to support a causal association, but testing data in animals support a causal association
- Group C Possible Human Carcinogen: human data are inadequate or lacking, but animal data suggest a causal association, although the studies have deficiencies that limit interpretation
- Group D Not Classifiable as to Human Carcinogenicity: human and animal data are lacking or inadequate
- Group E Evidence of Noncarcinogenicity to Humans: human data are negative or lacking, and adequate animal data indicate no association with cancer

The toxicity value for carcinogenicity, the cancer slope factor (SF), is an estimate of potency. Potency estimates are developed only for chemicals in Groups A, B1, B2 and C, and only if the data are sufficient. The potency estimates are statistically derived from the dose-response curve from the best human or animal study or studies of the chemical. The cancer risk factor for inhaled carcinogens is the unit risk factor (URF) and also represents an estimate of cancer potency when applied to the airborne carcinogen concentration to which the person is exposed.

The SF is usually expressed as "extra risk" per unit of intake or exposure; that is, the additional risk above the incidence in an unexposed population. The SF is expressed as risk per mg/kg-day.

The URF is expressed as risk per $\mu g/m^3$. In order to be appropriately conservative, the SF (or URF) is usually the 95 percent upper bound on the slope of the dose-response curve extrapolated from high (experimental) doses to the low-dose range expected in environmental exposure scenarios. USEPA (1989) assumes that there are no thresholds for carcinogenic expression; therefore, any exposure represents some quantifiable risk.

4.2 Noncarcinogenic Effects

Many chemicals, whether or not associated with carcinogenicity, are associated with noncarcinogenic effects. The evaluation of noncancer effects (USEPA, 1989) involves:

- Qualitative identification of the adverse effect(s) associated with the chemical; these may differ depending on the duration (e.g., acute or chronic) or route (e.g., oral or inhalation) of exposure
- Identification of the critical effect for each duration of exposure (i.e., the first adverse effect that occurs as dose is increased)
- Estimation of the threshold dose for the critical effect for each duration of exposure
- Development of an uncertainty factor; i.e., quantification of the uncertainty associated with interspecies extrapolation, intraspecies variation in sensitivity, severity of the critical effect, slope of the dose-response curve, and deficiencies in the data base in regard to developing a reference dose (RfD) for human exposure.
- Identification of the target organ for the critical effect for each route of exposure.

This information is used to derive the reference dose, RfD, which is an exposure route- and duration-specific toxicity value expressed as mg/kg-day. The RfD is considered to be the dose for humans, with uncertainty of an order of magnitude or greater, at which adverse effects are not expected to occur. The noncancer hazard for inhaled noncarcinogens is the reference concentration (RfC) and also represents an estimate of toxicity when applied to the airborne concentration to which the person is exposed. The RfC is expressed in units of mg/m³ and also represents an estimate of noncancer hazard when applied to the airborne concentration to which the person is exposed.

Dermal SFs and RfDs are derived from the corresponding oral values, provided there is no evidence to suggest that dermal exposure induces exposure route-specific effects that are not appropriately modeled by oral exposure data. In the derivation of a dermal RfD, the oral RfD is multiplied by the gastrointestinal absorption factor (ABS_{GI}), expressed as a decimal fraction. The resulting dermal RfD, therefore, is based on absorbed dose. The RfD based on absorbed dose is the appropriate value with which to compare a dermal dose because dermal doses are expressed as absorbed rather than exposure doses. The dermal SF is derived by dividing the oral

SF by the ABS_{GI} . The oral SF is divided, rather than multiplied, by the ABS_{GI} because SFs are expressed as reciprocal doses.

Toxicity values were chosen using the following hierarchy:

- USEPA's on-line integrated risk information system (IRIS) database (USEPA, 2006) containing toxicity values that have undergone the most rigorous Agency review
- toxicity values provided in TCEQ (1998) guidance or in 30TAC§350 guidance as updated through March 2006.
- The ABS_{GI} values used to derive dermal RfDs and SFs from the corresponding oral toxicity values were obtained from TCEQ guidance (TCEQ, 1998).

Toxicity values for the 2,3,7,8-TCDD TEQ dioxin surrogate were evaluated using the following documents:

- USEPA's on-line integrated risk information system (IRIS) database (USEPA, 2006) containing toxicity values that have undergone the most rigorous Agency review
- Toxicity values provided in TCEQ (1998) guidance or in 30TAC§350 guidance as updated through March 2006.
- *Human Health Medium-Specific Screening Levels*, November 2004, (USEPA, 2004) accessed online in January 2006.
- *Health Effects Assessment Summary Tables (HEAST)*, (HEAST, 1997), adopted in the USEPA (2004) document.
- The ABS_{GI} values used to derive dermal RfDs and SFs from the corresponding oral toxicity values were obtained from TCEQ guidance (TCEQ, 1998, 2004).

Toxicity factors used in the evaluation of cancer risk and noncancer hazard are shown in **Table C-6**.

5.0 Risk Characterization

Risk characterization is the combination of the results of the exposure assessment and toxicity assessment to yield a quantitative expression of cancer risk or noncancer hazard for the exposed receptors. This quantitative expression is the probability of developing cancer, or a non-probabilistic comparison of estimated dose with a reference dose for noncancer effects. Quantitative estimates are developed for individual chemicals, exposure pathways, and exposure media for each receptor. The risk characterization follows USEPA (1989) methodology as modified by more recent information and guidance. The USEPA methods are, appropriately, designed to be health-protective and tend to overestimate, rather than underestimate, risk.

5.1 Carcinogenic Effects Of Chemicals

The risk from exposure to chemical carcinogens is estimated as the probability of an individual developing cancer over a lifetime, and is called the incremental lifetime cancer risk (ILCR). In the low-dose range, which would be expected for most environmental exposures, cancer risk from exposure by ingestion and dermal exposures is estimated from the following linear equation (USEPA, 1989):

$$ILCR = (CDI)(SF)$$
 Equation C-12

where:

ILCR	=	incremental lifetime cancer risk, a unitless expression of the probability of developing cancer, adjusted for background incidence (calculated)
CDI	=	chronic daily intake, averaged over 70 years (mg/kg-day); I _S (see Equation C-3) or DAD (see Equation C-9),
SF	=	cancer slope factor (per mg/kg-day).

The cancer risk from exposure to carcinogens by the inhalation pathway is estimated from the following linear equation (TCEQ, 1998):

$$ILCR = (C_a)(URF)$$
 Equation C-13

where:

ILCR = incremental lifetime cancer risk, a unitless expression of the probability of developing cancer, adjusted for background incidence (calculated)

- C_a = concentration of carcinogenic COPC in airborne dust ($\mu g/m^3$) (see Equation C-5)
- URF = cancer slope factor (per $\mu g/m^3$).

As a matter of policy, USEPA (1989) considers the carcinogenic potency of simultaneous exposure to low doses of carcinogenic chemicals to be additive, regardless of the chemical's mechanisms of toxicity or sites (organs of the body) of action. Cancer risk arising from simultaneous exposure by a given pathway to multiple chemicals is estimated from the following equation:

$$Risk_{p} = ILCR_{(chem 1)} + ILCR_{(chem 2)} + ILCR_{(chem i)}$$
 Equation C-14

where:

Risk _p	=	total pathway risk of cancer incidence (calculated)
ILCR(chem _i)	=	individual chemical cancer risk

Cancer risk for a given receptor across pathways and across media is summed in the same manner.

5.2 Noncancer Effects of Chemicals

The hazards associated with noncancer effects are evaluated by comparing an exposure level or intake with an RfD. The HQ from exposure by ingestion and dermal exposures, defined as the ratio of intake to RfD, is estimated as (USEPA, 1989):

$$HQ = I / RfD$$
 Equation C-15

where:

HQ = hazard quotient (unitless, calculated)
 I = intake of chemical averaged over subchronic or chronic exposure period (mg/kg-day); I_s (see Equation C-4) or DAD (see Equation C-10, or C-11 for dermal exposure to cadmium)
 RfD = reference dose (mg/kg-day)

Chemical noncancer hazards are evaluated using chronic RfD values. This approach is different from the probabilistic approach used to evaluate cancer risks. An HQ of 0.01 does not imply a 1 in 100 chance of an adverse effect, but indicates that the estimated intake is 100 times lower than

the RfD. An HQ of unity indicates that the estimated intake equals the RfD. If the HQ is greater than unity, there may be concern for potential adverse health effects.

The noncancer hazard from exposure by the inhalation pathway is estimated from the following linear equation (TCEQ, 1998):

$$HQ = (C_a)/(RfC)$$
 Equation C-16

where:

HQ	=	hazard quotient (unitless, calculated)
Ca	=	concentration of noncarcinogenic COPC in airborne dust (mg/m^3) (see Equation C-6)
RfC	=	reference concentration (mg/m^3) .

In the case of simultaneous exposure of a receptor to several chemicals, an HI is calculated as the sum of the HQs by:

$$HI = HQ_1 + HQ_2 + \dots HQ_i$$
 Equation C-17

where:

HI = hazard index (unitless, calculated) HQ_i = hazard quotient for the i^{th} toxicant.

5.3 Risks Associated With Exposure to Soil

Antimony, barium, cadmium, dioxins, and vinyl chloride were identified as COPCs in soil (**Table C-3**). The estimated cancer risk and noncancer hazard from potential exposure by the ingestion pathway are shown in **Tables C-7a** and **C-7B**. The cancer risks and noncancer hazards from potential exposures by the inhalation and dermal exposure pathways are shown in **Tables C-8a** and **C-8b**, and **Tables C-9a** and **C-9b**, respectively. Total cancer risk and noncancer hazard estimated for exposures of the potential resident to all COPCs by all pathways are shown in **Tables C-10a** and **C-10b**.

The total cancer risk (6E-05, **Table C-10a**) is well below the acceptable range of (1E-06 to 1E-04) (USEPA, 1994). The noncancer hazard (Total HI, 4E-01, **Table C-10b**) is less than 1 and is, therefore, below acceptable limits (USEPA, 1994). Therefore, chemicals are not of concern for exposures of potential residents to soil at LHAAP-48.

6.0 Uncertainty Analysis

Generally, risk assessments carry two types of uncertainty. Measurement uncertainty refers to the usual variance that accompanies scientific measurements, e.g., analytical accuracy and precision associated with contaminant concentrations. The results of this risk assessment reflect the accumulated variances of the individual measured values.

A different kind of uncertainty stems from data gaps, i.e., additional information needed to complete the database for the assessment, uncertainties associated with exposure parameters assumed for children and adults (**Table C-5**), toxicity factors used in the characterization of risk (**Table C-6**), and assumptions regarding additively of risk and hazard estimates (**Sections 5.1** and **5.2**). The methodology accounts for these uncertainties by using various conservative assumptions that result in overestimations of risks. This risk assessment incorporates all of these uncertainties, which are discussed in detail in USEPA (1989) guidance and the previous risk assessment (Jacobs, 2003).

The assumption that potential residents would be exposed to the maximum concentration of all COPCs represents a conservative assumption leading to an expected over-estimation of risk at LHAAP-48.

7.0 References

Jacobs, 2002, *Final Remedial Investigation Report, Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60,67, Goose Prairie Creek,* Volumes 1 and 2: Report, Longhorn Army Ammunition Plant, Karnack, Texas, Oak Ridge, Tennessee, April.

Jacobs, 2003, Draft Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60,67, Goose Prairie Creek, Saunder's Branch, and Caddo Lake, Volume 1, Longhorn Army Ammunition Plant, Karnack, Texas, Oak Ridge, Tennessee, June.

Plexus Scientific, Inc. (Plexus), 2005, Final Environmental Site Assessment Phase I and II Report, Production Areas, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw Environmental, Inc. (Shaw), 2004a, *Final Work Plan Groundwater Data Gaps Investigation Groups 2 and 4, Longhorn Army Ammunition Plant, Karnack, Texas*, Houston, Texas, February.

Shaw, 2004b, Final Installation-Wide Background Study Work Plan, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, January.

Shaw, 2004c, Final Background Soil Study Report, Longhorn Army Ammunition Plant, Karnack Texas, Houston, Texas, July.

Shaw, 2005, Draft Final Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, May.

Shaw, 2006, Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army ammunition Plant, Karnack, Texas, September.

StatSoft, Inc. 1997. STATISTICA for Windows Version 5.1, Tulsa, OK, <<u>http://www.statsoft.com</u>> (February 2004).

Texas Commission on Environmental Quality (TCEQ), 1998, Interoffice Memorandum from Ronald R. Pedde to Remediation Division Staff regarding implementation of the existing risk reduction rules (a.k.a. TNRCC Consistency Memorandum), July.

TCEQ, 2001. Interoffice Memorandum from Joseph T. Haney, Jr., (TCEQ) to Camarie Perry, Office or Permitting, Remediation & Registration, *Evaluation of the Potential Health Impacts of Exposure to Iron, Calcium, Magnesium, Potassium, sodium, and Phosphorus through Soil Ingestion*, October.

TCEQ, 2003, Interoffice Memorandum, *Compounds for which Calculation of a Human Health MSC is Not Required*, October, available online http://www.tnrcc.state.tx.us/permitting/rrr.htm

TCEQ, 2004, Texas Risk Reduction Rules (30TAC§335) as updated through March 2006.

U.S. Environmental Protection Agency (USEPA), 1983, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-0202, March.

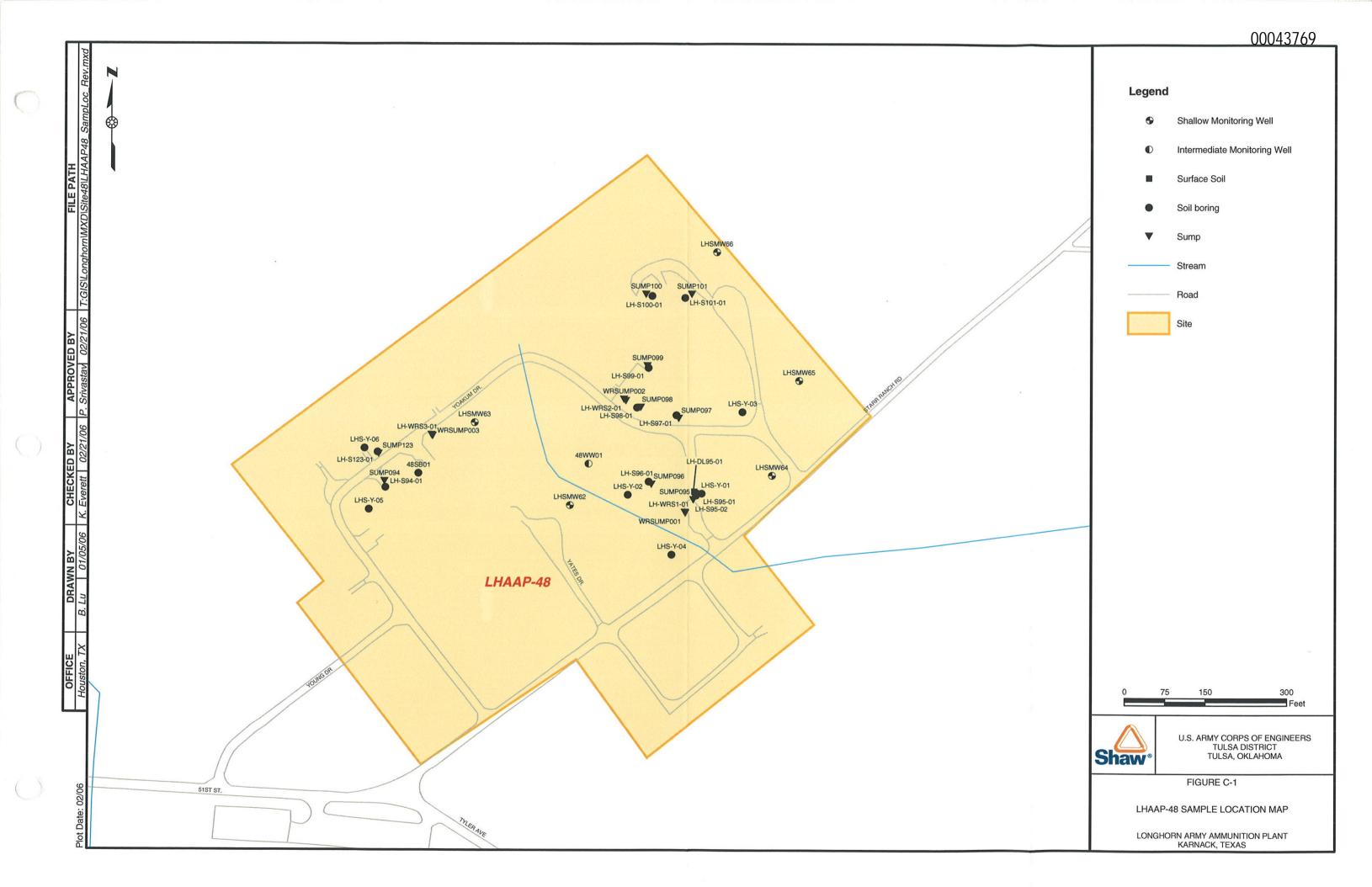
USEPA, 1989, *Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A)*, Interim Final, EPA/540/1-89/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC, September.

USEPA, 1992a, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition (September, 1992), with Updates I-III.

USEPA, 1992b, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance*, EPA/530/R-93/003, Environmental Statistics and Information Division, Office of Policy, Planning, and Evaluation, July.

USEPA, 1992c, *Guidance for Data Usability in Risk Assessment (Part A)*, EPA Publication 9285.7-09A, PB92-973356, Office of Emergency and Remedial Response, April.

USEPA, 1994, National Oil and Hazardous Substances Pollution Contingency Plan, 40 Code of Federal Regulations Part 300, 59 Federal Register 47384, October 10.


USEPA, 2002a, *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites*, EPA 540-R-01-003, OSWER 9285.7-41, Office of Environmental and Remedial Response, September.

USEPA, 2002b, Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites, OSWER 9285.6-10, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC.

USEPA, 2006, Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C. accessed at http://www.epa.gov/iris, January 2006.

Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F. and Zacharewski, T., 1998, *Toxic Equivalency Factors (TEFs) for PCBs, PCDDs,PCDFs for Humans and Wildlife*, Environmental Health Perspectives 106(12):775-792.

Figures

Tables

Table C-1 Soil Samples LHAAP-48 Longhorn Army Ammunition Plant Karnack, Texas

Location	on Sample Number Purpose Type Sample Da		Sample Date	Depth (ft)	Analyses			
Soil ^a								
8SB01	48SB01(0-0.5)	REG	SST	28-Jul-98	0 - 0.5	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
8SB01	48SB01(1-3)	REG	SS	28-Jul-98	1 - 3	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
8SB01	48SB01(1-3)QC	FD	SS	28-Jul-98	1 - 3	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
8SB01	48SB01(3-5)	REG	DS	28-Jul-98	3 - 5	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
SUMP094	SUMP094(0-0.5)	REG	SS	28-Jul-98	0 - 0.5	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
SUMP094	SUMP094(3-5)	REG	DS	28-Jul-98	3 - 5	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
SUMP095	SUMP095(0-0.5)	REG	SS	4-Aug-98	0 - 0.5	Dioxins, Exp, Metals, SVOC, VOC		
SUMP095	SUMP095(3-5)	REG	DS	4-Aug-98	3 - 5	Dioxins, Exp, Metals, SVOC, VOC		
SUMP098	SUMP098(0-0.5)	REG	SS	4-Aug-98	0 - 0.5	Dioxins, Exp ^b , Metals, SVOC, VOC		
SUMP098	SUMP098(3-5)	REG	DS	4-Aug-98	3 - 5	Dioxins, Exp ^b , Metals, SVOC, VOC		
SUMP100	SUMP100(0-0.5)	REG	SS	7-Aug-98	0 - 0.5	Dioxins, Exp ^b , Metals, SVOC, VOC		
SUMP100	SUMP100(3-5)	REG	DS	7-Aug-98	3 - 5	Dioxins, Exp ^b , Metals, SVOC, VOC		
VRSUMP001	WRSUMP001(05)	REG	SS	6-Aug-98	0 - 0.5	Dioxins, Exp, Metals, SVOC, VOC		
VRSUMP001	WRSUMP001(3-5)	REG	DS	6-Aug-98	3 - 5	Dioxins, Exp, Metals, SVOC, VOC		
VRSUMP003	WRSUMP003(0-0.5)	REG	SS	6-Aug-98	0 - 0.5	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
VRSUMP003	WRSUMP003(3-5)	REG	DS	6-Aug-98	3 - 5	Dioxins, Exp, Metals, Pest, PCB, SVOC, VOC		
		DEC	De	6-Dec-00	3 - 5	ТРН		
HOSB16 HOSB16	HOSB16(3-5) HOSB16(3-5)QC	REG FD	DS DS	6-Dec-00 6-Dec-00	3 - 5	TPH		
IOSB16	HOSB16(0-0.5)	REG	SST	6-Dec-00	0 - 0.5	ТРН		
IOSB16	HOSB16(8-10)	REG	DS	6-Dec-00	8 - 10	ТРН		
H-DL95-01	LH-DL95-01	REG	SS	26-Jun-93	2 - 2.5	Exp ^b , Metals, SVOC, VOC		
H-S100-01	LH-S100-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
.H-S100-01	LH-S100-01 QC	FD	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
H-S100-01	LH-S100-01_2	REG	SS	26-Jun-93	1.5 - 3	Exp ^b , Metals, SVOC, VOC		
H-S101-01	LH-S101-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
_H-S101-01	LH-S101-01_2	REG	DS	26-Jun-93	3.8 - 4.2	Exp ^b , Metals, SVOC, VOC		
11 0400 04		DEO	00	00 hun 00	05 45			
_H-S123-01	LH-S123-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
_H-S123-01	LH-S123-01_2	REG	DS	26-Jun-93	11 - 12.5	Exp ^b , Metals, SVOC, VOC		
_H-S94-01	LH-S94-01_1	REG	SS	20-Aug-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
_H-S94-01	 LH-S94-01_2	REG	DS	20-Aug-93	2.9 - 3.5	Exp ^b , Metals, SVOC, VOC		
11 005 04		550						
H-S95-01	LH-S95-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
H-S95-01	LH-S95-01 QC	FD	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
-H-S95-01	LH-S95-01_2	REG	DS	26-Jun-93	5.5 - 6.2	Exp ^b , Metals, SVOC, VOC		
-H-S95-01	LH-S95-01_3	REG	DS	26-Jun-93	11.3 - 12	Exp ^b , Metals, SVOC, VOC		
H-S95-02	LH-S95-02_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
H-S95-02	LH-S95-02_2	REG	DS	26-Jun-93	4 - 4.5	Exp ^b , Metals, SVOC, VOC		
H-S95-02	LH-S95-02_3	REG	DS	26-Jun-93	5.5 - 6	Exp ^b , Metals, SVOC, VOC		
11-030-02	LI1-030-02_0	REG	00	20-3011-33	5.5 - 0			
H-S96-01	LH-S96-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
_H-S96-01	 LH-S96-01_2	REG	SS	26-Jun-93	2 - 2.8	Exp ^b , Metals, SVOC, VOC		
H-S96-01	LH-S96-01_3	REG	DS	26-Jun-93	11 - 12.5	Exp ^b , Metals, SVOC, VOC		
						b		
H-S97-01	LH-S97-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
.H-S97-01	LH-S97-01_2	REG	DS	26-Jun-93	3.9 - 4.7	Exp ^b , Metals, SVOC, VOC		
H-S97-01	LH-S97-01_3	REG	DS	26-Jun-93	11 - 11.7	Exp ^b , Metals, SVOC, VOC		
.H-S98-01	LH-S98-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
H-S98-01	LH-S98-01_1	REG	SS	26-Jun-93	1.5 - 3	Exp ^b , Metals, SVOC, VOC		
.H-S99-01	LH-S99-01_1	REG	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
.H-S99-01	LH-S99-01 QC	FD	SS	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC		
H-S99-01	LH-S99-01_2	REG	SS	26-Jun-93	2 - 2.8	Exp ^b , Metals, SVOC, VOC		
.H-S99-01	LH-S99-01_3	REG	DS	26-Jun-93	12 - 12.8	Exp ^b , Metals, SVOC, VOC		

Table C-1 Soil Samples LHAAP-48 Longhorn Army Ammunition Plant Karnack, Texas

Location	Sample Number	Purpose	Туре	Sample Date	Depth (ft)	Analyses
LHSMW62	LHS-MW62	REG	SST	5-Oct-94	0 - 0.5	Exp, Metals, SVOC, VOC
LHSMW63	LHS-MW63	REG	SST	5-Oct-94	0 - 0.5	Exp, Metals, SVOC, VOC
LHSMW64	LHS-MW64	REG	SST	5-Oct-94	0 - 0.5	Exp, Metals, SVOC, VOC
LHSMW65	LHS-MW65	REG	SST	5-Oct-94	0 - 0.5	Exp, Metals, SVOC, VOC
LHSMW66	LHS-MW66	REG	SST	5-Oct-94	0 - 0.5	Exp, Metals, SVOC, VOC
LHS-Y-01	LHS-Y-01	REG	SLDG	11-Jan-95	0 - 0.5	Exp, Metals, SVOC, VOC
LHS-Y-01	LHS-Y-01QC	FD	SLDG	11-Jan-95	0 - 0.5	Exp, Metals, SVOC, VOC
LHS-Y-02	LHS-Y-02	REG	SLDG	11-Jan-95	0 - 0.5	Exp. Metals, SVOC, VOC
LHS-Y-03	LHS-Y-03	REG	SLDG	11-Jan-95	0 - 0.5	Exp, Metals, SVOC, VOC
LHS-Y-04	LHS-Y-04	REG	SLDG	11-Jan-95	0 - 0.5	Exp, Metals, SVOC, VOC
LHS-Y-05	LHS-Y-05	REG	SLDG	11-Jan-95	0 - 0.5	Exp, Metals, SVOC, VOC
LHS-Y-06	LHS-Y-06	REG	SLDG	11-Jan-95	0 - 0.5	Exp, Metals, SVOC, VOC
		550	0.00			
LH-WRS1-01	LH-WRS1-01_1	REG	SLDG	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC
LH-WRS1-01	LH-WRS1-01 QC	FD	SLDG	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC
LH-WRS1-01	LH-WRS1-01_2	REG	SLDG	26-Jun-93	3.5 - 5	Exp ^b , Metals, SVOC, VOC
LH-WRS1-01	LH-WRS1-01_3	REG	SLDG	26-Jun-93	11 - 12.5	Exp ^b , Metals, SVOC, VOC
LH-WRS2-01	LH-WRS2-01 1	REG	SLDG	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC
LH-WRS2-01	LH-WRS2-01_2	REG	SLDG	26-Jun-93	3 - 3.7	Exp ^b , Metals, SVOC, VOC
LH-WRS3-01	LH-WRS3-01_1	REG	SLDG	26-Jun-93	0.5 - 1.5	Exp ^b , Metals, SVOC, VOC
LH-WRS3-01	LH-WRS3-01_2	REG	SLDG	26-Jun-93	3.5 - 4.3	Exp ^b , Metals, SVOC, VOC
LH-WRS3-01	LH-WRS3-01_3	REG	SLDG	26-Jun-93	10.5 - 10.9	Exp ^b , Metals, SVOC, VOC

^a Surface soil is defined as 0 to 15 feet below ground surface.

^b Explosive analysis includes only 2,4- and 2,6-dinitrotoluene.

DS = Subsurface soil sample

Exp = Explosives

FD = Field duplicate; the field duplicate was averaged with the regular sample to produce one result for the same sample location and depth.

ft = feet below ground surface

PCB = Polychlorinated biphenyls

Pest = Organochlorine pesticides REG = Regular environmental sample

SLDG = Sludge sample

SO = Soil sample

SS = Surface soil sample

SST = Surface soil-top layer sample

SVOC = Semivolatile organic compound

TPH = Total petroleum hydrocarbon

VOC = Volatile organic compound

Table C-2
2,3,7,8-TCDD Toxicity Equivalent Quotient Concentrations of Dioxin and Furan Congeners in Soil at LHAAP- 48

Location:		48SE	48SB01		48SB01		B01
Sample Number:		48SB01(0-0.5)		48SB01(1-3)		48SB01(3-5)	
Date Sampled:		7/28/1	1998	7/28/*	1998	7/28/1998	
Depth (ft.):		0-0.	50	1-	3	3	-5
		Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	TEF	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN	1	0.393	3.93E-01	0.065	6.50E-02	0.0765	7.65E-02
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	1	0.815	8.15E-01	0.08	8.00E-02	0.0955	9.55E-02
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.1	5.042	5.04E-01	0.405	4.05E-02	0.0925	9.25E-03
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.1	13.723	1.37E+00	1.03	1.03E-01	0.0855	8.55E-03
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.1	10.279	1.03E+00	0.749	7.49E-02	0.082	8.20E-03
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	0.01	321.192	3.21E+00	36.438	3.64E-01	3.497	3.50E-02
OCTACHLORODIBENZO-p-DIOXIN	0.0001	2578.666	2.58E-01	2440.99	2.44E-01	137.899	1.38E-02
2,3,7,8-TETRACHLORODIBENZOFURAN ^a	0.1	0.144	1.44E-02	0.204	2.04E-02	0.142	1.42E-02
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.05	10.457	5.23E-01	0.46	2.30E-02	0.0695	3.48E-03
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.5	0.556	2.78E-01	0.05	2.50E-02	0.0705	3.53E-02
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.1	6.398	6.40E-01	0.508	5.08E-02	0.046	4.60E-03
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.1	4.603	4.60E-01	0.278	2.78E-02	0.044	4.40E-03
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.1	3.765	3.77E-01	0.059	5.90E-03	0.05	5.00E-03
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0.01	59.918	5.99E-01	4.061	4.06E-02	0.362	3.62E-03
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.01	1.61	1.61E-02	0.94	9.40E-03	0.076	7.60E-04
OCTACHLORODIBENZOFURAN	0.0001	93.385	9.34E-03	7.522	7.52E-04	0.108	1.08E-05
2,3,7,8-TCDD-TEQ concentration (mg/kg) ^b =			1.05E-05		1.18E-06		3.18E-07
Exposure Point Concentration of 2,3,7,8-TCDD TEQ							
used in risk assessment is 1.55E-05 mg/kg, the							
maximum value.							

Table C-2
2,3,7,8-TCDD Toxicity Equivalent Quotient Concentrations of Dioxin and Furan Congeners in Soil at LHAAP- 48

Location:	SUMF	2094	SUMP094		SUM	P095
Sample Number:	SUMP09	4(0-0.5)	SUMP0	94(3-5)	SUMPOS	5(0-0.5)
Date Sampled:	8/7/1998		8/7/1998		8/4/1998	
Depth (ft.):	0-0.	50	3-	5	0-0	.50
	Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN	1.159	1.16E+00	0.211	2.11E-01	0.224	2.24E-01
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	1.669	1.67E+00	0.179	1.79E-01	0.229	2.29E-01
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	2.333	2.33E-01	0.215	2.15E-02	0.7125	7.13E-02
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	15.399	1.54E+00	0.12	1.20E-02	14.63	1.46E+00
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	1.548	1.55E-01	0.143	1.43E-02	10.442	1.04E+00
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	504.751	5.05E+00	0.666	6.66E-03	366.06	3.66E+00
OCTACHLORODIBENZO-p-DIOXIN	5370.28	5.37E-01	20.392	2.04E-03	8678.074	8.68E-01
2,3,7,8-TETRACHLORODIBENZOFURAN ^a	1.621	1.62E-01	2.293	2.29E-01	1.935	1.94E-01
1,2,3,7,8-PENTACHLORODIBENZOFURAN	11.341	5.67E-01	0.12	6.00E-03	0.206	1.03E-02
2,3,4,7,8-PENTACHLORODIBENZOFURAN	2.07	1.04E+00	0.126	6.30E-02	0.212	1.06E-01
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	22.923	2.29E+00	0.112	1.12E-02	14.042	1.40E+00
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	2.027	2.03E-01	0.0745	7.45E-03	1.8255	1.83E-01
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	2.969	2.97E-01	0.109	1.09E-02	2.979	2.98E-01
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	55.647	5.56E-01	0.487	4.87E-03	91.159	9.12E-01
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	4.2	4.20E-02	0.117	1.17E-03	10.178	1.02E-01
OCTACHLORODIBENZOFURAN	144.758	1.45E-02	0.0975	9.75E-06	607.443	6.07E-02
2,3,7,8-TCDD-TEQ concentration (mg/kg) ^b =		1.55E-05		7.80E-07		1.08E-05
Exposure Point Concentration of 2,3,7,8-TCDD TEQ						
used in risk assessment is 1.55E-05 mg/kg, the						
maximum value.						

Table C-2
2,3,7,8-TCDD Toxicity Equivalent Quotient Concentrations of Dioxin and Furan Congeners in Soil at LHAAP- 48

Location:	SUM	P095	SUMP098		SUMP	098
Sample Number:	SUMP095(3-5)		SUMP098(0-0.5)		SUMP098(3-5)	
Date Sampled:	8/4/1998		8/4/1	998	8/4/1998	
Depth (ft.):	3.	-5	0-0.	50	3-5	
	Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN	0.208	2.08E-01	0.15	1.50E-01	0.159	1.59E-01
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	0.233	2.33E-01	0.217	2.17E-01	0.208	2.08E-01
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.261	2.61E-02	0.354	3.54E-02	0.231	2.31E-02
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.146	1.46E-02	9.26	9.26E-01	0.129	1.29E-02
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.173	1.73E-02	0.235	2.35E-02	0.153	1.53E-02
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	10.126	1.01E-01	118.442	1.18E+00	0.355	3.55E-03
OCTACHLORODIBENZO-p-DIOXIN	359.675	3.60E-02	2143.501	2.14E-01	72.013	7.20E-03
2,3,7,8-TETRACHLORODIBENZOFURAN ^a	2.01	2.01E-01	1.652	1.65E-01	1.71	1.71E-01
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.125	6.25E-03	0.386	1.93E-02	0.124	6.20E-03
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.131	6.55E-02	0.404	2.02E-01	0.129	6.45E-02
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.191	1.91E-02	4.679	4.68E-01	0.207	2.07E-02
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.127	1.27E-02	3.179	3.18E-01	0.138	1.38E-02
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.207	2.07E-02	5.187	5.19E-01	0.23	2.30E-02
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0.429	4.29E-03	118.977	1.19E+00	0.173	1.73E-03
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.17	1.70E-03	8.313	8.31E-02	0.231	2.31E-03
OCTACHLORODIBENZOFURAN	1.461	1.46E-04	151.114	1.51E-02	0.152	1.52E-05
2,3,7,8-TCDD-TEQ concentration (mg/kg) ^b =		9.68E-07		5.73E-06		7.32E-07
Exposure Point Concentration of 2,3,7,8-TCDD TEQ						
used in risk assessment is 1.55E-05 mg/kg, the						
maximum value.						

Table C-2
2,3,7,8-TCDD Toxicity Equivalent Quotient Concentrations of Dioxin and Furan Congeners in Soil at LHAAP- 48

Location:	SUM	P100	SUMP100		WRSUN	1P001
Sample Number:	SUMP100(0-0.5)		SUMP100(3-5)		WRSUMP001(05)	
Date Sampled:	8/7/1	998	8/7/1	998	8/6/1998	
Depth (ft.):	0-0	.50	3-	5	0-0.	50
	Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN	1.371	1.37E+00	0.886	8.86E-01	0.2	2.00E-01
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	1.012	1.01E+00	0.848	8.48E-01	0.19	1.90E-01
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	1.399	1.40E-01	1.302	1.30E-01	0.149	1.49E-02
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.781	7.81E-02	0.727	7.27E-02	0.173	1.73E-02
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.928	9.28E-02	0.864	8.64E-02	0.2	2.00E-02
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	14.732	1.47E-01	128.853	1.29E+00	18.198	1.82E-01
OCTACHLORODIBENZO-p-DIOXIN	2666.482	2.67E-01	34472.518	3.45E+00	1131.512	1.13E-01
2,3,7,8-TETRACHLORODIBENZOFURAN ^a	0.986	9.86E-02	0.735	7.35E-02	1.953	1.95E-01
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.835	4.18E-02	0.777	3.89E-02	0.298	1.49E-02
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.872	4.36E-01	0.811	4.06E-01	0.149	7.45E-02
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.803	8.03E-02	0.652	6.52E-02	2.969	2.97E-01
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.536	5.36E-02	0.434	4.34E-02	1.92	1.92E-01
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.784	7.84E-02	0.636	6.36E-02	0.207	2.07E-02
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0.723	7.23E-03	0.576	5.76E-03	12.775	1.28E-01
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.9655	9.66E-03	0.678	6.78E-03	1.703	1.70E-02
OCTACHLORODIBENZOFURAN	0.907	9.07E-05	4.526	4.53E-04	12.107	1.21E-03
2,3,7,8-TCDD-TEQ concentration (mg/kg) ^b =		3.91E-06		7.46E-06		1.68E-06
Exposure Point Concentration of 2,3,7,8-TCDD TEQ						
used in risk assessment is 1.55E-05 mg/kg, the						
maximum value.						

Table C-2
2,3,7,8-TCDD Toxicity Equivalent Quotient Concentrations of Dioxin and Furan Congeners in Soil at LHAAP- 48

Location:	WRSU	MP001	WRSUMP003		WRSU	MP003
Sample Number:	WRSUMP001(3-5)		WRSUMP003(05)		WRSUMP003(3-5)	
Date Sampled:	8/6/1	998	8/6/1	998	8/6/1998	
Depth (ft.):	3-	5	0-0.	50	3-	5
	Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN	0.323	3.23E-01	0.289	2.89E-01	0.29	2.90E-01
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	0.275	2.75E-01	0.184	1.84E-01	0.305	3.05E-01
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.431	4.31E-02	0.252	2.52E-02	0.292	2.92E-02
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.251	2.51E-02	1.127	1.13E-01	5.474	5.47E-01
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.289	2.89E-02	0.169	1.69E-02	3.765	3.77E-01
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	22.575	2.26E-01	9.679	9.68E-02	170.246	1.70E+00
OCTACHLORODIBENZO-p-DIOXIN	1275.541	1.28E-01	616.526	6.17E-02	1736.362	1.74E-01
2,3,7,8-TETRACHLORODIBENZOFURAN ^a	1.88	1.88E-01	2.286	2.29E-01	4.933	4.93E-01
1,2,3,7,8-PENTACHLORODIBENZOFURAN	2.026	1.01E-01	0.144	7.20E-03	2.639	1.32E-01
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.21	1.05E-01	0.143	7.15E-02	0.374	1.87E-01
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	3.482	3.48E-01	0.19	1.90E-02	5.052	5.05E-01
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	2.132	2.13E-01	0.537	5.37E-02	1.182	1.18E-01
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.581	5.81E-02	0.17	1.70E-02	1.75	1.75E-01
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	11.94	1.19E-01	1.464	1.46E-02	31.916	3.19E-01
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1.681	1.68E-02	0.135	1.35E-03	1.573	1.57E-02
OCTACHLORODIBENZOFURAN	13.497	1.35E-03	3.233	3.23E-04	72.002	7.20E-03
2,3,7,8-TCDD-TEQ concentration (mg/kg) ^b =		2.20E-06		1.20E-06		5.38E-06
Exposure Point Concentration of 2,3,7,8-TCDD TEQ						
used in risk assessment is 1.55E-05 mg/kg, the						
maximum value.						

Concentrations of 2,3,7,8-TCDD Toxicity Equivalent Quotient Dioxin and Furan Congeners in Soil at LHAA- 53(35C)

Location:		35CSB	01	35CSE	301
Sample Number:		35CSB01(0-0.5)	35CSB0 ⁻	1(1-3)
Date Sampled:		7/27/19	98	7/27/1	998
Depth (ft.):		0-0.5	0	1-3	1
		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	TEF	(ng/kg)	TEQ	(ng/kg)	TEQ
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	1	0.052	5.20E-02	1.267	1.27E+00
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.1	0.033	3.30E-03	10.646	1.06E+00
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.1	0.772	7.72E-02	52.792	5.28E+00
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.1	0.203	2.03E-02	21.791	2.18E+00
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	0.01	20.704	2.07E-01	1453.11	1.45E+01
OCTACHLORODIBENZO-p-DIOXIN	0.0001	141.093	1.41E-02	7068.108	7.07E-01
2,3,7,8-TETRACHLORODIBENZOFURAN	0.1	0.464	4.64E-02	0.476	4.76E-02
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.5	0.042	2.10E-02	0.139	6.95E-02
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.1	0.482	4.82E-02	19.746	1.97E+00
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.1	0.03	3.00E-03	4.069	4.07E-01
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.1	0.033	3.30E-03	5.037	5.04E-01
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0.01	3.203	3.20E-02	218.228	2.18E+00
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.01	0.178	1.78E-03	11.969	1.20E-01
OCTACHLORODIBENZOFURAN	0.0001	11.88	1.19E-03	904.49	9.04E-02
2,3,7,8-TCDD-TEQ concentration (ng/kg) ^a =			5.31E-07		3.04E-05
Exposure Point Concentration of 2,3,7,8-TCDD TEQ Us	ed in Re	vised LHAAP-35	C(53) Site E	valuation Docum	ent = 3.04E-05

Longhorn Army Ammunition Plant Karnack, Texas

a 2,3,7,8-TCDD TEQ value is sum of TEQ values for congeners in the sample.

TEF: Toxicity Equivalent Factor. Van den Berg, M. et al., 1998, Toxic Equivalency Factors (TEFs) for

PCBs, PCDDs, PCDFs for Humans and Wildlife. Environmental Health Perspectives 106(12):775-792.

Concentrations of 2,3,7,8-TCDD Toxicity E	Equivalent Quotient Dioxin and Furan Congeners in Soil at LHAA- 53(35C)	j

Location:	35CSB	01	SUMP1	105	SUMP1	05
Sample Number:	35CSB01	(3-5)	SUMP105	(0-0.5)	SUMP105(3-5)	
Date Sampled:	7/27/19	998	8/11/19	98	8/11/19	98
Depth (ft.):	3-5		0-0.5	0	3-5	
	Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	0.038	3.80E-02	0.093	9.30E-02	0.117	1.17E-01
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.348	3.48E-02	0.17	1.70E-02	0.285	2.85E-02
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	2.119	2.12E-01	0.654	6.54E-02	0.159	1.59E-02
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.952	9.52E-02	1.273	1.27E-01	0.189	1.89E-02
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	68.28	6.83E-01	60.154	6.02E-01	3.147	3.15E-02
OCTACHLORODIBENZO-p-DIOXIN	450.139	4.50E-02	17491.922	1.75E+00	340.795	3.41E-02
2,3,7,8-TETRACHLORODIBENZOFURAN	0.394	3.94E-02	0.115	1.15E-02	0.173	1.73E-0
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.021	1.05E-02	0.051	2.55E-02	0.105	5.25E-0
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.856	8.56E-02	0.469	4.69E-02	0.13	1.30E-0
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.203	2.03E-02	0.055	5.50E-03	0.087	8.70E-0
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.311	3.11E-02	0.08	8.00E-03	0.127	1.27E-0
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	9.51	9.51E-02	2.182	2.18E-02	0.11	1.10E-0
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.518	5.18E-03	0.097	9.70E-04	0.14	1.40E-0
OCTACHLORODIBENZOFURAN	51.12	5.11E-03	7.395	7.40E-04	0.1	1.00E-0
2,3,7,8-TCDD-TEQ concentration (ng/kg) ^a =	:	1.40E-06		2.77E-06		3.53E-0

Longhorn Army Ammunition Plant Karnack, Texas

a 2,3,7,8-TCDD TEQ value is sum of TEQ values for conge TEF: Toxicity Equivalent Factor. Van den Berg, M. et al., 1 PCBs, PCDDs,PCDFs for Humans and Wildlife. Environme

Table C-3 Occurrence, Distribution, and Selection of Chemicals of Potential Concern (COPC) Soil^a

LHAAP-48

-			Range of Va	lues, mg/kg				Background	Texas			Source-Term
	Detection	Percent	Detected Concentrations	Reporting Limits	Statistical	Mean	95% UCL $^\circ$	Screening Concentration ^d	RBSV ^e	UPL		Concentration h
Chemical	Frequency	Detection	Minimum - Maximum	Minimum - Maximum	Distribution ^b	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	COPC? f,g	mg/kg
Inorganics												
Aluminum	48 / 48	100	1.42E+03 - 1.93E+04	1.24E+01 - 3.79E+01	U	9.39E+03		2.38E+04	1.5E+04	1.89E+04	N (e)	
Antimony	3 / 45	7	5.12E+00 - 1.10E+01	4.80E+00 - 1.90E+01	L	4.56E+00	4.97E+00	1.60E+00	7.2E+00	1.60E+00	Y	1.10E+01
Arsenic	47 / 48	98	3.37E-01 - 1.07E+01	1.40E-01 - 2.90E+00	U	2.89E+00		6.89E+00	2.0E+01	5.86E+00	N (a)	
Barium	48 / 48	100	6.59E+00 - 2.51E+03	3.10E+00 - 2.20E+01	NP	2.17E+02	3.10E+02	1.36E+02	9.1E+02	1.16E+02	Y	2.51E+03
Beryllium	1/3	33	6.43E-01 - 6.43E-01	5.35E-01 - 5.59E-01	U	3.97E-01		8.85E-01	4.6E+00	7.69E-01	N (a)	
Cadmium	29 / 48	60	1.46E+00 - 1.14E+01	5.35E-01 - 3.16E+00	NP	2.50E+00	3.20E+00	1.40E+00	5.2E+00	1.40E+00	Y	1.14E+01
Calcium	48 / 48	100	2.26E+02 - 2.34E+03	6.20E+00 - 5.60E+02	U	1.18E+03		3.84E+03	Not Required	2.52E+03	N (b)	
Chromium	47 / 48	98	3.90E+00 - 4.15E+01	1.10E+00 - 5.65E+00	U	1.35E+01		3.55E+01	5.9E+03	i 2.90E+01	N (a)	
Cobalt	47 / 48	98	2.90E-01 - 8.46E+01	8.18E-01 - 5.60E+00	U	8.31E+00		8.34E+00	1.5E+03	7.11E+00	N (a)	
Copper	46 / 48	96	2.60E+00 - 9.92E+01	1.20E+00 - 3.80E+00	U	1.11E+01		1.04E+01	1.0E+03	8.37E+00	N (a)	
Iron	48 / 48	100	4.28E+03 - 5.18E+04	1.90E+00 - 1.10E+01	U	1.24E+04		3.49E+04	Not Required	2.79E+04	N (b)	
Lead	42 / 48	88	9.45E+00 - 1.51E+02	3.21E-01 - 1.90E+01	U	2.01E+01		2.03E+01	5.0E+02	1.78E+01	N (a)	
Magnesium	48 / 48	100	6.53E+01 - 1.83E+03	1.24E+01 - 5.60E+02	U	7.61E+02		1.59E+03	Not Required	1.24E+03	N (b)	
Manganese	48 / 48	100	8.56E+00 - 1.42E+03	6.20E-01 - 1.90E+00	U	2.57E+02		2.24E+03	1.7E+03	1.34E+03	N (a)	
Mercury	9 / 48	19	2.35E-02 - 3.12E-01	2.40E-02 - 1.80E-01	NP	3.84E-02	4.96E-02	1.34E-01	1.1E-02	1.10E-01	N (e)	
Nickel	3/3	100	5.40E+00 - 1.10E+01	4.30E+00 - 4.50E+00	U	8.03E+00		1.13E+01	1.9E+02	9.40E+00	N (a)	
Potassium	48 / 48	100	9.22E+01 - 1.10E+03	1.24E+02 - 5.60E+02	Ŭ	5.36E+02		5.46E+02	Not Required	4.61E+02	N (b)	
Selenium	14 / 48	29	2.00E-01 - 1.76E+00	1.30E-01 - 1.26E+00	Ŭ	4.59E-01		6.96E+00	1.3E+02	5.61E+00	N (a)	
Silver	15 / 48	31	2.75E-02 - 1.20E+00	2.40E-02 - 1.90E+00	Ŭ	2.40E-01		3.70E-01	4.7E+01	3.70E-01	N (a)	
Strontium	43 / 48	90	5.73E+00 - 5.14E+02	5.30E+00 - 1.90E+01	Ŭ	5.27E+01		3.17E+01	1.2E+04	2.48E+01	N (a)	
Vanadium	3/3	100	1.70E+01 - 2.80E+01	5.30E+00 - 5.60E+00	Ŭ	2.37E+01		5.29E+01	4.8E+01	4.44E+01	N (a)	
Zinc	48 / 48	100	6.40E+00 - 2.07E+02	6.20E-01 - 2.20E+00	Ŭ	4.60E+01		2.94E+01	5.9E+03	2.45E+01	N (a)	
Dioxins/Furans	407 40	100	0.402100 2.072102	0.202 01 2.202100	0	4.002101		2.042101	0.02100	2.402101	i (u)	
2.3.7.8-TCDD - Total TEQ	15 / 15	100	3.18E-07 - 1.55E-05	NA - NA	U	4.56E-06	9.53E-06	4.41E-06	3.90E-06	j 1.55E-05	Y	1.55E-05
Polychlorinated Biphenyls (PC		100	0.102 07 1.002 00		0	4.002 00	0.00E 00	4.412 00	0.002 00	J 1.002 00		1.002 00
Aroclor 1254	1/3	33	6.60E-02 - 6.60E-02	3.60E-02 - 3.70E-02	U	3.42E-02			1.0E+01		N (a)	
Semivolatile Organics	170	00	0.002 02 0.002 02	0.002 02 0.702 02	0	0.422 02			1.02101		n (u)	
2-Methylnaphthalene	3 / 48	6	1.64E+00 - 1.84E+00	3.28E-01 - 7.20E-01	U	2.92E-01			5.0E+01		N (a)	
Acenaphthene	1 / 48	2	3.00E-01 - 3.00E-01	3.28E-01 - 7.20E-01	U	1.96E-01			2.2E+00		N (a)	
Anthracene	1 / 48	2	5.90E-01 - 5.90E-01	3.60E-01 - 1.39E+00	Ŭ	2.96E-01			3.5E+00		N (a)	
Benzo(a)anthracene	3 / 48	6	7.50E-02 - 1.90E+00	3.00E-01 - 8.33E-01	NP	2.33E-01	2.76E-01	1.53E-02	6.3E-01	1.53E-02	N (f)	
Benzo(a)pyrene	2 / 48	4	8.70E-02 - 1.60E+00	1.80E-01 - 3.85E+00	Ŭ	3.40E-01	2.702-01	1.54E-02	6.3E-02	1.54E-02	N (d,f)	
Benzo(b)fluoranthene	4 / 48	8	1.90E-01 - 2.90E+00	3.60E-01 - 2.78E+00	NP	5.67E-01	6.76E-01	1.53E-02	6.3E-02	1.53E-02	N (f)	
Benzo(ghi)perylene	2 / 48	4	6.66E-01 - 6.70E-01	3.60E-01 - 5.56E+00	U	9.44E-01	0.702-01	1.23E-02	4.1E+02	1.23E-02	N (a)	
Benzo(k)fluoranthene	2 / 48	4	9.80E-02 - 1.10E+00	3.60E-01 - 5.56E+00 3.60E-01 - 2.78E+00	U	9.44E-01 5.17E-01		1.30E-02	4.1E+02 6.3E+00	1.30E-02	N (a)	
Benzoic Acid	2 / 48	4	3.40E-01 - 3.40E-01	8.90E-01 - 2.78E+00 8.90E-01 - 3.60E+00	U	9.46E-01		1.30E-02	6.2E+00	1.30E-02	N (a)	
	8 / 48	17	4.20E-02 - 4.50E-01	1.15E-01 - 7.56E+00	U	9.46E-01 2.29E-01			1.7E+04			
bis(2-Ethylhexyl)phthalate	2 / 48	4			U						N (a)	
Butyl benzyl phthalate			2.23E-01 - 2.90E-01	3.33E-01 - 3.85E+00	-	3.18E-01		4 545 00	3.1E+03	4 545 00	N (a)	
Chrysene	3 / 48	6	1.80E-01 - 2.20E+00	3.60E-01 - 1.39E+01	U	2.28E+00		1.51E-02	6.3E+01	1.51E-02	N (a)	
Dibenzo(a,h)anthracene	2 / 48	4	2.30E-01 - 6.55E-01	3.60E-01 - 5.56E+00	U	9.28E-01			6.3E-02		N (d,f)	
Dibenzofuran	1 / 48	2	1.70E-01 - 1.70E-01	3.60E-01 - 2.78E+00	U	5.04E-01			2.0E+01		N (a)	
Diethyl phthalate	9 / 48	19	1.00E-01 - 1.83E+00	1.61E-01 - 1.28E+00	U	2.75E-01			1.2E+04		N (a)	
Dimethyl phthalate	5 / 48	10	3.30E-01 - 9.75E-01	3.60E-01 - 7.20E-01	U	3.37E-01			1.2E+04		N (a)	
di-n-Butyl phthalate	3 / 48	6	6.70E-02 - 8.30E-02	3.29E-01 - 6.23E+00	U	1.02E+00		0.007.00	1.5E+03		N (a)	
Fluoranthene	6 / 48	13	1.10E-01 - 3.60E+00	3.60E-01 - 1.39E+00	U	3.63E-01		2.29E-02	5.5E+02	2.29E-02	N (a)	
Fluorene	1 / 48	2	2.50E-01 - 2.50E-01	3.60E-01 - 1.39E+00	U	2.88E-01			4.6E+01		N (a)	
Indeno(1,2,3-cd)pyrene	3 / 48	6	2.00E-01 - 7.50E-01	3.60E-01 - 2.78E+00	NP	5.12E-01	5.83E-01	1.43E-02	6.3E-01	1.43E-02	N (f)	
Naphthalene	4 / 48	8	1.10E-01 - 4.39E+00	3.28E-01 - 7.20E-01	U	4.42E-01			1.8E+01		N (a)	
Phenanthrene	5 / 48	10	9.70E-02 - 2.90E+00	3.60E-01 - 1.28E+00	NP	3.75E-01	4.68E-01		2.5E+00		N (f)	
Pyrene	6 / 48	13	8.00E-02 - 2.40E+00	3.60E-01 - 1.39E+00	U	3.23E-01		1.94E-02	1.5E+01	1.94E-02	N (a)	

Table C-3 Occurrence, Distribution, and Selection of Chemicals of Potential Concern (COPC) Soil^a

LHAAP-48

			Range of Va	lues, mg/kg				Background	Texas			Source-Term
	Detection	Percent	Detected Concentrations	Reporting Limits	Statistical	Mean	95% UCL ^c	Screening Concentration ^d	RBSV ^e	UPL		Concentration h
Chemical	Frequency	Detection	Minimum - Maximum	Minimum - Maximum	Distribution b	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	COPC? f,g	mg/kg
Volatile Organics								n 2				
1,1-Dichloroethene	1 / 48	2	2.00E-03 - 2.00E-03	5.00E-03 - 1.10E-02	U	3.05E-03			2.7E+01		N (a)	
2-Butanone	4 / 48	8	9.00E-03 - 3.60E-02	1.10E-02 - 6.60E-02	U	2.32E-02			2.6E+03		N (a)	
Acetone	1 / 48	2	5.10E-03 - 5.10E-03	6.00E-03 - 4.10E-01	U	2.75E-02			1.7E+02		N (a)	
Carbon disulfide	8 / 48	17	1.00E-03 - 1.45E-01	5.00E-03 - 1.10E-02	U	7.52E-03			1.0E+02		N (a)	
Ethylbenzene	1 / 48	2	2.00E-03 - 2.00E-03	5.00E-03 - 1.10E-02	U	3.05E-03			4.3E+02		N (a)	
Styrene	1 / 48	2	3.00E-03 - 3.00E-03	5.00E-03 - 1.10E-02	U	3.07E-03			1.3E+03		N (a)	
Tetrachloroethene	3 / 48	6	9.00E-03 - 2.04E-01	5.00E-03 - 1.10E-02	U	7.96E-03			6.0E+00		N (a)	
Toluene	1 / 48	2	2.00E-03 - 2.00E-03	5.00E-03 - 1.10E-02	U	3.05E-03			1.7E+02		N (a)	
trans-1,3-Dichloropropene	2 / 48	4	3.00E-03 - 1.00E-02	5.00E-03 - 1.10E-02	U	3.22E-03			1.8E+00		N (a)	
Trichloroethene	6 / 48	13	1.00E-03 - 4.55E-02	5.00E-03 - 1.10E-02	U	4.91E-03			3.7E+00		N (a)	
Vinyl chloride	1 / 48	2	4.97E-01 - 4.97E-01	1.10E-02 - 3.30E-02	U	2.27E-02			3.6E-02		Y	4.97E-01
Xylenes, Total	1 / 48	2	1.80E-02 - 1.80E-02	5.00E-03 - 1.10E-02	U	3.38E-03			5.8E+01		N (a)	

^a Surface soil is defined as the interval less than or equal to 15 feet below the ground surface. Soil samples were classified on the basis of the end depth of the sample.

^b Statistical Distribution: U = Distribution not determined if chemical is not selected as a COPC, or if sample size is less than 5; L = Lognormal distribution; NP = nonparametric distribution.

^c 95% Upper confidence limit (UCL) calculated for COPC using bootstrapping (2000 replications).

^d Background screening concentrations are based on the 95% upper prrediction limit (UPL) of the total soil background data set, calculated for the combined depth intervals (i.e., 0-0.5 feet and 1.5-2.5 feet) from Shaw, 2004c,

Final Background Soil Study Report, Longhorn Army Ammunition Plant, July.

^e Based on Texas Risk-Based Screening Values (RBSV) for soil, March 2006 update. Values are based on a cancer risk of 1E-6 and a hazard index of 0.1

^f N = Chemical is not chosen as a COPC; Y = Chemical is chosen as a COPC.

^g Rationale for exclusion of chemical as a COPC:

(b) = essential nutrient; no screening value available/required

(c) = chemical concentration is below or equal to background screening concentration.

(d) = chemical is detected infrequently (i.e., < 5% frequency of detection).

(e) = maximum concentration of chemical is above the Background Screening Concentration but is consistent with background based on geochemical evaluation (Attachment B)

(f) = chemical is not expected to be associated with pyrotechnic and illuminator manufacturing operations at LHAAP-48.

^h Concentration used in the risk assessment is the maximum detected concentration.

ⁱ Based on RBSV for total chromium.

¹ Based on the medium-specific screening level (MSSL) for dioxin (2,3,7,8-TCDD) from EPA Region 6 (USEPA Region 6, 2004, Human Health Medium-Specific Screening Levels 2004-2005, December).

NA = Not applicable

TEQ = Toxicity equivalency

UPL = Upper prediction limit of the Shaw total soil background dataset (Shaw, 2004c).

mg/kg = milligram per kilogram

⁽a) = maximum detected concentration is below or equal to risk-based screening concentration

		-	···· ··· ··· ··· ··· ··· ··· ··· ··· ·	
	Basis for		Are LHAAP-45 Concentrations	
Metal	Background Comparison	p value ^c	Different from Background? d	Comment
Aluminum	WRS Test ^a , Geochem ^b	0.005000	No	(1)
Antimony	WRS Test ^a , Geochem ^b	0.000000	Yes	(2)
Barium	WRS Test ^a , Geochem ^b	0.000000	Yes	
Cadmium	WRS Test ^a , Geochem ^b	0.000000	Yes	(3)
Mercury	WRS Test ^a , Geochem ^b	0.014442	No	(1)

 Table C-4

 Comparison of Metal Concentrations in LHAAP-48 Soil Samples to Background Concentrations

Footnotes and Abbreviations:

^a Wilcoxon Rank Sum statistical test

^b Geochem: Comparison to background based on geochemical relationships (Attachment B)

^c Values shown in Attachment B.

^d Difference is considered significant with 95% confidence if p>0.05.

Comments:

- (1) All samples consistent with background concentrations based on geochemical relationships (Attachment B, Table 2-6).
- (2) Sample population exceeds background based on statistical test (Attachment A) and three samples represent anomalous geochemical relationships (Attachment B, Table 2-6).
- (3) Sample population exceeds background based on statistical test (Attachment A) and seven samples represent anomalous geochemical relationships (Attachment B, Table 2-6).

Shaw Environmental, Inc.

Table C-5 Exposure Factors Used to Estimate Intake of COPCs LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

Residential Exposure Pathway		
General Factors	Factor Value	Reference
Exposure Frequency, EF (days/year or event/year, dermal)	350	а
Exposure Duration, ED (year) - Adult	24	а
Exposure Duration, ED (year) - Child	6	а
Exposure Duration, ED (year) - carcinogens, Adult	30	b
Body Weight, BW (kg) - Adult	70	а
Body Weight, BW (kg) - Child	15	а
Averaging Time-Noncarcinogens, ATs (year) - Adult	24	а
Averaging Time-Noncarcinogens, ATs (year) - Child	6	а
Averaging Time-carcinogens, ATc (year)	70	а
Averaging Time, Age-adjusted, Residential, dermal (cadmium) (year)	30	b
Ingestion of Soil		
Age-Adjusted Soil Ingestion Rate, IFadj (mc̥-year/kg-day)	114	а
Dermal Exposure to Soi		
Soil-to-Skin Adherence Factor, AF (mg/cm ² -event)	0.2	а
Averaging Time-Noncarcinogens, (dermal, child, resident) ATs (year)	6	а
Age-Adjusted Averaging Time (residential, dermal) ATs (year)	30	b, Cadmium only
Body Weight (residential, child, carcinogens), BW (kg)	15	а
Age-Adjusted Dermal Factor (carcinogens, resident) DF.adj (mg-yr/kg-event)	352	b
Exposure Duration (dermal, child, resident), ED (year)	6	а
Exposed Skin Surface Area, SA (cm ²) - Child	2200	а
Exposed Skin Surface Area, SA (cm ²) - Adult	2500	а

a TCEQ-rrr: Texas Commission on Environmental Quality (TCEQ) 30 TAC Sec. 335.567 as updated through March 2005.

b Value provided during TCEQ review of August 2006.

Table C-6 Toxicity Values for COPCs Baseline Risk Assessment for the LHAAP-48 Site LHAAP Karnack, Texas

	Weight of		Oral Slope Factor SFo		Inhalation Unit Risk Factor, URF)	Inhalation Slope Factor SFi		Oral Reference Dose, RfDo		Inhalation Reference Conc., RfC		GI Absorption Factor, ABS.gi		Relative Derma Absorption Factor, ABS.c	
Chemical	Evidence ^a	Ref.	1/(mg/kg-day)) Ref.	1/(ug/m ³)	Ref.	1/(mg/kg-day)	Ref.	(mg/kg-day) Ref.	(mg/m ³)	Ref.	(unitless)	Ref.	(unitless)	Ref.
Inorganic Compounds																
Antimony	NA	TCEQ-rrr	NA	NA	NA	NA	NA	NA	4.0E-04	1	5.0E-04	TCEQ-rrr	1.50E-01	TCEQ-rrr	1.00E-02	TCEQ-rrr
Barium	D	1	NA	NA	NA	NA	NA	NA	2.0E-01	1	5.0E-04	TCEQ-rrr	7.00E-02	TCEQ-rrr	1.00E-02	TCEQ-rrr
Cadmium	B1	1	NA	NA	1.8E-03	1	6.3E+00	TCEQ-rrr	1.0E-03	1	ND	TCEQ-rrr	2.50E-02	TCEQ-rrr	1.00E-03	TCEQ-rrr
Semivolatile Organic Cor	npounds															
2,3,7,8-TCDD - Total TEQ	ND	NA	1.5E+05	EPA-06, H	4.3E+01	EPA-06, H	1.5E+05	EPA-06, H	ND	EPA-06, H	ND	EPA-06, H	5.00E-01	TCEQ-trrp	3.00E-02	TCEQ-trrp
Volatile Organic Compou	inds															
Vinyl Chloride	А		1.5E+00	1	8.8E-06		3.1E-02	TCEQ-rrr	3.0E-03	I	1.0E-01	TCEQ-rrr	1.00E+00	TCEQ-rrr	0.00E+00	TCEQ-rrr

^a Weight of Evidence for carcinogenicity of chemical provided in Reference I. D indicates chemical is not classifiable as to human carcinogenicity, B1 indicates chemical is a probable human carcinogen based on limited data, A indicates a human carcinogen.

^b The URF value for 2,3,7,8-TCDD was calculated using the equation: URF(µg/m³) -1 = SFinh (mg/kg-day) -1 x 20 m³/day / (70 kg x 1000 µg/mg) as provided in TCEQ-rrr documents. EPA-06: USEPA, 2006: Human Health Medium-Specific Screening Levels, U. S. Environmental Protection Agency, Region 6, November 2004, accessed online in January 2006.

H: Health Effects Assessment Summary Tables (HEAST), U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, July 1997, adopted in USEPA, 2006.

I: Integrated Risk Information System (IRIS) (Online, EPA, 2006).

NA: Not Applicable

ND: No Data

Ref.: Reference

TCEQ-rrr: Texas Commission on Environmental Quality (TCEQ) 30 TAC Sec. 335.567 as updated through March 2006

TCEQ-trrp: Texas Commission on Environmental Quality (TCEQ) 30 TAC Sec. 350 as updated through March 2006

Table C-7a Incremental Lifetime Cancer Risk (ILCR) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

Chemical Name	Soil Concentratior Cs (mg/kg)	Oral Slope factor, SF 1/(mg/kg/d)	Weight of Evidence	Intake Dose, ID (mg/kg/d)	Incremental Lifetime Cancer Risk, ILCR
Antimony	1.10E+01	NA	NA	1.72E-05	0.00E+00
Barium	2.51E+03	NA	D	3.92E-03	0.00E+00
Cadmium	1.14E+01	NA	B1	1.78E-05	0.00E+00
2,3,7,8-TCDD - Total TEQ	1.55E-05	1.50E+05	ND	2.42E-11	3.63E-06
Vinyl Chloride	4.97E-01	1.50E+00	Α	7.76E-07	1.16E-06

TOTAL PATHWAY CANCER RISK

4.80E-06

Table C-7b Hazard Index (HI) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

		Oral		
	Soil Concentration	RfD	Intake Dose, ID	Hazard Quotient
Chemical Name	Cs (mg/kg)	(mg/kg/d)	in (mg/kg/d)	HQ
Antimony	1.10E+01	4.00E-04	4.01E-05	1.00E-01
Barium	2.51E+03	2.00E-01	9.15E-03	4.57E-02
Cadmium	1.14E+01	1.00E-03	4.15E-05	4.15E-02
2,3,7,8-TCDD - Total TEQ	1.55E-05	ND	5.65E-11	0.00E+00
Vinyl Chloride	4.97E-01	3.00E-03	1.81E-06	6.04E-04
	т	OTAL PATHWAY I	HAZARD INDEX	1.88E-01

NA: Not applicable ND: No data available

5.65E-05

Longhorn Army Ammunition Plant Karnack, Texas									
Chemical Name	Soil Concentration Cs, mg/kg	Weight of Evidence	Unit Risk Factor, URF 1/(microg/m ³)	Expsoure Adjusted Air Concentration (mg/m ³)	Incremental Lifetime Cancer Risk, ILCR				
Antimony	1.10E+01	NA	NA	9.76E-07	0.00E+00				
Barium	2.51E+03	D	NA	2.23E-04	0.00E+00				
Cadmium	1.14E+01	B1	1.8E-03	1.01E-06	1.82E-09				
2,3,7,8-TCDD - Total TEQ	1.55E-05	ND	4.3E+01	8.99E-10	3.85E-08				
Vinyl Chloride	4.97E-01	Α	8.8E-06	6.41E+00	5.64E-05				

Table C-8a Incremental Lifetime Cancer Risk (ILCR) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

Table C-8b Hazard Index (HI) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

TOTAL PATHWAY CANCER RISK

:	Soil Concentration	Reference Conc., RfC	Expsoure Adjusted Air Concentration	Hazard Quotient
Chemical Name	Cs, mg/kg	(mg/m³)	(mg/m³)	HQ
Antimony	1.10E+01	5.0E-04	2.28E-09	4.56E-06
Barium	2.51E+03	5.0E-04	5.20E-07	1.04E-03
Cadmium	1.14E+01	ND	2.36E-09	0.00E+00
2,3,7,8-TCDD - Total TEQ	1.55E-05	ND	2.10E-12	0.00E+00
Vinyl Chloride	4.97E-01	1.0E-01	1.50E-02	1.50E-01
		TOTAL PATHW	AY HAZARD INDEX	1.51E-01

NA: Not applicable ND: No data available

Table C-9a Incremental Lifetime Cancer Risk (ILCR) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

			Gastrointestinal				Dermal	
		Oral	Absorption	Dermal	Absorption	Weight	Absorbed Dos	e
	Soil Concentration	n Slope factor, SF	Factor, ABS _{GI}	Slope factor, SF	d Factor, ABSd	of	Dose, DAD	Incremental Lifetime
Chemical Name	Cs (mg/kg)	1/(mg/kg/d)	(unitless)	1/(mg/kg/d)	(unitless)	Evidence	(mg/kg/d)	Cancer Risk, ILCR
Antimony	1.10E+01	NA	1.50E-01	NA	1.00E-02	NA	5.30E-07	0.00E+00
Barium	2.51E+03	NA	7.00E-02	NA	1.00E-02	D	1.21E-04	0.00E+00
Cadmium	1.14E+01	NA	2.50E-02	NA	1.00E-03	B1	5.50E-08	0.00E+00
2,3,7,8-TCDD - Total TEQ	1.55E-05	1.50E+05	5.00E-01	1.50E+05	3.00E-02	ND	2.24E-12	3.36E-07
Vinyl Chloride	4.97E-01	1.50E+00	1.00E+00	1.50E+00	0.00E+00	Α	0.00E+00	0.00E+00

TOTAL PATHWAY CANCER RISK

3.36E-07

Table C-9b Hazard Index (HI) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

			Gastrointestinal		Dermal		
		Oral	Absorption	Dermal	Absorption	Absorbed Dose	
	Soil Concentration	RfD	Factor, ABS _{GI}	RfD	Factor, ABSd	Dose, DAD	Hazard Quotient
Chemical Name	Cs (mg/kg)	(mg/kg/d)	(unitless)	(mg/kg/d)	(unitless)	(mg/kg/d)	HQ
Antimony	1.10E+01	4.00E-04	1.50E-01	6.00E-05	1.00E-02	3.09E-06	5.16E-02
Barium	2.51E+03	2.00E-01	7.00E-02	1.40E-02	1.00E-02	7.06E-04	5.04E-02
Cadmium	1.14E+01	1.00E-03	2.50E-02	2.50E-05	1.00E-03	1.28E-07	5.13E-03
2,3,7,8-TCDD - Total TEQ	1.55E-05	ND	5.00E-01	ND	3.00E-02	1.31E-11	0.00E+00
Vinyl Chloride	4.97E-01	3.00E-03	1.00E+00	3.00E-03	0.00E+00	0.00E+00	0.00E+00

TOTAL PATHWAY HAZARD INDE 1.07E-01

NA: Not applicable ND: No datat available

Table C-10a Exposures and Incremental Lifetime Cancer Risks for Potential Expoure of Future Resident to Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

		Soil Ingestion	Soil Inhalation	Dermal
	Source Term	Cancer	Cancer	Cancer
	Concentration	Risk	Risk	Risk
Chemical	(mg/kg)	(ILCR)	(ILCR)	(ILCR)
Antimony	1.10E+01	0.00E+00	0.00E+00	0.00E+00
Barium	2.51E+03	0.00E+00	0.00E+00	0.00E+00
Cadmium	1.14E+01	0.00E+00	1.82E-09	0.00E+00
2,3,7,8-TCDD - Total TEQ	1.55E-05	3.63E-06	3.85E-08	3.36E-07
Vinyl Chloride	4.97E-01	1.16E-06	5.64E-05	0.00E+00
Total Pathway ILCR		4.80E-06	5.65E-05	3.36E-07
Total ILCR ^a				6.E-05

Table C-10b Exposures and Noncancer Hazards for Potential Expoure of Future Resident to Soil at the LHAAP-48 Site Longhorn Army Ammunition Plant Karnack, Texas

Chemical	Source Term Concentration (mg/kg)	Soil Ingestion HQ	Soil Inhalation HQ	Dermal HQ
Antimony	1.10E+01	1.00E-01	4.56E-06	5.16E-02
Barium	2.51E+03	4.57E-02	1.04E-03	5.04E-02
Cadmium	1.14E+01	4.15E-02	0.00E+00	5.13E-03
2,3,7,8-TCDD - Total TEQ	1.55E-05	0.00E+00	0.00E+00	0.00E+00
Vinyl Chloride	4.97E-01	6.04E-04	1.50E-01	0.00E+00
Pathway Hazard Index (HI)		1.88E-01	1.51E-01	1.07E-01
Total HI ^ª				4.E-01

a Total value reported to one significant figure

Attachment 1 Statistical Comparison to Background Concentrations

concentration	s of Selected	d Metals in S	Soil for Com	parison to I	Background
Data Type	AI (mg/kg)	Sb (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Hg (mg/kg)
Site 48	19300	2.4	2510	0.2675	0.012
Site 48	15600	2.54	1620	0.268	0.01225
Site 48	15300	2.59	1271.5	0.2795	0.0125
Site 48	14600	2.59	403	0.31	0.0125
Site 48	13700	2.64	327	0.335	0.0125
Site 48	13400	2.75	251	0.34	0.013
Site 48	13300	2.77	224	0.36	0.013
Site 48	13200	2.83	195	0.375	0.013
Site 48	13000	2.87	190	0.49	0.0135
Site 48	12800	3.06	179	0.4975	0.0135
Site 48	12600	3.1	152	0.7	0.0135
Site 48	12500	3.19	149	0.75	0.0135
Site 48	12500	3.26	143	0.8	0.01375
Site 48	12400	3.35	131	0.95	0.014
Site 48	12200	3.4	126	1.2	0.014
Site 48	11600	3.42	125	1.26	0.014
Site 48	11000	3.47	123	1.27	0.014
Site 48	10600	3.48	120	1.33	0.014
Site 48	10300	3.6	120	1.58	0.014
Site 48	10300	3.73	112	11.4	0.014
	10300	3.73 3.75	108	5.55	0.014
Site 48					
Site 48	10000	3.755	100	5.55	0.015
Site 48	9570	3.84	100	5.17	0.015
Site 48	8700	3.89	98.2	4.92	0.0195
Site 48	8300	4.41	90.3	4.735	0.03
Site 48	8290	4.49	86.85	4.55	0.0385
Site 48	8095	4.7	86	4.44	0.0425
Site 48	7910	4.81	85.4	4.41	0.043
Site 48	7810	4.9	83.8	4.35	0.0435
Site 48	7590	4.9	83.1	4.25	0.0455
Site 48	7340	5.05	82.5	3.91	0.05
Site 48	7200	5.15	77.9	3.55	0.055
Site 48	6900	5.3	77.6	3.46	0.055
Site 48	6830	5.35	76.4	3.42	0.055
Site 48	6720	5.65	71.2	3.4	0.06
Site 48	6700	6	68.4	3.23	0.065
Site 48	6520	6.05	66.8	2.82	0.065
Site 48	6320	6.3	66	2.73	0.065
Site 48	6180	6.85	65.5	2.69	0.09
Site 48	6140	7.6	64.7	2.63	0.312
Site 48	5920	7.8	58.5	2.22	0.06
Site 48	5730	9.5	54.8	2.22	0.057
Site 48	5400	11	43.1	2.13	0.057
Site 48	5400	7.96	41.7	2.12	0.055
Site 48	5030	5.12	36.8	1.8825	0.053
Site 48	4680		32.2	1.76	0.051
Site 48	3550		18.5	1.555	0.0425
Site 48	1420		6.59	1.46	0.0235
BKG	1800	0.15	17.7	0.026	0.02
BKG	1850	0.15	26.8	0.027	0.023
BKG	1900	0.15	28.9	0.027	0.026
	1300	0.10	20.3	0.021	0.020

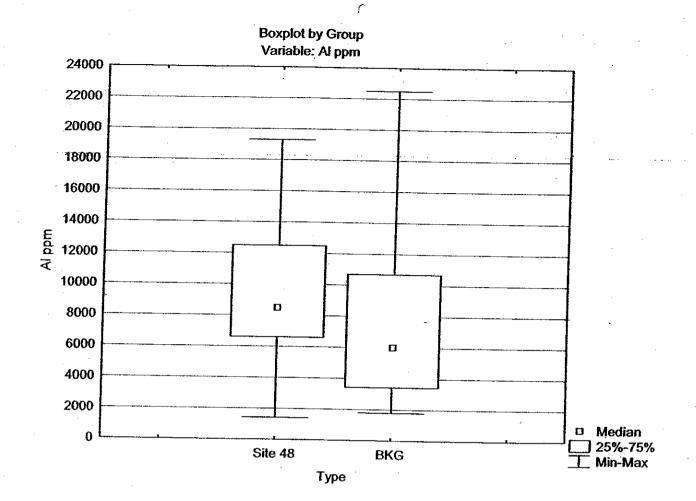
 Table 1

 Concentrations of Selected Metals in Soil for Comparison to Background

-

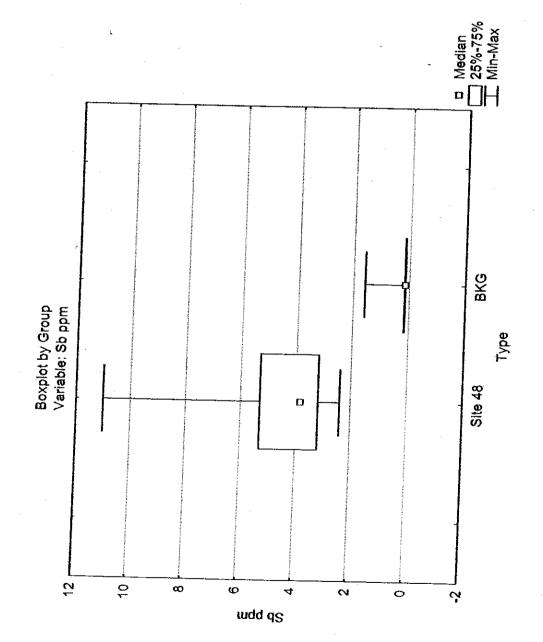
_

Concentrations	s of Selected	d Metals in S	Soil for Com	parison to E	Background
Data Type	Al (mg/kg)	Sb (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Hg (mg/kg)
BKG	2080	0.15	29.7	0.027	0.027
BKG	2280	0.15	31.1	0.027	0.03
BKG	2510	0.16	31.8	0.028	0.032
BKG	2530	0.16	37.8	0.028	0.033
BKG	2690	0.16	38.4	0.029	0.034
BKG	2930	0.16	39.9	0.031	0.035
BKG	2990	0.16	41.8	0.031	0.036
BKG	3030	0.16	42.8	0.032	0.037
BKG	3210	0.16	44.7	0.033	0.037
BKG	3330	0.16	45	0.033	0.038
BKG	3560	0.16	49.1	0.033	0.039
BKG	3710	0.16	49.5	0.034	0.041
BKG	3780	0.16	51.7	0.053	0.042
BKG	3850	0.16	57.5	0.097	0.044
BKG	3940	0.16	59.2	0.1	0.045
BKG	3980	0.16	67.8	0.12	0.046
BKG	4000	0.16	72.6	0.12	0.047
BKG	4130	0.16	72.8	0.14	0.047
BKG	4390	0.16	94.8	0.15	0.047
BKG	4700	0.16	98.7	0.13	0.059
BKG	5180	0.18	98.7 107	0.17	0.059
	5850				
BKG		0.17	124	0.35	0.06
BKG	5980	0.17	130	0.46	0.072
BKG	6050	0.65	166	0.84	0.088
BKG	16300	0.94	181	1.4	0.12
BKG	3110	0.15	25.6	0.025	0.012
BKG	4250	0.16	39.8	0.027	0.015
BKG	6160	0.16	39.9	0.028	0.017
BKG	6840	0.16	40.1	0.028	0.018
BKG	7170	0.16	40.3	0.028	0.024
BKG	7940	0.16	40.6	0.029	0.025
BKG	8310	0.16	42.1	0.029	0.027
BKG	8380	0.16	42.5	0.029	0.029
BKG	8690	0.17	44.6	0.031	0.029
BKG	9030	0.17	45	0.031	0.03
BKG	9510	0.17	45.1	0.031	0.031
BKG	9660	0.17	46.8	0.032	0.032
BKG	10200	0.17	47.7	0.032	0.035
BKG	10300	0.17	48.9	0.033	0.036
BKG	10700	0.17	55	0.033	0.036
BKG	10700	0.18	55.1	0.034	0.039
BKG	11300	0.18	55.6	0.044	0.043
BKG	11600	0.31	57.2	0.069	0.046
BKG	11700	0.32	58.4	0.091	0.046
BKG	11700	0.32	58.4	0.1	0.055
BKG	12200	0.35	64.5	0.11	0.056
BKG	12900	0.38	64.7	0.12	0.056
BKG	12900	0.4	65.6	0.13	0.058
BKG	14600	0.4	70.2	0.15	0.061
BKG	14700	0.56	75.3	0.17	0.064
BKG	16100	1.3	76.2	0.22	0.083
5	10100			0.22	0.000


 Table 1

 Concentrations of Selected Metals in Soil for Comparison to Background

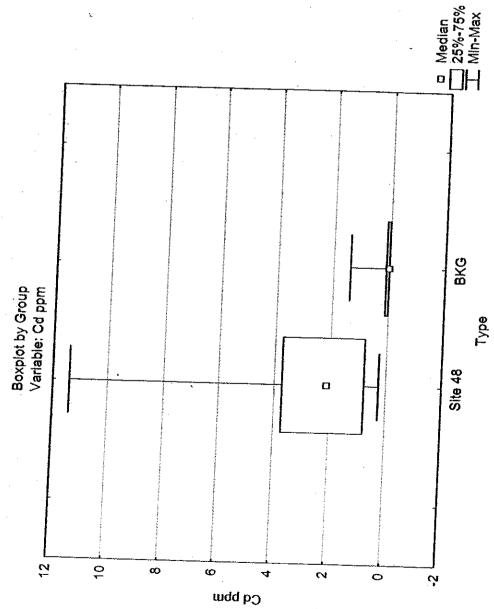
Concentrations of Selected Metals in Soli for Comparison to Background							
Data Type	AI (mg/kg)	Sb (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Hg (mg/kg)		
BKG	21100	1.4	76.3	0.35	0.25		
BKG	22500	1.6	101	0.4	0.36		
Al: aluminum Ba: barium BKG: background o Cd: cadmium Hg: mercury Sb: antimony ppm: parts per milli		centrations are	expressed in u	nits of mg/kg.			


Table 1
Concentrations of Selected Metals in Soil for Comparison to Background

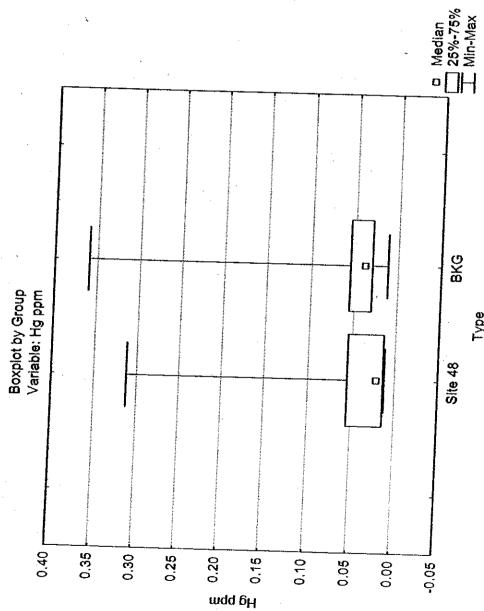
		-			
		Z p-level Valid N Valid N 2*1sided	Site 48 BKG exact n	RELODARDA	
		Valid N	Site 48	481	
		p-level		0.004998	
		N	adjusted	2.807168	
pared.sta)		p-level		0.006000	
BKG-Com)5000	~	ι		2.807078	
te 48-soil- int at p <.0		>	0001 07	13.5000	
U Test (Si be re significa	ank Sum	BKG	2500 500	2002/2012/2010/2/80/078 0.005000 2.807168 0.004998	
Mann-Whitney U Test (Site 48-soil-BKG-Compared.sta) By variable Type Marked tests are significant at p <.05000	Rank Sum Rank Sum	Site 48	2950 500	000000	
	3	variable	Al pom		



		p-level Valid N Valid N 2*1sided	exact p	56 0.000000
		Valid N	В Ю Ю	56
		Valid N	Site 48 BKG	45
		p-level		1390.000 0.000 8.609161 0.000000 8.680367 0.000000
\$		N	agusted	8.680357
⁵ 48Soll.stv	-	p-level		0.000000
in LHAAF p <.05000		7	10,000 0	8.009767
(Sheet1 icant at		>		
ey U Test Γype s are signif	Rank Sur	BXB	1508.00	00.0001
Mann-Whitney U Test (Sheet1 in LHAAP48Soll.stw) By variable Type Marked tests are significant at p <.05000	Rank Sum Rank Sum L	Site 48	3555 000	0000000
		variable	Sb ppm	



		Z p-level Valid N Valid N 2*1sided	Site 48 BKG exact n	58 0.00000
		Valid N	Site 48	48
		p-level		0.000000
		Z	aglusted	5.141502
oil.stw)		p-level		0.000000
4AP48So		V		5.141419
neet1 In L I Int at p <.0		ַכ	0001 101	0000.000
in-Whitney U Test (Sheet1 in LHAAP48Soil.stw) ariable Type ked tests are significant at p <.05000	K Slim Rook Slim	BKG	3151 500	
	Rank Sum B.		3308 5001	
		variable	Ba ppm	


-			-	56 0.000000
	Volid N 1V		0119 40 040	48
	I n-level		000000	000000
	6	adiusted		40110010
Soll.stw)	p-level	-	0000000	22222
-HAAP485 .05000	2		59.00000 8.378851	
Shëet1 in l cant at p <	5		59.00000	
ey U Test (Type s are signifi	Rank Sum	BKG	1655,000 5(
Mann-Whitney U Test (Sheet1 in LHAAP48Soil.stw) By variable Type Marked tests are significant at p <.05000	Rank Sum Rank Sum	010 48	3805.000	
	- Helinoit			

		Valid N Valid N 2*1sided	BKG exact n	ιø	
-		Valid N	Site 48 BKG	48	
		p-level		014442	
		Z	adjusted	-2.44610	
ll.stw)		p-level		014478	
AAP48So 5000		7		2.44519 0	
neet1 in LF nt at p <.0			0000	0000.80	
U Test (Sh pe re significa		BKG	3315 000 0		
Mann-Whitney U Test (Sheet1 in LHAAP48Soil.stw) By variable Type Marked tests are significant at p <.05000	Rank Sum Bank Sum	Site 48			
<u>< 00 < </u>	<u>r</u>	variable	Hg ppm		

00043802

Type

00043803

Attachment 2

Geochemical Evaluation of Concentrations of Metals in Soil LHAAP-48

Geochemical Evaluation of Concentrations of Metals in Soil LHAAP-48 Longhorn Army Ammunition Plant

1.0 Introduction

This report provides the results of a geochemical evaluation of inorganic constituents in soil samples from the LHAAP-48 site at Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Five elements in the site data set failed statistical comparison to background, and a geochemical evaluation was performed to determine if the elevated concentrations are naturally occurring or if they contain a component of contamination.

Site samples included in the evaluation consist of 48 soil samples collected over a five -year period from June 1993 through July 1998. The samples were obtained various from depths ranging from 0 to 12.8 feet below ground surface. All 48 samples were analyzed for the 23 target analyte list (TAL) metals (including aluminum, iron, and manganese). Installation-wide background data for TAL metals in soil are provided in the background study report (Shaw Environmental, Inc., 2004) and are used in the following evaluation.

2.0 Geochemical Evaluation Methodology

Statistical site-to-background comparisons for trace elements in soil commonly have high falsepositive error rates (erroneous declarations of contamination). A large number of background samples is required to adequately characterize the upper tails of most trace element distributions, which are typically right-skewed and span a wide range of concentrations, but such a large background data set is not always feasible. Higher false-positive error rates are expected if the site sample size is greater than the background sample size. The presence of estimated concentrations and nondetects with differing reporting limits can also cause statistical comparison tests to fail.

Statistical tests consider only the absolute concentrations of individual elements, and they disregard the interdependence of element concentrations and the geochemical mechanisms controlling element behavior. However, it is well established that trace elements are naturally associated with specific soil-forming minerals, and the preferential enrichment of a sample with these minerals will result in elevated trace element concentrations. It is thus important to be able to identify these naturally high concentrations and distinguish them from potential contamination.

1

Recent publications indicate that geochemical evaluations are assuming a larger role in environmental investigations (e.g., U.S. Environmental Protection Agency, 1995; Barclift, et al., 2000; U.S. Navy, 2002 and 2003; Myers and Thorbjornsen, 2004). A properly executed geochemical evaluation can distinguish between naturally high element concentrations versus contamination, and it can identify the specific samples that may contain some component of site-related contamination. This section describes the geochemical evaluation techniques that were employed in the LHAAP-48 soil investigation.

It should be noted that the geochemical evaluations rely in part on professional judgment. Samples that plot off the linear trend on a correlation plot are certainly suspect, but because all uncertainty cannot be eliminated from the evaluation, such plots cannot be construed as definitive proof of contamination. However, anomalous samples should be flagged as suspect, and their results should be used as a basis for further investigation, risk assessment, or remediation, as appropriate.

Geochemical evaluation of inorganic data is not a new concept, and it is based in part on the well-understood processes of trace element adsorption that are described in the literature (e.g., Gulledge and O'Connor, 1973; McKenzie, 1980; Electric Power Research Institute [EPRI], 1984; Hem, 1985; EPRI, 1986; Belzile and Tessier, 1990; Bowell, 1994; Manceau, 1995; Stumm and Morgan, 1996; Sullivan and Aller, 1996; Drever, 1997; Belzile et al., 2000; Nickson et al., 2000; Kabata-Pendias, 2001; Lai and Chen, 2001; Emmanuel and Erel, 2002; Munk et al., 2002; Roddick-Lanzilotta et al., 2002; Smedley and Kinniburgh, 2002; Cornell and Schwertmann, 2003; Welch and Stollenwerk, 2003). These papers, texts, and monographs provide the technical basis for the geochemical evaluations performed for the LHAAP project. This fundamental research has been applied in numerous peer-reviewed papers that employ correlation plots of trace elements versus specific major elements. The aims of these applied-science papers are to determine the likely mechanisms controlling element concentrations and identify potentially contaminated samples (e.g., Windom et al., 1989; Hanson et al., 1993; Daskalakis and O'Connor, 1995; Schiff and Weisberg, 1997; Barclift et al., 2000; Kuss et al., 2001; Chen et al., 2002; El Bilali et al., 2002; Mostafa et al., 2004). In many cases, these papers use the same types of analytical data that are obtained during the LHAAP investigations and typical environmental investigations at other sites.

Trace Elements in Soil Trace elements naturally associate with specific soil-forming minerals, and geochemical evaluations are predicated on these known associations. For example, in most uncontaminated oxic soils, arsenic exhibits an almost exclusive association with iron oxide minerals (Bowell, 1994; Schiff and Weisberg, 1997). Arsenic exists in oxic soil pore fluid as oxyanions such as $HAsO_4^{-2}$ and $H_2AsO_4^{-}$ (Brookins, 1988), and these negatively charged species have a strong affinity to adsorb on iron oxides, which tend to maintain a net positive surface charge (EPRI, 1986). (In this report, the term "iron oxide" encompasses oxides, hydroxides,

oxyhydroxides, and hydrous oxides of iron.) This association is expressed as a positive correlation between arsenic concentrations and iron concentrations for uncontaminated samples: soil samples with a low percentage of iron oxides will contain proportionally lower arsenic concentrations, and soil samples that are enriched in iron oxides will contain proportionally higher arsenic concentrations. Although there is variability in the absolute concentrations of arsenic and iron in soil at a site, the As/Fe ratios of the samples will be relatively constant if no contamination is present (Daskalakis and O'Connor, 1995). Samples that contain excess arsenic from a contaminant source (e.g., an arsenic-bearing herbicide) will exhibit anomalously high As/Fe ratios compared to the uncontaminated samples.

To perform the geochemical evaluation, correlation plots are constructed to explore the elemental associations and identify potentially contaminated samples. The detected concentrations of the trace element of interest (dependent variable) are plotted against the detected concentrations of the reference element (independent variable), which represents the mineral to which the trace element may be adsorbed. In the case of arsenic, the arsenic concentrations for a given set of samples would be plotted on the y-axis, and the corresponding iron concentrations would be plotted on the x-axis. If no contamination is present, then the samples will exhibit a generally linear trend, and the samples with the highest arsenic concentrations will lie on this trend. This result indicates that the elevated arsenic is due to the preferential enrichment of iron oxides in those samples and that the arsenic has a natural source. If, however, the samples with high arsenic concentrations have low or moderate iron concentrations (anomalously high As/Fe ratios), then they will lie above the linear trend established by the other samples. This would indicate that the anomalous samples contain excess arsenic beyond that which can be explained by the natural iron oxide content, and such samples may contain a component of contamination.

The reference elements against which trace elements are evaluated reflect the affinity that the trace elements have for specific minerals. The concentrations of iron, aluminum, and manganese serve as qualitative indicators of the amounts of iron oxide, clay, and manganese oxide minerals in the soil samples. Along with arsenic, selenium and vanadium are present in oxic soil pore fluid as anions and have an affinity to adsorb on iron oxides, which tend to maintain a net positive surface charge. Concentrations of arsenic, selenium, or vanadium in a set of samples can be evaluated through comparison to the corresponding iron concentrations. Barium, cadmium, lead, and zinc are typically present in soil as divalent cations and have an affinity to adsorb on clay minerals, which tend to maintain a net negative surface charge. Concentrations of barium, cadmium, lead, or zinc can be evaluated through comparison to the corresponding aluminum concentrations. Manganese oxides have a strong affinity to adsorb barium, cobalt, and lead (Kabata-Pendias, 2001), so concentrations of these elements can be compared to the

corresponding manganese concentrations, as long as there is enough manganese present in the soil to form discrete manganese oxides.

Over a limited range of concentrations, the adsorption of a trace element on a mineral surface can usually be described by a linear trend. Over a wider range of concentrations, a curved fit may be more appropriate for some trace elements. (This is why trace element adsorption is often expressed as a curve using Freundlich or Langmuir isotherms.) In this report, the elemental correlations are referred to as "linear trends," although there may be some degree of curvature to the natural relationship.

It is important to note that some trace elements have very strong affinities for a particular type of mineral, whereas other elements will partition themselves between several minerals. For instance, vanadium has a particularly strong affinity for iron oxides, so correlation coefficients for vanadium versus iron in uncontaminated samples are usually very high, and this is expressed on a correlation plot as a highly linear trend. In contrast, chromium forms several coexisting aqueous species with different charges $[Cr(OH)_2^+, Cr(OH)_3^0, and Cr(OH)_4^-]$ that will adsorb on several different types of minerals including clays and iron oxides. This behavior will yield lower correlation coefficients for chromium versus iron or chromium versus aluminum relative to the coefficients observed for vanadium versus iron, and more scatter may be observed on the correlation plots. Some elements are more selective than others with respect to adsorption on specific mineral surfaces, and this selectivity is dependent on site-specific conditions, including soil pH, redox conditions, and concentrations of competing elements.

Ratio Plots. Site samples with a trace element present as a contaminant will exhibit anomalously high trace-versus-major element ratios compared to background trace-versus-major element ratios. These elevated ratios may not always be apparent in log-log correlation plots, especially at the upper range of concentrations. Therefore, ratio plots, which depict trace element concentrations on the y-axis and trace/major element ratios on the x-axis, are employed in conjunction with correlation plots in those cases where it is not immediately apparent which site samples have anomalously high elemental ratios on the correlation plots. The ratio plots permit easy identification of samples with anomalously high elemental ratios relative to background, and they have high resolution over the entire concentration range. The presence of an anomalously high elemental ratio is not definitive proof of site-related contamination; however, such samples are discussed in the text and, unless otherwise noted, are flagged as representing potential site-related contamination. This is a conservative approach.

It is also important to note that there is natural variability, as well as analytical uncertainty, in the elemental ratios of uncontaminated soil and sediment samples. Trace/major element ratios are calculated from two uncertain analytical results, so the resulting uncertainties in the ratios can produce some scatter in the points on a ratio plot. This is especially true when estimated ("J"-

qualified) analytical results are used. This can be seen on many of the plots that show more scatter of the points at the lower concentration range, where analytical uncertainties are higher and analytical results are reported with fewer significant figures.

On ratio plots, vertical trends should be expected only in those cases where the trace element adsorption is a linear process and where the trace element concentrations are controlled exclusively by adsorption on a given mineral type. Nonvertical trends are much more common in ratio plots, however, because adsorption processes often are not linear and because trace elements often have affinities for more than one type of sorptive surface. Nonlinear adsorption of a trace element on mineral surfaces will manifest itself as a curve rather than a straight line on a correlation plot and as a nonvertical trend on a ratio plot. In addition, the presence of competing ions in soil or sediment and differences in pH and redox conditions among the sample locations can add to the natural variability of elemental ratios.

Ratio plots may also be prepared for the major elements (e.g., aluminum versus Al/Fe ratios). However, adsorption is not the dominant process controlling major element concentrations. For example, aluminum and iron concentrations covary largely because they are controlled by the abundance of fine-grained minerals in the samples. The plots thus reflect physical effects rather than chemical effects such as adsorption. Linearity is often not observed in major-versus-major element correlation plots and associated ratio plots.

3.0 Results of the Geochemical Evaluation of Multiple Elements in Soil

This section presents the results of the geochemical evaluation of aluminum, antimony, barium, cadmium, and mercury in soil samples from LHAAP-48. Correlation plots and ratio plots are provided in **Figures 1** through **12**. **Table 1** lists the samples identified as containing anomalously high element concentrations.

Aluminum

Aluminum is the second most abundant of the 23 elements analyzed in the LHAAP-48 soil samples, with a mean concentration of 9,620 mg/kg (0.96 weight percent). Aluminum is a primary component of common soil-forming minerals such as clays, feldspars, and micas. Aluminum also substitutes for ferric iron in iron oxide minerals, and can adsorb on iron oxide surfaces (Cornell and Schwertmann, 2003). Iron is the most abundant element analyzed in the site soil samples (mean concentration of 12,590 mg/kg, or 1.3 weight percent) and is dominantly present as iron oxides. Iron oxides are common soil-forming minerals, and they occur as discrete mineral grains or as coatings on silicate minerals (Cornell and Schwertmann, 2003). Clays and iron oxides tend to exist as very fine particles, so both aluminum and iron are enriched in samples with finer grain sizes. A plot of aluminum versus iron concentrations can be used to qualitatively assess the relative abundance of these minerals in site soil (**Figure 1**). As seen in

the plot, the background samples and most of the site samples form a common linear trend with a positive slope. Most of the site samples with high aluminum concentrations also contain high iron concentrations, and they lie on the background trend. Aluminum in these samples is natural. Site sample LH-S98-01_1 lies below the linear trend and exhibits an anomalously low Al/Fe ratio relative to the other samples; however, the aluminum concentration in this sample (6,140 mg/kg) is well below the background range. Several site samples have slightly elevated Al/Fe ratios relative to background, and they lie slightly above the linear trend. These samples are most likely naturally enriched in clays relative to the background samples.

Potassium is a common component of soil-forming minerals such as clays, often occurring as part of the mineral structure and as loosely adsorbed cations. Clays are characterized by large surface-area-to-volume ratios and strong negative surface charges. As a result, the major cations, such as potassium, are attracted to these mineral surfaces and take part in cation exchange reactions. Positive correlations between aluminum and potassium concentrations are thus typically observed for uncontaminated soil samples. A plot of aluminum versus potassium reveals a linear trend with a positive slope for the site and background samples (**Figure 2**). The site samples with the highest aluminum concentrations also contain high potassium content, and they lie on the linear trend. This suggests a natural source for the elevated aluminum concentrations in the LHAAP-48 samples.

Antimony

Antimony has geochemical behavior similar to that of arsenic and, like arsenic, it has an affinity to adsorb on the surfaces of iron oxides. Positive correlations between antimony and iron concentrations are commonly observed in uncontaminated soil samples. A plot of detected antimony versus iron concentrations in the LHAAP-48 and background samples is provided in **Figure 3**. The three site samples with detectable antimony (LH-S95-01_3, LH-S98-01_1, and LH-S101-01_1) have the highest antimony concentrations of the two data sets (11 mg/kg, 7.96 E mg/kg, and 5.12 E mg/kg, respectively) and they lie above the background trend in **Figure 3**.

Another perspective on the data sets is provided in **Figure 4**, which depicts the antimony concentrations of the site and background samples (y-axis) versus their corresponding Sb/Fe ratios (x-axis). If a site sample contains excess antimony from a contaminant source, it will exhibit an anomalously high Sb/Fe ratio relative to background and will plot to the right of the background samples in **Figure 4**. All three site samples have Sb/Fe ratios that exceed the maximum background Sb/Fe ratio of 1.37E-04. Elevated antimony in these samples should be considered suspect (**Table 1**).

It is important to note that all of the site and background detections are estimated concentrations, and such values are highly uncertain. This uncertainty may explain why a stronger correlation is not observed in **Figure 3**. Many site samples have higher reporting limits relative to those of the

background samples (**Figure 5**), and of the available site reporting limits, 21 exceed the maximum background reporting limit of 7.3 mg/kg. Reporting limits are not available for the three site detections, but the estimated nature of these concentrations suggests that they may be below their respective reporting limits. The difference between the site and background reporting limits may explain why samples LH-S95-01_3, LH-S98-01_1, and LH-S101-01_1 have higher Sb/Fe ratios relative to background. In addition, samples LH-S98-01_1 and LH-S101-01_1 have the two highest iron concentrations of the site data set (51,800 mg/kg and 25,000 mg/kg, respectively); this suggests that these samples contain a naturally high proportion of iron oxides and, hence, a naturally high proportion of associated trace elements such as antimony. The three site antimony detections are identified as anomalously high because their Sb/Fe ratios exceed the background ratio range (**Table 1**). However, the estimated nature of two of these concentrations, the difference in site versus background reporting limits, and the presence of elevated iron in two of the samples suggest that this is a conservative assessment.

Barium

As discussed in **Section 2.0**, divalent cations such as barium (Ba^{2+}) have an affinity to adsorb on clay minerals, which tend to maintain a net negative surface charge. Positive correlations between barium and aluminum are thus commonly observed in uncontaminated samples. Most of the site and background samples form a common trend with a positive slope in a plot of barium versus aluminum (**Figure 6**). This suggests that barium in these samples is associated with clay minerals at ratios consistent with those of the background samples, and that it is natural. There are a few site samples, however, with anomalously high Ba/Al ratios relative to background; these samples lie above the linear background trend in **Figure 6**.

A plot of barium concentrations versus Ba/Al ratios reveals that most of the site samples have ratios that are within the background range (**Figure 7**). However, three site samples have Ba/Al ratios that exceed the maximum background ratio of 0.039. Elevated barium in these three samples should be considered suspect (**Table 1**).

Cadmium

Cations such as cadmium (Cd²⁺), copper (Cu²⁺), and nickel (Ni²⁺) have an affinity to adsorb on the surfaces of iron oxides in the pH range of typical soils (5 to 8 standard units), with adsorption increasing as pH approaches neutrality (Cornell and Schwertmann, 2003). The cations bind to surface hydroxyl groups (OH⁻), giving rise to metal-surface complexes. Because of this affinity for cation adsorption, positive correlations are commonly observed for cadmium versus iron concentrations in uncontaminated soil samples. Samples that contain a high proportion of iron oxides are therefore expected to contain naturally high concentrations of cations such as cadmium. It should be noted that cadmium detections are often low, estimated concentrations near or below the reporting limit, and the uncertainty associated with such values contributes to the weak correlations that are sometimes observed, even for uncontaminated samples.

The background samples form a weak linear trend with a positive slope in a plot of cadmium versus iron (**Figure 8**). Most of the site samples have elevated cadmium and lie above the general background trend in **Figure 8**. Their Cd/Fe ratios exceed the maximum background Cd/Fe ratio of 1.98E-04, but they form a linear trend with a positive slope. Most of the Cd/Fe ratios of these samples span a narrow range from 2.2E-04 to 3.5E-04 (**Figure 9**). These samples, which were collected in June 1993 and August 1993, have higher reporting limits than the background samples (all available site reporting limits are represented in **Figure 10**, along with the background reporting limits). Available site reporting limits for the 1993 sampling events range from 2.4 to 3.16 mg/kg (mean of 2.66 mg/kg), and these values are an order of magnitude higher than the background reporting limits of 0.39 to 0.48 mg/kg (mean of 0.43 mg/kg). The higher site reporting limits likely explain the slightly higher site Cd/Fe ratios relative to background. The strong linear trend formed by most of the site samples in **Figure 8** suggests that the cadmium in those samples is associated with iron oxides at a relatively constant ratio and is natural.

Seven site samples lie above the linear site trend in **Figure 8** and have higher Cd/Fe ratios relative to the other site and background samples (**Figure 9**), which suggests that they may contain a component of contamination (**Table 1**).

Mercury

Mercury can adsorb on the surfaces of iron oxide and clay minerals, but its concentrations are commonly controlled through organic complex formation (Kabata-Pendias, 2001). As a result, poor correlations for mercury versus iron or mercury versus aluminum are often observed, even in uncontaminated soil samples. In addition, mercury concentrations are often estimated detections near or below the reporting limit, and the uncertainty associated with such values contributes to the weak correlations. A plot of mercury versus iron is provided in **Figure 11**. Most of the background samples form a weak linear trend with a positive slope. The site samples lie on or near the background trend.

Figure 12 displays the mercury concentrations of the site and background samples (y-axis) versus their corresponding Hg/Fe ratios (x-axis). If a site sample contained excess mercury from a contaminant source, it would exhibit an anomalously high Hg/Fe ratio relative to background and would plot to the right of the background samples in **Figure 12**. However, all of the site samples exhibit Hg/Fe ratios that are within the background range. This suggests a natural source for the mercury detected in the site samples. It is important to note that seven of the nine site mercury detections and all but one of the background mercury detections are estimated

concentrations, and the uncertainty associated with such values explains why a stronger correlation is not observed in **Figure 11**.

4.0 Summary

Aluminum, antimony, barium, cadmium, and mercury in the LHAAP-48 soil data set failed statistical comparison to background. A geochemical evaluation was performed to determine if the elevated site concentrations could be explained as the result of natural processes.

Geochemical evaluation indicates that all detected concentrations of aluminum and mercury in the site soil samples are naturally occurring. Anomalously high concentrations of antimony, barium, and cadmium are present in three to seven samples each (**Table 1**). These concentrations may contain a component of contamination.

5.0 References

Barclift, D., J. Heath, and A. Drucker, 2000, "Focus on Environmental Background Data Analysis," *Soil Sediment & Groundwater*, August/September, pp. 10-17.

Belzile, N., and A. Tessier, 1990, "Interactions between arsenic and iron oxyhydroxides in lacustrine sediments," *Geochimica et Cosmochimica Acta*, Vol. 54, No. 1, pp. 103-109.

Belzile, N., Y. W. Chen, and R. Xu, 2000, "Early diagenetic behavior of selenium in freshwater sediments," *Applied Geochemistry*, Vol. 15, No. 10, pp. 1439-1454.

Bowell, R. J., 1994, "Sorption of arsenic by iron oxides and oxyhydroxides in soils," *Applied Geochemistry*, Vol. 9, No. 3, pp. 279-286.

Brookins, D. G., 1988, Eh-pH Diagrams for Geochemistry, Springer-Verlag.

Chen, M., L. Q. Ma, and W. G. Harris, 2002, "Arsenic Concentrations in Florida Surface Soils: Influence of Soil Type and Properties," *Soil Science Society of America Journal*, Vol. 66, pp. 632-640.

Cornell, R. M. and U. Schwertmann, 2003, *The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses*, Second Edition, Wiley-VCH, Weinheim.

Daskalakis, K. D. and T. P. O'Connor, 1995, "Normalization and Elemental Sediment Contamination in the Coastal United States," *Environmental Science & Technology*, Vol. 29, No. 2, pp. 470-477.

Drever, J. I., 1997, *The Geochemistry of Natural Waters: Surface and Groundwater Environments*, Third Edition, Prentice Hall, Upper Saddle River, New Jersey.

El Bilali, L., P. E. Rasmussen, G. E. M. Hall, and D. Fortin, 2002, "Role of sediment composition in trace metal distribution in lake sediments," *Applied Geochemistry*, Vol. 17, No. 9, pp. 1171-1181.

Electric Power Research Institute (EPRI), 1984, Chemical Attenuation Rates, Coefficients, and Constants in Leachate Migration, Volume 1: A Critical Review, EPRI EA-3356, Palo Alto, California.

Electric Power Research Institute (EPRI), 1986, Speciation of Selenium and Arsenic in Natural Waters and Sediments, Volume 2: Arsenic Speciation, EPRI EA-4641, Palo Alto, California.

Emmanuel, S. and Y. Erel, 2002, "Implications from concentrations and isotopic data for Pb partitioning processes in soils," *Geochimica et Cosmochimica Acta*, Vol. 66, No. 14, pp. 2517-2527.

Gulledge, J. H. and J. T. O'Connor, 1973, "Removal of Arsenic (V) From Water by Adsorption on Aluminum and Ferric Hydroxides," *Journal of the American Water Works Association*, Vol. 65, No. 8, pp. 548-552.

Hanson, P. J., D. W. Evans, and D. R. Colby, 1993, "Assessment of Elemental Contamination in Estuarine and Coastal Environments Based on Geochemical and Statistical Modeling of Sediments," *Marine Environmental Research*, Vol. 36, No. 4, pp. 237-266.

Hem, J. D., 1985, *Study and Interpretation of the Chemical Characteristics of Natural Water*, U. S. Geological Survey, Water Supply Paper 2254, 3rd Edition.

Kabata-Pendias, A., 2001, Trace Elements in Soils and Plants, Third Edition, CRC Press.

Kuss, J., C.D. Garbe-Schönberg, and K. Kremling, 2001, "Rare earth elements in suspended particulate material of North Atlantic surface waters," *Geochimica et Cosmochimica Acta*, Vol. 65, No. 2, pp. 187-199.

Lai, C. H. and C. Y. Chen, 2001, "Removal of Metal Ions and Humic Acid from Water by Iron-Coated Filter Media," *Chemosphere*, Vol. 44, No. 5, pp. 1177-1184.

Manceau, A., 1995, "The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedra on free (Fe(O,OH)₆ edges," *Geochimica et Cosmochimica Acta*, Vol. 59, No. 17, pp. 3647-3653.

McKenzie, R. M., 1980, "The Adsorption of Lead and Other Heavy Metals on Oxides of Manganese and Iron," *Australian Journal of Soil Research*, Vol. 18, No. 1, pp. 61-73.

Mostafa, A.R., A. O. Barakat, Y. Qian, T. L. Wade, and D. Yuan, 2004, "An Overview of Metal Pollution in the Western Harbour of Alexandria, Egypt," *Soil & Sediment Contamination*, Vol. 13, No. 3, pp. 299-311.

Munk, L., G. Faure, D. E. Pride, and J. M. Bigham, 2002, "Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado," *Applied Geochemistry*, Vol. 17, No. 4, pp. 421-430.

Myers, J. and K. Thorbjornsen, 2004, "Identifying Metals Contamination in Soil: A Geochemical Approach," *Soil & Sediment Contamination*, Vol. 13, No. 1, pp. 1-16.

Nickson, R. T., J. M. McArthur, P. Ravenscroft, W. G. Burgess, and K. M. Ahmed, 2000, "Mechanism of arsenic release to groundwater, Bangladesh and West Bengal," *Applied Geochemistry*, Vol. 15, No. 4, pp. 403-413.

Roddick-Lanzilotta, A. J., A. J. McQuillan, and D. Craw, 2002, "Infrared spectroscopic characterization of arsenate (V) ion adsorption from mine waters, Macraes Mine, New Zealand," *Applied Geochemistry*, Vol. 17, No. 4, pp. 445-454.

Schiff, K. and S. B. Weisberg, 1997, "Iron as a Reference Element for Determining Trace Metal Enrichment in California Coastal Shelf Sediments," *in*: S. Weisberg, C. Francisco, and D. Hallock (editors), *Southern California Coastal Water Research Project Annual Report 1995-96*, pp. 68-78.

Shaw Environmental, Inc., 2004, *Final Background Soil Study Report, Longhorn Army Ammunition Plant, Karnack, Texas*, Prepared for the U.S. Army Corps of Engineers, Tulsa District, July.

Smedley, P. L. and D. G. Kinniburgh, 2002, "A review of the source, behaviour, and distribution of arsenic in natural waters," *Applied Geochemistry*, Vol. 17, No. 5, pp. 517-568.

Stumm, W. and J. Morgan, 1996, *Aquatic Chemistry*, Third Edition, Wiley-Interscience, New York.

Sullivan, K. A. and R. C. Aller, 1996, "Diagenetic cycling of arsenic in Amazon shelf sediments," *Geochimica et Cosmochimica Acta*, Vol. 60, No. 9, pp. 1465-1477.

U.S. Environmental Protection Agency, 1995, *Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites*, Office of Research and Development, EPA/540/S-96/500, December.

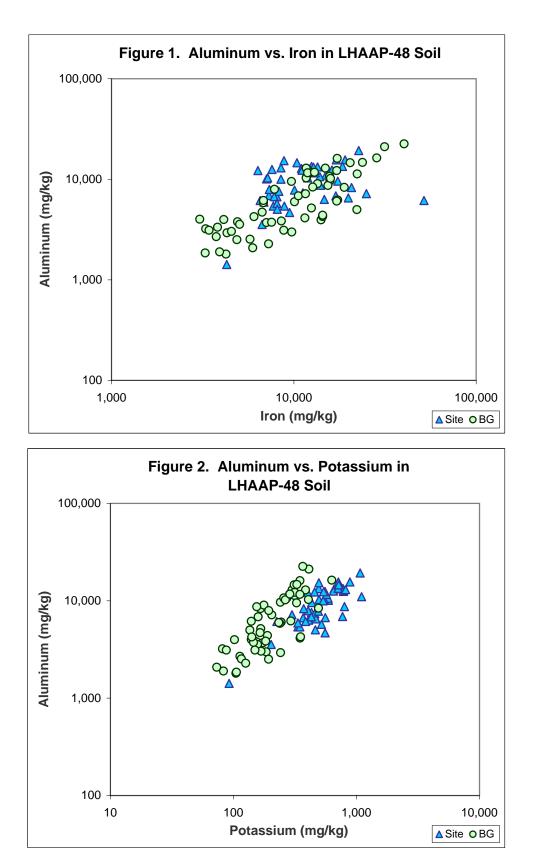
U.S. Navy, 2002, *Guidance for Environmental Background Analysis, Volume 1: Soil*, NFESC User's Guide UG-2049-ENV, Naval Facilities Engineering Command, Washington, D.C., April.

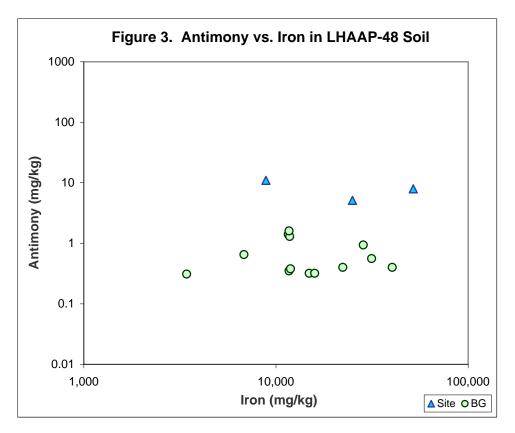
U.S. Navy, 2003, *Guidance For Environmental Background Analysis, Volume II: Sediment*, NFESC User's Guide UG-2054-ENV, Naval Facilities Engineering Command, Washington, D.C., April.

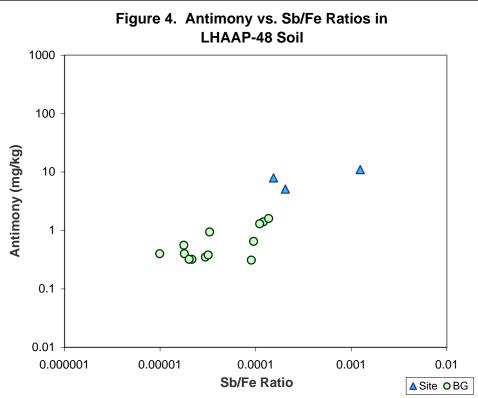
Welch, A. H. and K. G. Stollenwerk (editors), 2003, *Arsenic in Ground Water: Geochemistry and Occurrence*, Kluwer Academic Publishers, Boston.

Windom, H. L., S. J. Schropp, F. D. Calder, J. D. Ryan, R. G. Smith Jr., L. C. Burney, F. G. Lewis, and C. H. Rawlinson, 1989, "Natural Trace Metal Concentrations in Estuarine and Coastal Marine Sediments of the Southeastern United States," *Environmental Science & Technology*, Vol. 23, No. 3, pp. 314-320.

00043816

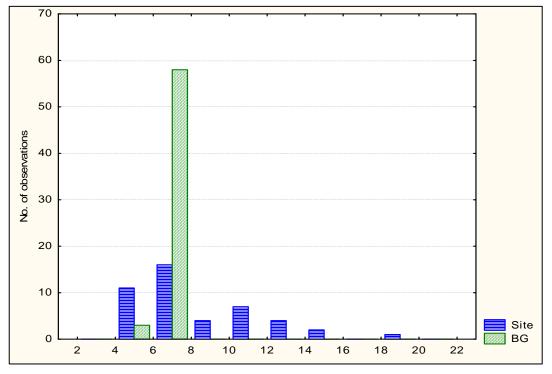
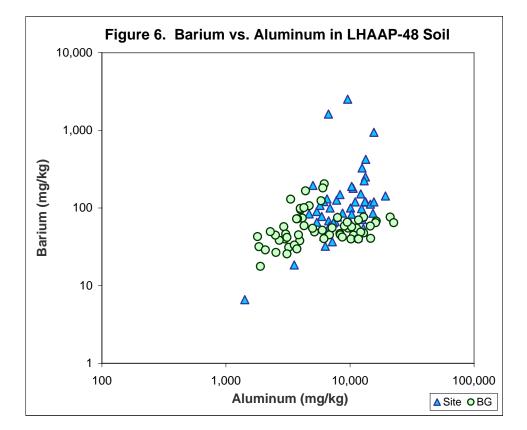
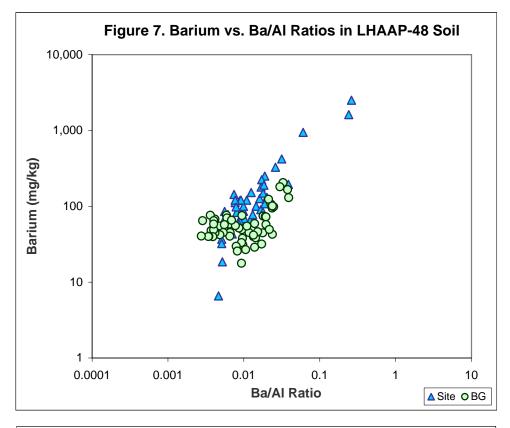

Attachment 2 Tables

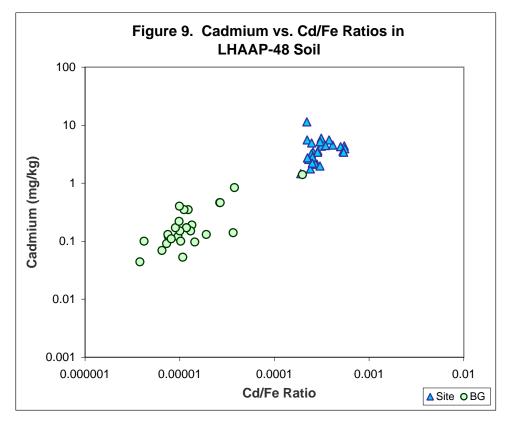

Table 1Soil Samples With Anonalously High Element ConcentrationsLHAAP-48Longhorn Army Ammunition Plant, Karnack, Texas

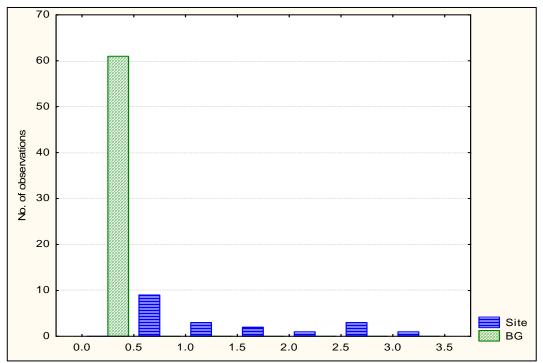

Location	Sample	Date	Depth	Element(s)	
LH-S101-01	LH-S101-01_1	26-Jun-93	0.5 - 1.5	Antimony	
LH-S101-01	LH-S101-01_2	26-Jun-93	3.8 - 4.2	Cadmium	
LH-S123-01	LH-S123-01_1	26-Jun-93 0.5 - 1.5 Barium, Cadm			
LH-S123-01	LH-S123-01_2	26-Jun-93	11 - 12.5	Cadmium	
LH-S94-01	LH-S94-01_1	20-Aug-93	0.5 - 1.5	Cadmium	
LH-S94-01	LH-S94-01_2	20-Aug-93	2.9 - 3.5	Cadmium	
LH-S95-01	LH-S95-01_1	26-Jun-93 0.5 - 1.5 Bariur		Barium	
LH-S95-01	LH-S95-01_3	26-Jun-93	11.3 - 12	Antimony	
LH-S98-01	LH-S98-01_1	26-Jun-93	0.5 - 1.5	Antimony	
LH-WRS3-01	LH-WRS3-01_1	26-Jun-93	0.5 - 1.5	Cadmium	
LH-WRS3-01	LH-WRS3-01_2	26-Jun-93	3.5 - 4.3	Cadmium	
LHS-Y-06	LHS-Y-06	11-Jan-95	0 - 0.5	Barium	

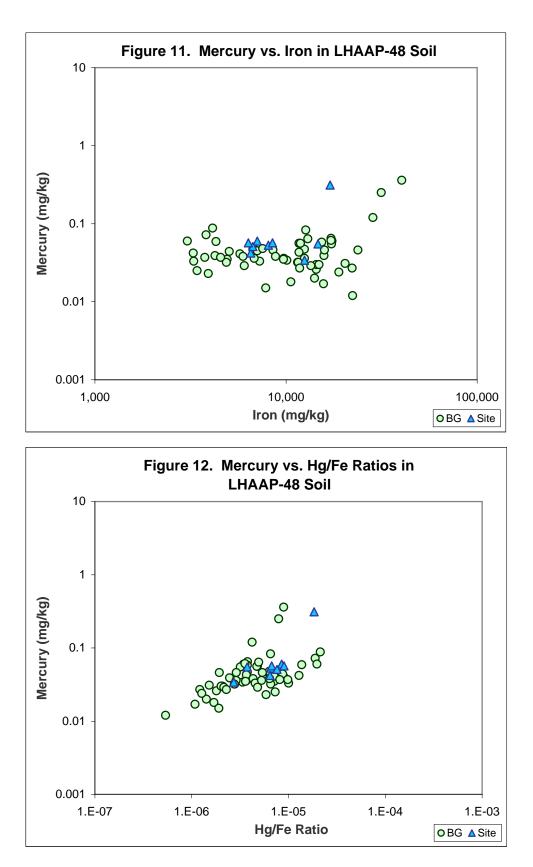
Note: Depths represent feet below ground surface.

Attachment 2 Figures



Figure 5. Histogram of Antimony Reporting Limits, LHAAP-48 Soil





Appendix D

Baseline Risk Assessment for Residential Use of LHAAP-35C(53)

Table of Contents_

List of	Figure	S		İİ					
Acrony	ms an	d Abbre	viations	iii					
1.0									
2.0			on						
	2.1		tion of Analytical Methods						
	2.2		ary of Sampling Efforts						
	2.3		eduction						
	2.4		tion of Dioxins and Furans						
	2.5		cation of Chemicals of Potential Concern						
		2.5.1	Comparison of Metals to LHAAP-Specific Background Concentrations in Soil	2-4					
			2.5.1.1 Statistical Distribution Tests						
			2.5.1.2 Statistical Comparisons						
			2.5.1.3 Geochemical Evaluations	2-6					
		2.5.2	Organic Chemicals in Soil	2-6					
		2.5.3	Summary	2-6					
3.0	Expos	sure Ass	sessment	3-1					
	3.1	Land U	Jse	3-1					
	3.2	Site Co	pnceptual Model	3-1					
	3.3	Determ	nination of Source-Term and Exposure-point Concentrations	3-2					
	3.4	Exposu	ure Factors	3-3					
	3.5	Identifi	cation of Exposure Models and Assumptions	3-3					
		3.5.1	Ingestion Exposures to COPCs in Soil	3-3					
		3.5.2	Inhalation Exposures to COPCs in Soil	3-4					
			3.5.2.1 Volatilization Factor						
		3.5.3	Dermal Exposures to COPCs in Soil						
4.0	Toxici	ty Asse	ssment						
	4.1	5	ogenic Effects						
	4.2		rcinogenic Effects						
5.0	Risk (erization						
	5.1	Carcino	ogenic Effects of Chemicals	5-1					
	5.2	5.2 Noncancer Effects of Chemicals							
	5.3 Risks Associated With Exposure to Soil								
6.0			nalysis						
7.0		5							

List of Tables _____

Table D-1	Soil Sample Summary, LHAAP-35C(53)
Table D-2	Concentrations of 2,3,7,8-TCDD Tocicity Equivalent Quotient of Dioxin and Furan
	Congeners in Soil at LHAAP-35C(53)
Table D-3	Surface Soil Samples, LHAAP-35C(53)
Table D-4	Exposure Factors Used to Estimate Intake of Chemicals of Potential Concern, LHAAP- 35C(53)
Table D-5	Toxicity Values for Chemicals of Potential Concern, LHAAP-35C(53) Site
Table D-6a	Incremental Lifetime Cancer Risk (ILCR) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53) Site
Table D-6b	Hazard Index (HI) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53) Site
Table D-7a	Incremental Lifetime Cancer Risk (ILCR) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-35C(53)
Table D-7b	Hazard Index (HI) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-35C(53)
Table D-8a	Incremental Lifetime Cancer Risk (ILCR) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53)
Table D-8b	Hazard Index (HI) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53)
Table D-9a	Exposures and Incremental Lifetime Cancer Risks for Potential Exposure of Future Resident to Soil at the LHAAP-35C(53)
Table D-9b	Exposures and Noncancer Hazards for Potential Exposure of Future Resident to Soil at the LHAAP-35C(53)

List of Figures _____

Figure D-1 Sample Location Map, LHAAP-35C(53)

List of Attachments_____

Attac	hment	1	Statis	stical	Сс	mpa	arisor	ı to	Backg	round	С	ono	cei	ntrat	ions

Attachment 2 Geochemical Evaluation of Aluminum in Soil Samples LHAAP-35C(53)

Acronyms and Abbreviations_

ABSd	dermal absorption factor
ABS _{GI}	gastrointestinal absorption factor
atm	atmosphere
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
cm/sec	centimeter per second
cm ²	centimeter square
cm ³	cubic centimeters
COPCs	Chemicals of Potential Concern
CSEM	conceptual site exposure model
g	gram
IRIS	integrated risk information system
LHAAP	Longhorn Army Ammunition Plant
m	meter
MCL	maximum contaminant levels
MDC	maximum detected concentrations
$\mu g/m^3$	micrograms per cubic meter
mg/kg	milligrams per kilogram
MSSLs	medium-specific screening levels
RBSV	risk-based screening values
RfC	reference concentration
RfD	reference dose
RI	remedial investigation
sec	second
SF	slope factor
Shaw	Shaw Environmental, Inc.
STC	source-term concentration
TCEQ	Texas Commission on Environmental Quality
TEF	toxicity equivalency factor
TEQ	toxicity equivalent quotient
UCL	upper confidence limit
UPL	upper prediction limit
URF	unit risk factor
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
UTL	upper tolerance limit

1.0 Introduction

This residential risk assessment, prepared by Shaw Environmental, Inc. (Shaw) for the U.S. Army Corps of Engineers (USACE), Tulsa District, under Total Environmental Restoration Contract DACA56-94-D-0020, Task Order 0109, describes the risk associated with residential use of LHAAP-35C(53) located at the Longhorn Army Ammunition Plant (LHAAP) near Karnack, Texas. The results of this assessment will be used to support decisions related to residential use of LHAAP-35C(53). Environmental sampling and analysis efforts were conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980.

The assessment of potential risk to current trespassers and future maintenance workers for exposure to chemicals in soil in a hypothetical industrial setting at LHAAP-35C(53) have been reported as acceptable (Jacobs, 2003). Estimated risk from potential groundwater ingestion by industrial workers was unacceptable and predominantly associated with thallium, silver, nickel, aluminum, and dioxins, with lesser contributions from dinitrotoluene and dichloroethane. Chromium, lead, thallium, and trichloroethene exceeded their respective maximum contaminant levels (MCLs) established by the Safe Drinking Water Act (Jacobs, 2003). Experience at other sites has shown that metals and dioxin concentrations in groundwater can be elevated due to high turbidity of the sample. Because of the uncertainty of these analysis results, additional samples were taken by Shaw in 2004 and 2005 using low-flow sampling methods to ensure that samples have low turbidity (Shaw, 2004a, 2005).

The environmental data used in the industrial risk assessment (Jacobs, 2003) and groundwater gathered by Shaw in 2004 and 2005 data were evaluated to supplement the industrial risk assessment and provide risk managers with information about the suitability of the site for residential use. The evaluation of data to identify chemicals of potential concern (COPCs) in each environmental medium sampled follows guidance from the USEPA (1992a,b,c; 2002a,b) and the Texas Commission on Environmental Quality (TCEQ) (TCEQ, 1998, 2001, 2003, and 2004). Uncertainties associated with the identification of COPCs and the impact on future decisions regarding the site are described herein.

Figures and tables that support this appendix are presented at the end of the text portion. There are two attachments that follow the figures and tables: Attachment 1, Statistical Comparison to Background Concentrations; and Attachment 2, Geochemical Evaluation of Aluminum in Soil Samples at LHAAP-35C(53).

2.0 Data Evaluation

The COPCs were identified by comparing the results of chemical concentrations in soil (Jacobs, 2003) with LHAAP background concentrations, risk-based screening values, and other criteria.

2.1 Evaluation of Analytical Methods

Soil and water samples were analyzed according to USEPA methods (USEPA, 1983, 1992a). Evaluation of analytical data reported before June 2002 was described in the industrial risk assessment (Jacobs, 2003). After June 2002, samples were collected and analyzed as described in the work plans for LHAAP sites (Shaw, 2004a,b) and in this section.

2.2 Summary of Sampling Efforts

Soil and groundwater samples were collected between 1993 and 2005. Because no surface water bodies are located within the LHAAP-35C(53) boundary, no surface water or sediment samples have been collected (Jacobs, 2003).

Soil samples from LHAAP-35C(53) were collected from depths less than 15 feet below ground surface (bgs) during three phases of a remedial investigation (RI) effort conducted from 1993 through 1998 (Jacobs, 2003). Soil samples were taken from 12 soil borings located adjacent to the 4 sump locations in the Phase I RI of 1993. In 1994 and 1995, the Phase II RI included installation of five monitoring wells. Four wells were installed in the shallow subsurface that range from 17.5 to 22 ft bgs, and one well (LHSMW69) was installed as an intermediate well at 51 feet bgs (Jacobs, 2003). Soil and groundwater samples were collected from these five wells at LHAAP-35C(53) in 1994 – 1995. Additional soil samples were also collected from two ditch and drainage ways during the Phase II RI (Jacobs, 2003). The Phase III RI conducted in 1998 involved completion of soil borings at each of the four sump locations. One surface and one subsurface soil sample was collected from each soil boring. Groundwater samples were collected from the seven existing monitoring wells in the Phase III RI. Two rounds of sampling were conducted at the 7 monitoring wells in 1996, as well as a perchlorate analysis of groundwater and soil in May 2000 and February 2001 (Jacobs 2003). Wells 35CWW107, LHSMW67, LHSMW68, LHSMW69, LHSMW70, and LHSMW71 at LHAAP-35C(53) (Figure D-1) were sampled in May 2005 and the data are included in this residential risk assessment.

2.3 Data Reduction

Analytical data were evaluated as follows:

- Samples with all validation qualifiers were included in the residential risk assessment except for "R"-qualified data, which were rejected from the data set
- "J"- qualified data were included as detected concentrations
- "E"- qualified data were included as detected concentrations
- "B"- qualified data were treated as non-detected concentrations
- All non-detected concentrations were assigned a value equal to half the reporting limit.

A more detailed discussion of data qualifiers and their interpretation is given in the work plan (Shaw, 2004b).

The soil samples analyzed are presented in **Table D-1**. Thirty-six soil samples from 14 locations were evaluated. Duplicates were collected for five samples for analytical quality control purposes (**Table D-1**), and the average concentration was evaluated as a single sample.

Chemicals detected in groundwater that contributed to health risk and hazard in previous assessments (Jacobs, 2003) were either not detected or below MCLs when analyzed in groundwater collected by low-flow methods (see Section 3.1 of the main text). The detection of chromium in one shallow well, which marginally exceeded the MCL concentration, appears to be associated with sediments and with well construction materials. Because these data do not provide a strong indication of risk associated with groundwater at LHAAP-35C(53), they are not considered further in the residential risk assessment (see Section 3.2 in the main text).

2.4 Evaluation of Dioxins and Furans

Dioxins and furans were evaluated using the 2,3,7,8-TCDD toxicity equivalency (TEQ) approach. Individual congener concentrations were multiplied by toxicity equivalency factors (TEF) recommended by Van den Berg et al. (1998), and then summed to describe a 2,3,7,8-TCDD TEQ concentration for each sample.

A total of 6 samples, 4 samples (including one QC sample) collected at 0 - 0.5, 1 - 3, and 3 - 5 feet at boring 35CSB01 and 2 samples collected at SUMP105 were analyzed for dioxins/furans. Results of dioxins analysis were reported in the RI (Jacobs, 2002) and are shown in **Table D-2**. The concentrations reported as not detected (U-qualified) are shown in **Table D-2** as one-half of the reporting limit given in RI report.

2.5 Identification of Chemicals of Potential Concern

The COPCs were identified as chemicals that were detected at concentrations above one or more highly conservative criteria designed to eliminate from further evaluation those chemicals that are unlikely to cause adverse effects.

The COPCs for the residential risk assessment were identified using the following criteria:

- *Essential Human Nutrients*. (Calcium, chloride, iron, magnesium, phosphorus, potassium, and sodium) were eliminated as COPCs (TCEQ, 2001, 2003).
- *Risk-Based Screening*. A risk-based screening step was used to identify chemicals that would contribute significantly to human health risk. Chemicals with maximum detected concentrations (MDC) equal to or below risk-based screening concentrations were eliminated from further evaluation. The TCEQ risk-based screening values (RBSV) were used in this step (TCEQ, 2004). The RBSVs are concentrations that are protective of human health exposure via ingestion, inhalation, and dermal absorption pathways at a 1E-06 target risk level for carcinogens and a 0.1 target hazard quotient for noncarcinogens. Where contaminants have both cancer and noncancer toxicity factors, the RBSV represents the lower (i.e., more conservative) value. The RBSVs are protective of residential land-use scenarios. When an RBSV was not available for a chemical, other sources were consulted to develop risk-based screening concentrations such as the USEPA Region 6 medium-specific screening levels (MSSLs) (USEPA, 2004).
- *Frequency of Detection.* Chemicals were eliminated as COPCs if they were detected infrequently (5 percent or lower frequency of detection) at low levels, providing that at least 20 samples were analyzed for the chemical and the chemical is not known to be associated with site operations (TCEQ, 1998; USEPA, 1989). Chemicals detected infrequently, but at high concentrations, were retained in the evaluation unless their exclusion could be justified based on site process information or historical data.
- *Comparison to Background.* Concentrations of chemicals were compared to background concentrations specific to LHAAP by statistical methods and geochemical evaluations. The geochemical evaluations serve as an independent check of the statistical comparisons.

Results of soil analysis were evaluated as described above to provide the following characteristics of the data set. Results are shown in **Table D-3**, which include:

- Number of samples, number of detects, number of non-detects, frequency of detection
- Minimum and maximum reporting limits
- Minimum and maximum detected values

- Mean, median, and standard deviation, as appropriate for the distribution
- 95 percent upper confidence limit (95%UCL) of the mean or median, as appropriate for the distribution
- 95 percent upper tolerance limit with 95 percent confidence (95%/95% UTL)
- 95 percent upper prediction limit (95%UPL).

The COPCs were identified as chemicals that were detected at concentrations above one or more highly conservative criteria designed to eliminate from further evaluation those chemicals that are unlikely to cause adverse effects.

2.5.1 Comparison of Metals to LHAAP-Specific Background Concentrations in Soil

A comparison to site-specific background concentrations was used to determine whether detected chemicals were related to LHAAP operations. The LHAAP-specific background concentrations for soil were developed using data that represent background concentrations for soil (Shaw, 2004c).

Concentrations of metals in soil samples shown to have at least one value that exceeds human health and ecological screening values were compared with LHAAP-specific background concentrations according to statistical methods described in USEPA (2002a) guidance.

2.5.1.1 Statistical Distribution Tests

The Shapiro-Wilk test was performed using USEPA (2002a) guidance to determine the statistical distribution of the data and to ensure that the assumptions inherent in later statistical calculations are valid. The Shapiro-Wilk test was also used to determine the distribution type of background data (Shaw, 2004c). These distribution tests were made to determine whether the normal or lognormal distribution, or a nonparametric distribution, could be used in comparisons with background data.

The Shapiro-Wilk test calculates the statistic W to test the null hypothesis H_0 : that the population has a normal distribution versus the alternate hypothesis H_A : that the population does not have a normal distribution. When applied to the logarithms of data values, the lognormality of the distribution is tested.

Two 95%UPL of background concentrations were used to screen the upper tail of the background concentration. The 95% UPL value represents the concentration that will be above the next single measurement with 95 percent confidence. The 95% UPL of the background concentration (**Table D-3**) was calculated as follows. If the background data followed either the normal or lognormal distribution the 95% UPL was calculated according to the equation (USEPA, 1992b):

UPL_{0.95} = X +
$$t_{n-1.0.95 \times}$$
 S × $(1+1/n)^{1/2}$ Equation D-1

where:

 $UPL_{0.95} =$ the 95% UPL X = mean background concentration t_{n-1,0.95} = Student's t value for n-1 degrees of freedom and 95 percent confidence S = standard deviation of the mean n = number of samples

If the data were shown to be both normally and lognormally distributed, the distribution having the higher p value above 0.05 was used for the 95% UPL calculation. If the data were lognormally distributed, the 95% UPL value shown in **Table D-2** is the antilogarithm of the value calculated by **Equation D-1**.

Nonparametric methods were used if the data do not follow either the normal or lognormal distribution. The 95% UPL concentration was determined by ranking the data from highest to lowest and calculating the 95th percentile rank according to the equation:

$$UPL_{0.95} = 95^{th} percentile = 0.95(n+1)$$
 Equation D-2

where:

UPL_{0.95} = concentration occupying the 95th percentile rank 95th percentile = the 95th percentile rank of the of the data set n = number of samples

This 95th percentile is the same as the 95% UPL according to the assumptions made in Equation D-1.

Comparison of MDC concentrations to RBSV values and to background screening concentrations represented by the 95% UPL values indicates that mercury exceeds both the RBSV and background, and aluminum may exceed background levels (**Table D-3**). Therefore, mercury is identified as a COPC in soil for hypothetical residential use of LHAAP-35C(53).

2.5.1.2 Statistical Comparisons

Because the screening of aluminum concentrations is equivocal, aluminum was evaluated by direct statistical comparison to background data (USEPA, 2002a). The aluminum concentrations in LHAAP-35C(53) samples have a nonparametric distribution. Therefore, the data were compared using the Wilcoxon Rank Sum test (USEPA, 2002a), which tests for differences in

median concentrations. Statistical tests were made using the Statistica[©] software package (StatSoft, 1997) at the 95 percent confidence level. The results of statistical comparisons for aluminum (**Attachment 1**) indicate aluminum concentrations in soil occur above background levels at LHAAP-35C(53).

2.5.1.3 Geochemical Evaluations

The aluminum concentrations are highly variable. Because natural background concentrations are inherently variable and span a wide range of concentrations, statistical evaluations alone (especially those based on univariate statistics) sometimes lead to misleading and high background concentrations. Therefore, a geochemical evaluation of data was used as an independent check of statistical conclusions.

Geochemical evaluations examine ratios of concentrations of selected metals to confirm that the samples have the expected geochemical relationships. Anomalous samples that may represent contamination can also be readily distinguished from uncontaminated samples. When properly evaluated, geochemistry can provide mechanistic explanations for the observed variability in yet naturally occurring metal concentrations and provide an independent check on purely statistical evaluations.

The results of geochemical evaluations indicate that aluminum concentrations are consistent with background concentrations (**Attachment 2**).

2.5.2 Organic Chemicals in Soil

Dioxins (as 2,3,7,8-tetracholor-p-dibenzo dioxin, TCDD toxicity equivalent), were detected at concentrations above the screening criteria (**Table D-3**). Dioxins may be associated with combustion product from testing of illumination devices and rocket motors. Therefore, dioxins are conservatively identified as the COPC in soil for hypothetical residential use of LHAAP-35C(53).

2.5.3 Summary

Table D-3 illustrates the COPC screening process for surface soil based on comparison to conservative screening values, comparison with background concentrations, and weight of evidence criteria. Mercury was identified as a COPC in soil at the LHS-MW67 boring. Dioxins were associated with Sump 105 and soil boring 48SB01.

3.0 Exposure Assessment

An exposure assessment estimates the type and magnitude of potential exposure of receptors to COPCs associated with a site according to the following steps (USEPA, 1989):

- Description of land and water uses
- Identification of potential receptors and exposure scenarios
- Identification of exposure pathways in a conceptual site exposure model
- Estimation of source concentrations and exposure point concentrations for COPCs
- Estimation of COPC intake rates for each exposure pathway

3.1 Land Use

The LHAAP-35C(53) site, also known as the Static Test Area, has an area of approximately 26 acres, and is located in the east-central portion of LHAAP at the intersections of Tyler, Tucson, and Truman Avenues. Surface features include asphalt roads and parking areas. The perimeter of LHAAP-35C(53) consists of Central Creek to the northwest and Harrison Bayou to the southeast. Runoff flows toward Harrison Bayou and on to Caddo Lake (Plexus, 2005). Transport by surface water runoff and discharge of shallow groundwater to other surface water bodies is evaluated in a separate report (Shaw, 2006).

The surface soils are clays and silty clays to approximately 12 feet bgs. A relatively thin (two- to three-foot-thick) sand layer that is continuous across the site is below the silty clay. The sand layer is the top of the shallow saturated zone in this area. The silty clay confining layer below the shallow saturated zone is not present at this location. Silty sand and clayey sand layers exist below the surficial clayey layer at 11 feet and continue to a depth of 51 feet bgs.

The hydraulic conductivity in the shallow zone was estimated at 2.8E-4 centimeters per second (cm/sec) to the south of the site and at 1.1 E-3 cm/sec in the northeastern portion of the site near Harrison Bayou. The groundwater flow direction in the shallow zone is to the north. (Jacobs, 2002).

This assessment assumes hypothetical residential use of the LHAAP-35C(53) site as described above and as discussed by the analytical data (**Table D-3**).

3.2 Site Conceptual Model

The exposure assessment for soil at LHAAP-35C(53) incorporates a conceptual site exposure model (CSEM) to provide the basis for identifying and evaluating the potential risks to a hypothetical resident and helps verify that exposures are not overlooked. The elements of a CSEM include:

- Source of affected media
- Chemical release mechanisms
- Chemical transport pathways
- Transport media
- Exposure media
- Receptors
- Exposure pathways

The CSEM developed for the LHAAP-35C(53) residential land-use scenario assessment is the same model developed for the current trespasser and future on-site worker (Figure 3-2 of Jacobs, 2003) with the following exceptions:

- The resident will be exposed to mercury and dioxins in soil by incidental ingestion, inhalation of airborne vapor and dust, and direct dermal contact.
- Exposure of the resident to dioxins in fish is not assessed. Because available surface water sources at LHAAP-35C(53) do not support a fish population, and a potential resident would have ready access to fish from Caddo Lake or one of the other watersheds, potential risk from ingestion of fish from the unnamed creek would represent the trespasser scenario evaluated in previous risk assessments (Jacobs, 2002, 2003). Therefore, the potential ingestion of fish from this ditch is not evaluated in this risk assessment.

3.3 Determination of Source-Term and Exposure-point Concentrations

The source-term concentration (STC) is the single concentration of a chemical that is representative of the environmental medium. Ideally, the STC should be the average concentration to which a receptor is exposed; i.e., the average calculated using all the samples taken from within a receptor's exposure area. Generally, the 95% UCL on the arithmetic mean is estimated to account for uncertainty regarding adequacy of the sampling.

Information for chemicals analyzed in soil is summarized in Table D-3, which includes:

- Chemical name
- Frequency of detection
- Range of detected concentrations
- Range of laboratory reporting limit concentrations
- Type of statistical distribution of concentrations
- Arithmetic mean of site concentrations
- UCL on the arithmetic mean concentration
- Background screening concentration (Shaw 2004c)
- The Texas RBSV concentration
- The 95% UPL concentration

- Identification of COPCs with the rationale for selection or rejection of a chemical as a COPC
- Source-term concentration used in the exposure assessment.

Because fewer than 10 samples were available for dioxin analysis, and mercury was detected in only 1 of 32 samples, a 95% UCL concentration could not be determined by bootstrapping methods (USEPA, 2002b). Therefore, the maximum mercury and 2,3,7,8-tetracholoro-p-dibenzo dioxin, TCDD toxicity equivalent concentrations were used as the conservative STCs for this risk assessment.

The maximum detected concentration of mercury and dioxins (**Table D-3**) was the exposurepoint concentration used in exposure assessments of direct soil ingestion and dermal contact pathways. Exposures by the indirect pathway, to airborne dust, were assessed using an estimated air concentration derived from the measured soil concentration as described in **Section 3.5.2**.

3.4 Exposure Factors

This assessment is limited to the residential use of LHAAP-35C(53). Assessments of maintenance workers and trespassers on LHAAP-35C(53) were evaluated previously (Jacobs, 2003). If the LHAAP-35C(53) resident visits other LHAAP sites or watersheds (Central Creek, Goose Prairie Creek, Harrison Bayou, or Saunders Branch), those exposures are assumed to equal the trespasser scenario assessments reported for those sites (Jacobs, 2003).

The exposure factors used in the residential intake models are compiled in **Table D-4** (TCEQ, 1998; USEPA, 1989).

3.5 Identification of Exposure Models and Assumptions

The models used to quantify doses or intakes of the COPC by the identified exposure pathways were taken or modified from USEPA (1989) guidance and TCEQ (1998) guidance.

3.5.1 Ingestion Exposures to COPCs in Soil

The ingestion intake of carcinogenic COPCs in soil was estimated for children and adults according to the equation:

$$I_s = \frac{(C_s)(IFadj)(EF)(CF)}{(AT_c)}$$
 Equation D-3

where:

 $I_{s} = ingestion intake of COPC in soil (mg/kg-day, calculated)$ $C_{s} = concentration of COPC in soil (mg/kg)$

The ingestion intake of noncarcinogenic COPCs in soil was calculated according to the equation:

$$I_s = \frac{(C_s)(IRsadj)(EF)(CF)}{(AT)}$$
 Equation D-4

where:

I_s	=	ingestion intake of COPC in soil (mg/kg-day, calculated)
C_s	=	concentration of COPC in soil (mg/kg)
IR_{sadj}	=	age-adjusted ingestion rate of soil (mg-year/kg-day)
EF	=	exposure frequency (days/year)
CF	=	conversion factor (1E-6 kg/mg)
AT	=	averaging time for exposure to noncarcinogen
		(days; = 30 years \times 365 days/year).

3.5.2 Inhalation Exposures to COPCs in Soil

The inhalation intake of carcinogenic COPCs in airborne vapor and dust suspended from soil is estimated from the equation:

$$C_a = \frac{(C_s)(CF)(EF)(ED)(1/VF + 1/PEF)}{(AT_c)}$$
 Equation D-5

where:

=	concentration of COPC in airborne dust ($\mu g/m^3$)
=	concentration of COPC in soil (mg/kg)
=	conversion factor (1E3 µg/mg)
=	exposure frequency (days/year)
=	exposure duration (year)
	= = = =

- VF = volatilization factor (m³/kg), chemical specific value calculated as described below
- PEF = particulate emission factor $(4.63 \times 10^9 \text{ m}^3/\text{kg}, \text{TCEQ}, 1998)$
- ATc = averaging time for carcinogens (days; = 70 years x 365 days/year).

The inhalation intake of airborne noncarcinogenic COPCs was calculated according to the equation:

$$C_a = \frac{(C_s)(EF)(ED)(1/VF + 1/PEF)}{(AT)}$$
Equation D-6

where:

C_a	=	concentration of COPC in airborne dust (mg/m ³)
C_s	=	concentration of COPC in soil (mg/kg)
EF	=	exposure frequency (days/year)
ED	=	exposure duration (year)
AT	=	averaging time for exposure to noncarcinogens (days)
PEF	=	particulate emission factor ($4.63 \times 10^9 \text{ m}^3/\text{kg}$, TCEQ, 1998).

3.5.2.1 Volatilization Factor

The volatilization factor for the dioxin vapor inhalation assessment was calculated using the following equation (TCEQ, 1998):

$$VF = \frac{(LS \cdot V \cdot DH)}{A} x \frac{[3.14 \cdot a \cdot T]^{1/2}}{2 \cdot D_{ei} \cdot E \cdot K_{as}} x 10^{-3} kg / g$$
 Equation D-7

D-9

and:

$$\alpha = \frac{D_{ei} \cdot E}{E + (p_s \cdot 1 - E) / K_{as}}$$
 Equation D-8

$$K_{as} = (H/Kd)/41$$
 Equation

where:

LS	=	the length of contaminated area (2500 feet, 762 m from southwest boundary to Cook Rd. near LHSMW71 location (Figure D-1)
V	=	wind speed in mixing zone (2.25 m/sec, TCEQ, 1998)
DH	=	diffusion height (2 m, TCEQ, 1998)
А	=	area of contamination, 26 acres (4.05E+7 cm ²)
Т	=	exposure interval (sec, TCEQ, 1998)
D _{ei}	=	effective diffusivity (cm ² /s); equal to $[(D_i)(E^{0.33})]$, where D_i is the chemical specific molecular diffusivity in air (cm ² /s)
Е	=	default soil porosity (unitless, 0.35, TCEQ, 1998)
\mathbf{p}_{s}	=	soil or particulate density (2.65 g/cm ³ , TCEQ, 1998)
K _{as}	=	soil to air partition coefficient (g soil/cm ³ air)
Н	=	chemical specific Henry's Law constant (atm-m ³ /mol)
K_d	=	chemical specific soil to water partition coefficient (cm ³ /g, $K_d = K_{oc} \ x \ f_{oc}$
K _{oc}	=	organic carbon partition coefficient (cm ³ /g)
\mathbf{f}_{oc}	=	fraction soil organic carbon content, (0.02, TCEQ, 1998).

3.5.3 Dermal Exposures to COPCs in Soil

Unlike the methods for estimating ingested intake of COPC, which quantify an administered dose, dermal dose is estimated as the dose that crosses the skin and is absorbed. For this reason, dermal toxicity values are also based on absorbed dose.

The absorbed dose of carcinogenic COPCs through contact with soil was estimated from the equation:

$$DAD = \frac{(C_s)(MCF)(DFadj)(ABSd)(EF)}{(ATc)}$$
 Equation D-10

where:

DAD	=	average dermally absorbed dose of COPC from soil exposure (mg/kg-day, calculated)
C_s	=	concentration of COPC in soil (mg/kg)
MCF	=	mass conversion factor (1E-6 kg/mg)
DFadj	=	age-adjusted dermal absorption factor (mg-yr/kg-day)
ABSd	=	dermal absorption fraction of specific chemical (unitless)
EF	=	exposure frequency (days/year)
ATc	=	averaging time for carcinogens (days; = 70 years x 365 days/year).

Because a dermal absorption factor (ABSd) value for 2,3,7,8-TCDD TEQ dioxin is not provided in TCEQ (1998) guidance, the ABSd value provided for 2,3,7,8-TCDD TEQ dioxin in TCEQ (2005) guidance was used in the dermal assessment.

The dermal absorbed doses of noncarcinogenic COPCs in soil are usually calculated separately for children and adults according to the equation:

$$DAD = \frac{(C_s)(MCF)(ED)(EF)(SA)(AF)(ABSd)}{(BW)(AT)}$$
 Equation D-11

where:

DAD	=	average dermally absorbed dose of COPC to the child or the adult from exposure to soil (mg/kg-day, calculated)
MCF	=	conversion factor (1E-6 kg/mg)
ED	=	exposure duration; (6 years for child, 24 years for adult)
EF	=	exposure frequency (days/year)
SA	=	surface area of exposed skin (2200 cm^2 for child, 2500 cm^2 for adult)
AF	=	adherence factor of soil to skin; (0.2 mg/cm ² -day for both child and adult receptors)

- ABSd = dermal absorption fraction of chemical (unitless value same for both child and adult receptors)
 BW = body weight: (15 kg for child, 70 kg for adult)
 AT = averaging time for noncarcinogens (days; = 6 years x 365
 - averaging time for honcarcinogens (days; = 6 years x 365 days/year for child, 24 years x 365 days/year for adult).

Because the surface area of skin exposed for the adult receptor is slightly higher than that of the child, the dermal DAD calculated for the adult is slightly higher than the child's DAD by a factor of $2500 \text{ cm}^2 / 2200 \text{ cm}^2$, or approximately 14%. However, this slightly greater adult exposure is more than offset by the lower body weight of the child, such that the DAD calculated for the child exceeds that of the child by a factor of 70 kg / 15 kg, or approximately 460%. Therefore, the exposures calculated for the child are protective of the adult.

4.0 Toxicity Assessment

The toxicity assessment identifies the cancer and noncancer effects that may arise from exposure of humans to the COPC and provides an estimate of the quantitative relationship between the magnitude and duration of exposure and the probability or severity of adverse effects. The latter is accomplished by the derivation of cancer and noncancer toxicity values, as described in the following sections.

4.1 Carcinogenic Effects

The evaluation of the potential carcinogenicity of a chemical includes both a qualitative and a quantitative aspect (USEPA, 1989). The qualitative aspect is a weight-of-evidence evaluation of the likelihood that a chemical might induce cancer in humans. The USEPA recognizes six weight-of-evidence group classifications for carcinogenicity:

- Group A Human Carcinogen: human data are sufficient to identify the chemical as a human carcinogen
- Group B1 Probable Human Carcinogen: human data indicate that a causal association is credible, but alternative explanations cannot be dismissed
- Group B2 Probable Human Carcinogen: human data are insufficient to support a causal association, but testing data in animals support a causal association
- Group C Possible Human Carcinogen: human data are inadequate or lacking, but animal data suggest a causal association, although the studies have deficiencies that limit interpretation
- Group D Not Classifiable as to Human Carcinogenicity: human and animal data are lacking or inadequate
- Group E Evidence of Noncarcinogenicity to Humans: human data are negative or lacking, and adequate animal data indicate no association with cancer

The toxicity value for carcinogenicity, the cancer slope factor (SF), is an estimate of potency. Potency estimates are developed only for chemicals in Groups A, B1, B2 and C, and only if the data are sufficient. The potency estimates are statistically derived from the dose-response curve from the best human or animal study or studies of the chemical. The cancer risk factor for inhaled carcinogens is the unit risk factor (URF) and also represents an estimate of cancer potency when applied to the airborne carcinogen concentration to which the person is exposed.

The SF is usually expressed as "extra risk" per unit of intake or exposure; that is, the additional risk above the incidence in an unexposed population. The SF is expressed as risk per mg/kg-day. The URF is expressed as risk per μ g/m³. To be appropriately conservative, the SF (or URF) is

usually the 95 percent upper bound on the slope of the dose-response curve extrapolated from high (experimental) doses to the low-dose range expected in environmental exposure scenarios. The USEPA (1989) assumes that there are no thresholds for carcinogenic expression; therefore, any exposure represents some quantifiable risk.

4.2 Noncarcinogenic Effects

Many chemicals, whether or not associated with carcinogenicity, are associated with noncarcinogenic effects. The evaluation of noncancer effects (USEPA, 1989) involves:

- Qualitative identification of the adverse effect(s) associated with the chemical; these may differ depending on the duration (e.g., acute or chronic) or route (e.g., oral or inhalation) of exposure
- Identification of the critical effect for each duration of exposure (i.e., the first adverse effect that occurs as dose is increased)
- Estimation of the threshold dose for the critical effect for each duration of exposure
- Development of an uncertainty factor; i.e., quantification of the uncertainty associated with interspecies extrapolation, intraspecies variation in sensitivity, severity of the critical effect, slope of the dose-response curve, and deficiencies in the data base in regard to developing a reference dose (RfD) for human exposure.
- Identification of the target organ for the critical effect for each route of exposure.

This information is used to derive the reference dose, RfD, which is an exposure route- and duration-specific toxicity value expressed as mg/kg-day. The RfD is considered to be the dose for humans, with uncertainty of an order of magnitude or greater, at which adverse effects are not expected to occur. The noncancer hazard for inhaled noncarcinogens is the reference concentration (RfC) and also represents an estimate of toxicity when applied to the airborne concentration to which the person is exposed. The RfC is expressed in units of mg/m³ and also represents an estimate of noncancer hazard when applied to the airborne concentration to which the person is exposed.

Dermal SFs and RfDs are derived from the corresponding oral values, provided there is no evidence to suggest that dermal exposure induces exposure route-specific effects that are not appropriately modeled by oral exposure data. In the derivation of a dermal RfD, the oral RfD is multiplied by the gastrointestinal absorption factor (ABS_{GI}), expressed as a decimal fraction. The resulting dermal RfD, therefore, is based on absorbed dose. The RfD based on absorbed dose is the appropriate value with which to compare a dermal dose because dermal doses are expressed as absorbed rather than exposure doses. The dermal SF is derived by dividing the oral SF by the ABS_{GI}. The oral SF is divided, rather than multiplied, by the ABS_{GI} because SFs are expressed as reciprocal doses.

Toxicity values were chosen using the following hierarchy:

- USEPA's on-line integrated risk information system (IRIS) database (USEPA, 2006) containing toxicity values that have undergone the most rigorous Agency review
- Toxicity values provided in TCEQ (1998) guidance or in 30TAC§350 guidance as updated through March 2006.
- The ABS_{GI} values used to derive dermal RfDs and SFs from the corresponding oral toxicity values were obtained from TCEQ guidance (TCEQ, 1998).

Toxicity values for the 2,3,7,8-TCDD TEQ dioxin surrogate were evaluated using the following documents:

- USEPA's on-line integrated risk information system (IRIS) database (USEPA, 2006) containing toxicity values that have undergone the most rigorous Agency review
- Toxicity values provided in TCEQ (1998) guidance or in 30TAC§350 guidance as updated through March 2006.
- *Human Health Medium-Specific Screening Levels*, November 2004, (USEPA, 2004) accessed online in January 2006.
- *Health Effects Assessment Summary Tables (HEAST)*, (USEPA, 1997), adopted in the USEPA (2004) document.
- The ABS_{GI} values used to derive dermal RfDs and SFs from the corresponding oral toxicity values were obtained from TCEQ guidance (TCEQ, 1998, 2004).

Toxicity factors used in the evaluation of cancer risk and noncancer hazard are shown in **Table D-5**.

5.0 Risk Characterization

Risk characterization is the combination of the results of the exposure assessment and toxicity assessment to yield a quantitative expression of cancer risk for the exposed receptors. This quantitative expression is the probability of developing cancer. Quantitative estimates are developed for individual chemicals, exposure pathways, and exposure media for each receptor. The risk characterization follows USEPA (1989) methodology as modified by more recent information and guidance. The USEPA methods are, appropriately, designed to be health-protective and tend to overestimate, rather than underestimate, risk.

5.1 Carcinogenic Effects of Chemicals

The risk from exposure to chemical carcinogens is estimated as the probability of an individual developing cancer over a lifetime, and is called the incremental lifetime cancer risk (ILCR). In the low-dose range, which would be expected for most environmental exposures, cancer risk from exposure by ingestion and dermal exposures is estimated from the following linear equation (USEPA, 1989):

$$ILCR = (CDI)(SF)$$
 Equation D-12

where:

ILCR	=	incremental lifetime cancer risk, a unitless expression of the probability of developing cancer, adjusted for background incidence (calculated)
CDI	=	chronic daily intake (mg/kg-day), calculated as (see Equation D-3) or DAD (Equation D-10)
SF	=	cancer slope factor (per mg/kg-day).

The cancer risk from exposure to carcinogens by the inhalation pathway is estimated from the following linear equation (TCEQ, 1998):

$$ILCR = (C_a)(URF)$$
 Equation D-13

where:

- ILCR = incremental lifetime cancer risk, a unitless expression of the probability of developing cancer, adjusted for background incidence (calculated)
- C_a = concentration of carcinogenic COPC in airborne dust ($\mu g/m^3$) (see Equation D-6)

URF = cancer slope factor (per $\mu g/m^3$).

As a matter of policy, USEPA (1989) considers the carcinogenic potency of simultaneous exposure to low doses of carcinogenic chemicals to be additive, regardless of the chemical's mechanisms of toxicity or sites (organs of the body) of action. Cancer risk arising from simultaneous exposure by a given pathway to multiple chemicals is estimated from the following equation:

$$Risk_{p} = ILCR_{(chem 1)} + ILCR_{(chem 2)} + \dots + ILCR_{(chem i)}$$
 Equation D-14

where:

Risk _p	=	total pathway risk of cancer incidence (calculated)
ILCR(chem _i)	=	individual chemical cancer risk

The total cancer risk for a given receptor from all pathways is summed across pathway risks in the same manner.

5.2 Noncancer Effects of Chemicals

The hazards associated with noncancer effects are evaluated by comparing an exposure level or intake with an RfD. The HQ from exposure by ingestion and dermal exposures, defined as the ratio of intake to RfD, is estimated as (USEPA, 1989):

$$HQ = I / RfD$$
 Equation D-15

where:

HQ	=	hazard quotient (unitless, calculated)
Ι	=	intake of chemical averaged over subchronic or chronic exposure period (mg/kg-day); I_S (see Equation D-4) or DAD (see Equation D-11)
RfD	=	reference dose (mg/kg-day)

Chemical noncancer hazards are evaluated using chronic RfD values. This approach is different from the probabilistic approach used to evaluate cancer risks. An HQ of 0.01 does not imply a 1 in 100 chance of an adverse effect, but indicates that the estimated intake is 100 times lower than the RfD. An HQ of unity indicates that the estimated intake equals the RfD. If the HQ is greater than unity, there may be concern for potential adverse health effects.

The noncancer hazard from exposure by the inhalation pathway is estimated from the following linear equation (TCEQ, 1998):

$$HQ = (C_a)/(RfC)$$
 Equation C-16

where:

HQ	=	hazard quotient (unitless, calculated)
Ca	=	concentration of noncarcinogenic COPC in airborne dust (mg/m^3) (see Equation D-6)
RfC	=	reference concentration (mg/m^3) .

In the case of simultaneous exposure of a receptor to several chemicals, an HI is calculated as the sum of the HQs by:

$HI = HQ_1 + HQ_2 + \dots$	HQ _i	Equation C-17

where:

HI = hazard index (unitless, calculated) HQ_i = hazard quotient for the i^{th} toxicant.

5.3 Risks Associated With Exposure to Soil

Mercury and dioxins were identified as COPCs in soil (**Table D-3**), The estimated cancer risk and noncancer hazard from potential exposure to by the ingestion pathway are shown in **Tables D-6a** and **D-6b** The cancer risks and noncancer hazards from potential exposures by the inhalation and dermal exposure pathways are shown in **Tables D-7a** and **D-7b**, and **Tables D-8a** and **D-8b**, respectively. Total cancer risk and noncancer hazard estimated for exposures of the potential resident to all COPCs by all pathways are shown in **Table D-9a**.

The total cancer risk (8E-06, **Table D-9a**) is within the acceptable range of (1E-06 to 1E-04) (USEPA, 1994). The noncancer hazard (Total HI, 3E-01, **Table D-9b**) is less than 1 and is, therefore, below acceptable limits (USEPA, 1994). Therefore, chemicals are not of concern for exposures of potential residents to soil at LHAAP-35C(53).

Shaw Environmental 4.3

6.0 Uncertainty Analysis

Generally, risk assessments carry two types of uncertainty. Measurement uncertainty refers to the usual variance that accompanies scientific measurements, e.g., analytical accuracy and precision associated with contaminant concentrations. The results of this risk assessment reflect the accumulated variances of the individual measured values.

A different kind of uncertainty stems from data gaps, i.e., additional information needed to complete the database for the assessment, uncertainties associated with exposure parameters assumed for children and adults (**Table D-3**), toxicity factors used in the characterization of risk associated with dioxins (**Table D-4**), and assumptions regarding additively of risk and hazard estimates (**Sections 5.1**). The methodology accounts for these uncertainties by using various conservative assumptions that result in overestimations of risks. This risk assessment incorporates all of these uncertainties, which are discussed in detail in USEPA (1989) guidance and the previous risk assessment (Jacobs, 2003).

The assumption that potential residents would be exposed to the maximum concentration of all COPCs represents a conservative assumption leading to an expected over-estimation of risk at LHAAP-35C(53).

7.0 References

Jacobs, 2002, *Final Remedial Investigation Report, Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60,67, Goose Prairie Creek,* Volumes 1 and 2:: Report, Longhorn Army Ammunition Plant, Karnack, Texas, Oak Ridge, Tennessee, April.

Jacobs, 2003, Draft Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites, Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60,67, Goose Prairie Creek, Saunder's Branch, and Caddo Lake, Volume 1, Longhorn Army Ammunition Plant, Karnack, Texas, Oak Ridge, Tennessee, June.

Plexus Scientific, Inc. (Plexus), 2005, Final Environmental Site Assessment Phase I and II Report, Production Areas, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw Environmental, Inc. (Shaw), 2004a, *Final Work Plan Groundwater Data Gaps Investigation Groups 2 and 4, Longhorn Army Ammunition Plant, Karnack, Texas*, Houston, Texas, February.

Shaw, 2004b, Final Installation-Wide Background Study Work Plan, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, January.

Shaw, 2004c, Final Background Soil Study Report, Longhorn Army Ammunition Plant, Karnack Texas, Houston, Texas, July.

Shaw, 2005, Final Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, May.

Shaw, 2006, Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army ammunition Plant, Karnack, Texas, September.

StatSoft, Inc. 1997. STATISTICA for Windows Version 5.1, Tulsa, OK, <<u>http://www.statsoft.com</u>> (February 2004).

Texas Commission on Environmental Quality (TCEQ), 1998, Interoffice Memorandum from Ronald R. Pedde to Remediation Division Staff regarding implementation of the existing risk reduction rules (a.k.a. TNRCC Consistency Memorandum), July.

TCEQ, 2001. Interoffice Memorandum from Joseph T. Haney, Jr., (TCEQ) to Camarie Perry, Office or Permitting, Remediation & Registration, *Evaluation of the Potential Health Impacts of Exposure to Iron, Calcium, Magnesium, Potassium, sodium, and Phosphorus through Soil Ingestion*, October.

TCEQ, 2003, Interoffice Memorandum, *Compounds for which Calculation of a Human Health MSC is Not Required*, October, available online http://www.tnrcc.state.tx.us/permitting/rrr.htm

TCEQ, 2004, Texas Risk Reduction Rules (30TAC§335) as updated through March 2006.

TCEQ, 2005, Texas Risk Reduction Program (30TAC§350) as updated through March 2006.

U.S. Environmental Protection Agency (USEPA), 1983, Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-0202, March.

USEPA, 1989, *Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A)*, Interim Final, EPA/540/1-89/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC, September.

USEPA, 1992a, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition (September, 1992), with Updates I-III.

USEPA, 1992b, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance*, EPA/530/R-93/003, Environmental Statistics and Information Division, Office of Policy, Planning, and Evaluation, July.

USEPA, 1992c, *Guidance for Data Usability in Risk Assessment (Part A)*, EPA Publication 9285.7-09A, PB92-973356, Office of Emergency and Remedial Response, April.

USEPA, 1994, National Oil and Hazardous Substances Pollution Contingency Plan, 40 Code of Federal Regulations Part 300, 59 Federal Register 47384, October 10.

USEPA, 1997, Health Effects Assessment Summary Tables (HEAST), U.S. Environmental Protection Agency, office of Solid Waste and Emergency Response, July, as incorporated in USEPA, 2004.

USEPA, 2002a, *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites*, EPA 540-R-01-003, OSWER 9285.7-41, Office of Environmental and Remedial Response, September.

USEPA, 2002b, Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites, OSWER 9285.6-10, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC.

USEPA, 2004, EPA Region 6, Human Health, Medium-Specific Screening Levels, Dallas, Texas, November, accessed at http://www.epa.gov/earthlr6/6pd/rcra_c/pd-n/screen.htm (January 2006).

USEPA, 2006, Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C. accessed at http://www.epa.gov/iris, January 2006.

Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F. and Zacharewski, T., 1998, *Toxic Equivalency Factors (TEFs) for*

PCBs, PCDDs, PCDFs for Humans and Wildlife, Environmental Health Perspectives 106(12):775-792.

Tables

Table D-1 Soil Sample Summary LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

Location	Sample Number	Purpose	Туре	Sample Date	Depth (ft)	Analyses
Soil ^a						
LH-DL102-01	LH-DL102-01	REG	SS	3-Aug-93	2 - 4	Metals, SVOC, VOC
_H-DL103-01	LH-DL103-01	REG	SS	25-Jul-93	2 - 4	Explosives ^b , Metals, SVOC, VOC
_H-DL104-01	LH-DL104-01	REG	SS	4-Aug-93	2 - 4	Metals, SVOC, VOC
_H-DL105-01	LH-DL105-01	REG	SS	3-Aug-93	2 - 4	Metals, SVOC, VOC
_H-S102-01	LH-S102-01_1	REG	SS	3-Aug-93	0.5 - 2	Metals, SVOC, VOC
H-S102-01	LH-S102-01 QC	FD	SS	3-Aug-93	0.5 - 2	Metals, SVOC, VOC
H-S102-01	LH-S102-01_2	REG	DS	3-Aug-93	4 - 6	Metals, SVOC, VOC
H-S102-02	LH-S102-02_1	REG	SS	3-Aug-93	0.5 - 2	Metals, SVOC, VOC
H-S102-02	LH-S102-02_2	REG	DS	3-Aug-93	4 - 6	Metals, SVOC, VOC
.H-S103-01	LH-S103-01_1	REG	SS	24-Jul-93	0.5 - 2	Metals, SVOC, VOC
H-S103-01	LH-S103-01_2	REG	DS	24-Jul-93	4 - 6	Metals, SVOC, VOC
H-S103-01	LH-S103-01_3	REG	DS	24-Jul-93	9 - 11	Metals, SVOC, VOC
H-S103-02	LH-S103-02_1	REG	SS	25-Jul-93	0.5 - 2	Metals, SVOC, VOC
H-S103-02	LH-S103-02_2	REG	DS	25-Jul-93	4 - 6	Metals, SVOC, VOC
.H-S103-02 .H-S104-01	LH-S103-02_3	REG REG	DS SS	25-Jul-93	9 - 11	Metals, SVOC, VOC
H-S104-01	LH-S104-01_1 LH-S104-01_2	REG	DS	3-Aug-93 3-Aug-93	1.5 - 2.5 9 - 11	Metals, SVOC, VOC Metals, SVOC, VOC
.п-3104-01	LH-3104-01_2	REG	03	3-Aug-93	9 - 11	Metals, SVOC, VOC
H-S104-02	LH-S104-02_1	REG	SS	3-Aug-93	0.5 - 2	Metals, SVOC, VOC
.H-S104-02	LH-S104-02 QC	FD	SS	3-Aug-93	0.5 - 2	Metals, SVOC, VOC
		550			1	
H-S104-02	LH-S104-02_2	REG REG	DS	3-Aug-93	7 - 9	Metals, SVOC, VOC
.H-S105-01 .H-S105-01	LH-S105-01_1	REG	SS DS	3-Aug-93	0.5 - 2 4 - 6	Metals, SVOC, VOC
H-S105-01	LH-S105-01_2 LH-S105-02_1	REG	SS	3-Aug-93 3-Aug-93	0.5 - 2	Metals, SVOC, VOC Metals, SVOC, VOC
H-S105-02	LH-S105-02_1	REG	DS	3-Aug-93	4 - 6	Metals, SVOC, VOC
		ILEO		0 / lug 00	4 0	
HSMW67	LHS-MW67	REG	SST	5-Oct-94	0 - 0.5	Explosives, Metals, SVOC, VOC
.HSMW68	LHS-MW68	REG	SST	5-Oct-94	0 - 0.5	Explosives, Metals, SVOC, VOC
HSMW69	LHS-MW69	REG	SST	5-Oct-94	0 - 0.5	Explosives, Metals, SVOC, VOC
HSMW70	LHS-MW70	REG	SST	5-Oct-94	0 - 0.5	Explosives, Metals, SVOC, VOC
HSMW70	LHS-MW70 QC	FD	SST	5-Oct-94	0 - 0.5	Metals, SVOC, VOC
HSMW71	LHS-MW71	REG	SST	5-Oct-94	0 - 0.5	Explosives, Metals, SVOC, VOC
HS-T-01	LHS-T-01	REG	SLDG	11-Jan-95	0 - 0.5	Explosives, Metals, SVOC, VOC
5CSB01	35CSB01(0-0.5)	REG	SST	27-Jul-98	0 - 0.5	Dioxins, Explosives, Metals, Pest, PCB, SVOC, VOC
SCSB01	35CSB01(0-0.5)QC	FD	SST	27-Jul-98	0 - 0.5	Dioxins, Explosives, Metals, Pest, PCB, SVOC, VOC
5CSB01	35CSB01(1-3)	REG	SS	27-Jul-98	1 - 3	Dioxins, Explosives, Metals, Pest, PCB, SVOC, VOC
5CSB01	35CSB01(3-5)	REG	DS	27-Jul-98	3 - 5	Dioxins, Explosives, Metals, Pest, PCB, SVOC, VOC
SUMP105	SUMP105(0-0.5)	REG	SST	11-Aug-98	0 - 0.5	Dioxins, Explosives, Metals, PCB, SVOC, VOC
SUMP105	SUMP105(3-5)	REG	DS	11-Aug-98	3 - 5	Dioxins, Explosives, Metals, PCB, SVOC, VOC
500000		050	00T	4.100		
5CSB02	35CSB02(0-0.5)	REG	SST	1-Jun-00	0 - 0.5	Perchlorate
5CSB02 5CSB03	35CSB02(1-2)	REG REG	SS SST	1-Jun-00 1-Jun-00	1 - 2 0 - 0.5	Perchlorate
5CSB03	35CSB03(0-0.5)	REG	SSI	1-Jun-00 1-Jun-00		Perchlorate
0000000	35CSB03(1-2)	REG	33	I-JUII-UU	1 - 2	Perchlorate

^a Surface soil is defined as 0 to 15 feet below ground surface.

^b Explosive analysis includes only 2,4- and 2,6-dinitrotoluene.

DS = Subsurface soil sample

FD = Field duplicate; the field duplicate was averaged with the regular sample to produce one result for the same sample location and depth.

PCB = Polychlorinated biphenyls

Pest = Organochlorine pesticides REG = Regular environmental sample SLDG - Sludge sample SS = Surface soil sample SST = Surface soil-top layer sample

SVOC = Semivolatile organic compound

VOC = Volatile organic compound

ft = feet below ground surface

Table D-2	
Concentrations of 2,3,7,8-TCDD Toxicity Equivalent Quotient Dioxin and Furan Congeners in Section 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	oil at LHAAP- 35C(53)

						-					
Location:		35CSB	01	35CS	B01	35CSB	01	SUMP1	05	SUM	P105
Sample Number:		35CSB01(35CSB01(0-0.5)		35CSB01(1-3)		35CSB01(3-5)		0-0.5)	SUMP105(3-5)	
ate Sampled:		7/27/19	98	7/27/1	7/27/1998		7/27/1998		98	8/11/1998	
Depth (ft.):		0-0.5	0	1-3	}	3-5		0-0.50	D	3.	5
		Concentration		Concentration		Concentration		Concentration		Concentration	
DIOXIN AND FURAN CONGENERS	TEF	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ	(ng/kg)	TEQ
1,2,3,7,8-PENTACHLORODIBENZO-p-DIOXIN	1	0.052	5.20E-02	1.267	1.27E+00	0.038	3.80E-02	0.093	9.30E-02	0.117	1.17E-01
1,2,3,4,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.1	0.033	3.30E-03	10.646	1.06E+00	0.348	3.48E-02	0.17	1.70E-02	0.285	2.85E-02
1,2,3,6,7,8-HEXACHLORODIBENZO-p-DIOXIN	0.1	0.772	7.72E-02	52.792	5.28E+00	2.119	2.12E-01	0.654	6.54E-02	0.159	1.59E-02
1,2,3,7,8,9-HEXACHLORODIBENZO-p-DIOXIN	0.1	0.203	2.03E-02	21.791	2.18E+00	0.952	9.52E-02	1.273	1.27E-01	0.189	1.89E-02
I,2,3,4,6,7,8-HEPTACHLORODIBENZO-p-DIOXIN	0.01	20.704	2.07E-01	1453.11	1.45E+01	68.28	6.83E-01	60.154	6.02E-01	3.147	3.15E-02
OCTACHLORODIBENZO-p-DIOXIN	0.0001	141.093	1.41E-02	7068.108	7.07E-01	450.139	4.50E-02	17491.922	1.75E+00	340.795	3.41E-02
2,3,7,8-TETRACHLORODIBENZOFURAN	0.1	0.464	4.64E-02	0.476	4.76E-02	0.394	3.94E-02	0.115	1.15E-02	0.173	1.73E-02
,3,4,7,8-PENTACHLORODIBENZOFURAN	0.5	0.042	2.10E-02	0.139	6.95E-02	0.021	1.05E-02	0.051	2.55E-02	0.105	5.25E-02
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.1	0.482	4.82E-02	19.746	1.97E+00	0.856	8.56E-02	0.469	4.69E-02	0.13	1.30E-02
I,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.1	0.03	3.00E-03	4.069	4.07E-01	0.203	2.03E-02	0.055	5.50E-03	0.087	8.70E-03
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.1	0.033	3.30E-03	5.037	5.04E-01	0.311	3.11E-02	0.08	8.00E-03	0.127	1.27E-02
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0.01	3.203	3.20E-02	218.228	2.18E+00	9.51	9.51E-02	2.182	2.18E-02	0.11	1.10E-03
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.01	0.178	1.78E-03	11.969	1.20E-01	0.518	5.18E-03	0.097	9.70E-04	0.14	1.40E-03
OCTACHLORODIBENZOFURAN	0.0001	11.88	1.19E-03	904.49	9.04E-02	51.12	5.11E-03	7.395	7.40E-04	0.1	1.00E-05
2,3,7,8-TCDD-TEQ concentration (mg/kg) ^a =			5.31E-07		3.04E-05		1.40E-06		2.77E-06		3.53E-07
Exposure Point Concentration of 2,3,7,8-TCDD TEQ used in risk											
assessment = 3.04E-05 mg/kg, the maximum value.											

Notes:

a 2,3,7,8-TCDD TEQ value is sum of TEQ values for congeners in the sample.

TEF: Toxicity Equivalent Factor. Van den Berg, M. et al., 1998, Toxic Equivalency Factors (TEFs) for

PCBs, PCDDs, PCDFs for Humans and Wildlife. Environmental Health Perspectives 106(12):775-792.

Table D-3 Surface Soil Samples ^a

					LHA	AP-35C(53	5)						
			Range of Va	lues, mg/kg					Background	Texas			Source-Term
	Detection	Percent	Detected Concentrations	Reporting Limits	Statistical	Mean	Standard	95% UCL ^c	Screening Concentration d	RBSV ^e	UPL		Concentration h
Chemical	Frequency	Detection	Minimum - Maximum	Minimum - Maximum	Distribution b	mg/kg	Deviation	mg/kg	mg/kg	mg/kg	mg/kg	COPC? f,g	mg/kg
Inorganics									3.3	55			
Aluminum	25 / 32	78	4.85E+03 - 2.38E+04	1.23E+01 - 1.80E+04	U	1.17E+04	6.19E+03		2.38E+04	1.5E+04	1.89E+04	N (c)	
Arsenic	32 / 32	100	1.40E+00 - 1.62E+01	2.50E-01 - 1.30E+00	U	4.36E+00	3.10E+00		6.89E+00	2.0E+01	5.86E+00	N (a)	
Barium	32 / 32	100	3.86E+01 - 1.50E+02	3.10E+00 - 2.20E+01	U	8.52E+01	3.08E+01		1.36E+02	9.1E+02	1.16E+02	N (a)	
Beryllium	3/3	100	7.26E-01 - 1.02E+00	5.43E-01 - 5.62E-01	U	8.26E-01	1.68E-01		8.85E-01	4.6E+00	7.69E-01	N (a)	
Cadmium	1 / 32	3	1.60E+00 - 1.60E+00	5.43E-01 - 1.30E+00	U	4.89E-01	2.21E-01		1.40E+00	5.2E+00	1.40E+00	N (a)	
Calcium	31 / 32	97	2.57E+02 - 2.86E+04	6.10E+00 - 5.60E+02	U	2.15E+03	4.88E+03		3.84E+03	Not Required	2.52E+03	N (b)	
Chromium	32 / 32	100	7.30E+00 - 4.98E+01	1.10E+00 - 2.60E+00	U	2.04E+01	9.18E+00		3.55E+01	5.9E+03	i 2.90E+01	N (a)	
Cobalt	32 / 32	100	1.60E+00 - 2.98E+01	1.20E+00 - 5.60E+00	U	8.95E+00	5.81E+00		8.34E+00	1.5E+03	7.11E+00	N (a)	
Copper	32 / 32	100	2.82E+00 - 1.49E+01	1.20E+00 - 2.81E+00	U	6.88E+00	2.24E+00		1.04E+01	1.0E+03	8.37E+00	N (a)	
Iron	25 / 32	78	9.60E+03 - 5.07E+04	1.90E+00 - 2.23E+04	U	1.72E+04	9.08E+03		3.49E+04	Not Required	2.79E+04	N (b)	
Lead	32 / 32	100	3.10E+00 - 2.85E+01	3.26E-01 - 5.90E+00	U	1.07E+01	5.72E+00		2.03E+01	5.0E+02	1.78E+01	N (a)	
Magnesium	32 / 32	100	2.99E+02 - 2.38E+03	1.23E+01 - 5.60E+02	U	1.39E+03	5.99E+02		1.59E+03	Not Required	1.24E+03	N (b)	
Manganese	32 / 32	100	4.50E+01 - 5.13E+02	6.10E-01 - 1.69E+00	U	1.30E+02	1.06E+02		2.24E+03	1.7E+03	1.34E+03	N (a)	
Mercury	1 / 32	3	2.40E-01 - 2.40E-01	9.00E-02 - 1.30E-01	U	5.68E-02	3.36E-02		1.34E-01	1.1E-02	1.10E-01	Ŷ	2.40E-01
Nickel	3/3	100	8.90E+00 - 1.70E+01	4.30E+00 - 4.50E+00	Ŭ	1.23E+01	4.22E+00		1.13E+01	1.9E+02	9.40E+00	N (a)	
Potassium	32 / 32	100	2.89E+02 - 1.86E+03	1.23E+02 - 5.60E+02	Ŭ	1.02E+03	4.24E+02		5.46E+02	Not Required	4.61E+02	N (b)	
Selenium	9 / 32	28	1.60E-01 - 2.15E+00	1.20E-01 - 1.12E+00	U	5.61E-01	3.15E-01		6.96E+00	1.3E+02	5.61E+00	N (a)	
Silver	5 / 32	16	8.10E-01 - 5.15E+00	6.10E-01 - 1.30E+00	Ŭ	7.46E-01	8.58E-01		3.70E-01	4.7E+01	3.70E-01	N (a)	
Strontium	29 / 32	91	7.00E+00 - 4.95E+01	5.40E+00 - 1.31E+01	Ŭ	1.75E+01	1.03E+01		3.17E+01	1.2E+04	2.48E+01	N (a)	
Vanadium	3/3	100	1.60E+01 - 2.30E+01	5.40E+00 - 5.60E+00	Ŭ	2.03E+01	3.79E+00		5.29E+01	4.8E+01	4.44E+01	N (a)	
Zinc	32 / 32	100	2.04E+01 - 2.27E+02	6.10E-01 - 2.20E+00	Ŭ	5.19E+01	3.46E+01		2.94E+01	5.9E+03	2.45E+01	N (a)	
Perchlorate													
Perchlorate	1 / 4	25	6.09E-02 - 6.09E-02	5.96E-03 - 6.84E-03	U	1.76E-02	2.89E-02			1.4E+01		N (a)	
Dioxins/Furans													
2,3,7,8-TCDD - Total TEQ	5/5	100	3.53E-07 - 3.04E-05	NA - NA	U	7.10E-06	1.31E-05		4.41E-06	3.9E-06	j 3.96E-06	Y	3.04E-05
Organochlorine Pesticides													
4,4'-DDE	1/3	33	3.70E-03 - 3.70E-03	3.60E-03 - 3.70E-03	U	2.45E-03	1.08E-03		3.80E-03	1.7E+00	3.80E-03	N (a)	
4,4'-DDT	1/3	33	9.90E-03 - 9.90E-03	3.60E-03 - 3.70E-03	U	4.52E-03	4.66E-03		6.40E-03	1.7E+00	6.40E-03	N (a)	
Semivolatile Organics													
Benzo(a)anthracene	1 / 32	3	1.40E-01 - 1.40E-01	3.30E-01 - 5.20E-01	U	1.71E-01	1.83E-02		1.53E-02	6.3E-01	1.53E-02	N (a)	
Benzo(a)pyrene	1 / 32	3	1.10E-01 - 1.10E-01	1.80E-01 - 5.20E-01	U	1.61E-01	3.04E-02		1.54E-02	6.3E-02	1.54E-02	N (d)	
Benzo(b)fluoranthene	1 / 32	3	2.80E-01 - 2.80E-01	3.30E-01 - 5.20E-01	U	1.75E-01	2.59E-02		1.53E-02	6.3E-01	1.53E-02	N (a)	
Benzo(k)fluoranthene	1 / 32	3	1.10E-01 - 1.10E-01	3.30E-01 - 5.20E-01	U	1.70E-01	2.05E-02		1.30E-02	6.3E+00	1.30E-02	N (a)	
Benzoic Acid	1 / 32	3	4.68E-01 - 4.68E-01	9.05E-01 - 2.60E+00	U	8.14E-01	1.74E-01			6.2E+04		N (a)	
bis(2-Ethylhexyl)phthalate	6 / 32	19	3.60E-02 - 5.80E-01	3.30E-01 - 5.20E-01	U	1.69E-01	8.49E-02			1.7E+01		N (a)	
Butyl benzyl phthalate	1 / 32	3	2.20E-01 - 2.20E-01	3.30E-01 - 5.20E-01	U	1.73E-01	1.94E-02			3.1E+03		N (a)	
Chrysene	1 / 32	3	2.90E-01 - 2.90E-01	3.30E-01 - 5.20E-01	U	1.75E-01	2.72E-02		1.51E-02	6.3E+01	1.51E-02	N (a)	
di-n-Butyl phthalate	5 / 32	16	6.60E-02 - 7.90E-02	3.30E-01 - 5.20E-01	U	1.57E-01	4.45E-02			1.5E+03		N (a)	
Fluoranthene	4 / 32	13	5.35E-02 - 4.20E-01	3.30E-01 - 5.20E-01	U	1.68E-01	5.90E-02		2.29E-02	5.5E+02	2.29E-02	N (a)	
Phenanthrene	2 / 32	6	4.10E-02 - 4.90E-02	3.30E-01 - 5.20E-01	U	1.66E-01	3.86E-02			2.5E+00		N (a)	
Pyrene	2 / 32	6	1.12E-01 - 3.20E-01	3.30E-01 - 5.20E-01	U	1.74E-01	3.34E-02		1.94E-02	1.5E+01	1.94E-02	N (a)	
Volatile Organics													
Acetone	1 / 32	3	5.25E-03 - 5.25E-03	1.00E-02 - 1.00E-01	U	3.74E-02	1.96E-02			1.7E+02		N (a)	

Notes and Abbreviations:

^a Surface soil is defined as the interval less than or equal to 15 feet below the ground surface. Soil samples were classified on the basis of the end depth of the sample.

^b Statistical Distribution: U = Distribution not determined if chemical is not selected as a COPC, if sample size is less than 5, or if the Source Term Concentration is the maximum.

^c 95% Upper confidence limit (UCL) not calculated if chemical is not selected as a COPC, or if sample size is less than 5.

^d Background screening concentrations are based on the 95% upper prrediction limit (UPL) of the total soil background data set, calculated for the combined depth intervals (i.e., 0.0.5 feet and 1.5-2.5 feet) from Shaw, 2004c,

Final Background Soil Study Report, Longhorn Army Ammunition Plant, July.

e Based on Texas Risk-Based Screening Values (RBSVs) for soil, March 2006 update. Values are based on a cancer risk of 1E-6 and a hazard index of 0.1

¹ N = Chemical is not chosen as a COPC; Y = Chemical is chosen as a COPC.

⁹ Rationale for exclusion of chemical as a COPC:

(a) = maximum detected concentration is below or equal to risk-based screening concentration

(b) = essential nutrient; no screening value available/required

(c) = chemical concentration is below or equal to background screening concentration.

(d) = chemical is detected infrequently (i.e., < 5% frequency of detection).

(e) = chemical is consistent with background based on geochemical evaluation (Attachment B)

^h Concentration used in risk assessment equal to the maximum detected concentration.

Based on RBSV for total chromium.

¹ Based on the medium-specific screening level (MSSL) for dioxin (2,3,7,8-TCDD) from EPA Region 6 (USEPA Region 6, 2004, Human Health Medium-Specific Screening Levels 2004-2005, December).

NA = Not applicable

TEQ = Toxicity equivalency

UPL = Upper prediction limit of the Shaw total soil background dataset. mg/kg = milligram per kilogram

TERC No. DACA56-94-D-0020, TO No. 0109 Longhorn Army Ammunition Plant, Karnack, Texas

Table D-4							
Exposure Factors Used to Estimate Intake of COPCs							
LHAAP-35C(53)							

Residential Exposure Pathway		
General Factors	Factor Value	Reference
Exposure Frequency, EF (days/year or event/year, dermal)	350	а
Exposure Duration, ED (year) - Adult	24	a, b
Exposure Duration, ED (year) - Child	6	а
Exposure Duration, ED (year) - carcinogens, Adult	30	a, b
Body Weight, BW (kg) - Adult	70	а
Body Weight, BW (kg) - Child	15	а
Averaging Time-Noncarcinogens, ATs (year) - Adult	24	a, b
veraging Time-Noncarcinogens, ATs (year) - Child	6	а
Averaging Time-carcinogens, ATc (year)	70	а
Ingestion of Soil		
Age-Adjusted Soil Ingestion Rate, IFadj (mǥyear/kg-day)	114	а
Dermal Exposure to Soi		
Soil-to-Skin Adherence Factor, AF (mg/cm ² -event)	0.2	а
veraging Time-Noncarcinogens, (dermal, child, resident) ATs (year)	6	а
Body Weight (residential, child, carcinogens), BW (kg)	15	а
ge-Adjusted Dermal Factor (carcinogens, resident) DF.adj (mg-yr/kg-event)	352	a, b
xposure Duration (dermal, child, resident), ED (year)	6	а
xposed Skin Surface Area, SA (cm ²) - Child	2200	а
Exposed Skin Surface Area, SA (cm ²) - Adult	2500	а

a Texas Commission on Environmental Quality (TCEQ) 30TAC§335.567 as updated through March 2006
 b Value specified by TCEQ in comments on draft report, August 2006.

Shaw Environmental, Inc.

Table D-5 **Toxicity Values for COPCs** LHAAP-35C(53) Site

		0	luch a lation	la la alla fila a	0	labeletien.	0	Deletive Demo
		Oral	Inhalation	Inhalation	Oral	Inhalation	GI	Relative Dermal
	Weight	Slope Factor	Unit Risk	Slope Factor	Reference	Reference	Absorption	Absorption
	of	SFo ^{b,c}	Factor, URF b,c,d	SFi ^{b,c}	Dose, RfDo b,c	^c Conc., RfC ^{b,c,c}	^d Factor, ABS.gi	^e Factor, ABS.d ^c
Chemical	Evidence	1/(mg/kg-day)	1/(ug/m ³)	1/(mg/kg-day)	(mg/kg-day)	(mg/m ³)	(unitless)	(unitless)
Inorganic Compound	ds							
Mercury	D	NA	NA	NA	3.0E-04	3.0E-04	7.00E-02	1.00E-02
Semivolatile Organic	c Compound	s						
2,3,7,8-TCDD-TEQ	ND	1.5E+05	4.3E+01	1.5E+05	ND	ND	5.00E-01	3.00E-02
Notes and Abbreviatio	ons:							

^a Weight of Evidence for carcinogenicity of chemical provided in the EPA Integrated Risk Infromation System (IRIS, Online, EPA, 2006).

^b USEPA, 2006: Human Health Medium-Specific Screening Levels, U. S. Environmental Protection Agency, Region 6, November 2004, accessed online in January 2006.

^c Health Effects Assessment Summary Tables (HEAST), U. S. Environmental Protection Agency, Office of Solid Waste and Emergency Response July 1997, adopted in USEPA, 2006.

^d The URF value for 2,3,7,8-TCDD was calculated using the equation: $URF(\mu g/m^3)^{-1} = SFinh (mg/kg-day)^{-1} x 20 m^3/day / (70 kg x 1000 µg/mg) a provided in TCEQ (1998) documents.$

^e Texas Commission on Environmental Quality (TCEQ) 30 TAC Sec. 350 as updated through March 2006
 <u>D:</u> Indicates chemical is not classifiable as to human carcinogenicity

NA: Not Applicable

ND: No Data

Table D-6a Incremental Lifetime Cancer Risk (ILCR) for Potential Ingestion Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53) Site Longhorn Army Ammunition Plant Karnack, Texas

a	Soil Concentration	Oral Slope factor, SF	Weight of	Intake Dose	Incremental Lifetime
Chemical Name	Cs (mg/kg)	1/(mg/kg/d)	Evidence	ID (mg/kg/d)	Cancer Risk, ILCR
Mercury	2.40E-01	NA	D	3.75E-07	0.00E+00
2,3,7,8-TCDD-TEQ	3.04E-05	1.50E+05	ND	4.75E-11	7.13E-06
			TOTAL PATHWA	Y CANCER RISK	7.13E-06
		Table	D-6b		
) for Potential Inges	•		D

Chemicals from Soil at the LHAAP-35C(53) Site Longhorn Army Ammunition Plant

Karnack, Texas

	Soil Concentration	Oral RfD	Intake Dose	Hazard Quotient
Chemical Name	Cs (mg/kg)	(mg/kg/d)	ID (mg/kg/d)	HQ
Mercury	2.40E-01	3.00E-04	8.75E-07	2.92E-03
2,3,7,8-TCDD - Total TEQ	3.04E-05	ND	1.11E-10	0.00E+00
		TOTAL PATHWAY	HAZARD INDEX	2.92E-03

NA: Not applicable

ND: No data available

Table D-7a Incremental Lifetime Cancer Risk (ILCR) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

	Soil Concentration	Weight of	Unit Risk Factor, URF	Expsoure Adjusted Air Concentration	Incremental Lifetime Cancer Risk
Chemical Name	Cs, mg/kg	Evidence	1/(microg/m ³)	(mg/m ³)	(ICLR)
Mercury	2.40E-01	D	NA	3.36E-02	0.00E+00
2,3,7,8-TCDD-TEQ	3.04E-05	ND	4.3E+01	4.91E-11	2.11E-09

TOTAL PATHWAY CANCER RISK 2.11E-09

Table D-7b Hazard Index (HI) for Potential Inhalation Exposure of Future Resident to Airborne Chemicals from Soil at the LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

	Soil Concentration	Reference Conc., RfC	Expsoure Adjusted Air Concentration	Hazard Quotient
Chemical Name	Cs, mg/kg	(mg/m³)	(mg/m³)	HQ
Mercury	2.40E-01	3.0E-04	7.84E-05	2.61E-01
2,3,7,8-TCDD-TEQ	3.04E-05	ND	1.52E-13	0.00E+00

TOTAL PATHWAY HAZARD INDEX 2.61E-01

NA: Not applicable ND: No data available

Table D-8a Incremental Lifetime Cancer Risk (ILCR) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

			Gastrointestina	I	Dermal			
		Oral	Absorption	Dermal	Absorption	Weight	Absorbed Dos	e
	Soil Concentration Slope factor, SF		Factor, ABS _{GI} Slope factor, SFd Factor, ABS			Factor, ABSd of		Incremental Lifetime
Chemical Name	Cs (mg/kg)	1/(mg/kg/d)	(unitless)	1/(mg/kg/d)	(unitless)	Evidence	(mg/kg/d)	Cancer Risk, ILCR
Mercury	2.40E-01	NA	7.00E-02	NA	1.00E-02	D	1.16E-08	0.00E+00
2,3,7,8-TCDD-TEQ	3.04E-05	1.50E+05	5.00E-01	1.50E+05	3.00E-02	ND	4.40E-12	6.06E-07

TOTAL PATHWAY CANCER RISK 6.06E-07

Table D-8b Hazard Index (HI) for Potential Dermal Exposure of Future Residents to Chemicals from Soil at the LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

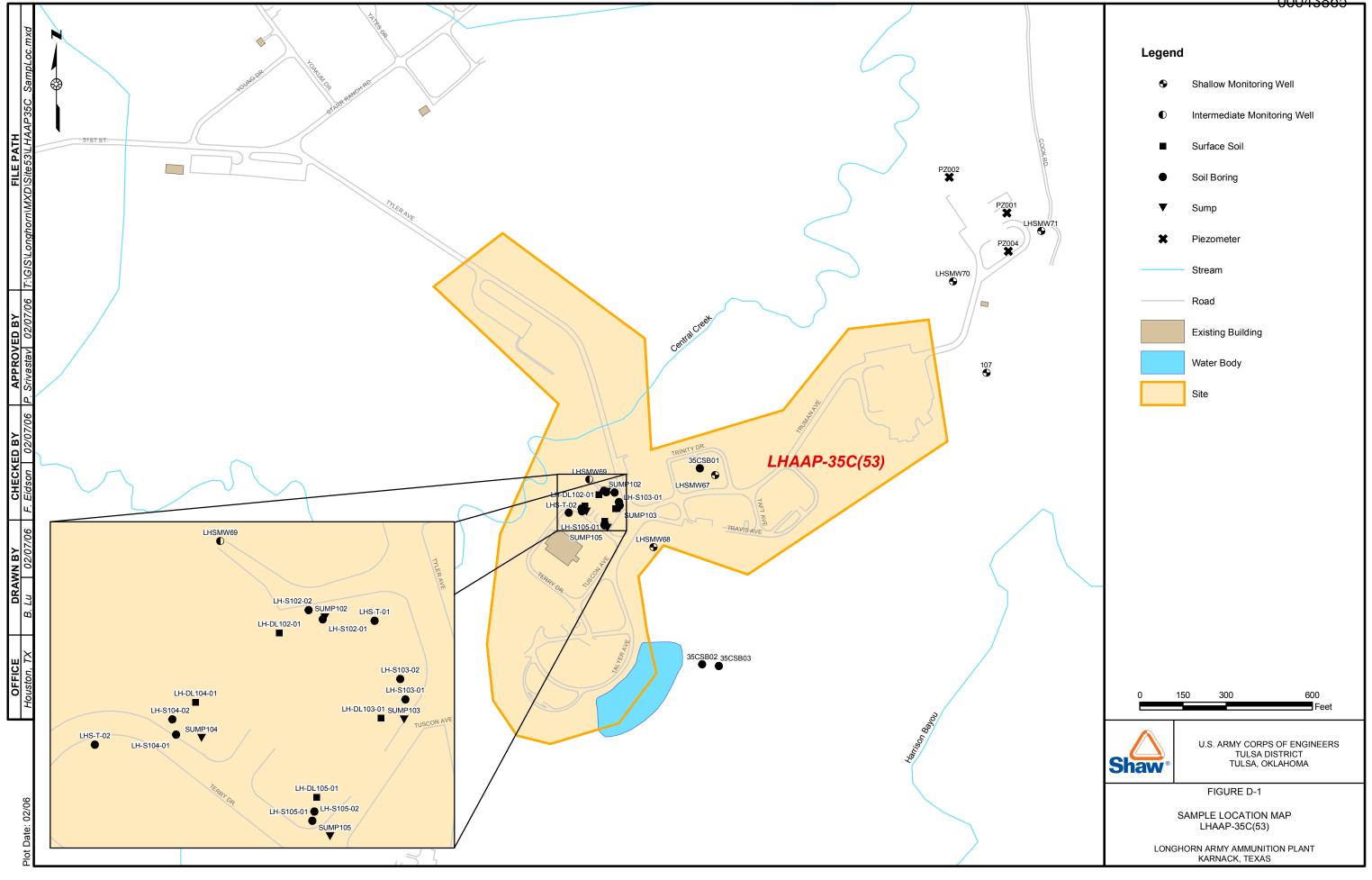
			Gastrointestinal			Dermal		
		Oral	Absorption	Dermal	Absorption	Absorbed Dose		
	Soil Concentration	RfD	Factor, ABS _{GI}	RfD	Factor, ABSd	Dose, DAD	Hazard Quotient	
Chemical Name	Cs (mg/kg)	(mg/kg/d)	(unitless)	(mg/kg/d)	(unitless)	(mg/kg/d)	HQ	
Mercury	2.40E-01	3.00E-04	7.00E-02	2.10E-05	1.00E-02	6.75E-08	3.21E-03	
2,3,7,8-TCDD-TEQ	3.04E-05	ND	5.00E-01	ND	3.00E-02	2.57E-11	0.00E+00	

TOTAL PATHWAY HAZARD INDE 3.21E-03

NA: Not applicable ND: No data available

Table D-9a Exposures and Incremental Lifetime Cancer Risks for Potential Exposure of Future Resident to Soil at the LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

		Soil Ingestion	Soil Inhalation	Dermal	
	Source Term	Source Term Cancer Cancer		Cancer	
	Concentration	Risk	Risk	Risk	
Chemical	(mg/kg)	(ILCR)	(ILCR)	(ILCR)	
Mercury	2.40E-01	0.00E+00	0.00E+00	0.00E+00	
2,3,7,8-TCDD-TEQ	3.04E-05	7.13E-06	2.11E-09	6.06E-07	
Total Pathway ILCR		7.13E-06	2.11E-09	6.06E-07	
Total ILCR [®]				8.E-06	


Table D-9b Exposures and Noncancer Hazards for Potential Exposure of Future Resident to Soil at the LHAAP-35C(53) Longhorn Army Ammunition Plant Karnack, Texas

Chemical	Source Term Concentration (mg/kg)	Soil Ingestion HQ	Soil Inhalation HQ	Dermal HQ
Mercury	2.40E-01	2.92E-03	2.61E-01	3.21E-03
2,3,7,8-TCDD - Total TEQ	3.04E-05	0.00E+00	0.00E+00	0.00E+00
Pathway Hazard Index (HI)		2.92E-03	2.61E-01	3.21E-03
Total HI ^a				3.E-01

Notes:

a Total value reported to one significant figure

Figures

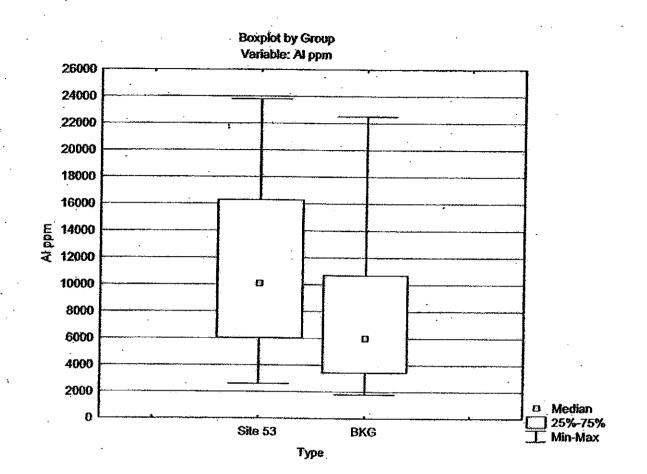
Attachment 1

Statistical Comparison to Background Concentrations

Table 1			
Concentrations of Aluminum in Soil for Comparison to Background			

Data Type	Al (mg/kg)
Site 53	2620
Site 53	3880
Site 53	3995
Site 53	5800
Site 53	6350
Site 53	7750
Site 53	9000
Site 53	23800
Site 53	23300
Site 53	23200
Site 53	20100
Site 53	17300
Site 53	17200
Site 53	16700
Site 53	16500
Site 53	
	16100
Site 53	15700
Site 53	15400
Site 53	15300
Site 53	15000
Site 53	13700
Site 53	13010
Site 53	10500
Site 53	9700
Site 53	9450
Site 53	7980
Site 53	7440
Site 53	6050
Site 53	6000
Site 53	5890
Site 53	5550
Site 53	4850
BKG	1800
BKG	1850
BKG	1900
BKG	2080
BKG	2280
BKG	2510
BKG	2530
BKG	2690
BKG	2930
BKG	2990
BKG	3030
BKG	3210
BKG	3330
BKG	3560
BKG	3710
BKG	3780
DNG	5100

Table 1
Concentrations of Aluminum in Soil for Comparison to Background


BKG	3850			
BKG	3940			
BKG	3980 4000			
BKG				
BKG BKG	4130			
BKG	4390			
BKG	4700 5180			
BKG	5850			
BKG	5980			
BKG	6050			
BKG	16300			
BKG	3110			
BKG	4250			
BKG	6160			
BKG	6840			
BKG	7170			
BKG	7940			
BKG	8310			
BKG	8380			
BKG	8690			
BKG	9030			
BKG	9510			
BKG	9660			
BKG	10200			
BKG	10300			
BKG	10700			
BKG	10700			
BKG	11300			
BKG	11600			
BKG	11700			
BKG	11700			
BKG	12200			
BKG	12900			
BKG	12900			
BKG	14600			
BKG	14700			
BKG	16100			
BKG	21100			
BKG	22500			

Al: aluminum

BKG: background concentrations

ppm: parts per million. All soil concentrations are expressed in units of mg/kg.

	F					-
				2"1 sided	exact p	0 000620
					0 X M	201
				Valid N	Site 53	33
-				p-level		0.000764
				Z Letendor	Detenine	3.366642
	ipared.sta	-	10110			0.000764
	BKG-Con	5000	~	1	202200 0	0.000000
	ite 53-soil-	ant at p <.(י - <u>ר</u>	•	0000 002	00001020
	-Whitney U Test (Site 53-soil-BKG-Compared.sta) iriable Type	Marked tests are significant at p < 05000	Rank oum Rank Sum	BKG	2104 0001509 0000 0 005104	
	Mann-Whitney U T By variable Type	Marked tests	Lank Sum	Site 53	1812.000	
				<u>variable</u>	A ppm	

Attachment 2

Geochemical Evaluation of Aluminum in Soil Samples LHAAP-35C(53)

Geochemical Evaluation of Aluminum in Soil Samples LHAAP-35C(53) Longhorn Army Ammunition Plant

1.0 Introduction

This report provides the results of a geochemical evaluation of inorganic constituents in soil samples from the LHAAP-35C(53) site at Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Aluminum failed statistical comparison to background, and a geochemical evaluation was performed to determine if the elevated concentrations in the site samples are naturally occurring or if they contain a component of contamination.

Site samples included in the evaluation consist of 32 soil samples collected over a five-year period from July 1993 through July 1998. The samples were obtained at various depths ranging from 0 to 11 feet below ground surface, and they were analyzed for a full list of metals including aluminum, iron, and manganese. Installation-wide background data for target analyte list metals in soil are provided in the background study report (Shaw Environmental, Inc., 2004) and are used in the following evaluation.

2.0 Results of the Geochemical Evaluation of Aluminum In Soil

This section presents the results of the geochemical evaluation of aluminum in soil samples from LHAAP-35C(53). Correlation plots and ratio plots are provided in **Figures 1** through **5**.

2.1 Aluminum

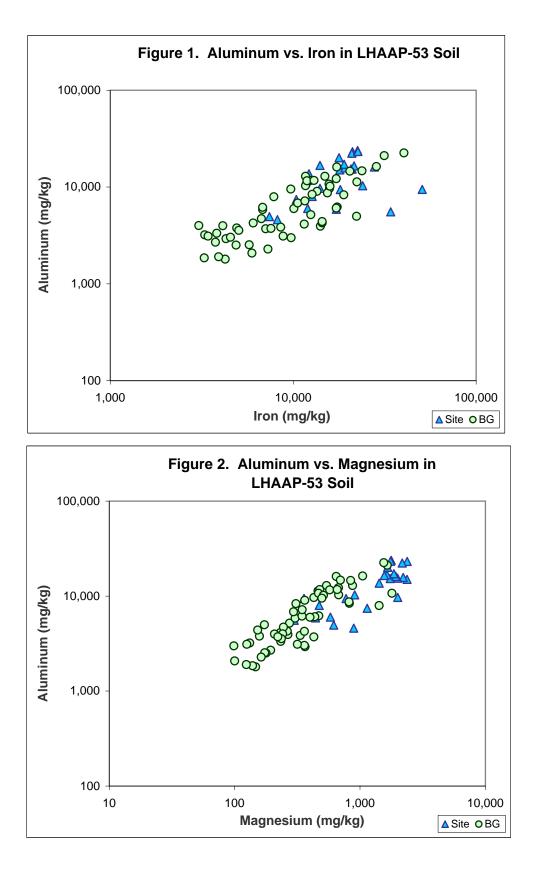
Aluminum is the second most abundant of the 23 elements analyzed in the LHAAP-35C(53) soil samples, with a mean concentration of 13,400 milligrams per kilogram (mg/kg) (1.3 weight percent). Aluminum is a primary component of common soil-forming minerals such as clays, feldspars, and micas. Aluminum also substitutes for ferric iron in iron oxide minerals, and can adsorb on iron oxide surfaces (Cornell and Schwertmann, 2003). Iron is the most abundant element analyzed in the site soil samples (mean concentration of 19,500 mg/kg, or approximately 2 weight percent) and is dominantly present as iron oxides. Iron oxides are common soilforming minerals, and they occur as discrete mineral grains or as coatings on silicate minerals (Cornell and Schwertmann, 2003). Clays and iron oxides tend to exist as very fine particles, so both aluminum and iron are enriched in samples with finer grain sizes. A plot of aluminum versus iron concentrations can be used to qualitatively assess the relative abundance of these minerals in site soil (**Figure 1**). As seen in the plot, the background samples and most of the site

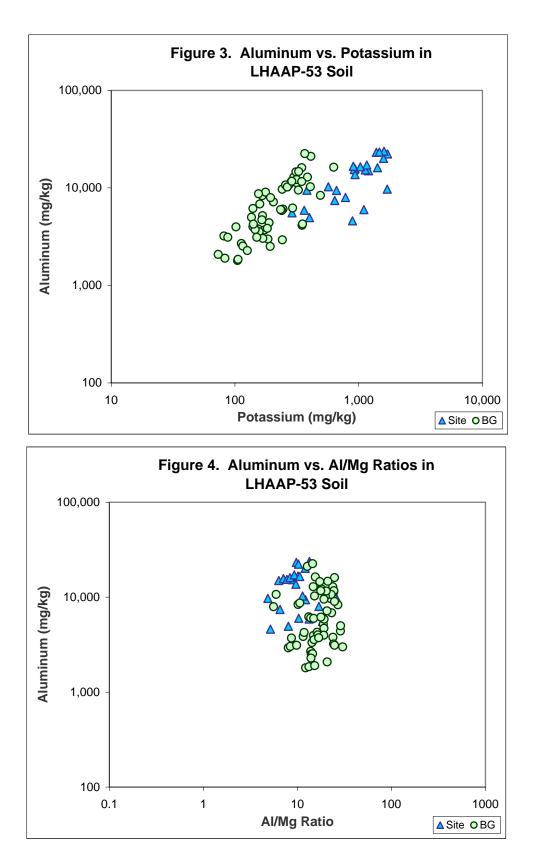
samples form a common linear trend with a positive slope. Most of the site samples with high aluminum concentrations also contain proportionally higher iron concentrations, and they lie on the background trend. Aluminum in these samples is natural. Site samples LHS-MW69 and LHS-MW71 lie below the linear trend and exhibit anomalously low Al/Fe ratios relative to the other samples; however, the aluminum concentrations in these samples (9,450 mg/kg and 5,550 mg/kg) are well within the background range.

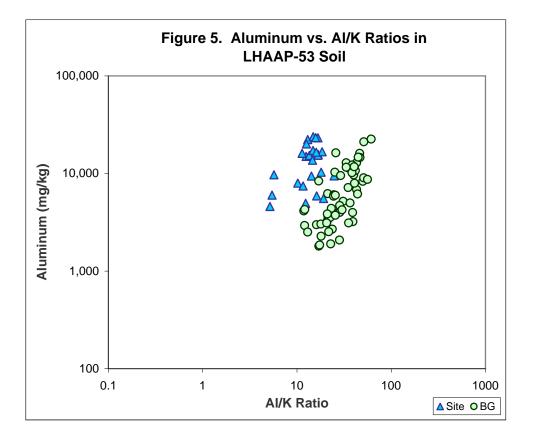
Magnesium and potassium are common components of soil-forming minerals such as clays, often occurring as part of the mineral structure and as loosely adsorbed cations. Clays are characterized by large surface-area-to-volume ratios and strong negative surface charges. As a result, the major cations, such as magnesium and potassium, are attracted to these mineral surfaces and take part in cation exchange reactions. Positive correlations for aluminum versus magnesium concentrations and aluminum versus potassium concentrations are thus typically observed for uncontaminated soil samples. Plots of aluminum versus magnesium and aluminum versus potassium for the LHAAP-35C(53) and background samples reveal linear trends with positive slopes (**Figures 2** and **3**). The site samples with the highest aluminum concentrations have proportionally higher magnesium and potassium content, and they exhibit Al/Mg and Al/K ratios that are within the background range (**Figures 4** and **5**). All of these observations suggest a natural source for the elevated aluminum detections in the LHAAP-35C(53) samples.

The site data set includes seven samples collected in July 1993 that are nondetect for aluminum and possess high reporting limits. These samples could not be included in the geochemical evaluation because their actual aluminum concentrations are unknown. However, the reporting limits for these samples range from 5,240 mg/kg to 18,000 mg/kg (mean of 11,250 mg/kg), and all of these values are below the background upper prediction limit of 18,900 mg/kg. The actual aluminum concentrations are somewhere below their respective reporting limits and, hence, they are below the background screening value as well. Contamination is not suspected in these samples.

2.2 Summary


Aluminum in the LHAAP-35C(53) soil data set failed statistical comparison to background. A geochemical evaluation was performed to determine if the elevated site concentrations could be explained as the result of natural processes. Geochemical evaluation indicates that the detected concentrations of aluminum in the site soil samples are naturally occurring. The elevated aluminum concentrations observed in several site samples most likely reflect a higher proportion of clay minerals relative to the other samples.


3.0 References


Cornell, R. M. and U. Schwertmann, 2003, *The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses*, Second Edition, Wiley-VCH, Weinheim.

Shaw, 2004, *Background Soil Study Report, Longhorn Army Ammunition Plant, Karnack, Texas*, Final, Houston, Texas, July.

Attachment 2 Figures

Appendix E

Construction Diagrams for Groundwater Wells at LHAAP-48 and LHAAP-35C(53)

Drilling Log

Monitoring Well

00043880 **48WW01**

Sha	W ·	ŧ						
Project L	onghori	n An	my Am	munition Plant		O'	wnerShaw E&I, Inc COMMENTS	
Location _							Proj. No. <u>845714</u> CASING SET AT 3	
				Total Hole De	anth 53		North 6959110 511 Hant 3314579 818 H APPROXIMATE D	AMETER OF
							ft. Static <u>22.3 ft.</u> Diameter <u>10 in.</u> AND SECTION 1 BORE	
							Static Diameter	
				-				
							Type <i>Sch. 40 PVC</i>	
							g/Core Foremost 5500/5' Core Barrel	
							Stem Auger w/Mud Rotary Capabilities	
Driller _D	oug Hin	es		Log By Dal	e Jayne		Date <u>4/20/04</u> Driller <u># NA</u>	
Checked B	y <u>Kay</u>	/ Eve	erett		_ Licens	e No.	NA	
				II				_
c	Well Completion		(Sample ID % Recovery	<u>.</u> 0	USCS Class.	Description	5
(ft.)	Nell		DID Dbm)	ecol	Graphic Log	S CI	(Color Toxture Structure)	Elevation (ft.)
	Con		÷	% R	້ິ	SC	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.	Ше
	r	_						
- 0 -		\prod					4'x4'x6" Conc. Pad w/ 4" diameter bollards	
Ŭ				NA			SILTY CLAY, REDDISH-YELLOW, STIFF, MOIST	190
			0.0	<u>NA</u> 100%				100
- 2 -	X I	¥۲	0.0	<u>NA</u> 100%				
				100%				- 188
4		١K				CL		⊩
								- 186
		×.	0.0	<u>NA</u> 100%				
- 6 -				10070			-BECOMES YELLOW AND LIGHT BLUISH-GRAY IN	
		\mathbb{X}					COLOR	- 184
- 8 -		SA-				<u> </u>		_ -
		\mathcal{Y}					SILT, PALE YELLOW AND BLUISH-GRAY, SOFT, MOIST	- 182
- 10 -		\mathbb{X}						_
			0.0	<u>NA</u> 80%		ML		190
		ЖI.		00,0				180
- 12 -						CL	CLAY, YELLOW W/ GRAY, LIGHT BLUISH GRAY	
L <u>Y</u>		×-					MOTTLING	178
- 14 -						SP	SAND, BROWNISH-YELLOW, FINE-GRAINED, LOOSE,	
		\mathbb{X}						176
		\mathbb{Z}	0.0	<u>NA</u> 100%		CL	CLAY, LIGHT BLUISH GRAY, STIFF, MOIST	
- 16 -		\mathbb{X}		10070		SC	CLAYEY SAND, YELLOW, SOFT, WET	
		\otimes					CLAY, PALE YELLOW, W/ LIGHT BLUISH-GRAY	174
- 18 -		\mathcal{V}					MOTTLING, STIFF, MOIST	F
- 20 - - 22 -		×.					-BECOMES SATURATED	- 172
						CL		L
- 20 -		SXI.	0.0	<u>NA</u> 100%				170
				100%				- 170
- 22 🕎								
- 24		\mathbb{X}				sc	CLAYEY SAND, SOFT, SATURATED	
- 24		\mathbb{Z}					SANDY CLAY, LIGHT YELLOWISH-BROWN, SOFT,	
		\mathbb{X}	0.0	<u>NA</u> 100%		CL	SATURATED	166
- 26 -		\mathbb{N}	0.0	100%	<i>HHHA</i>			F
╞╶╶╢		\mathbb{X}			HII	sc	CLAYEY SAND, YELLOW, LOOSE, SATURATED CLAY, PALE YELLOW, STIFF, SATURATED	164
		\otimes			X//////	CL	ULAT, PALE TELLUW, STIFF, SATUKATED	
- 28 -		X		NA			CLAYEY SAND, SOFT, SATURATED	
- 30 -		\mathbf{X}	0.0	<u>NA</u> 100%		sc		- 162
- 30 -	Y/X 6	Y//				╟──┤		
							Continued Next Page	

Drilling Log

Monitoring Well

Project Longhorn Army Ammunition Plant Owner Shaw E&I, Inc.

Location Karnack, Texas

_____ Proj. No. <u>845714</u>____

					1 1			
	÷_	Well Completion	<u> </u>	<u>Sample ID</u> % Recovery	i S m	USCS Class.	Description	, tion
	Depth (ft.)	We	DId (mdd)	Reco	Graphic Log	CS C	(Color, Texture, Structure)	Elevation (ft.)
	i	ပိ		S S		Ω	Geologic Descriptions are Based on the USCS.	ш
			· · · · · · · · · · · ·				Continued	
	30 —						CLAY, LIGHT BLUISH-GREEN, STIFF TO VERY STIFF,	- 160
~	-		0.0	<u>NA</u> 100%			WET	- 100
F	32 —			10078				150
F							-BECOMES PALE YELLOW IN COLOR	- 158
	34 —					CL		
-	-	S S	0.0	<u>NA</u> 100%				- 156
\vdash	36 —			100%				-
\mathbf{F}	-							- 154
\vdash	38 —						NO RECOVERY, DRILLER REPORTS SOFT DRILLING	-
┢	-						INDICATIVE OF SANDS	-152
-	40 —		0.0	NA 0%				-
F	-		0.0	0%		SP		- 150
\vdash	42					SF		
╞	~							- 148
-	44 —		0.0	<u>NA</u> 0%				
-	-					<u> </u>	SILTY CLAY, BLUISH GRAY, SOFT, SATURATED	-146
┢	46 —		0.0	NA 50%		CL		-
+	-						NO RECOVERY MOST LIKELY FINE-GRAINED	-144
╞	48 -						NO RECOVERY, MOST LIKELY FINE-GRAINED SANDS, THAT WASHED OUT CORE BARREL	-
-	-							-142
╞	50 -		0.0	<u>NA</u> 0%		SP	τ	-
F	-			0.10				-140
-	52 -							-
	-						HOLE REAMED TO 55'	-138
	54 —						END OF BORING	-
	-							-136
L	56 —							-
4	-							-134
12/2/	58							-
۲.	50							-132
GS G	60 -							-
20	00							-130
ORIN	~~~~							
67 B(62 —							- 128
32.50	-							120
TES	64 —	1						126
4 1	-	1						
1/25/0	66 –							124
5	-							-124
MANCHACA Rev: 10/25/04 SITES 32 50 67 BORING LOGS: GPJ 12/2/04	68 —	1						1 00
HAC	-	1						- 122
ANCI	70 —							-
ΣL		الــــــــــــــــــــــــــــــــــــ	L	<u>u</u>		u		[[]

...

Page 1 of 2 00043882

	STATE OF TEXAS WELL REP							
Owner:	Longhorn Army Ammunition Plant	Owner Well #:	48WW01					
Address:	Hwy 143 @ Spur 449, LHAAP Karnack , TX 75661	Grid #:	35-24-4					
Well Location:	Hwy 143 @ Spur 449 LHAAP Karnack , TX 75661	Latitude:	32° 40' 55" N					
Well County:	Harrison	Longitude:	094° 07' 25'' W					
Elevation:	No Data	GPS Brand Used:	Garmin III Plus					
Type of Work:	New Well	Proposed Use:	Monitor					
Drilling Date:	Started: 4/16/2004 Completed: 4/20/2004	······						
Diameter of Hol	e: Diameter: 16 in From Surface To 38 ft Diameter: 9 in From 38 ft To 55 ft							
Drilling Method:	Mud Rotary Hollow Stem Auger							
Borehole Completion:	Gravel Packed From: 39 ft to 55 ft Gravel Pack Size: 20/40							
Annular Seal Da	ata: 1st Interval: From 0 ft to 38 ft with 19 ce 2nd Interval: From 36 ft to 39 ft with 2 be							
	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concent Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data	nent (#sacks and material)						
Surface Completion:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concent Distance to Property Line: No Data Method of Verification: No Data	nent (#sacks and material)						
Completion:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concent Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data	nent (#sacks and material)						
Completion: Water Level:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concent Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Slab Installed Static level: No Data	nent (#sacks and material)						
Completion: Water Level: Packers:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concentu Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Slab Installed Static level: No Data Artesian flow: No Data	nent (#sacks and material) rated Contamination: No Da						
	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concente Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Slab Installed Static level: No Data Artesian flow: No Data No Data	nent (#sacks and material) rated Contamination: No Da						
Completion: Water Level: Packers: Plugging Info:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concent Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Slab Installed Static level: No Data Artesian flow: No Data No Data Casing or Cement/Bentonite left in well: N	nent (#sacks and material) rated Contamination: No Da						
Completion: Water Level: Packers: Plugging Info: Type Of Pump:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concent Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Slab Installed Static level: No Data Artesian flow: No Data No Data Casing or Cement/Bentonite left in well: N No Data	nent (#sacks and material) rated Contamination: No Da	ta					
Completion: Water Level: Packers: Plugging Info: Type Of Pump: Well Tests:	3rd Interval: From 0 ft to 36 ft with 8 cen Method Used: Tremie pipe Cemented By: Driller Distance to Septic Field or other Concentre Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data Surface Slab Installed Static level: No Data Artesian flow: No Data No Data Casing or Cement/Bentonite left in well: N No Data No Data Type of Water: No Data Chemical Analysis Made: No Data Did the driller knowingly penetrate any strain	nent (#sacks and material) rated Contamination: No Da lo Data ata which contained undesir nis well (or the well was drille tatements herein are true ar	able constituents: No ed under the driller's direct					

http://134.125.70.235/drillers-new/insertwellreportprint.asp

Information:	1717 E. Erwin Tyler , TX 75702
Driller License Number:	2126
Licensed Well Driller Signature:	Doug Hinds
Registered Driller Apprentice Signature:	No Data
Apprentice Registration Number:	No Data
Comments:	No Data

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner of the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

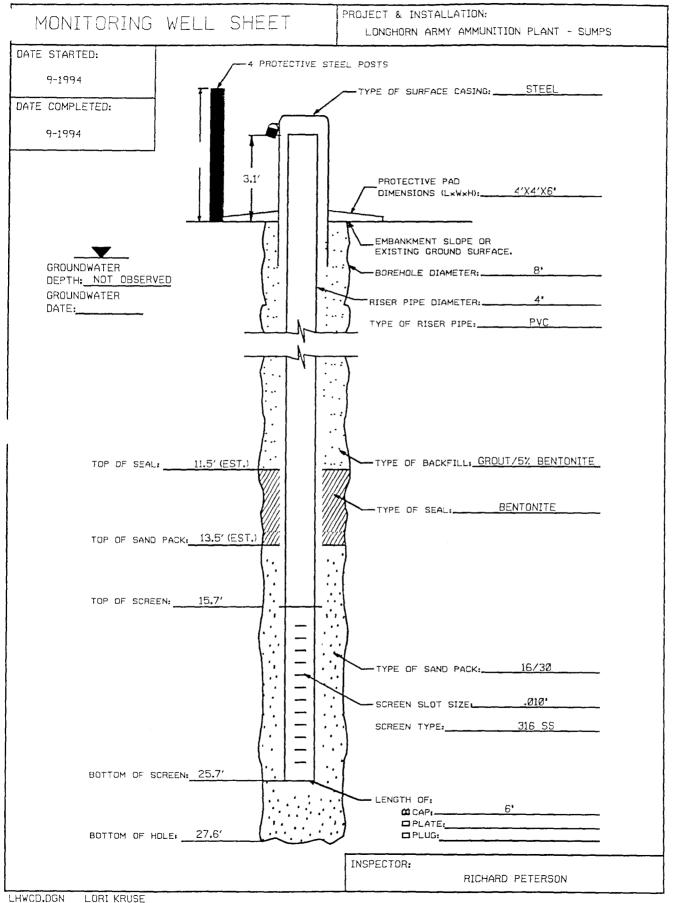
Please include the report's Tracking number (Tracking #46645) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

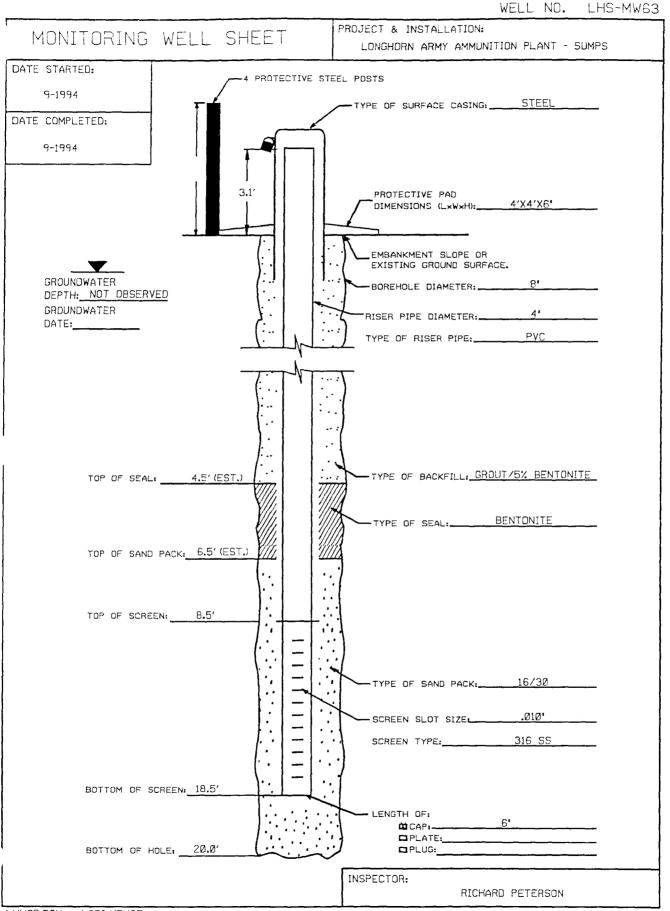
DESC. & COLOR OF FORMATION MATERIAL

From (ft) To (ft) Description 0-3 Silty clay - reddish yellow 3-8 Clay - reddish yellow, yellow, gray, & bluish gray 8-12 Silty - yellow & bluish gray 12-13 Clay - yellow, gray, bluish gray 13-14 Sand - brownish yellow 14-16 Clay - bluish gray 16-16.5 Clayey sand - yellow 16.5-23 Clay - yellow & bluish gray 23-24 Clayey sand 24-26 Sandy clay - yellowish brown 26-26.8 Clayey sand 26.8-28 Clay - yellow & bluish gray 28-30 Clayey sand 30-38 Clay - bluish gray & yellow 38-45 Sand 45-47 Silty clay - bluish gray 47-55 Sand

CASING, BLANK PIPE & WELL SCREEN DATA


Dia. New/Used Type Setting From/To 12 New Carbon Steel 0 - 38 4 New PVC Sch. 40 0 - 42.6 4 New PVC Sch. 40 - slotted 42.6 - 52.6 0.010"

DRII	JING	log	DIVISION SOUTHWEST	INSTALLATION LHAAP OF 2 SHEETS					
1. PROJEC	T		STE SUMPS	10. SIZE AND TYPE OF BIT 8" AUGER					
2 LOCATI		dinates or 5		11. DATUM FOR ELEVATION SHOWN (TBM or MSL) M.S.L.					
	59033.7 G AGENCY			4		DESIGNATIO	N OF DRILL		
		own on arow	SA DISTRICT COE	FAILING 1500 13. OVERBURDEN SAMPLES DISTURBED 21 UNDISTURBED 0					
			LHS-MW62			ORE BOXES	2	0	
D. NAME (of Driller	RAY	VOILS	15. ELEVAT			NOT DETER		
	ON OF HOL	.e ⊐inclined	DEG. FROM VERT	16. DATE H	IOLE	STARTE	D /00/1994	0970071994	
	ESS OF OV		27.6	17. ELEVAT	NON TOP O	FHOLE		189.0	
	DRILLED IN		0.0	18. TOTAL	CORE REC	OVERY FOR	BORING	0.0 ,	
	DEPTHOF		27.6		TERSON				
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL (Description) d	s	CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling Ume	REMARKS , water kass, depth of , etc., If segnificant) g	
			FAT CLÁY (CH) (0.0 – 2.0) WTH SAND, YELLOMSH RED, MOIST, SOME GRASS.			J—1	TYPE AUGER SAMPLE ن—1	ZONE 0.0- 27.6 DEPTH 0.0- 2.0	
<u>87.0</u>	2		FAT CLAY (CH) (2.0 – 4.0) DARK YELLOWSH BROWN WITH YELLOWSH RED AND GRAY, TH LAMINATES, MOIST, SOME GRAS	IIN SS.		J-2	2 <u>−</u> 2 1 − 3 1 − 4 1 − 5 1 − 6	0.0- 2.0 2.0- 4.0 4.0- 7.0 7.0- 8.3 8.3- 9.7 9.7- 12.0	
85.0	4		FAT CLAY (CH) (4.0 - 7.0) WITH SAND, LIGHT GRAY AND		_		7ل 8ل 9-ل 10-ل 11-11	12.0- 13.0 13.0- 14.5 14.5- 16.0 16.0- 16.7 16.7- 18.0	
	6		YELLOWSH RED, MOIST,LAMINA"	TED		J-3	J-12 J-13 J-14 J-15 J-16 J-17 J-18 J-19	$\begin{array}{c} 18.0 - 19.2 \\ 19.2 - 19.6 \\ 19.6 - 20.4 \\ 20.4 - 21.3 \\ 21.3 - 22.3 \\ 22.3 - 23.1 \\ 23.4 - 23.8 \\ 23.8 - 24.7 \end{array}$	
32.0			LEAN CLAY (CL) (7.0 – 8.3) WTH SAND, LIGHT GRAY AND GRAY, MOIST.			J-4	J20 J21	24.7- 26.4 26.4- 27.6	
80.7	E	\mathbb{V}/\mathbb{Z}	1						
79.3			LEAN CLAY (CL) (8.3 - 9.7) YELLOWSH BROWN WITH GRAY, VERY SILTY.	WET		J-5			
/91	10		LEAN CLAY (CL) (9.7 - 12.0) SANDY, YELLOMSH RED WITH BROWN, WET, VERY SILTY.			J6			
77.0	12		1 1						
76.0			LEAN CLAY (CL) (12.0 - 13.0) LIGHT OLIVE BROWN AND LIGHT BROWNISH GRAY, WET, VERY SI	LTY		J7			
7.4 F	14		LEAN CLAY (CL) (13.0 - 14.5) YELLOWISH BROWN AND LIGHT GRAY WITH DARK YELLOWISH B VERY MOIST.			J-8			
74.5			LEAN CLAY (CL) (14.5 - 16.0) SANDY, YELLOWISH BROWN WITH TRACE OF GRAY, WET.	4		J-9			
7.3.0		¥H)	LEAN CLAY (CL) (16.0 - 16.7)		1				
72.3			MTH SAND, YELLOWSH BROWN MTH DARK BROWN, MOIST. LEAN CLAY (CL) (16.7 - 19.2) BROWN AND LIGHT GRAY AND			J-10			
	18		DARK YELLOWISH BROWN, VERY MOIST TO MOIST.			J—11			
	=	¥///	LEAN CLAY (CL) (19.2 - 19.6) LIGHT YELLOWISH BROWN, FREE			J-12			
<u>98</u>	<u> </u>	¥H	WATER, VERY SILTY.		-	J-13			
9.4 9.0	20 -	\$777	LEAN CLAY (CL) (19.6 - 20.4) YELLOW AND LIGHT GRAY, VER MOIST.	ŕ	}	J-14			
<u>м 11</u>	1_20				PROJECT	<u>. </u>			


.

DRILL	ING T	og l	NORM	INSTALLATI		4.0		SHEET 2	
. PROJECT			SOUTHWEST	LHAAP OF 2 SHEETS					
			TE SUMPS	11. DATUM FOR ELEVATION SHOWN (TBM or MSL)					
LOCATION 6959		notes or St	ation) 3314542.70	12 MANUE	ACTURED'C	DESIGNATION	N OF DRILL	MSL	
). DRILLING .			SA DISTRICT COE	12. MANUFACTURER'S DESIGNATION OF DRILL FAILING 1500					
HOLE NO.	(As show	en an drawi	ng title LHS-MW62	13. OVERBURDEN SAMPLES DISTURBED 21 UNDISTURBE					
S. NAME OF	DRILLER	RAY V		14. TOTAL	NUMBER CO	ORE BOXES		0	
DIRECTION	OF HOLE			15. ELEVAT			NOT DETER		
DZI VERTI			DEG. FROM VERT				^D /00/1994	09/00/1994 189.0	
. THICKNES	OFOVE	RBURDEN	27.6			VERY FOR E	BORING	0.0	
L DEPTH DR			0.0					·	
LEVATION	DEPTH	LEGEND	27.6 CLASSIFICATION OF MATERIAL		TERSON	BOX OR		REMARKS	
			(Description)	~	RECOV-	SAMPLE NO.	(Ortilling time	, water loss, depth of stc., If segnificant)	
с с с	b	177	LEAN CLAY (CL) (19.6 - 20.4			J-14		<u> </u>	
68.6		1//	YELLOW AND LIGHT GRAY, VEF			J-15			
67.7			LEAN CLAY (CL) (20.4 - 21.3 CL-ML, SILTY CLAY WITH SAN	i) D.	1	0-10			
14.1	=		IYELLOWISH BROWN AND LIGHT						
	22	V///	GBAY, WET. LEAN CLAY (CL) (21.3 - 22.3 YELLOWISH BROWN WITH DARK)	1	J16			
56.7		$\forall H$	YELLOWSH BROWN, VERY MOIS	ST	_	J-17			
55.9			LEAN CLAY (CL) (22.3 – 23.1 CL-ML, SILTY CLAY WITH SAN	Ď.		0-17			
		$\overline{}$	YELLOWISH BROWN WITH LIGHT			J-18			
35.2	24	H	LEAN CLAY (CL) (23.1 - 23.8 SANDY SILTY CLAY, YELLOWSH BROWN WITH DARK, YELLOWSH LEAN CLAY (CL) (23.8 - 24.7 MITH SAND, LIGHT OLIVE BROW AND LIGHT COLVE DROW	}					
1	_	///	LEAN CLAY (CL) (23.8 - 24.	<u>ЕТ.</u>	-	J19			
54_3		+++	WITH SAND, LIGHT OLIVE BROW	/Ń					
	-		AND LIGHT GRAY, VERY MOIST LEAN CLAY (CL) (24.7 - 26.4 CL-ML, SILTY CLAY WITH SAN	}	1				
			YELLOWSH BROWN WITH LIGHT		[J-20			
52.6	26		WET.	noma,					
	_	1//	LEAN CLAY (CL) (26.4 - 27.6 LIGHT GRAY AND LIGHT BROW)	1				
			GRAY, VERY MOIST.	054		J-21			
51_4						 			
	28				ļ				
	_								
	30								
	. =								
	=								
	I I				ĺ				
	32								
	34								
		-							
	36								
	4								
	_								
	38								
	-								
	Ξ								
	=								

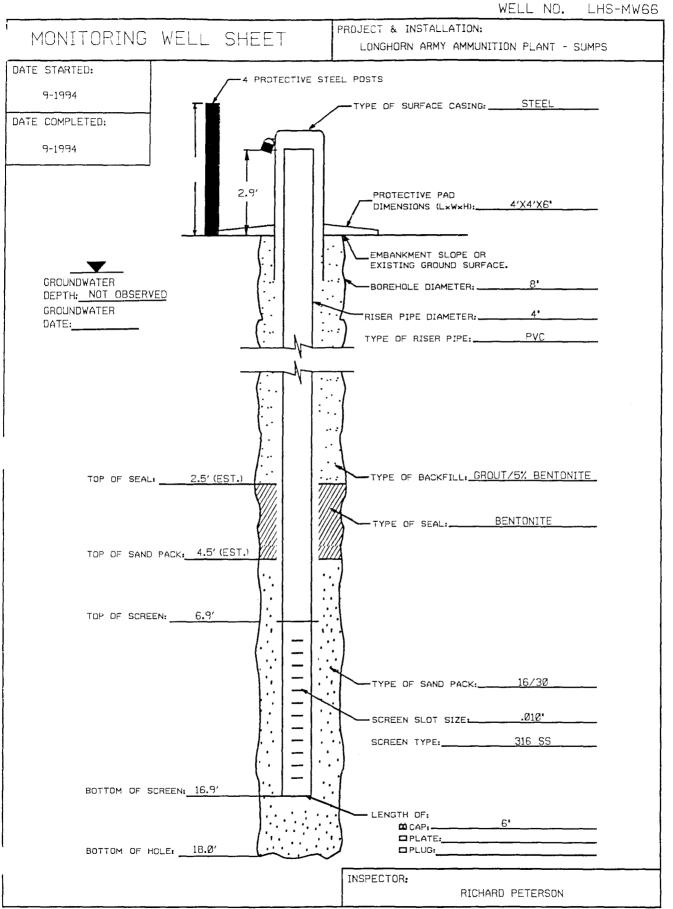
DRILL	ING LOG	DIVISION	SOUTHWEST	INSTALLATION LHAAP OF 1 SHEETS					
1. PROJECT	LHAAP-W	ASTE SU		10. SIZE AN	D TYPE OF	BIT E	AUGER		
2. LOCATON	(Coordinates or 9185.00			11. DATUM	FOR ELEVA	TKON SHOW	(TBM or MSL) MSL	
6959 3. DRILLING	AGENCY		3314366.40	12. MANUFACTURER'S DESIGNATION OF DRILL					
4. HOLE NO.	(As shown on dr		TRICT COE		FAILING 1500 13. OVERBURDEN SAMPLES DISTURBED 12 UNDISTURBED				
and file n	umber)		LHS-MW63	14. TOTAL N			1	0	
5. NAME OF	RAY	VOILS		15. ELEVAT			NOT DETE	······	
6. DIRECTION	CAL DINCLINE		DEG. FROM VERT.	16. DATE H	OLE	STARTE 09	^D /00/1994	8970071994	
	S OF OVERBURDED			17. ELEVATIO				190.9	
	ULLED INTO ROCK	0.0		18. TOTAL C	XORE RECO	VERY FOR I	BORING	0.0	
	PTH OF HOLE	20.0			TERSON			<u></u>	
ELEVATION	DEPTH LEGEN		CLASSIFICATION OF MATERIAL (Description)	s 	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling tin weatherin	REMARKS ne, water loss, depth of lg_stc, if segnificant)	
		/ YELLO	CLAY (CL) (0.0 - 2.0) DWSH BROWN AND STRON N. DAMP.	G		J-1	TYPE AUGER	ZONE 0.0- 20.0	
88.9	, =//						SAMPLE J1 J2	0.0- 2.0 2.0- 4.0	
		∕ Istroi	CLAY (CL) (2.0 - 4.0) NG BROWN AND DARK NMSH BROWN MITH GRAY,			J-2	3ل 4ل 5ل 4ل	4.0- 6.5 6.5- 7.8 7.8- 11.0 11.0- 13.2 13.2- 14.5	
86.9	4	EAT (CLAY (CH) (4.0 - 6.5)				7 –ل 8 –ل 9 –ل 10 –ل 11 –ل	13.2 - 14.5 14.5 - 15.2 15.2 - 16.5 16.5 - 17.5 17.5 - 18.2	
			WISH BROWN, MOIST.			5-J	-11 12	18.2- 20.0	
84.4	6								
		/умтн	CLAY (CL) (6.5 - 7.8) SAND,DARK BROWN AND I MOIST, LAMINATED.	LIGHT		4 –ل			
83.1		SAND	CLAY (CL) (7.8 - 11.0) Y, YELLOWSH BROWN AND GRAY, MOIST, LAMINATED			J-5			
79.9	10								
/9.9	12	/ МТН	CLAY (CL) (11.0 - 13.2) SAND, YELLOWSH BROWN LIGHT GRAY, VERY MOIST.			J-6			
77.7		STRON	GAND (SM) (13.2 - 14.5) IG BROWN WITH YELLOWIS N AND GRAY, FREE WATEI			J-7			
76.4		YELLO BROW AND	LAY (CH) (14.5 - 16.5) WSH RED MTH YELLOWIS N AND GRAY TO LIGHT GF DARK YELLOWISH BROWN ED, MOIST.	H Ray		J-8 J-9			
74.4		t]sc−si	SAND (SC) (16.5 – 17.5) A, SILTY CLAYEY SAND,			J-10			
73.4	18	LIGHT WET DARK LIGHT BLACK	GRAY AND YELLOWISH BF CLAY (CL) (17.5 - 20.0) YELLOWISH BROWN WITH GRAY TO LIGHT GRAY M AND DARK YELLOWISH E MOIST TO MOIST.	TH		J-11 J-12			
	//	Λ							

LHWCD.DGN LORI KRUSE

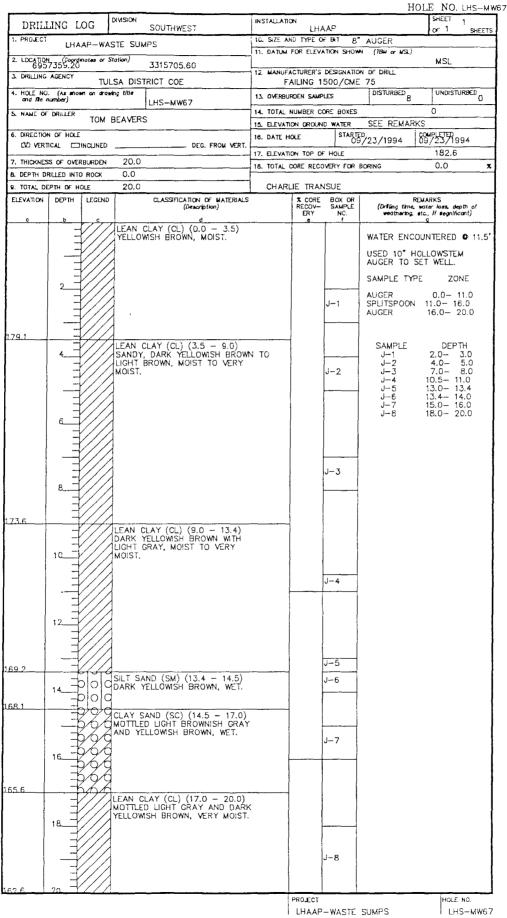
DRILI	ING LOG	DIVISION	SOUTHWEST	INSTALLATION SHEET 1 LHAAP OF 2 SHEET					
1. PROJECT		ASTE SU		10. SIZE AN	ID TYPE O	ғыт 8	AUGER		
2 LOCATO	Coordinates or 9085.90		3314916.70	11. DATUM	FOR ELEVA	TION SHOW	N (7894 or MSL)	MSL	
3. DRILLING	AGENCY		· · · · · · · · · · · · · · · · · · ·	12. MANUFA			N OF DRILL		
4. HOLE NO	. (As shown on dro		TRICT COE	FAILING 1500 13. OVERBURDEN SAMPLES DISTURBED 16 UNDISTURBE					
5. NAME OF	DRILLER		LHS-MW64	14. TOTAL I				0	
	RAY	VOILS		15. ELEVAT			NOT DETER		
6. DIRECTION	n of hole 1cal ⊡inquined		DEG. FROM VERT.	16. DATE H			/00/1994	09/00/1994	
7. THICKNES	S OF OVERBURDEN	25.0		17. ELEVATI 18. TOTAL C			BORING	188.2	
	RILLED INTO ROCK	0.0			TERSON				
ELEVATION	DEPTH LEGEN		CLASSIFICATION OF MATERIALS	<u> </u>	X CORE	BOX OR		REMARKS	
a	b c		(Description)		RECOV ERY	SAMPLE NO.	Ursing Um weathering	, water loss, depth of t. etc., if segnificant)	
	=///	LEAN	CLAY (CL) (0.0 - 2.5) Y, STRON BROWN AND						
	<u> </u>	YELLO	WISH BROWN, VERY MOIST GRASS, VERY SILTY.	,	ļ		TYPE AUGER	ZONE 0.0- 25.0	
	¥///	1				J-1	SAMPLE	DEPTH	
	2	1					J-1 J-2	0.0- 2.5 2.5- 4.0	
85.7	<u> </u>						J-3 J-4	4.0- 7.5 7.5- 9.6	
		TELLO	CLAY (CL) (2.5 - 4.0) WISH RED AND LIGHT GRA	.Y,			J-5 J-6	10.4- 10.4 10.4- 11.7	
	¥///	LAYER	, LAMINATED, SILTY BROW	N		J-2	J-7 J-8	11.7 - 12.5 12.5 - 15.0	
84.2	<u>4///</u>	1					J-9 J-10	15.0- 16.4 16.4- 17.6	
		LEAN MTH	CLAY (CL) (4.0 - 7.5) SAND, LIGHT GRAY AND				J-11 J-12	17.6-18.3	
	///	YELLO	WSH BROWN, MOIST.				J-13 J-14	$\begin{array}{rrrr} 19.0 - & 20.4 \\ 20.4 - & 21.3 \\ 21.3 - & 23.2 \\ 23.2 - & 25.0 \end{array}$	
	///	1					J-15 J-16	21.3- 23.2 23.2- 25.0	
	6	1				J3			
				ĺ					
	_ <u></u> ///	1							
80.7	//	1							
	8	DARK	CLAY (CL) (7.5 - 9.6) YELLOWISH BROWN WITH						
	3///	GRAY,	VERY MOIST.			J-4			
	///	1							
79.6		1							
78.6	10-99	CLAY	SAND (SC) (9.6 - 10.4) YELLOWISH BROWN AND			J-5			
77.8		GRAY,	VERY MOIST.						
		⊴sc–s⊾	SAND (SC) (10.4 - 11.7) , SILTY CLAYEY SAND,	_		J6			
	324	DARK	YELLOWISH BROWN AND E	ROWN		5-0			
76.5	12 - 77	LEAN	CLAY (CL) (11.7 - 12.5)						
75.7		MTH S	SAND, LIGHT GRAY WITH YELLOWSH BROWN, MOIST			J-7			
	_//	FAT C	LAY (CH) (12.5 - 15.0) MSH BROWN AND GRAY,		ļ				
		MOIST.							
	14					J8			
73.2				ļ					
		LEAN MTH	CLAY (CL) (15.0 - 16.4) SAND, YELLOWISH BROWN,						
	16	VERY	MOIST, LIGHT GRAY CLAY			J-9			
1.8		1							
-		LEAN	CLAY (CL) (16.4 - 17.6) GRAY AND YELLOWISH			J-10			
	=======================================	BROWN	I, MOIST, SOME BLACK			-10			
ZO.6	18	A				J—11			
59.9	///	WET. S	CLAY (CL) (17.6 - 18.3) , DARK YELLOWISH BROW OME LIGHT GRAY LENSES	N.					
59.2	={///	YELLO	MSH BROWN AND LIGHT			J-12			
		SILT S	VERY MOIST. AND (SM) (19.0 - 20.4)			J-13			
		YELLO	MSH BROWN, FREE WATER	.		0-13			

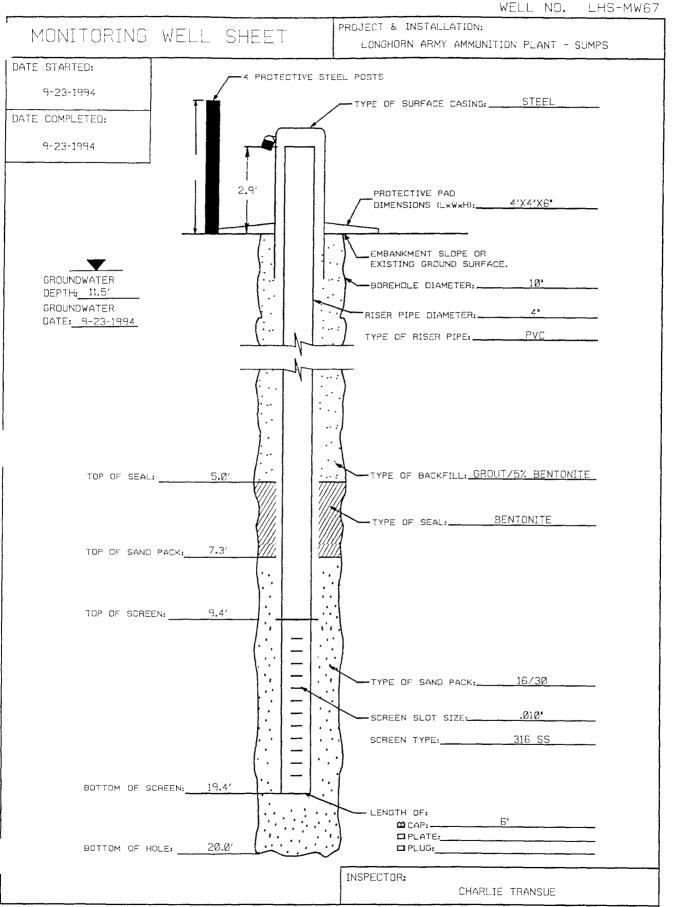
	······				1	HOLE NO. LHS-MY
DRILI	ING LOG	BUTHWEST	INSTALLATK	DN LHAAP		SHEET 2 OF 2 SHEETS
1. PROJECT	LHAAP-W	ASTE SUMPS	-		AUGER	
2. LOCATION	9088.90	- Station) 771 4016 70	11. DATUM	FOR ELEVATION SHOW	wn (789⊌'or⊌S⊻,) MSL
3. DRILLING	AGENCY		1	ACTURER'S DESIGNATIO	ON OF DRILL	
4. HOLE NO	(As shown on dr humber)	ulsa district coe		RDEN SAMPLES	DISTURBED 1	6 UNDISTURBED 0
5. NAME OF	DRILLER	[LR3-M104		NUMBER CORE BOXES		0
	RAY	/ VOILS	15. ELEVAT	ON GROUND WATER	NOT DETE	
6. Direction	N OF HOLE ⊓CAL ⊡INCLINEI	D	18. DATE H		ED 9/00/1994	8970071994
7. THICKNES	S OF OVERBURDED	N 25.0	J	ON TOP OF HOLE		188.2
	RILLED INTO ROCK		- 18. IUIAL (JORE RECOVERT FOR	BORING	0.0 x
	EPTH OF HOLE	25.0		TERSON	1	REMARKS
ELEVATION	DEPTH LEGEN	ID CLASSIFICATION OF MATERIAL (Description)	5	CORE BOX OR RECOV- SAMPLE ERY NO.	(Drilling tim weatherin	remarks e, water loss, depth of g, etc., if segnificant)
0 679		GSILT SAND (SM) (19.0 - 20.4)		J-13		g
67.8	-///	LEAN CLAY (CL) (20.4 - 21.3)		-	
66.9		WTH SAND, DARK YELLOWISH BROWN, WET, LIGHT GRAY LEN	SES.	0-14		
	=///	LEAN CLAY (CL) (21.3 - 23.2) DARK YELLOWISH BROWN AND)			
		BROWN, VERY MOIST.		J-15		
	Ĭ <i>Ĭ</i> //	2				
65.0	//	A				
		FAT CLAY (CH) (23.2 - 25.0) GRAMSH BROWN, MOIST, SOME				
	24	IRON-OXIDE STAINS.		J-16	[
63.2		4	<u></u>			
	-					
	26					
	28					
	4					
	-					
	30					
	-					
	4					
	32					
	1		ľ			
	-					
	34					
	1					
	_					
·	36					
	38					i
	_					
	40					
				PROJECT	214100	HOLE NO. LHS-MW64

LHWCD.DGN · LORI KRUSE


. .

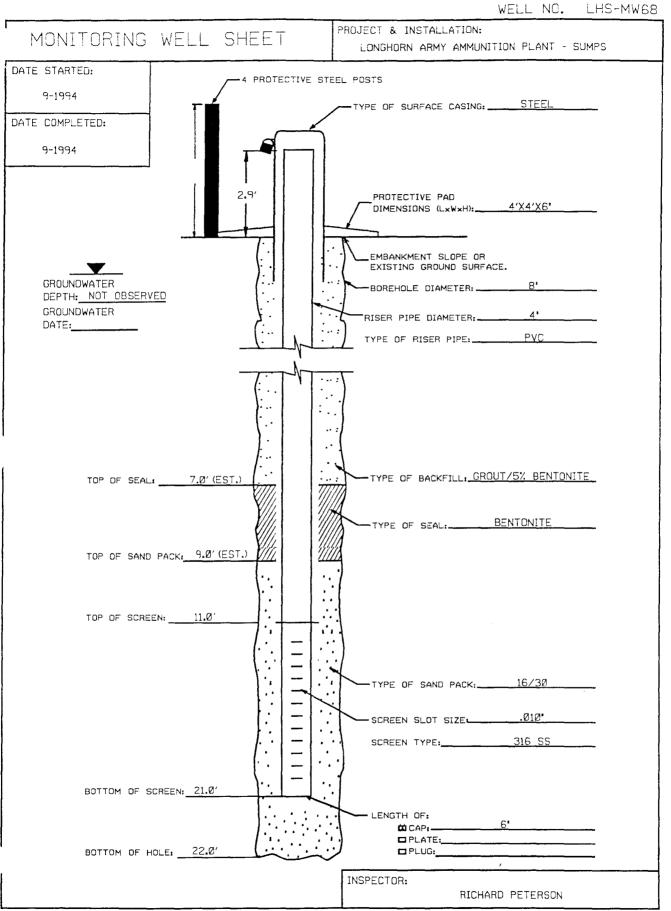
DRILI	ING L	og 🔽	NUSION SOUTHWEST	INSTALLAT	ION LHA	AP		SHEET 1 OF 1 SHEET	
I. PROJECT	LHA	AP-WAS	TE SUMPS	10. SIZE AND TYPE OF BIT 8" AUGER					
LOCATION				11. DATUM FOR ELEVATION SHOWN (754 or MSL) MSL					
			SA DISTRICT COE		ACTURER'S		N OF DRILL		
. HOLE NO.	(As show umber)		ng title	· · · · · · · · · · · · · · · · · · ·	JRDEN SAMPI		DISTURBED 8	UNDISTURBED	
NAME OF		RAY V	LHS-MW65	14. TOTAL	NUMBER CO	RE BOXES		0	
DIRECTION	OF HOLF		ULD		ION GROUN		NOT DETER		
		NCLINED	DEG. FROM VERT.	16. DATE H	TOLE.		D/00/1994	09/00/1994 191.7	
THICKNES			18.0	h	CORE RECO		BORING	0.0 ,	
. DEPTH DE			0.0 18.0	R. PE	TERSON				
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)		X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling time, weathering,	REMARKS water loss, depth of etc., if segnificant)	
с			LEAN CLAY (CL) (D.O. – 4.0) WTH SAND, DARK YELLOWISH BROWN WTH YELLOWISH RED,IJ GRAY AND RED LAMINATIONS A CLAY CLUMPS IN BOTTOM HALF SAMPLE, MOIST, SILTY IN UPPE HALF OF SAMPLE.	ND OF	e	<u>۴</u>	TYPE AUGER SAMPLE J-1 J-2 J-3	ZONE 0.0- 18.0 DEPTH 0.0- 2.0 2.0- 4.0 4.0- 9.5	
37.7						J-2	4 – ل 5 – 5 5 – 6 5 – 7 J – 8	9.5- 10.3 10.3- 12.7 12.7- 15.3 15.3- 17.0 17.0- 18.0	
			YELLOWISH BROWN AND LIGHT BROWNISH GRAY, MOIST.			J-3			
12.2	10	\square	LEAN CLAY (CL) (9.5 – 10.3) MTH SAND, YELLOMSH BROWN LIGHT GRAY, MOIST, LAMINATED	AND		 J—4			
1.4			LIGHT GRAY, MOIST, LAMINATED SILTY CLAY. SILT SAND (SM) (10.3 - 15.3) YELLOWISH BROWN TO DARK YELLOWISH BROWN AND RED AN LIGHT BROWN, DAMP TO VERY MOIST.		-	J-5			
6.4						J-6			
	16		FAT CLAY (CH) (15.3 - 18.0) YELLOWISH BROWN AND LIGHT GRAY TO LIGHT BROWNISH GRA' MITH YELLOWISH BROWN, MOIST.	1		J-7			
3.7	18			_		J-8			
_									
ļ		J			I	1			




LHWCD.DGN LORI KRUSE

DRILLI	NG LOG	DIVISION	UTHWEST	INSTALLAT	ION LHA	SHEET 1 OF 1 SHEET				
1. PROJECT		WASTE SUMPS		10. SIZE AND TYPE OF BIT 8" AUGER						
2. LOCATION				11. DATUM FOR ELEVATION SHOWN (754 or MSL) MSL						
6959	(Coordinates 501.40		14813.50	1			N OF DRILL	MOL		
	(As ahown on	TULSA DISTRIC	T COE		FAILING 1500					
and file nu	mbar)		S-MW66		JRDEN SAMP		DISTURBED 7	UNDISTURBED		
S. NAME OF I		Y VOILS	· · · · · · · · · · · · · · · · · · ·		NUMBER CO		NOT DETER			
6. DIRECTION	OF HOLE			15. ELEVATION GROUND WATER 18. DATE HOLE STAP			00/1994	09/00/1994		
		ED	DEG. FROM VEF	п	TON TOP OF		/////1994	192.1		
	OF OVERBURD			······	CORE RECO		BORING	0.0		
B. DEPTH DRI	LLED INTO ROCI	K 0.0 18.0			TERSON					
	DEPTH LEGE		ASSIFICATION OF MATERIA		X CORE RECOV-	BOX OR SAMPLE	(Orilling time	REMARKS , water loss, depth of		
a	b c		d		ERY	NO.	weathering	etc., If segnificant)		
	=7/	LEAN CLA	Y (CL) (0.0 - 2.0) ELLOWISH BROWN W	тн						
	=======================================		ROWN, DAMP, SOME			1—ل	TYPE AUGER	ZONE 0.0- 18.0		
	\exists	Ionnas.				-				
	_ ¥//	$\langle \rangle$					SAMPLE	DEPTH 0.0- 2.0 2.0- 4.0		
90.1	-2	LEAN CLA	Y (CL) (2.0 - 4.0) D,DARK YELLOWISH		1		2 — ل 3 — ل	4.0- 9.0		
	↓ //	DAMP. SO	D,DARK YELLOWISH ME LIGHT GRAY ANI	Brown Red			4—ل 5—ل	9.0- 10.5 10.5- 12.5		
	-//	LAMINATED	CLAY CLUMPS.			J-2	لے۔ 1-6 1-7	12.5- 16.5 16.5- 18.0		
	1//						5 /			
88.1	_4 - ¥//			·	-					
		YELLOWISH	(CH) (4.0 - 9.0) BROWN WITH LIGH	т						
		GRAY, MOI	ST.							
Í										
					i i					
						J3				
	8									
3.3.1			(0)) (
1	=\//	WITH SAND	r (CL) (9.0 - 12.5) D. LIGHT GRAY WITH TH BLACK TO DARK)						
	10	YELLOWSH	BROWN AND LIGHT			4ل				
		GRAY, MOI	ST, SILTY IN BOTTO	м						
	́//,									
1		Λ								
	. ¥//					J-5				
	12/	λ								
79.6	\$6	CLAY SAN	D (SC) (12.5 - 16.	5)	{ }]				
		DARK YELL	OWISH BROWN WITH	,						
	Ð⁄9	guitown, we	- • •							
	14-72	2								
}	=22	Z				J-6				
	= = # 2	Ä								
	- - K X	Ä								
	372	A								
	16	Ą								
5.6	$-\pm$	FAT CLAY	(CH) (16.5 - 18.0)							
		LIGHT GRA	(CH) (16.5 - 18.0) Y WITH YELLOWISH DIST.			J-7				
						- '				
4.1	18	4	·····							
	7									
	Ξ									
	1	1			1 1					
	, I									

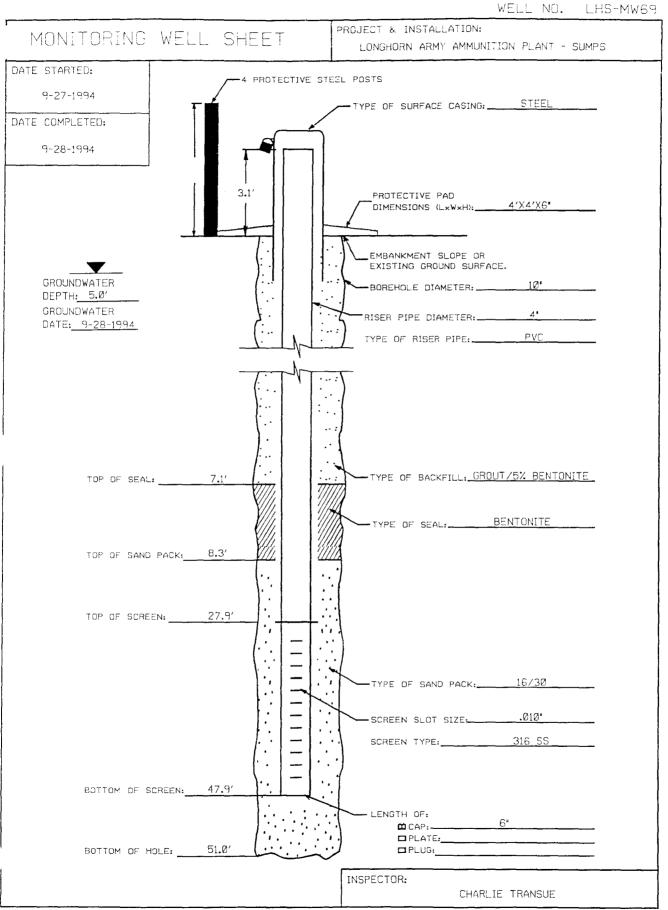
LHWCD.DGN LORI KRUSE


LHWCD.DGN LORI KRUSE

.

-

HOLE	NO.	LHS-MW68	


DRILI	ING LOG	DIVISION		INSTALLAT		AP	H	SHEET 1		
1. PROJECT	LHAAP-W	ASTE CI	SOUTHWEST	LHAAP OF 1 SHEET						
				11. DATUM	FOR ELEVA	TION SHOW	N (TBN/orWSL)	MSL		
695	(Coordinates or 7113.20 AGENCY		3315492.40			DESIGNATIO	N OF DRILL	mJL		
	(As ahosen on dr umber)		STRICT COE		AILING 1		DISTURBED	UNDISTURBED		
			LHS-MW68	13. OVERBURDEN SAMPLES DISTURBED 13. UNUSTI 14. TOTAL NUMBER CORE BOXES 0						
5. NAME OF	RA1	' VOILS		15. ELEVAT		NOT DETER	MINED			
6. DIRECTION	OF HOLE	D	DEC. FROM VERT.	16. DATE H	OLE	STARTE 09	D/00/1994	00/1994 09/00/1994		
	S OF OVERBURDED			17. ELEVAT				186.5		
	RILLED INTO ROCK	0.0		18. TOTAL	CORE RECO	VERY FOR E	BORING	0.0 :		
	PTH OF HOLE	22.	······································	R. PE	REMARKS					
ELEVATION	DEPTH LEGEN		CLASSIFICATION OF MATERIAL: (Description)	2	CORE RECOV ERY	BOX OR SAMPLE NO,	(Drilling time weathering	, water loss, depth of stc., H segnificant)		
0	-//		CLAY (CL) (0.0 - 2.0) SAND, DARK YELLOWISH				· · · · · ·	<u> </u>		
	Ĭ//	BRON	SAND, DARK YELLOWISH M, DAMP.			J—1	TYPE	ZONE		
34.5		2					AUGER	0.0- 22.0		
			CLAY (CL) (2.0 - 4.0)					DEPTH 0.0- 2.0		
			enterte entemp prom			J-2	2 — ل 3 — ل	2.0- 4.0 4.0- 7.0		
82.5	///	4			4		4 —ل 5 —ل	7.0- 9.0 9.0- 11.0		
		′⊿wπi	CLAY (CL) (4.0 - 9.0) SAND, YELLOWISH RED WI				6-لر 7-ل	11.0- 13.0 13.0- 13.7 13.7- 15.1		
	=======================================	/WTH	RED TO YELLOWISH BROW			J-3	8 —ل 9 —ل	15.1- 15.7		
	6/	RED,	MOIST.				آ—آ 10 ل−1	15.7- 17.4 17.4- 18.0		
	́///	2					J-12 J-13	18.0- 20.5 20.5- 22.0		
	///						5 10			
	₹///	1				J- 4				
77.5	9-4	1	SAND (SC) (9.0 - 11.0)							
	- 32	Asc-s	SM, SILTY CLAYEY SAND,	~		J5				
	-56		OWISH BROWN WITH STRON N, MOIST.	6						
75.5	<u> </u>	GISILT	SAND (SM) (11.0 - 13.0)							
	120	GYELL	DWISH BROWN, WET.			J6				
73.5		(YELL!	CLAY (CL) (13.0 - 13.7) DWISH BROWN WITH DARK							
72.8	//		DWISH BROWN AND GRAY,			J-7				
			SAND (SM) (13.7 - 15.1) DWISH BROWN, FREE WATE	>		J-8				
71.4	15DO	4		··-						
70.8		WTH	CLAY (CL) (15.1 - 15.7) SAND, MOTTLED DARK			J-9				
		AYELL	DMSH BROWN AND GRAY, N SAND (SM) (15.7 - 17.4)	IOIST	-	J-10				
59.1		d YELL	DWISH BROWN, FREE WATE	٦.						
38.5	18 -		CLAY (CL) (17.4 - 18.0) SAND, YELLOWISH BROWN,			J-11				
	- no	COLT	SAND, YELLÒMSH BROWŃ, T. SAND (SM) (18.0 – 20.5)							
	- Folo	d YELL	DMSH BROWN, FREE WATE	٦.		J-12				
56.0.	700	d								
************	21	FAT	CLAY (CH) (20.5 - 22.0) BROWNISH GRAY WITH RU	TSI		J-13				
4.5		MOIS		1.		0-10				
19.11										
	4									
	24									
	-									
	27									
	• /									
	-									
					PROJECT			HOLE NO.		

LHWCD.DGN LORI KRUSE

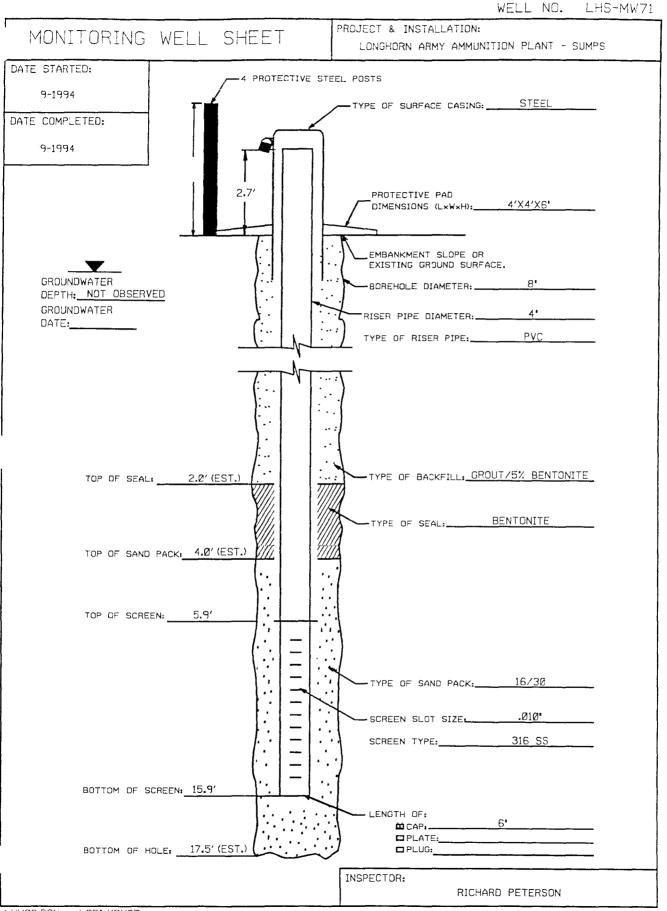
DRIL	LING LOG	DIVISION SOUTHWEST	INSTALLATE	ON LHA			SHEET 1 OF 2 SHEET			
1. PROJECT		ASTE SUMPS	10. SIZE A			AUGER	OF 2 SHEET			
2. 1004104			11. DATUM	FOR ELEVA	TION SHOW	N (TBH or MSL)				
595	N (Coordinates a 7345.30	3315272.10		ACTURER'S	DESIGNATIO	W OF DRILL	MSL			
	Т	ULSA DISTRICT COE		ME 75		Dicturgen	UNDISTURBED			
). (As snown an d number)	LHS-MW69	13. OVERBU			DISTURBED 13				
5. NAME OF	DRILLER	BEAVERS		14. TOTAL NUMBER CORE BOXES 0 15. ELEVATION GROUND WATER SEE REMARKS						
6. DIRECTIO	N OF HOLE	_ <u></u>	16. DATE H				COMPLETED 09/28/1994			
EVD VERT		DEG. FROM VER	TE. DATE HOLE STARTED 09/27/1994 COUNTETED 09/28/1994 T. 12. ELEVATION TOP OF HOLE 180.4							
	SS OF OVERBURDE		18. TOTAL CORE RECOVERY FOR BORING 0.0							
	RILLED INTO ROCK	<u>0.0</u>		LE TRAN	ISHE					
ELEVATION	· · · · · · · · · · · · · · · · · · ·	·	سيبي المراجع		BOX OR SAMPLE		WARKS water loss, depth of			
٥.	b c	(Description)		ERY e	NO.	weathering, e	eater was, aepth an etc., if segnificant)			
	=77	LEAN CLAY (CL) (0.0 - 3.5) REDDISH BROWN, MOIST.					UNTERED @ 5.0'			
	±//.					USED 10" HO				
						AUGER TO S				
	, <i>]//</i>	$\langle \rangle$				SAMPLE TYP	E ZONE			
76.9	3_//]		AUGER	0.0- 8.0			
	=7//	LEAN CLAY (CL) (3.5 - 6.5) MTH SAND, DARK YELLOWISH]		SPLITSPOON AUGER	8.0- 25.0 25.0- 51.0			
	-=]///	//BROWN, MOIST TO WET, 5.5'-	6.0':		J—1					
	_1//	GRAY CLAY LENSES.				SAMPLE	DEPTH			
	5/	4			J-2	J—1	40-50			
7.3.9	<u> </u>	LEAN CLAY (CL) (6.5 - 10.2)			J-2 J-3	5.5- 6.0 7.0- 8.0			
	<u>-</u>]//	LEAN CLAY (CL) (6.5 - 10.2 MOTTLED YELLOWISH BROWN GRAY WITH BLACK AND RED,N	ÁND JOIST		J-3	J-4 J-5	9.0- 10.0 10.5- 11.5			
	=///		.0.01.			J-6 J-7	15.0- 16.0 19.5- 20.0			
	, =//,					8-U 9-U	22.6- 23.1 27.0- 28.0			
		2			J-4	J-10	33.5- 34.0 40.5- 41.0 48.0- 49.0			
70.2		4	·			J-11 J-12	48.0- 49.0			
(()	SILT (ML) (10.2 - 13.2)	BROWN		J-5	J-13	49.0 51.0			
		AND LIGHT GRAY WITH GRAY LENSES, MOIST.	CLAY							
	12									
57-2										
		QSILT SAND (SM) (13.2 - 21.3	5)	1						
		GRAY, WET TO FREE WATER.								
	15_00									
	0 0 0 0	d			J-6					
		d								
	히로	q								
		q	1							
	-00	q								
	-20	q								
		d			J-7					
		d]					
i <u>9 1</u>	21				ļ					
	-5/6/	ACLAY SAND (SC) (21.3 – 25. SC-SM, SILTY,MOTTLED YELLO	U) WISH							
	_ ` þ⁄\$⁄	BROWN AND GRAY, WET.			j_8					
	Ð⁄2	3		ŀ						
1	24	Ű.								
5.4	- XX	X								
		SILT SAND (SM) (25.0 - 30.7	7)							
		Mottled brownish yellow A Gray, free water.		·						
	27DO	q	Í]					
		q		ļ.	J-9					
	귀이	g		ŀ						
		U C			[
		y d								
04	30 719	<u> </u>								

DRILI	ING LOO	G	SOUTHWEST	INSTALLATI	ION LHA	AP		SHEET 2 OF 2 S
1. PROJECT	LHAAF		STE SUMPS	1	ND TYPE OF		AUGER	· · · · ·
2 LOCATION	7345.30			11. DATUM	FOR ELEVA	TION SHOW	(118₩ or MSL,) MSL
5. DRILLING					ACTURER'S	DESIGNATION	OFDRILL	
			SA DISTRICT COE		ME 75		DISTURBED	3 UNDISTURBE
	(As shown i iumber)		LHS-MW69		IRDEN SAMPL		1	
5. NAME OF	DRILLER	TOM E	BEAVERS	·	NUMBER CO		SEE REMA	0 RKS
6. DIRECTION			······································	18. DATE H			 /27/1994	COMPLETED 09/28/1994
DD VERT		LINED	DEG. FROM VERT.	J	ION TOP OF		/21/1994	180.4
	S OF OVERBU		51.0	<u> </u>	CORE RECO		IORING	0.0
	RILLED INTO R	-	0.0 51.0	СНАВ	LIE TRAN	SUF		
ELEVATION	· · · · · · · · · · · · · · · · · · ·	EGEND	CLASSIFICATION OF WATERIALS		X CORE	BOX OR		REMARKS
a	ь	c	(Description)		RECOV- ERY	NO.	(Drilling Lim weathering	e, water koss, depth a g. stc., if segnificant) a
149.7	- p	Ň	SILT SAND (SM) (25.0 - 30.7)	<u> </u>				×
4.3			SAND (SP) (30.7 - 44.0) SP-SM, WITH SILT, YELLOW TO		1			
			YELLOWISH BROWN, FREE WATE	र.				
	33							
						J=10		
	36							
	C (
	390							
						J-11		
	42					[
36.4		99	CLAY SAND (SC) (44.0 - 51.0)					
	45	9⁄9	CLAY SAND (SC) (44.0 - 51.0) ZONED DARK YELLOWISH BROWN LIGHT GRAY, VERY MOIST.	AND				
	=2⁄	22	LIGHT GIAT, YENT MULT.					
	=2	XA						
	-K	ZĂ						
		7A						
1	48/	6À				J-12		
	Ď	6⁄g			ļļ			
		2⁄9				J-13		
	=	XA				, , , , , ,		
29.4	_51 7	24						
	-							
	╡							
	54							
1	-1							
	4							
	=							
	57							
	4							
	Ē							
	<u> </u>							
					PROJECT			HOLE NO

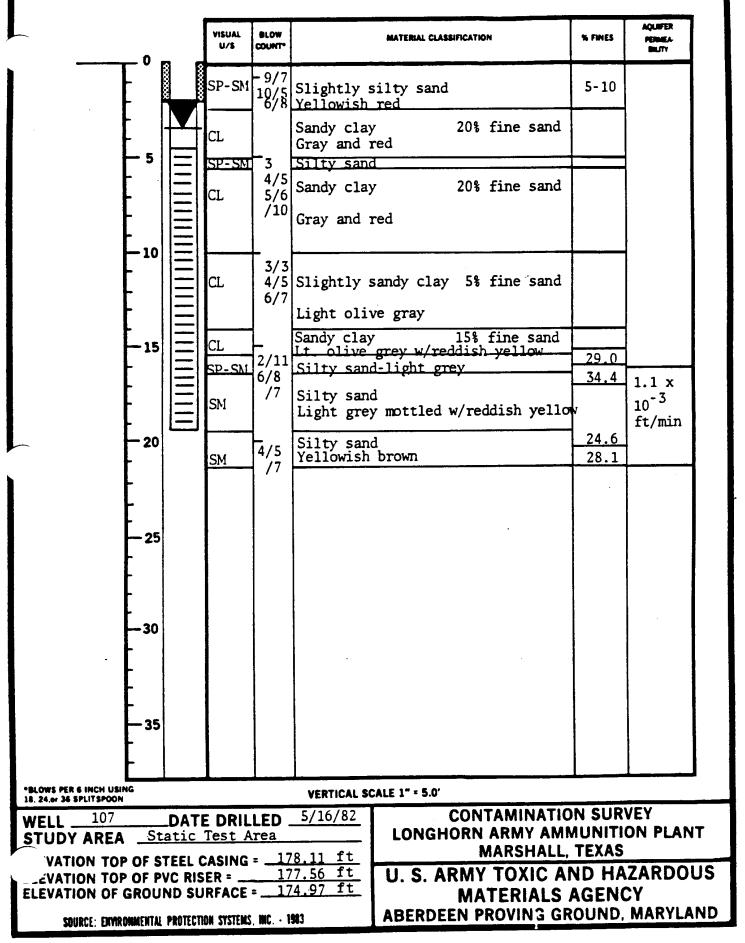
LHWCD.DGN LORI KRUSE

DRILI		INSTALLATION SHEET 1 LHAAP OF 1 SHEET											
I. PROJECT LHAAP-WASTE SUMPS						10. SIZE AND TYPE OF BIT 8" AUGER 11. DATUM FOR ELEVATION SHOWN (75M or MSL)							
2 LOCATION	8032.10	r Station)	3316534.70						MSL				
3. DRILLING	AGENCY		STRICT COE	[ACTURER'S		IN OF DRILL					
4. HOLE NO.	4. HOLE NO. (As shown on drawing Utle and file number) LHS-MW70						13. OVERBURDEN SAMPLES DISTURBED 9 UNDISTURBED 0						
5. NAME OF DRILLER BAY VOUS						14. TOTAL NUMBER CORE BOXES 0							
6 NRCCTO		Y VOILS			15. ELEVATI 16. DATE H			NOT DETE					
DEG. FROM VERT.							8970071994						
7. THICKNES	s of overburde	N 22.()	- F	17. ELEVATI 18. TOTAL (F HOLE	BORING	0.0				
	RILLED INTO ROCK												
ELEVATION	EPTH OF HOLE 22.0 DEPTH LEGEND CLASSIFICATION OF MATERIAL				K. FL	TERSON	BOX OR	REMARKS					
q			(Description)			RECOV- ERY	SAMPLE NO.	(Drifling tim weatherin	g, stc., if segnificant)				
		LEAN	CLAY (CL) (0.0 - 2. SAND, YELLOWISH BRO	0)		<u> </u>			t				
	=//	DAME	, FRIABLE.				J1	TYPE AUGER	ZONE 0.0- 22.0				
78.5		<u>A</u>				1		SAMPLE					
	3	SAND	CLAY (CL) (2.0 - 5 Y, YELLOWISH BROWN, BLE.	5) DAME	,			32MFLE 11 12	0.0- 2.0				
		FRIAE	ILE.			}	J-2	2 — ل 3 — ل 4 — ل	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
	=======================================	Λ						4	9.0- 9.0 9.0- 13.0 13.0- 17.3				
								5—5 7—5 8—5	17.3– 18.8 18.8– 20.3				
75.0	5	LEAN	CLAY (CL) (5.5 - 7.0	0)		1		8ل 9ل	20.3-22.0				
		/JWITH	SAND, GRÁY AND YEL N, DAMP, FRIABLE.	LOWS	H		J-3						
73.5	<u>-</u> fíí	SILT	(ML) (7.0 - 9.0) CLAY WITH SAND, DA			ł							
		BROW	CLÁÝ WITH SAND, DA N, MOIST.	RK			J4						
71.5	<u>=</u>												
	=77	/ JWITH	CLAY (CL) (9.0 - 13 SAND, YELLOWISH BRO) WN									
		//WTH	GRAY AND RUST, MOS SOME ORGANICS.	ST,									
		λ					J-5						
	12	λ											
67.5	=\//	λ											
nz.:	-56	CLAY	SAND (SC) (13.0 - 1	7.3)									
		MOIST	WISH BROWN AND GRA	Α Ι,									
	15_2	2					J-6						
	- X X	X											
	-53	Ą											
63.2	6	4 		0									
	18	GRAY	CLAY (CH) (17.3 - 18. WITH YELLOWISH BROY				J-7						
61.7				<u> </u>									
	///	SAND'	CLAY (CL) (18.8 - 21 Y, YELLOWISH BROWN AND GRAY, WET, SOM	WITH	~		J-8						
50.2		∠¦сг пмі											
Í	21	LIGHT	GRAY, MOIST, SMALL NT OF SILT.	.0)			J9						
58.5													
	7												
	24	1											
		}											
	27												
	-												
		ł											
	-												
	30 7				1								

.



LHWCD.DGN LORI KRUSE


HOLE NO. LHS-MW71 INSTALLATION SHEET DIVISION 1 DRILLING LOG or 1 SOUTHWEST LHAAP SHEETS 10. SIZE AND TYPE OF BIT 8" AUGER 1. PROJECT LHAAP-WASTE SUMPS 11. DATUM FOR ELEVATION SHOWN (TBN or MSL) 2 LOCATION (Coordinates or Station) 6958209.80 MSL 3316838.80 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY TULSA DISTRICT COE FAILING 1500 UNDISTURBED DISTURBED 4. HOLE NO. (As shown on drawing title and file number) 13. OVERBURDEN SAMPLES LHS-MW71 14. TOTAL NUMBER CORE BOXES 0 5. NAME OF DRILLER RAY VOILS 15. ELEVATION GROUND WATER NOT DETERMINED STARTED 09/00/1994 6. DIRECTION OF HOLE 16. DATE HOLE 8970571994 DI VERTICAL DINCUNED DEG. FROM VERT. 17. ELEVATION TOP OF HOLE 180.9 7. THICKNESS OF OVERBURDEN 17.5 0.0 18. TOTAL CORE RECOVERY FOR BORING 8. DEPTH DRILLED INTO ROCK 0.0 R. PETERSON 9. TOTAL DEPTH OF HOLE 17.5 REMARKS FLEVATION DEPTH LEGEND X CORE RECOV-ERY BOX OR SAMPLE NO. CLASSIFICATION OF MATERIALS (Description) (Drilling time, water loss, depth of weathering, stc., if segnificant) LEAN CLAY (CL) (0.0 - 2.0) STRONG BROWN, DAMP. ZONE 0.0- 17.5 TYPE J--1 AUGER DEPTH SAMPLE DEPTH 0.0- 2.0 2.0- 5.0 5.0- 6.0 6.0- 8.0 8.0- 13.5 13.5- 14.3 14.3- 14.7 14.7- 15.7 15.7- 17.5 لمم 1-1 1-2 1-3 1-4 178.9 LEAN CLAY (CL) (2.0 - 5.0) YELLOWISH RED, MOIST, SOME GRASS. J-2 ر 8—ل 9—ل 175.9 SILT (ML) (5.0 - 6.0) SILTY CLAY WITH SAND, OLIVE BROWN, DAMP. _ J-3 174.9 LEAN CLAY (CL) (6.0 - 8.0) DARK YELLOWSH BROWN AND BROWN, MOIST. J-4 172 0 FAT CLAY (CH) (8.0 - 13.5) LIGHT GRAY AND YELLOWISH BROWN WITH RUST, MOIST. J-5 167.4 LEAN CLAY (CL) (13.5 - 14.7) MTH SAND, YELLOMSH BROWN AND GRAY TO BROWN AND LIGHT GRAY, MOIST TO VERY MOIST. J-6 J-7 166.2 O O SILT SAND (SM) (14.7 - 15.7) BROWN AND YELLOWSH BROWN, O O GFREE WATER. J-8 165.2 FAT CLAY (CH) (15.7 - 17.5) YELLOWISH BROWN AND GRAY, 16 MOIST. J-9 163.4 18 -PROJECT HOLE NO.

LHAAP-WASTE SUMPS

LHS-MW71

LHWCD.DGN LORI KRUSE

