LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

ADMINISTRATIVE RECORD

Volume 9 of 13

2009

Bate Stamp Numbers 00078395 – 00079299

Prepared for

Department of the Army Longhorn Army Ammunition Plant

1976 - 2009

LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS ADMINISTRATIVE RECORD – CHRONOLOGICAL INDEX

VOLUME 9 of 13

2009

A. Title: Report – Final Feasibility Study, LHAAP-50, Former Sump Water Tank,

Group 4, Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: December 17, 2009
Bate Stamp: 00078395 - 00079299

FINAL FEASIBILITY STUDY LHAAP-50, FORMER SUMP WATER TANK, GROUP 4 LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

DECEMBER 2009

Date: <u>December 17, 2009</u>

Project No.: <u>117591</u>

Phone: (713) 996-4522/Fax: (713) 996-4436

TRANSMITTAL LETTER:

To:	Mr.	Aaron Willian	ns		_		
Address	: US	Army Corps o	f Engineers - 7	Γulsa	_		
	CES	SWT-PP-M			_		
	1645	5 South 101st I	East Ave		_		
	<u>Tuls</u>	a, Oklahoma ´	74128		_		
Re:	Con	ghorn Army A tract No. W912	mmunition Pla	ant, Karnack, Texa	_ _		Othor
For: Re	view	As Re	quested	_ Approval	Corrections	_ Submittal	Other
Item N	Vo:	No. of Copies	Date:		Documer	ıt Title	
Item N	Vo:	_	Date: December 2009	Group 4	Documenty Study, LHAAP-50 Ammunition Plant,	0, Former Sum	
	Vo:	Copies	December	Group 4	ty Study, LHAAP-5	0, Former Sum	
1 Aaron -	– Enc	2 losed please firm	December 2009	Group 4 Longhorn Army	ty Study, LHAAP-5	0, Former Sum Karnack, Texas ur records.	comments.

Distribution List:

Ms. Rose Zeiler – BRAC-LHAAP

Mr. Matthew Mechenes – AEC

Ms. Fay Duke – TCEQ (2)

Mr. Steve Tzhone – EPA (2)

Mr. Dale Vodak - TCEQ

Mr. Paul Bruckwicki –USFWS

Mr. John Lambert/Scottie Fiehler (distributed by A. Williams) - USACE

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

December 17, 2009

DAIM-ODB-LO

Mr. Stephen Tzhone US Environmental Protection Agency Superfund Division (6SF-AT) 1445 Ross Avenue Dallas, TX 75202-2733

Re: Final Feasibility Study, LHAAP-50, Former Sump Water Tank, Group 4,

Longhorn Army Ammunition Plant, Karnack, Texas, December 2009

Dear Mr. Tzhone,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager, be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely,

Rose M. Zeiler, Ph.D.

Longhorn AAP Site Manager

RoseM.Zgiler

Copies furnished:

F. Duke, TCEQ, Austin, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert/S. Fiehler, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw – Houston, TX (for project files)

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

December 17, 2009

DAIM-ODB-LO

Ms. Fay Duke Texas Commission on Environmental Quality TCEQ Environmental Cleanup Section I, Team 2, MC-136 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Final Feasibility Study, LHAAP-50, Former Sump Water Tank, Group 4,

Longhorn Army Ammunition Plant, Karnack, Texas, December 2009

SUP 126

Dear Ms. Duke,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely,

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

S. Tzhone, EPA, Dallas, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert/S. Fiehler, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw – Houston, TX (for project files)

Response to Regulatory Comments Chronology for *Draft Final Feasibility Study, LHAAP-50, former Sump Water Tank, Group 4, Longhorn Army Ammunition Plant, Karnack, Texas, dated November 2008*

<u>April 6, 2009</u> – Shaw (Army contractor) submitted RTCs to EPA and TCEQ comments on the Draft Final Feasibility Study.

<u>April 16, 2009</u> – EPA submitted responses to the RTCs. They agreed with all except two. (email from Steve Tzhone dated April 16, 2009, 12:16 p.m.)

<u>April 17, 2009</u> – TCEQ submitted general responses to the RTCs. (e-mail from Fay duke dated April 17, 2009, 5:19 p.m.)

<u>October 13, 2009</u> – Shaw responded to April responses. Additional information and RTC figure were included (e-mails from Praveen Srivastav dated 10/13/2009, 4:08 p.m. and RTC figure from Susan Watson dated 10/20/2009, 3:59 p.m.)

November 20, 2009 – TCEQ has no additional comments. (email from Fay Duke dated 11/20/2009, 9:33 a.m.)

<u>December 8, 2009</u> – EPA agrees with all responses to comments. (email from Steve Tzhone dated 12/8/2009, 1:29 p.m.)

Additional editorial comments were made in the Final version for consistency with the Final Feasibility Study, LHAAP-46, issued in November 2009.

Reviewer: Terry Burton, USEPA Respondents: Shaw Environmental, Inc.

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
1			Subsurface heterogeneity alone guarantees multiple substrate injections for bioremediation. Sandy clay layers are preferred pathways for perchlorate travel. On the other hand, chlorinated solvents can also sorb to, or be retarded by, clays. It is highly probable that more than one substrate will be needed.	С	In the first bullet of Section 5.2.3.2 an investigation/ pilot study is discussed. Data would be gathered in this investigation for the design of the biotreatment that take into account the contaminants and the geology.	
2			Bioremediation of chlorinated solvents can get "stalled" at vinyl chloride in heterogeneous soils; this may require another round of injections at a later date. If wells need to be reused, that may affect the initial substrate choice.	С	Shaw's dechlorinating culture, SDC-9, was developed to ensure complete degradation of vinyl chloride to harmless ethenes. If needed, this would be determined from data gathered in the investigation (first bullet of Section 5.2.3.2).	
3	ES-1 & 3-7		Page ES-1 lists the site as occupying a 1-acre industrial area. Page 3-7 describes the site as occupying 11 acres. Which is correct?	С	1-acre is correct. Section 3.2.3.4 will be corrected.	
4			I disagree with removal of permeable reactive barriers from consideration purely based upon discontinuous sand layers. It may not be the best option, but the reason for removal from consideration is inadequate. Permeable barriers have been constructed in sandy soils. Hence, section 4.5.1.9 is incomplete. Perhaps it could be said that permeable reactive barriers are very difficult to implement given the soil heterogeneity of the site? Or perhaps the extent of contamination makes a barrier impracticable? Either solution is preferable to what was given. Did the contractor make a "block-and-copy" omission?	С	In Section 4.5.1.9, the last sentence will be replaced with the following: "Permeable reactive barriers are not retained as a process option due to the heterogeneity of the site soils and the discontinuous soil lenses which would limit the effective installation of the barrier and the treatment effectiveness."	
5			I feel that the monitoring intervals are overly optimistic, and risk missing important data before issues arise.	E	Also see response to TCEQ's comments 15, 16, and 19. Based on the length of time for treatment, the monitoring intervals of quarterly, then annual, and then for five year reviews is appropriate to be used for the FS. The monitoring program will be developed as part of the remedial design. Changes in sampling frequency would be discussed in the designed monitoring program. For cost estimating purposes for comparison of the alternatives, minor adjustments in sampling frequency will not affect the comparison outcome.	

Reviewer: Terry Burton, USEPA Respondents: Shaw Environmental, Inc.

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
6			One can not define the number of wells before the substrate to be injected is chosen. At best inappropriate, at worst a sure source of error and potential failure. Some substrates need tight well spacing due to their lack of persistence in the subsurface.	С	As stated in Section 5.2.3.2, an investigation/pilot study will be performed. The data gathered would be used in the design of the biotreatment system. The number of wells is defined based on engineering judgment for cost estimating purposes to compare the alternatives.	
7			I did not see any studies on potential competitors for the electrons that are currently at the site. For example, soils with high carbonate or sulfate concentrations can buffer electron donors, necessitating additional injections of substrates.	С	A treatability study has not been conducted. This study would be part of the remedial design phase and would evaluate potential competitors for the electrons by evaluating the presence or absence of inhibitory substances. Based on experience, a second injection is assumed and is included in Section 5.2.3.3 and in the cost estimate.	
8			A scheme to do injections over a 50 sq. ft area, in order to treat a roughly 0.5 acre of heterogeneous surface area, is far too optimistic. I am unclear on how that was calculated.	С	As stated in Section 5.2.3.2, it is for cost estimating purposes and is based on the current knowledge of the site, technical judgment of the Contractor, and their knowledge of injection substrates and their patented bioaugmentation cultures. Since this is for cost comparison purposes, additional points would increase the cost of Alternative 3 making the cost difference greater between the alternatives.	
9			I disagree with the choice of the MNA alternative, as written. The evidence is not convincing that the COCs will indeed be reduced over time. It is questionable whether other federal agencies will be able to fully implement LUCs. Finally, the level of monitoring needed to support MNA has been greatly underestimated. I must question whether planning annual monitoring of an MNA site within the first 3 years can be considered a serious proposal.	D	In Appendix A, Figures 3-1 through 3-8 indicate the reduction of concentrations. The extent of the plume has been defined. Since data has already been gathered over the past 10 years, additional quarterly data collection of 1 year to confirm MNA should be adequate. However, the sampling frequency will be presented in more detail in the remedial design and may be modified based on regulatory comments. The monitoring plan included in the design will outline how to determine if more frequent monitoring is needed based on the evaluation of the collected MNA data once the remedy is in place. The monitoring for this site was estimated to continue for the five year reviews for 30 years (the time frame per Army policy to evaluate alternatives).	

Reviewer: Terry Burton, USEPA Respondents: Shaw Environmental, Inc.

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					Also see response to TCEQ's comments 22, 23, 24, and 25.	
					Reviewer's comment about implementation of LUCs is noted. Issues regarding transfer to other federal agencies are being addressed by BRAC.	
General Cor	nments					
1			TMV must be added to the abbreviations table	E	TMV (toxicity, mobility, or volume) will be spelled out in the text, but will be abbreviated and defined in individual tables.	
2			3 remedial alternatives were presented. Given that DoD has provided innovative alternatives on other sites, and the technical reputation of the contractor, is there a reason other options were not even presented as strawmen?	С	In December 2004, in order to streamline the FS process, the Army, TCEQ, UEPA, and Shaw agreed to minimize the number of alternatives presented in the FS to those most likely to be implemented. TCEQ had suggested, in the context of LHAAP-12 FS, that the FS should be focused rather than expending efforts on evaluating alternatives that are improbable or technically infeasible to implement.	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
1		1.2.1 Site Description & Figure 1-5	If available, the hydraulic conductivity value for wells within the plume path should be provided. We believe this information will be important in estimating the fate and transport of the perchlorate plume.	С	From the RI, the hydraulic conductivities for 50WW01 (1.7 x 10 ⁻⁴ cm/sec) and 50WW02 (8.8 x 10 ⁻⁵ cm/sec) are within the range of 5.5 x 10 ⁻⁵ cm/sec and 1.9 x 10 ⁻⁴ cm/sec provided in Section 1.2.1.	
2		1.2.1 Site Description & Figure 1-5	The text states, at 50WW02, a fine grain sand was observed in the silty clay where the well was screened. However, this is not reflected in Figure 1-5. Please clarify.	С	Notation on the drilling log for 50WW02 indicates that the soil is classified as silty clay for all intervals, but there are notes that fine sand was observed throughout. Thus, the cross section indicates the clay (silty clay) classification while the text further describes the notation on the log.	
3		1.3 Summary of Sampling Investigation	There is a lack of discussions regarding surface water and sediment investigation and findings for perchlorate contamination. We note that although perchlorate sampling of the surface waters and sediments were not part of the earlier phases of the Remedial Investigation (RI), subsequent samplings conducted at the Goose Prairie Creek (GPC) included perchlorate analysis. We recommend incorporating those results to fill in the question concerning whether historical practices from this site may have affected the creek. Similarly, borings and DPT water sampling performed by STEP as part of the installation wide perchlorate investigation along the Goose Prairie Creek should be used to delineate the	E	The additional surface water samples collected as part of the dispute resolution monitoring program are discussed in Section 1.3.3.3 and sediment sampling is discussed in Section 1.3.2.1. No sediment samples were collected after the risk assessment. As indicated in Figure 2-3, these results have already been used in the plume delineation.	
4		1.3.3.2	perchlorate plume. We noted that the discussion of the perchlorate contamination in groundwater is limited to the results of existing wells. Although well 50WW02 currently contained the highest concentrations of perchlorate, it may not be located in the center of mass of the perchlorate plume. Based on our review, it would appear that there are currently no wells located within the center of mass of the perchlorate plume. Please revise to clarify. Additionally, please see our comments regarding the MNA evaluation.	С	50WW02 contains the highest perchlorate concentrations from a well at LHAAP-50. Data from a DPT/Geoprobe sample to the east had concentrations that were higher; this is indicated on Figure 2-3. However, the available data show that the plume has been defined, and its migration is very slow. The front edge of the plume has moved less than 900 feet (distance between 50WW02 and 50WW07) in 20 years since operations at the site ceased in 1988. We believe that the available data from the wells are adequate to evaluate remedies for the site.	
5		1.3.3.3	It is stated that results from 2008 surface water samples detected perchlorate at 27 µg/L from GPW-1 from GPC but the concentrations are less than the TCEQ surface water contact	O	Section 1.3.3.3 will be replaced with the following: "As part of the dispute resolution monitoring program, quarterly sampling is conducted for perchlorate at	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			recreational levels. Please note that this levels exceeds the TCEQ drinking water levels. However, as we recall, the sampling results for GPW-3 is below the TCEQ drinking water standard for perchlorate. Please revise.		selected locations along Goose Prairie Creek and Harrison Bayou. One location, GPW-1, is located in Goose Prairie Creek between LHAAP-50 and LHAAP-47. Historically, the perchlorate levels in the creek have fluctuated but remain below the TCEQ surface water contact recreational level (395 $\mu g/L$), and the groundwater MSC for residential use (GW-Res) (26 $\mu g/L$). Perchlorate was not detected in the last three quarters of sampling (since June 2008) at GPW-1. GPW-3 is located approximately 3,500 feet downstream of GPW-1. Historically, perchlorate concentrations have been below the GW-Res at GPW-3. Thus, the water flowing through the creek at GPW-1 is below the GW-Res and is not contaminating Caddo Lake."	
6		2.1	Please include the risk assessment summary for the surface water and sediments samples associated with this site. Additionally, this section solely focus all human health risk. Please include summary of the ecological risk assessment.	С	Statement will be added that there is no impact to ecological receptors (Shaw, 2007c): Sediment samples were included with the human health soil evaluation and the ecological risk. Surface water samples were evaluated for ecological risk only.	
7		2.4	It is stated that both LHAAP-50 and LHAAP-47 may be contributing to the detections of perchlorate in the Goose Prairie Creek (GPC) but the level of detection is below the TCEQ contract recreation value. Please note that because GPC discharges into the nearby Caddo Lake (a public drinking water source), MCL or residential MSC for groundwater should be used for comparison.	С	Per the modeling report, the concentrations of perchlorate in the surface water would be below 4 µg/L (previous Texas IAL) if the perchlorate-contaminated groundwater were to reach the surface water. Thus, groundwater to surface water pathway is not complete and will not be retained.	
			Additionally, it is stated that the only pathways considered for remediation are soil to groundwater and future industrial groundwater use. We believe that soil to surface water as well as groundwater to surface water remained as potential exposure pathways to be address.	С	The soil to surface water pathway was not evaluated in the modeling report. Since it is unclear whether LHAAP-50 or LHAAP-47 or both are contributing to the detections of perchlorate in Goose Prairie Creek, it has been assumed that both sites may be contributors. Thus, the potential pathway from soil to surface water will be addressed and added as an RAO. Various sections and figures throughout the FS will be revised to reflect this addition. The last sentence of the third paragraph of Section 2.4	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					will be replaced with the following: "Since the creek discharges into nearby Caddo Lake, a drinking water source, the concentrations in Goose Prairie Creek may also be compared to the GW-Res. The concentrations of perchlorate in the surface water were also below the GW-Res. Even though the concentrations in the creek are acceptable, detection of perchlorate in the creek water indicates that there could be a potential pathway from the contaminated surface soil at LHAAP-50 to the surface water. Thus, the soil pathways considered for remediation are the potential migration to surface water and leaching into the groundwater."	
					The last sentence of the 4 th paragraph of Section 2.4 will be replaced with the following: "Thus, the pathways considered for remediation are soil to groundwater, soil to surface water, and future industrial groundwater use."	
					Additionally the dashed line on Figure 2-4 from drainage ditch to Goose Prairie Creek will be changed to a solid line.	
8		3.1 Remedial Action Objectives	As we commented earlier, the migration of contaminants in soil and groundwater to surface water are potential exposure pathways. Therefore, we believe remedial action objectives addressing these pathways should be established.	С	See response to Comment No. 7 regarding groundwater to surface water pathway. To add the soil to surface water pathway the 2 nd RAO will be revised as follows: "degradation of groundwater and surface water from soil"	
9		3.3 Preliminary Remediation Levels & Table 3.2	Remediation levels must be established to achieve the additional RAO as recommended above. Because of the close proximity of the site to Goose Prairie Creek and the potential discharges into the nearby Caddo Lake (a public drinking water source), residential MSC for perchlorate should be used as the remediation level groundwater.	С	Since the area of surface soil contamination is collocated with the subsurface soil, the GWP-Ind will be used for cleanup of the soil. Since the site has been used for industrial activities and will continue to be an industrial use site, the GW-Ind is the promulgated value for industrial use and is applicable to be protective of the hypothetical future maintenance worker. Removal of the soil above GWP-Ind is expected to address the soil to surface water pathway.	
10		4.4 Screening Process Options	Table 4-2 presents a limited number of technology processes with few retained for further evaluation. Technology not retained based on technical implentability issue must be explained.	С	Reasons will be added under the comments column for technologies not considered for further evaluation.	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
		& Table 4-2	It states that containment process is screened out because no high concentration source area has been identified. What does this mean? What is considered high concentration? Please note that insufficient investigation should not be a basis for eliminating a process from evaluation. Additionally, we do not believe that containment process is only to be used for source control.		A high concentration source area would be an area within the groundwater with concentrations sufficiently high to migrate and reach Caddo Lake at levels that would be harmful to human health, or an area of high concentrations in soil that could continue to act as a source of cross-contamination to the groundwater. Since the plume is defined and has not migrated beyond 50WW07 and the contaminated soil that could leach contamination into the groundwater is being excavated, containment for source control was eliminated from further evaluation. Containment can be used for either source control or plume containment, but was not needed for either at this site.	
11		4.5.1.2 Monitored Natural Attenuation	Based on our review of the natural attenuation evaluation presented in Appendix A, we do not believe that natural attenuation can achieve cleanup. Please refer to our comments below regarding this remedial process.	D	Please see response to comments 22 through 25.	
12		4.5.1.5 Extraction Wells	It states that extraction wells and interceptor trenches were not retained for the remedial alternatives development since the discontinuous sand lenses may limit the effectiveness. There are currently interim remedies in place at other portion of the facility that utilize extraction technology, please explain why extraction would not work at this site.	E	The discontinuous sand lenses at LHAAP-50 coupled with the lower hydraulic conductivity, as compared to Site LHAAP-18/24 where extraction system is currently working, will limit the effectiveness of an extraction system.	
13		4.5.1.9 Permeable Reactive Barriers	We note that the evaluation of the PRB is limited to ZVM and GAC. Why isn't the barrier using biological material included? Additionally, PRB is not retained as a process option because of discontinuous sand lenses that would limit the treatment effectiveness. Please clarify why the geology limits the effectiveness. Base on the cross section map (figure 1-5), there appear to be mostly sand downgradient of 50WW02.	С	The biotreatment can be applied through a network of injection points or as a passive barrier wall. This clarification will be made in the text. If bioremediation is implemented, the decision on the best method of application will be evaluated and made during the remedial design. Geology constrains the effectiveness of a PRB because contaminants can escape around the PRB wall if the wall is not keyed to a continuous clay layer at the bottom. Also, see response to USEPA's comment 4.	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
14		4.5.1.11 Phytoremediation	Phytoremediation is eliminated from further consideration due to the significant time required for treatment. Is time factor the only factor for eliminating this technology for further consideration? How is the timeframe of this technology compared to the monitoring of natural attenuation process?	E	It is also due to the depth of contamination as stated in the text. The reference to the time being a limiting factor will be deleted.	
15		5.2.2	Aside from TCEQ's concern with the effectiveness of the MNA discussed below, the proposed groundwater monitoring program is deficient. The monitoring program should be sufficient to evaluate the progress and the effectiveness of the MNA. A baseline must be established against which remedy performance can be measured. The monitoring net work should contain wells within the center of mass of the plume as well as multiple attenuation monitoring points (AMP) along the center axis of the contaminated groundwater plume. The TRRP guidance specifies a minimum of four with three located within the contaminated plume and one located up gradient of the source area to evaluate the change in COC over time and distance. The guidance requires that attenuation action levels be developed to provide near-term evidence that the process is responding as expected (time) and to be used to determine if remedy is not effective. Refer to the TRRP guidance for additional information on calculating the attenuation action levels.	С	The monitoring frequency is presented for costestimating purposes only and is the same in each alternative for comparative estimates. The monitoring program to be implemented will be developed in the remedial design. A minimum of one year of quarterly monitoring in the wells will be required. Any changes to this frequency will be based on evaluation of data. It is assumed that two additional wells will be installed for MNA monitoring (See response to Comment 22). Additionally, this FS will be revised to use EPA language and the first sentence of the second paragraph will be replaced with the following: "For this alternative, it is assumed that a monitoring program will be designed and implemented in accordance with EPA protocol for evaluation natural attenuation of chlorinated solvents in ground water (USEPA, 1998) and performance monitoring of MNA remedies for VOCs in ground water (USEPA, 2004)." The following references will be added:"USEPA, 1998, Technical Protocol for Evaluation Natural Attenuation of Chlorinated Solvents in Ground Water, EPA/600/R-98/128, Washington, DC, September; USEPA, 2004, Performance Monitoring of MNA Remedies for VOCs in Ground Water, EPA/600/R-04/027, April, Cincinnati, OH".	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
16		5.2.2	It is stated that MNA sampling would occur quarterly for the first year. Monitoring will occur annually until the initial Five Year Reviews. Monitoring will be reduced to every 5 years thereafter. We believe that monitoring should be based on the frequency necessary to evaluate the effectiveness and progress of the natural attenuation. At a minimum, quarterly sampling should be conducted to evaluate and ensure that the trend of natural attenuation is occurring as expected. There should not be a reduction in monitoring until such time that data suggests that less frequent sampling is appropriate. We believe that 4 quarterly sampling may not be sufficient to evaluate the trend of natural attenuation and that less frequent sampling is appropriate. Additionally, surface water monitoring at GPC should be part of the monitoring network.	E	See response to USEPA's Comment 5 and TCEQ Comment 15. Quarterly surface water monitoring at Goose Prairie Creek is conducted as part of the facility wide dispute resolution monitoring program. No additional sampling is considered necessary.	
17		5.2.2	It is stated, "if sampling results shows unusual trends of perturbation, additional investigation sampling may be performed." What are the criteria in which it will be evaluated and what action would result from the evaluation? With the uncertainty of whether natural attenuation can achieve the RAO, we believe that contingent remedy should be included if MNA is to be selected as a remedy. Furthermore, evaluation criteria must be established such that contingencies can be employed without modification to the remedy.	С	Specific criteria will be developed in the remedial design phase. Generally concentrations of PCE, TCE and daughter products will be evaluated along with TOC and microorganisms concentrations. Data evaluation techniques will follow USEPA guidance. Section 5.2.2.3, 1 st paragraph, last sentence, will be replaced with the following: "Sampling results will be evaluated in accordance with the monitoring program, and if the results indicate unusual deviations, outside of sampling variability or seasonal fluctuations, additional sampling or action will be taken as described in the monitoring program. If MNA is determined to not be effective, then the remedy under Alternative 3 will be implemented as a contingent action. The implementation of the contingent action will be described in the decision documents." In Section 6.5, the following bullet will be added: "If this alternative is not found to be effective, Alternative 3 will be implemented as a contingent action."	

- 1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 - 2. Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
18		5.2.3.1 In Situ Bioremediation for	Defining Target Area - As commented earlier, the highest perchlorate concentration may not be located at 50WW02. Additional investigation should be conducted around the area of GPSASS50.	С	See response to Comment 4.	
		Groundwater Plume	Sampling wells to monitor effectiveness - It is stated that this alternative can achieve cleanup levels in the treated area in approximately two years. It further states that COC is expected to remain downgradient of the treated area and "additional monitoring is recommended for up to 10 years after reduction of the COCs at the target area to the remediation levels." Please clarify if the remediation levels will also be used for the additional monitoring? If no additional augmentations are used after the 2 nd year, we interpret that plume outside of the treat area would employ MNA as the remedy. If so, this remedial alternative should include MNA. Furthermore, as we stated in our previous comment, please include an estimated timeframe in which RAO would be achieved to support the assumption that monitoring would be conducted for up to 10 years.	С	Preliminary remediation goals will be used for the additional monitoring. MNA will be used for the plume area outside of the treated area, and the text for Alternative 3 will be revised as follows: "The estimated time for the RAO to be achieved is approximately 50 years. The continued MNA monitoring is included in the 5-year reviews beyond Year 10." Also see response to Comment 19.	
			Additionally, surface water monitoring at GPC should be part of the monitoring network.	E	Quarterly surface water monitoring is conducted as part of the dispute resolution. No additional sampling is considered necessary.	
19		5.2.3.3 Long-Term Operation	It is stated that groundwater sampling would occur quarterly for the first year. Annual monitoring will occur for year two through ten. The TCEQ cannot concur with the proposed monitoring schedule. We believe that monitoring should be based on the frequency necessary to evaluate the effectiveness and progress of the natural attenuation after the two years of in-situ bioremediation. At a minimum, quarterly sampling should be conducted until such time that data suggests that less frequent sampling is appropriate.	С	The monitoring frequency in the FS is a minimum that is used for cost estimating purposes. The monitoring program submitted for approval will be developed as part of the remedial design and will follow the USEPA Performance Monitoring of MNA Remedies for VOCs in Ground Water. The monitoring frequency in the program will be related to the historic data and to evaluate the effectiveness of the MNA remedy. Sampling frequency may decrease or increase over the course of the treatment based on the MNA monitoring data evaluation. For further clarification, the MNA monitoring of the plume outside the treated area will begin during the performance monitoring of the treatment. Alternative 3 text will be revised to reflect that MNA will be used for treatment of the plume outside the treated area and the	

- 1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 - 2. Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
					MNA monitoring of the untreated area will be initiated in the first year	
20		6.3.2 Alternative 2 – Monitored Natural Attenuation	It is stated, "MNA activities associated with the land use controls would ensure that the COC concentrations in groundwater remain stable or continue to degrade naturally." Please clarify this statement. Land use control serves to prevent exposure to the contaminated groundwater while natural attenuation would stabilize the plume and reduce the COC concentrations in groundwater to acceptable level (MCLs). Additionally, statement implies that this alternative would achieve either to control the plume (plume stability) or reduction of concentration. In order to prevent further migration and comply with the ARAR, MNA must achieve both.	С	The portion of the sentence "associated with LUCs" will be deleted and "or" will be changed to "and".	
21		6.5 Recommendation	At this time, the TCEQ cannot concur with the recommended alternatives until our concerns are addressed.	С	After concurrence with these "response to comments", the changes will be incorporated into the final document. Also see response to USEPA's comment 9.	
Appendix A						
22		General – Perchlorate	Based on the data presented, the in-well decrease of perchlorate concentration is the only indicator which support natural attenuation. As perchlorate does not appreciably bind to soil particles, we are concern that the decrease in concentration in well 50WW02 may not be the result of degradation but rather the movement of the center of mass of the plume. It is our understanding that the center of mass of the perchlorate plume tends to move at an average velocity or faster than the velocity of the water. As we also indicated in earlier comments, there are no wells currently located in the center of mass nor wells located immediately downgradient of STEPDW02/GPSAS50-2 (temporary wells with the highest concentrations of perchlorate). With the current density of well, it is difficult to evaluate the fate and transport of the perchlorate plume. We recommend adding additional wells along the path of the plume to adequately	С	See Appendix A. Current concentrations of perchlorate are decreasing in monitoring wells which suggest monitored natural attenuation processes are decreasing levels. The current data suggest that processes other than microbial are contributing to the decrease in perchlorate concentrations. The site groundwater parameters also suggest that microbial degradation is not the primary mode of degradation at this site. However, the microbial analysis have shown that <i>D. ethenogenes</i> (although it is an anaerobe) is present which is able to degrade perchlorate. The current monitoring well network may not be sufficient to monitor plume stability/behavior; and the additional of new wells will be addressed in the remedial design phase. For this FS, it will be assumed that two new wells will be added for monitoring purposes.	

- Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X).
 Commentor Agrees (A) with response, or Does not Agree (D) with response.

Comment No.	Page	Section/ Paragraph	Comment	C, D ¹ , E or X	Response	A or D ²
			evaluate the behavior of the perchlorate plume. Additional data such as analyzes of chloride ions and microbial analysis should also be collected to support that biodegradation is occurring.		This assumption will be added to the text and estimates of both alternatives. This change will not affect the cost comparison outcome of the alternatives.	
23		Chlorinated Ethenes	Similar to the perchlorate MNA analysis, the primary evidence of natural attenuation seem to depend heavily on the decreasing trend of the contaminant concentrations. We recommend additional analysis to support reductive dechlorination such as evaluating the concentrations of the parent compounds with those of the daughter compounds. (i.e., as the parent compounds decreases are there corresponding increases in the daughter compounds.) We recommend that graphs be prepared to analyze and present the trend analysis.	С	See Appendix A. Current concentrations of chlorinated ethenes are decreasing in monitoring wells which suggest monitored natural attenuation processes are decreasing levels. The current data (elevated DO and ORP) suggest that processes other than microbial are contributing to the decrease in chlorinated ethene concentrations. The presence of daughter (cis-1,2-DCE and VC) suggest that reductive dechlorination has occurred in the past, but the decrease in all of the daughter products and the elevated DO suggest that reductive dechlorination is not presently occurring. However the microbial analysis have shown that <i>D. ethenogenes</i> (although it is an anaerobe) is present which is able to degrade the chlorinated ethenes. Graphs for PCE and the daughter products are presented on Figure 3-1.	
24		3.1.3.1	Please clarify whether cleanup time calculated for the daughter compounds anticipated an increase in concentrations as the parent compound undergoes reductive dechlorination? Additionally, what is the basis of the overall time frame for cleanup? Shouldn't the overall time frame for achieving cleanup based on when all COCs (including the daughter compounds) have achieve the cleanup standards?	С	At this time the groundwater conditions (elevated DO and ORP) and the lack of reductive dechlorination trends suggest that other natural attenuation processes may be at work, and therefore, the time will not increase due to the increase of daughter products. The basis for the 47 years is the degradation of TCE.	
25		4.0	Overall, we feel that the data present do not seem to support natural attenuation would achieve the RAO in a reasonable time.	E	The future hypothetical industrial user will not be exposed to the groundwater at the site because of LUCs to be implemented as a part of the remedy. As expressed by the Army in the past, the time it might take for restoration is of less significance at LHAAP, as compared to some other use where receptors are present.	

Srivastav, Praveen

From: Tzhone.Stephen@epamail.epa.gov
Sent: Thursday, April 16, 2009 12:16 PM
To: Zeiler, Rose Ms CIV USA OSA

Cc: Srivastav, Praveen; Jones, Greg N; Everett, Kay; Wililams, Aaron; Scottie.Fiehler;

DVODAK@tceq.state.tx.us; Fay Duke; jeffrey.armstrong@us.army.mil; Lambert, John R

SWT; Williams, Mark; Forsythe.Barry@epamail.epa.gov; Paul Bruckwicki;

Josiam.Raji@epamail.epa.gov

Subject: Longhorn: EPA comments on Army RTCs for DF FS LHAAP-50

Attachments: LHAAP-50 - DF FS RTC_EPA.doc; LHAAP-50 DF FS RTC_TCEQ.doc

Hi Rose,

The EPA has completed its review of the RTCs to *Draft Final Feasibility Study, LHAAP-50, Former Sump Water Tank, Group 4, Longhorn Army Ammunition Plant, Karnack, Texas.* The following are our comments.

EPA Comments on Army RTCs (LHAAP-50 DF FS RTC EPA.doc):

- 1) Agree.
- 2) Agree.
- 3) Agree.
- 4) Agree.
- 5) Agree and Disagree: Reductions in a sampling regime occur after clear and convincing progress in the remediation. EPA recognizes that certain FS language is utilized for cost estimating purposes and that the monitoring program will be developed as part of the remedial design. Perhaps the Army may wish to go to FS language which integrates monitoring intervals of quarterly for the first 2 years then biannually until the five year review, to reflect a certain reality associated with evaluating MNA associated remedies.
- 6) Agree.
- 7) Agree.
- 8) Agree.
- 9) Agree and Disagree: There is no information to show that ethene production is occurring and/or increasing. For example, it could equally be presented that soil-sorption of the contaminants is occurring, and may have reached a saturation point. While EPA is not advocating such an example, it shows that the evidence presented is not clearly indicative of dechlorination. EPA would consider a chloride mass-balance or an isotope-selectivity study to be positive information to support the Army's position. In addition, EPA emphasizes that LUCs are a critical portion of this remedy. There is a concern about the 30-year time frame for the Army, given that the remedy is expected to require more than that time frame. Also, see related comment #5 (above).

Response to General Comments:

- 1) Agree.
- 2) Agree.

Stephen L. Tzhone Superfund Remedial Project Manager USEPA Region 6 (6SF-RA) 214.665.8409 tzhone.stephen@epa.gov

RTCs, LHAAP-50 DF Feasibility Study

Srivastav, Praveen

to: Stephen Tzhone, Fay Duke

04/06/2009 09:55 AM

Cc: "Aaron K SWT Williams", "John R SWT Lambert", "Jones, Greg N", "Watson, Susan", "Everett, Kay", "Rose Zeiler"

Steve/Fay:

Please see attached responses to your comments on the DF Feasibility Study for LHAAP-50. Please call with any questions.

Thanks

Praveen Srivastav, PhD, PG, PMP
Project Manager
Shaw Environmental & Infrastructure
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4588 direct
281.639.8743 cell
281.996.4436 fax

praveen.srivastav@shawqrp.com

Shaw™ a world of Solutions™ www.shawgrp.com

****Internet Email Confidentiality Footer**** Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email. Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it. _________ The Shaw Group Inc. http://www.shawgrp.com

Srivastav, Praveen

From: Fay Duke [FDUKE@tceq.state.tx.us]
Sent: Friday, April 17, 2009 5:20 PM
To: Stephen Tzhone; Srivastav, Praveen

Cc: Jones, Greg N; Everett, Kay; Watson, Susan; John R SWT Lambert; Rose Zeiler; Aaron K

SWT Williams

Subject: Re: RTCs, LHAAP-50 DF Feasibility Study

Rose/Praveen,

The TCEQ has completed its review of the RTCs to Draft Final Feasibility Study, LHAAP-50. Rather than responding to each of the specific RTCs, we would like to first address two main issues that concerns us. We feel that the RTC did not adequately respond to our comments and concerns in these issues.

We continue to have concerns with the adequacy of the data in evaluating the center of mass of the contaminated groundwater plume. Based on the perchlorate investigations performed in 2001, the center of mass of the perchloarte plume is likely be located 100 feet down gradient of 50WW02 as documented the temporary well points installed at that time frame. Although the existing data and current well configuration is generally adequate to delineate the plume, the well configuration is not sufficient for remedy evaluation nor sufficient to conduct a conceptual design for cost estimation. For example, the MNA and ISB evaluation centers around 50WW02 instead of potentially higher concentration down gradient.

With respect to the MNA evaluation, we are not confident that natural attenuation without enhancement would remediate the site COC to acceptable levels. The concentration trend of 50WW02 indicates that some attenuation has occurred in the past. However, it is not clear how much of the perchlorate reduction is due to plume movement and how much is due to natural reduction. Additionally, the data collected in 2007 suggests that the reduction of the chlorinated ethene may be stalled. The geochemical data collected in 2007 suggests that the conditions of the shallow groundwater currently are not optimal for anaerobic reductive dechlorination. This is especially a concern for the TCE contamination since the complete degradation of the DCE and VC would require a much more reduced condition than what is currently at the site. Finally, it concerns us that in spite of the data, it is suggested that the contamination is being naturally attenuated perhaps not by reductive dechlorination but by other means. However data supporting those evaluations are not provided.

Finally, we recommend that MNA with enhancement such as adding substrates be considered. Please contact me if you wish to discuss this.

Thanks, fd

Fay Duke (MC-136) Remediation Division, TCEQ PO Box 13087 Austin, Texas 78711-3087 512-239-2443 512-239-1212 (Fax)

>>> "Srivastav, Praveen" < 4/6/2009 9:55 AM >>> Steve/Fay:

Please see attached responses to your comments on the DF Feasibility Study for LHAAP-50. Please call with any questions.

Thanks

Praveen Srivastav, PhD, PG, PMP Project Manager Shaw Environmental & Infrastructure 3010 Briarpark Drive, Suite 400 Houston, TX 77042 713.996.4588 direct 281.639.8743 cell 281.996.4436 fax praveen.srivastav@shawqrp.com

ShawT a world of SolutionsT www.shawgrp.com

****Internet Email Confidentiality Footer**** Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email. Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it.

_____ The Shaw Group Inc. http://www.shawgrp.com

From:

Tzhone.Stephen@epamail.epa.gov Tuesday, December 08, 2009 1:29 PM

Sent: To:

Zeiler, Rose Ms CIV USA OSA

Cc:

Srivastav, Praveen; Williams, Aaron K SWT; Jones, Greg N; Lambert, John R SWT; Everett,

Kay; Watson, Susan; Fay Duke; Burton. Terry@epamail.epa.gov

Subject:

Longhorn: EPA Review of LHAAP-50 DF FS Latest Regulatory RTCs

Attachments: LHAAP-50 DF FS Addl EPA TCEQ Comments revised 10-13-09.pdf; LHAAP-50 DF FS TCEQ

comments 041709.pdf; LHAAP-50 - DF FS RTC_EPA 040609.pdf; LHAAP-50 DF FS EPA

comments 041609.pdf; LHAAP-50 DF FS RTC_TCEQ 040609.pdf

Hi Rose,

The EPA has completed its review of the *Army LHAAP-50 DF FS Latest Regulatory RTCs* (email October 13, 2009) and agree with all responses to comments. Please incorporate these responses to comments and finalize the LHAAP-50 Feasibility Study.

Stephen L. Tzhone Superfund Remedial Project Manager USEPA Region 6 (6SF-RA) 214.665.8409 tzhone.stephen@epa.gov

From: Srivastav, Praveen

Sent: Tuesday, October 13, 2009 4:08 PM

To: Stephen Tzhone; Fay Duke

Cc: Williams, Aaron K SWT; Zeiler, Rose Ms CIV USA OSA; Lambert, John R SWT; Jones, Greg N; Watson, Susan; Everett,

Kay

Subject: FW: LHAAP-50 DF FS Latest Regulatory RTCs

Steve/Fay:

Please see attached responses to regulatory comments on the DF Feasibility Study for LHAAP-50. Please see e-mail below from Susan Watson for explanation regarding the attached files.

Please provide your concurrence or any questions at your earliest convenience so we can move forward with finalizing the FS.

Thanks

Praveen Srivastav, PhD, PG
Project Manager
Federal Division/Project Management
Shaw Environmental & Infrastructure
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4588 direct

281.639.8743 cell 713.996.4436 fax praveen.srivastav@shawgrp.com

Shaw[™] a world of Solutions[™] www.shawgrp.com

Please consider the environment before printing this e-mail.

From: Watson, Susan

Sent: Tuesday, October 13, 2009 4:05 PM

To: Srivastav, Praveen

Subject: LHAAP-50 DF FS Latest Regulatory RTCs

Praveen,

The attached file (Item 5 below – LHAAP-50 DF FS RT AddI EPA TCEQ Comments revised 10-13-09.pdf) is ready for regulatory review. This file contains the latest responses to regulatory comments for LHAAP-50 DF FS. Also attached for information purposes are the various RTC files for LHAAP-50 (Items 1 through 4)in chronological order from oldest to most recent, as follows:

- 1. LHAAP-50 DF FS RTC EPA 040609.pdf this file contains the original responses to EPA comments submitted on 04/06/09. No change
- 2. LHAAP-50 DF FS RTC TCEQ 040609.pdf this file contains the original responses to TCEQ comments submitted on 04/06/09. No change
- 3. LHAAP-50 DF FS EPA comments 041609.pdf this file contains EPA comments received on 4/16/09 in response to the RTCs (Item 1 above)
- 4. LHAAP-50 DF FS TCEQ comments 041709.pdf this file contains TCEQ comments received on 4/17/09 in response to the RTCs (Item 2 above)
- 5. LHAAP-50 DF FS RT Addl EPA TCEQ Comments revised 10-13-09.pdf this file contains the responses to the EPA and TCEQ comments received on 4/16/09 (Item 3 above) and 4/17/09 (Item 4 above), respectively.

Please call with any questions.

Thanks,

Susan Watson, PE

Project Engineer
Applied Science and Engineering
Shaw Environmental & Infrastructure Group
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4407 direct
713.996.4436 fax
susan.watson@shawgrp.com

Shaw[™] a world of Solutions[™] www.shawgrp.com

Please consider the environment before printing this e-mail.

From:

Fay Duke [FDUKE@tceq.state.tx.us] Friday, November 20, 2009 9:33 AM

Sent: To:

Srivastav, Praveen; Zeiler, Rose MsCIV USA OSA

Cc:

Everett, Kay; Jones, Greg N; Lambert, John R SWT; Tzhone, Stephen; Watson, Susan;

Williams, Aaron K SWT

Subject:

RE: FW: LHAAP-50 DF FS Latest Regulatory RTCs

Rose/Praveen,

The TCEQ completed its review of the RTCs to the LHAAP-50 DF FS and has no additional comments.

Regarding the RTC to LHAAP-16, we have a request. Many of the responses cannot be concur due to lack of information (assumed to be provided in the final FS). In order not to have another round of review, would you consider providing the results of the additional sampling (i.e. new wells.) and other major changes to the FS report?

Thanks, fd

Fay Duke (MC-136) Remediation Division, TCEQ PO Box 13087 Austin, Texas 78711-3087 512-239-2443 512-239-1212 (Fax)

>>> "Watson, Susan" <Susan.Watson@shawgrp.com> 10/20/2009 3:58 PM >>> Fay,

Yes, the figure was missing. The attached file contains the RTC figure referenced in the 101309 comment resolution document. Additionally, we noted an error in the text, GPCLS-2 is noted as 186.7 feet MSL in the text, and it should be 186.69 feet MSL as indicated on the figure.

Please let me know if you have any additional questions.

Susan Watson, PE Project Engineer Applied Science and Engineering

Shaw Environmental & Infrastructure Group 3010 Briarpark Drive, Suite 400 Houston, TX 77042 713.996.4407 direct 713.996.4436 fax susan.watson@shawgrp.com

ShawT a world of SolutionsT www.shawgrp.com

green Please consider the environment before printing this e-mail.

From: Fay Duke [mailto:FDUKE@tceq.state.tx.us]

Sent: Friday, October 16, 2009 5:20 PM **To:** Srivastay, Praveen; Tzhone, Stephen

Cc: Everett, Kay; Jones, Greg N; Lambert, John R SWT; Watson, Susan; Williams, Aaron K SWT; Zeiler, Rose Ms CIV

USA OSA

Subject: Re: FW: LHAAP-50 DF FS Latest Regulatory RTCs

Praveen,

Are we missing a figure? The comment resolution document dated Oct.13, 2009 references a RTC figure. Can you please re-send it. Thanks, fd

>>> "Srivastav, Praveen" <Praveen.Srivastav@shawgrp.com> 10/13/2009 4:07 PM >>> Steve/Fay:

Please see attached responses to regulatory comments on the DF Feasibility Study for LHAAP-50. Please see e-mail below from Susan Watson for explanation regarding the attached files.

Please provide your concurrence or any questions at your earliest convenience so we can move forward with finalizing the FS.

Thanks

Praveen Srivastav, PhD, PG

Project Manager
Federal Division/Project Management
Shaw Environmental & Infrastructure
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4588 direct
281.639.8743 cell
713.996.4436 fax
praveen.srivastav@shawgrp.com

ShawT a world of SolutionsT

www.shawgrp.com

Please consider the environment before printing this e-mail.

From: Watson, Susan

Sent: Tuesday, October 13, 2009 4:05 PM

To: Srivastav, Praveen

Subject: LHAAP-50 DF FS Latest Regulatory RTCs

Praveen,

The attached file (Item 5 below - LHAAP-50 DF FS RT AddI EPA TCEQ Comments revised 10-13-09.pdf) is ready for regulatory review. This file contains the latest responses to regulatory comments for LHAAP-50 DF FS. Also attached for information purposes are the various RTC files for LHAAP-50 (Items 1 through 4)in chronological order from oldest to most recent, as follows:

- 1. LHAAP-50 DF FS RTC EPA 040609.pdf this file contains the original responses to EPA comments submitted on 04/06/09. No change
- 2. LHAAP-50 DF FS RTC TCEQ 040609.pdf this file contains the original responses to TCEQ comments submitted on 04/06/09. No change
- 3. LHAAP-50 DF FS EPA comments 041609.pdf this file contains EPA comments received on 4/16/09 in response to the RTCs (Item 1 above)
- 4. LHAAP-50 DF FS TCEQ comments 041709.pdf this file contains TCEQ comments received on 4/17/09 in response to the RTCs (Item 2 above)

5. LHAAP-50 DF FS RT Addl EPA TCEQ Comments revised 10-13-09.pdf - this file contains the responses to the EPA and TCEQ comments received on 4/16/09 (Item 3 above) and 4/17/09 (Item 4 above), respectively.

Please call with any questions.

Thanks,

Susan Watson, PE
Project Engineer
Applied Science and Engineering
Shaw Environmental & Infrastructure Group
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4407 direct
713.996.4436 fax
susan.watson@shawgrp.com

ShawT a world of SolutionsT www.shawgrp.com

Please consider the environment before printing this e-mail.

****Internet Email Confidentiality Footer**** Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email. Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it.

The Shaw Group Inc. http://www.shawgrp.com

LHAAP-50 Draft Final Feasibility Study Comment Resolution October 13, 2009

Shaw submitted responses to the USEPA and TCEQ comments on the LHAAP-50 Draft Final Feasibility Study on April 6, 2009. The USEPA and TCEQ reviewed these responses and agreed with some of the responses but had some additional comments as described in their emails dated April 16, 2009 (USEPA) and April 17, 2009 (TCEQ). The responses to comments dated April 6, 2009 and follow-up comments from EPA and TCEQ are attached.

Shaw and the Army concur with USEPA's additional comments on Nos. 5 and 9 as discussed in the April 27-28, 2009 meeting held in Austin at the TCEQ office. It was agreed that the sampling frequency for MNA will be quarterly for the first two years and then semiannual until the first 5-year review. Additionally, for the recommended MNA alternative, the data will be evaluated after 2 years of MNA sampling to determine if MNA is effective and should be continued. If MNA is found to not be effective after 2 years, in situ biotreatment will be performed as a contingent remedy to enhance the MNA.

Shaw and the Army note the concerns raised by TCEQ in the email dated April 17, 2009. The TCEQ's concern regarding the effectiveness of MNA will be addressed by implementation of a contingent remedy, as noted in response to comment 17. The TCEQ's concern regarding the perchlorate plume will be addressed as follows:

One or more monitoring well(s) will be installed for MNA evaluation and the proposed location will be included in the remedial design. The purpose of the well(s) will be to determine if high perchlorate concentrations exist on the east side of the road where previous DPT sampling was conducted. Additional data from the well (s) will help to better define the plume concentrations and to evaluate MNA. Text will be added in Section 5.2.2.2 that two wells are assumed for cost estimating purposes (see TCEQ RTC No. 22).

Additional Information

At the April 27-28, 2009 meeting, TCEQ requested the groundwater velocity and additional information to assess the impact to the creek from the contaminated groundwater at LHAAP-50.

• Groundwater velocity (Vx) is calculated by multiplying hydraulic conductivity (K) by groundwater gradient (I), then dividing by the porosity (n). The estimated porosity value for LHAAP-50 in the Final Modeling Report (Shaw, 2007) was 0.25.

$$Vx = K * I / n$$

Values for an average hydraulic conductivity (1.26E-4 cm/s) and groundwater gradient (0.0038 ft/ft) are also available from that report for LHAAP-50. Using these values, the groundwater velocity of 0.005 ft/day, or 2.0 ft/yr is calculated for LHAAP-50. Please note that the 2 ft/year velocity is based on the hydraulic conductivity and gradient across the site and does not take into account any changes in the hydraulic conductivity or porosity to the east. Since LHAAP-50 has been active for 54

years, using the 2 ft/year groundwater velocity would imply a plume length of approximately 108 feet, which is shorter than the estimated plume length indicated on Figure 2-2 of the FS.

• The bottom of the creek bed near LHAAP-50 is estimated to be approximately 185 to 186 feet MSL. This is based on the surveyed USGS rods at GPCLS-2 (186.7 ft MSL) and GPCLS-4 (183.29 ft MSL) as shown on the attached RTC Figure. By reviewing the RTC Figure, the groundwater may have been slightly above the bottom of the creek at times in the past. In March 2002 the groundwater elevations in 50WW01, 50WW02, and 50WW03 (STEP, 2005) are slightly above the approximate bottom of the creek. The creek sampling in January 2002 and June 2002 did not detect perchlorate in the creek water. In September 2002, the groundwater levels had fallen and were below the approximate bottom of the creek. In September 2002, perchlorate was not detected in the creek water. As shown below, the perchlorate concentrations in the creek do not seem to follow the rise and fall of groundwater elevations, i.e. the concentrations in the creek water rose after the groundwater elevation dropped to below the creek bottom.

The creek sampling data from GPW-1, near LHAAP-50, through 2007 is shown below.

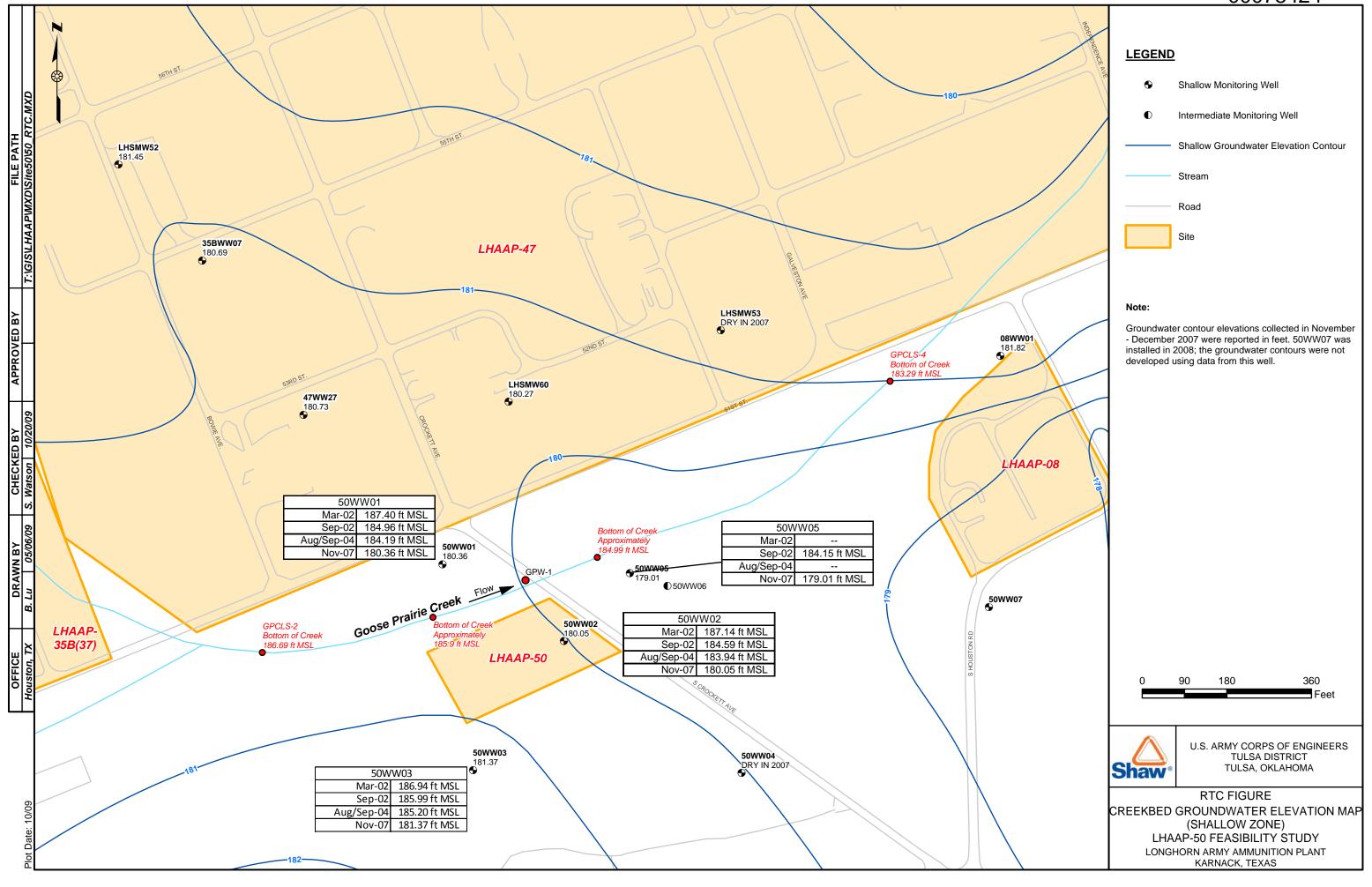
		PARAMETER	Perchlorate			
		UNITS		ug/L		
LOCATION	SAMPLE NO.	DATE	Result	Qual	ValQual	
GPW-1	GPW-1-000204	4-Feb-00	4		J	
GPW-1	GPW-1-000421	21-Apr-00	4	<	U	
GPW-1	GPW-1-000808	8-Aug-00	4	<	U	
GPW-1	GPW-1-001205	5-Dec-00	4	<	UJ	
GPW-1	GPW-1-010717	17-Jul-01	4	<	U	
GPW-1	GPW-1-011030	30-Oct-01	4	<	UJ, L	
GPW-1	GPW-1-020115	15-Jan-02	4	<	U	
GPW-1	GPW-1-020618	18-Jun-02	4	<	U	
GPW-1	GPW-1-020926	26-Sep-02	4	<	U	
GPW-1	GPW-1-021204	4-Dec-02	18.3			
GPW-1	GPW-1-030213	13-Feb-03	18.6			
GPW-1	GPW-1-030619	19-Jun-03	59.9			
GPW-1	GPW-1-030619-FD	19-Jun-03	57.1			
GPW-1	GPW-1-040706	6-Jul-04	2.25			
GPW-1	GPW-1-070515	15-May-07	1	U	U	
GPW-1	GPW-1-070827	27-Aug-07	1	U	U	
GPW-1	GPW-1-121707	17-Dec-07	10.7			

Below is a table of the precipitation data from Marshall, Texas from 2002 and 2003.

Precipitation	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2002	2.25	2.87	7.58	4.17	2.21	1.18	6.49	1.6	3.18	4.61	3.28	9.97
2003	0.43	8 73	1.37	1 25	0.89	10.26	1.31	1 89	2 39	2 17	2 68	2 77

A review of the precipitation data indicates that the months of heavy rainfall (December 2002, February 2003, and June 2003) correlate with the elevated perchlorate concentrations in the creek, which could be attributed to the runoff into the creek and a possible pathway of soil to surface water for perchlorate detections. This pathway will be mitigated by excavation and disposal of perchlorate-contaminated soil at LHAAP-50 and LHAAP-47 (Building 25C).

The original response to TCEQ's comment No. 5 concerning surface water will be revised as follows:


Section 1.3.3.3 will be replaced with the following: "Sampling was conducted for perchlorate at selected locations along Goose Prairie Creek, including location GPW-1, located between LHAAP-50 and LHAAP-47. Historically, perchlorate levels in the creek have fluctuated from a max of 59.9 μ g/L in June 2003 to a low of nondetect (or less than 1 μ g/L), but have remained below the TCEQ surface water contact recreational level (395 μ g/L). The perchlorate concentrations at GPW-1 have been below the groundwater MSC for residential use (GW-Res) (26 μ g/L) in the last three quarters of sampling (since June 2008). GPW-3 is located approximately 3,500 feet downstream of GPW-1. Historically, perchlorate concentrations have been below the GW-Res at GPW-3. Thus, the water flowing through the creek at GPW-1 is not contaminating Caddo Lake above the GW-Res."

To address TCEQs concern about creek monitoring (Comment 16), the following will be added as monitoring under the excavation activities in the alternatives: "Semi-annual performance monitoring of Goose Prairie Creek adjacent to the LHAAP-50 will be conducted after excavation of the contaminated perchlorate pathway. The GPW-1 location will be sampled and a location upgradient of LHAAP-50 will be sampled. The upgradient location will be used to evaluate any contaminated runoff from the perchlorate contaminated site, LHAAP-47, located on the north side of the creek just west of LHAAP-50. Evaluation of this data will be included in the annual reports. The frequency and locations of sampling may be modified after evaluation of data. If perchlorate levels in the creek are consistently above the GW-Res after two years of monitoring, then additional evaluation will be conducted and any proposed actions will be included in the annual evaluation report to be submitted after year 2".

Also, as noted in the response to TCEQ comments 7 and 8, the modeling indicates that there would not be an impact to the creek assuming that the groundwater does reach the surface water. The uncertainties related to the modeling pointed out by TCEQ were addressed in the report by performing additional calculations in X and Y directions. Based on the creek elevation versus perchlorate concentration observations, the rainfall versus perchlorate concentrations, and the modeling; there is no evidence that the perchlorate contaminated groundwater is impacting or will impact the creek. Thus, it is proposed to not add the groundwater to surface water pathway as a remedial action objective.

Other Changes

As discussed during the monthly Managers' Meeting on August 18, 2009, Section 6.5, Recommendation, will be deleted.

From:

Fay Duke [FDUKE@tceq.state.tx.us] Friday, November 20, 2009 9:33 AM

Sent: To:

Srivastav, Praveen; Zeiler, Rose MsCIV USA OSA

Cc:

Everett, Kay; Jones, Greg N; Lambert, John R SWT; Tzhone, Stephen; Watson, Susan;

Williams, Aaron K SWT

Subject:

RE: FW: LHAAP-50 DF FS Latest Regulatory RTCs

Rose/Praveen,

The TCEQ completed its review of the RTCs to the LHAAP-50 DF FS and has no additional comments.

Regarding the RTC to LHAAP-16, we have a request. Many of the responses cannot be concur due to lack of information (assumed to be provided in the final FS). In order not to have another round of review, would you consider providing the results of the additional sampling (i.e. new wells.) and other major changes to the FS report?

Thanks, fd

Fay Duke (MC-136) Remediation Division, TCEQ PO Box 13087 Austin, Texas 78711-3087 512-239-2443 512-239-1212 (Fax)

>>> "Watson, Susan" <Susan.Watson@shawgrp.com> 10/20/2009 3:58 PM >>> Fay,

Yes, the figure was missing. The attached file contains the RTC figure referenced in the 101309 comment resolution document. Additionally, we noted an error in the text, GPCLS-2 is noted as 186.7 feet MSL in the text, and it should be 186.69 feet MSL as indicated on the figure.

Please let me know if you have any additional questions.

Susan Watson, PE

Project Engineer
Applied Science and Engineering
Shaw Environmental & Infrastructure Group
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4407 direct
713.996.4436 fax
susan.watson@shawgrp.com

ShawT a world of SolutionsT www.shawgrp.com

green Please consider the environment before printing this e-mail.

From: Fay Duke [mailto:FDUKE@tceq.state.tx.us]

Sent: Friday, October 16, 2009 5:20 PM **To:** Srivastav, Praveen; Tzhone, Stephen

Cc: Everett, Kay; Jones, Greg N; Lambert, John R SWT; Watson, Susan; Williams, Aaron K SWT; Zeiler, Rose Ms CIV

USA OSA

Subject: Re: FW: LHAAP-50 DF FS Latest Regulatory RTCs

Praveen,

Are we missing a figure? The comment resolution document dated Oct.13, 2009 references a RTC figure. Can you please re-send it. Thanks, fd

>>> "Srivastav, Praveen" <Praveen.Srivastav@shawgrp.com> 10/13/2009 4:07 PM >>> Steve/Fay:

Please see attached responses to regulatory comments on the DF Feasibility Study for LHAAP-50. Please see e-mail below from Susan Watson for explanation regarding the attached files.

Please provide your concurrence or any questions at your earliest convenience so we can move forward with finalizing the FS.

Thanks

Praveen Srivastav, PhD, PG

Project Manager
Federal Division/Project Management
Shaw Environmental & Infrastructure
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4588 direct
281.639.8743 cell
713.996.4436 fax
praveen.srivastav@shawgrp.com

ShawT a world of SolutionsT www.shawgrp.com

Please consider the environment before printing this e-mail.

From: Watson, Susan

Sent: Tuesday, October 13, 2009 4:05 PM

To: Srivastav, Praveen

Subject: LHAAP-50 DF FS Latest Regulatory RTCs

Praveen,

The attached file (Item 5 below - LHAAP-50 DF FS RT AddI EPA TCEQ Comments revised 10-13-09.pdf) is ready for regulatory review. This file contains the latest responses to regulatory comments for LHAAP-50 DF FS. Also attached for information purposes are the various RTC files for LHAAP-50 (Items 1 through 4)in chronological order from oldest to most recent, as follows:

- 1. LHAAP-50 DF FS RTC EPA 040609.pdf this file contains the original responses to EPA comments submitted on 04/06/09. No change
- 2. LHAAP-50 DF FS RTC TCEQ 040609.pdf this file contains the original responses to TCEQ comments submitted on 04/06/09. No change
- 3. LHAAP-50 DF FS EPA comments 041609.pdf this file contains EPA comments received on 4/16/09 in response to the RTCs (Item 1 above)
- 4. LHAAP-50 DF FS TCEQ comments 041709.pdf this file contains TCEQ comments received on 4/17/09 in response to the RTCs (Item 2 above)

5. LHAAP-50 DF FS RT Addl EPA TCEQ Comments revised 10-13-09.pdf - this file contains the responses to the EPA and TCEQ comments received on 4/16/09 (Item 3 above) and 4/17/09 (Item 4 above), respectively.

Please call with any questions.

Thanks,

Susan Watson, PE
Project Engineer
Applied Science and Engineering
Shaw Environmental & Infrastructure Group
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4407 direct
713.996.4436 fax
susan.watson@shawgrp.com

ShawT a world of SolutionsT www.shawgrp.com

Please consider the environment before printing this e-mail.

****Internet Email Confidentiality Footer**** Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email. Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it.

The Shaw Group Inc. http://www.shawgrp.com

From:

Tzhone.Stephen@epamail.epa.gov Tuesday, December 08, 2009 1:29 PM

Sent: To:

Zeiler, Rose Ms CIV USA OSA

Cc:

Srivastav, Praveen; Williams, Aaron K SWT; Jones, Greg N; Lambert, John R SWT; Everett,

Kay; Watson, Susan; Fay Duke; Burton. Terry@epamail.epa.gov

Subject:

Longhorn: EPA Review of LHAAP-50 DF FS Latest Regulatory RTCs

Attachments: LHAAP-50 DF FS Addl EPA TCEQ Comments revised 10-13-09.pdf; LHAAP-50 DF FS TCEQ

comments 041709.pdf; LHAAP-50 - DF FS RTC_EPA 040609.pdf; LHAAP-50 DF FS EPA

comments 041609.pdf; LHAAP-50 DF FS RTC_TCEQ 040609.pdf

Hi Rose,

The EPA has completed its review of the *Army LHAAP-50 DF FS Latest Regulatory RTCs* (email October 13, 2009) and agree with all responses to comments. Please incorporate these responses to comments and finalize the LHAAP-50 Feasibility Study.

Stephen L. Tzhone Superfund Remedial Project Manager USEPA Region 6 (6SF-RA) 214.665.8409 tzhone.stephen@epa.gov

From: Srivastav, Praveen

Sent: Tuesday, October 13, 2009 4:08 PM

To: Stephen Tzhone; Fay Duke

Cc: Williams, Aaron K SWT; Zeiler, Rose Ms CIV USA OSA; Lambert, John R SWT; Jones, Greg N; Watson, Susan; Everett,

Kay

Subject: FW: LHAAP-50 DF FS Latest Regulatory RTCs

Steve/Fay:

Please see attached responses to regulatory comments on the DF Feasibility Study for LHAAP-50. Please see e-mail below from Susan Watson for explanation regarding the attached files.

Please provide your concurrence or any questions at your earliest convenience so we can move forward with finalizing the FS.

Thanks

Praveen Srivastav, PhD, PG
Project Manager
Federal Division/Project Management
Shaw Environmental & Infrastructure
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4588 direct

281.639.8743 cell 713.996.4436 fax praveen.srivastav@shawgrp.com

Shaw[™] a world of Solutions[™] www.shawgrp.com

Please consider the environment before printing this e-mail.

From: Watson, Susan

Sent: Tuesday, October 13, 2009 4:05 PM

To: Srivastav, Praveen

Subject: LHAAP-50 DF FS Latest Regulatory RTCs

Praveen,

The attached file (Item 5 below – LHAAP-50 DF FS RT AddI EPA TCEQ Comments revised 10-13-09.pdf) is ready for regulatory review. This file contains the latest responses to regulatory comments for LHAAP-50 DF FS. Also attached for information purposes are the various RTC files for LHAAP-50 (Items 1 through 4)in chronological order from oldest to most recent, as follows:

- 1. LHAAP-50 DF FS RTC EPA 040609.pdf this file contains the original responses to EPA comments submitted on 04/06/09. No change
- 2. LHAAP-50 DF FS RTC TCEQ 040609.pdf this file contains the original responses to TCEQ comments submitted on 04/06/09. No change
- 3. LHAAP-50 DF FS EPA comments 041609.pdf this file contains EPA comments received on 4/16/09 in response to the RTCs (Item 1 above)
- 4. LHAAP-50 DF FS TCEQ comments 041709.pdf this file contains TCEQ comments received on 4/17/09 in response to the RTCs (Item 2 above)
- 5. LHAAP-50 DF FS RT Addl EPA TCEQ Comments revised 10-13-09.pdf this file contains the responses to the EPA and TCEQ comments received on 4/16/09 (Item 3 above) and 4/17/09 (Item 4 above), respectively.

Please call with any questions.

Thanks,

Susan Watson, PE

Project Engineer
Applied Science and Engineering
Shaw Environmental & Infrastructure Group
3010 Briarpark Drive, Suite 400
Houston, TX 77042
713.996.4407 direct
713.996.4436 fax
susan.watson@shawgrp.com

Shaw[™] a world of Solutions[™] www.shawgrp.com

Please consider the environment before printing this e-mail.

FINAL FEASIBILITY STUDY LHAAP-50, FORMER SUMP WATER TANK, GROUP 4 LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared for

U.S. Army Corps of Engineers Tulsa District 1645 South 101st Avenue Tulsa, Oklahoma

Prepared by

Shaw Environmental, Inc. 1401 Enclave Parkway, Suite 250 Houston, Texas 77077

Contract No. W912QR-04-D-0027, Task Order No. DS02 Shaw Project No. 117591

December 2009

Table of Contents_

List of	Table	2			Vi
	•				
	,				
Execu	ıtive S	ummary	,		ES-1
1.0	Intro	duction.			1-1
	1.1			ganization of Report	
	1.2			Ammunition Plant Background	
		1.2.1		scription	
		1.2.2			
	1.3			npling Investigations	
		1.3.1		te Investigation	
			1.3.1.1	Sediment Sampling	
			1.3.1.2	Soil Sampling	
		1.3.2	Phase I	II RI	
			1.3.2.1	Sediment Sampling	
			1.3.2.2	Surface Water Sampling	
			1.3.2.3	Soil Sampling	
			1.3.2.4	Groundwater Sampling	
		1.3.3		nal Investigations	
			1.3.3.1	Soil	
			1.3.3.2	Groundwater	
			1.3.3.3	Surface Water	
2.0	Risk	and Site		nent	
	2.1			nt Summary	
		2.1.1			
		2.1.2		water	
	2.2			ata Collected Since the Risk Assessment	
		2.2.1			
		2.2.2		water	
	2.3			nation Assessment	
		2.3.1			
		2.3.2		water	
	2.4			Model	
3.0				tive and Remediation Levels	
0.0	3.1		•	Objectives	
	3.2	Applic	able or Re	elevant and Appropriate Requirements	3-2
	0.2	3.2.1		ons and Methods	
		3.2.1		Il Chemical-Specific ARARs	
		0.2.2	3.2.2.1	Chemical-Specific ARARs for Soil	
			3.2.2.2	Chemical-Specific ARARs for Air	
			3.2.2.3		

Table of Contents (continued)

			3.2.2.4	Chemical-Specific ARARs for Groundwater	3-4
		3.2.3	Potentia	al Location-Specific ARARs	3-5
				Sensitive Habitats	
		3.2.4	Potentia	al Action-Specific ARARs	3- <i>6</i>
			3.2.4.1	·	
	3.3	Prelim	inary Ren	nediation Goals	
4.0				ening of Technologies and Process Options	
	4.1			nd Media of Concern	
		4.1.1		water	
		4.1.2			
	4.2	Gener		nse Actions	
	4.3			d Screening of Potentially Applicable Technologies	
	4.4			ocess Options	
	4.5			Selection of Representative Process Options	
		4.5.1		water'	
			4.5.1.1	No Action	
			4.5.1.2	Monitored Natural Attenuation	
			4.5.1.3	Land Use Controls	
			4.5.1.4	Long-Term Media Monitoring	
			4.5.1.5	Extraction Wells	
			4.5.1.6	Interceptor Trenches	
			4.5.1.7	Air Sparging/Soil Vapor Extraction	
			4.5.1.8	In Situ Oxidation	
			4.5.1.9	Permeable Reactive Barriers	
			4.5.1.10		
			4.5.1.11		
			4.5.1.12	3	
			4.5.1.13		
				Surface Water Discharge	4-13
		4.5.2		ry of Representative Process Options for Groundwater	
		4.5.3		, , , , , , , , , , , , , , , , , , ,	
			4.5.3.1	No Action	4-14
			4.5.3.2		
			4.5.3.3	Treatment	4-15
			4.5.3.4	Disposal	
		4.5.4	Summa	ry of Representative Process Options for Soil	
5.0	Deve	elopment		cription of Alternatives	
	5.1			Alternatives	
		5.1.1		ements and Preferences	
		5.1.2		oment using Remediation Strategies and Process Options	
	5.2	Descri	ption of R	lemedial Alternatives	5-2
		5.2.1		tive 1 – No Action Alternative	
		5.2.2		tive 2 – Excavation, Monitored Natural Attenuation, LUCs	
			5.2.2.1	Soil Program	
			5.2.2.2	Groundwater Program	

Table of Contents (continued)

		5.2.3	Alternative 3 – Excavation, In Situ Bioremediation, LUCs	5-5
			5.2.3.1 Soil Program	
			5.2.3.2 In Situ Bioremediation for Groundwater Plume	5-6
			5.2.3.3 MNA for Groundwater	5-8
			5.2.3.4 Long-Term Operation	5-8
			5.2.3.5 Land Use Controls	
6.0	Deta	iled Ana	lysis of Alternatives	6-1
	6.1	Introdu	uction	6-1
	6.2	Overvi	iew of the Evaluation Criteria	6-1
		6.2.1	Criterion 1: Overall Protection of Human Health and the Environment	6-1
		6.2.2	Criterion 2: Compliance with ARARS	6-1
		6.2.3	Criterion 3: Long-Term Effectiveness and Permanence	6-2
		6.2.4	Criterion 4: Reduction of Toxicity, Mobility, or Volume through Treatment	
		6.2.5	Criterion 5: Short-Term Effectiveness	
		6.2.6	Criterion 6: Implementability	6-3
		6.2.7	Criterion 7: Cost	
		6.2.8	Criterion 8: State Acceptance	6-4
		6.2.9	Criterion 9: Community Acceptance	
	6.3	Individ	lual Analysis of Alternatives	
		6.3.1	Alternative 1 – No Action	
			6.3.1.1 Overall Protection of Human Health and the Environment	6-5
			6.3.1.2 Compliance with ARARs	6-5
			6.3.1.3 Long-Term Effectiveness and Permanence	
			6.3.1.4 Reduction of Toxicity, Mobility, or Volume through Treatment	
			6.3.1.5 Short-Term Effectiveness	
			6.3.1.6 Implementability	6-6
			6.3.1.7 Cost	
		6.3.2	Alternative 2 – Excavation, Monitored Natural Attenuation, LUCs	
			6.3.2.1 Overall Protection of Human Health and the Environment	
			6.3.2.2 Compliance with ARARs	
			6.3.2.3 Long-Term Effectiveness and Permanence	
			6.3.2.4 Reduction of Toxicity, Mobility, or Volume through Treatment	
			6.3.2.5 Short-Term Effectiveness	
			6.3.2.6 Implementability	6-9
			6.3.2.7 Cost	
		6.3.3	Alternative 3 – Excavation, In Situ Bioremediation, LUCs	6-10
			6.3.3.1 Overall Protection of Human Health and the Environment	
			6.3.3.2 Compliance with ARARs	6-11
			6.3.3.3 Long-Term Effectiveness and Permanence	
			6.3.3.4 Reduction of Toxicity, Mobility, or Volume through Treatment	
			6.3.3.5 Short-Term Effectiveness	
			6.3.3.6 Implementability	
			6.3.3.7 Cost	
	6.4	Comp	arative Analysis of Alternatives	
		6.4.1	Introduction	

Table of Contents (continued)

	6.4.2	Thresho	old Criteria	6-16
		6.4.2.1	Overall Protection of Human Health and the Environment	6-1 <i>6</i>
		6.4.2.2	Compliance with ARARs	6-16
	6.4.3	Primary	Balancing Criteria	6-16
			Long-Term Effectiveness and Permanence	
		6.4.3.2	Reduction of Toxicity, Mobility, or Volume through Treatment	6-17
		6.4.3.3	Short-Term Effectiveness	6-17
		6.4.3.4	Implementability	6-18
		6.4.3.5	Cost	6-18
7.0	References.			7-1

List of Ta	bles	
Table ES-1	Comparative Analysis of Alternatives	ES-4
Table 1-1	Summary of Investigations at LHAAP-50 Former Sump Water Tank Area	1-11
Table 2-1	Chemicals Contributing to Carcinogenic Risk in Groundwater	
Table 2-2	Chemicals Contributing to Hazard Index in Groundwater	
Table 3-1	Potential Chemical-Specific ARARs/TBCs	
Table 3-2	Chemical-Specific ARARs (Proposed Cleanup Levels)	3-11
Table 3-3	Potential Location-Specific ARARs/TBCs	3-12
Table 3-4	Potential Action-Specific ARARs/TBCs	
Table 4-1	General Response Actions at LHAAP-50	
Table 4-2	Identification and Screening of Groundwater Remedial Action Technologies	LHAAP-50 4-18
List of Fi	gures	
Figure 1-1	LHAAP Location Map	
Figure 1-2	LHAAP-50 Site Vicinity Map	
Figure 1-3	Sample Location Map	
Figure 1-4	Groundwater Elevation Map (Shallow Zone)	
Figure 1-5	Geologic Cross Section A-A' LHAAP-50	
Figure 2-1	TCE and Perchlorate Concentrations in Soil	
Figure 2-2	VOC Concentrations in Groundwater for Shallow Zone	
Figure 2-3	Perchlorate Concentrations in Groundwater for Shallow Zone	
Figure 2-4	Conceptual Site Model Details of Alternative 2: Excavation, Monitored Natural Attenuation, LUCs	
Figure 5-1 Figure 5-2	Details of Alternative 3: Excavation, In Situ Bioremediation, LUCs	
rigure 5-2	Details of Alternative 3. Excavation, in Situ bioremediation, Locs	
List of Ap	ppendices	
Appendix A	Natural Attenuation Evaluation for LHAAP-50	
Appendix B Appendix C	2007 and 2008 Analytical Reports, Field Data, and 50WW07 Logs Basis of Estimate for LHAAP-50 Remediation	
Appendix C	Dasis of Estimate for EFIAAL 30 Nothbouldholl	

Acronyms and Abbreviations

μg/kg micrograms per kilogram μg/L micrograms per liter

2,3,7,8-TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

AOC area of contamination

ARARs applicable or relevant and appropriate requirements

Army U.S. Department of the Army AST aboveground storage tank

BERA Baseline Ecological Risk Assessment

bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

of 1980

CFR Code of Federal Regulations

CLI Caddo Lake Institute
cm/sec centimeters per second
COCs chemicals of concern
CWA Clean Water Act of 1972

DCA dichloroethane DCE dichloroethene

ECOP environmental condition of property

FFA Federal Facility Agreement

FR Federal Register FS Feasibility Study

GAC granulated activated carbon GRAs general response actions

GW-Ind groundwater MSC for industrial use

GWP-Ind soil MSC for industrial use based on groundwater protection

GW-Res groundwater MSC for residential use

HI hazard index HQ hazard quotient

Jacobs Jacobs Engineering Group, Inc.

LHAAP Longhorn Army Ammunition Plant

LHAAP-50 former Sump Water Tank Area

LTM long-term monitoring

LUC land use control

MARC Multiple Award Remediation Contract

MCL maximum contaminant level mg/kg milligrams per kilogram MNA monitored natural attenuation

Acronyms and Abbreviations (continued)_

MSC medium-specific concentration

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NPDES National Pollutant Discharge Elimination System

NPL National Priorities List
O&M operation and maintenance

OSHA Occupational Safety and Health Administration

PCB polychlorinated biphenyl

PCE tetrachloroethene

pH potential hydrogen ion concentration

PP Proposed Plan

PPE personal protective equipment RAOs remedial action objectives

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation
ROD Record of Decision

RRS Risk Reduction Standard

SAI-Ind soil MSC for industrial use based on inhalation, ingestion, and dermal contact

SDWA Safe Drinking Water Act Shaw Environmental, Inc.

SI site investigation

STEP Solutions to Environmental Problems

Sverdrup Sverdrup Environmental, Inc.
SVOC semivolatile organic compound
TAC Texas Administrative Code

TBC to-be-considered TCA trichloroethane TCE trichloroethene

TCEQ Texas Commission on Environmental Quality

TNT trinitrotoluene

TOC total organic carbon

TWQS Texas Water Quality Standards USACE U.S. Army Corps of Engineers

USC United States Code

USEPA U.S. Environmental Protection Agency

USFWS U.S. Fish and Wildlife Service

VC vinyl chloride

VOC volatile organic compound

ZVM zero-valence metals

Executive Summary

This Feasibility Study (FS) was prepared by Shaw Environmental, Inc. (Shaw), for the U.S. Army Corps of Engineers (USACE), Tulsa District, under the Louisville District's Multiple Award Remediation Contract (MARC), Contract No. W912QR-04-D-0027, for remediation activities at the Longhorn Army Ammunition Plant (LHAAP) in Karnack, Texas. This FS presents the analysis of remediation alternatives for the former Sump Water Tank Area designated as LHAAP-50 in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and provides for the remedy selection consistent with the intended use of LHAAP as a wildlife refuge.

LHAAP is an inactive, government-owned, formerly contractor-operated and maintained Department of Defense facility located in central-east Texas. LHAAP-50, the Former Sump Water Tank, is a 1-acre industrial area located in the north-central portion of LHAAP. Historically, LHAAP-50 contained an aboveground storage tank (AST) to which industrial wastewater was transported from 1955 to 1988 (Plexus, 2005). The wastewater was collected from industrial waste production sumps located at various operating buildings throughout the LHAAP. If the nature of the operations at a building was such that contamination in the sump was considered negligible, the sump was allowed to overflow. All other sumps were emptied, and their wastewater was transported to the AST at LHAAP-50. After the solids were filtered, discharges from this tank were made upstream of the bridge on Crockett Avenue into Goose Prairie Creek. The flow in the creek was sufficient to dilute the water to safe levels (Jacobs Engineering Group, Inc. [Jacobs], 2002). The AST has since been removed (Jacobs, 2002).

LHAAP was placed on the National Priorities List (NPL) on August 9, 1990. A Federal Facility Agreement (FFA) became effective December 30, 1991 among U.S. Environmental Protection Agency (USEPA), the U.S. Department of the Army (Army), and the Texas Natural Resources Conservation Commission (TNRCC), now the Texas Commission on Environmental Quality (TCEQ). LHAAP-50 was not one of the originally listed NPL sites; however, it is being managed in the same manner because of the presence of contaminated groundwater under the site. The site has been added to the list of NPL sites at LHAAP with concurrence from the Army and USEPA Headquarters.

The entire installation was under the control of the U.S. Department of the Army (Army) until May 5, 2004, when approximately two-thirds of the property was transferred to the U.S. Department of Interior's Fish and Wildlife Service (USFWS). The property transfer process is continuing as response is completed at smaller parcels of land. The U.S. Army Environmental Command provides funding for the environmental remedial activities at LHAAP. The Base

Realignment and Closure Office are responsible for all aspects of LHAAP including the environmental program operations and land transfer.

Goose Prairie Creek is the nearest significant surface water body to LHAAP-50. Runoff from LHAAP-50 drains into Goose Prairie Creek, which eventually flows into Caddo Lake (a drinking water source for multiple communities).

Sampling specific to the LHAAP-50 media was conducted during site investigation, Phase III Remedial Investigations (RIs) by Jacobs, and during additional investigations through 2008. The baseline human health risk assessment for the Group 4 Sites (Jacobs, 2003), which was based on data from the RIs and additional investigations through 2001, determined that the groundwater at LHAAP-50 poses an unacceptable cancer risk and non-cancer hazard for a hypothetical future maintenance worker under an industrial scenario. Though the soil at LHAAP-50 does not pose a risk to human health or ecological receptors, it is contaminated with perchlorate at levels that could potentially migrate into the groundwater. The Installation-Wide Baseline Ecological Risk Assessment did not identify any potential risk to ecological receptors (Shaw, 2007a).

The contaminants, identified to pose risk, were detected in groundwater at concentrations exceeding their respective maximum contaminant levels (MCLs) or the groundwater medium-specific concentration for industrial use (perchlorate only) and are considered to be a chemical of concern (COC) as follows:

- Trichloroethene
- Vinyl chloride
- 1,1-dichloroethene
- 1,2-dichloroethane
- Tetrachloroethene
- Perchlorate

Approximately 99.9 percent of the total cancer risk in groundwater was contributed by tetrachloroethene (PCE) and trichloroethene (TCE) and their daughter products, 1,1-dichloroethene (DCE), 1,2-dichloroethane, and vinyl chloride (VC). The primary contributor to the carcinogenic risk is TCE (77 percent of the total groundwater risk and 27 percent of the non-carcinogenic risk). Perchlorate accounts for 64 percent of the non-carcinogenic risk.

The remedial action objectives (RAOs) established within this FS address potential human health risks associated with LHAAP-50 groundwater as well as addressing soil that contains levels of perchlorate at concentrations that have the potential to cause further deterioration of the groundwater quality. The Army recognizes U.S. Environmental Protection Agency's policy to return usable water to its potential beneficial use, based upon the non-binding programmatic expectation in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

The RAOs for LHAAP-50, which take into account the future use of the site as a wildlife refuge, are:

- Protect human health for the hypothetical future maintenance worker by preventing exposure to groundwater contaminated with VOCs and perchlorate
- Protect human health by preventing further potential degradation of groundwater and surface water from soil contaminated with perchlorate
- Return groundwater to its potential beneficial use, wherever practicable, within a reasonable time period given the particular site circumstances.

The FS identifies and screens remedial technologies and associated process options that may be appropriate for satisfying the RAO for LHAAP-50 with respect to effectiveness, implementability, and cost. Select remedial technologies and process options were carried forward after the initial screening and were combined to develop the following remedial alternatives for LHAAP-50:

- Alternative 1 No Action. Leaves the contaminated groundwater and soil in place with no remedial action or additional measures to prevent exposure to the COCs, and serves as a baseline for comparison with the other alternatives. A No Action alternative is required under CERCLA.
- Alternative 2 Excavation, Monitored Natural Attenuation, Land Use Controls. Excavates soil with perchlorate levels at concentrations that may impact groundwater. Implements a monitored natural attenuation program (MNA) for natural degradation of COCs in the groundwater to cleanup levels. Implements land use controls (LUCs) until proposed cleanup levels are met.
- Alternative 3 Excavation, In Situ Bioremediation, Land Use Controls (Short Term). In situ bioremediation is used in a target area of highest concentrations (i.e., the area around monitoring well 50WW02) to reduce the timeframe until contaminant levels in groundwater meet cleanup levels. In addition, soils with perchlorate levels present at concentrations that may migrate to groundwater would be removed. Implements LUCs until proposed cleanup levels are met.

Each alternative was evaluated against CERCLA criteria to provide a basis for selecting a preferred alternative in the follow-on Proposed Plan (PP) and Record of Decision (ROD) documents.

Table ES-1 summarizes the comparative analysis of the alternatives presented in this study. Two additional criteria, State acceptance and community acceptance, will be evaluated during the PP stage.

Table ES-1 Comparative Analysis of Alternatives

		Altama di La O	
Comparative Analysis of Alternatives Criteria	Alternative 1 No Action	Alternative 2 Excavation, Monitored Natural Attenuation with Land Use Controls	Alternative 3 Excavation, In Situ Bioremediation, Land Use Controls
Overall protection of human health and the environment	No protection. Does not achieve RAO.	Achieves RAO. Protection of human health and environment provided by maintenance of land use controls. MNA activities would demonstrate that degradation of plume is occurring. Land use controls in place until cleanup levels are met. Removal of soil with concentrations of perchlorate above cleanup levels would prevent future migration from soil to groundwater and surface water.	Achieves RAO. Protection of human health and environment provided by remediation of groundwater COCs in a target area. Land use controls in place indefinitely. Removal of soil with concentrations of perchlorate above cleanup levels would prevent future migration from soil to groundwater and surface water.
Compliance with ARARs	Does not comply with chemical-specific ARARs or TBC guidance for perchlorate.	Complies with ARARs.	Complies with ARARs.
Long-term effectiveness and permanence	Not effective.	Decrease in COC concentration and presence of degradation products suggests that contaminants are degrading naturally. To be confirmed by MNA sampling following remedy selection. Land use controls would be effective and reliable so long as they are maintained. Excavation of soil is effective long-	Should be effective and permanent; however, uncertainty exists concerning the degree to which the alternative will be effectiveness in enhancing the natural biological processing occurring at the site. Pilot testing may be required prior to implementation. May require multiple treatments. MNA will be implemented in untreated areas of the plume. Land use controls would be effective
		term and permanent as contamination would be removed from the site and placed in a permitted landfill.	and reliable so long as they are maintained. Excavation of soils is long-term effective and permanent as contamination would be removed from the site and placed in a permitted landfill.
Reduction of TMV through treatment	No reduction.	No active remediation would be performed for groundwater. However, a reduction in TMV would be provided through natural biodegradation processes that are occurring in the aquifer. In addition, removal of contaminated soils would provide a reduction in the mobility of contaminants in soil.	Provides permanent reduction in TMV in the target area provided conditions are favorable. In addition, removal of contaminated soils would provide a reduction in the mobility of contaminants in soil.

Shaw Environmental, Inc.

Table ES-1 (Continued) **Comparative Analysis of Alternatives**

Comparative Analysis of Alternatives Criteria	Alternative 1 No Action	Alternative 2 Excavation, Monitored Natural Attenuation with Land Use Controls	Alternative 3 Excavation, In Situ Bioremediation, Land Use Controls
Short-term effectiveness	No short-term impacts.	Minimal impacts to the community, workers, or the environment from short-term activities. Provides almost immediate protection.	Minimal impacts to the community, workers, or the environment from short-term activities. Provides almost immediate protection.
Implementability	Inherently implementable.	Readily implemented.	Readily implemented. Specialized knowledge required for implementation.
Capital	\$0	\$215,000	\$402,000
• O&M	\$0	\$424,000	\$512,000
 Present worth 	\$0	\$639,000	\$914,000

Notes and Acronyms:

Costs rounded to nearest thousand dollars

ARARs applicable or relevant and appropriate requirements

COCs chemicals of concern MNA monitored natural attenuation O&M operations and maintenance RAO remedial action objectives to be considered TBC TMV toxicity, mobility, or volume

1.0 Introduction

This Feasibility Study (FS) was prepared by Shaw Environmental, Inc. (Shaw), for the U.S. Army Corps of Engineers (USACE), Tulsa District, under the Louisville District's Multiple Award Remediation Contract (MARC) Contract No. W912QR-04-D-0027, for remediation activities on the Longhorn Army Ammunition Plant (LHAAP) in Karnack, Texas. This FS presents the analysis of remediation alternatives for the former Sump Water Tank Area designated as LHAAP-50 in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and provides the basis for remedy selection consistent with the intended future use of LHAAP as a wildlife refuge.

The U.S. Army Environmental Command provides funding for the environmental remedial activities. The Base Realignment and Closure Division are responsible for all aspects of LHAAP including the environmental program, operations, and land transfer.

1.1 Purpose and Organization of Report

Environmental cleanup decision-making under CERCLA follows a prescribed sequence: Remedial Investigation (RI), FS, Proposed Plan (PP), and Record of Decision (ROD). The RI serves as the mechanism for collecting data to characterize site conditions, determine the nature and extent of the contamination, and assess risks to human health and the environment from this contamination. LHAAP-50 was designated as a Group 4 site in previous investigations. This investigatory element of decision making for the Group 4 sites has been completed and documented in the RI report (Jacobs Engineering Group, Inc. [Jacobs], 2002), the baseline human health risk assessment (Jacobs, 2003), the environmental site assessment (Plexus, 2005), the data gaps investigation (Shaw 2007a), modeling report (Shaw, 2007b), and the monitored natural attenuation evaluation (Appendix A). A new well was installed in 2008, and the data is included in Appendix B. No human health risk or hazard to a hypothetical future maintenance worker was identified from the soil at LHAAP-50, but a non-carcinogenic hazard and carcinogenic risk was identified from the groundwater. The human health risk was evaluated in the final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 sites (Jacobs, 2003). The ecological risk was evaluated in the Installation-Wide Baseline Ecological Risk Assessment (BERA) (Shaw, 2007c). No potential risk to ecological receptors from the LHAAP-50 media was identified.

This FS takes the next step of identifying and evaluating remedial solutions. The environmental problems identified for LHAAP-50 are primarily volatile organic compounds (VOC) and perchlorate contamination in the shallow groundwater. Even though perchlorate is not a

Resource Conservation and Recovery Act (RCRA) or CERCLA waste, it is an emerging contaminant and is addressed in this FS. The formulation of viable alternatives involves defining remedial action objectives (RAOs), general response actions, volumes or area of media to be addressed, and potentially applicable technologies and process options. After a reasonable number of appropriate alternatives have been formulated, the alternatives undergo a detailed analysis using nine established evaluation criteria. The detailed analysis profiles individual alternatives against the criteria and compares them with each other to gauge their relative performance. Each alternative that makes it to this stage of the analysis, with the exception of the required "No Action" alternative, is expected to be protective of human health and compliant with applicable or relevant and appropriate requirements (ARARs) (unless a waiver is justified), both threshold requirements under CERCLA. The alternatives developed in this FS address the media and chemicals of concern (COCs) at LHAAP-50 through combinations of source control and groundwater actions.

The preferred alternative for LHAAP-50 will be presented in the PP. The PP will briefly summarize the alternatives studied in this FS, highlighting the key factors that led to identifying the preferred alternative. The U.S. Department of the Army (Army) will submit the PP to the regulatory agencies, Texas Commission on Environmental Quality (TCEQ) and the U.S. Environmental Protection Agency (USEPA), and then the public for review. After this review, the Army will release a ROD that documents the selected remedy, certifies that the remedy selection process was carried out in accordance with CERCLA, and addresses public comments on the PP. Relevant documentation, including the RI, FS, and subsequent documents, are or will be available to the public in the Administrative Record for this project. The Administrative Record is housed at LHAAP and at the Marshall Public Library in Marshall, Texas.

1.2 Longhorn Army Ammunition Plant Background

1.2.1 Site Description

The LHAAP is an inactive, government-owned, formerly contractor-operated and -maintained industrial facility located in central-east Texas in the northeastern corner of Harrison County. The former installation occupied nearly 8,416 acres between State Highway 43 at Karnack, Texas, and the western shore of Caddo Lake as shown in **Figure 1-1**. The nearest cities are Marshall, Texas, approximately 14 miles to the southwest, and Shreveport, Louisiana, approximately 40 miles to the east. Caddo Lake, a large freshwater lake situated on the Texas-Louisiana border, bounds LHAAP to the north and east. The industries in the surrounding area consist of agriculture, timber, oil and natural gas production, and recreation.

LHAAP-50 is located in the north-central portion of LHAAP and covers an area of approximately 1 acre (**Figure 1-2**). The site is bound by Goose Prairie Creek to the north and by Crockett Avenue to the northeast. LHAAP-47 is located north of LHAAP-50 and LHAAP-08 is

to the east. **Figure 1-3** shows the current site boundary. The northeastern half of LHAAP-50 is an open area of grass and brush that is bounded by South Crockett Avenue to the northeast. The southwestern half of the site is an area of heavy timber bounded by a drainage ditch to the west, a railroad spur to the south, and Goose Prairie Creek to the north. Two gravel access lanes connect LHAAP-50 to South Crockett Avenue. Runoff from the northeastern half of the site is generally toward the northeast. Runoff is collected by a drainage ditch to the northeast that runs parallel to South Crockett Avenue and eventually joins Goose Prairie Creek. Runoff from the remainder of the site is toward the north directly into Goose Prairie Creek. Runoff is collected to the west by a drainage ditch that carries the runoff north into Goose Prairie Creek.

Six monitoring wells have been installed at LHAAP-50 in the shallow zone, at a depth of approximately 20 feet below grade. One well has been installed in the intermediate zone at approximately 55 feet below ground surface (bgs). The monitoring well locations at LHAAP-50 and the adjacent wells from surrounding sites are shown on **Figure 1-3**. There are no wells completed in the deep saturated zone. Based on the 2007 potentiometric surface map for LHAAP production area, the groundwater flow direction in the shallow saturated zone below LHAAP-50 is to the east-northeast as shown on Figure 1-4. Rising head slug tests were performed on all wells at LHAAP-50 to calculate hydraulic conductivity values using the Bouwer-Rice method. The hydraulic conductivity values for the shallow saturated zone at LHAAP-50 ranged from 5.5×10^{-5} centimeters per second (cm/sec) at well 50WW04 to 1.9×10^{-4} cm/sec at well 50WW03 (Jacobs, 2002).

General soil and geologic maps indicate that the site is situated on the outcrop of the Wilcox Group. The Wilcox Group materials at the site generally consist of a few feet of residually derived soils overlying silts and clays. Surficial soils range from 0 to 2 feet thick and are composed of brown, silty sand grading into gray silt. This material is underlain by yellowish-brown to gray silt and clay with alternating layers of sandy clays and silty clays. The alternating layers are present from 8 to 11 feet bgs in borings to the south and up to 18 feet bgs at boring 50WW01 to the north. At 50WW02, a fine grain sand was observed in the silty clay where the well was screened. A cross-section of the site is shown in **Figure 1-5**.

1.2.2 History

LHAAP was established in December 1941, near the beginning of World War II, when the Army issued a contract to build a six-line production facility for manufacturing trinitrotoluene (TNT). Various media have been contaminated by past industrial operations and waste management practices at LHAAP. Industrial operations involved the use of secondary explosives, rocket motor propellants, and various pyrotechnics, such as illuminating and signal flares and ammunition. Explosives included TNT and black powder. Typical composite propellants were composed of a rubber binder, an oxidizer such as ammonium perchlorate, and a powdered metal

fuel such as aluminum. Pyrotechnics were generally composed of an inorganic oxidizer, such as sodium nitrate, a metal powder such as magnesium, and a binder. Other materials used in the industrial operations included acids, lubricants, and solvents, particularly trichloroethene (TCE) and methylene chloride. Waste management included sanitary wastewater treatment, industrial wastewater treatment, holding/evaporation ponds, storm water drainage, sanitary and contaminated waste landfills, and demolition/burning grounds. Discharges and releases to surface water, groundwater, and other secondary media have occurred from the historical operations and practices.

LHAAP was placed on the National Priorities List (NPL) August 9, 1990. A Federal Facility Agreement (FFA) among the USEPA, the Army, and the Texas Natural Resources Conservation Commission, now the TCEQ, became effective December 30, 1991. LHAAP became inactive in July 1997, and a year later the Army issued a contract to remove salvageable property. On May 5, 2004, the Army transferred approximately 5,032 acres to the U.S. Fish and Wildlife Service (USFWS) for management as the Caddo Lake National Wildlife Refuge. Almost 2,000 acres have been transferred to the USFWS since the initial transfer and the process will continue as response is completed at individual sites. The remaining land is under the Army's control and includes the Group 2 and 4 sites currently undergoing RI/FS studies. The Army intends to transfer this land to the USFWS after the environmental response is completed.

LHAAP-50 contained an aboveground storage tank (AST) which received industrial wastewater from various waste production sumps throughout LHAAP from 1955 to 1988 (Plexus, 2005). LHAAP-50 was not originally listed as an NPL site in FFA; however, the Army and regulatory agencies have concurred that the site groundwater impact is of NPL caliber. As described in the Longhorn Missile publication dated 15 September 1966, all operating buildings at the LHAAP installation were provided with individual concrete sumps to collect industrial wastewater (Jacobs, 2002). If the nature of the operations was such that contamination was considered negligible, the sump was permitted to overflow and drain into the drainage ditches. All other sumps were emptied and their wastewater transported by truck to a 47,000-gallon AST located at LHAAP-50. Discharges from this storage tank were made upstream of the bridge on Crockett Avenue, which crosses Goose Prairie Creek just south of 51st Street. Contents from this storage tank were emptied into Goose Prairie Creek after all solids were filtered out and the natural flow in the creek was sufficient to "dilute the waste to a level that is safe for fish and other aquatic life." (Jacobs, 2002) If natural flow in the creek was considered insufficient, clean water was apparently pumped into the creek to dilute the contents. Because the storage tank was described as holding industrial wastewater, it is possible hazardous wastes may have been released by these activities.

1.3 Summary of Sampling Investigations

Site investigations at the Group 4 sites were performed in a phased approach. The investigations conducted at LHAAP-50 are summarized in Table 1-1. Phase I was initiated to evaluate potentially contaminated sites for possible uncontrolled releases to the environment and to identify site-related contaminants. Phase II investigation work was conducted to further investigate those areas identified in Phase I that required additional investigation to characterize the contaminants present. Following the Phase II investigation, a Pre-Phase III investigation was conducted by USACE in May 1996. This investigation used direct push groundwater sampling devices to assist in delineating the extent of VOC contamination in the shallow groundwater beneath the Group 4 project area and to help determine additional monitoring well locations. Based upon the results of this Pre-Phase III investigation, the scope of the Phase III investigation was defined. The goal of the Phase III RI was to complete the investigation of the Group 4 sites and establish the extent of groundwater contamination. Activities conducted after Phase III were completed to respond to specific data needs such as the extent of VOC contamination in groundwater and evaluation of natural attenuation. Throughout these efforts, the USACE and Shaw collected quarterly surface water samples in the Goose Prairie Creek. The surface water sampling locations are presented in **Figure 1-3**.

1.3.1 Initial Site Investigation

During 1995, a Site Investigation (SI) was performed at LHAAP-50. During this investigation, sediments and soils were sampled in order to assess whether industrial wastewater that was stored in the tank had impacted LHAAP-50. Two sediment samples (50SD01 and 50SD02) were collected from Goose Prairie Creek, five surface soil samples (50SS01 through 50SS05) were collected, four soil borings were completed (50SB01 through 50SB04), and 12 soil samples were collected from the soil borings.

1.3.1.1 Sediment Sampling

Two sediment samples (50SD01 and 50SD02) were collected from Goose Prairie Creek and submitted for laboratory analysis of VOCs, semivolatile organic compounds (SVOCs), explosive compounds, and metals. The results from the sediment samples showed no detected concentrations of SVOCs or explosive compounds. One VOC, TCE, was detected at a concentration of 33 micrograms per kilogram (μ g/kg) in sample 50SD02.

Sixteen metals were detected in the sediment samples; however, the detections were all at low concentrations, often below background levels.

1.3.1.2 Soil Sampling

Five surface soil samples (50SS01 through 50SS05) were collected at LHAAP-50 during the SI. The samples were submitted for laboratory analysis of VOCs, SVOCs, explosive compounds,

and metals. The results from the surface soil samples showed no detected concentrations of explosive compounds.

TCE was detected in two surface soil samples (50SS02 and 50SS04) at concentrations of $3J \mu g/kg$ and $5 \mu g/kg$ respectively. Three SVOCs [benzoic acid, benzyl butyl phthalate, and bis(2-ethylhexyl) phthalate] were detected in the soil samples at low concentrations. Sixteen metals were detected in the soil samples; however, only lead was detected at an elevated concentration. Lead was detected in all five surface soil samples at concentrations ranging from 3.1J to 30.0J milligrams per kilogram (mg/kg) (Jacobs, 2002).

Subsurface soil samples were collected at LHAAP-50 from soil borings 50SB01 through 50SB04. A total of 12 samples were collected and submitted for laboratory analysis of VOCs, SVOCs, explosive compounds, and metals. The soil samples showed no detected results of explosive compounds. TCE was detected in sample 50SB02 at a concentration of 519 µg/kg. Two SVOCs [benzyl butyl phthalate and bis(2-ethylhexyl) phthalate] were detected in the soil samples at low concentrations. Barium was detected in three samples at concentrations ranging from 283 to 871 mg/kg. Beryllium was detected in six samples at concentrations ranging from 0.94 to 2.7 mg/kg. Lead was detected in all 12 subsurface soil samples at concentrations ranging from 4.86 to 33.0J mg/kg (Jacobs, 2002).

1.3.2 Phase III RI

Sverdrup Environmental, Inc. (Sverdrup) conducted the field activities for the Phase III RI in 1998. Activities at LHAAP-50 included the collection of sediment, surface water, soil, and groundwater samples.

1.3.2.1 Sediment Sampling

Six sediment (50SD03 through 50SD08) and six surface water samples (50SW03 through 50SW08) were collected at LHAAP-50, with Goose Prairie Creek as the targeted area. The sediment and surface water samples were analyzed for VOCs, SVOCs, explosive compounds, cyanides, and metals. Two sediment samples (50SD06 and 50SD08) and two surface water samples (50SW06 and 50SW08) were also analyzed for pesticides, polychlorinated biphenyls (PCBs), and dioxins/furans. Sediment samples were analyzed for total organic carbon (TOC) and surface water samples were analyzed for hardness (Jacobs, 2002).

The results from the sediment samples showed no detections of SVOCs or explosive compounds. Five VOCs were detected in the sediment samples at low concentrations. Cyanide was detected in one sample (50SD05) at a concentration of 947.9 μ g/kg.

Arsenic was detected in one sample (50SD08) at a concentration of 14.2 mg/kg. Beryllium was detected in four samples at concentrations ranging from 0.938 to 2.6 mg/kg. Lead was detected

in all six sediment samples at concentrations ranging from 10.4 to 71.7 mg/kg. Selenium was detected in four samples at concentrations ranging from 1.5 to 3.4 mg/kg. Samples 50SD06 and 50SD08 showed no detected concentrations of PCBs. Two pesticides were detected in 50SD08 at low concentrations. Ten dioxin/furan compounds were detected between the two sediment samples (Jacobs, 2002).

1.3.2.2 Surface Water Sampling

The results from the surface water samples detected three VOCs (acetone, TCE, and cis-1,2-dichloroethene [DCE]) at concentrations below their Texas Water Quality Standard (TWQS) value and maximum contaminant level (MCL) (Jacobs, 2002). The other four surface water samples showed no detected concentrations for VOCs. One SVOC [bis(2-ethylhexyl)phthalate] was detected in 50SW03 at a low concentration of 7.3 micrograms per liter (μ g/L). The TWQS for bis(2-ethylhexyl) phthalate is 59 μ g/L. One explosive compound (2,6-dinitrotoluene) was detected in 50SW05 at a concentration of 11 μ g/L. Cyanide was detected in one of the six surface water samples at a concentration of 11 μ g/L (Jacobs, 2002).

Fifteen metals were detected among the six surface water samples. Aluminum, arsenic, copper, lead, thallium, and zinc were detected at concentrations exceeding the TWQS values. Aluminum was detected in all six samples at concentrations from 1,100 to 11,000 μ g/L, exceeding the TWQS of 991 μ g/L. Copper was detected in two samples (50SW03 and 50SW07) at concentrations of 44 μ g/L and 29 μ g/L, respectively, exceeding the TWQS of 12.3 μ g/L. Lead was detected in all six samples at concentrations ranging from 3 to 69 μ g/L, above the TWQS of 2.52 μ g/L. Zinc was detected in two samples (50SW03 and 50SW04) at concentrations of 140 μ g/L and 470 μ g/L, respectively, compared to the TWQS of 104 μ g/L. Samples 50SW06 and 50SW08 were analyzed for pesticides, PCBs, and dioxin/furan compounds. No pesticides or PCBs were detected in samples. Three dioxin/furan compounds were detected between the two samples (Jacobs, 2002).

1.3.2.3 Soil Sampling

Soil samples were collected during the Phase III investigation at two sample locations, 50SB06 and 50SB07. Soil samples were collected at intervals of 0 to 0.5 feet, 1 to 3 feet, 3 to 5 feet for location 50SB06 and one sample was collected at 0 to 0.5 feet at 50SB07. A total of four samples were collected and analyzed for VOCs, SVOCs, pesticides, PCBs, explosive compounds, dioxins/furans, and metals.

The results for the soil samples showed no detected concentrations of SVOCs or explosive compounds.

TCE and three pesticides were detected in the soil samples at low concentrations. One PCB (Aroclor 1254) was detected in three soil samples at low concentrations. Fifteen dioxin/furan

compounds were detected among the soil samples at low concentrations. Lead was detected in all four samples at concentrations ranging from 15.4 to 29.6 mg/kg. Selenium was also detected in all four soil samples at concentrations ranging from 1.45 to 2.92 mg/kg.

1.3.2.4 Groundwater Sampling

Four monitoring wells (50WW01 through 50WW04) were installed at LHAAP-50 during the Phase III RI. One groundwater sample was collected from each well at the time of installation and the samples were submitted for laboratory analysis of VOCs, SVOCs, explosive compounds, perchlorate, and metals. The sample from 50WW01 was also analyzed for pesticides, PCBs, and dioxin/furan compounds.

The results from the groundwater sampling showed no detected concentrations of SVOCs, explosive compounds, pesticides, and PCBs. 1,1-DCE was detected at a concentration of $50\,\mu\text{g/L}$ and 1,2-dichloroethane (DCA) was detected at a concentration of $98\,\mu\text{g/L}$. Tetrachloroethene (PCE) was detected at a concentration of $35\,\mu\text{g/L}$, and TCE was detected at a concentration of 2,900 $\mu\text{g/L}$. Vinyl chloride (VC) was detected at a concentration of $100\,\mu\text{g/L}$ and cis-1,2-DCE was detected at a concentration of 2,100 $\mu\text{g/L}$. The VOC levels were above associated MCLs (Jacobs, 2002).

Perchlorate was analyzed in wells 50WW01, 50WW02, and 50WW04. No detections of perchlorate were identified in wells 50WW01 and 50WW04; however, very high levels $(18,000 \, \mu g/L)$ were detected in 50WW02. Well 50WW01 was analyzed for dioxin/furan compounds. The results showed detections of three dioxins/furans at low concentrations (Jacobs, 2002).

1.3.3 Additional Investigations

Additional investigations at LHAAP-50 included the collection of four soil samples and four groundwater samples in May 2000 (Jacobs, 2002). A second round of groundwater samples were collected in February 2001 (STEP, 2005). A round of groundwater samples and soil samples from eight soil borings were collected in August and September 2004 (Shaw, 2007a). One new well, 50WW06, was installed and was screened in the intermediate groundwater-bearing zone. All samples collected during the additional investigations were analyzed for perchlorate. Samples collected in 2004 were also analyzed for VOCs. VOC and perchlorate groundwater samples were collected by Shaw in 2007 for natural attenuation evaluation (**Appendix A**), and a new shallow well was installed to the east of LHAAP-50 and sampled in 2008 to delineate the VOC plume (**Appendix B**). **Appendix A** also contains a summary table of historic VOC data.

1.3.3.1 Soil

Four soil samples were collected in May 2000 from two soil borings (50SB08 and 50SB09) at intervals of 0 to 0.5 feet bgs and 1 to 2 feet bgs. Perchlorate was detected in three of the samples at concentrations ranging from 30 to 36.1 µg/kg (Jacobs, 2002). In May 2000, during the wet season, soil samples were collected at five locations from 0 to 1 feet bgs and 1 to 2 feet bgs along surface drainage pathways from the old tank location (STEP, 2005). In this FS, the samples are designated as STEP-50SSxx to avoid confusion with the 50SSxx samples collected in 1995 (Sverdrup, 1997). The samples were analyzed for perchlorate. Perchlorate was only detected in the 0 to 0.5 foot bgs interval at concentrations of 40.6J µg/kg to 45,600 µg/kg (STEP, 2005). In 2004, samples were collected from eight soil borings (50SB10 through 50SB17) at the surface (0 to 1 feet bgs), immediately above the water, and from the intervening zone (Shaw, 2007a). Perchlorate was detected at a concentration of 25J µg/kg in the surface soil sample from 50SB10. Additionally, concentrations of 740 µg/kg and 2,600 µg/kg at depths of 6 to 9 feet bgs and 9 to 11 feet bgs (just above the water table), respectively, were detected in soil collected from 50SB17. Two VOCs, acetone and methylene chloride, were detected at or estimated near the detection limit. The data reports were reviewed and the methylene chloride detections are attributable to laboratory contamination. Acetone was detected at a maximum concentration of 0.054 mg/kg. The soil medium-specific concentration (MSC) for industrial use based on inhalation, ingestion, and dermal contact (SAI-Ind) is 2,500 mg/kg (TCEQ, 2006). Since the concentration is below the SAI-Ind, which would be the cleanup level, cleanup of acetone in soil is not carried forward.

1.3.3.2 Groundwater

In May 2000, groundwater samples were collected from monitoring wells 50WW01 through 50WW04 and analyzed for perchlorate (STEP, 2005). Perchlorate was detected in three wells (50WW01 through 50WW03) at concentrations ranging from 2.6 to 3,210J μ g/L. In February 2001, groundwater samples were collected from 50WW01 through 50WW03 and analyzed for perchlorate. The February 2001 groundwater samples showed detected concentrations of perchlorate in 50WW02 at 10,000 μ g/L (STEP, 2005).

A new monitoring well, 50WW06 was installed in the intermediate zone in August 2004 (Shaw, 2007a). In August and September 2004, groundwater samples were collected from monitoring wells 50WW01 through 50WW04 and 50WW06 and analyzed for perchlorate and VOCs. During the 2004 sampling, perchlorate was detected at a concentration of 2,500 μ g/L in the shallow monitoring well 50WW02, located in the eastern portion of LHAAP-50. Except for monitoring well 50WW02 and 50WW06, perchlorate was not detected in any other groundwater samples collected from LHAAP-50 during the 2004 round (Shaw, 2007a). Perchlorate and TCE were detected in the well in the intermediate water bearing zone, 50WW06, at concentrations of 6.7 μ g/L and 15 μ g/L, respectively (Shaw, 2007a). Twelve VOCs were also detected in the

groundwater at LHAAP-50 during the 2004 sampling. TCE was detected at a concentration of $9,200 \,\mu\text{g/L}$ at monitoring well 50WW02. Additionally, cis-1,2-DCE was detected at a concentration of $1,800 \,\mu\text{g/L}$ at monitoring well 50WW02.

In May 2005, groundwater samples were collected from wells 50WW01 through 50WW06 and were analyzed for perchlorate and VOCs. Perchlorate was detected in three wells (50WW02, 50WW05, and 50WW06) with a maximum detection of 1, 590 μ g/L at 50WW02. Several VOCs were detected at 50WW02 and 50WW05. The maximum concentrations were at 50WW02 and several VOCs (PCE at 6.5 μ g/L, TCE at 4,810 μ g/L, cis-1,2-DCE at 954 μ g/L, 1,1-DCE at 4.74 μ g/L, and vinyl chloride at 7.95 μ g/L) had concentrations above their MCLs. At 50WW06, the intermediate well, only TCE (4.7 μ g/L) and acetone (11.4 μ g/L) were detected. TCE was below the MCL at 50WW06.

In February 2007, additional samples were collected from 50WW02, 50WW03, 50WW05, and 50WW06 and were analyzed for perchlorate, VOCs, and natural attenuation parameters to evaluate monitored natural attenuation (MNA) as a remedy for LHAAP-50. 50WW02 continued to be the well where maximum VOC and perchlorate concentrations were detected. TCE continued to be below the MCL and perchlorate was not detected at the intermediate well 50WW06. These results were used in the natural attenuation evaluation (**Appendix A**) and the lab reports are included in **Appendix B**.

In February 2008, an additional well (50WW07) was installed downgradient of LHAAP-50 in the shallow zone to delineate the extent of the plume. No VOCs or perchlorate were detected. The data and well information are included in **Appendix B**.

1.3.3.3 Surface Water

Sampling was conducted for perchlorate at selected locations along Goose Prairie Creek, including location GPW-1, located between LHAAP-50 and LHAAP-47. Historically, perchlorate levels in the creek have fluctuated from a max of 59.9 μ g/L in June 2003 to a low of nondetect (or less than 1 μ g/L), but have remained below the TCEQ surface water contact recreational level (395 μ g/L). The perchlorate concentrations at GPW-1 have been below the groundwater MSC for residential use (GW-Res) (26 μ g/L) in the last three quarters of sampling (since June 2008). GPW-3 is located approximately 3,500 feet downstream of GPW-1. Historically, perchlorate concentrations have been below the GW-Res at GPW-3. Thus, the water flowing through the creek at GPW-1 is not contaminating Caddo Lake above the GW-Res.

Shaw Environmental, Inc.

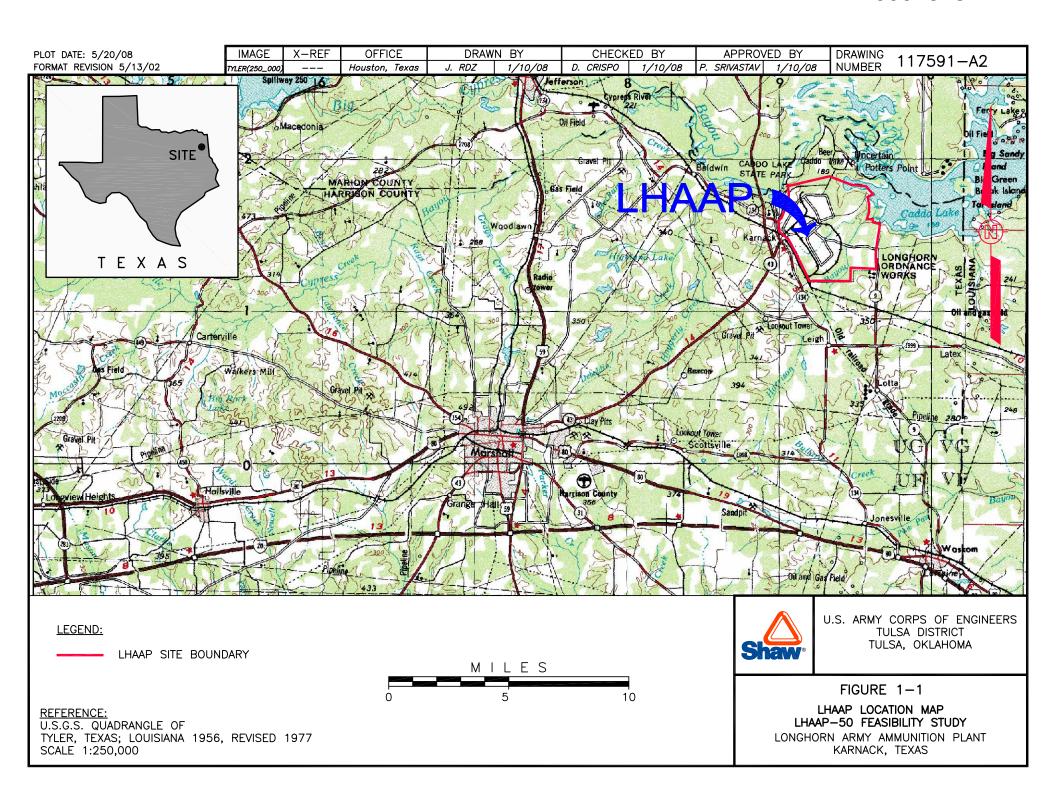
Table 1-1 Summary of Investigations at LHAAP-50 Former Sump Water Tank Area

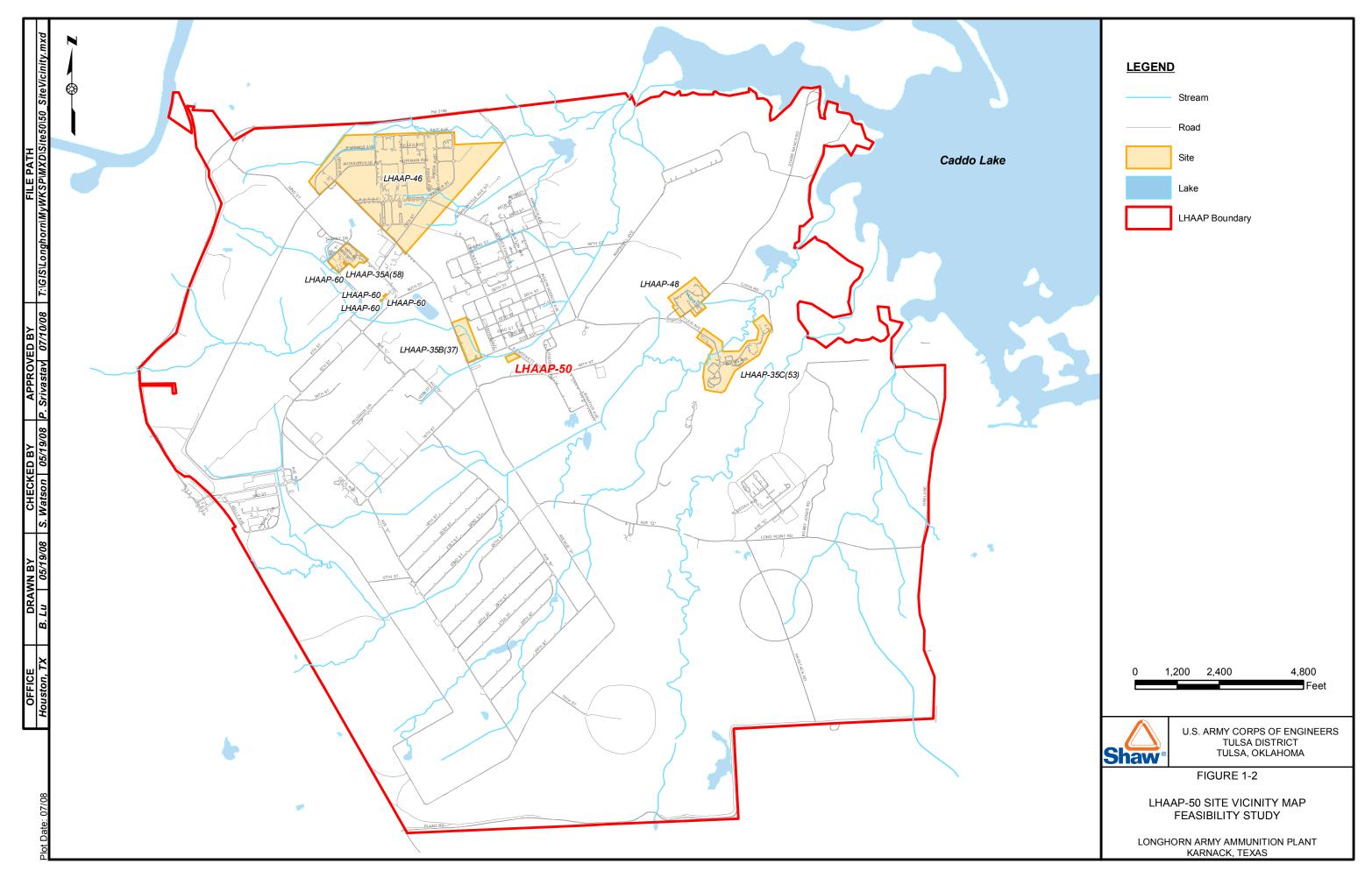
Initial Site Investigation (Jacobs, 2002)

- Collected 2 sediment samples (50SD01 and 50SD02) from Goose Prairie Creek
- Collected 5 surface soil samples (50SS01–50SS05) and a resampling of each of the 5 locations 4 months later (explosive analysis only)
- Collected 12 soil samples from 4 soil boring locations (50SB01–50SB04)

Phase III (Jacobs, 2002)

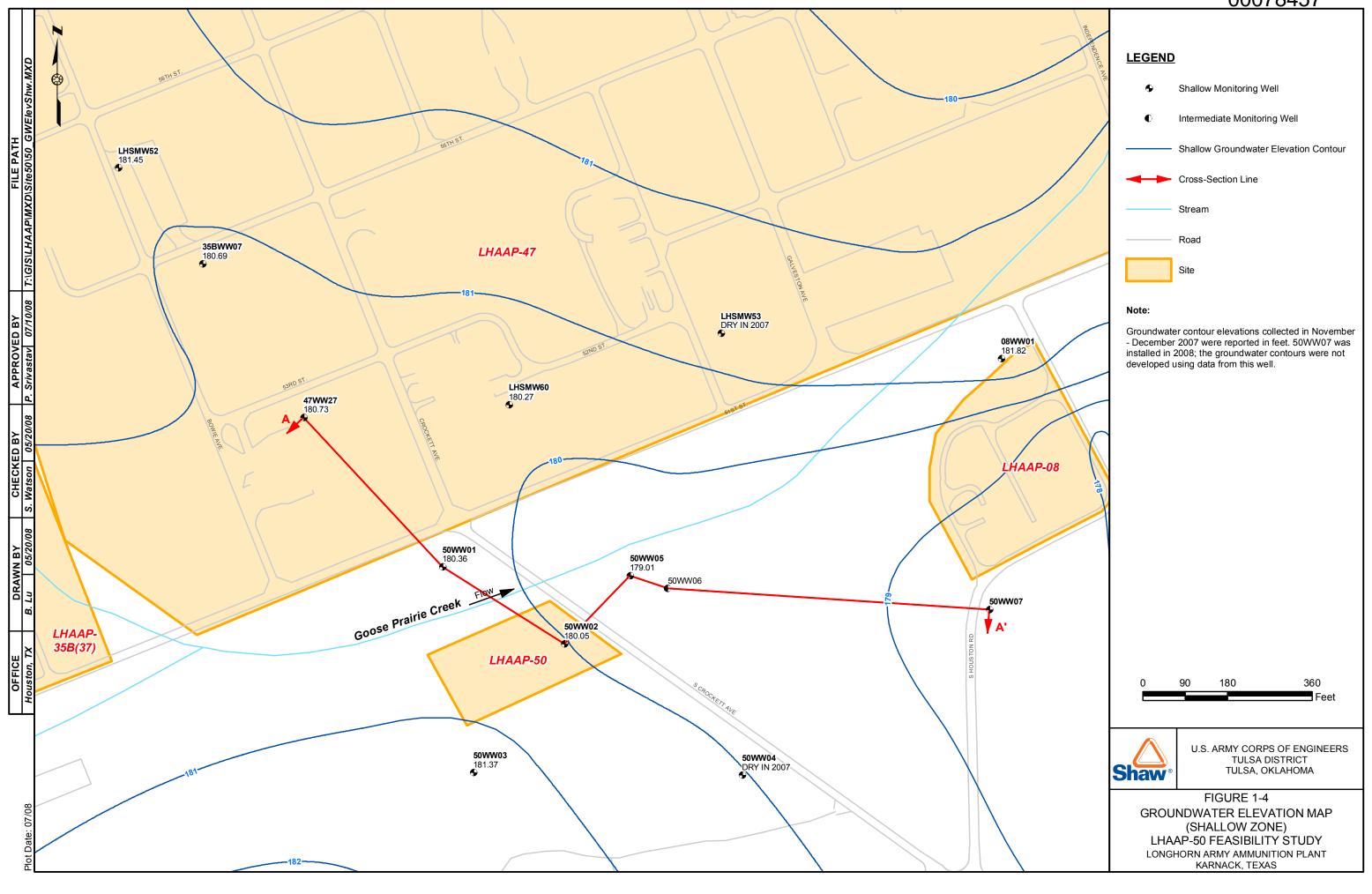
- 6 sediment and 6 surface water samples were collected (50SD03 through 50SD08 and 50SW03)
- Collected 4 soil samples [50SB06 (0-0.5 feet), (1-3 feet), (3-5 feet) and 50SS07 (0-0.5 feet)] from 2 sample locations
- Installed 4 monitoring wells (50WW01–50WW04) and collected groundwater samples from each well

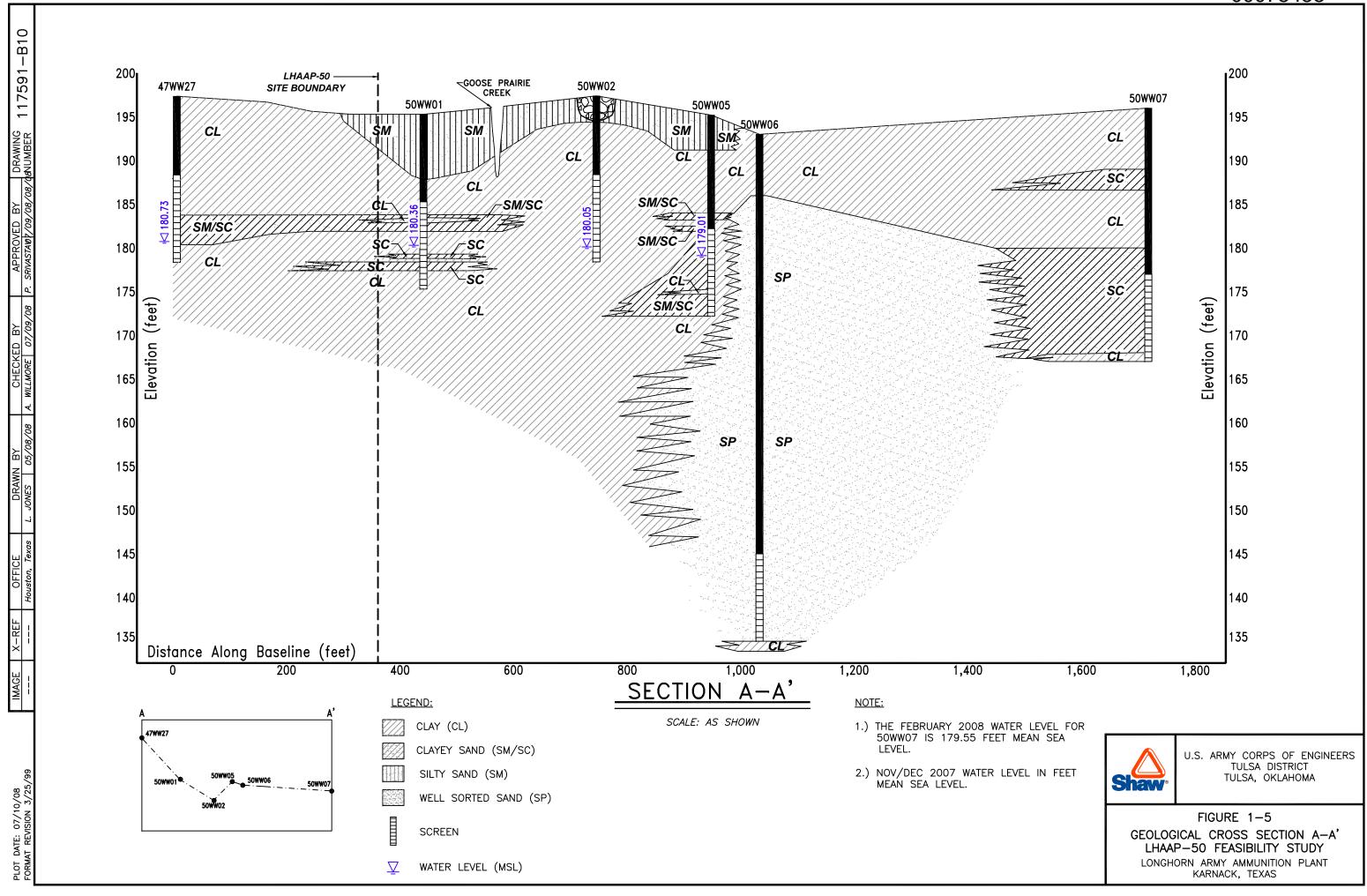

Additional Investigations


- May 2000—Collected 4 soil samples from 2 soil borings (50SB08 and 50SB09) and collected STEP-50SS01 through 50SS05 along surface drainage paths for analysis and groundwater samples from wells 50WW01–50WW04 for perchlorate analysis (STEP, 2005)
- February 2001 Collected groundwater samples from wells 50WW01–50WW03 for perchlorate analysis (STEP, 2005)
- September 2002 Installed shallow zone well, 50WW05 (STEP, 2005)
- August/September 2004 Installed intermediate zone well 50WW06, collected groundwater samples from wells (50WW01 through 50WW06) and 8 soil borings for TCL VOCs and perchlorate analysis (Shaw, 2007a)
- May 2005 Collected groundwater samples from 50WW01 through 50WW06 (tabulated data Appendix A)
- February 2007 Collected samples from 50WW02, 50WW05 and 50WW06 for MNA evaluation (Appendix A)
- February 2008 Installed 50WW07 in the shallow zone and sampled for VOCs (Appendix B)

Abbreviations:

MNA monitored natural attenuation STEP Solutions to Environmental Problems


TCL target compound list VOCs volatile organic compounds



00078456 **LEGEND** Shallow Monitoring Well Intermediate Monitoring Well LHAAP-47 LHAAP-08 Hydropunch Surface Water Sample 50SD06 50SW06 GPSAS50-3 Sediment Sample Surface Soil Sample 50SW04 50SD04 50SW05 \$\hat{\alpha}\$50SD05 Soil Boring 50WW01 50WW05 Proposed Injection Location STEP-50DW01 🚫 50SB16 50S D03 €50S W03 ⊗ GPSAS50-1 Former Tank Location 50SB11 50SS02 Goose Prairie Creek STEP-50DW02 STEP-50DW05 Stream STEP-50SS01 GPSAS50-2 Road 50SW07 STEP-50DW04 Site 50DW06 LHAAP-50 50WW03 ≨50SW08 50SD08 120 240 U.S. ARMY CORPS OF ENGINEERS TULSA DISTRICT TULSA, OKLAHOMA Shaw 48TH ST. FIGURE 1-3 SAMPLE LOCATION MAP LHAAP-50

> LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

2.0 Risk and Site Assessment

This section summarizes the risk assessment approach, risk conclusions, and the conceptual site model for LHAAP-50. Information in this section is based on data obtained from the following references:

- Group 4 Sites RI (Jacobs, 2002)
- Group 4 Sites Baseline Human Health Risk Assessment Report (Jacobs, 2003)
- Groups 2 and 4 Groundwater Data Gaps Investigation (Shaw, 2007a)
- Installation-Wide Baseline Ecological Risk Assessment (Shaw, 2007c)
- Plant-Wide Perchlorate Investigation (STEP, 2005)
- Environmental Site Assessment (Plexus, 2005)
- Natural Attenuation Evaluation (**Appendix A**)

2.1 Risk Assessment Summary

This summary is based on the conclusions presented in the *Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites* (Jacobs, 2003). The Jacobs risk assessment (Jacobs, 2003) presented the human health risks and hazards to a hypothetical future maintenance worker under an industrial scenario for soil and groundwater and a screening level ecological risk assessment. A Baseline Ecological Risk Assessment (Shaw, 2007c) was also conducted and concluded there is no impact to ecological receptors. For the human health risk assessment, soil and groundwater data were used to calculate the aggregate risk values, which were then compared to the USEPA target risk range of 1×10^{-4} to 1×10^{-6} for the excess lifetime cancer risk and a hazard index (HI) of 1.

2.1.1 Soil

For the hypothetical future maintenance worker exposure to soil at LHAAP-50, the carcinogenic risk and non-carcinogenic hazard are acceptable. The results for risk assessment included surface and subsurface soil samples and sediment samples. For all soil scenarios, individual and cumulative cancer risks are below 1×10^{-6} and HIs are less than 1.

2.1.2 Groundwater

For the hypothetical future maintenance worker exposure to the groundwater at LHAAP-50, the carcinogenic risk and non-carcinogenic hazard exceed the acceptable limits. Groundwater data with unacceptable risk were also compared to MCLs. The total carcinogenic risk to groundwater for a hypothetical future maintenance worker is 5.5×10^{-3} . The total HI is 305. All chemicals with carcinogenic risk greater than 1×10^{-6} and a hazard quotient (HQ) greater than 0.1 are listed in Tables 2-1 and 2-2, respectively.

2.2 Evaluation of Data Collected Since the Risk Assessment

The risk assessment was completed using data from the samples through February 2001 for groundwater and the 1998 soil samples. Since that time, additional groundwater and soil samples have been collected and analyzed.

2.2.1 Soil

Additional samples were collected during the perchlorate investigation in 2002 (STEP, 2005) and during the data gaps investigation in 2004 (Shaw, 2007a). The maximum perchlorate detected was in a surface soil sample at a concentration of 45,600 μ g/kg collected during the perchlorate investigation (STEP, 2005). The exposure point concentration for perchlorate used in the risk assessment was 36.1 μ g/kg, with an associated HQ of 4.2 × 10⁻⁵ (Jacobs, 2003). Using ratios of the HQ to the perchlorate concentrations, the HQ for the maximum concentration of perchlorate detected since the risk assessment would yield a HQ less than 5 × 10⁻². Thus, the HQ will still be below 0.1 and does not change the outcome of the risk assessment for soil. Thus, the cancer risks and non-cancer hazards posed by soil fall within the acceptable range.

2.2.2 Groundwater

Additional groundwater samples have been collected since the risk assessment and analyzed for perchlorate, VOCs, and attenuation parameters. No new VOCs were detected that would change the listed chemicals in **Tables 2-1** or **2-2**. Chloroform, 1,1,2-trichloroethane (TCA), and 1,2,4-trimethylbenzene all had a carcinogenic risk greater than 1×10^{-6} or an HQ greater than 0.1. More recent data from 50WW02 indicated that chloroform concentrations decreased while TCA and 1,2,4-trimethylbenze were not detected. Thus, the results obtained from these post risk assessment groundwater samples do not alter the conclusions of the risk assessment that groundwater poses risk.

2.3 Media Contamination Assessment

Chemicals in the groundwater at LHAAP-50 pose an unacceptable risk to human health. Evaluation of data generated after the risk assessment did not identify any additional COCs with risks exceeding the USEPA target risk level of 1×10^{-4} or a HQ greater than 0.1 as shown in Tables 2-1 and 2-2. Chemicals in the soil do not pose an unacceptable risk or hazard to human health.

2.3.1 Soil

Perchlorate was detected in soil at LHAAP-50 near the location of the former AST. VOCs were detected at or just above the detection limit in soil at various borings and soil sample locations at the site. The AST is the most likely source of contaminants released into the environment at LHAAP-50. Perchlorate and VOCs were released via overflows, spills, and discharges to the soil and adjacent surface water.

Even though data in the human health risk assessment indicates that chemicals in the soil at LHAAP-50 pose no unacceptable risk to human health, an evaluation was conducted to determine if perchlorate present in the soil poses a threat to the environment. Perchlorate is an emerging contaminant that is extremely soluble, and the potential for residual perchlorate in soil to migrate into the groundwater was evaluated. Perchlorate was detected at a maximum concentration of 45,600 μg/kg in the surface soil between 0 to 0.5 feet bgs (STEP, 2005). The TCEQ soil MSC for industrial use based on groundwater protection (GWP-Ind) for perchlorate is 7,200 μg/kg. Based on the concentrations in the groundwater, the maximum concentrations detected in soil, and the GWP-Ind, perchlorate could be acting as residual source. Therefore, assessment of alternatives will include removal of soil in the areas where perchlorate concentrations exceed the GWP-Ind since it may act as a residual source to the groundwater contamination. The area of perchlorate contamination in soil to be addressed is shown in **Figure 2-1**.

2.3.2 Groundwater

Based on the human health risk assessment, groundwater at LHAAP-50 poses an unacceptable carcinogenic risk and non-carcinogenic hazard to a hypothetical future maintenance worker at LHAAP under an industrial scenario.

Groundwater contaminants identified to have a risk greater than 1×10^{-6} are listed in **Table 2-1**. The COCs listed in **Table 2-1** for the LHAAP-50 groundwater are TCE, VC, 1,1-DCE, 1,2-DCA, and PCE due to their contribution to risk and exceedance of their respective MCL. Even though chloroform, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), and 1,1,2-TCA indicated risk above 1×10^{-6} , the maximum concentrations are not above the MCL, and they are not identified as COCs. The most recent detected VOC concentrations in groundwater are shown in **Figure 2-2**.

Based on the human health risk assessment, groundwater at LHAAP-50 poses an unacceptable non-carcinogenic hazard to a hypothetical future maintenance worker at LHAAP-50 under an industrial scenario. Groundwater contaminants with a HQ greater than 0.1 are listed in **Table 2-2**. Many of the contaminants have a MCL. Since perchlorate does not have an MCL, the TCEQ groundwater MSC for industrial use (GW-Ind) was used for evaluation. The COCs listed in **Table 2-2** for the LHAAP-50 groundwater are perchlorate, TCE, cis-1,2-DCE, 1,2-DCE, VC, PCE, and 1,1-DCE due to the contribution to HI and exceedance of their respective MCLs. Chloroform was eliminated as a COC since the concentrations are below the MCL. 1,2,4-Trimethylbenze was eliminated as a COC since it was not detected the most recent sample results from 50WW02 or any other well. Three metals (antimony, nickel, and manganese) have an HQ above 0.1. These metals were eliminated as COCs since the HQs are less than 1 and for the additional reasons as indicated in **Table 2-2**.

Perchlorate contributed the majority of the non-carcinogenic hazard with an HQ of 200. The most recent perchlorate concentrations in groundwater are shown in **Figure 2-3**.

All of the COCs have MCLs, except perchlorate. To address perchlorate, the TCEQ GW-Ind will be used. The areas where the VOC COCs exceed the MCLs in the shallow zone are shown in **Figure 2-2**. The area where perchlorate in the shallow zone exceeds the TCEQ GW-Ind is shown in **Figure 2-3**.

2.4 Conceptual Site Model

Figure 2-4 illustrates the overall conceptual site model for LHAAP-50. The model presents those pathways that are being considered for remediation. Those pathways that are likely to be incomplete or have negligible impact are not being considered for remediation as discussed below.

The AST was the most likely source of contaminants being released into the environment (**Figure 2-1**). Since the AST has been removed, there is no longer a potential release mechanism for leaks or spills. Perchlorate and VOCs were probably released via overflows, spills, and discharges to the soil and adjacent surface water. Sufficient perchlorate levels remain in the soil to act as an ongoing source of groundwater contamination or to be potentially released into surface waters during storm events. The area of perchlorate contamination in the soil is very small, and the concentrations of perchlorate do not pose an unacceptable risk to human health (hypothetical future maintenance worker) or ecological receptor.

Goose Prairie Creek runs on the north side of LHAAP-50 and the south side of LHAAP-47, and both may be contributing to detections of perchlorate in the surface water. However, perchlorate results for the surface water are below the contact recreation value of 395 μ g/L (TCEQ, 2007). Since the creek discharges into nearby Caddo Lake, a drinking water source, the concentrations in Goose Prairie Creek may also be compared to the GW-Res. The concentrations of perchlorate in the surface water were also below the GW-Res. Even though the concentrations in the creek are acceptable, detection of perchlorate in the creek water indicates that there could be a potential pathway from the contaminated surface soil at LHAAP-50 to the surface water. Thus, the soil pathways considered for remediation are the potential migration to surface water and leaching into the groundwater.

The groundwater at LHAAP-50 may pose a risk for the hypothetical future maintenance workers. Groundwater modeling concluded that there was no impact to surface water from groundwater (Shaw, 2007b), and recent surface water samples collected were below TWQS levels. Thus, the pathways considered for remediation are soil-to-groundwater, soil-to-surface water, and future industrial groundwater use.

Table 2-1
Chemicals Contributing to Carcinogenic Risk in Groundwater

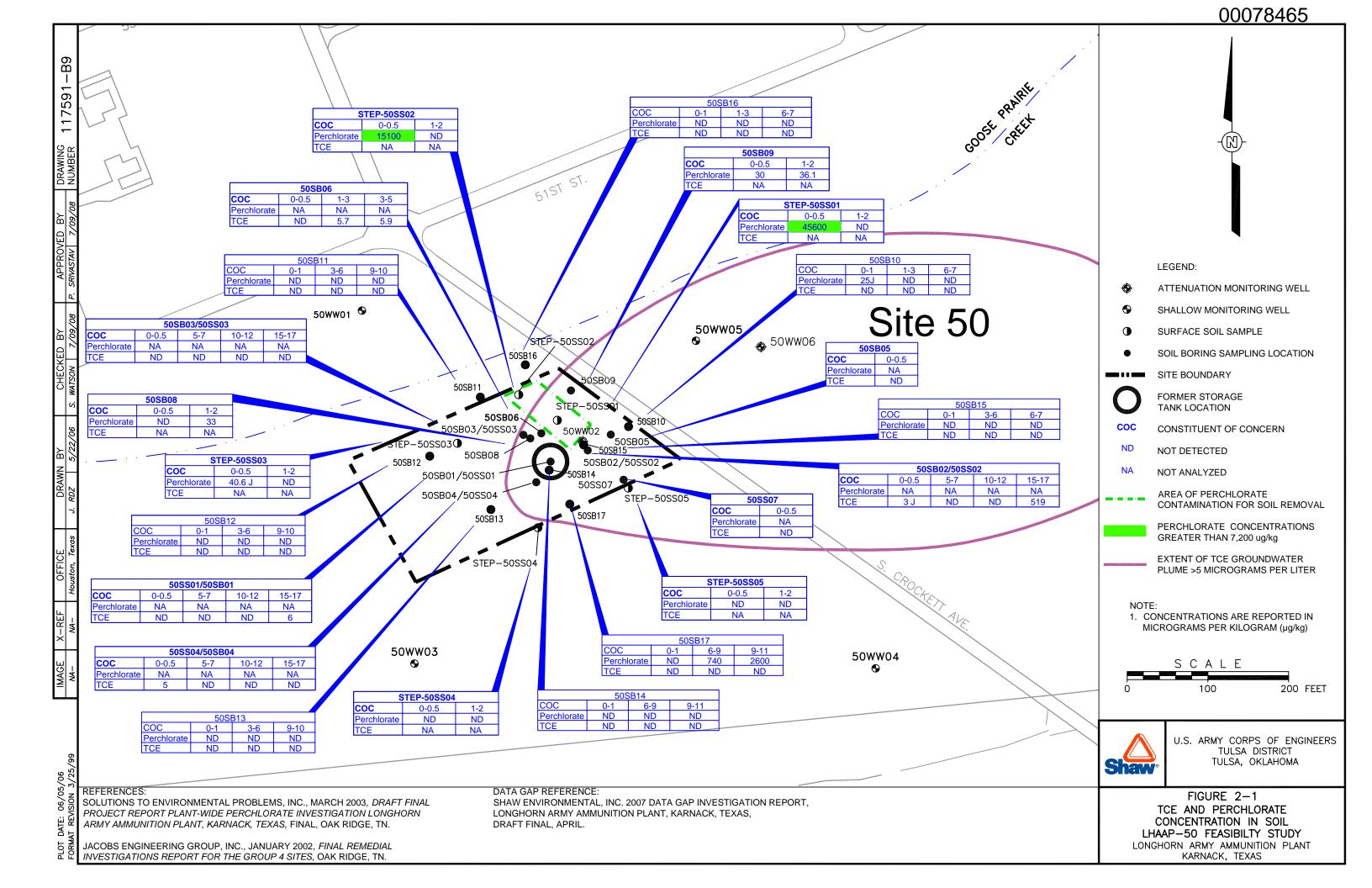
Chemical	Cancer Risk Groundwater ^a	Exposure Point Concentration b (µg/L)	Well	MCL (µg/L)	Retained as Chemical of Concern ?
Trichloroethene	4.3 x 10 ⁻³	22,000	50WW02	5	Yes, 1
Vinyl Chloride	5.8 x 10 ⁻⁴	100	50WW02	2	Yes, 1
1,1-Dichloroethene	4.0 x 10 ⁻⁴	50	50WW02	7	Yes, 1
1,2-Dichloroethane	2.0 x 10 ⁻⁴	98	50WW02	5	Yes, 1
Chloroform	3.8 x 10 ⁻⁵	25	50WW02	80c	No, 2
2,3,7,8-TCDD	3.6 x 10 ⁻⁵	7.3 x 10 ⁻⁶	50WW01	3 x 10 ⁻⁵	No, 2
Tetrachloroethene	3.2 x 10 ⁻⁵	35	50WW02	5	Yes, 1
1,1,2-Trichloroethane	1.4 x 10 ⁻⁶	3.6	50WW02	5	No, 2

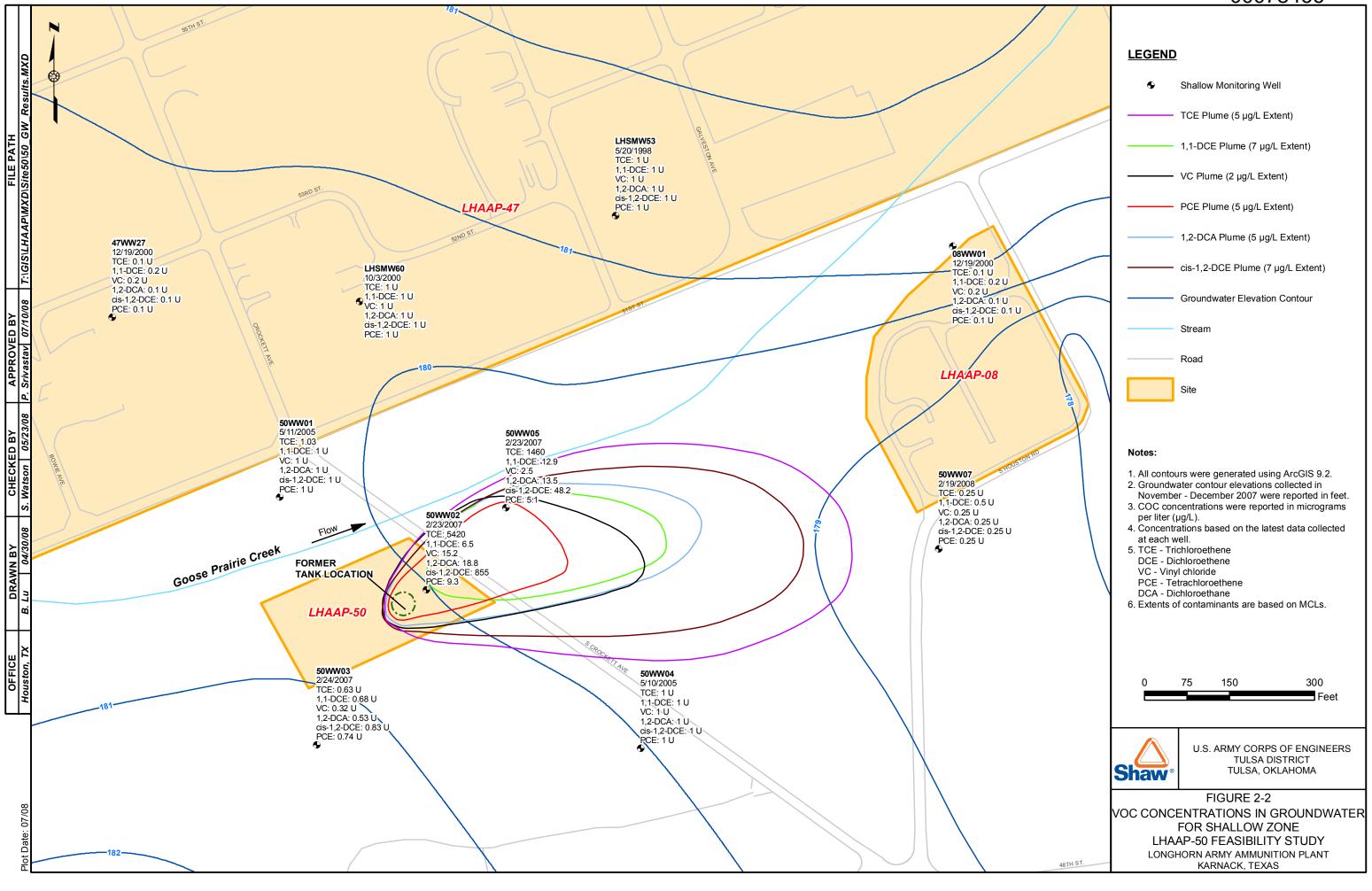
Notes and Abbreviations:

- 1. Identified as chemical of concern (COC) since Exposure Point Concentration is above the Safe Drinking Water Act MCL.
- 2. Excluded since Exposure Point Concentration is below the Safe Drinking Water Act MCL.
- ^a All chemicals with cancer risks exceeding 1.0 x 10⁶ are listed from Baseline Risk Assessment Table 3-73 (Jacobs, 2003).
- b From Baseline Risk Assessment Table 3-50 (Jacobs, 2003).
- ^c MCL for total trihalomethanes which include chloroform, bromodichloromethane, dibromochloromethane, and bromoform.

MCL maximum contaminant level µg/L micrograms per liter

Shaw Project No. 117591


Table 2-2
Chemicals Contributing to Hazard Index in Groundwater


Chemical	Hazard Quotient ^a	Exposure Point Concentration b (µg/L)	Well	MCL (µg/L)	Retained as Chemical of Concern ?
Perchlorate	200	18,000	50WW02	72 ^c	Yes, 1
Trichloroethene	84	22,000	50WW02	5	Yes, 1
Chloroform	14	25	50WW02	80 ^d	No, 2
cis-1,2-Dichloroethene	5.3	4,400	50WW02	70	Yes, 1
1,2-Dichloroethane	3.4	98	50WW02	5	Yes, 1
Vinyl chloride	0.5	100	50WW02	2	Yes, 1
Antimony	0.34	14	50WW02	6	No, 3
Nickel	0.34	690	50WW03	-	No, 4
Manganese	0.23	1,110	50WW03	-	No, 5
Tetrachloroethene	0.18	35	50WW02	5	Yes, 1
1,1-Dichloroethene	0.13	50	50WW02	7	Yes, 1
1,2,4-Trimethylbenzene	0.11	3.9	50WW02	-	No, 6

Notes and Abbreviations:

All chemicals with hazard indexes exceeding 0.1 are listed.

- 1. Identified as chemical of concern (COC) since Exposure Point Concentration is above value indicated in MCL column.
- Excluded as COC since Exposure Point Concentration is less than value indicated in MCL column.
- 3. Excluded as COC since hazard quotient is less than 1 and the exposure point concentration is marginally above the LHAAP perimeter well background of 11.5 μg/L, and it was only detected above background once. Additionally, based on LHAAP operations, antimony compounds did not have significant or widespread use.
- 4. Excluded as COC since Exposure Point Concentration is less than Texas Commission on Environmental Quality industrial use groundwater medium-specific concentration of 2,000 μg/L, which would be proposed as a clean up level, and hazard quotient is less than 1.
- 5 Excluded as COC since Exposure Point Concentration is less than LHAAP perimeter well background of 7,820 μg/L.
- 6. Excluded as COC since more recent sample results were below detection limit, and hazard quotient is less than 1.
- ^a From Baseline Risk Assessment Table 3-74 and Table C-152 (Jacobs, 2003).
- b From Baseline Risk Assessment Table 3-50 (Jacobs, 2003).
- No MCL for perchlorate. Value shown is the Texas Commission on Environmental Quality Industrial Use Groundwater Medium-Specific Concentration.
- d MCL for total trihalomethanes which include chloroform, bromodichloromethane, dibromochloromethane, and bromoform.
- MCL Safe Drinking Water Act Maximum Contaminant Level
- μg/L micrograms per liter

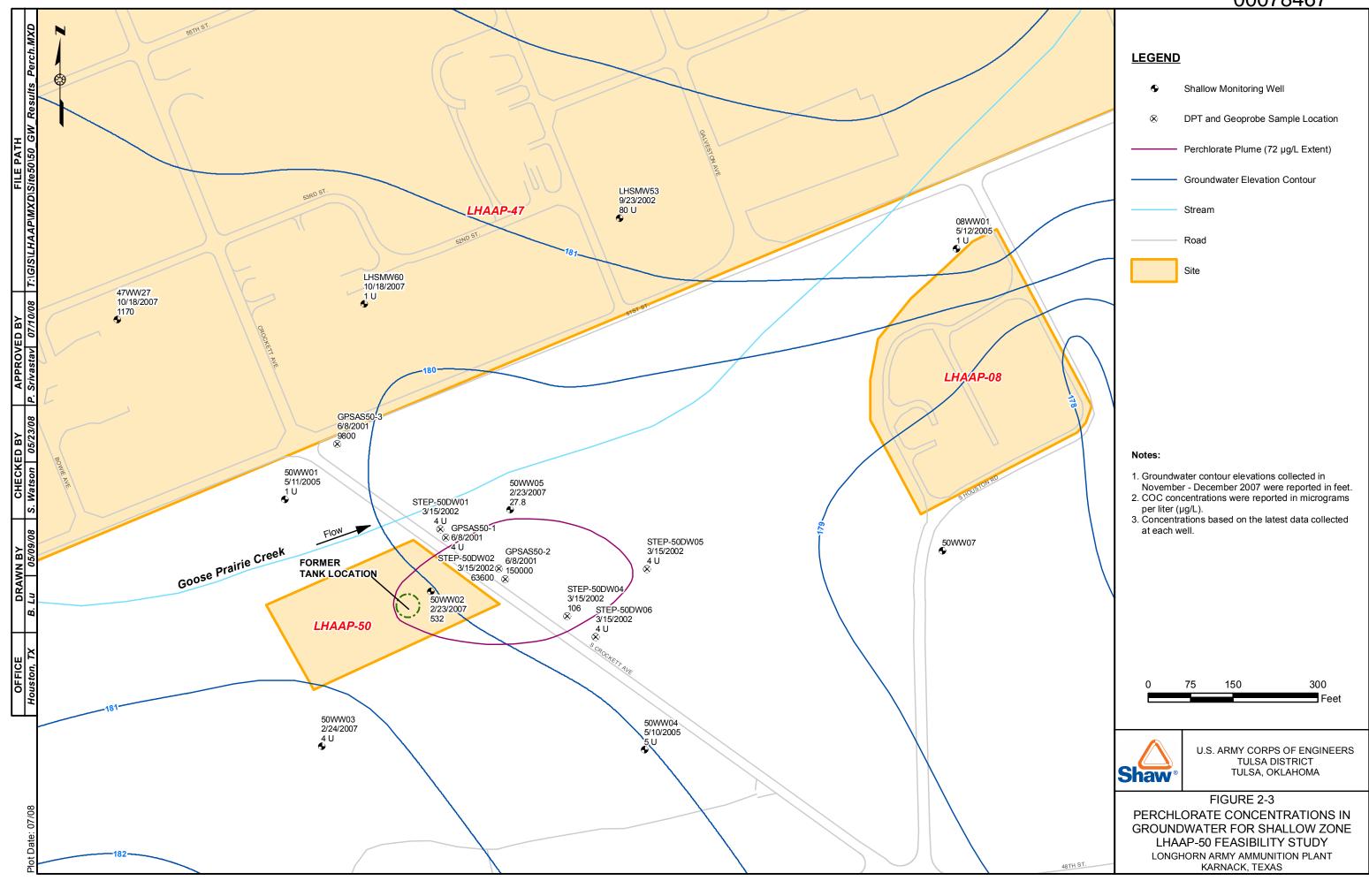


IMAGE X-REF OFFICE DRAWN BY CHECKED BY APPROVED BY DRAWING PLOT DATE: 05/20/08 117591-A31 FORMAT REVISION 5/13/02 NUMBER L. JONES 05/06/08 S. WATSON 05/09/08 P. SRIVASTAV 07/09/08 site model Houston, Texas Release **Primary** Transport Secondary Exposure Human Human Mechanisms Media Source Pathway Media Pathway Health Receptor Risk Hypothetical Ingestion, Leaks, Industrial 5.8×10^{-7} Future Maintenance Soil Inhalation. Spills Area (HI = 0.03)Dermal Contact Worker Drainage Runoff Ditches Infiltration, Leaching Hypothetical Ingestion, 5.5×10^{-3} Future Groundwater Inhalation, Maintenance (HI = 305)Dennal Contact Worker Surface Water and No Risk Recharge, Goose Prairie Fish Ingestion. Linked to Trespasser Scepage Creek Dermal Contact LHAAP-50 Surface Water and No Risk Off-LHAAP Caddo Lake Fish Ingestion, Linked to Resident Dermal Contact LHAAP-50 U.S. ARMY CORPS OF ENGINEERS TULSA DISTRICT TULSA, OKLAHOMA Pathway considered for remediation FIGURE 2-4 Pathway not considered for remediation CONCEPTUAL SITE MODEL LHAAP-50 FEASIBILITY STUDY LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

3.0 Remedial Action Objective and Remediation Levels

This section identifies the RAOs (**Section 3.1**), potential chemical-, location- and action-specific ARARs (**Section 3.2**), and preliminary remediation levels (**Section 3.3**) for LHAAP-50. The RAO identifies the general goals or end points that the remediation will accomplish, while the preliminary remediation levels identify specific cleanup standards for each medium of concern based on risk or ARARs. The remediation levels may be applied to individual contaminants.

3.1 Remedial Action Objectives

RAOs are established to protect human health and the environment while also meeting ARARs. The identification of RAOs must consider the environmental issues at the site and the receptors that are affected. As identified in the conceptual site model (**Section 2.3**), the primary environmental issues at LHAAP-50 are:

- Groundwater that exceeds MCLs for VOCs (PCE, TCE, 1,1-DCA, 1,2-DCE, cis-1,2-DCE, and VC) and has the potential to adversely impact human health
- Groundwater that exceeds the MSC for industrial use for perchlorate and has the potential to adversely impact human health
- Soil that has concentrations of perchlorate in excess of the TCEQ GWP-Ind concentration and has the potential to continue to be a source of groundwater contamination

The Army recognizes U.S. Environmental Protection Agency's policy to return usable water to its potential beneficial use based upon the non-binding programmatic expectation in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The future use of the entire LHAAP facility is as a wildlife refuge. A hypothetical future maintenance worker has been proposed as a conservative human receptor scenario for this land use. As documented in the Baseline Ecological Risk Assessment (Shaw, 2007c), ecological risk is not a concern at LHAAP-50. Based on these considerations, the RAOs for LHAAP-50 are as follows:

- Protect human health for the hypothetical future maintenance worker by preventing exposure to groundwater contaminated with VOCs and perchlorate
- Protect human health by preventing further potential degradation of groundwater and surface water from soil contaminated with perchlorate
- Return groundwater to its potential beneficial use, wherever practicable, within a reasonable time period given the particular site circumstances.

3.2 Applicable or Relevant and Appropriate Requirements

The NCP, 40 Code of Federal Regulations (CFR) 300.430(f)(1)(ii)(B) states that on-site remedial actions conducted under CERCLA must attain, or have waived, legally applicable ARARs under federal or more stringent state environmental or facility citing laws identified at the time of the ROD signature. This section provides a preliminary identification and evaluation of potential federal and State of Texas chemical-, location-, and action-specific ARARs for the remediation of LHAAP-50 under CERCLA.

3.2.1 Definitions and Methods

Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a CERCLA site (40 CFR 300.5). A requirement is applicable if all the jurisdictional and site-specific prerequisites of the requirement are met; that is, a requirement is applicable if it directly and fully addresses the situation at the site.

Relevant and appropriate requirements are those substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that, while not applicable, address problems or situations sufficiently similar to those encountered at the CERCLA site so that their use is well suited to the particular site (40 CFR 300.5). The criteria for determining relevance and appropriateness are listed at 40 CFR 300.400(g)(2). A relevant and appropriate requirement must be complied with to the same extent as an applicable requirement.

To qualify as a state ARAR mandating cleanup standards under 40 CFR 300.400(g)(4) of the NCP, a state requirement must be (1) promulgated (of general applicability and legally enforceable), (2) an environmental or facility citing law or regulation, (3) substantive (not procedural or administrative), (4) more stringent than a comparable federal requirement, (5) identified by the state in a timely manner, and (6) consistently applied throughout the state. Pursuant to USEPA guidance (USEPA, 1989), where USEPA has delegated to a state the authority to implement a federal program, the state regulations replace the equivalent federal requirements as the potential ARARs.

ARARs are generally divided into chemical-, location-, and action-specific requirements. Chemical-specific ARARs are usually promulgated health- or risk-based numerical values or methods used to determine acceptable concentrations of chemicals that may be found in, or discharged to, the environment. Location-specific ARARs restrict actions or contaminant concentrations in certain environmentally sensitive areas. Action-specific ARARs are usually

technology- or activity-based requirements, or limitations on actions taken with respect to hazardous wastes.

An on-site action need not comply with administrative parts of requirements identified as ARARs. According to USEPA guidance (USEPA, 1988a), administrative requirements are mechanisms that facilitate the implementation of the related substantive requirements of a statute or regulation (e.g., approval of or consultation with administrative bodies, documentation, permit issuance, reporting, record keeping, and enforcement).

The NCP at 40 CFR 300.400(e)(1) exempts on-site actions from having to obtain federal, state, or local permits and defines "on-site" as meaning "the aerial extent of contamination and all suitable areas in very close proximity to the contamination necessary for the implementation of the response action." However, on-site actions must still be in compliance with any substantive permit requirements. Off-site actions must not only comply with requirements that are legally applicable, but they must comply with both the substantive and the administrative parts of those requirements. Permits, if required, must be obtained for all remedial activities conducted off site (40 CFR 300.400[e][2]). Statutory waivers of ARARs (40 CFR 300.430[f][1][ii][C]) may not be used for off-site actions.

The USEPA has noted in its CERCLA guidance that if attainment of a numerical value that is a potential chemical-specific ARAR is impossible because the background level of the chemical subject to CERCLA authority is higher than that of the potential ARAR, the numeric criterion would not be considered an ARAR (USEPA, 1991).

ARARs include only federal or more stringent state environmental laws and regulations and do not include occupational safety regulations. The USEPA requires compliance with the Occupational Safety and Health Administration (OSHA) standards and other worker protection requirements under Section 300.150 of the NCP, not through the ARARs process. Therefore, none of the promulgated OSHA regulations (e.g., 29 CFR 1926, 29 CFR 1910) are addressed here as ARARs.

In addition to ARARs, 40 CFR 300.400(g)(3) states that federal or state nonpromulgated advisories or guidance may be identified as to-be-considered (TBC) guidance for contaminants, conditions, and/or actions at the site. TBCs include non-promulgated criteria, advisories, guidance, and proposed standards. TBCs are not ARARs because they are neither promulgated nor enforceable. TBCs may be used to interpret ARARs and to determine preliminary remediation goals when ARARs do not exist for particular contaminants or are not sufficiently protective to develop cleanup levels. TBCs, such as guidance or policy documents, developed to implement regulations may be considered and used where necessary to ensure protectiveness.

Potential TBCs evaluated as part of this investigation are listed in **Tables 3-1, 3-2,** and **3-3** and are discussed herein.

Chemical-specific requirements are discussed in **Section 3.2.2**; **Table 3-1** includes a narrative listing of chemical-specific ARARs/TBCs for LHAAP-50. **Table 3-2** includes a numerical listing of chemical-specific ARARs/TBCs for groundwater. Location-specific ARARs/TBCs for the sensitive resources potentially identified at LHAAP are discussed in **Section 3.2.3** and listed in **Table 3-3**. Action-specific ARARs/TBCs are listed in **Table 3-4** and are grouped by component action.

3.2.2 Potential Chemical-Specific ARARs

This section identifies the potential chemical-specific ARARs that apply to soil and groundwater at LHAAP-50. These ARARs are summarized in **Table 3-1**.

3.2.2.1 Chemical-Specific ARARs for Soil

There are no federal promulgated chemical-specific ARARs for soil. The TCEQ Texas Risk Reduction Rules are promulgated state standards for this site. It is anticipated that removal of perchlorate-contaminated soils above the TCEQ GWP-Ind of 7,200 $\mu g/kg$ will prevent contamination of the groundwater at the site.

3.2.2.2 Chemical-Specific ARARs for Air

Contaminants emitted into the air during remediation must meet certain chemical-specific requirements for fugitive particulate matter and opacity. Since emissions would be a result of a proposed action, they are addressed as action-specific ARARs in **Section 3.2.4**. However, it is unlikely the proposed actions in this FS would cause emissions that would impact the air.

3.2.2.3 Chemical-Specific ARARs for Surface Water

Section 121(d)(2) of CERCLA states that every remedial action shall require a level of control which at least attains surface water quality criteria established under Sections 304 or 303 of the Clean Water Act of 1972 (CWA). Therefore, surface water quality criteria are ARARs if there is a remedial action that affects surface water, and measures will be implemented during construction to prevent off-site migration of contaminants to surface waters.

3.2.2.4 Chemical-Specific ARARs for Groundwater

Where the beneficial use of groundwater is as a current or potential source of drinking water, USEPA states a preference for Safe Drinking Water Act of 1974 non-zero MCL goals and MCLs where they are relevant and appropriate [CERCLA 121(d)(2)(A), as amended, and 40 CFR 300.403(e)(2)(i)(B) and (C)]. Data from the Phase III RI field activities indicate that contaminants at LHAAP-50 have impacted groundwater and that remediation of the groundwater

to achieve chemical-specific ARARs may be necessary as a component of this response action (Jacobs, 2002).

LHAAP is being addressed using the Risk Reduction Standards (RRS) (30 Texas Administrative Code [TAC] 335.551 through 335.569). The RRS were provided to ensure adequate protection of human health and the environment from potential exposure to contaminants associated with releases from solid waste management facilities or other areas. There are three sets of RRS that provide cleanup levels ranging from closure/remediation to site background (RRS 1) to closure/remediation with controls (RRS 3). For the purposes of this FS, under the hypothetical future maintenance worker scenario, a Baseline Risk Assessment under RRS 3 was completed for LHAAP-50 which identified COCs in groundwater that potentially pose carcinogenic risk and hazard to the hypothetical future maintenance worker. These identified COCs, with the exception of perchlorate, have MCLs. Thus, the cleanup goal for groundwater will be the MCLs which meet health-based standards and criteria. Medium-specific concentrations provided under Texas Risk Reduction Rules (30 TAC 335.551 through 335.569) are applicable where MCLs are not available, i.e., perchlorate.

3.2.3 Potential Location-Specific ARARs

This section identifies the potential location-specific ARARs that may apply to LHAAP-50. These ARARs are summarized in **Table 3-3**.

3.2.3.1 Sensitive Habitats

A sensitive habitat is defined within the CERCLA hazard ranking system (40 CFR 300, Appendix A) as one that contains an important biological resource or a particularly fragile resource. Wetlands are specifically included as a type of sensitive habitat. Other sensitive habitats include plant communities of unusual or limited distribution and important seasonal-use areas for wildlife (e.g., migration routes, breeding areas, or crucial winter habitat).

Although there are low-lying wetland areas associated with the drainage ditch and Goose Prairie Creek at LHAAP-50, no formal wetlands survey has been conducted at the LHAAP specifically (USACE, 1992; Jacobs, 2001). Nearby Caddo Lake, however, into which LHAAP surface waters flow is part of the Big Cypress Bayou, which is considered a wetland of international significance. Adverse impacts to any identified wetlands located at LHAAP or to the Caddo Lake/Big Cypress Bayou wetland system from remedial actions at LHAAP-50 must be avoided to the extent practicable. If identified wetlands will be impacted and wetland mitigation is required, Title 12, Chapter 221 (*Wetlands Mitigation*) of the Texas Code, as well as the federal standards for wetland mitigation, may provide location-specific ARARs. These requirements will be evaluated during the final ROD stage as further site-specific data are collected and the preferred alternative is proposed and evaluated.

The Fish and Wildlife Coordination Act (16 USC 661 et seq.) requires that the effects of water-related projects that modify, divert, or control waters, including drainage activities, be considered with a view to preventing loss of and damage to such resources. This act may provide ARARs if groundwater diversion or treatment activities will impact groundwater-to-surface-water drainage patterns such that fish or wildlife may be adversely affected.

3.2.4 Potential Action-Specific ARARs

Action-specific ARARs include operation, performance and design requirements or limitations based on the waste types, media, and remedial activities. This section provides a preliminary identification and evaluation of potential federal and state of Texas action-specific ARARs for the proposed remediation of LHAAP-50.

Pursuant to USEPA guidance, there are no action-specific ARARs for the required no action alternative (USEPA, 1991). The action-specific ARARs for the activities common to the remedial action to be conducted at LHAAP-50 are discussed in **Section 3.2.4.1** below. All action-specific ARARs are listed in **Table 3-4** and are grouped by component action.

3.2.4.1 ARARS for Activities Associated with Action Alternatives

Some of the proposed remedial action alternatives at LHAAP-50 will involve one or more of the following activities: waste generation, characterization, management, storage, and disposal activities; land use controls (LUCs), and long-term monitoring (LTM). Action-specific ARARs are discussed here for the activities common to the remedial activities to be proposed for LHAAP-50.

3.2.4.1.1 Waste and Disposal Activities

The processes of monitoring, intercepting, or treating contaminated groundwater may generate a variety of primary and secondary waste streams (e.g., soil, personal protective equipment, and dewatering and decontamination fluids). These waste streams are expected to be non-hazardous waste. All solid waste (defined as any solid, liquid, semisolid, or contained gaseous material intended for discard [40 CFR 261.2]) generated during remedial activities must be appropriately characterized to determine whether it contains RCRA hazardous waste (40 CFR 262.11; 30 TAC 335.62; 30 TAC 335.503[a][4]; 30 TAC 335.504). All wastes must be managed, stored, treated (if necessary), and disposed in accordance with the ARARs for waste management listed in **Table 3-4** for the particular type of waste stream or contaminants in the waste.

Excavated environmental media including soil excavated during the installation of wells would be sent off site for disposal or, in the case of non-hazardous trenching or well construction soil, redeposited within the area of contamination (AOC). The USEPA defines "onsite" as the lateral extent of contamination and all suitable areas in close proximity to the contamination necessary for the implementation of the CERCLA response action and notes that such contamination may

contain varying types and concentrations of hazardous substances (53 Federal Register [FR] 51444; 55 FR 8758). The soil generated from remedial activities at LHAAP-50 is expected to be non hazardous. ARARs for the management of such media at the site of generation are listed in **Table 3-4**.

The USEPA has stated that excavation and redeposition of contaminated soil within an AOC does not constitute "generation"; therefore, the requirements of 40 CFR 262.11 and 268.7 to characterize generated wastes are not applicable (Office of Solid Waste and Emergency Response Directive 9441.1992[16], June 11, 1992). Consolidation of waste between AOCs for treatment or disposal, however, or excavation and treatment with subsequent disposal in the same AOC or off-site disposal constitute "placement." In these situations, RCRA Subtitle C requirements for the generation, handling, treatment, and disposal of such wastes are applicable if the waste/media is determined to contain RCRA hazardous waste (55 FR 8758).

3.2.4.1.2 Land Use Controls and Long-Term Monitoring

Some combination of restrictive covenants, administrative controls, physical barriers, physical surveillance or other controls, in combination with LTM of groundwater, would be necessary under all remedial alternatives to restrict access to contamination and protect human health and the environment because none of the actions will completely remove all of the groundwater contamination to levels that would allow unrestricted access and use of the groundwater.

When engineering or LUC measures are required to protect human health and the environment, 30 TAC 335.565 requires compliance with the identified post-closure care requirements and deed recordation of the facility in accordance with Sections 335.566(b) through (e). The deed recordation must include a description of post-closure measures required and any LUCs placed on the future use of the property, as well as a metes and bounds description of the tract of land. Since there is no deed for federal land, when the Army transfers the land to the USFWS, a recordation of the LUC, as required by the State of Texas, will accompany the transfer. If the land is transferred from a federal entity to a non-federal entity, it is transferred by deed. Some or all of these requirements may be ARARs for this remedial action; the specific combination of controls negotiated for this action would be listed in a signed ROD.

3.2.4.1.4 Well Construction

All of the proposed alternatives, other than the no action alternative, may involve the placement, use, or eventual plugging and abandonment of some type of groundwater monitoring, injection, and/or extraction wells, either for in-situ treatment or extraction of the contaminated groundwater or for LTM of the groundwater. Available standards for well construction and plugging/abandonment would provide ARARs for such actions.

Texas has promulgated technical requirements in Chapter 76 of Title 16 of the TAC applicable to construction, operation, and plugging/abandonment of water wells. In particular, 16 TAC 76.1000 (Locations and Standards of Completion for Wells), 16 TAC 76.1002 (Standards for Wells Producing Undesirable Water or Constituents) (LHAAP-50 contaminated groundwater could be considered "undesirable water" defined pursuant to Section 76.10[36] as "water that is injurious to human health and the environment or water that can cause pollution to land or other waters"), 16 TAC 76.1004 (Standards for Capping and Plugging of Wells and Plugging Wells that Penetrate Undesirable Water or Constituent Zones), and 16 TAC 76.1008 (Pump Installation) may provide ARARs for the placement, construction, and eventual plugging/abandonment of groundwater injection or extraction wells or the placement and long-term operation of groundwater monitoring wells for proposed groundwater remedial strategies.

3.2.4.1.5 Water Treatment

Contaminated groundwater and wastewaters collected during well drilling or decontamination activities could be transported to the on-site water treatment facility constructed as a component of the previous interim remedial action at other LHAAP sites (LHAAP-18/24) and would subsequently be discharged in compliance with the CWA outfall limits for the facility as listed in the ROD. Such waters would be characterized, as required, before transport and managed accordingly in compliance with requirements for the type of waste contaminating the water. To assure compliance with the water treatment plant's discharge limits, the incoming water must meet the waste acceptance criteria for the facility. On-site wastewater treatment units (as defined in 40 CFR 260.10) that are part of a wastewater treatment facility that is subject to regulation under Section 402 or Section 307(b) of the CWA are not subject to RCRA Subtitle C hazardous waste management standards (40 CFR 270.1[c][2][v]; 40 CFR 264.1[g][6]; 30 TAC 335.42[d][1]). The USEPA has clarified that this exemption applies to all tanks, conveyance systems, and ancillary equipment, including piping and transfer trucks, associated with the wastewater treatment unit (53 FR 34079, September 2, 1988).

3.3 Preliminary Remediation Goals

The RAOs for LHAAP-50 listed in **Section 3.1** allow for a range of response action. For a response action that leaves contamination in place, LUCs would be needed in combination with the response action in order to prevent exposure. For a response action that removes the contamination, preliminary remediation goals would be needed to determine when sufficient contamination has been removed. Preliminary remediation goals are the concentrations for individual chemicals in soil and groundwater above which remediation or control measures would be required. The preliminary remediation goals for soil and groundwater at LHAAP-50 are determined with consideration of the risk to human health and the ARARs identified for the site as discussed in **Section 3.2.2**.

The chemical-specific ARARs and preliminary remediation goals for groundwater at LHAAP-50 are the MCLs and TCEQ GW-Ind (perchlorate). Groundwater with an unacceptable risk or hazard is present at LHAAP-50 primarily due to TCE and perchlorate. The chemicals VC, cis-1,2-DCA, 1,1-DCE, 1,2-DCA, and PCE were also detected in groundwater at concentrations exceeding their respective MCLs and are also considered COCs. Perchlorate was detected in groundwater exceeding its TCEQ GW-Ind. **Table 3-2** summarizes the COCs and the proposed cleanup level for groundwater using the MCLs and TCEQ's GW-Ind (perchlorate).

The proposed cleanup level for the perchlorate contaminated soil is shown in **Table 3-2**. It should be noted that perchlorate does not have federal promulgated standards and is an emerging contaminant. A cleanup value protective of groundwater can be calculated under Risk Reduction Standard No. 3, but it would be approximately the same value as the value published by TCEQ for Risk Reduction Standard No. 2. Thus, the TCEQ GWP-Ind for perchlorate of 7,200 µg/kg has been selected for the cleanup level (TCEQ, 2006).

Table 3-1
Potential Chemical-Specific ARARs/TBCs

Citation	Activity or Prerequisite/Status	Requirement	
	Groundwater		
Federal Safe Drinking Water Act	Applicable to drinking water at the tap—relevant and appropriate for water that could potentially be used for human consumption	Water designated as a current or potential source of drinking water must not exceed drinking water standard. See Table 3-2 for specific numeric criteria.	
State of Texas Risk Reduction Standards 30 TAC 335.558 and 335.559(d)(2) as updated in the Texas Commission on Environmental Quality memorandum July 23, 1998	Applicable to industrial groundwater—relevant and appropriate for potential hypothetical future maintenance worker exposure to groundwater	If no maximum contaminant level has been promulgated, groundwater must not exceed the industrial medium-specific concentration.	
	Soil		
State of Texas Risk Reduction Standards 30 TAC 335.558 and 335.559(d)(2) as updated in the Texas Commission on Environmental Quality	Relevant and appropriate for potential protection of soil to groundwater pathway for hypothetical potential future industrial use of groundwater.	No federal promulgated concentration for perchlorate.	

Abbreviations:

ARAR applicable or relevant and appropriate requirement

TAC Texas Administrative Code TBC to-be-considered [guidance]

Table 3-2
Chemical-Specific ARARs (Proposed Cleanup Levels)

coc	ARAR
Groundwater	MCL (μg/L)
1,1-Dichloroethene	7
1,2-Dichloroethane	5
cis-1,2-Dicloroethene	70
Perchlorate	72 a
Tetrachloroethene	5
Trichloroethylene	5
Vinyl Chloride	2
Soil	GWP-Ind (µg/kg)
Perchlorate	7,200

Notes and Abbreviations:

μg/kg micrograms per kilogram μg/L micrograms per liter

ARAR applicable or relevant and appropriate requirement

COCs chemicals of concern

GWP-Ind soil medium-specific concentration for industrial use based on groundwater protection

MCL maximum contaminant level as established in the Safe Drinking Water Act

^a Groundwater medium-specific concentration for industrial use for perchlorate since no MCL exists

Table 3-3 Potential Location-Specific ARARs/TBCs

Resource/Citation	Activity or Prerequisite Status	Requirement
Protection of Wetlands		No discharge of dredged or fill material into an aquatic ecosystem is permitted if there is a practicable alternative that would have less adverse impact.
(33 USC 1344); 40 CFR 230.10(a) and (d); Swampbuster Provision of the Food Security Act;	are present at the site and will be adversely impacted	No discharge of dredged or fill material shall be permitted unless appropriate and practicable steps per 40 CFR 230.70 et seq have been taken, which will minimize potential impacts of the discharge on the aquatic ecosystem.

Abbreviations:

applicable or relevant and appropriate requirement Code of Federal Regulations ARAR

CFR

FS

feasibility study Longhorn Army Ammunition Plant LHAAP Texas Administrative Code to-be-considered (guidance) TAC TBC USC United States Code

Table 3-4
Potential Action-Specific ARARs/TBCs

Citation	Activity or Prerequisite/Status	Requirement
Waste Generation, Management, and	Storage	
Characterization of Solid Waste 40 CFR 262.11 30 TAC 335.62 30 TAC 335.504 30 TAC 335.503(a)(4)	Generation of solid waste, as defined in 30 TAC 335.1—applicable. It should be noted that perchlorate contaminated soil in non hazardous.	Must determine whether the generated solid waste is RCRA hazardous waste by using prescribed testing methods or applying generator knowledge based on information regarding material or process used. If the waste is determined to be hazardous, it must be managed in accordance with 40 CFR 262–268. After making the hazardous waste determination as required, if the waste is determined to be nonhazardous, the generator shall then classify the waste as Class 1, Class 2, or Class 3 (as defined in Section 335.505 through Section 335.507) using one or more of the methods listed in Section 335.503(a)(4) and Section 335.508 and manage the waste in accordance with the requirements of Chapter 335 of the TAC for industrial solid waste.
Characterization of Hazardous Waste 40 CFR 264.13(a)(1); 40 CFR 268.7 30 TAC 335.504(3) 30 TAC 335.509 30 TAC 335.511	Generation of a RCRA hazardous waste for treatment, storage, or disposal—applicable if hazardous waste is generated (e.g., PPE).	Must obtain a detailed chemical and physical analysis of a representative sample of the waste(s) that at a minimum contains all the information that must be known to treat, store, or dispose of the waste in accordance with 40 CFR 264 and 268. Must also determine whether the waste is restricted from land disposal under 40 CFR 268 et seq. by testing in accordance with prescribed methods or use of generator knowledge of waste.
Management of RCRA Hazardous Waters— Wastewater Treatment Unit Exclusion 40 CFR 264.1(g)(6) 40 CFR 270.1(c)(2) 30 TAC 335.41(d)(1)	Treatment/disposal of wastewater containing RCRA hazardous waste—applicable to management of contaminated groundwater if it is determined to contain RCRA characteristically hazardous waste.	On-site wastewater treatment units, as defined in 40 CFR 260.10, that are part of a wastewater treatment facility subject to regulation under Section 402 or Section 307(b) of the CWA are excluded from the requirements of RCRA Subtitle C (Note: USEPA has clarified that this exemption applies to all tank systems, conveyance systems, and ancillary equipment, including transfer trucks, associated with the wastewater treatment unit [53 FR 34079, September 2, 1988]).
Requirements for Temporary Storage of Hazardous Waste in Accumulation Areas 40 CFR 262.34(a) and (c)(1) 30 TAC 335.69(a) and (d)	On-site accumulation of 55 gallons or less of RCRA hazardous waste for 90 days or less at or near the point of generation—applicable if hazardous waste is generated (e.g., PPE) and stored in an accumulation area.	A generator may accumulate hazardous waste at the facility provided that • Waste is placed in containers that comply with 40 CFR 264.171 to 264.173 (Subpart I); and • Container is marked with the words "hazardous waste"; or • Container may be marked with other words that identify the contents.
	On-site storage/treatment of RCRA hazardous waste in containers for greater than 90 days—applicable if hazardous waste is generated (e.g., PPE) and is stored in containers.	Design and operating standards of 40 CFR 264.175(c) and 40 CFR 264.171, 264.172, and 264.173(a) and (b) must be met for the use and management of hazardous waste in containers.
40 CFR 264.171–264.173 30 TAC 335.69(e) 30 TAC 335.152(a)(7)		
Well Construction Standards—Monitoring or Injection Wells 16 TAC 76.1000	Construction of water wells—applicable to construction of new monitoring or injection wells, if needed.	Wells shall be completed in accordance with the technical requirements of Section 76.1000, as appropriate.

Table 3-4 (continued) Potential Action-Specific ARARs/TBCs

Citation	Citation Activity or Programicita/Ctatus Dequirement			
Citation	Activity or Prerequisite/Status	Requirement		
Well Construction Standards—Extraction Wells	Construction of water wells—applicable to construction of extraction (recovery) wells.	Wells shall be completed in accordance with the technical requirements of Section 76.1000, as appropriate.		
16 TAC 76.1000(a) and (c) through (h) 16 TAC 76.1002(a) through (c) 16 TAC 76.1008(a) through (c)		Water wells completed to produce undesirable water shall be cased to prevent the mixing of water or constituent zones.		
		The annular space between the casing and the wall of the borehole shall be pressure grouted with cement or bentonite grout to the land surface. Bentonite grout may not be used if a water zone contains chloride water above 1500 ppm or if hydrocarbons are present.		
		Wells producing undesirable water or constituents shall be completed in such a manner that will not allow undesirable fluids to flow onto the land surface.		
		During installation of a water well pump, installer shall make a reasonable effort to maintain integrity of groundwater and to prevent contamination by elevating the pump column and fittings, or by other means suitable under the circumstances. Pump shall be constructed so that no unprotected openings into the interior of the pump or well casing exist.		
Treatment/Disposal				
Disposal of Wastewater (e.g., contaminated groundwater, dewatering fluids, decontamination liquids)	RCRA-restricted characteristically hazardous waste intended for disposal—applicable if extracted groundwater is determined to be RCRA	Disposal is not prohibited if such wastes are managed in a treatment system subject to regulation under Section 402 of the CWA that subsequently discharges to waters of the United States.		
40 CFR 268.1(c)(4)(i) 30 TAC 335.431(c)	characteristically hazardous .			
Closure				
Requirements for Closure of a RCRA Container Storage Area	Closure of a RCRA-permitted container storage area—applicable if hazardous waste is generated (e.g., PPE) and is stored in containers.	 Must close unit in a manner that Minimizes the need for further maintenance; Controls, minimizes, or eliminates, to the extent necessary to protect human health and the environment, 		
40 CFR 264.111 40 CFR 264.178 30 TAC 335.152(a)(5) 30 TAC 335.152(a)(7)	generated (e.g., 11 E) and is stored in containers.	post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated runoff, or hazardous waste decomposition products to ground or surface waters or to the atmosphere; and Complies with closure requirements of 40 CFR 178.		
		All hazardous waste and residues must be removed from containment system. Remaining containers, liners, bases, and soil containing or contaminated with hazardous waste or residues must be decontaminated or removed.		
Standards for Plugging Wells that Penetrate Undesirable Water or Constituent Zones	Plugging and abandonment of wells—applicable to plugging and closure of monitoring and/or extraction wells.	If a well is abandoned, all removable casing shall be removed and the entire well pressure filled via a tremie pipe with cement from bottom up to the land surface. In lieu of this procedure, the well shall be pressure-filled via a tremie tube with bentonite grout of a minimum 9.1 lb/gal weight followed by a cement plug extending from land		
16 TAC 76.1004(a) through (c)		surface to a depth of not less than 2 feet. Undesirable water or constituents or the freshwater zone(s) shall be isolated with cement plugs.		

Table 3-4 (continued) Potential Action-Specific ARARs/TBCs

Citation	Activity or Prerequisite/Status	Requirement
Post-Closure Care and Land Use Co	ontrols	
Land Use Controls when Hazardous Substances are Left in Place 30 TAC 335.565 30 TAC 335.566	Hazardous substances left in place on contaminated property—relevant and appropriate.	Where engineering or land use control measures are required to protect human health and the environment, they must comply with the identified post-closure care requirements and deed recordation of the facility in accordance with Section 335.566. Must record in the deed records of the county or counties in which the activities take place the information specified in Sections 335.566(b) through (e): Description of post-closure measures required, Description of any land use or legal controls placed on the future use of the property, Metes and bounds description of the tract of land, and Statement that pertinent information and documents are available for inspection.

Abbreviations:

ARAR	applicable or relevant and appropriate requirement	LHAAP	Longhorn Army Ammunition Plant
CFR	Code of Federal Regulations	%	percent
CWA	Clean Water Act of 1972	PPE	personal protective equipment
USEPA	U.S. Environmental Protection Agency	ppm	part per million
FR	Federal Register	RCRA	Resource Conservation and Recovery Act of 1976
FS	feasibility study	TAC	Texas Administrative Code
lb/gal	pound per gallon		

4.0 Identification and Screening of Technologies and Process Options

The primary objective of identifying, screening, and evaluating potentially applicable technology types and process options for the LHAAP-50 FS is to identify an appropriate range of remedial technologies and process options to be developed into remediation alternatives. This screening process consists of a series of analytical steps that include the following:

- Identify volumes or areas of media of concern, and COCs (Section 4.1)
- Identify general response actions (GRAs) (Section 4.2)
- Identify and screen remedial technologies and process options (Section 4.3)
- Evaluate and select representative process options (Section 4.4)

These steps are outlined in the USEPA RI/FS guidance (USEPA, 1988b) and the NCP.

4.1 Contaminants and Media of Concern

4.1.1 Groundwater

Section 1.0 presents the site conditions at LHAAP-50. Based on available sampling data, groundwater at LHAAP-50 has been identified as the medium of concern because it poses an unacceptable carcinogenic risk and non-carcinogenic hazard to a hypothetical future maintenance worker, primarily due to the presence of PCE, TCE, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, vinyl chloride, and perchlorate. These contaminants are identified as COCs due to their unacceptable carcinogenic risk and non-cancer hazard to a hypothetical future maintenance worker and exceedance of their respective MCLs or GWP-Ind (perchlorate) in groundwater. The most recent concentrations are shown on **Figures 2-1** and **2-2**. Two wells, both screened within the shallow groundwater zone, had detections of some COCs above their respective MCL.

TCE and perchlorate, for which the MCL and GWP-Ind are 5 μ g/L and 72 μ g/L, respectively, are the COCs detected most consistently during all the sampling events and were also associated with the greatest risks or hazards to human health. Therefore, the area where these COCs were detected was selected as a conservative basis for determining the vertical and horizontal extent of groundwater requiring remedial action at LHAAP-50. At 50WW02, a fine grain sand was observed in the silty clay over the 10-foot screened interval; and the approximate vertical extent of the TCE is assumed to be 10 feet. Both perchlorate and TCE have historically been detected at high concentrations in well 50WW02. Low levels of these contaminants have been detected in wells 50WW02 and 50WW05. The TCE plume (**Figure 2-1**) is larger and encompasses the perchlorate plume (**Figure 2-2**). Therefore, the extent of contamination, as shown on **Figure 2-1**, is approximately 244,000 square feet.

Equation 4-1 estimates the total volume of contaminated groundwater in gallons by using the vertical and horizontal extents.

Lateral extent of groundwater contamination (244,000 square feet) \times vertical extent of groundwater contamination (10 feet) \times total porosity (0.3) \times 7.48 gallons per cubic foot = 5,475,360 gallons

Equation 4-1

Therefore, a conservative estimate of the volume of groundwater requiring remedial action equals approximately 5.5 million gallons.

4.1.2 Soil

Available soil data indicate the perchlorate surface soil (where the concentrations exceed the GWP-Ind of 7,200 μ g/kg) is within the area of the perchlorate groundwater plume. Thus, the potential for further migration of perchlorate from the soil into the groundwater is within the area of groundwater contamination. **Figure 2-1** shows this area (approximately 4,000 square feet) of contamination to depth of one foot bgs. Thus, the total volume of contaminated soil with a potential to allow further migration of perchlorate into the groundwater is 4,000 cubic feet, or approximately 150 cubic yards.

4.2 General Response Actions

GRAs are general actions that can be taken to achieve the RAO for the medias of concern, which are groundwater and soil at LHAAP-50. The potential applicability of GRAs and associated technologies was evaluated based on key factors that include the type and form of wastes, geologic characteristics, and location-specific constraints. **Table 4-1** summarizes the applicable GRAs for groundwater at LHAAP-50. A no action GRA must also be considered for a baseline of comparison.

4.3 Identification and Screening of Potentially Applicable Technologies

Presented below are general descriptions of potentially applicable technologies and process options for the GRAs. The term "process option" refers to specific processes within each technology type. For example, the in-situ treatment technology category could include process options such as permeable reactive barriers, enhanced bioremediation, or chemical oxidation. Several broad technology types may be identified for each general response action, and numerous process options may exist for each technology. Even within process options there are additional levels of choice, such as different agents for enhanced bioremediation.

The identification and screening process is performed in accordance with the CERCLA FS guidance document (USEPA, 1988b), as specified by the NCP (40 CFR Part 300, Subpart F).

Initial identification as potentially applicable is based primarily on technical feasibility, using the following criteria:

- Compatibility with constituent characteristics
- Compatibility with site characteristics
- Ability to achieve RAO either alone or as a component of a treatment train
- Development status a technology must be developed to the point of field-scale demonstration so that information is available on performance, reliability, and cost.

Based on these criteria, some remedial action technologies and the associated process options were eliminated from further consideration from the universe of technologies. Those technology types considered most likely to meet the groundwater RAO are presented in **Table 4-2**.

4.4 Screening of Process Options

Each process option for a given technology provides a basis for developing remedial alternatives and evaluating their costs and attributes. However, the specific process used to implement the remedial action may not be selected until the remedial design phase of the project (USEPA, 1988b). Furthermore, pilot or treatability studies conducted prior to or during the final design may indicate that the representative technology is not feasible. If this occurs, the next best demonstrated available technology is selected.

For GRAs with more than one process option, each option is evaluated according to the following criteria:

- **Effectiveness** which includes evaluation of the following:
 - Potential effectiveness in handling the estimated areas or volumes of media
 - Potential in meeting the RAO.
 - Potential impacts to human health and the environment during the construction and implementation phase.
 - Demonstrated reliability of the process with respect to contaminants and conditions at the site (USEPA, 1988).
- **Implementability** which includes both the technical and institutional feasibility of implementing a process option:
 - Technologies passing the initial screen of applicability are screened on the basis
 of technical feasibility. This criterion means feasibility under site-specific
 conditions. This evaluation may indicate that although a technology may be

- generally applicable for the COCs, the specific technology may be unworkable or limited due to site-specific conditions.
- Institutional feasibility emphasizes the institutional aspects of implementability, such as the ability to obtain permits for off-site actions; the availability of treatment, storage, and disposal services (including capacity); and the availability of equipment and skilled workers to implement the technology (USEPA, 1988).
- Cost which plays a limited role in the screening of process options. Cost is considered a deciding factor only when two alternatives are found to be equally protective. Ranges or approximations of relative capital and operation and maintenance (O&M) costs are used rather than detailed estimates. The cost analysis is made on the basis of prior experience with technologies, readily available information, and engineering judgment. Each process is evaluated relative to other process options of the same technology type, based on a cost range.

Following selection of the most appropriate process options for each technology type, the process options are combined to form remedial alternatives. The remedial alternatives are discussed in **Section 6.0**.

4.5 Evaluation and Selection of Representative Process Options

In this section, the process options within each technology type are evaluated using three criteria: effectiveness, implementability, and cost. The most applicable process options are included in the development of remedial alternatives in the FS.

4.5.1 Groundwater

4.5.1.1 No Action

The no action option does not provide for any groundwater remedial activities. No monitoring of the groundwater conditions occurs under this option. This option is retained as a baseline with which other remediation alternatives are prepared.

- **Effectiveness** A lack of access controls or remediation of the groundwater from LHAAP-50 could result in a future unacceptable risk to humans if the groundwater is ingested.
- **Implementability** No implementation is required.
- Cost None.

4.5.1.2 Monitored Natural Attenuation

MNA is a passive remedial process option that will achieve the cleanup levels over time. Natural processes such as dilution, volatilization, biodegradation, adsorption, and chemical reactions with subsurface materials are monitored to confirm their progress in reducing contaminant concentrations to acceptable levels over time. Natural attenuation may already be

occurring at LHAAP-50 as discussed in **Appendix A**. The types of contaminants found at LHAAP-50 are amenable to this technology.

- Effectiveness MNA is considered under CERCLA on a case-by-case basis. USEPA guidance has been developed to aid in the selection of this process option for VOCs. MNA has been selected for a number of CERCLA sites. It is effective when short-term releases have been mitigated and a determination is made that natural attenuation is occurring and that further off-site releases are not occurring at unacceptable levels. Regular monitoring must be conducted throughout the process to confirm that attenuation is occurring in accordance with cleanup objectives. The evaluation of MNA parameters indicate natural attenuation is occurring at LHAAP-50 (see Appendix A).
- **Implementability** Significant groundwater sampling and analyses must be performed to confirm that conditions are suitable for natural attenuation and to establish a monitoring network. It must also be confirmed that additional source releases and unacceptable off-site releases are not occurring.
- **Cost** Low to moderate.

Summary of Monitored Natural Attenuation Process Option

Monitored Natural Attenuation is carried forward as a representative process option. This process option could be combined with other process options to meet the RAO.

4.5.1.3 Land Use Controls

LUCs would be implemented to regulate access to groundwater and include covenants/deed restrictions, administrative controls, and physical mechanisms. This process option controls exposure by restricting access and use of the contaminated groundwater and also provides information needed to assess future conditions at the site. The LUC process option is applicable to the groundwater at LHAAP-50. Notification of industrial/recreational use will accompany all transfer documents and will be recorded in the County Courthouse. Five-Year Reviews will be performed to document that the land use remains consistent with the industrial/recreational exposure scenario evaluated in the risk assessment.

Covenants/Deed Restrictions. Restrictions to the groundwater can be accomplished through modifications to the property deed or agreements about land use. Legal restrictions can be placed on the installation of groundwater extraction wells not only to prevent access to the contamination but also to minimize the possibility of moving the contamination toward a future user. A recordation of the LUCs (including restriction of groundwater use) will accompany the transfer documentation from the Army to the USFWS. Deed restrictions would be needed only if the Army releases the property to a non-federal entity. These restrictions are only effective as long as the property owners and local authorities enforce them. The Army is ultimately responsible for the enforcement of the LUCs.

- **Effectiveness** Covenants/deed restrictions are effective, if enforced, in controlling human activities such as potable well construction. These actions can limit or prevent exposure to contaminants remaining on the site after remediation and can be implemented on a temporary basis. The 5-year review will ensure that the covenants/deed restrictions are enforced and remain effective.
- **Implementability** These options can be readily implemented.
- Cost Low.

Administrative Controls. Administrative controls consist of the use of training or procedures to limit access to the site and reduce the risk to human health posed by site contamination at LHAAP-50. These measures may include internal notices and site inspections to serve as a reminder of the existence of LUCs, a site approval process to review land-use changes at LHAAP-50 to ensure the LUCs are followed, training of site personnel regarding the existence and care of the LUCs, and regular inspection and maintenance of the LUCs. These are controls the Army can use while they maintain control of the site.

- Effectiveness Administrative controls are effective in controlling human intrusion into contaminated areas during and after remediation. The training required for access to the site limits potential exposure to the contaminated groundwater. Administrative controls can be used in conjunction with physical mechanisms and deed restrictions. This option is effective only while LUCs are maintained.
- Implementability Training and procedures are readily available and implemented. They may need to be modified for LHAAP.
- Cost Low.

Physical Mechanisms. Physical mechanisms include physical barriers intended to limit access to property, such as fences or signs. However, the future use of the site is to be a part of a refuge under the USFWS. It is anticipated that covenants/deed restrictions and administrative controls will be adequate to control access to the contaminated groundwater and physical mechanisms will not be required.

Summary of Land Use Controls Process Options

Covenants/deed restrictions and administrative controls are carried forward as representative process options for the LUC process options. The covenants/deed restrictions would only be used if the Army releases the land to a non-federal entity. The LUC process options could be combined with other process options to meet the RAOs.

4.5.1.4 Long-Term Media Monitoring

Environmental media (e.g., groundwater) can be monitored after the implementation of the remedial action to determine the effect the remedy has had on the level of contamination. Long-term media monitoring can detect a potential failure of the action to meet the RAO. Monitoring can also be used to detect changes in expected site conditions or changes in the expected effectiveness of the remedy, and indicate whether additional actions should be implemented.

- **Effectiveness** Long-term media monitoring would be successful in evaluating the effectiveness of a remedial alternative. The effectiveness of the monitoring system depends on the design of the monitoring plan.
- **Implementability** Equipment and personnel are readily available. The site is readily accessible, and most monitoring techniques have already been implemented at LHAAP. Multiple groundwater-monitoring wells are already in place, and there is a reasonable baseline of groundwater conditions.
- Cost Moderate due to labor and analytical costs.

Summary of Long-Term Media Monitoring

Long-term media monitoring is carried forward as a process option to be combined with other process options to meet the RAOs.

4.5.1.5 Extraction Wells

Vertically installed wells are designed to collect and extract clean or contaminated groundwater to contain a plume or to reduce contaminant mass in the plume. Extraction wells have been used with mixed results at LHAAP.

- **Effectiveness** Extraction wells are considered the most effective groundwater removal technology applicable over a wide range of site conditions. However, proper locations need to be selected to provide for effective extraction and long-term operation is required. LHAAP-50 contains discontinuous sand lenses that can limit the effectiveness of extraction.
- Implementability This process is the single most commonly used method to remove groundwater in a very wide range of conditions. Some site predesign characterization may be needed to site new wells. Extraction wells are easy to install at depths required to intercept all depths of groundwater.
- Cost Low to moderate.

Summary of Extraction Well Process

Extraction wells are not retained as a representative groundwater removal process option since the discontinuous sand lenses may limit the effectiveness.

4.5.1.6 Interceptor Trenches

An interceptor trench is a high permeability subsurface trench that collects contaminated groundwater. It is constructed and operates very much like a vertical French drain with the exception that the collected groundwater is actively pumped from the trench for ex situ treatment. The trench can be installed across the entire width of a shallow plume to more effectively capture contaminated groundwater.

- **Effectiveness** Interceptor trenches are generally very effective at collecting groundwater. The trench functions like a continuous line of extraction wells. However, the discontinuous nature of the permeable lenses which control shallow groundwater will limit the effective use of trenches.
- Implementability Interceptor trenches are relatively easy to install with conventional construction equipment in the shallow groundwater zone. The process requires long-term maintenance to ensure that the permeable media and collection piping do not become clogged.
- **Cost** Moderate to high.

Summary of Interceptor Trench Process Option

Interceptor trenches are not retained as a representative groundwater removal process option since the discontinuous sans lenses may limit the effectiveness.

4.5.1.7 Air Sparging/Soil Vapor Extraction

This process option is designed to remove VOCs from the groundwater by volatilizing these contaminants through the introduction of air. Air is introduced into the groundwater, assisting in the volatilization of those organics in solution in the groundwater. Extraction wells are installed into the vadose zone and a vacuum is drawn on these wells. The extraction system draws off the organic-laden air that was bubbled through the groundwater in addition to any vapors that exist in the soil pore spaces. The volatilized contaminants can then be drawn from these extraction wells and treated. This process can be used in those areas where VOCs exist in the groundwater and the vadose zone above this groundwater is relatively permeable.

• **Effectiveness** – This process is very effective on highly volatile contaminants (e.g., 1, 1-DCE, TCE, and PCE) and highly permeable formations. It is incompatible with certain soil types, and high humid content inhibits volatilization of contaminants. High clay content soil, however, may limit the effectiveness of air sparging by retarding the movement of air and vapors through the soil column. Implementation at LHAAP-50 is complicated by the nonhomogeneous geology found at the site. The presence of discontinuous high-permeability zones can result in preferential air flow paths, limiting the effectiveness.

- Implementability Vapor extraction and air sparge equipment is readily available, and commercial vendors are available to design and operate these systems. This process has been used at many hazardous waste sites in relatively homogeneous media. Organics that are removed from the vapor extraction wells require ex situ treatment. Site characterization and modeling are required to determine the proper location of the injection and extraction wells and extraction rates.
- **Cost** Low to moderate.

Summary of Air Sparging/Soil Vapor Extraction Process Option

Air sparging/soil vapor extraction is not retained as a process option since the discontinuous sand lenses may limit the effectiveness of the option.

4.5.1.8 In Situ Oxidation

Contaminated media are treated through the addition of oxidants, such as potassium permanganate, hydrogen peroxide, or ozone, which convert the contaminants to a less mobile or toxic form. This process option is applicable to VOCs such as 1,1-DCE, TCE, and PCE.

- Effectiveness In situ oxidation is effective for treatment of VOCs (particularly TCE) in a relatively homogeneous and porous medium rather than the nonhomogeneous geology found at LHAAP-50. Moreover, this technology is typically used as a source-area treatment and is less effective for treatment of large areas of low contaminant concentrations (e.g., dissolved plumes) similar to the groundwater plume identified at LHAAP-50. The effectiveness of the treatment usually depends on the success of the delivery method. The long-term effectiveness is uncertain as a change in chemistry could mobilize or change the chemical behavior of the previously oxidized or reduced constituents.
- Implementability This process option may be difficult to implement due to concerns regarding delivery and sufficient exposure of the contaminants to the chemical oxidants. Special handling considerations are often required due to the reactive and corrosive characteristics of the oxidants. Furthermore, in situ chemical oxidation can produce particulates and cause a loss of permeability in the subsurface. Other potential side effects from this treatment technique include gas evolution, generation of fugitive VOC emissions, potentially toxic byproducts, and release of heat generated during the oxidation process. Because oxidants are often highly reactive in the subsurface, they may not migrate long distances from the delivery point. Consequently, several, closely-spaced injection points would be required to adequately disperse the oxidant. A pilot test would also be required to determine the site-specific chemical transport properties of the aquifer.
- **Cost** Moderate.

Summary of In Situ Oxidation Process Option

In situ oxidation is not retained as a process option because of the discontinuous sand lenses that would limit the effectiveness of treating the large plume area.

4.5.1.9 Permeable Reactive Barriers

Permeable reactive barriers can be a physical/chemical or biological treatment option. A reactive barrier or gate is a permeable wall containing reactive media that is constructed across the path of a contaminant plume. As contaminated water passes through the wall, the contaminants are removed or degraded, allowing uncontaminated water to emerge on the downgradient side. Reactive barriers are usually installed through adaptation of conventional construction methods for impermeable barriers such as open trenches, polymer slurry trenches, and overlapping caissons. Reactive barriers may be constructed from a variety of materials including zero-valence metals (ZVM), granulated activated carbon (GAC), biological material, and other sorbents. These materials treat contaminants through a combination of mechanisms, including adsorption, chemical reduction, and biodegradation. Application of biological material (biotreatment) can be implemented as either a passive barrier wall or a network of injection points; biotreatment is evaluated in **Section 4.5.1.10**.

ZVM works by chemically reducing contaminants, thus either causing their degradation or limiting their mobility. A variety of metals can be used as reducing agents such as silver, gold, palladium, copper, zinc, aluminum, manganese, and iron. In situ reactive gates require high volumes of ZVM, making the application of precious metals such as silver, gold, and palladium impractical. The most practical metal for this technology is iron, because of its relative abundance, low cost, and low toxicity. However, more expensive yet more effective forms of iron (palletized iron) may be necessary, depending on the contaminant.

GAC is the most widely used adsorbent and filter medium because of its effectiveness on a variety of contaminants. GAC is chemically stable and will not produce secondary contaminants. The surface area of the carbon and the pH of the solution flowing through the medium determine the rate and effectiveness of GAC in adsorbing contaminants. In addition, different contaminants are adsorbed according to different ionic natures and kinetics.

• Effectiveness – The effectiveness of this process depends greatly on the contaminants, the reactive media, site hydrology, and site geochemistry. Reactive media clogging and exhaustion causes the need for periodic replacement. The gates are generally limited to shallower applications because of the difficulties in installing and monitoring the media at depth. There are concerns over the longevity of the reactive media given uncertain and changing chemical and physical conditions.

- Implementability Permeable reactive barriers require adequate site and contaminant characterization and monitoring to determine effectiveness. This process requires treatability testing before full-scale implementation to determine potential physical and chemical interactions with surrounding materials, location within the aquifer, and criteria for replacement. Long-term maintenance requirements may be significant.
- **Cost** Low to moderate.

Summary of Permeable Reactor Barrier Process Option

Permeable reactive barriers are not retained as a process option due to the heterogeneity of the site soils and the discontinuous soil lenses which would limit the effective installation of the barrier and the treatment effectiveness.

4.5.1.10 Enhanced Bioremediation

This general process option covers a wide range of individual biological process options that rely on microbial transformation of organic contaminants under aerobic or anaerobic conditions into benign forms to obtain energy or carbon. Enhanced biodegradation is applicable to the groundwater at LHAAP-50. Excessively high concentrations of contaminants could be toxic to microbes. Many organic contaminants, including the COCs at LHAAP-50, can be biodegraded under anaerobic (without oxygen) conditions. The activity of microorganisms is greatly affected by pH, redox potential, temperature, oxygen content, and most importantly, nutrient availability. These conditions can be manipulated to achieve optimal conditions for microbial activity, accelerating the biodegradation of the target contaminants. The conditions are manipulated through the addition of nutrients or electron acceptors or donors.

- Effectiveness In situ biodegradation is effective in either low oxygen conditions or high oxygen and methane conditions in a permeable media that enhances the continuing delivery of nutrients to the bacteria. The primary challenge for in situ biological treatment is to effectively introduce the bacteria and nutrients to the affected areas and ensure adequate mixing and contact. The rate of destruction is typically slower than other competing processes, but fewer and less toxic byproducts result. Pilot-scale testing at other sites has demonstrated that some enhancements will allow indigenous bacteria to degrade chlorinated solvents such as those detected at LHAAP-50.
- **Implementability** Enhancing the biological activity may be difficult in some of the low permeability soil at LHAAP-50 because of complications associated with the delivery of nutrients and oxygen. Equipment and expertise are readily available, but significant treatability testing would be required.
- Cost Moderate.

Summary of Enhanced Bioremediation Process Option

Enhanced biotreatment bioremediation has been retained as a process option that could be implemented in a target area to treat areas of highest concentrations.

4.5.1.11 Phytoremediation

Phytoremediation is an emerging technology that uses plants to control contaminant releases from soil or water. It is only applicable to contamination present in the shallow zone, and it may be effective for treatment of VOCs. Phytoremediation processes can be classified based on the contaminant fate: degradation, extraction, containment, or a combination of these. Phytoremediation mechanisms include extraction of contaminants from groundwater; concentration of contaminants in plant tissue; degradation of contaminants by biotic or abiotic processes; volatilization or transpiration of volatile contaminants from plants to the air; immobilization of contaminants in the root zone; hydraulic control of contaminated groundwater (plume control); and control of runoff, erosion, and infiltration by vegetative covers. Poplar and cottonwood trees have been successfully used to remove and degrade TCE from groundwater.

- **Effectiveness** It has been demonstrated that TCE is effectively removed by phytodegradation or the uptake and breakdown of contaminants by metabolic processes. Hybrid poplar trees were exposed to water containing 50 parts per million TCE and metabolized the TCE within the tree. Plant uptake is controlled by hydrophobicity, solubility, and polarity. Toxic intermediates or degradation products may be formed.
- **Implementability** Time is required for the deeper-rooted trees to grow sufficiently to provide an effective remedy. The contamination depth, even in the shallow zone, would require deeper-rooted plants. This is a fairly easy process option to implement.
- **Cost** Moderate.

Summary of Phytoremediation Process Options

Phytoremediation is eliminated from further consideration due to the depth of contamination.

4.5.1.12 On-Site Mobile Treatment Plant

A small, skid-mounted or mobile treatment plant could be built near the point of groundwater extraction. The treatment system would be designed for removal of the COCs from the extracted groundwater. GAC or air stripping could remove the COCs. The new treatment plant may require a pretreatment system (e.g., precipitation) if iron and other interfering metals are present in the groundwater.

• **Effectiveness** – The new system could be very effective. All of the considered technologies are proven effective and are even used at an existing treatment

plant at LHAAP. Smaller units have less operational flexibility and may expect deviations more often. However, this option would be effective.

- Implementability The implementation of this option is more difficult than that of the existing treatment plant. A few studies would be needed to design the plant to meet the site conditions. This option is still reasonably easy to implement.
- **Cost** Moderate. The capital costs of this option are considerably greater than that of the existing plant. However, there is a potential that the operational costs could be minimized.

Summary of Ex Situ Treatment Process Options (Treatment Plant)

Ex situ treatment is not retained since this technology would be evaluated in combination with groundwater extraction which has been eliminated as a process option.

4.5.1.13 Burning Ground No. 3 Groundwater Treatment Plant

Process wastewater and decontamination water are sent to the LHAAP groundwater treatment plant. This facility, which is currently processing contaminated groundwater from other LHAAP sites, includes unit operations such as neutralization, precipitation, biological digestion, and air stripping. The effluent from the plant is discharged to Harrison Bayou.

- **Effectiveness** The existing facility is currently treating groundwater. The hydraulic capacity of the plant has not been met yet, so additional flow could be effectively handled. The discharge requirements are routinely met, indicating an effective operation.
- **Implementability** The treatment plant is already operational. It is operating below current design capacity. Depending on the composition of the site water sent to the plant, it is possible that no revisions to the treatment components of the plant would be necessary.
- Cost Low.

Summary of Ex Situ Treatment Process Options (Treatment Plant)

Ex situ treatment is not retained since this technology would be evaluated in combination with groundwater extraction which has been eliminated as a process option.

4.5.1.14 Surface Water Discharge

This process option discharges treated wastewater into a surface water body, stream, or river. This would require piping and pumps or a gravity drain system to transport the treated water to the surface water discharge point. The treated wastewater would likely be discharged into a local surface water body. Currently, the existing treatment plant discharges into Harrison Bayou.

- **Effectiveness** This process option is an effective method for disposal of water if the requisite National Pollutant Discharge Elimination System (NPDES) discharge limits can be met. The current treatment system discharges to Harrison Bayou through an NPDES-monitored point.
- Implementability Discharge limits have already been selected for the current discharge point. The existing water treatment plant is currently discharging through this point; therefore, this process option would be easily implemented.
- Cost Low.

Summary of Surface Water Discharge Process Options

Surface water discharge is not retained since it would be evaluated in combination with groundwater extraction which has been eliminated as a process option.

4.5.2 Summary of Representative Process Options for Groundwater

The following technologies/process options remain after screening:

- No Action
- Land Use Controls
- Long-Term Monitoring
- Monitored Natural Attenuation
- In Situ Bioremediation

4.5.3 Soil

4.5.3.1 No Action

The no action option does not provide any soil remedial activities. This option is retained as a baseline with which other remediation alternatives are prepared.

- **Effectiveness** –A lack of any remedial action to address the potential for perchlorate in the soil could result in additional groundwater contamination.
- **Implementability** No implementation is required.
- Cost None.

4.5.3.2 Excavation

The excavation process option is designed to physically remove the contaminated soil from the subsurface. It is implemented in conjunction with other process options such as ex situ treatment or disposal.

• **Effectiveness** – This process is very effective in removing material from the subsurface that may continue to act as source of contamination to the groundwater. Excavation, however, is a typically a precursor to ex-situ treatment or disposal.

- **Implementability** Equipment operators and excavation equipment is readily available. Due to the shallow nature of the contamination, the excavation is easily implementable since there are no concerns with the stability of the excavation and its effect on the surrounding area.
- Cost Low.

Summary of Excavation Process Option

Excavation will be retained as a representative process option to be combined with other options to fully meet the RAOs.

4.5.3.3 Treatment

The treatment option can be implemented either in situ or ex situ. Since the material is non hazardous, ex situ treatment is not considered for this FS. In situ treatment would involve mixing carbon source (chicken, cow, or horse manure) into the soil. The biotreated soil will be sampled periodically and the groundwater around the treatment area may be sampled.

- **Effectiveness** This process option is effective in reducing perchlorate concentrations in soil. Pilot studies for in situ treatment of perchlorate in soils have been conducted at LHAAP and were effective in reducing concentrations. However, long term sampling and monitoring of the area would be needed until levels reach cleanup levels.
- Implementability To ensure the treatment is effective, a pilot study would be needed to determine the type and quantity of the carbon source that would be most effective. Materials that could be used for treatment are readily available. As in the pilot study, the area would be watered to enhance the distribution of the carbon source throughout the soil and provide optimum conditions for treatment. There is a slight risk of contaminants from the manure migrating into the adjacent Goose Prairie Creek from surface runoff if the treatment area is not covered.
- **Cost** Moderate.

Summary of Treatment Process Option

For treatment a pilot study may need to be conducted to determine the most effective treatment method and the treatment would be conducted over a period of time with periodic testing. Excavation and disposal can be completed without studies or ongoing sampling events. Thus, treatment is not retained since excavation and disposal are more implementable.

4.5.3.4 Disposal

Disposal would be implemented using an off-site RCRA Subtitle D permitted landfill for the perchlorate contaminated soil.

- **Effectiveness** Disposal combined with excavation is an effective method to reduce potential migration of the contaminant from the soil into the groundwater as long as the disposal facility used is permitted to accept this type of waste.
- Implementability RCRA Subtitle D permitted landfills are available and can accept the small quantity of nonhazardous waste soil to be generated.
- Cost Low.

Summary of Disposal Process Option

Disposal is readily implementable and effective and will be retained as a representative process option to be combined with other process option.

4.5.4 Summary of Representative Process Options for Soil

The process options retained for soil are:

- No Action
- Excavation
- Disposal

Table 4-1 General Response Actions at LHAAP-50

GRA	Description	
No Action	No remedial measures. Does not satisfy RAO, but must be evaluated as the baseline for comparison of other response actions and alternatives.	
Land Use Controls	Application of administrative actions such as land use restrictions and deed recordations or monitoring to protect public health and the environment through management of potential risk.	
Groundwater Removal	Extraction of contaminated groundwater for on-site treatment or off-site treatment/disposal	
Groundwater Treatment	Treatment of contaminated groundwater in-situ or ex situ.	
Groundwater Containment	Isolation of contaminated groundwater using subsurface barriers or an engineered cap. Typically requires combination of other GRA such as removal/treatment.	
Groundwater Disposal	Treatment/disposal of contaminated groundwater. Typically coupled with removal/treatment general response action.	
Soil Removal	Removal of contaminated soil for on-site treatment as well as off-site treatment/disposal.	
Soil Treatment	Treatment of contaminated soil in situ or ex situ.	
Soil Disposal	Disposal of contaminated soil, coupled with a removal/treatment general response action.	

Abbreviations:

RAO remedial action objective

Table 4-2
Identification and Screening of Groundwater Remedial Action Technologies
LHAAP-50

General Response Action Technology Type	Description and Process Options	Comments	Retain for Further Evaluation?
A. No Action	No remedial measures to be taken.	The "No Action" alternative must be fully evaluated according to 40 CFR 300.68.	Yes
B. Land Use Controls	Restrict future use of and access to the contaminated media to prevent unauthorized exposure to contaminated media. Monitor degradation and groundwater plume stability. Includes: Land Use Controls Long-Term Media Monitoring	A feasible approach for preventing exposure to on-site contamination and to verify MNA is occurring.	Yes
C. Groundwater Removal • Groundwater extraction	Remove groundwater from the subsurface to relocate it or prepare it for treatment. Includes: Extraction wells Interceptor trenches	A routine procedure using traditional methods such as vertical wells and trenches. Some methods are more complex such as horizontal wells. Combined with on- or off-site treatment technologies. Not retained since discontinuous sand lenses may limit the effectiveness.	No
D. Groundwater Treatment ■ In situ treatment	Treat groundwater in place to reduce the contaminant mobility or toxicity. Includes: Monitored Natural Attenuation Air sparging/soil vapor extraction Oxidation Permeable reactive barriers Bioremediation Phytoremediation	Generally proven technologies. More difficult to design since the subsurface soil and groundwater characteristics will impact performance.	Yes
Ex situ treatment	Treat extracted groundwater or vapor after removal from the subsurface On-site with mobile treatment or Burning Ground No. 3 Groundwater Treatment Plant.	Burning Ground No. 3 Groundwater Treatment Plant is operational and may have the capacity for groundwater treatment. Not retained since ex situ treatment would be evaluated with groundwater removal technologies which were eliminated.	No

Table 4-2 (*Continued*) Identification and Screening of Groundwater Remedial Action Technologies LHAAP-50

General Response Action Technology Type	Description and Process Options	Comments	Retain for Further Evaluation?
E. Groundwater Containment	Isolate groundwater plume in place. Includes: Slurry walls Engineered caps	No source area is identified. Effective uses of containment include isolation of high concentration source areas and minimizing plume irrigation. No high concentration source area has been identified. Also, the plume has been delineated and is stable. Thus, containment is not an effective remedy for this plume.	No
F. Groundwater Disposal	Discharge of treated groundwater to surface water.	Straightforward technology assuming treatment techniques have met permit requirements. Not retained since disposal would be used in conjunction with groundwater removal technologies which were eliminated.	No
G. Soil Removal	Remove soil from the subsurface for ex situ treatment or disposal.	A routine practice that will confirm contamination has been removed through sampling.	Yes
H. Soil Treatment	Treat soil in place or after removal to reduce contaminant concentrations.	Proven technology at Longhorn for surface soils.	Yes
I. Soil Disposal	Dispose of contaminated soil in RCRA Subtitle D landfill as non hazardous waste.	Straightforward technology that is easily implemented	Yes

Abbreviations:

CFR Code of Federal Regulations

5.0 Development and Description of Alternatives

Section 5.1 presents the development of a range of alternatives based on the key assumptions regarding site and contaminant conditions (**Section 2.0**), the RAOs (**Section 3.0**), and the representative process options (**Section 4.0**). **Section 5.2** presents the detailed description of the alternatives.

5.1 Development of Alternatives

5.1.1 Requirements and Preferences

The CERCLA process, as defined in the NCP, develops a remedy that protects human health and the environment, complies with ARARs (unless a statutory waiver is justified and granted), is cost-effective, and uses permanent solutions and alternative treatment or resource recovery technologies to the maximum extent practicable. A statutory preference for remedies that would result in permanent and significant decreases in toxicity, mobility, or volume through treatment and provide long-term protection is stated in Section 121 of CERCLA, as amended.

The NCP defines the following preferences in developing remedial action alternatives:

- Use of treatment to address the "principal threats" posed by a site, wherever practical.
- Use of engineering controls, such as containment, for waste that poses a relatively low, long-term threat and for which treatment is not practical.
- Implementation of a combination of actions, as appropriate, to achieve protection of human health and the environment. For example, in appropriate site situations, treatment of principal threats would be combined with engineering controls, such as containment, and land use controls for treatment residuals and untreated waste.
- Use of LUCs, such as drinking water supply controls and covenants, to supplement engineering controls for short- and long-term management to prevent or limit exposures to hazardous substances.
- Selection of an innovative technology when the technology offers the following: the potential for comparable or better treatment performance or implementability, fewer or lesser magnitude adverse impacts than other technologies, or lower costs than demonstrated technologies for similar levels of performance.

These statutory requirements and preferences were given due consideration in the development of alternatives for LHAAP-50.

5.1.2 Development using Remediation Strategies and Process Options

The media at LHAAP-50 presenting an unacceptable risk or hazard is groundwater. However, the soil is considered to be a potential source to the groundwater contamination. The purpose of the remedial alternatives discussion is to present the decision maker with technical and economic options to select the most appropriate option for remediation of groundwater and soil at LHAAP-50. Although all of the action alternatives have been designed to achieve the RAO and the statutory requirements under CERCLA, each alternative must also be sufficiently unique in its strategy and approach that the range of alternatives represents a reasonable spectrum of final site conditions in the view of the decision makers.

The process options that remain after screening are grouped and combined into alternatives to address the RAO.

5.2 Description of Remedial Alternatives

The following sections describe the remedial alternatives. The level of detail presented here supports the detailed evaluation and cost estimate in **Section 6.0** and **Appendix B**, respectively. Designs and process options other than those considered here may be substituted once the decision on remedial approach is made.

5.2.1 Alternative 1 – No Action Alternative

As required by the NCP, the no action alternative provides a comparative baseline against which the action alternatives can be evaluated. Under this alternative groundwater and soil would be left "as is," without implementing any additional containment, removal, treatment, or other mitigating actions. No other actions would be implemented to reduce existing or potential future exposure to human and ecological receptors.

5.2.2 Alternative 2 – Excavation, Monitored Natural Attenuation, LUCs

Alternative No. 2 has been developed to provide actions that may be taken to limit public exposure to the contaminated media by 1) demonstrating reduction of contamination to groundwater by natural processes and 2) removing the soil to eliminate the soil to groundwater pathway.

For this alternative, it is assumed that a monitoring program will be designed and implemented in accordance with USEPA protocol for evaluation natural attenuation of chlorinated solvents in ground water (USEPA, 1998) and performance monitoring of MNA remedies for VOCs in ground water (USEPA, 2004). Groundwater remediates naturally through intrinsic bioremediation and other physical loss mechanisms which are monitored to ensure that groundwater contamination remains localized and that contaminant migration, if any, is minimal. The toxicity, mobility or volume of groundwater contaminants is not reduced by any engineering

process. Instead, concentrations of COCs in groundwater are reduced through natural processes including biodegradation, dispersion, adsorption, volatilization, and dilution over time and with distance from the source. To document that natural attenuation is occurring, a groundwater monitoring program will be implemented at the site. The USEPA provides guidance for monitored natural attenuation as a remedial action in use of *Monitored Natural Attenuation at Superfund, RCRA, and Underground Storage Tank Sites (USEPA, 1999)*. USEPA guidance specifies recommended lines of evidence to document natural attenuation at a site. This section presents a description of the alternative that may be used to implement MNA at LHAAP-50.

5.2.2.1 Soil Program

The recommended remedial action consists of excavation and off-site disposal of the perchlorate-contaminated soil at a RCRA Subtitle D-permitted landfill. Excavation of the contaminated soil and disposal in a RCRA-permitted landfill will remove soil that is considered to be a contaminant source to groundwater, thereby, protecting groundwater. The estimated volume of soil to be removed is 150 cubic yards and is based on the conservative TCEQ GWP-Ind of 7,200 μ g/kg for perchlorate in soil. The approximate limits of excavation are shown on **Figure 5-1**. The removal of soil contamination will be verified by collecting confirmation samples from the walls and floors of the excavation area and submitting them for laboratory analysis for perchlorate.

Semi-annual performance monitoring of Goose Prairie Creek adjacent to the LHAAP-50 will be conducted after excavation of the contaminated perchlorate pathway. The GPW-1 location will be sampled and a location upgradient of LHAAP-50 will be sampled. The upgradient location will be used to evaluate any contaminated runoff from the perchlorate contaminated site, LHAAP-47, located on the north side of the creek just west of LHAAP-50. Evaluation of this data will be included in the annual reports. The frequency and locations of sampling may be modified after evaluation of data. If perchlorate levels in the creek are consistently above the GW-Res after two years of monitoring, then additional evaluation will be conducted and any proposed actions will be included in the annual evaluation report to be submitted after year 2.

The anticipated future use of the site as part of Caddo Lake National Wildlife Refuge is based on a Memorandum of Agreement between the USFWS and the Army (Army, 2004). A notification will be recorded with Harrison County that the site is suitable for non-residential use because the site was not evaluated for unrestricted use. The notification will also be included in the Environmental Protection Provisions in the environmental condition of property (ECOP) document to be prepared for transferring the property to the USFWS. Limited monitoring will take place in the form of Letters of Certification from the Army or the Transferee to TCEQ every five years to document that the use of LHAAP-50 is consistent with the non-residential use

scenarios evaluated in the risk assessment. The certification can be included with the CERCLA Five-Year Reviews for as long as they are conducted.

5.2.2.2 Groundwater Program

A natural attenuation evaluation was completed for LHAAP-50 and is included in **Appendix A**. It concludes that natural attenuation is occurring and estimates approximately 50 years for TCE to attenuate to MCLs and less than 10 years for the perchlorate to attenuate to the TCEQ GW-Ind.

For this alternative, it is assumed that a monitoring program will be implemented to evaluate the effectiveness of the natural attenuation at the site. Monitoring wells 50WW02 and 50WW05 currently provide groundwater data to represent the groundwater contamination. Monitoring well 50WW07 will be included in the monitoring program as a well downgradient of the plume. Additionally, for cost estimating purposes it is assumed two new monitoring wells will be installed.

LUCs will be maintained until the cleanup levels are achieved. The LUCs will consist of a restriction on groundwater use at LHAAP-50. If at some time in the future, property ownership is transferred from a federal agency to the private sector, a deed restriction for the use of groundwater is required and will be developed. Notification of industrial/recreational use will accompany all transfer documents and will be recorded with the Harrison County. Five-Year Reviews will be performed to document that the land use remains consistent with the industrial/recreational exposure scenario evaluated in the risk assessment.

Monitored Natural Attenuation

MNA performance monitoring will be performed quarterly for the first two years. After eight quarterly sampling events, MNA will be evaluated. The analytical program will consist of VOCs, including chlorinated compounds and degradation products, methane, ethene, and ethane. Initially, the following geochemical parameters will also be included in the analytical program, dissolved oxygen (field), redox potential (field), sulfate, nitrate, nitrites, alkalinity, TOC, and ferrous iron (field). The number of wells to be monitored will be determined in the remedial design. However, the cost estimate includes installation of 2 new monitoring wells.

Annual reports will be prepared as needed to document the program. Sampling frequency or analytical suite may be modified based on the results of the sampling program.

Long-Term Operation

Long-term operations will begin after the 8 quarters of MNA performance monitoring. The sampling frequency will then be changed to semiannually until the first 5-Year Review.

Sampling and analysis of groundwater would be performed at LHAAP-50 for multiple contaminants and general chemistry parameters. Monitoring would be required to demonstrate that natural attenuation is occurring, as well as compliance with ARARs and the RAO. Data obtained during the monitoring program will be used in support of the 5-year reviews required by CERCLA Section 121(c). The sampling frequency may be changed to once every five years if the data suggest that less frequent sampling is appropriate.

For cost estimating purposes, the long-term monitoring schedule is assumed to be semiannual for years 3 through 5, annually for years 6 through 10, and every 5 years thereafter. Future sampling frequency after the first 5-year review will be evaluated and determined at that time. The location and number of monitoring wells included in the LTM program will be reviewed on an annual basis. Any well that is proposed for the LTM program that becomes damaged, or is required to be removed due to construction or other activities, may be replaced or repaired, as needed. The need for continuing LTM at the location will be evaluated based on existing and expected future groundwater conditions. All water quality results, and the results of the review, will be provided in annual monitoring reports or as needed. The estimated cleanup time of 50 years is based on limited data, and actual cleanup time could be higher or lower than this estimate.

5.2.3 Alternative 3 – Excavation, In Situ Bioremediation, LUCs

The goals of this alternative are to achieve ARARs for the COCs at the target area where contaminant concentrations in groundwater are highest at LHAAP-50 and to prevent human exposure to groundwater contamination until the ARARs are achieved (i.e., the immediate area around 50WW02). In situ bioremediation followed by MNA will be implemented to reduce groundwater contaminant concentrations to the acceptable cleanup levels, and maintains LUCs. Once the soils containing contamination above cleanup levels have been removed from LHAAP-50, achievement of cleanup levels in groundwater will be expedited by remediating groundwater in the area of highest concentrations. LUCs would be maintained indefinitely for use of the site as an industrial/wildlife refuge.

5.2.3.1 Soil Program

The recommended remedial action includes excavation and off-site disposal of the perchlorate-contaminated soil at a RCRA Subtitle D-permitted landfill. Excavation of the contaminated soil and disposal in a RCRA-permitted landfill will remove soil that is considered to be a contaminant source to groundwater, thereby, protecting groundwater. The estimated volume of soil to be removed is 150 cubic yards and is based on the conservative TCEQ GWP-Ind of 7,200 µg/kg for perchlorate in soil. The approximate limits of excavation are shown on **Figure 5-2**. The removal of soil contamination will be verified by collecting confirmation

samples from the walls and floors of the excavation area and submitting them for laboratory analysis for perchlorate.

Semi-annual performance monitoring of Goose Prairie Creek adjacent to the LHAAP-50 will be conducted after excavation of the contaminated perchlorate pathway. The GPW-1 location will be sampled and a location upgradient of LHAAP-50 will be sampled. The upgradient location will be used to evaluate any contaminated runoff from the perchlorate contaminated site, LHAAP-47, located on the north side of the creek just west of LHAAP-50. Evaluation of this data will be included in the annual reports. The frequency and locations of sampling may be modified after evaluation of data. If perchlorate levels in the creek are consistently above the GW-Res after two years of monitoring, then additional evaluation will be conducted and any proposed actions will be included in the annual evaluation report to be submitted after year 2.

The anticipated future use of the site as part of Caddo Lake National Wildlife Refuge is based on a Memorandum of Agreement between the USFWS and the Army (Army, 2004). A notification will be recorded with Harrison County that the site is suitable for non-residential use because the site was not evaluated for unrestricted use. The notification will also be included in the Environmental Protection Provisions in the ECOP document to be prepared for transferring the property to the USFWS. Limited monitoring will take place in the form of Letters of Certification from the Army or the Transferee to TCEQ every five years to document that the use of LHAAP-50 is consistent with the non-residential use scenarios evaluated in the risk assessment. The certification can be included with the CERCLA Five-Year Reviews for as long as they are conducted.

5.2.3.2 In Situ Bioremediation for Groundwater Plume

In situ groundwater bioremediation is a technology that encourages growth and reproduction of indigenous microorganisms to enhance biodegradation of organic constituents in the saturated zone. The microbiological processes are used to degrade or transform contaminants to ultimately less toxic or nontoxic forms. Groundwater at LHAAP-50 is impacted by VOCs (PCE, TCE, 1,1-DCE, 1,2-DCA, and VC) and perchlorate that exceed their respective cleanup levels in groundwater. Treatment under anaerobic conditions is often applied to these types of contaminants.

In general, the components of the in situ bioremediation action include:

• **Defining the target area.** Currently shallow monitoring wells 50WW02 and 50WW05 are impacted. Shallow groundwater is present in thin (3 to 5 foot) discontinuous sand lenses which occur in a formation consisting primarily of clay to silty clay. At 50WW02, fine-grained sand was observed in the silty clay over the 10-foot interval that was screened. In situ bioremediation is proposed around 50WW02. To define the target area for treatment, a direct

push investigation will be performed. The purpose of this investigation is: 1) to better delineate the target area (sand lenses or fine-grained sands [seams] impacted), 2) determine the concentration of VOCs and obtain geochemistry information prior to treatment, and 3) identify the treatment zone (laterally and vertically). This study is necessary to identify the types and amounts of substances required to stimulate optimum contaminant degradation and specify geologic and geochemistry information for project design. Some of the parameters that are important to consider include the mix of contaminants in the plume; soil type and properties; pH; salinity; competing electron acceptors (e.g., sulfates, nitrates) and the presence or absence of inhibitory substances.

- **Installing temporary wells for injection.** Chlorinated solvents often require nutrients and other growth-stimulating additives/materials specific to the contaminants' metabolic degradation process. The wells would be used to inject these materials to accelerate microbial degradation of the plumes.
- Injecting microbial cultures and nutrients into the subsurface at a predetermined location. Bacteria present in the groundwater can use chlorinated solvents as electron acceptors. Electron donors may include a wide variety of nutrients: sugars (molasses), alcohols (methanol, ethanol), volatile acids (acetate, lactate), and/or wastes (food processing, manure). The COCs at LHAAP-50 can degrade under anaerobic conditions, but microorganisms, mechanisms, and redox requirements differ. results of a initial study, appropriate nutrients and other materials would be injected into the subsurface. For this FS, it is assumed that a bioaugmentation will be used at the site. This form of bioremediation combines the injection of microbial cultures capable of degrading the contaminants with a carbon source to provide adequate conditions for the proliferation of the dechlorinating organisms. For costing purposes in this FS, it is assumed that application would be over a 50-foot square area at the area of highest concentrations, with five injection points at the four corners and at the center of the square. Injection points would be installed using direct-push technology. anticipated that the material would be injected twice, and that the injection would occur in the shallow zone, at approximately 20 feet bgs.
- **Monitoring wells.** Current well locations are shown on **Figure 1-3**. The effectiveness of the treatment will be monitored using the monitoring well 50WW02, which is assumed to be located just downgradient of the treated area.
- Sampling wells to monitor effectiveness. Monitoring for contaminants would be performed to assess the effectiveness of the treatment. Anticipated remediation times may be short in the target area with appropriate contact. MNA will be implemented in the untreated areas and will be initiated in the first year. Assuming first order anaerobic degradation rates and reasonable half-lives for the COCs, the COCs could be reduced to their respective cleanup levels in approximately two years directly in the target area.

However, due to the discontinuous nature of the shallow groundwater, it is anticipated that residuals will be present downgradient, and possibly in the clay material directly overlying the saturated zone. For cost estimating purposes, it is assumed sampling will be performed quarterly for the first year, then annually for the following years. The estimated time for the RAO to be achieved is approximately 50 years. The continued MNA monitoring is included in the 5-year reviews beyond Year 10. The analytical program will consist of perchlorate, and VOCs, including chlorinated compounds and their degradation products, methane, ethene, and ethane. The following geochemical parameters will also be included in the analytical program, dissolved oxygen (field), redox potential (field), sulfate, nitrate, nitrites, alkalinity, TOC, and ferrous iron (field).

• **Reporting.** Annual reports will be prepared to document the effectiveness of the treatment. The first year annual report will include a review of the four quarters of data and provide an evaluation of the effectiveness of the bioremediation alternative.

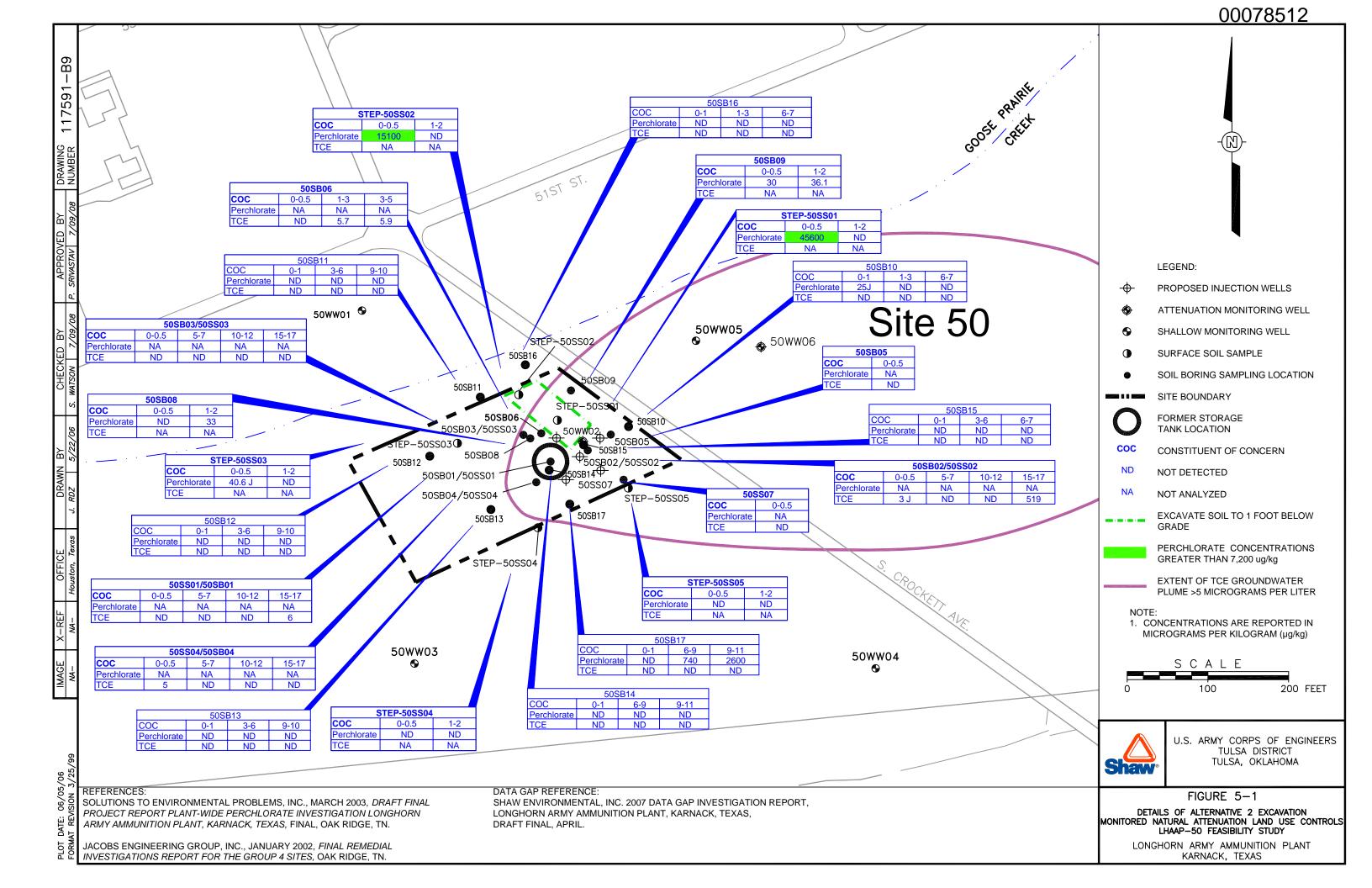
If at some time in the future, property ownership is transferred from a federal agency to the private sector, a deed restriction for the use of groundwater and use of the land as an industrial/wildlife refuge will be developed, if transfer occurs during the time frame that COCs are present above groundwater cleanup levels. The Army will record a notice of LUCs with Harrison County and will include the notice with any transfer letter to the USFWS for the intended future use as a national refuge.

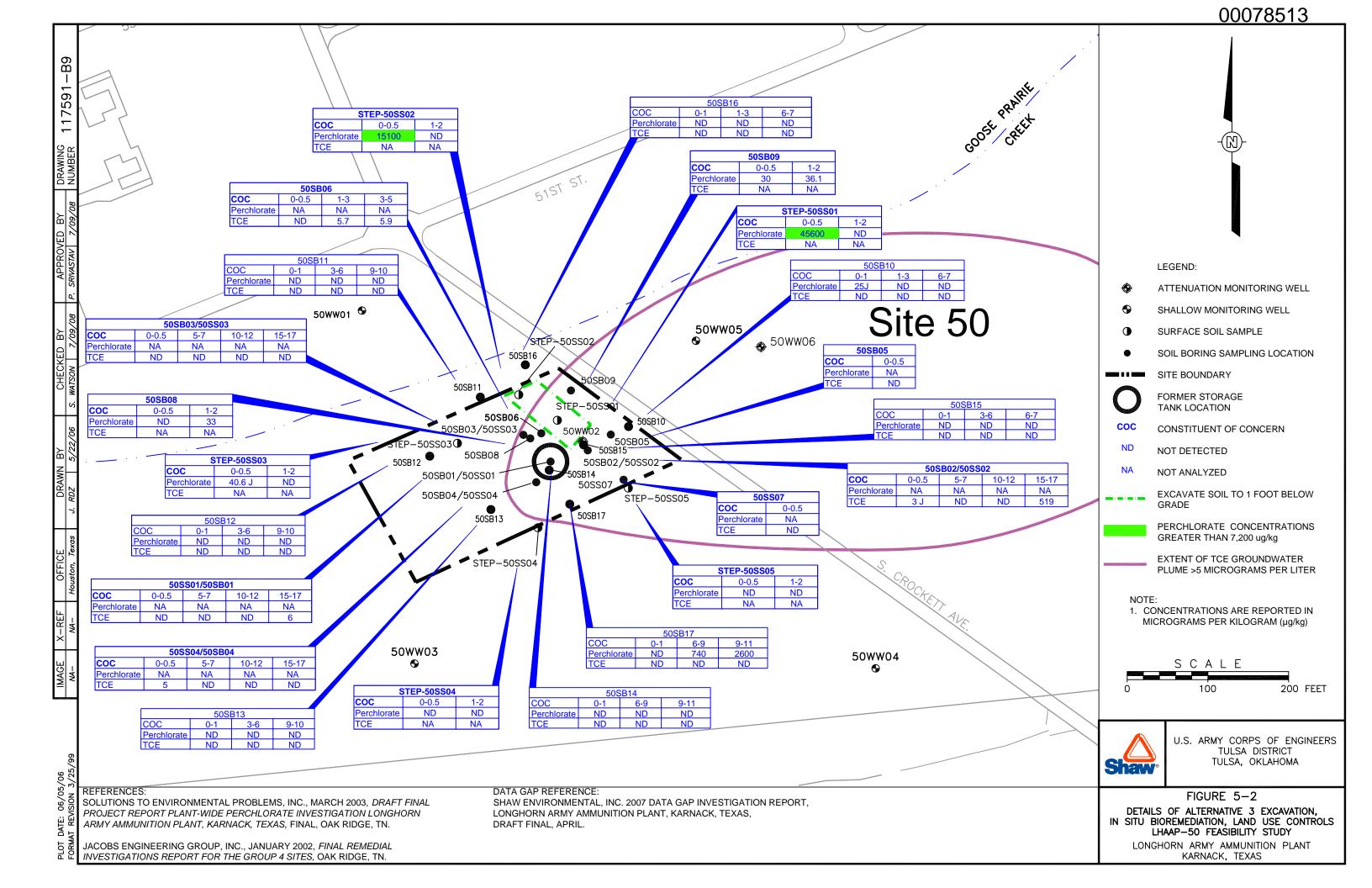
5.2.3.3 MNA for Groundwater

MNA will be initiated in year 1 in the untreated portions of plume. MNA performance monitoring will be performed quarterly for the first two years. After eight quarterly sampling events, MNA will be evaluated. The analytical program will consist of VOCs, including chlorinated compounds and degradation products, methane, ethene, and ethane. Initially, the following geochemical parameters will also be included in the analytical program, dissolved oxygen (field), redox potential (field), sulfate, nitrate, nitrites, alkalinity, TOC, and ferrous iron (field). The number of wells to be monitored will be determined in the remedial design. However, the cost estimate includes installation of two new monitoring wells.

Annual reports will be prepared as needed to document the program. Sampling frequency or analytical suite may be modified based on the results of the sampling program.

5.2.3.4 Long-Term Operation


Long term operation would include monitoring of groundwater at LHAAP-50 for a fixed period of time (assumed to be 10 years in the estimate). Sampling and analysis of groundwater would be performed at LHAAP-50 for VOCs and general chemistry parameters. Groundwater sampling would occur quarterly for the first year, annually for years two through ten. It is also


assumed that a second bioaugmentation treatment will be required during year 2 of the remediation program to further treat COCs in the target area. Monitoring would be required to demonstrate reduction in concentrations is occurring, as well as compliance with ARARs and the RAO. Data obtained during the monitoring program will be used in support of the 5-year reviews required by CERCLA Section 121(c).

The location and number of monitoring wells will be reviewed on an annual basis. Any well that is proposed for long-term monitoring that becomes damaged, or is required to be removed due to construction or other activities, may be replaced or repaired, as needed. The need for continuing the long-term monitoring at the location will be evaluated based on existing and expected future groundwater conditions. All water quality results, and the results of the review, will be provided in an annual monitoring report.

5.2.3.5 Land Use Controls

The LUCs will consist of a restriction on LHAAP-50 to maintain the use as an industrial/wildlife refuge. If at some time in the future, property ownership is transferred from a federal agency to the private sector, a deed restriction for the use of groundwater and use of the land as an industrial/wildlife refuge will be developed. The Army will record a notice of LUCs with Harrison County and will include the notice with any transfer letter to the USFWS for the intended future use as a national refuge.

6.0 Detailed Analysis of Alternatives

6.1 Introduction

The detailed analysis of alternatives presents and assesses relevant information that provides the basis for selecting an alternative and preparing a ROD. **Section 6.2** provides an overview of the evaluation criteria. The detailed analysis begins with an individual analysis in **Section 6.3** in which each alternative is individually evaluated according to the evaluation criteria identified in the NCP (40 CFR 300.430). Following the individual analysis, the alternatives are compared in relation to the two threshold criteria and then the alternatives are assessed regarding the five balancing criteria, highlighting the key advantages, disadvantages, and trade-offs that are considered as part of the evaluation process.

6.2 Overview of the Evaluation Criteria

CERCLA, Section 121, as amended, specifies statutory requirements for remedial actions. These requirements include protection of human health and the environment, compliance with ARARs, a preference for permanent solutions that incorporate treatment as a principal element to the maximum extent practicable, and cost-effectiveness. To assess whether alternatives meet the requirements, the USEPA has identified nine criteria in the NCP (40 CFR 300.430) that must be evaluated for each alternative considered for selection (Section 300.430[e][9][iii]). Provided here are summaries of the factors that comprise the nine criteria and an overview of the approach taken by this FS to address these criteria.

6.2.1 Criterion 1: Overall Protection of Human Health and the Environment

This evaluation criterion assesses whether the alternative achieves and maintains adequate protection of human health and the environment in accordance with the RAO established in **Section 3.0**. Because the scope of this criterion is broad, it also reflects the discussions of the subsequent criteria, including long-term effectiveness and permanence, and short-term effectiveness. Evaluation of this criterion describes how site risks associated with each pathway are eliminated, reduced, or mitigated through treatment, engineering, or land use controls. This criterion also considers whether an alternative poses an unacceptable short-term or cross-media affect.

6.2.2 Criterion 2: Compliance with ARARS

This criterion addresses compliance with promulgated federal and state environmental requirements. The detailed analysis summarizes which requirements are applicable or relevant and appropriate to an alternative and how the alternative meets these requirements. If an alternative cannot meet a requirement, a determination can be made that a waiver under CERCLA may be appropriate, and a basis for justifying the waiver is presented. ARARs consist

of two sets of requirements – those that apply and those that are relevant and appropriate. In certain cases, standards may not exist that address the proposed action or the COC(s). In such cases, non-promulgated advisories, criteria, or guidance developed by the USEPA or other federal agencies or states can be TBCs. There are three types of ARARs; chemical-specific, location-specific, and action-specific. The chemical-, location-, and action-specific ARARs are presented in **Section 3.2**.

6.2.3 Criterion 3: Long-Term Effectiveness and Permanence

This criterion evaluates the extent to which an alternative achieves an overall reduction in risk to human health and the environment after the RAO is met. The criterion considers the degree to which the alternative provides sufficient long-term controls and reliability to prevent exposures that exceed protective levels for human and environmental receptors. The principal factors addressed by this criterion include magnitude of residual risk and the adequacy and reliability of controls to address such risk. This criterion also addresses the uncertainties associated with these factors.

The evaluation of adequacy and reliability of controls assesses the effectiveness of any treatment, containment, or institutional measures that are part of the alternative. Factors considered include performance characteristics, maintenance requirements, and expected durability. Information and data from past performance and similar technology applications are incorporated appropriately into the evaluation. Land use controls are considered where they have the potential to improve the effectiveness of engineered measures.

6.2.4 Criterion 4: Reduction of Toxicity, Mobility, or Volume through Treatment

This criterion reflects the statutory preference that remedial alternatives contain a principal component that substantially reduces toxicity, mobility, or volume of hazardous substances through treatment. The evaluation regarding this criterion considers the extent to which alternative technologies can effectively and permanently fix, transform, immobilize, or reduce the volume of waste materials and contaminated media.

6.2.5 Criterion 5: Short-Term Effectiveness

This criterion addresses the effects of the construction and implementation phases of the alternative until the RAO is achieved. The evaluation regarding this criterion considers the effect on human health and the environment posed by operations conducted during the remedial action phases. Both the potential effect and associated mitigative measures are examined for maintaining protectiveness for the community, remediation workers, and environmental receptors throughout the duration of activities.

Potential short-term risks to the pubic include inhalation of constituents that may be released during waste removal and treatment operations, and contaminant exposure and physical injury

during waste transport off site. Potential short-term risks to workers include direct contact and exposure during construction, waste handling, and transportation; physical injury or death during construction and transportation activities; and non-remediation worker exposures to airborne contaminants during waste and soil removal operations. Alternative analyses also include a description of mitigating measures such as engineering and land use controls that are expected to minimize potential risks to the public and workers. This evaluation also addresses the anticipated duration of remedial activities.

6.2.6 Criterion 6: Implementability

This criterion examines the technical and administrative factors affecting implementation of an alternative and considers the availability of services and materials required during implementation. Technical factors to be assessed include the ease and reliability of construction and operations, the prospects for implementing a future action, and the adequacy of monitoring systems to detect failures. Administrative factors include permitting and coordination requirements between the lead agency and regulatory agencies. Service and material considerations include treatment, storage, and disposal capacities, equipment and operator availability, and prospective technology applicability or development requirements.

The assessment of technical feasibility examines the performance history of the technologies in direct applications or considers the expected performance for similar applications. Uncertainties associated with construction, operation, and performance monitoring are also addressed.

The evaluation of administrative feasibility includes a discussion of those actions required to coordinate with regulatory agencies to establish the framework for complying with key substantive technical requirements that must be met by an alternative. Additionally, those alternatives that include off-site transportation of waste are reviewed to assess the feasibility of off-site disposal.

The availability of services and materials is addressed by analyzing the material components of the proposed technologies to determine the locations and quantities of those materials, and by reviewing process operations to identify special services, operator skills, or training required to readily implement the process.

The NCP requires that the evaluation of the relative administrative feasibility of each alternative include "...activities needed to coordinate with other offices and agencies, and the ability and time required to obtain any necessary approvals and permits from other agencies (for off-site actions). CERCLA, Section 121(e), stipulates that no deferral, state, or local permit shall be required for the portion of any removal or remedial action conducted entirely on site." An action must satisfy the substantive requirements of the permits that will otherwise be required.

6.2.7 Criterion 7: Cost

Cost estimates are included for each remedial alternative. The estimates are based on feasibility level scoping and are intended to aid in making project evaluations and comparisons among alternatives. The estimates have an expected accuracy of +50 to -30 percent for the scope of the action described in **Section 5.0** for each alternative.

The estimates are divided into capital cost and O&M cost, and are developed according to an assumed schedule for the various activities based on similar project experience.

Capital costs are defined as those expenditures required to initiate and install an alternative. These are short-term costs and are exclusive of costs required to maintain the action throughout the project lifetime. Capital costs consist of direct and indirect costs. Direct costs include construction costs (material, labor, and equipment to install an action), service equipment, process and new process buildings, utilities, and waste disposal costs. Indirect costs include design engineering, inspection, project integration, project administration and management, and project contingencies.

O&M costs are long-term costs associated with ongoing remediation at a site. These costs occur after construction and installation are completed. The costs include labor, materials, utilities, and services required to monitor, operate, and maintain the facilities for a period of up to 30 years.

The estimated present worth of each remedial alternative is determined on a discount rate of 7 percent and a base maintenance/monitoring period of up to 30 years, unless the alternative evaluated is expected to be complete in less than 30 years.

Appendix C presents detailed cost estimates and the major assumptions used to develop the cost estimates for each remedial alternative.

6.2.8 Criterion 8: State Acceptance

State acceptance of an alternative will be evaluated in the Proposed Plan issued for public comment. Therefore, this criterion is not considered in this FS.

6.2.9 Criterion 9: Community Acceptance

Community acceptance of each alternative will be evaluated after a Proposed Plan is issued for public comment. Therefore, this criterion is not considered in this FS.

6.3 Individual Analysis of Alternatives

6.3.1 Alternative 1 – No Action

Under the no action alternative, no further action would be taken to control human exposure to contaminated groundwater. The contaminated groundwater would remain in place without the

implementation of any contaminant removal, treatment, or containment. Land use controls to prevent access to contaminated site groundwater would not be implemented. Further, the No Action alternative involves no action to prevent perchlorate present at elevated concentrations in soil from migrating to groundwater or surface water bodies on LHAAP. This alternative provides a baseline for comparison purposes.

6.3.1.1 Overall Protection of Human Health and the Environment

The no action alternative does not achieve the RAO for LHAAP-50. This alternative provides no control of exposure to the contaminated groundwater or actions to prevent further deterioration of the groundwater as the area of high concentrations remains, and no reduction in the risks to human receptors for current and future land use scenarios. Risks to receptors from ingestion of groundwater contaminants would exceed the USEPA-established threshold for acceptable incremental lifetime cancer risk of 1×10^{-4} for carcinogens or an HI of 1 for non-carcinogens. Unacceptable risks to the environment were not determined to be associated with LHAAP-50 in the BERA (Shaw, 2007c).

6.3.1.2 Compliance with ARARs

CERCLA, Section 121, cleanup standards, including compliance with ARARs, apply only to actions the USEPA determines should be taken under CERCLA, Sections 104 and 106 authority. A no action decision will be made when no action is deemed necessary to reduce, control, or mitigate exposure because the site does not present a threat to human health and the environment, or because any action taken will worsen the negative effects on human health and the environment. Because no remedial activities are associated with this alternative, compliance with chemical-specific ARARs would not be met. Since no remedial activities would be conducted, action-specific and location-specific ARARs would not apply.

6.3.1.3 Long-Term Effectiveness and Permanence

Magnitude of Residual Risk

The no action alternative would not provide an effective or permanent long-term solution. The residual risk and toxicity from groundwater exposure under a no action alternative would be unacceptable at LHAAP-50. The carcinogenic risk is 5.5×10^{-3} and the non carcinogenic hazard is above acceptable levels from the groundwater. The major contributor to the risk is TCE. In addition, concentrations of perchlorate remain in soil that could act as a continuing source to the groundwater contamination. However, it should be noted that the risk was calculated for a hypothetical future maintenance worker ingesting the groundwater, although this scenario is unlikely. Currently, the groundwater at LHAAP-50 is not used for drinking water, and would not be used for drinking water under a wildlife refuge future use scenario. The shallow groundwater impacted at the site is unlikely to be used as a water source since it is present in thin

discontinuous lenses, likely to be low in yield. Based on the groundwater flow and transport model (Shaw, 2007b), groundwater will not adversely impact Goose Prairie Creek.

Adequacy and Reliability of Controls

The no action alternative would not provide the maintenance of land use controls at LHAAP-50 and, therefore, would not reduce the existing exposure risks posed by contaminated site groundwater if it were to be used at the site; however use is unlikely.

6.3.1.4 Reduction of Toxicity, Mobility, or Volume through Treatment

Implementation of the no action alternative would not reduce toxicity, mobility, or volume of contaminants because this alternative does not employ treatment.

6.3.1.5 Short-Term Effectiveness

Under the no action alternative, no remedial action would be taken; therefore, the short-term effectiveness criterion is not applicable to this alternative. No short-term risks to workers, the community or the environment would exist.

6.3.1.6 Implementability

This alternative is inherently implementable because no remedial action would be taken.

6.3.1.7 Cost

There are no costs associated with the no action alternative.

6.3.2 Alternative 2 – Excavation, Monitored Natural Attenuation, LUCs

Alternative 2 relies on removal of soil to prevent potential soil to groundwater migration of perchlorate and monitoring the natural reduction of contaminant levels in groundwater in an MNA program, combined with the maintenance of land use controls to prevent human exposure to contaminated groundwater at LHAAP-50. LUCs are a major portion of the alternative to ensure that the future use of the site is consistent with industrial use, and because contaminated groundwater would remain in the ground until MNA reduces the COC concentrations to below cleanup levels. MNA activities would ensure that the COC concentrations in groundwater remain stable and continue to degrade naturally. In addition, soils containing contaminants at levels that could migrate to groundwater and cause further degradation of the groundwater quality would be removed.

6.3.2.1 Overall Protection of Human Health and the Environment

Protection of Human Health

Existing soil concentrations are protective of a hypothetical future maintenance worker, but existing groundwater concentrations pose a risk to the hypothetical future maintenance worker.

This alternative would achieve the RAOs for LHAAP-50. Continued maintenance of the LUCs would prevent human access and exposure to groundwater that poses an unacceptable risk to human health. The controls would include a combination of Army procedures and training, which will in turn be provided to the USFWS for incorporation into the agency's land management program. If transferred out of U. S. government control, deed restrictions would be placed on the property to prohibit or restrict property uses (e.g., drinking water well installation) that may result in exposure to groundwater. It is unlikely that impacted groundwater at the site would be used as a water supply since it is present in narrow discontinuous sand lenses which probably are low yield.

The MNA program would monitor the groundwater plume and ensure that the COCs in groundwater are not migrating beyond the downgradient well and that the COCs continue to degrade or remain stable. The soil removal component of this alternative would prevent further degradation of the groundwater by removal of contaminants from the soil that, if not removed, may migrate to the groundwater.

Protection of the Environment

The facility-wide ecological baseline risk assessment concluded that risks to ecological receptors at the Group 4 sites were within the acceptable risk range.

6.3.2.2 Compliance with ARARs

Chemical-Specific ARARs

This alternative will achieve the cleanup levels for groundwater contaminants that exceed their respective ARARs in groundwater since COCs are naturally degrading. The time frame is estimated to be less than 50 years. Since use of groundwater as a water supply is unlikely based on future land use and the probable low yield of the discontinuous water bearing zones at LHAAP-50, the time frame for achievement of groundwater ARARs is considered acceptable. Based on modeling (Shaw, 2007b), the groundwater does not adversely impact surface water. This alternative would meet the TCEQ GWP-Ind of 7,200 µg/kg for perchlorate in soil once the removal is complete.

Location-Specific ARARs

Activities that would be conducted under this alternative would comply with all location-specific ARARs. No activities would take place in sensitive environments such as wetlands.

Action-Specific ARARs

The activities that would be conducted under this alternative would comply with all action-specific ARARs.

6.3.2.3 Long-Term Effectiveness and Permanence

Magnitude of Residual Risks

The implementation of LUCs under this alternative would prevent direct contact by human receptors with the groundwater at LHAAP-50, thus minimizing the potential risk posed by groundwater contamination. The risk from ingestion of the groundwater is primarily from TCE and perchlorate; however, cis-1,2-DCE, 1,1-DCE, 1,2-dichloroethane, PCE, and vinyl chloride, also contribute to the risk and are present above MCLs.

The TCEQ guidance for MNA (TCEQ, 2001) provides primary, secondary, and other lines of evidence to support that natural attenuation is occurring. These same lines of evidence may be used to evaluate the long term effectiveness of this technology as a remedial action. The lines of evidence for natural attenuation at LHAAP-50 are discussed in **Appendix A**.

Based on the lines of evidence, natural attenuation of the COCs is occurring at LHAAP-50. Further, groundwater is currently not used and is unlikely to be used in the future due to 1) the low yield expected from thin discontinuous sand lenses and 2) the proposed future land use. Groundwater use restrictions will control the use of groundwater.

Adequacy and Reliability of Controls

The implementation of LUCs would protect potential human receptors from exposure to contaminated groundwater at LHAAP-50 until proposed cleanup levels are met. The reliability of LUCs would depend on the long-term maintenance of the controls. The effectiveness of the LUCs would depend on the annual and five-year CERCLA reviews. The 5-year reviews may indicate the need for components of this alternative to be maintained, modified, or replaced.

The soil removal portion of this alternative would be reliable as contaminated soil would be removed from the property and placed in a RCRA-permitted landfill.

6.3.2.4 Reduction of Toxicity, Mobility, or Volume through Treatment

Although the alternative provides no active remedial measure to reduce the toxicity, mobility, or volume of COCs in groundwater through treatment, reduction of toxicity, mobility, and volume is achieved though natural bioattenuation of contaminants in the aquifer. This reduction would be verified through the monitoring program over several years.

The soil excavation portion of this alternative provides reduction of mobility because perchlorate is removed from the site and placed in a permitted disposal facility. Toxicity and volume of the soil contaminants are not reduced as the form and quantity of the perchlorate is not altered.

6.3.2.5 Short-Term Effectiveness

Protection of the Community during Remedial Action

This alternative is protective of the surrounding community during remedy implementation primarily because all activities would occur on site with very little disturbance of contaminated material.

Protection of Workers during Remedial Action

No significant short-term risks to human health or the environment would exist during implementation of this alternative. However, worker exposure to soils and contaminated groundwater is possible during excavation, drilling, well installation, and sampling activities associated with the monitoring events. The short-term risks associated with these activities may be minimized through implementation of an effective health and safety program.

Short-Term Environmental Effects

Since minimal disturbance of contaminated material would occur under this alternative, short-term impacts to the environment are unlikely. The implementation of proper engineering controls would minimize the risk of environmental impacts.

Duration of Remedial Activities

Implementation of LUCs would prevent exposure to contaminated groundwater by prohibiting the installation of potable water wells at LHAAP-50 and ensure that the site use is consistent with industrial use. This alternative could provide almost immediate protection because LUCs can be implemented relatively quickly (e.g., within six months). Maintenance of controls for industrial/wildlife refuge use of the land would remain in place indefinitely because the site has not been demonstrated to be suitable for unrestricted use.

The anticipated duration of the proposed soil excavation, including mobilization/demobilization, site preparation, excavation, field screening, excavation confirmation sampling, site restoration and off-site disposal of the contaminated soil is five days. In order to expedite activities, field screening results will be used to determine the extent of excavation so that backfill and site restoration activities can begin prior to receiving final laboratory confirmation sample results.

The estimated duration of MNA is approximately 50 years.

6.3.2.6 Implementability

Technical Feasibility

All components of this alternative are readily implementable. Minimal technical concerns exist that would hinder the implementation of this alternative because no remedial activities other than installation of additional wells and sampling under the monitored natural attenuation program would be performed under this alternative. The LUC and soil excavation portion of this

alternative are readily available and can be implemented with conventional technologies. All equipment, services and materials are readily available to conduct the activities for this alternative.

Administrative Feasibility

All actions under this alternative are implemented on site and thus do not require permits, though substantive provisions of permits that would otherwise be required are considered to be ARARs. By legal agreement (i.e., the FFA), the Army shall submit to the USEPA and TCEQ a Responsiveness Summary and a draft ROD. Following consideration of any comments by TCEQ, the ROD will be finalized jointly by the Army and USEPA, or if they are unable to reach agreement about the selection of the remedial action, by the USEPA Administrator. By addressing the identified ARARs in the ROD, it is anticipated that the alternative would adequately address administrative barriers.

Land use controls, although administratively implementable, would require the following: development of an implementation plan as part of the remedial design and internal notices to relevant regulatory offices of the existence of the LUCs. Approval by the USEPA and the State of Texas is required prior to the modification or termination of LUCs, implementation actions, or modification of land-use by the Army. The Army shall also seek concurrence from the USEPA and the State of Texas prior to any action that may disrupt the effectiveness of the LUCs or any action that may alter or negate the need for LUCs.

6.3.2.7 Cost

The total project present worth cost of this alternative is approximately \$639,000. The details of the cost estimates for all of the alternatives are presented in **Appendix C**.

Direct Capital Cost

The total direct capital cost is estimated at \$215,000.

O&M Cost

The total O&M cost is estimated at approximately \$424,000. The O&M cost includes maintenance of land use controls, installation of two additional monitoring wells, and MNA through year 30. The long-term monitoring would support the required CERCLA 5-year reviews.

6.3.3 Alternative 3 – Excavation, In Situ Bioremediation, LUCs

This alternative reduces contamination in the area of highest concentrations in the groundwater plume via in situ bioremediation using bioaugmentation, to levels that would result in residual COCs remaining in the plume for a decreased duration. It is estimated that cleanup levels in the groundwater would be achieved in 10 years after treatment. However, this is just an estimate

since the hydrogeologic conditions and current extent of contamination has not fully been defined. These actions would reduce COC concentrations in the groundwater to the MCLs or TCEQ GW-Ind throughout the site, provided bioremediation results are favorable. In addition, soils containing contaminants at levels that could migrate to groundwater and cause further degradation of the groundwater quality would be removed. Long-term LUCs would be maintained indefinitely for the industrial/wildlife refuge use of the land and for groundwater until COC concentration meet ARARs.

6.3.3.1 Overall Protection of Human Health and the Environment

Protection of Human Health

Existing soil concentrations are protective of a hypothetical future maintenance worker, but existing groundwater concentrations pose a risk to the hypothetical future maintenance worker.

The remedial action proposed for this alternative would eventually achieve the destruction of the COCs present in groundwater above cleanup levels established for LHAAP-50. Therefore, the residual site risk upon completion of these actions would be within the target risk range for a hypothetical future maintenance worker.

Protection of the Environment

The facility-wide ecological baseline risk assessment concluded that risks to ecological receptors at the Group 4 sites were within the acceptable risk range.

6.3.3.2 Compliance with ARARs

Chemical-Specific ARARs

This alternative would comply with chemical-specific ARARs for groundwater throughout the site because the contaminant MCLs or TCEQ GW-Ind (perchlorate) would be achieved in an assumed 10 year time frame after treatment. In addition, this alternative would meet the TCEQ GWP-Ind of 7,200 µg/kg for perchlorate in soil.

Location-Specific ARARs

The activities that would be conducted under this alternative would comply with location-specific ARARs. No activities would take place in sensitive environments such as wetlands.

Action-Specific ARARs

The activities that would be conducted under this alternative would comply with action-specific ARARs.

6.3.3.3 Long-Term Effectiveness and Permanence

Magnitude of Residual Risks

Upon completion of groundwater remediation, the residual site risk would be within the target risk range for a hypothetical future maintenance worker.

Adequacy and Reliability of Controls

In situ groundwater bioremediation should be effective for reducing COC concentrations in LHAAP-50 groundwater. However, optimum groundwater conditions would be required to increase the effectiveness of biological activity on these contaminants. More extensive aquifer characterization is needed before designing the system and to determine the area for optimum bioaugmentation. Due to the limited data on the nature of the current plume, the effectiveness of this technology at LHAAP-50 cannot be fully assessed.

Land use controls would also prevent exposure to the groundwater COCs exceeding the MCLs or TCEQ GW-Ind (perchlorate) during the time required for groundwater bioremediation. The reliability of LUCs would depend on the maintenance of the controls. Compliance with the risk-reduction goals would be monitored and performance of the controls would be assessed throughout the duration of this alternative. The assessment may indicate the need for components of this alternative to be maintained, modified, or replaced.

The soil removal portion of this alternative would be reliable as contaminated soil would be removed from the property and placed in a RCRA-permitted landfill.

6.3.3.4 Reduction of Toxicity, Mobility, or Volume through Treatment

In situ bioremediation would irreversibly reduce the toxicity, mobility and volume of the contaminants in LHAAP-50 shallow groundwater. This alternative would satisfy the USEPA statutory preference for remedial actions that permanently reduce contaminant toxicity, mobility and volume and utilize treatment as a principle element.

The soil excavation portion of this alternative provides reduction of mobility because perchlorate is removed from the site and placed in a permitted disposal facility. Toxicity and volume of the soil contaminants are not reduced as the form and quantity of the perchlorate is not altered.

6.3.3.5 Short-Term Effectiveness

Protection of the Community during Remedial Action

This alternative is protective of the surrounding community during remedy implementation primarily because activities would occur on site with very little disturbance of contaminated material.

Protection of Workers during Remedial Action

This alternative would involve potential short-term risks to workers associated with the operation of drilling equipment and potential exposure to contaminated soil and groundwater during excavation and sampling activities. The implementation of an effective health and safety program would minimize potential short-term risks to remediation personnel. Remediation workers would conform to the site health and safety program and would be equipped with the necessary personal protective equipment (PPE). A site-specific health and safety plan would be prepared prior to implementing this alternative.

Short-Term Environmental Effects

Since minimal disturbance of contaminated material would occur under this alternative, short-term impacts to the environment are unlikely. The implementation of proper engineering controls would minimize the risk of environmental impacts.

Duration of Remedial Activities

The duration of this groundwater treatment portion of the alternative is estimated to be approximately 12 years. It is assumed that; in year 1, the field investigation to define the aquifer conditions will be performed, the plans prepared and one bioaugmentation treatment performed. In year two, four quarters of monitoring is performed as well as a second bioaugmentation treatment. The second treatment is followed by 10 years of additional groundwater monitoring. The time frames for this alternative are difficult to estimate due the undefined extent of COCs in shallow groundwater and the thin discontinuous nature of the more permeable lenses which facilitate treatment. In addition residual COCs may be present in the clay matrix surrounding the permeable lenses which could continue to impact water quality into the future and MNA is assumed to continue for 30 years. Aquifer studies are needed to determine the most effective location for injection. Monitoring would be needed until cleanup levels are met to determine trends in groundwater contamination levels and effectiveness of the remedial action. The monitoring time may increase or decrease depending on the effectiveness of the treatment method.

The anticipated duration of the proposed soil excavation, including mobilization/demobilization, site preparation, excavation, field screening, excavation confirmation sampling, site restoration and off-site disposal of the contaminated soil is five days. In order to expedite activities, field screening results will be used to determine the extent of excavation so that backfill and site restoration activities can begin prior to receiving final laboratory confirmation sample results.

LUCs for the groundwater will continue until contaminant concentrations are below MCLs or the GW-Ind (perchlorate).

6.3.3.6 Implementability

Technical Feasibility

All components of this alternative are implementable. The equipment and materials required for microbe and carbon source delivery are commercially available, but specialized knowledge of in situ biological treatment would be required for implementation. With sufficient study, it is likely that an implementable design could be developed, however subsurface conditions could impact the effectiveness and cost. The LUC and soil excavation portion of this alternative are readily available and can be implemented with conventional technologies.

Administrative Feasibility

All actions under this alternative would be implemented on the site and thus do not require permits, though substantive provisions of permits that would otherwise be required are considered to be ARARs. By legal agreement (i.e., the FFA), the Army shall submit to the USEPA and TCEQ a Responsiveness Summary and a draft ROD. Following consideration of any comments by TCEQ, the ROD will be finalized jointly by the Army and USEPA, or if they are unable to reach agreement about the selection of the remedial action, by the USEPA Administrator. By addressing the identified ARARs in the ROD and subsequent documents, it is anticipated that the alternative would adequately address all administrative barriers.

Land use controls, although administratively implementable, would require the following: development of an implementation plan as part of the remedial design and internal notices to relevant regulatory offices of the existence of the land use controls. Approval by the USEPA and the State of Texas is required prior to the modification or termination of land use controls, implementation actions, or modification of land-use by the Army. The Army shall also seek concurrence from the USEPA and the State of Texas prior to any action that may disrupt the effectiveness of the land use controls or any action that may alter or negate the need for land use controls.

6.3.3.7 Cost

The total project present worth cost of Alternative 3 is approximately \$914,000. The details of the cost estimates for all of the alternatives are presented in **Appendix C**.

Capital Cost

The total direct capital cost is estimated at approximately \$402,000. The direct capital cost includes the activities associated with land use controls (access controls), in situ bioremediation, and monitoring well installation.

O&M Cost

The total O&M cost is estimated at approximately \$512,000. The O&M cost includes a second bioremediation treatment and long-term monitoring through year 10 associated with the land use controls and the assessment of in situ bioremediation performance.

6.4 Comparative Analysis of Alternatives

6.4.1 Introduction

This section presents a comparative analysis of the remedial alternatives for LHAAP-50 according to the CERCLA evaluation criteria described in **Section 6.2**. This analysis is the second stage of the detailed evaluation process and provides information that forms the basis for selecting a preferred remedy.

This comparative analysis considers two of the three criteria categories, the threshold criteria and primary balancing criteria. The threshold category contains two criteria that must be satisfied by the selected alternative:

- Overall protection of human health and the environment and
- Compliance with ARARs.

These criteria are important because they reflect the key statutory mandates of CERCLA. If an alternative does not satisfy both of these criteria, it is not eligible to be selected.

The primary balancing category contains five criteria under which the relative advantages and disadvantages of the alternatives are compared to determine the most appropriate remedy. The five criteria are the following:

- Long-term effectiveness and permanence
- Reduction of toxicity, mobility, or volume through treatment
- Short-term effectiveness
- Implementability
- Cost

The comparison of these five criteria for the alternatives forms the basis of the comparative analysis. The first and second balancing criteria address the statutory preference for treatment as a principal element of the remedy. Together with the third and fourth criteria, they form the basis for determining the general feasibility of each alternative and for determining whether costs are proportional to the overall effectiveness.

The two modifying criteria, state and community acceptance, must be satisfied if the alternative is to be accepted. The modifying criteria of state and community acceptance are typically not evaluated until the public has had an opportunity to comment on the Proposed Plan. Because

specific alternatives have not been presented to the state and community, these two criteria are not formally compared in the FS.

A comparative analysis under the threshold and primary balancing criteria is presented in **Sections 6.4.2** and **6.4.3**, respectively, and is consistent with the format of the individual analysis of alternatives in **Section 6.3**.

6.4.2 Threshold Criteria

6.4.2.1 Overall Protection of Human Health and the Environment

The three alternatives provide varying levels of human health protection. Alternative 1, no action, does not achieve the RAOs and provides the least protection of all the alternatives; it provides no reduction in risks to human health or the environment because no measures would be implemented to eliminate the pathway for human exposure to the groundwater contamination.

Alternatives 2 and 3, both satisfy the RAOs for LHAAP-50. Both alternatives remove the soils that may act as a continuing source of groundwater contamination. Alternative 2, which relies the most heavily on land use controls combined with MNA and does not provide contaminant removal or treatment in groundwater other than by natural processes, would be protective of human health because the controls would prevent human access to the contaminated groundwater. Alternative 3 provides a higher level of overall protection than Alternative 2 because the ARARs for the groundwater COCs would be achieved at the site in a shorter time frame, thereby eliminating unacceptable exposure risks sooner.

6.4.2.2 Compliance with ARARs

Alternative 1 does not comply with chemical-specific ARARs for groundwater or TBC guidance for soil because no remedial action or measures would be implemented. Alternatives 2 and 3 comply with chemical-specific ARARs for groundwater and TBC guidance for soil.

Location-specific and action-specific ARARs would not apply to Alternative 1 since no remedial activities would be conducted. Alternatives 2 and 3 comply with location-specific and action-specific ARARs.

6.4.3 Primary Balancing Criteria

6.4.3.1 Long-Term Effectiveness and Permanence

Alternative 1 would be the least effective and permanent in the long term because no contaminant removal or treatment would take place and no measures would be implemented to control exposure risks posed by contaminated site groundwater or the potential for soil to groundwater migration of perchlorate. Alternative 2 offers a moderate degree of long-term effectiveness through the implementation of MNA with land use controls, which would

minimize the potential risk posed by the contaminated groundwater. In addition, soils with elevated levels of contaminants would be removed from the site.

Although Alternative 3 is designed to reduce groundwater contaminant concentrations and achieve the cleanup levels in a shorter period of time, the actual effectiveness will be evaluated following remedy selection. However, at present, Alternative 3 is expected to offer the highest degree of long-term effectiveness and permanence compared to the other alternatives.

6.4.3.2 Reduction of Toxicity, Mobility, or Volume through Treatment

Alternatives 1 and 2 do not employ active treatment to result in a reduction of toxicity, mobility, or volume of contaminants. However, bioattenuation achieves a reduction in toxicity, mobility and volume in the aquifer as the contaminants are permanently degraded into non-toxic end products. The monitoring program employed for Alternative 2 would verify the degree with which these processes are occurring.

Alternative 3 provides a reduction in toxicity, mobility and volume via bioattenuation of contaminants, as well. As amendments are added to the aquifer to enhance the natural biological activity, this alternative provides the greatest degree of reduction in toxicity, mobility and volume of the groundwater contaminants. However, this reduction would only occur if the results of pre-design investigation and further evaluations of in situ bioremediation are favorable.

The soil excavation component of Alternatives 2 and 3 provides a reduction of mobility because perchlorate is removed from the site and placed in a permitted disposal facility. Toxicity and volume are not reduced by the excavation portion of the alternative as the form and quantity of the perchlorate is not altered.

6.4.3.3 Short-Term Effectiveness

Because Alternative 1 does not involve any remedial measures, no short-term risk to workers, the community or the environment would exist.

Alternatives 2 and 3 involve potential short-term risks to workers associated with exposure to contaminated soil and groundwater and operation of drilling/construction equipment. The time period to achieve the groundwater cleanup levels is the most significant difference between Alternatives 2 and 3. Alternative 3 is expected to take less time to achieve the cleanup levels than Alternative 2, provided subsurface conditions for in situ bioremediation is favorable. The implementation of Alternative 3 would require more time than for Alternative 2 due to the requirement for a remedial design and pre-design testing. Alternative 2 would provide almost immediate protection because the land use controls could be implemented relatively quickly, but maintenance of these controls would be required longer than Alternative 3.

For the soil excavation component of Alternatives 2 and 3, the use of proper dust suppressant measures would control windblown emissions of contaminated dust to protect the community and on-site workers. Proper personal protective equipment would be required for site workers.

6.4.3.4 Implementability

Under the no action alternative, no remedial action would be taken. Therefore, no difficulties or uncertainties would be associated with its implementation. Alternatives 2 and 3 are easily implemented from a technical standpoint as all equipment, materials, and services required are readily available. Alternative 3 would be slightly more difficult to implement than Alternative 2 from a technical standpoint due to the specialized expertise required to design and construct the in situ bioremediation treatment elements.

Administratively, all of the alternatives are implementable.

6.4.3.5 Cost

Cost estimates are used in the CERCLA FS process to eliminate those remedial alternatives that are significantly more expensive than competing alternatives without offering commensurate increases in performance or overall protection of human health or the environment. The cost estimates developed are preliminary estimates with an intended accuracy range of +50 to -30 percent. Final costs will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final scope, final schedule, final engineering design, and other variables.

Costs developed are capital costs (including fixed-price remedial construction) and long-term O&M costs (post-remediation). Overall 30-year present worth costs are developed for each alternative assuming a discount rate of 2.8 percent. Total project present worth costs for each alternative is presented in **Appendix C**.

The progression of present worth costs from the least expensive alternative to the most expensive alternative is as follows: Alternative 1, Alternative 2, and Alternative 3. No costs are associated with Alternative 1 because no remedial activities would be conducted. Alternative 2 has the lowest present worth and capital costs of the active remedial alternatives. The present worth costs for Alternative 2 is lower than that of Alternative 3, primarily due to the activities associated with the injection phase of in situ bioremediation under Alternative 3. The highest O&M cost is associated with Alternative 3 primarily due to the O&M for the groundwater bioremediation program.

7.0 References

Army, 2004, Memorandum of Agreement Between the Department of the Army and the Department of the Interior for the Interagency of Lands at the Longhorn Army Ammunition Plant for the Caddo Lake National Wildlife Refuge, Harrison County, Texas, Signed by the Department of the Interior on April 27, 2004 and the Army on April 29, 2004.

Caddo Lake Institute (CLI), 1995, *Initial Species Inventory for Longhorn Army Ammunition Plant, Karnack, Texas, June.*

Gadus, E.F., Freeman, M.D., and Fields, R.C., 1998, Archaeological Survey of 319 Hectares at the Longhorn Army Ammunition Plant, Harrison County, Texas, June.

Geo-Marine Inc., 1996, *Draft Longhorn Army Ammunition Plant Cultural Resources Management Plan*, December.

Jacobs Engineering Group, Inc. (Jacobs), 2002, Final Remedial Investigation Report for the Group 4 Sites, Sites 35A, 35B, 35C, 46, 47, 48, 50 60, and Goose Prairie Creek, Longhorn Army Ammunition Plant, Karnack, Texas, Oak Ridge, TN, January.

Jacobs, 2003, Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites (Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunders Branch, Central Creek, and Caddo Lake), Longhorn Army Ammunition Plant, Karnack, Texas, Final, Oak Ridge, TN, June.

Pertulla, Timothy K. and Bo Nelson, 1999, *An Archaeological Survey of Harrison Bayou Lease Lands at the Longhorn Army Ammunition Plant, Harrison County, Texas,* Archaeological and Environmental Consultants, Report of Investigation No. 12, Caddo Lake Institute, Aspen Colorado, December.

Plexus, 2005, Environmental Site Assessment, Phase I and II Report, Final, Production Areas, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw Environmental, Inc. (Shaw), 2007a, *Data Gaps Investigation, Longhorn Army Ammunition Plant, Karnack, Texas*, Final, Houston, TX, April.

Shaw, 2007b, Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Revision 1, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw, 2007c, Final Installation-Wide Baseline Ecological Risk Assessment, Longhorn Army Ammunition Plant, Karnack, Texas, Houston, Texas, November.

Solutions to Environmental Problems (STEP), 2005, *Plant-Wide Perchlorate Investigation, Longhorn Army Ammunition Plant, Karnack, Texas*, Final, Oak Ridge, Tennessee, April.

Sverdrup Environmental, Inc. (Sverdrup), 1997, Final Site Characterization Investigation Report for the Group 5 Sites (50, 52, 60, and 63), Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas, St. Louis, Missouri, June.

Texas Commission on Environmental Quality (TCEQ), 2006, Updated Examples of Standard No. 2, Appendix II, Medium-Specific Concentrations, March 31, 2006.

TCEQ, 2007, Email from Fay Duke (TCEQ) to Praveen Srivastav (Shaw) and Rose Zeiler (Army), concerning LHAAP-16 SW Compliance Values, August 2.

Texas Department of Parks and Wildlife, 2003, Correspondence from Celeste Brancel-Brown (Texas Department of Parks and Wildlife) to Mr. J. Marshall Davenport (Jacobs) regarding threatened and endangered species at Longhorn Army Ammunition Plant, February 6.

U.S. Army Corps of Engineers (USACE), 1992, Longhorn Army Ammunition Plant RI/FS Work Plan, Volume 1, General, Fort Worth District, June.

U.S. Environmental Protection Agency (USEPA), 1988a, CERCLA Compliance With Other Laws Manual, Volume I, OSWER Directive 9234.1-01, Washington, DC, August.

USEPA, 1988b, *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA*, Interim Final, OSWER Directive <u>9355.3-01</u>, Washington, DC.

USEPA, 1989, *CERCLA Compliance with State Requirements*, OSWER Directive <u>9234.2-05FS</u>, Washington, DC, December.

USEPA, 1991, ARARs Q's & A's: General Policy, RCRA, CWA, SDWA, Post-ROD Information, and Contingent Waivers, OSWER Directive 9234.2-01FS-A, Washington, DC.

USEPA, 1994, Water Quality Standards Handbook: Second Edition, <u>EPA/823-B-94-005a</u>, Washington, DC, August.

USEPA, 1998, *Technical Protocol for Evaluation Natural Attenuation of Chlorinated Solvents in Ground Water*, EPA/600/R-98/128, Washington, DC, September.

USEPA, 1999, Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, April.

USEPA, 2004, *Performance Monitoring of MNA Remedies for VOCs in Ground Water*, EPA/600/R-04/027, April, Cincinnati, OH.

U.S. Fish and Wildlife Service (USFWS), 2003, Correspondence from Mr. Thomas J. Cloud (USFWS) to Mr. J. Marshall Davenport (Jacobs Engineering Group Inc.) regarding threatened and endangered species at Longhorn Army Ammunition Plant, January 6.

Appendix A

Natural Attenuation Evaluation for LHAAP-50

APPENDIX A NATURAL ATTENUATION EVALUATION

FINAL FEASIBILITY STUDY LHAAP-50, FORMER SUMP WATER TANK, GROUP 4 LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared for

U.S. Army Corps of Engineers Tulsa District 1645 South 101st Avenue Tulsa, Oklahoma

Prepared by

Shaw Environmental, Inc. 1401 Enclave Parkway, Suite 250 Houston, Texas 77077

Contract No. W912QR-04-D-0027, Task Order No. DS02 Shaw Project No. 117591

December 2009

Table of Contents_

List of	List of Figures						
Acrony	Acronyms and Abbreviations						
-							
1.0	Introd	uction			1-1		
2.0	Description of Natural Attenuation				2-1		
	2.1	Natural	Attenuati	on Lines of Evidence	2-1		
	2.2						
		2.2.1		ate			
		2.2.2		ted Solvents			
	2.3	Geomic					
	2.4			S			
3.0				sluation Results			
5.0	3.1 Shallow Groundwater Zone						
	J. I	3.1.1		in COC Concentrations over Time and with Distance			
		3.1.1	0				
				Perchlorate			
			3.1.1.2	Chlorinated Ethenes			
			3.1.1.3	Chlorinated Ethane			
		3.1.2		nical Indicators			
		3.1.3	Natural A	Attenuation Rate Estimation and Microbial Analysis			
			3.1.3.1	Natural Attenuation Rate and Cleanup Time Estimation	3-6		
			3.1.3.2	Microbial Analysis	3-7		
	3.2	Interme	diate Gro	undwater Zone	3-7		
4.0	Sumn	Summary of Results and Conclusions4-1					
5.0	References						

List of Tables _____

Table 3-1	Preliminary Screening Worksheet for Reductive Dechlorination
Table 3-2	Summary of Shallow Groundwater Zone Analytical Results, LHAAP-50
Table 3-3	Estimation of Cleanup Times Using Time-Dependent Attenuation Rates
Table 3-4	Summary of Intermediate Zone Groundwater Analytical Results, LHAAP-50

List of Figures ______

Figure 1-1	Site Location Map, LHAAP-50
Figure 1-2	Monitoring Well Location Map and Groundwater Elevation, LHAAP-50
Figure 3-1	Concentration Trends Over Time in Monitoring Well 50WW02, LHAAP-50
Figure 3-2	Concentration Trends Over Time in Monitoring Well 50WW05, LHAAP-50
Figure 3-3	Estimation of Time-Dependent Perchlorate Attenuation Rate, LHAAP-50
Figure 3-4	Estimation of Time-Dependent Tetrachloroethene Attenuation Rate, LHAAP-50
Figure 3-5	Estimation of Time-Dependent Trichloroethene Attenuation Rate, LHAAP-50
Figure 3-6	Estimation of Time-Dependent cis-1,2-Dichloroethene Attenuation Rate, LHAAP-50
Figure 3-7	Estimation of Time-Dependent Vinyl Chloride Attenuation Rate, LHAAP-50
Figure 3-8	Estimation of Time-Dependent 1,2-Dichloroethane Attenuation Rate, LHAAP-50

Acronyms and Abbreviations

cells/mL cells per milliliter

 Cl^- chloride ClO_2^- chlorite ClO_3^- chlorate ClO_4^- perchlorate CO_2 carbon dioxide

COC chemicals of concern

DCA dichloroethane
DCE dichloroethene

DHC Dehalococcoides ethenogenes

DO dissolved oxygen

Fe⁺³ ferric iron

GW-Ind groundwater medium-specific concentration for industrial use GWRTAC Ground-Water Remediation Technologies Analysis Center

LHAAP Longhorn Army Ammunition Plant
MARC Multiple Award Remediation Contract

MCL maximum contaminant level

 $\mu g/L$ micrograms per liter mg/L milligrams per liter

MNA monitored natural attenuation

mV millivolts NO_3^- nitrate O_2 oxygen

ORP oxidation-reduction potential

PCE tetrachloroethene

Shaw Environmental, Inc.

 SO_4^{-2} sulfate

TCA trichloroethane TCE trichloroethene

TCEQ Texas Commission on Environmental Quality

TOC total organic carbon

TRRP Texas Risk Reduction Program

USAFCEE U.S. Air Force Center for Environmental Excellence

USEPA U.S. Environmental Protection Agency

VC vinyl chloride

1.0 Introduction

The U.S. Army Corps of Engineers, Tulsa District, contracted Shaw Environmental, Inc. (Shaw), under Louisville District's Multiple Award Remediation Contract (MARC) No. W912QR-04-D-0027, Task Order No. DS02, to conduct environmental restoration at Longhorn Army Ammunition Plant (LHAAP). This report presents the evaluation for the occurrence of natural attenuation of groundwater contaminants at the Former Sump Water Tank, designated as LHAAP-50. The general location of this site is shown on **Figure 1-1**.

LHAAP-50, Former Sump Water Tank, historically contained an aboveground storage tank for industrial wastewater, and covers approximately 1 acre (**Figure 1-2**). LHAAP-50 is located just south of LHAAP-47 and Goose Prairie Creek.

The subsurface is composed of silty clay to clayey silt, and poorly sorted silty sand. The clay layers tend to separate this groundwater zone into shallow and intermediate groundwater zones. The groundwater flow direction in the shallow zone is east-northeast across the site (**Figure 1-2**), based on the November/December 2007 groundwater elevation measurements.

The groundwater at LHAAP-50 is contaminated with volatile organic compounds (including tetrachloroethene [PCE] and trichloroethene [TCE]), and perchlorate as the primary chemicals of concern (COC). The sample results through March 2007 are used in the evaluation of monitored natural attenuation (MNA).

2.0 Description of Natural Attenuation

Natural attenuation is defined as the reduction of contaminants from the combined effect of intrinsic biodegradation, advection, dispersion, dilution, volatilization, and absorption mechanisms. Generally, intrinsic biodegradation is the most important natural attenuation mechanism that results in contaminant destruction. Intrinsic biodegradation can occur in any environment that supports microbial activity. The biodegradation may be limited by the lack of a suitable respiratory substrate (e.g., oxygen) or inorganic nutrients, extreme pH, or limited contaminant bioavailability. Accurate contamination delineation, subsurface condition characterization, and contaminant migration determination are critical for defining the contribution of intrinsic biodegradation to concentration reduction, for evaluating the effectiveness of natural attenuation, and for establishing regulatory support for use of natural attenuation at a site. MNA entails the use of natural attenuation within the context of a monitoring plan to demonstrate reductions in contaminant concentrations and achievement of remedial action objectives.

2.1 Natural Attenuation Lines of Evidence

The U.S. Environmental Protection Agency (USEPA) guidance, *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater* (USEPA, 1998), will be used as guidance for the natural attenuation evaluation. The USEPA guidance specifies a tiered approach of recommended lines of evidence required for demonstrating that MNA is an effective remedy.

There are three lines of evidence according to the USEPA guidance document based on the OSWER Directive 9200.4-17 (USEPA, 1999), which are described as follows:

- 1. *First line of evidence*. Observed Reduction in Contaminant Mass and Concentration. Relies on use of historical groundwater data that demonstrate a clear trend of stable or decreasing COC concentrations over time at appropriate monitoring or sampling points.
- 2. **Second line of evidence.** Identified and Quantified Natural Attenuation Processes. Uses geochemical indicators to document certain geochemical signatures or "footprints" in the groundwater that demonstrate (indirectly) the type of natural attenuation process(es) occurring at the site and the rate at which such processes will reduce COCs to the maximum contaminant levels (MCLs) or groundwater medium-specific concentration for industrial use (GW-Ind) levels established by the Texas Commission on Environmental Quality (TCEQ).
- *Third line of evidence*. Microcosm Studies. Most often consists of predictive modeling studies and other laboratory/field studies that demonstrate the occurrence of natural attenuation process(es) at the site and its ability to degrade the COCs.

All three lines of evidence were evaluated for LHAAP-50 to demonstrate the occurrence of natural attenuation of groundwater COCs.

2.2 Biodegradation

Biodegradation occurs when bacteria use contaminants as carbon sources or electron acceptors. The COCs at LHAAP-50 include perchlorate and chlorinated solvents exceeding their MCLs or GW-Ind. All contaminants can be degraded through microbial activity in the subsurface. Under the right conditions, all site COCs are amenable to biodegradation. A brief description of the various biodegradation pathways and mechanisms is described in the subsequent sections.

The technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater (USEPA, 1998) has a preliminary screening worksheet for evaluating whether anaerobic biodegradation is occurring. The worksheet assigns points for geochemistry and the presence of daughter products. A point total of 5 or less, devotes inadequate evidence of anaerobic degradation. A point total of 15 or more is adequate evidence for anaerobic biodegradation. In between 5 and 15, the score represents limited evidence for anaerobic degradation. The preliminary screening worksheet only addresses anaerobic degradation, not any of the other pathways for natural attenuation (aerobic biodegradation, diffusion, adsorbtion, etc.).

2.2.1 Perchlorate

Perchlorate is the soluble anion associated with ammonium, potassium, and sodium perchlorate. Perchlorate is used as an energetic booster or oxidant in solid propellant for rockets and missiles, and likely leached into the groundwater during the disposal of explosive materials and solid rocket fuel. The perchlorate anion is very mobile in aqueous systems, and can persist in the environment for many decades under aerobic condition because of its resistance to react with other available constituents. However, perchlorate can be reduced to chlorite and chloride in the presence of indigenous perchlorate-reducing microbes under anaerobic conditions (GWRTAC, 2001). The reduction in perchlorate concentrations can be direct evidence for the occurrence of biodegradation supporting the first line of evidence.

Perchlorate-reducing organisms couple the oxidization of an organic or inorganic electron donor to the reduction of perchlorate in a form of anaerobic respiration. Perchlorate (ClO_4^-) reduction produces chlorate (ClO_3^-), which can be further reduced to chlorite (ClO_2^-), then to the innocuous final product as chloride (Cl^-) and oxygen (O_2) (Rikken et al., 1996), as indicated in the following pathway:

$$ClO_4^- \rightarrow ClO_3^- \rightarrow ClO_2^- \rightarrow Cl^- + O_2$$

2.2.2 Chlorinated Solvents

The chlorinated solvents at this site are classified as chlorinated ethenes, ethanes, and methane. The most abundant chlorinated solvent at the site is TCE. Chlorinated ethenes and ethanes include parent compounds (TCE, PCE, 1,1,1-trichloroethane [TCA], 1,1,2-TCA) that biodegrade via multiple pathways and generate a variety of daughter products (cis-1,2-dichloroethene [DCE], 1,1-DCE, 1,2-dichloroethane [DCA], and vinyl chloride [VC]) that are generated from biotic or abiotic degradation of those parent compounds. Observing a decreasing trend of parent compounds and generation of daughter products are direct evidence for the occurrence of biodegradation supporting the first line of evidence.

One of the most prevalent pathways for biodegradation of chlorinated solvents is via reductive dechlorination. During this process, a chlorinated hydrocarbon is used as an electron acceptor resulting in the replacement of a chlorine atom with a hydrogen atom. The biodegradation of TCE primarily produces cis-1,2-DCE, with a trace amount of trans-1,2-DCE. 1,2-DCE isomers undergo reductive dechlorination resulting in the formation of VC, and subsequently the innocuous product ethene. When the 1,2-DCE isomers are generated, the cis-isomer is produced 10 to 100 times more often than the trans-isomer (Bouwer, 1994 and USEPA, 1998). The TCA compounds can also undergo reductive dechlorination, resulting in the formation of DCA isomers, followed by chloroethane, and then the harmless product ethane. The isomer 1,1-DCE is predominantly produced via abiotic hydrolysis of 1,1,1-TCA, and then further reduced to VC via reductive dechlorination.

Alternately, the DCE isomers, DCA and VC can be utilized as carbon sources and undergo biodegradation to carbon dioxide and chloride ions via aerobic or anaerobic oxidation. Although the chlorinated solvents can degrade via multiple biodegradation pathways, reductive dechlorination is typically the most common pathway observed. Chlorinated solvent can also undergo biogeochemical reductive dechlorination under high sulfate and iron levels (U.S. Air Force Center for Environmental Excellence [USAFCEE], 2003). During this degradation pathway, sulfate reducing bacteria produce sulfite and mineral iron without VC generation.

2.3 Geomicrobiology

Biological monitoring parameters are indicators of microbiological activity in the subsurface and are evaluated in support of the second lines of evidence. Microbial respiration is the biochemical process that leads to the oxidation of reduced organic carbon. Frequently encountered respiratory substrates (or electron acceptors) include O₂, nitrate (NO₃⁻), ferric iron (Fe⁺³), sulfate (SO₄⁻²), and carbon dioxide (CO₂). Respiratory substrates are used preferentially based on the amount of energy that can be derived from each of them. Respiratory substrates are used in the following order:

$$O_2 > NO_3^- > Fe^{+3} > SO_4^{-2} > CO_2$$

Biodegradation of ClO₄⁻ can occur under anaerobic nitrate-reducing conditions (GWRTAC, 2001). Reductive dechlorination of chlorinated solvents occurs under anaerobic (reducing) conditions such as sulfate-reducing and methanogenic conditions (USEPA, 1998). Nitrate-reducing conditions provide more energy to microorganisms than iron-reducing, sulfate-reducing condition, and methanogenic conditions. Sulfate reduction and methanogenesis are inhibited until oxygen, nitrate, and ferric iron have been depleted (USAFCEE, 2004). When perchlorate contaminants are co-mingled with chlorinated solvents in groundwater, microbes derive more energy from perchlorate degradation, thus chlorinated solvents will typically persist in groundwater until perchlorate is depleted.

The reduction of highly chlorinated compounds like PCE, TCE, and TCA may occur under sulfate-reducing conditions; however, DCE isomers, 1,2-DCA, and VC require the more reducing methanogenic conditions to undergo reductive dechlorination, which typically commence once the sulfate concentrations near depletion.

As discussed above, the concentrations of microbial respiratory substrates and products can be used to demonstrate intrinsic biodegradation. Expected changes include depressed concentrations of dissolved oxygen (DO) and negative oxidation-reduction potential (ORP) values within and downgradient of actively degrading contaminant plumes. The concentrations of anaerobic respiratory substrates such as nitrate and sulfate should decrease in groundwater located within and downgradient of a contaminant plume that is actively undergoing intrinsic anaerobic biodegradation. Similarly, the concentrations of the products of anaerobic microbial respiration, specifically ferrous iron and methane, should increase under similar circumstances.

The biodegradation of perchlorate and chlorinated solvents, whether via reductive dechlorination, dichloroelimination, or anaerobic oxidation, releases chloride ions into groundwater. In areas where the groundwater has a very low background chloride concentration, an elevation in chloride concentrations may be observed as a result of biodegradation of chlorinated solvents. However, high background chloride concentrations were observed at LHAAP, thus, the slight contribution of chloride into the groundwater through biodegradation is not quantifiable.

2.4 Microbial Analysis

Microbial analysis can provide evidence to support the third line of evidence. A number of bacteria that contain nitrate reductases are capable of reducing perchlorate, such as *Staphylococcus epidermidis* and *Bacillus cereus* et al (GWRTAC, 2001). Perchlorate-reducing bacteria appear to be nearly ubiquitous in natural environments such as soils, sediments, surface water, and groundwater aquifers. There are multiple strains that can dechlorinate TCE and TCA under anaerobic reductive conditions, but only one strain, *Dehalococcoides ethenogenes* (DHC),

Final Feasibility Study, LHAAP-50 Appendix A – Natural Attenuation Evaluation

Shaw Environmental, Inc.

can completely reduce the DCE isomers and VC to ethene. The presence of DHC in the groundwater can be the evidence to support the third line of evidence.

3.0 Natural Attenuation Evaluation Results

The following sections present the results of the natural attenuation evaluation as they pertain to demonstrating MNA in accordance with the three lines of evidence.

Four wells representing the two groundwater zones were sampled for natural attenuation parameters in February 2007. The COCs at this site were identified as PCE, TCE, cis-1,2-DCE, 1,1-DCE, VC, 1,2-DCA, and perchlorate. The groundwater sample forms and laboratory reports associated with the February 2007 groundwater round for this natural attenuation evaluation are presented in Appendix B to the Feasibility Study.

For the purposes of this evaluation, the USEPA MCLs for drinking water or the GW-Ind under TCEQ guidelines (Risk Reduction Rule Standard No. 2) are used as the cleanup levels for LHAAP-50. The GW-Ind is used for the evaluation of the COCs without MCLs. COCs that exceed their MCLs at LHAAP-50 include PCE, TCE, cis-1,2-DCE, 1,1 DCE, VC, and 1,2 DCA. The COC at this site exceeding the GW-Ind was identified as perchlorate.

The preliminary screening worksheet (USEPA, 1998) was used to evaluate if anaerobic biodegradation was occurring in wells within the PCE plume at LHAAP-50 that had most of the requisite analytical test results (**Table 3-1**). Well 50WW03 scored 4 points, indicating anaerobic biodegradation is probably not occurring there. The other three wells (50WW02, 50WW05, and 50WW06) showed totals of 10, 12, and 6 points; showing limited evidence of anaerobic degradation. Because the preliminary screening shows limited evidence for anaerobic biodegradation, the data was evaluated using the lines of evidence.

The evaluation of MNA lines of evidence for the shallow groundwater zone at LHAAP-50 is presented below.

3.1 Shallow Groundwater Zone

The shallow groundwater zone extends from 9 to 20 feet below surface. The COCs at this site are primarily distributed in the shallow aquifer. Three of the five shallow monitoring wells, 50WW02, 50WW03, and 50WW05 were sampled for natural attenuation parameters in February 2007. Monitoring wells 50WW03, 50WW02, and 50WW05 are along a downgradient flow direction (to the east), with 50WW02 located closest to the assumed source area (**Figure 1-2**).

3.1.1 Change in COC Concentrations over Time and with Distance

The change in groundwater COC concentrations over time and with distance was evaluated in the shallow groundwater at LHAAP-50.

3.1.1.1 Perchlorate

Perchlorate has historically been detected above GW-Ind in 50WW02 and 50WW05. During the February 2007 sampling event, perchlorate was observed exceeding the GW-Ind level of 72 micrograms per liter (μ g/L) in only one well, 50WW02, at a concentration of 532 μ g/L (**Table 3-2**). A decreasing trend of perchlorate over time was observed in 50WW02 (**Figure 3-1**) and 50WW05 (**Figure 3-2**) where higher concentrations were historically observed. Perchlorate concentrations decreased between the upgradient well, 50WW02 (532 μ g/L) and the downgradient well, 50WW05, (27.8 μ g/L) during February 2007 sampling event, suggesting that perchlorate is attenuating along the groundwater flow direction. The analytical results suggest that natural attenuation is effectively controlling perchlorate levels, as shown by in-well decreasing concentration trends and reductions over distance.

3.1.1.2 Chlorinated Ethenes

According to historical and the most current data, PCE, TCE, cis-1,2-DCE, VC, and 1,1-DCE are the only chlorinated ethenes detected above their respective MCLs. The chlorinated ethenes are discussed in this section.

PCE: PCE concentrations were observed exceeding the MCL (5 μ g/L) in wells 50WW02 and 50WW05 during the February 2007 sampling event. In both wells, PCE concentrations decreased over the course of monitoring (**Figure 3-1** and **Figure 3-2**). In February 2007, PCE concentrations decrease from the upgradient well 50WW02 (9.3 μ g/L) to downgradient well 50WW05 (5.1 μ g/L) (**Table 3-2**), indicating that PCE is being attenuated along the groundwater flow direction. The analytical data suggests that PCE has been attenuated effectively over time and distance at LHAAP-50.

TCE: During the most recent sampling events, only 50WW02 and 50WW05 exhibited TCE concentrations above the MCL (5 μg/L) in February 2007 (**Table 3-2**). In monitoring well 50WW02, TCE peaked at 16,100 μg/L in October 2000, followed by a decrease to 5,420 μg/L in February 2007 (**Figure 3-1**). In 50WW05, TCE decreased from 3,130 to 1,460 μg/L between May 2005 and February 2007 (**Figure 3-2**). In February 2007, TCE concentration decreased from the upgradient well 50WW02 (5,420 μg/L) to downgradient well 50WW05 (1,460 μg/L) (**Table 3-2**), indicating that TCE has attenuated along the groundwater flow direction. Based on the analytical results, TCE has been attenuated over time and distance. The existence of large quantities of perchlorate may inhibit the reductive dechlorination of TCE. In 50WW02, TCE concentrations fluctuated prior to October 2000 while perchlorate was observed at relatively high concentrations. The continuous reduction of perchlorate at 50WW02 has also allowed a steady decrease in TCE concentration since October 2000.

cis-1,2-DCE: As TCE is degraded via reductive dechlorination, the next lower chlorinated daughter product is primarily cis-1,2-DCE. During the February 2007 sampling event,

Shaw Environmental, Inc.

cis-1,2-DCE exceeded its MCL (70 μ g/L) in 50WW02 at a level of 855 μ g/L. At 50WW02 an initial increase followed by a decreasing trend of cis-1,2-DCE has been observed as TCE is reduced over time (**Figure 3-1**). Also, a decrease in cis-1,2-DCE concentrations was seen between the upgradient well 50WW05 (855 μ g/L) and the downgradient well at 50WW02 (48.2 μ g/L) (**Table 3-2**). This data suggest that cis-1,2-DCE has been attenuated along the groundwater flow direction. Furthermore, the ratio of cis- and trans-1,2-DCE isomers was above 10 in 50WW05 and 50WW02 (**Table 3-2**), indicating DCE isomers were historically produced via biological reductive dechlorination.

1,1-DCE: The abiotic hydrolysis of 1,1,1-TCA produces 1,1-DCE which can undergo reductive dechlorination to VC and ethene. During the sampling event in February 2007, 50WW05 is the only well that exhibited 1,1-DCE concentrations above its MCL (7 μ g/L). A decrease in 1,1-DCE levels from 21.6 to 12.6 μ g/L was observed between May 2005 and February 2007 in 50WW05 (**Table 3-2**). Historical 1,1-DCE concentrations were above MCL at 50WW02, however levels decreased from 50 μ g/L in September 1998 to 6.5 μ g/L in February 2007.

VC: As the parent compounds TCE or TCA are reduced, VC is the final chlorinated daughter product during reductive dechlorination. In February 2007, VC exceeded its MCL (2 μ g/L) in 50WW02 at 15.2 μ g/L and in 50WW05 at 2.5 μ g/L. Decreasing concentrations of VC over time have been observed in both monitoring wells (**Table 3-2**).

The detection of cis-1,2-DCE and VC are direct evidence that reductive dechlorination has occurred historically. As the result of reductive dechlorination, a decrease in the parent compound TCE should accompany an increase in daughter compounds cis-1,2-DCE and VC. However, in the wells impacted with chlorinated ethenes, the decrease of TCE, cis-1,2-DCE and VC has occurred simultaneously between 2000 and 2007. Therefore, the decrease of chlorinated ethenes may be due to attenuation processes including adsorption, dispersion, dilution, diffusion, volatilization, sorption, and cometabolic degradation.

3.1.1.3 Chlorinated Ethane

TCA can also undergo reductive dechlorination, resulting in the formation of DCA isomers, followed by chloroethane, and then the harmless product ethane. 1,2-DCA is the only chlorinated ethane exceeding its MCL (5 μ g/L) at monitoring wells 50WW02 (18.8 μ g/L) and 50WW05 (13.5 μ g/L) during the February 2007 sampling event (**Table 3-2**). 1,2-DCA exhibited decreasing concentrations in 50WW02 (**Figure 3-1**) and 50WW05 (**Figure 3-2**). Lower levels of 1,2-DCA were observed in the downgradient well 50WW05 than in the upgradient well 50WW02, suggesting that attenuation has occurred along the groundwater flow direction.

The historical and current concentrations of the COCs indicate a clear decreasing trend (**Table 3-2**). The concentration decreases along the groundwater flow direction also suggests

attenuation with distance away from the contamination source. These results show that all COCs are being attenuated over time and over distance.

3.1.2 Geochemical Indicators

Groundwater field parameters, including DO, ORP, pH, temperature, and conductivity, were analyzed in the field during the 2007 sampling event. In addition, laboratory analyses for the following natural attenuation parameters were performed during the same sampling event: gases (methane, ethane, and ethene), anions (sulfate, nitrate, nitrite, and chloride), and total organic carbon (TOC). The results of the 2007 sampling event are presented in **Table 3-2**.

Dissolved Oxygen and Oxidative-Reduction Potential: Oxygen is the preferred terminal electron acceptor during aerobic microbial respiration. DO concentrations below 0.5 milligrams per liter (mg/L) are the most favorable condition for anaerobic reductive dechlorination, and anaerobic microbial activity would not tolerate DO levels above 5 mg/L (USEPA, 1998). DO concentrations ranged from 1.53 mg/L in 50WW05 to 6.25 mg/L in 50WW02 during the February 2007 sampling event (**Table 3-2**). ORP often correlates with the dominant type of microbial activity. The more negative the measurement, the more likely that sulfate-reducing or methanogenic conditions can exist in the subsurface and typically require ORP values below 50 millivolts (mV) (USEPA, 1998). The ORP measurements in the shallow groundwater zone at LHAAP-50 ranged from 200 mV in 50WW03 to 306.4 mV in 50WW05 during the February 2007 sampling event (**Table 3-2**). The results of DO and ORP measurements suggest oxidative conditions exist, which is unfavorable for reductive dechlorination of perchlorate and chlorinated solvents.

Nitrate: Following oxygen, microorganisms preferentially use nitrate as a terminal electron acceptor. Concentrations of nitrate less than 1 mg/L are not expected to interfere with anaerobic reductive dechlorination (USEPA, 1998). Active nitrate-reducing conditions are often indicated by a depletion of nitrate in groundwater and a possible increase in nitrite, which is favorable for perchlorate reduction. Nitrate and nitrite concentrations were both below detection limits in February 2007 (**Table 3-2**), which suggest that nitrate levels would not interfere with reductive dechlorination at LHAAP-50.

Ferrous Iron: Once nitrate has been depleted, microorganisms use ferric iron as the next terminal electron acceptor. As a measurement of reduced ferric iron, an accumulation of ferrous iron may be observed. Ferrous iron levels above 1 mg/L suggest that groundwater conditions are favorable for reductive dechlorination (USEPA, 1998). During the February 2007 sampling event, ferrous iron ranged from non-detect in 50WW05 to 0.4 mg/L in 50WW05 (**Table 3-2**). These data suggest that iron reduction is not currently occurring at this site.

Sulfate: Reductive dechlorination of highly chlorinated compounds such as TCE occurs under sulfate-reducing conditions, but the reductive dechlorination of cis-1,2-DCE and VC is unlikely to occur under the same conditions. Sulfate-reducing conditions are favored when other electron acceptors such as oxygen, nitrate, and bioavailable ferric iron are depleted, leaving sulfate as the primary acceptor. Active sulfate reduction is often indicated by a depletion of sulfate in groundwater and a possible increase in sulfide. Concentrations of sulfate greater than 20 mg/L may cause competitive exclusion of reductive dechlorination (USEPA, 1998). Sulfate concentrations at LHAAP-50 ranged from 198 mg/L in 50WW02 to 403 mg/L in 50WW03; meanwhile sulfite was below the detection limit (0.2 mg/L) in all monitoring wells. This suggests that most of the site groundwater is not under sulfate-reducing conditions at this time.

Methane: Methanogenesis occurs in highly reducing conditions and an accumulation of methane above 0.5 mg/L are considered to represent methanogenic conditions (USEPA, 1998). During the February 2007 sampling event, elevated methane concentrations above 0.5 mg/L were not observed in the shallow groundwater zone (**Table 3-2**). However methane was detected in all monitoring wells sampled in February 2007, which suggests methanogenic microbes may be present in the groundwater.

Ethane and Ethene: Ethane and ethene are the end products of reductive dechlorination. The lack of detection of ethane and ethene suggests that complete dechlorination is not occurring in the shallow groundwater zone at this time (**Table 3-2**).

Total Organic Carbon: Regardless of the electron acceptor being used, organic carbon is a required source of energy to sustain microbial activity. TOC concentrations greater than 20 mg/L are considered adequate to support microbial activity (USEPA, 1998). In wells sampled in February 2007, TOC ranged from 2.0 mg/L at 50WW05 to 3.0 mg/L at 50WW02 in the shallow groundwater zone (**Table 3-2**). Even though TOC levels are not in the optimal range, the levels observed are adequate to stimulate microbial activity in the shallow groundwater zone. Reductive dechlorination has historically occurred to produce chlorinated ethene daughter products before TOC was consumed to the current levels.

pH: The optimal pH range for microbial activity is between 6 and 8 standard units but pH values between 5 and 9 are tolerated. The pH within the shallow groundwater zones ranged from 6.3 to 7.1 standard units during the February 2007 sampling event (**Table 3-2**). The pH values at LHAAP-50 are within the optimal range to support biodegradation.

The qualitative assessment of the geochemical indicators in the shallow groundwater zone at LHAAP-50 presents evidence that geochemical conditions are not optimal at this time for anaerobic reductive dechlorination of perchlorate and chlorinated ethenes.

3.1.3 Natural Attenuation Rate Estimation and Microbial Analysis

Natural attenuation rate estimations and microbial analysis provide evidence supporting lines of evidence for the shallow groundwater zone. These attenuation rate estimations incorporate all of the attenuation pathways, but cannot determine which pathway accounts for what portion of the attenuation.

3.1.3.1 Natural Attenuation Rate and Cleanup Time Estimation

Decreasing concentrations of COCs were observed in the impacted monitoring wells 50WW02 and 50WW05. The time-dependent attenuation rates of COCs in 50WW02 were estimated, based on COC concentrations over time in the monitoring well, with the assumption of first-order degradation kinetics. The time-dependent attenuation rates in 50WW05 were not estimated, due to the lack of the minimum number of results (3) required to determine a trend. The in–well attenuation rates for perchlorate, PCE, TCE, cis-1,2-DCE, 1,2-DCA, and VC were calculated for the shallow groundwater zone and the results are summarized in **Table 3-3**. Although the attenuation rates at 50WW05 cannot be calculated due to limited data, the decreasing concentrations of contaminants suggest natural attenuation is occurring.

Attenuation rates and cleanup times for the COCs are as follows:

Perchlorate: Figure 3-3 is a graphical presentation of natural attenuation rate calculation for perchlorate in well 50WW02. The attenuation rate constant for perchlorate is 0.00100 day⁻¹, and the estimated time to reach the GW-Ind is 5.5 years (**Table 3-3**).

PCE: Figure 3-4 is graphical presentation of natural attenuation rate constant calculation for PCE in 50WW02. The estimated attenuation rate was 0.00046 day⁻¹, and the estimated clean-up time is 3.7 years (**Table 3-3**).

TCE: **Figure 3-5** is graphical presentation of natural attenuation rate calculation for TCE in well 50WW02. The attenuation rate for TCE is 0.0004 day⁻¹, corresponding to a cleanup time of 47.7 years (**Table 3-3**).

Cis-1,2-DCE: **Figure 3-6** is a graphical presentation of natural attenuation rate calculation for cis-1,2-DCE in well 50WW02, which exhibited an attenuation rate constant at 0.00053 day⁻¹ and a cleanup time of 12.9 years (**Table 3-3**).

VC: **Figure 3-7** is a graphical presentation of natural attenuation rate calculation for VC. Based on the attenuation rate of 0.00070 day⁻¹, the estimated cleanup time for VC is 7.9 years.

1,2-DCA: **Figure 3-8** is a graphical presentation of the time-dependent natural attenuation rate constant calculation for 1,2-DCA in 50WW02. The estimated attenuation rate was 0.00055 day⁻¹, and the estimated clean-up time is 6.6 years (**Table 3-3**).

Based on the estimated natural attenuation rates for TCE, the cleanup via natural attenuation in the shallow groundwater zone will be less than 50 years. However, the estimation is based on current data, and future monitoring results should verify and update the attenuation rates and corresponding cleanup times in both monitoring wells impacted with COCs.

3.1.3.2 Microbial Analysis

An important indicator of reductive dechlorination is the presence of DHC, the only known species capable of complete dechlorination of TCE and its daughter products to innocuous ethene via reductive dechlorination. During the most recent sampling event in February 2007, DHC cells were observed in the two wells impacted with chlorinated solvents at levels of 12 cells per milliliter (cells/mL) in 50WW02 and 36 cells/mL in 50WW05 (**Table 3-2**). The presence of the dechlorinating microorganisms suggests that microbes able to process complete reductive dechlorination are present at LHAAP-50.

3.2 Intermediate Groundwater Zone

The intermediate groundwater zone extends from 45 to 60 feet, and is separated from the shallow and deep groundwater zones by clay layers. During the February 2007 sampling event, natural attenuation parameters were sampled from 50WW06 which is located within the intermediate groundwater zone. TCE was detected at 15 μ g/L in August 2004, followed by a decrease to 2 μ g/L, below the MCL (5 μ g/L), in February 2007 (**Table 3-4**). Perchlorate was detected at levels below the GW-Ind (72 μ g/L) during sampling events at LHAAP-50 (**Table 3-4**). Thus, natural attenuation was not evaluated for the intermediate groundwater zone.

4.0 Summary of Results and Conclusions

Historical perchlorate and VOC data and geochemical indicators for the groundwater at LHAAP-50 were evaluated to determine if MNA can be used as a feasible remedy for chlorinated solvents and perchlorate present in the shallow groundwater. Preliminary screening of multiple wells at LHAAP-50 indicated limited evidence for anaerobic biodegradation, and a more detailed evaluation was made. A tiered approach using three lines of evidence was used to examine the occurrence of natural attenuation in site groundwater. The first line of evidence evaluated reductions in COC concentrations over time and with distance, the second line of evidence evaluated geochemical indicators, while the third line of evidence entailed estimation of natural attenuation rate and microbial analysis. The results of the tiered evaluation and the conclusions are summarized below.

The COCs exceeding MCLs or GW-Inds in the shallow groundwater zone at LHAAP-50 are PCE, TCE, cis-1,2-DCE, 1,1-DCE, 1,2-DCA, VC, and perchlorate. Wells designated as intermediate or deep are not affected.

First Line of Evidence: Historical analytical data indicate the occurrence of perchlorate and chlorinated solvent biodegradation at this site. The decreasing in-well concentration trends of all COCs over time were observed in monitoring wells at LHAAP-50. Comparing the analytical result from two upgradient and downgradient wells also suggests decreasing trends of most COCs with distance away from the central location of contamination. These results show that COCs have been attenuated over time and over distance.

Second Line of Evidence: The qualitative assessment of the geochemical indicators in the shallow groundwater zones at LHAAP-50 present evidence that geochemical conditions are not optimal for the degradation of perchlorate and chlorinated solvents via reductive dechlorination. In the shallow groundwater zone, the elevated DO and ORP levels suggest aerobic and oxidative conditions exist. The TOC concentrations observed at LHAAP-50 shallow groundwater zone are not at optimal levels to support microbial activity, but are adequate for reductive chlorination to occur.

Third Line of Evidence: The time-dependent in-well natural attenuation rates were calculated for perchlorate, PCE, TCE, cis-1,2-DCE, 1,2-DCA, and VC. TCE attenuation is the limiting step to reach site wide cleanup. Based on in-well time dependent attenuation rates, the estimated cleanup time is 47.7 years for TCE to achieve the MCL in monitoring well 50WW02. The presence of the dechlorinating microorganisms at the impacted areas is further evidence that site conditions are capable of complete dechlorination.

Shaw Environmental, Inc.

Conclusion: The natural attenuation evaluation demonstrates that natural attenuation is occurring in at LHAAP-50. COCs are attenuated via mechanisms including cometabolic degradation, dispersion, dilution, volatilization, and sorption. Although the geochemical conditions are not optimal for reductive dechlorination, the COC concentrations are decreasing and moderate cleanup times were estimated.

The natural attenuation evaluation demonstrates that MNA is a feasible alternative as the sole remedy for the COCs in the shallow groundwater at LHAAP-50.

5.0 References

Bouwer, E.J., 1994, "Bioremediation of Chlorinated Solvents using Alternative Electron Acceptors," *Handbook of Bioremediation*, R.D. Norris, R.E. Hinchee, R. Brown, P.L. McCarty, L. Semprini, J.T. Wilson, D.H. Kampbell, M. Reinhard, E.J. Bouwer, R.C. Borden, T.M. Vogel, J.M. Thomas, and C.H. Ward, eds., Lewis Publishers, Boca Raton.

Ground-Water Remediation Technologies Analysis Center (GWRTAC), 2001, *Technology Status Report: Perchlorate Treatment Technologies*, First Edition.

Rikken, G.B.; Kroon, A.G.M.; Van Ginkel, C.G., 1996, *Transformation of (Per)chlorate into Chloride by a Newly Isolated Bacterium: Reduction and Dismutation*. Appl.Microbiol. Biotechnol. 45, 420–426.

U.S. Air Force Center for Environmental Excellence (USAFCEE, 2003), *Biogeochemical Treatment for the Engineered and Natural Attenuation of Chlorinated Solvents*, Brook-City, Texas.

USAFCEE, 2004, Principle and Practice of Enhanced Anaerobic Bioremediation Final Draft, Brook-City, Texas.

U.S. Environmental Protection Agency (USEPA), 1998, *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater*, U.S. EPA/600/R-98/128, T.H. Wiedemeier, M.A. Swanson, D.E. Moutoux, E.K. Gordon, J.T. Wilson, B.H. Wilson, D.H. Kampbell, P.E. Haas, R.N. Miller, J.E. Hansen, and F.H. Chapelle, Cincinnati, Ohio.

USEPA, 1999, Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, OSWER directive 9200.4.-17P.

Tables

Table 3-1
Preliminary Screening Worksheet for Reductive Dechlorination
LHAAP-50

Analytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradation Processes (FPA/600/R-98/128)

	Anaerobic Biodegrad	lation Processes (EPA/600/R-98/128)		50WW02	50WW03	50WW05	50WW06
Analysis	Concentration in Most Contaminated Zone	Interpretation	Value	Points Assigned	Points Assigned	Points Assigned	Points Assigned
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	3	0	0	0	0
Oxygen*	>5 mg/L	Not tolerated; however, VC may be oxidized aerobically	-3	-3	0	0	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	2	2	2	2	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)- freducing conditions	3	0	0	0	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	2	0	0	0	0
Sulfide*	>1 mg/L	Reductive pathway possible	3	0	0	0	0
Methane*	<0.5 mg/L	VC oxidizes	0	0	0	0	0
oui.a.io	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	3	Ů	ŭ	ŭ	Ü
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	1	0	0	0	1
Potential* (ORP) against Ag/AgCl electrode	<-100mV	Reductive pathway likely	2				
pH*	5 < pH < 9 5 > pH >9	Optimal range for reductive pathway Outside optimal range for reductive pathway	0 -2	0	0	0	0
TOC	> 20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	2	0	0	0	0
Temperature*	> 20°C	At T >20°C biochemical process is accelerated	1	1	1	1	1
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	1	0	1	0	0
Alkalinity	>2x background	Results from interaction between CO2 and aguifer minerals	1	0	0	1	0
Chloride*	>2x background	Daughter product of organic chlorine	2	Ö	0	0	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	3	NT	NT	NT	NT
Hydrogen	<1 nM	VC oxidized	0	NT	NT	NT	NT
Volatile Fatty Acids	> 0.1 mg/L	Intermediates resulting from biodegradation of more complex compounds; carbon and energy source	2	NT	NT	NT	NT
BTEX*	> 0.1 mg/L	Carbon and energy source; drives dechlorination	2	0	0	0	0
Tetrachloroethene	, J	Material released	0	0	0	0	0
Trichloroethene*		Material released	0	Ö	0	0	0
		Daughter product of PCE	2a				
DCE*		Material released	0	2	0	2	2
		Daughter product of TCE If cis is > 80% of total DCE it is likely a daughter product 1,1-DCE can be chemical reaction product of TCA	2a				
VC*		Material released Daughter product of DCE	0 2a	2	0	2	0
1,1,1-Trichloroethane*		Material released	0	0	0	0	0
DCA		Daughter product of TCA under reducing conditions	2	2	0	2	0
Carbon Tetrachloride		Material released	0	0	0	0	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	2	0	0	0	0
Ethene/Ethane	>0.01mg/L >0.1 mg/L	Daughter product of VC/ethene	2	0	0	0	0
Chloroform		Material released Daughter product of Carbon Tetrachloride	0 2	2	0	2	0
Dichloromethane		Material released	0	2	0	0	0
(Methylene Chloride)		Daughter product of Chloroform	2				

^{* -} Required Analysis

Totals 10 4 12 6

a - points awarded only if it can be shown that the compound is a daughter product (not a source constituent) NT - not tested

Table 3-2
Summary of Shallow Groundwater Zone Analytical Results
LHAAP-50

	TION 005-	<u> </u>		50WW01									
	TION_CODE												
	MPLE_DATE		Sep-98	3	3	31-Aug		1	1-May				
	E_PURPOSE		REG			REG			REG				
Parameter	Units	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual			
VOLATILES													
Tetrachloroethene	ug/L		<	U		U	U	0.25		U			
Trichloroethene	ug/L	1		U		U	UJ	1.03					
cis-1,2-Dichloroethene	ug/L	1	-	U	5	U	U	0.25		U			
trans-1,2-Dichloroethene	ug/L		<	U		U	U	0.25		U			
Vinyl chloride	ug/L	1	<	U		U	U	0.25		U			
1,1-Dichloroethene	ug/L	1	-	U		U	U	0.5		U			
1,2-Dichloroethane	ug/L	1	<	U		U	U	0.125		U			
Chloroform	ug/L	1	<	U	5	U	U	0.125	J	U			
GASES													
Ethane	ug/L												
Ethylene	ug/L												
Methane	ug/L												
FIELD TESTS													
Dissolved Oxygen	mg/L												
Ferrous iron	mg/L												
ORP	mV												
Hq	STD UNIT												
Specific Conductivity	uS/cm												
Temperature	Deg C												
Turbidity	NŤU												
GEN CHEMISTRY		1											
Carbon Dioxide	mg/L												
Chloride	mg/L												
Nitrate	mg/L												
Nitrate / Nitrite	mg/L												
Nitrite	mg/L												
Perchlorate	ug/L				1	U	U	0.5	U	U			
pH	STD UNIT							2.0					
Specific Conductivity	uS/cm												
Sulfate	mg/L												
Sulfide	mg/L												
Total Alkalinity	mg/L												
Total Organic Carbon	mg/L												
DHC	Ŭ												
Dehalococcoides	cells/ml									Ì			
DIOXINS FURANS													
Octachlorodibenzo-p-dioxin	pg/L	275.671											
COLCONIO TO CONTROL P CHONIT	P9'-	270.071	1	1		I	1	1					

Table 3-2 Summary of Shallow Groundwater Zone Analytical Results LHAAP-50

									LI 1/	AAP-3U											
	TION_CODE										50WW	-									
SA	MPLE_DATE	3	0-Sep-		2	2-Oct-9	98	2	4-May-		3-Oct		30	0-Aug-	04	11	I-May-0	5	2	3-Feb-	07
SAMPLE	_PURPOSE		REG			REG			REG		REG		REG			REG				REG	
Parameter	Units	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual	Result Qual	ValQual	Result	Qual	ValQual	Result C	Qual V	'alQual	Result	Qual	ValQual
VOLATILES																					
Tetrachloroethene	ug/L	35						100		U	18 <	U	28			6.59			9.3		
Trichloroethene	ug/L	2900						11000			16100		9200			4810			5420		
cis-1,2-Dichloroethene	ug/L	2100						2300		J	4060		1800	D		954			855		
trans-1,2-Dichloroethene	ug/L	15						100		U	7.2 <	U	8			2.75			2.6		
Vinyl chloride	ug/L	100						100		U	14 <	U	36			7.95			15.2		
1,1-Dichloroethene	ug/L	50						100		U	7.6 <	U	20			4.74			6.5		
1,2-Dichloroethane	ug/L	98						100		U	79		58			20.2			18.8		
Chloroform	ug/L	25						100	<	U	8.8 <	U	13			4.35			4.2		
GASES																					
Ethane	ug/L																		0.6		U
Ethylene	ug/L																		0.8	U	U
Methane	ug/L																		1.87		
FIELD TESTS																					
Dissolved Oxygen	mg/L												2.46			8.64			6.25		
Ferrous iron	mg/L																		0		
ORP	mV												310.1			1764			306.4		
рН	STD UNIT												6.25			6.54			6.3		
Specific Conductivity	uS/cm												1953			1720			1622		
Temperature	Deg C												25.91			21.19			19.63		
Turbidity	NTU												4.9						0		
GEN CHEMISTRY																					
Carbon Dioxide	mg/L																		140		
Chloride	mg/L																		219		
Nitrate	mg/L																		0.005		U
Nitrate / Nitrite	mg/L																		0.02		J
Nitrite	mg/L																		0.003	U	U
Perchlorate	ug/L				18000			3210		J	9950		2500			1590			532		
рН	STD UNIT																		6.3		
Specific Conductivity	uS/cm																		1400		
Sulfate	mg/L																		198		
Sulfide	mg/L																		0.2	UB	U
Total Alkalinity	mg/L																		138		
Total Organic Carbon	mg/L																		3		
DHC																					
Dehalococcoides	cells/ml																		12		
DIOXINS_FURANS				ļ								1									
Octachlorodibenzo-p-dioxin	pg/L																				

Table 3-2 Summary of Shallow Groundwater Zone Analytical Results LHAAP-50

										AAI -30			-	ì								
	ATION_CODE						50W							50WW04								
	MPLE_DATE	3	0-Sep-		3	0-Aug		1	1-May		2	4-Feb		30)-Sep-	98	3	1-Aug-		1	10-May	
	E_PURPOSE		REG			REG			REG			REG			REG			REG		<u> </u>	REG	
Parameter	Units	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual
VOLATILES																				1		
Tetrachloroethene	ug/L		<	U	5		U	0.25		U	0.74		U	1	<	U	5		U	0.25		U
Trichloroethene	ug/L	0.57			8			0.25		U	0.63		U	9.4			2		J	0.25		U
cis-1,2-Dichloroethene	ug/L	1	<	U	5		U	0.25		U	0.83		U	0.64		J	5		U	0.25		U
trans-1,2-Dichloroethene	ug/L	1	<	U	5		U	0.25		U	0.75		U	1		U	5		U	0.25		U
Vinyl chloride	ug/L	1	<	U	5		U	0.25		U	0.32		U	1	-	U	5		U	0.25		U
1,1-Dichloroethene	ug/L	1	<	U	5		U	0.5		U	0.68		U	1	<	U	5		U	0.5		U
1,2-Dichloroethane	ug/L	1	<	U	5		UJ	0.125		U	0.53		U		<	U	5	,	UJ	0.25		U
Chloroform	ug/L	1	<	U	5	U	U	0.125	U	U	0.66	U	U	0.63		J	5	J	U	0.125	U	U
GASES																				1		
Ethane	ug/L										0.6	U	U									
Ethylene	ug/L										0.8	U	U							1		
Methane	ug/L										0.56											
FIELD TESTS																						
Dissolved Oxygen	mg/L										3.08									6.67		
Ferrous iron	mg/L										0.06											
ORP	mV										200									118.2		
pH	STD UNIT										7.05									6.6		
Specific Conductivity	uS/cm										6867									5179		
Temperature	Deg C										18.75									22.87		
Turbidity	NTU										4.5									15.3	,	
GEN CHEMISTRY																						
Carbon Dioxide	mg/L										416											
Chloride	mg/L										944											
Nitrate	mg/L										0.005	U	U							1	1	
Nitrate / Nitrite	mg/L										0.01	В	J							1		
Nitrite	mg/L										0.003	U	UJL							i		
Perchlorate	ug/L				1	U	U	2	U	U	4	U	U				1	U	U	2.5	U	U
pH	STD UNIT		-								7.1											
Specific Conductivity	uS/cm										3340											
Sulfate	mg/L		-								403											
Sulfide	mg/L										0.2	UB	U							i		
Total Alkalinity	mg/L										417											
Total Organic Carbon	mg/L										2											
DHC																						
Dehalococcoides	cells/ml										10	U	U									
DIOXINS_FURANS																						
Octachlorodibenzo-p-dioxin	pg/L																					

Table 3-2
Summary of Shallow Groundwater Zone Analytical Results
LHAAP-50

LOCA											
SA	MPLE_DATE	2	1-Sep	-02	1	1-May	-05	23-Feb-07			
SAMPLE	_PURPOSE		REG			REĞ			REG	i	
Parameter	Units	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual	
VOLATILES											
Tetrachloroethene	ug/L				6.76			5.1			
Trichloroethene	ug/L				3130			1460			
cis-1,2-Dichloroethene	ug/L				66.3			48.2			
trans-1,2-Dichloroethene	ug/L				1.76			0.75	U	U	
Vinyl chloride	ug/L				3.69			2.5			
1,1-Dichloroethene	ug/L				21.6			12.9			
1,2-Dichloroethane	ug/L				24.1			13.5			
Chloroform	ug/L				0.279	J	J	0.66	U	U	
GASES											
Ethane	ug/L							0.6	U	U	
Ethylene	ug/L							0.8	U	U	
Methane	ug/L							2.93			
FIELD TESTS	J										
Dissolved Oxygen	mg/L				4.04			1.53			
Ferrous iron	mg/L							0.4			
ORP	mV				161.3			62.1			
pH	STD UNIT				6.78			7.1			
Specific Conductivity	uS/cm				3378			2.411			
Temperature	Deg C				19.01			20.55			
Turbidity	NŤU							0			
GEN CHEMISTRY											
Carbon Dioxide	mg/L							73			
Chloride	mg/L							253			
Nitrate	mg/L							0.005	U	U	
Nitrate / Nitrite	mg/L							0.005	U	U	
Nitrite	mg/L							0.003	U	U	
Perchlorate	ug/L	5850			719			27.8			
pH	STD UNIT							7.1			
Specific Conductivity	uS/cm							1800			
Sulfate	mg/L							286			
Sulfide	mg/L							0.2	UB	U	
Total Alkalinity	mg/L							457			
Total Organic Carbon	mg/L							2			
DHC											
Dehalococcoides	cells/ml							36			
DIOXINS_FURANS											
Octachlorodibenzo-p-dioxin	pg/L										

Final Feasibility Study - LHAAP-50

Appendix A

Shaw Environmental, Inc.

Table 3-2
Summary of Shallow Groundwater Zone Analytical Results
LHAAP-50

		LITAAT-30											
	TION_CODE												
	MPLE_DATE	2			1			2	23-Feb				
	E_PURPOSE		REG			REG			REG				
Parameter	Units	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual			
VOLATILES													
Tetrachloroethene	ug/L				6.76			5.1					
Trichloroethene	ug/L				3130			1460					
cis-1,2-Dichloroethene	ug/L				66.3			48.2					
trans-1,2-Dichloroethene	ug/L				1.76			0.75	U	U			
Vinyl chloride	ug/L				3.69			2.5					
1,1-Dichloroethene	ug/L				21.6			12.9					
1,2-Dichloroethane	ug/L				24.1			13.5					
Chloroform	ug/L				0.279	J	J	0.66	U	U			
GASES	. 3												
Ethane	ug/L			Ī			1	0.6	ш	U			
Ethylene	ug/L							0.8	_	U			
Methane	ug/L ug/L							2.93	0	O			
FIELD TESTS	ug/L							2.50					
		1		1	4.04		1	4.50					
Dissolved Oxygen	mg/L				4.04			1.53					
Ferrous iron	mg/L							0.4					
ORP	mV				161.3			62.1					
рН	STD UNIT				6.78			7.1					
Specific Conductivity	uS/cm				3378			2.411					
Temperature	Deg C				19.01			20.55					
Turbidity	NTU							0					
GEN CHEMISTRY								•					
Carbon Dioxide	mg/L							73					
Chloride	mg/L							253					
Nitrate	mg/L							0.005	U	U			
Nitrate / Nitrite	mg/L							0.005	U	U			
Nitrite	mg/L							0.003	U	U			
Perchlorate	ug/L	5850			719			27.8					
рН	STD UNIT							7.1					
Specific Conductivity	uS/cm							1800					
Sulfate	mg/L							286					
Sulfide	mg/L							0.2	UB	U			
Total Alkalinity	mg/L							457					
Total Organic Carbon	mg/L							2					
DHC			1						1				
Dehalococcoides	cells/ml							36					
DIOXINS_FURANS								r					
Octachlorodibenzo-p-dioxin	pg/L												

Qualifiers:

- < same as U
- B The concentration reported was detected in the associated method blank, trip blank, or equipmen blank within 5X/10X the blank concentration.
- D sample was diluted for analysis
- J The analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed.
- L Result may be biased low. Details are provided in the validation report.
- U Not detected. The analyte was analyzed for, but not detected above the associated reporting limit.

Abbreviations:

cells/ml - cells per milliliter

Deg C - degress centigrade

ug/L - micrograms per liter

uS/cm - microsiemens per centimeter

mg/L - milligrams per liter

NTU - nephelometric turbidity unit

pg/L - picograms per liter

STD UNIT - standard unit

Shaw Environmental, Inc.

Table 3-3
Estimation of Cleanup Times Using Time-Dependent Attenuation Rates

	Attenuation Rate	Attenuation Half-life	Attenuation Half-life	Current Conc.	MCL or GW-Ind	Estimated Cleanup
Well ID	(day ⁻¹)	(days)	(years)	(μ g/L)	(μ g/L)	(years)
		Pe	rchlorate			
50WW02	0.00100	693.1	1.9	532	72	5.5
		Tetrac	chloroethene			
50WW02	0.00046	1513.4	4.1	9.3	5	3.7
		Trich	nloroethene			
50WW02	0.00040	1728.5	4.7	5420	5	47.7
		cis-1,2-l	Dichloroethene			
50WW02	0.00053	1300.5	3.6	855	70	12.9
		Vin	yl Chloride			
50WW02	0.00070	991.6	2.7	15.2	2	7.9
	•	1,2-Di	chloroethane			
50WW02	0.00055	1264.9	3.5	18.8	5	6.6

Notes and Abbreviations:

GW-Ind - groundwater medium-specific concentration for industrial use.

MCL - maximum contaminant level

μg/L - micrograms per liter

¹⁾ The estimated cleanup time was calculated as the time it would take the most recent detected chemicals of concern concentrations to reach the MCL using the site-specific attenuation rate, and assuming first order degradation kinetics.

Shaw Environmental, Inc.

Table 3-4
Summary of Intermediate Zone Groundwater Analytical Results
LHAAP-50

LOC	ATION CODE			06								
SA	AMPLE_DATE	3	0-Aug	-04	1	1-May	-05	22-Feb-07				
SAMPI	LE_PURPOSE		REG	i		REG			REG	i		
Parameter	Units	Result	Qual	ValQual	Result	Qual	ValQual	Result	Qual	ValQual		
VOLATILES												
Tetrachloroethene	ug/L	5	U	U	0.25	U	U	0.74	U	U		
Trichloroethene	ug/L	15			4.7			2				
cis-1,2-Dichloroethene	ug/L	5	U	U	0.332	J	J	0.83	U	U		
trans-1,2-Dichloroethene	ug/L	5	U	U	0.25	U	U	0.75	U	U		
Vinyl chloride	ug/L	5	U	U	0.25	U	U	0.32	U	U		
1,1-Dichloroethene	ug/L	5	U	U	0.5	U	U	0.68	U	U		
1,2-Dichloroethane	ug/L	5	U	UJ	0.5	U	U	0.53	U	U		
Chloroform	ug/L	5	U	U	0.125	U	U	0.66	U	U		
GASES												
Ethane	ug/L							0.6	U	U		
Ethylene	ug/L							0.8		Ü		
Methane	ug/L							2.5				
FIELD TESTS	- 3-											
Dissolved Oxygen	mg/L				8.82			2.09				
Ferrous iron	mg/L				0.02			0.44				
ORP	mV				-98.6			59.6				
pH	STD UNIT				11.96			6.91				
Specific Conductivity	uS/cm				23.7			1.583				
Temperature	Deg C				20.97			19.25				
Turbidity	NTU				4.4			0				
GEN CHEMISTRY												
Carbon Dioxide	mg/L							44				
Chloride	mg/L							209				
Nitrate	mg/L							0.005		U		
Nitrate / Nitrite	mg/L							0.04	_	J		
Nitrite	mg/L							0.003		U		
Perchlorate	ug/L	6.7			24.8				Ü	Ü		
pH	STD UNIT	0						7.1				
Specific Conductivity	uS/cm							1260				
Sulfate	mg/L							203				
Sulfide	mg/L								UB	U		
Total Alkalinity	mg/L							278		-		
Total Organic Carbon	mg/L							3				
DHC	_											
Dehalococcoides	cells/ml							10	U	U		
DIOXINS FURANS												
Octachlorodibenzo-p-dioxin	pg/L											
Abbreviations:				1			1		-			

Abbreviations:

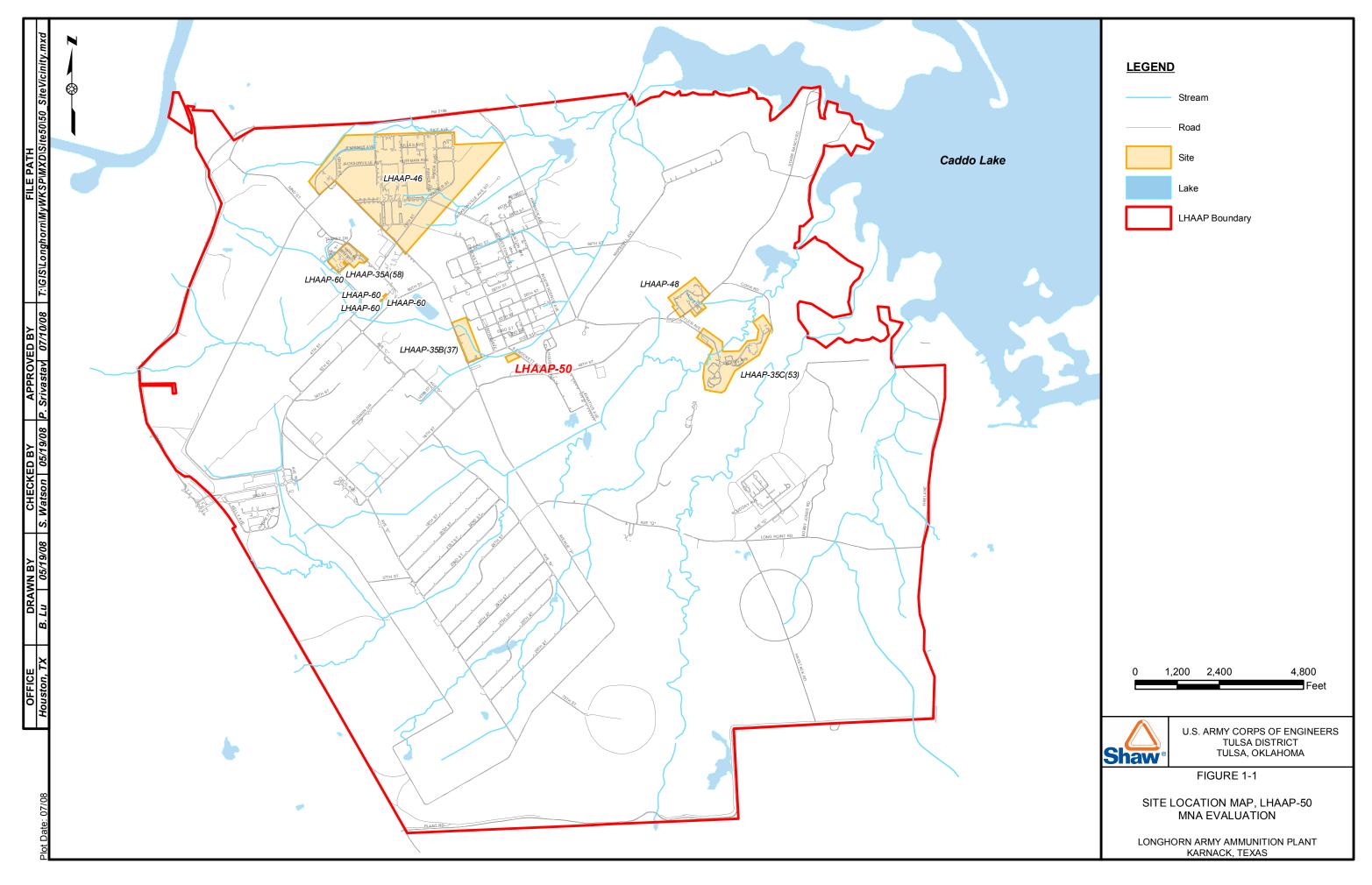
cells/ml - cells per milliliter

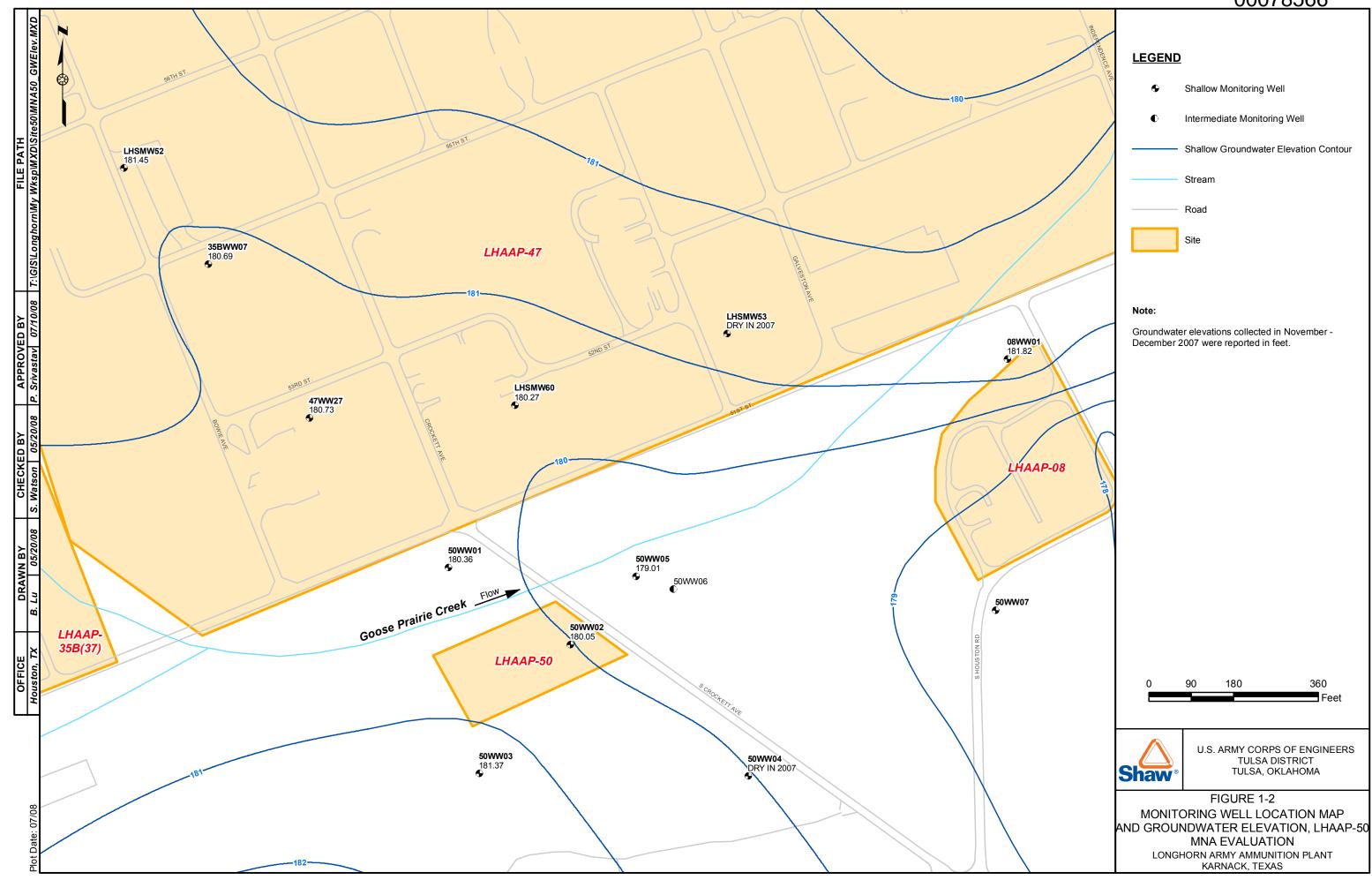
Deg C - degrees celsius

μg/L - micrograms per liter

μS/cm - microseconds per centimeter

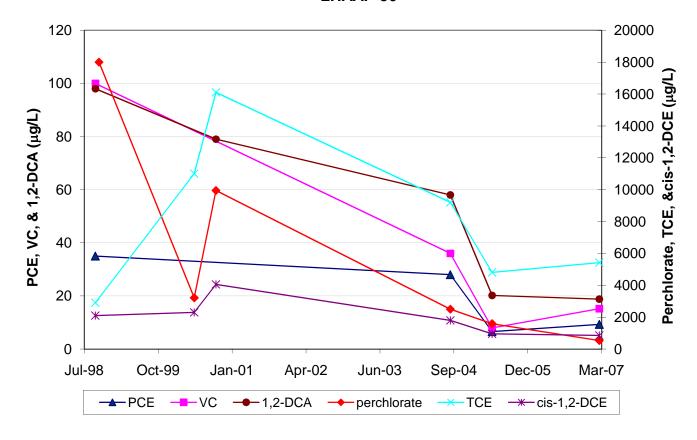
mg/L - milligrams per liter


NTU - nepheletic turbidity units


STD UNIT - standard units

Qualifiers:

- $B-The\ concentration\ reported\ was\ detected\ in\ the\ associated\ method\ blank,\ trip\ blank,\ or\ equipment\ blank\ within\ 5X/10X\ the\ blank\ concentration.$
- J The analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample analyzed.
- U Not detected. The analyte was analyzed for, but not detected above the associated reporting limit.


Figures

Appendix A

Figure 3-1 **Concentration Trends Over Time In Monitoring Well 50WW02** LHAAP-50

Shaw Environmental, Inc.

Figure 3-2
Concentration Trends Over Time In Monitoring Well 50WW05
LHAAP-50

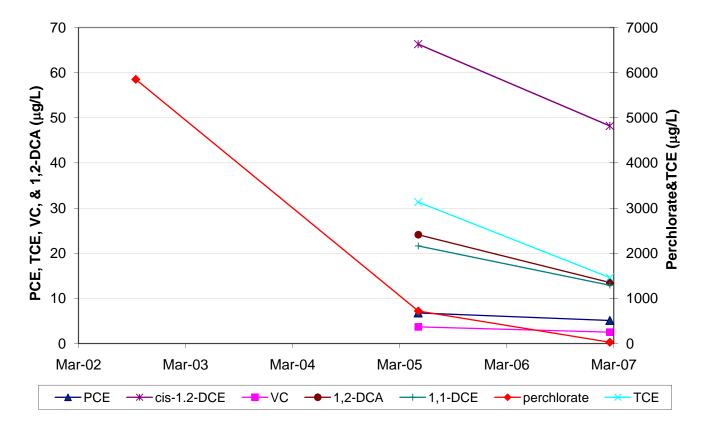
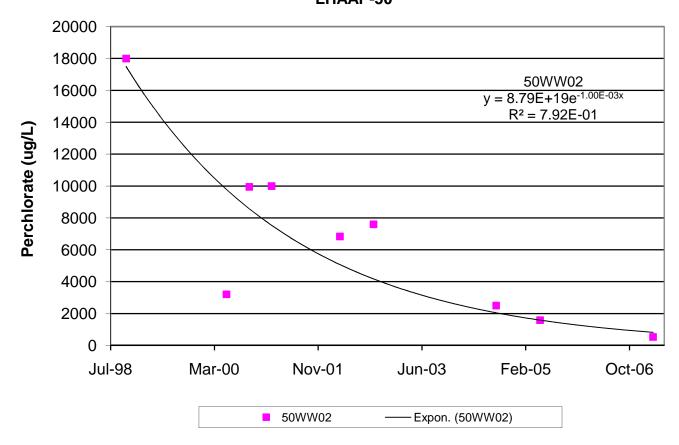
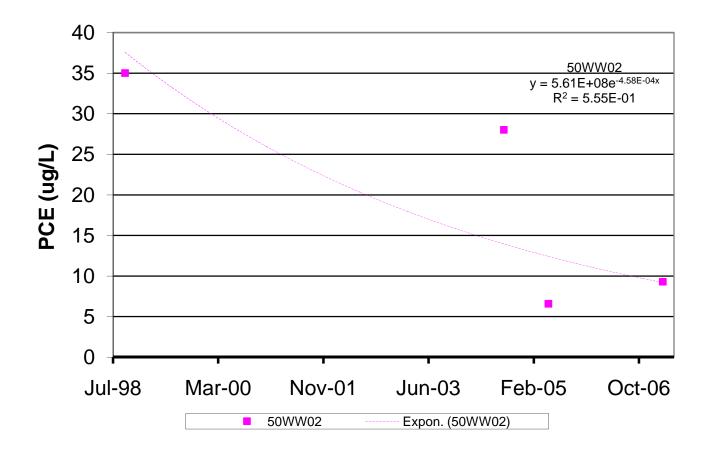



Figure 3-3
Estimation of Time-Dependent Perchlorate Attenuation Rate
LHAAP-50



Final Feasibility Study – LHAAP-50

Appendix A

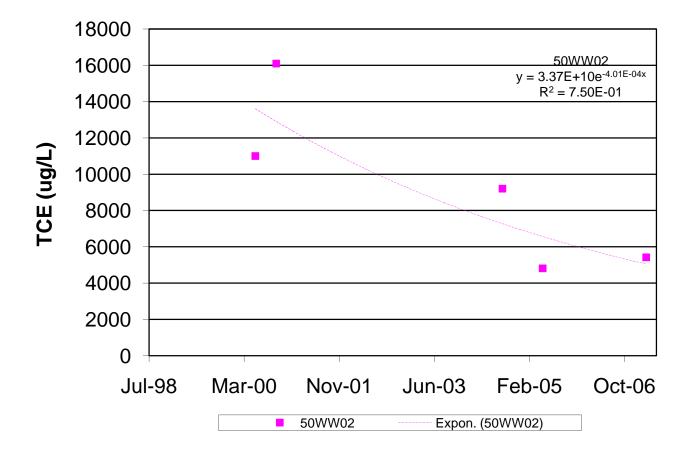

Shaw Environmental, Inc.

Figure 3-4
Estimation of Time-Dependent Tetrachloroethene Attenuation Rate
LHAAP-50

Final Feasibility Study - LHAAP-50
Appendix A
Shaw Environmental, Inc.

Figure 3-5
Estimation of Time-Dependent Trichloroethene Attenuation Rate LHAAP-50

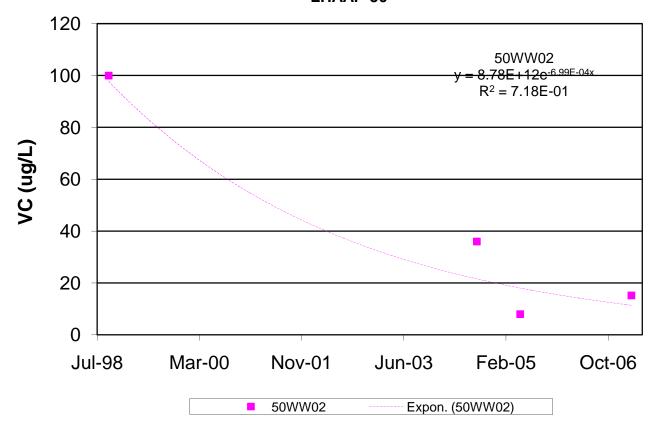


Final Feasibility Study - LHAAP-50

Appendix A

Shaw Environmental, Inc.

Figure 3-6
Estimation of Time-Dependent cis-1,2-Dichloroethene Attenuation Rate LHAAP-50

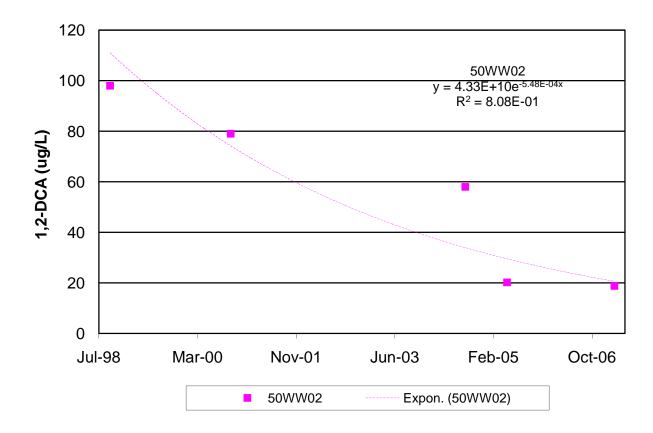


Final Feasibility Study - LHAAP-50

Appendix A

Shaw Environmental, Inc.

Figure 3-7
Estimation of Time-Dependent Vinyl Chloride Attenuation Rate
LHAAP-50



Final Feasibility Study - LHAAP-50

Appendix A

Shaw Environmental, Inc.

Figure 3-8
Estimation of Time-Dependent 1,2-Dichloroethane Attenuation Rate LHAAP-50

Appendix B

2007 and 2008 Analytical Reports, Field Data, and 50WW07 Logs

				20	or and 20	,00				utu													
		LOCATION_C			47WW27			50WV		_			0WW03				0WW05				0WW06		
		SAMPLE	_	47\	WW27-101807				FEB200	07			V03-FEB				VO5-FEE				/06-FEB		
		SAMPLE_D			18-Oct-07			23-Fe				2	4-Feb-07			2	3-Feb-0	7		2	2-Feb-0	7	
T 10		SAMPLE_PURP		u I c	REG	0 55	D	RE		DC -		D 11.1.0	REG	II DO I E	1		REG	1 56	D	D 1.10	REG	1 50	
Test Group	Parameter	Unit		sult Qu	ual ValQual R	C DF		al Va	alQual	RC L	OF.		ValQua	al RC DI	- K		ValQu	ial RC	DF		ValQu	ial RC	DF
DHE	Dehalococcoides	cells/i					12				1	10 U	U		1	36			1	10 U	U		1
FIELD TESTS	Dissolved Oxygen	mg/		2.36		1	6.25				1	3.08			1	1.53			1	2.09			1
FIELD TESTS	Ferrous iron	mg/		NO F		1	0				1	0.06			1	0.4			1	0.44			1
FIELD TESTS	Oxygen Reduction Potential	mV		99.5		1	306.4				1	200			1	62.1			1	59.6			1
FIELD TESTS	pH	pH Ur		5.51		I	6.3				1	7.05			1	7.1			1	6.91			1
FIELD TESTS	Salinity	mg/		410		1	0.82				1	3.78			1	1.26			1	3.01			1
FIELD TESTS	Specific Conductivity	uS/c		412		1	1622				1	6867			- 1	2411			1	1583			1
FIELD TESTS	Temperature	Deg		9.68		- 1	19.63				1	18.75			1	20.55			1	19.25			1
FIELD TESTS	Turbidity	NTU		57.8		ı	0				1	4.5			1	0			1	0	U		1
GASES	Ethane	ug/l					0.6 U	U			٠,١	0.6 U	U		1	0.6 U	U		1	0.6 U	-		1
GASES	Ethylene	ug/l					0.8 U	U			1	0.8 U	U		1	0.8 U	U		1	0.8 U	U		1
GASES	Methane	ug/l					1.87				1	0.56			1	2.93			1	2.5			1
GEN CHEMISTRY	Carbon Dioxide	mg/					140				10	416		-	1	73			1	44			7
GEN CHEMISTRY	Chloride	mg/					219	U			10	944		5	0	253	U		20	209			20
GEN CHEMISTRY	Nitrate	mg/					0.005 U	-		4.5	1	0.005 U	U	45	- 1	0.005 U	-		1	0.005 U	U	45	1
GEN CHEMISTRY	Nitrate / Nitrite	mg/					0.02 B	J		15	1	0.01 B	J	15	- 1	0.005 U	U		1	0.04 B	J	15	1
GEN CHEMISTRY	Nitrite	mg/		170		1.5	0.003 U	U			1	0.003 U	UJL	02B	1	0.003 U	U		1	0.003 U	U		1
GEN CHEMISTRY	Perchlorate	ug/l		170		15					1	4 U	U		1	27.8			1	4 U	U		1
GEN CHEMISTRY	pH	pH Ur					6.3				1	7.1			1	7.1			1	7.1			1
GEN CHEMISTRY	Specific Conductivity	uS/c					1400				ı	3340			1	1800			- 1	1260			I
GEN CHEMISTRY	Sulfate	mg/					198				2	403		- 1	0	286			4	203			2
GEN CHEMISTRY	Sulfide	mg/					0.2 UB	U			1	0.2 UB	U			0.2 UB	U		I	0.2 UB	U		- 1
GEN CHEMISTRY	Total Alkalinity	mg/					138					417			5	457			5	278			5
GEN CHEMISTRY	Total Organic Carbon	mg/					3				-1	2			1	2			1	3			1
VOLATILES	1,1,1,2-Tetrachloroethane	ug/l					0.07.11					0.07.11				0.07.11				0.07.11			
VOLATILES	1,1,1-Trichloroethane	ug/l					0.37 U	U			1	0.37 U	U		1	0.37 U	U		- 1	0.37 U	U		- 1
VOLATILES	1,1,2,2-Tetrachloroethane	ug/l					0.46 U	U		4.5	1	0.46 U	U		1	0.46 U	U		1	0.46 U	U		1
VOLATILES	1,1,2-Trichloroethane	ug/l					0.92 J	J		15	1	0.66 U	U		1	0.66 U	U	4.5	1	0.66 U	U		1
VOLATILES	1,1-Dichloroethane	ug/l					5.4				1	0.52 U	U		1	1.3 J	J	15	1	0.52 U	U		1
VOLATILES	1,1-Dichloroethene	ug/l					6.5				'	0.68 U	U		I	12.9			I	0.68 U	U		I
VOLATILES VOLATILES	1,1-Dichloropropene	ug/l																					
	1,2,3-Trichlorobenzene	ug/l																					
VOLATILES	1,2,3-Trichloropropane	ug/l																					
VOLATILES VOLATILES	1,2,4-Trichlorobenzene	ug/l																					
VOLATILES	1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ug/l																					
	1,2-Dibromo-3-chioropropane 1,2-Dibromoethane	ug/l																					
VOLATILES VOLATILES	1,2-Dichlorobenzene	ug/l																					
VOLATILES		ug/l					18.8				1	0.53 U	U		1	12.5			1	0.53.11	U		1
VOLATILES	1,2-Dichloroethane	ug/l					0.59 U	U			1	0.53 U 0.59 U	U		1	13.5 0.59 U	U		1	0.53 U 0.59 U	U		1
VOLATILES	1,2-Dichloropropane 1,2-Dimethylbenzene (o-Xylene	ug/l					U.39 U	U			'	U.37 U	U		1	U.37 U	U		- 1	0.59 0	U		- 1
VOLATILES	1,3,5-Trimethylbenzene (o-xylene	,																					
VOLATILES	1,3,5-11methylbenzene 1,3-Dichlorobenzene	ug/l																					
		ug/l																					
VOLATILES	1,3-Dichloropropane	ug/l																					
VOLATILES VOLATILES	1,4-Dichlorobenzene	ug/l																					
	2,2-Dichloropropane	ug/l					2 11	- 11			1	2 11			1	2 11			1	2 11			1
VOLATILES	2-Butanone	ug/l					3 U	U			1	3 U	U		1	3 U	U		ı	3 U	U		ı
VOLATILES	2-Chloroethyl vinyl ether	ug/l																					
VOLATILES	2-Chlorotoluene	ug/l					1011	- 11			1	1011			1	1011			1	1011			1
VOLATILES	2-Hexanone	ug/l	I				1.9 U	U			1	1.9 U	U		1	1.9 U	U		1	1.9 U	U		1

				2(or and	2000	Ground	wate	Data it		ΛI -JU	'						
		LOCATION	ON_CODE		47WW27			50WW0	2		50WW03	3		50WW05			50WW06	
		SA	MPLE_NO	4	7WW27-101	807	50W	W02-FE	B2007	50\	NW03-FEE	32007	50V	VW05-FEB2	007	50W	/W06-FEB2	007
		SAMF	PLE_DATE		18-Oct-07			23-Feb-0)7		24-Feb-0	7		23-Feb-07			22-Feb-07	
		SAMPLE_I	PURPOSE		REG			REG			REG			REG			REG	
Test Group	Parameter		Units	Result C	Qual ValQu	al RC DF	Result Qu	al ValQ	ual RC DF	Result Q	ual ValQu	ual RC DF	Result Qu	ual ValQual	RC DF	Result Qu	al ValQua	I RC DF
VOLATILES	4-Chlorotoluene		ug/L															
VOLATILES	Acetone		ug/L				2.8 U	U	1	2.8 U	U	1	2.8 U	U	1	2.8 U	U	1
VOLATILES	Benzene		ug/L				0.46 J	J	15 1	0.23 U	U	1	0.23 U	U	1	0.23 U	U	1
VOLATILES	Bromobenzene		ug/L															
VOLATILES	Bromochloromethane		ug/L															
VOLATILES	Bromodichloromethane		ug/L				0.33 U	U	1	0.33 U	U	1	0.33 U	U	1	0.33 U	U	1
VOLATILES	Bromoform		ug/L				0.65 U	U	1	0.65 U	U	1	0.65 U	U	1	0.65 U	U	1
VOLATILES	Bromomethane		ug/L				0.47 U	U	1	0.47 U	U	1	0.47 U	U	1	0.47 U	U	1
VOLATILES	Carbon disulfide		ug/L				0.62 U	U	1	0.62 U	U	1	0.62 U	U	1	0.62 U	U	1
VOLATILES	Carbon tetrachloride		ug/L				0.52 U	U	1	0.52 U	U	1	0.52 U	U	1	0.52 U	U	1
VOLATILES	Chlorobenzene		ug/L				0.54 U	U	1	0.54 U	U	1	0.54 U	U	1	0.54 U	U	1
VOLATILES	Chloroethane		ug/L				0.46 U	U	1	0.46 U	U	1	0.46 U	U	1	0.46 U	U	1
VOLATILES	Chloroform		ug/L				4.2		1	0.66 U	U	1	0.66 U	U	1	0.66 U	U	1
VOLATILES	Chloromethane		ug/L				0.6 U	U	1	0.6 U	U	1	0.6 U	U	1	0.6 U	U	1
VOLATILES	cis-1,2-Dichloroethene		ug/L				855		100	0.83 U	U	1	48.2		1	0.83 U	U	1
VOLATILES	cis-1,3-Dichloropropene		ug/L				0.59 U	U	1	0.59 U	U	1	0.59 U	U	1	0.59 U	U	1
VOLATILES	Dibromochloromethane		ug/L				0.68 U	U	1	0.68 U	U	1	0.68 U	U	1	0.68 U	U	1
VOLATILES	Dibromomethane		ug/L															
VOLATILES	Dichlorodifluoromethane		ug/L															
VOLATILES	Ethylbenzene		ug/L				0.48 U	U	1	0.48 U	U	1	0.48 U	U	1	0.48 U	U	1
VOLATILES	Hexachlorobutadiene		ug/L															
VOLATILES	Isopropylbenzene		ug/L															
VOLATILES	m,p-Xylenes		ug/L															
VOLATILES	Methyl isobutyl ketone		ug/L				7.3 U	U	1	7.3 U	U	1	7.3 U	U	1	7.3 U	U	1
VOLATILES	Methylene chloride		ug/L				0.67 U	U	1	0.67 U	U	1	0.67 U	U	1	0.67 U	U	1
VOLATILES	Naphthalene		ug/L															
VOLATILES	n-Butylbenzene		ug/L															
VOLATILES	n-Propylbenzene		ug/L															
VOLATILES	p-Isopropyltoluene		ug/L															
VOLATILES	sec-Butylbenzene		ug/L															
VOLATILES	Styrene		ug/L				0.5 U	U	1	0.5 U	U	1	0.5 U	U	1	0.5 U	U	1
VOLATILES	tert-Butylbenzene		ug/L															
VOLATILES	Tetrachloroethene		ug/L				9.3		1	0.74 U	U	1	5.1		1	0.74 U	U	1
VOLATILES	Toluene		ug/L				0.54 U	U	1	0.54 U	U	1	0.54 U	U	1	0.54 U	U	1
VOLATILES	trans-1,2-Dichloroethene		ug/L				2.6		1	0.75 U	U	1	0.75 U	U	1	0.75 U	U	1
VOLATILES	trans-1,3-Dichloropropene		ug/L				0.61 U	U	1	0.61 U	U	1	0.61 U	U	1	0.61 U	U	1
VOLATILES	Trichloroethene		ug/L				5420		100	0.63 U	U	1	1460		20	2		1
VOLATILES	Trichlorofluoromethane		ug/L															
VOLATILES	Vinyl acetate		ug/L															
VOLATILES	Vinyl chloride		ug/L				15.2		1	0.32 U	U	1	2.5		1	0.32 U	U	1
VOLATILES	Xylenes, Total		ug/L				1.1 U	U	1	1.1 U	U	1	1.1 U	U	1	1.1 U	U	1

				2007 and 2	008 Groundwater Da	ala ioi LHAAP-30
	LOCA	ATION_CODE	Ę	50WW07	LHSMW60	LHSMW60
		SAMPLE_NO	50W	W07-021908	LHSMW60-101807	LHSMW60-101807-QC
	SA	MPLE_DATE	1	9-Feb-08	18-Oct-07	18-Oct-07
	SAMPL	E_PURPOSE		REG	REG	FD
Test Group	Parameter	Units	Result Qua	al ValQual RC DF	Result Qual ValQual RC DF	Result Qual ValQual RC DF
DHE	Dehalococcoides	cells/mL				
FIELD TESTS	Dissolved Oxygen	mg/L				
FIELD TESTS	Ferrous iron	mg/L				
FIELD TESTS	Oxygen Reduction Potential	mV				
FIELD TESTS	рН	pH Units				
FIELD TESTS	Salinity	mg/L				
FIELD TESTS	Specific Conductivity	uS/cm				
FIELD TESTS	Temperature	Deg C				
FIELD TESTS	Turbidity	NTU				
GASES	Ethane	ug/L				
GASES	Ethylene	ug/L				
GASES	Methane	ug/L				
GEN CHEMISTRY	Carbon Dioxide	mg/L				
GEN CHEMISTRY	Chloride	mg/L				
GEN CHEMISTRY	Nitrate	mg/L				
GEN CHEMISTRY	Nitrate / Nitrite	mg/L				
GEN CHEMISTRY	Nitrite	mg/L				
GEN CHEMISTRY	Perchlorate	ug/L			0.5 U U	1 0.5 U U
GEN CHEMISTRY	рН	pH Units				
GEN CHEMISTRY	Specific Conductivity	uS/cm				
GEN CHEMISTRY	Sulfate	mg/L				
GEN CHEMISTRY	Sulfide	mg/L				
GEN CHEMISTRY	Total Alkalinity	mg/L				
GEN CHEMISTRY	Total Organic Carbon	mg/L				
VOLATILES	1,1,1,2-Tetrachloroethane	ug/L	0.25 U	U 1		
VOLATILES	1,1,1-Trichloroethane	ug/L	0.25 U	U 1		
VOLATILES	1,1,2,2-Tetrachloroethane	ug/L	0.125 U	U 1		
VOLATILES	1,1,2-Trichloroethane	ug/L	0.25 U	U 1		
VOLATILES	1,1-Dichloroethane	ug/L	0.125 U	U 1		
VOLATILES	1,1-Dichloroethene	ug/L	0.5 U	U 1		
VOLATILES	1,1-Dichloropropene	ug/L	0.25 U	U 1		
VOLATILES	1,2,3-Trichlorobenzene	ug/L	0.125 U	U 1		
VOLATILES	1,2,3-Trichloropropane	ug/L	0.5 U	U 1		
VOLATILES	1,2,4-Trichlorobenzene	ug/L	0.2 U	U 1		
VOLATILES	1,2,4-Trimethylbenzene	ug/L	0.25 U	U 1		
VOLATILES	1,2-Dibromo-3-chloropropane	ug/L	1 U	U 1		
VOLATILES	1,2-Dibromoethane	ug/L	0.25 U	U 1		
VOLATILES	1,2-Dichlorobenzene	ug/L	0.125 U	U 1		
VOLATILES	1,2-Dichloroethane	ug/L	0.25 U	U 1		
VOLATILES	1,2-Dichloropropane	ug/L	0.2 U	U 1		
VOLATILES	1,2-Dimethylbenzene (o-Xylene)	ug/L	0.25 U	U 1		
VOLATILES	1,3,5-Trimethylbenzene	ug/L	0.25 U	U 1		
VOLATILES	1,3-Dichlorobenzene	ug/L	0.25 U	U 1		
VOLATILES	1,3-Dichloropropane	ug/L	0.2 U	U 1		
VOLATILES	1,4-Dichlorobenzene	ug/L	0.125 U	U 1		
VOLATILES	2,2-Dichloropropane	ug/L	0.25 U	U 1		
VOLATILES	2-Butanone	ug/L	2.5 U	U 1		
VOLATILES	2-Chloroethyl vinyl ether	ug/L	2 U	U 1		
VOLATILES	2-Chlorotoluene	ug/L	0.125 U	U 1		
VOLATILES	2-Hexanone	ug/L	2.5 U	U 1		

VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Carbon tetrachloride ug/L 0.25 U U 1 VOLATILES Chloroehrane ug/L 0.125 U U 1 VOLATILES Chloroform ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Gis-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromonchloromethane ug/L 0.25 U U 1 VOLATILES Dibromonchloromethane ug/L 0.25 U U 1 VOLATILES Dibromonchloromethane ug/L 0.25 U U 1 VOLATILES Elhylbenzene ug/L 0.25 U U 1 VOLATILES Inchinoration and an			10017:0:: 00		0144407	_		I ,	
SAMPLE_PURPOES			_						
Test Group	•								JC
Test Group			_						
VOLATILES	T+ C	D !				- D			OC L DE
VOLATILES Acetone ug/L 3.54 J J 15 I VOLATILES Berzene ug/L 0.125 U U 1 VOLATILES Bromochloromethane ug/L 0.125 U U 1 VOLATILES Bromochloromethane ug/L 0.25 U U 1 VOLATILES Bromoferm ug/L 0.5 U U 1 VOLATILES Bromomethane ug/L 0.5 U U 1 VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Carbon iterachloride ug/L 0.5 U U 1 VOLATILES Chioromethane ug/L 0.5 U U 1 VOLATILES Chioromethane ug/L 0.25 U U 1 VOLATILES Chioromethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U						Res	suit Qual ValQual RC DF	Result Qual ValQual F	KC DF
VOLATILES Berwene ug/L 0.125 U U 1 VOLATILES Bromobenzene ug/L 0.125 U U 1 VOLATILES Bromodichloromethane ug/L 0.2 U U 1 VOLATILES Bromoform ug/L 0.5 U U 1 VOLATILES Bromoform ug/L 0.5 U U 1 VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Carbon tetrachloride ug/L 0.5 U U 1 VOLATILES Chlorochane ug/L 0.25 U U 1 VOLATILES Chlorochane ug/L 0.125 U U 1 VOLATILES Chlorochane ug/L 0.25 U U 1 VOLATILES Chlorochane ug/L 0.25 U U 1 VOLATILES Chlorochane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U			,			1			
VOLATILES Bromochromehane ug/L 0.125 U U 1 VOLATILES Bromochromehane ug/L 0.25 U U 1 VOLATILES Bromoform ug/L 0.5 U U 1 VOLATILES Bromomethane ug/L 0.5 U U 1 VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Chioroberzene ug/L 0.25 U U 1 VOLATILES Chioroberzene ug/L 0.25 U U 1 VOLATILES Chioroform ug/L 0.25 U U 1 VOLATILES Chioroform ug/L 0.25 U U 1 VOLATILES Chioroperpene ug/L 0.25 U U 1 VOLATILES Chi-1,3-Dichoroperpene ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dichiorodifluoromethane ug/L <			9			1			
VOLATILES Bromochloromethane ug/L 0.2 U U 1 VOLATILES Bromodichoromethane ug/L 0.5 U U 1 VOLATILES Bromofemome ug/L 0.5 U U 1 VOLATILES Bromomethane ug/L 0.5 U U 1 VOLATILES Carbon Idsulfide ug/L 0.5 U U 1 VOLATILES Chlorochezene ug/L 0.25 U U 1 VOLATILES Chlorochezene ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Biromothoromethane ug/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>						1			
VOLATILES Bromodichloromethane ug/L 0.25 U U 1 VOLATILES Bromonform ug/L 0.5 U U 1 VOLATILES Bromomethane ug/L 0.5 U U 1 VOLATILES Carbon tetrachoride ug/L 0.25 U U 1 VOLATILES Chlorobenzene ug/L 0.125 U U 1 VOLATILES Chlorobenzene ug/L 0.125 U U 1 VOLATILES Chloroform ug/L 0.125 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Hexachforobuladine						1			
VOLATILES Bromoform ug/L 0.5 U U 1 VOLATILES Bromomethane ug/L 0.5 U U 1 VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Chlorobezene ug/L 0.25 U U 1 VOLATILES Chloroethane ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES cis-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Birtyleane			ŭ .			1			
VOLATILES Bromomethane ug/L 0.5 U U 1 VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Chlorobenzene ug/L 0.125 U U 1 VOLATILES Chloroform ug/L 0.125 U U 1 VOLATILES Chloroform ug/L 0.25 U U 1 VOLATILES Chloroform ug/L 0.25 U U 1 VOLATILES Chloroformethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dichorodifluoromethane ug/L			ug/L		-	1			
VOLATILES Carbon disulfide ug/L 0.5 U U 1 VOLATILES Carbon tetrachloride ug/L 0.25 U U 1 VOLATILES Chloroehrane ug/L 0.125 U U 1 VOLATILES Chloroform ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Gis-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromonchloromethane ug/L 0.25 U U 1 VOLATILES Dibromonchloromethane ug/L 0.25 U U 1 VOLATILES Dibromonchloromethane ug/L 0.25 U U 1 VOLATILES Elhylbenzene ug/L 0.25 U U 1 VOLATILES Inchinoration and an	VOLATILES	Bromoform	ug/L	0.5 U	U	1			
VOLATILES Carbon tetrachloride ug/L 0.25 U U 1 VOLATILES Chlorobenzene ug/L 0.125 U U 1 VOLATILES Chloroform ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Gis-12-Dichloropene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Hexachlorobuladiene ug/L 0.25 U U 1 VOLATILES Hexach	VOLATILES	Bromomethane	ug/L	0.5 U	U	1			
VOLATILES Chlorobenzene ug/L 0.125 U U 1 VOLATILES Chlorofform ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dichlorofilduromethane ug/L 0.25 U U 1 VOLATILES Dichlorofilduromethane ug/L 0.25 U U 1 VOLATILES Dichlorofilduromethane ug/L 0.25 U U 1 VOLATILES Ethylbenzene ug/L 0.25 U U 1 VOLATILES Isopropyloglenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylsenzene <td>VOLATILES</td> <td>Carbon disulfide</td> <td>ug/L</td> <td>0.5 U</td> <td>U</td> <td>1</td> <td></td> <td></td> <td></td>	VOLATILES	Carbon disulfide	ug/L	0.5 U	U	1			
VOLATILES Chlorobenzene ug/L 0.125 U U 1 VOLATILES Chlorofform ug/L 0.5 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Heack-florobutadiene ug/L 0.25 U U 1 VOLATILES Heack-florobutadiene ug/L 0.25 U U 1 VOLATILES Methyl sob	VOLATILES	Carbon tetrachloride	ug/L	0.25 U	U	1			
VOLATILES Chloroform ug/L 0.125 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES cis-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Einylbenzene ug/L 0.25 U U 1 VOLATILES Hexachrobotuladiene ug/L 0.25 U U 1 VOLATILES Molylbenzene ug/L 0.25 U U 1 VOLATILES Methylisobulyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobulyl ketone ug/L 0.25 U U 1 VOLATILES Methylis	VOLATILES	Chlorobenzene	-	0.125 U	U	1			
VOLATILES Chloroform ug/L 0.125 U U 1 VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES cis-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Einylbenzene ug/L 0.25 U U 1 VOLATILES Hexachrobotuladiene ug/L 0.25 U U 1 VOLATILES Molylbenzene ug/L 0.25 U U 1 VOLATILES Methylisobulyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobulyl ketone ug/L 0.25 U U 1 VOLATILES Methylis	VOLATILES	Chloroethane	ug/L	0.5 U	U	1			
VOLATILES Chloromethane ug/L 0.25 U U 1 VOLATILES cis-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Ethylbenzene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methylischorebloride ug/L 0.25 U U 1 VOLATILES Methylischorebloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES Nebylbenzene ug/L 0.25 U U 1 VOLATILES P-lospropyllouene	VOLATILES	Chloroform	ŭ .	0.125 U	U	1			
VOLATILES cis-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Ethylbenzene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.5 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES	VOI ATILES	Chloromethane	3	0.25 U	U	1			
VOLATILES cis-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Dibromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.5 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.5 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES						1			
VOLATILES Ditromochloromethane ug/L 0.25 U U 1 VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Meschopopylbenzene ug/L 0.5 U U 1 VOLATILES Methylene chloride ug/L 0.5 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES Igerbullen		· ·	-			1			
VOLATILES Dibromomethane ug/L 0.25 U U 1 VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Ethylbenzene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.5 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n.Butylbenzene ug/L 0.25 U U 1 VOLATILES psopropyltoluene ug/L 0.25 U U 1 VOLATILES psopropyltoluene ug/L 0.25 U U 1 VOLATILES tert.Butylbe		' '	J			1			
VOLATILES Dichlorodifluoromethane ug/L 0.25 U U 1 VOLATILES Ethylbenzene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.5 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylisobutyl ketone ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES tert-Bu						1			
VOLATILES Ethylbenzene ug/L 0.25 U U 1 VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.25 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Bropylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene			ŭ .			1			
VOLATILES Hexachlorobutadiene ug/L 0.25 U U 1 VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES Methyl isobutyl ketone ug/L 0.5 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene <t< td=""><td></td><td></td><td>J</td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>			J			1			
VOLATILES Isopropylbenzene ug/L 0.25 U U 1 VOLATILES m,p-Xylenes ug/L 0.5 U U 1 VOLATILES Methyl sobutyl ketone ug/L 2.5 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyllouene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane		*				<u>'</u>			
VOLATILES mp-Xylenes ug/L 0.5 U U 1 VOLATILES Methyl isobutyl ketone ug/L 2.5 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L <td></td> <td></td> <td>9</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>			9			1			
VOLATILES Methyl isobutyl ketone ug/L 2.5 U U 1 VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.25 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Troluene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichloroethene u						1			
VOLATILES Methylene chloride ug/L 0.25 U U 1 VOLATILES Naphthalene ug/L 0.2 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/		' '				<u>'</u>			
VOLATILES Naphthalene ug/L 0.2 U U 1 VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl chloride		, ,	9		-	1			
VOLATILES n-Butylbenzene ug/L 0.25 U U 1 VOLATILES n-Propylbenzene ug/L 0.25 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.5 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1			9		-	<u>'</u>			
VOLATILES n-Propylbenzene ug/L 0.125 U U 1 VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.5 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 0.25 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1			ŭ .			1			
VOLATILES p-Isopropyltoluene ug/L 0.25 U U 1 VOLATILES sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.25 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.5 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1		,	3			1			
VOLATILES Sec-Butylbenzene ug/L 0.25 U U 1 VOLATILES Styrene ug/L 0.125 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1						1			
VOLATILES Styrene ug/L 0.125 U U 1 VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.5 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1			-			1			
VOLATILES tert-Butylbenzene ug/L 0.25 U U 1 VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1			J		-				
VOLATILES Tetrachloroethene ug/L 0.25 U U 1 VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trichloroethene ug/L 0.5 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1		,				1			
VOLATILES Toluene ug/L 0.25 U U 1 VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.5 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1		,	Ü			1			
VOLATILES trans-1,2-Dichloroethene ug/L 0.25 U U 1 VOLATILES trans-1,3-Dichloropropene ug/L 0.5 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1	VOLATILES				-	1			
VOLATILES trans-1,3-Dichloropropene ug/L 0.5 U U 1 VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1						1			
VOLATILES Trichloroethene ug/L 0.25 U U 1 VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1			ug/L			1			
VOLATILES Trichlorofluoromethane ug/L 0.25 U U 1 VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1	VOLATILES	trans-1,3-Dichloropropene	ug/L	0.5 U	U	1			
VOLATILES Vinyl acetate ug/L 2.5 U U 1 VOLATILES Vinyl chloride ug/L 0.25 U U 1	VOLATILES	Trichloroethene	ug/L	0.25 U	U	1			
VOLATILES Vinyl chloride ug/L 0.25 U U 1	VOLATILES	Trichlorofluoromethane	ug/L	0.25 U	U	1			
VOLATILES Vinyl chloride ug/L 0.25 U U 1	VOLATILES	Vinyl acetate	ug/L	2.5 U	U	1			
	VOLATILES	Vinyl chloride	-	0.25 U	U	1			
	VOLATILES	Xylenes, Total	ug/L						

Amanda Fickiesen - Client Services Specialist

Annie Brown - Client Services Specialist

afickiesen@kemron-lab.com

abrown@kemron-lab.com

kbarnes@kemron-lab.com

jparsons@kemron-lab.com

Katie Barnes - Team Assistant

Jacqueline Parsons - Team Assistant

156 Starlite Drive, Marietta, OH 45750 • TEL 740-373-4071 • FAX 740-373-4835 • http://www.kemron.com

Laboratory Report Number: L0710596

Please find enclosed the analytical results for the samples you submitted to KEMRON Environmental Services.

Review and compilation of your report was completed by KEMRON's Sales and Service Team. If you have questions, comments or require further assistance regarding this report, please contact your team member noted in the reviewed box bleow at 800-373-4071. Team member e-mail addresses also appear here for your convenience.

Debra Elliott - Team Leader

delliott@kemron-lab.com

Kathy Albertson - Team Chemist/Data Specialist

kalbertson@kemron-lab.com

Stephanie Mossburg - Team Chemist/Data Specialist

smossburg@kemron-lab.com

Brenda Gregory - Client Services Specialist

bgregory@kemron-lab.com

This report was reviewed on November 02, 2007.

Stephanie Mossburg

STEPHANIE MOSSBURG - Team Chemist/Data Specialist

I certify that all test results meet all of the requirements of the NELAP standards and other applicable contract terms and conditions. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of KEMRON Environmental Services.

This report was certified on November 02, 2007.

David Vandenberg - Vice President

FL DOH NELAP ID: E8755

in & Vande berg

This report contains a total of 321 pages.

Protecting Our Environmental Future

KEMRON REPORT L0710596 PREPARED FOR Shaw E 1, Inc. WORK ID: LONGHORN AAP KARNACK TX

1.0 Introduction	
2.1 Volatiles Data	
2.1.1 Volatiles GCMS Data (8260)	
2.1.1.1 Summary Data	
2.1.1.2 QC Summary Data	
2.2 Metals Data	
2.2.1 Metals I C P Data	
2.2.1.1 Summary Data	146
2.2.1.2 QC Summary Data	
2.2.2 Metals ICP-MS Data	
2.2.2.1 Summary Data	195
2.2.2.2 QC Summary Data	200
2.2.3 Metals CVAA Data (Mercury)	235
2.2.3.1 Summary Data	236
2.2.3.2 QC Summary Data	
2.3 General Chemistry Data	262
2.3.1 Perchlorate Data	263
2.3.1.1 Summary Data	264
2.3.1.2 QC Summary Data	271
2.3.2 Total Dissolved Solids Data	281
2.3.2.1 Summary Data	282
2.3.2.2 QC Summary Data	286
2.3.2.3 Raw Data	293
2.3.3 Total Suspended Solids Data	296
2.3.3.1 Summary Data	297
2.3.3.2 QC Summary Data	301
2.3.3.3 Raw Data	
3.0 Attachments	311

1.0 Introduction

KEMRON ENVIRONMENTAL SERVICES REPORT NARRATIVE

KEMRON Login No.: L0710596

CHAIN OF CUSTODY: The chain of custody number was 10305.

SHIPMENT CONDITIONS: The chain of custody forms were received sealed in a cooler. The cooler temperature

was 4 degrees C.

SAMPLE MANAGEMENT: All samples received were intact.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and KEMRON Environmental Services, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Approved: 25-OCT-07
Sityphanic Mossburg

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

heri L. Hakqid	Chemist II	November 2, 2007
ature	Official Title (printed)	DATE
		Cnemist II

RG-366/TRRP-13 December 2002

A1

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 6020
Prep Batch Number(s): WG253712

Reviewer Name: SHERI L. PFALZGRAF LRC Date: November 02, 2007

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations < RL?	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratory's capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	V	NT-	NA O	0078	586
Description QQ II is a	Yes	No			CES
Were MS/MSD RPDs within laboratory QC limits?			✓		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			✓		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			✓		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?		√			1
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	· /				
curve?	,				
Are ICAL data available for all instruments used?	1				
Has the initial calibration curve been verified using an appropriate second source standard?	-				
Initial and continuing calibration verification (ICV and CCV) and continuing	V				
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	√				
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB < RL?	√				
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	1				
Were data associated with manual integrations flagged on the raw data?	<u> </u>				
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):			V		
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
			V		
Interference Check Sample (ICS) results:	/				
Were percent recoveries within method QC limits?	√				
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	√				
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	✓				
Is the MDL either adjusted or supported by the analysis of DCSs?	∨ ✓				
Proficiency test reports:	_ v				
-					
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	√				

Description	Yes	No	NA() (200 3
Standards documentation				
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√			
sources?				
Compound/analyte identification procedures				
Are the procedures for compound/analyte identification documented?	√			
Demonstration of analyst competency (DOC)				
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√			
Is documentation of the analyst's competency up-to-date and on file?	√			
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC				
17025 Section 5)				
Are all the methods used to generate the data documented, verified, and validated, where	√			
applicable?				
Laboratory standard operating procedures (SOPs):				
Are laboratory SOPs current and on file for each method performed?	√			

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 6020
Prep Batch Number(s): WG253712
Reviewer Name: SHERI L. PFALZGRAF

Reviewer Name: SHERI L. PFALZGRAF LRC Date: November 02, 2007

EXCEPTIONS REPORT

ER1 - Due to a result that exceeded the linear range on initial analysis, client sample 12 was reported from a dilution analysis for sodium. Due to a result that was noncompliant on the negative side on initial analysis, sample 12 was reported from a dilution analysis for vanadium. Due to a result that exceeded the linear range of the instrument in the reference sample to the MS/MSD, the reference, MS, and MSD were reported from dilution analyses for sodium. Due to results that were noncompliant on the negative side in the reference sample to the MS/MSD, the reference, MS, and MSD were reported from dilution analyses for aluminum and vanadium.

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren	Beery	Metals Supervisor	November 1, 2007
Name (Printed)	Signature		Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 6010
Prep Batch Number(s): WG253902
Reviewer Name: MAREN M. BEERY
LRC Date: November 01, 2007

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td>ER1</td></mql,>			√		ER1
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations < RL?	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratory's capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(Q)	0078	52 93
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	√				ER2
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	· ✓				
curve?					
Are ICAL data available for all instruments used?	√				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	· /				
Was the ICAL curve verified for each analyte?	· /				
Was the absolute value of the analyte concentration in the inorganic CCB <rl?< td=""><td>· √</td><td></td><td></td><td></td><td></td></rl?<>	· √				
Mass spectral tuning:	- ·				
Was the appropriate compound for the method used for tuning?			1		
Were ion abundance data within the method-required QC limits?			-		
Internal standards (IS):			\		
Were IS area counts and retention times within the method-required QC limits?			1		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025			\		
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	-				
Were data associated with manual integrations flagged on the raw data?	_ v		/		
Dual column confirmation			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Did dual column confirmation results meet the method-required QC?			/		
Tentatively identified compounds (TICs):			V		
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:			V		
Were percent recoveries within method QC limits?	√				
	V				
Serial dilutions, post digestion spikes, and method of standard additions	/				
Were percent differences, recoveries, and the linearity within the QC limits specified in the	√				
method? Method detection limit (MDI) studies		_			
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	√				
Is the MDL either adjusted or supported by the analysis of DCSs?	√				
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	√				

			-	$\Delta\Delta\Delta$	FOO
Description	Yes	No	NA(V)	0078	DAX
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 6010
Prep Batch Number(s): WG253902
Reviewer Name: MAREN M. BEERY
LRC Date: November 01, 2007

EXCEPTIONS REPORT

ER#1 - Due to a result that exceeded the linear range on initial analysis, client sample 12 was reported from a dilution analysis for sodium.

ER2 - Due to a result that was noncompliant on the negative side on initial analysis, sample 12 was reported from a dilution analysis for vanadium.

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren Beery	Metals Supervisor	October 25, 2007
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 7471
Prep Batch Number(s): WG253689
Reviewer Name: MAREN M. BEERY
LRC Date: October 25, 2007

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations < RL?	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratory's capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description		No	NA(DC	078596
Were MS/MSD RPDs within laboratory QC limits?			√	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			√	
Were analytical duplicates analyzed at the appropriate frequency?			√	
Were RPDs or relative standard deviations within the laboratory QC limits?			√	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	√			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√			
Are unadjusted MQLs included in the laboratory data package?	√			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√			
Were all necessary corrective actions performed for the reported data?	√			
Was applicable and available technology used to lower the SQL minimize the matrix	√			
interference affects on the sample results?				
ICAL				
Were response factors and/or relative response factors for each analyte within QC limits?			√	
Were percent RSDs or correlation coefficient criteria met?	√			
Was the number of standards recommended in the method used for all analytes?	√			
Were all points generated between the lowest and highest standard used to calculate the	√			
curve?				
Are ICAL data available for all instruments used?	√			
Has the initial calibration curve been verified using an appropriate second source standard?	√			
Initial and continuing calibration verification (ICV and CCV) and continuing				
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?	√			
Were percent differences for each analyte within the method-required QC limits?	√			
Was the ICAL curve verified for each analyte?	√			
Was the absolute value of the analyte concentration in the inorganic CCB < RL?	√			
Mass spectral tuning:				
Was the appropriate compound for the method used for tuning?			✓	
Were ion abundance data within the method-required QC limits?			✓	
Internal standards (IS):				
Were IS area counts and retention times within the method-required QC limits?			√	
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section 4.12.2)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	/			
	√		/	
Were data associated with manual integrations flagged on the raw data? Dual column confirmation			√	
Did dual column confirmation results meet the method-required QC? Tentatively identified compounds (TICs):			√	
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?				
Interference Check Sample (ICS) results:			√	
Were percent recoveries within method QC limits?			√	
*			V	
Serial dilutions, post digestion spikes, and method of standard additions Were percent differences, recoveries, and the linearity within the QC limits specified in the	\			
method?	*			
Method detection limit (MDL) studies				
Was a MDL study performed for each reported analyte?	√			
Is the MDL either adjusted or supported by the analysis of DCSs?	√			
Proficiency test reports:				
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	√			

			\sim	$\gamma \cap \tau \cap$	$E \cap \mathcal{I}$
Description	Yes	No	NA(V)	0078	DE (A)
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 7471
Prep Batch Number(s): WG253689
Reviewer Name: MAREN M. BEERY
LRC Date: October 25, 2007

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

√R5 Test reports/summary forms for blank samples;

√R6 Test reports/summary forms for laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Imma/fesson	Conventional Lab Supervisor	October 29, 2007
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: TDS
Prep Batch Number(s): WG253612
Reviewer Name: DEANNA I. HESSON
LRC Date: October 29, 2007

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?			√		
Were % moisture (or solids) reported for all soil and sediment samples?			√		
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td>√</td><td></td><td></td><td></td><td></td></mql?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratorys capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?	√				
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(Q)	00786	
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	1				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	1				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	/				
Were all necessary corrective actions performed for the reported data?	· /				
Was applicable and available technology used to lower the SQL minimize the matrix	<i>-</i>				
interference affects on the sample results?	•				
Were response factors and/or relative response factors for each analyte within QC limits?			✓		
Were percent RSDs or correlation coefficient criteria met?			√		
Was the number of standards recommended in the method used for all analytes?			√		
Were all points generated between the lowest and highest standard used to calculate the			√		
curve?					
Are ICAL data available for all instruments used?			√		
Has the initial calibration curve been verified using an appropriate second source standard?			√		
Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?			√		
Were percent differences for each analyte within the method-required QC limits?			\		
Was the ICAL curve verified for each analyte?			-		
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>-</td><td></td><td></td></mdl?<>			-		
Mass spectral tuning:			<u> </u>		
Was the appropriate compound for the method used for tuning?					
Were ion abundance data within the method-required QC limits?			V /		
Internal standards (IS):			· ·		
Were IS area counts and retention times within the method-required QC limits?			1		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025			· ·		
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?	,		/		
Dual column confirmation			-		
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):			_		
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			-		
Interference Check Sample (ICS) results:			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Were percent recoveries within method QC limits?			1		
Serial dilutions, post digestion spikes, and method of standard additions			· ·		
Were percent differences, recoveries, and the linearity within the QC limits specified in the			/		_
method?			√		
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	√				
Is the MDL either adjusted or supported by the analysis of DCSs?	√				_
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	√				

			\sim	1000	COO
Description	Yes	No	NA()	30 78	G 阿文
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: TDS
Prep Batch Number(s): WG253612
Reviewer Name: DEANNA I. HESSON
LRC Date: October 29, 2007

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

√R5 Test reports/summary forms for blank samples;

√R6 Test reports/summary forms for laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Imma/fesson	Conventional Lab Supervisor	October 29, 2007
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: TSS
Prep Batch Number(s): WG253700
Reviewer Name: DEANNA I. HESSON
LRC Date: October 29, 2007

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?			√		
Were % moisture (or solids) reported for all soil and sediment samples?			√		
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td>√</td><td></td><td></td><td></td><td></td></mql?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratorys capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?	√				
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(Q)	0078606
Were MS/MSD RPDs within laboratory QC limits?			√	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			√	
Were analytical duplicates analyzed at the appropriate frequency?			√	
Were RPDs or relative standard deviations within the laboratory QC limits?			√	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	√			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√			
Are unadjusted MQLs included in the laboratory data package?	√			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√			
Were all necessary corrective actions performed for the reported data?	√			
Was applicable and available technology used to lower the SQL minimize the matrix	√			
interference affects on the sample results?				
Were response factors and/or relative response factors for each analyte within QC limits?			√	
Were percent RSDs or correlation coefficient criteria met?			√	
Was the number of standards recommended in the method used for all analytes?			√	
Were all points generated between the lowest and highest standard used to calculate the			√	
curve?				
Are ICAL data available for all instruments used?			√	
Has the initial calibration curve been verified using an appropriate second source standard?			√	
Initial and continuing calibration verification (ICV and CCV) and continuing				
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?			√	
Were percent differences for each analyte within the method-required QC limits?			✓	
Was the ICAL curve verified for each analyte?			✓	
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>√</td><td></td></mdl?<>			√	
Mass spectral tuning:				
Was the appropriate compound for the method used for tuning?			✓	
Were ion abundance data within the method-required QC limits?			✓	
Internal standards (IS):				
Were IS area counts and retention times within the method-required QC limits?			✓	
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025				
section 4.12.2)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√			
Were data associated with manual integrations flagged on the raw data?			√	
Dual column confirmation				
Did dual column confirmation results meet the method-required QC?			✓	
Tentatively identified compounds (TICs):				
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√	
Interference Check Sample (ICS) results:				
Were percent recoveries within method QC limits?			√	
Serial dilutions, post digestion spikes, and method of standard additions				
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			√	
Method detection limit (MDL) studies				
Was a MDL study performed for each reported analyte?	-			
Is the MDL either adjusted or supported by the analysis of DCSs?	√			
Proficiency test reports:	•			
Was the laboratory's performance acceptable on the applicable proficiency tests or	-			
evaluation studies?				

00070					
Description	Yes	No	NA(L)	0078	OF (3)
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: TSS
Prep Batch Number(s): WG253700
Reviewer Name: DEANNA I. HESSON
LRC Date: October 29, 2007

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

√R5 Test reports/summary forms for blank samples;

√R6 Test reports/summary forms for laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

✓ R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

√The exception Report for every "No" or "Not Reviewed (NR)" item IN laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MICHAEL D. COCHRAN	Milu Conhu	Semivolatiles Lab Supervisor	October 30, 2007
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

√

 \checkmark

KEMRON Environmental Services

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 314
Prep Batch Number(s): WG254202
Reviewer Name: MICHAEL D. COCHRAN

October 30, 2007

LRC Date:

MDL used to calculate the SQLs?
Was the LCSD RPD within QC limits?

Matrix spike (MS) and matrix spike duplicate (MSD) data

Were MS/MSD analyzed at the appropriate frequency?

Were the project/method specified analytes included in the MS and MSD?

Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?

NR(2) Description Yes No NA(1) ER(3) Chain-Of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability upon \checkmark receipt? Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? / Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? \checkmark Other than those results <MQL, were all other raw values bracketed by calibration standards? Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were sample quantitation limits reported for all analytes not detected? / Were all results for soil and sediment samples reported on a dry weight basis? ✓ Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? \checkmark Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, \checkmark if applicable, cleanup procedures? Were blank concentrations < MQL? \checkmark **Laboratory control samples (LCS):** Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratorys capability to detect the COCs at the

Description	Yes	No	NA(D	0078	6 R(3)
Were MS/MSD RPDs within laboratory QC limits?	√				
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?	√				
Were analytical duplicates analyzed at the appropriate frequency?	√				
Were RPDs or relative standard deviations within the laboratory QC limits?	√				
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	√				2
interference affects on the sample results?					
Were response factors and/or relative response factors for each analyte within QC limits?	√				
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	√				
curve?					
Are ICAL data available for all instruments used?	√				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	√				
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td>√</td><td></td><td></td><td></td><td></td></mdl?<>	√				
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?	√				
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			√		
Method detection limit (MDL) studies				1	
Was a MDL study performed for each reported analyte?	√			1	
Is the MDL either adjusted or supported by the analysis of DCSs?	√				
Proficiency test reports:				1	
Was the laboratory's performance acceptable on the applicable proficiency tests or	√			1	
evaluation studies?					

			\sim	$\gamma \wedge \gamma \wedge$	~ 4
Description	Yes	No	NA(L)	0078	OTH(X)
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

KEMRON Environmental Services

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Project Name: 798-LONGHORN
Method: 314
Prep Batch Number(s): WG254202
Reviewer Name: MICHAEL D. COCHRAN
LRC Date: October 30, 2007

EXCEPTIONS REPORT

ER# - Description

- 1. The MS/MSD results were not associated with this sample delivery group.
- 2. Samples -01, -03 and -04 were analyzed at a dilution only due to high conductivity readings.
- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- ✓R1 Field chain-of-custody documentation;
- √R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- √R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- √R5 Test reports/summary forms for blank samples;
- √R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amount,
 - b) Calculated %R for each analyte, and
 - c) The laboratory"s LCS QC limits.
- √R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %R and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- √R8 Laboratory analytical duplicate (if applicable) revocery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for anlytical duplicates.
- √R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- $\sqrt{R10}$ Other problems or anomalies.
- √The exception Report for every "No" or "Not Reviewed (NR)" item IN laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: $[\checkmark]$ This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

MIKE D. ALBERTSON	Nien Coto	Volatiles Lab Supervisor	October 30, 2007
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

KEMRON Environmental Services

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L0710596
Parient Names

Project Name: 798-LONGHORN

Method: 8260B

Prep Batch Number(s): 253794, 254006, 253678
Reviewer Name: MIKE D. ALBERTSON
LRC Date: October 30, 2007

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td>V</td><td></td><td></td><td></td><td></td></mql,>	V				
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?	√				
Were surrogate percent recoveries in all samples within the laboratory QC limits?		√			1, 2
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td>√</td><td></td><td></td><td></td><td></td></mql?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		√			3
Does the detectability data document the laboratorys capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?	√				
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description		No	NA(0)	00.78	6 R (5)
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?	√				
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	√				
curve?					
Are ICAL data available for all instruments used?	√				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	√				
Was the ICAL curve verified for each analyte?		√			4
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>√</td><td></td><td></td></mdl?<>			√		
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?	√				
Were ion abundance data within the method-required QC limits?	√				
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?	√				
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	\				
Were data associated with manual integrations flagged on the raw data?	√				
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			√		
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	/				
Is the MDL either adjusted or supported by the analysis of DCSs?	V				
Proficiency test reports:	<u> </u>				
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	√				

			NA(Q(1079	617
Description	Yes	No	NA(L)(JNR(2)O	UER(3)
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

EXCEPTIONS REPORT

ER# - Description

- #1: Toluene-d8 was below the lower control limit in the analyses of samples 01 and 09.
- #2: Surrogate toluene-d8 was below the lower control limit in the method blank analyzed 10/24/07 on HPMS-11.
- #3: MTBE exceeded the upper advisory limit in the LCS/LCSD analyzed 10/25/07 on HPMS-10.

Methyl acetate and MTBE exceeded the upper advisory limits in the LCS/LCSD analyzed 10/24/07 on HPMS-11.

#4: Methyl acetate exceeded the upper control limit in the alternate source analyzed 10/01/07 on HPMS-11.

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

2.1 Volatiles Data

2.1.1 Volatiles GCMS Data (8260)

2.1.1.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta , OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston. TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
LHSMW56-102007	L0710596-01	8260B	1	23-OCT-07
LHSMW56-102007	L0710596-01	8260B	100	23-OCT-07
47WW05-102007	L0710596-02	8260B	1	23-OCT-07
47WW05-102007	L0710596-02	8260B	10	23-OCT-07
47WW23-101907	L0710596-05	8260B	1	23-OCT-07
47ww21-101807	L0710596-07	8260B	1	23-OCT-07
47WW21-101807-QC	L0710596-08	8260B	1	23-OCT-07
47ww01-101807	L0710596-09	8260B	1	23-OCT-07
47WW01-101807	L0710596-09	8260B	20	23-OCT-07
47ww04-101807	L0710596-10	8260B	1	23-OCT-07
47wwzz-101807	L0710596-11	8260B	1	23-OCT-07
TRIP BLANK	L0710596-15	8260B	1	23-OCT-07

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 924245 Report generated 11/02/2007 10:41

1 OF 1

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-01 PrePrep Method: NONE Instrument: HPMS11

 Client ID: LHSMW56-102007
 Prep Method: 5030B
 Prep Date: 10/24/2007 16:23

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 16:23

 Collect Date: 10/20/2007 08:10
 Dilution: 1
 File ID: 11M46864

 Sample Tag: 01
 Units: ug/L

CAS. Number	Result	Qual	PQL	SDL
71-55-6		U	1.00	0.250
79-34-5		U	1.00	0.125
76-13-1		Ū	5.00	0.250
79-00-5	0.835	J	1.00	0.250
75-34-3	46.2		1.00	0.125
75-35-4	184		1.00	0.500
120-82-1		U	1.00	0.200
96-12-8		U	5.00	1.00
106-93-4		U	1.00	0.250
95-50-1		U	1.00	0.125
107-06-2		U	1.00	0.250
156-59-2	219	I	1.00	0.250
156-60-5	2.47		1.00	0.250
78-87-5		U	1.00	0.200
541-73-1		υ	1.00	0.250
106-46-7		υ	1.00	0.125
78-93-3		Ū	10.0	2.50
591-78-6		Ū	10.0	2.50
108-10-1		Ū	10.0	2.50
67-64-1		Ū	10.0	2.50
71-43-2	0.543	J	1.00	0.125
75-27-4		Ū	1.00	0.250
75-25-2		U	1.00	0.500
74-83-9		U	1.00	0.500
75-15-0		U	1.00	0.500
56-23-5		U	1.00	0.250
108-90-7		U	1.00	0.125
		U	1.00	0.500
		U	1.00	0.125
74-87-3		U	1.00	0.250
10061-01-5		U	1.00	0.250
				0.250
				0.250
		-		0.250
				0.250
				0.250
				0.250
				0.500
				0.250
				0.250
				0.125
	0.746			0.125
	0.740			0.250
				0.250
	3560			0.500
	3360			0.250
	22.6	U		
75-01-4 1330-20-7	33.6	U	1.00	0.250
	79-34-5 76-13-1 79-00-5 75-34-3 75-35-4 120-82-1 96-12-8 106-93-4 95-50-1 107-06-2 156-59-2 156-60-5 78-87-5 541-73-1 106-46-7 78-93-3 591-78-6 108-10-1 67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3	79-34-5 76-13-1 79-00-5 0.835 75-34-3 46.2 75-35-4 184 120-82-1 96-12-8 106-93-4 95-50-1 107-06-2 156-59-2 2.47 78-87-5 541-73-1 106-46-7 78-93-3 591-78-6 108-10-1 67-64-1 71-43-2 0.543 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 74-87-3 10061-01-5 110-82-7 124-48-1 75-71-8 100-41-4 98-82-8 79-20-9 1634-04-4 108-87-2 75-09-2 100-42-5 127-18-4 108-88-3 10061-02-6 79-01-6 3560 75-69-4	79-34-5 U 76-13-1 U 79-00-5 0.835 J 75-34-3 46.2 J 75-35-4 184 U 120-82-1 U U 96-12-8 U U 106-93-4 U U 95-50-1 U U 107-06-2 U U 156-59-2 219 I 156-60-5 2.47 J 78-87-5 U U 541-73-1 U U 106-46-7 U U 78-93-3 U U 591-78-6 U U 108-10-1 U U 67-64-1 U U 75-27-4 U U 75-25-2 U U 75-25-2 U U 75-25-2 U U 75-05-3 U U 75-05-3 U U 75-00-3 U U 67-66-3 U U	79-34-5 U 1.00 76-13-1 U 5.00 79-00-5 0.835 J 1.00 75-34-3 46.2 1.00 75-35-4 184 1.00 120-82-1 U 1.00 96-12-8 U 5.00 106-93-4 U 1.00 95-50-1 U 1.00 156-69-2 219 I 1.00 156-59-2 219 I 1.00 156-60-5 2.47 1.00 1.00 78-87-5 U 1.00 1.00 541-73-1 U 1.00 1.00 78-93-3 U 1.00 1.00 78-93-3 U 10.0 10.0 67-64-7 U 10.0 10.0 79-17-8-6 U 10.0 10.0 75-27-4 U 1.00 10.0 75-27-4 U 1.00 1.00 75-25-2 U

00078623

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-01 PrePrep Method: NONE Instrument: HPMS11

 Client ID: LHSMW56-102007
 Prep Method: 5030B
 Prep Date: 10/24/2007 16:23

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 16:23

| Sample Tag: 01 | Market Mark | Market Mark

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	91.6	80	120	
Dibromofluoromethane	92.5	86	118	
p-Bromofluorobenzene	89.2	86	115	
Toluene-d8	86.2	88	110	*

U Not detected at or above adjusted sample detection limit

 $^{{\}tt J}$ The analyte was positively identified, but the quantitation was below the RL

^{*} Surrogate or spike compound out of range

I Semiquantitative result (out of instrument calibration range)

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-01 PrePrep Method: NONE Instrument: HPMS10

 Client ID: LHSMW56-102007
 Prep Method: 5030B
 Prep Date: 10/27/2007 12:28

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/18/2007 16:51

 Workgroup Number: WG254006
 Analyst: MES
 Run Date: 10/27/2007 12:28

 Collect Date: 10/20/2007 08:10
 Dilution: 100
 File ID: 10M59916

Sample Tag: DL01 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6		U	100	25.0
1,1,2,2-Tetrachloroethane	79-34-5		U	100	12.5
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		U	500	25.0
1,1,2-Trichloroethane	79-00-5		U	100	25.0
1,1-Dichloroethane	75-34-3	44.2	J	100	12.5
1,1-Dichloroethene	75-35-4	188		100	50.0
1,2,4-Trichlorobenzene	120-82-1		U	100	20.0
1,2-Dibromo-3-chloropropane	96-12-8		U	500	100
1,2-Dibromoethane	106-93-4		U	100	25.0
1,2-Dichlorobenzene	95-50-1		U	100	12.5
1,2-Dichloroethane	107-06-2		U	100	25.0
cis-1,2-Dichloroethene	156-59-2	171		100	25.0
trans-1,2-Dichloroethene	156-60-5		U	100	25.0
1,2-Dichloropropane	78-87-5		U	100	20.0
1,3-Dichlorobenzene	541-73-1		U	100	25.0
1,4-Dichlorobenzene	106-46-7		U	100	12.5
2-Butanone	78-93-3		U	1000	250
2-Hexanone	591-78-6		U	1000	250
4-Methyl-2-pentanone	108-10-1		U	1000	250
Acetone	67-64-1		U	1000	250
Benzene	71-43-2		U	100	12.5
Bromodichloromethane	75-27-4		U	100	25.0
Bromoform	75-25-2		U	100	50.0
Bromomethane	74-83-9		U	100	50.0
Carbon disulfide	75-15-0		U	100	50.0
Carbon tetrachloride	56-23-5		U	100	25.0
Chlorobenzene	108-90-7		U	100	12.5
Chloroethane	75-00-3		U	100	50.0
Chloroform	67-66-3		U	100	12.5
Chloromethane	74-87-3		U	100	25.0
cis-1,3-Dichloropropene	10061-01-5		U	100	25.0
Cyclohexane	110-82-7		U	500	25.0
Dibromochloromethane	124-48-1		ū	100	25.0
Dichlorodifluoromethane	75-71-8		ū	100	25.0
Ethyl benzene	100-41-4		U	100	25.0
Isopropylbenzene	98-82-8		U	100	25.0
Methyl acetate	79-20-9		U	1000	25.0
Methyl tert-butyl ether	1634-04-4		U	500	50.0
Methylcyclohexane	108-87-2		ū	1000	25.0
Methylene chloride	75-09-2		U	200	25.0
Styrene	100-42-5		ū	100	12.5
Tetrachloroethene	127-18-4		ū	100	25.0
Toluene	108-88-3		TI U	100	25.0
	108-88-3		U	100	50.0
trans-1,3-Dichloropropene Trichloroethene	79-01-6	8740	U	100	25.0
Trichlorofluoromethane		0/40	U	100	25.0
	75-69-4	35.6	-		
Vinyl chloride	75-01-4	35.6	J	100	25.0
Xylenes, Total	1330-20-7		U	100	50.0

00078625

Report Date : November 2, 2007

Report Number: L0710596

Sample Number: **L0710596-01** PrePrep Method: NONE Instrument: HPMS10

Client ID: LHSMW56-102007 Prep Method: 5030B Prep Date: 10/27/2007 12:28 Matrix: Water Analytical Method: 8260B Cal Date: 10/18/2007 16:51 Workgroup Number: WG254006 Analyst:MES Run Date: 10/27/2007 12:28

Collect Date: 10/20/2007 08:10 Dilution: 100 File ID:10M59916 Units:ug/L Sample Tag: DL01

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	96.8	80	120	
Dibromofluoromethane	99.5	86	118	
p-Bromofluorobenzene	102	86	115	
Toluene-d8	98.2	88	110	

U Not detected at or above adjusted sample detection limit $_{\rm J}$ The analyte was positively identified, but the quantitation was below the RL

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-02 PrePrep Method: NONE Instrument: HPMS11

 Client ID: 47WW05-102007
 Prep Method: 5030B
 Prep Date: 10/24/2007 16:53

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 16:53

Collect Date: 10/20/2007 08:50

Sample Tag: 01

Units: ug/L

File ID: 11M46865

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6		Ū	1.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		Ū	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	3.16	J	5.00	0.250
1,1,2-Trichloroethane	79-00-5		Ū	1.00	0.250
1,1-Dichloroethane	75-34-3		U	1.00	0.125
1,1-Dichloroethene	75-35-4	0.702	J	1.00	0.500
1,2,4-Trichlorobenzene	120-82-1		U	1.00	0.200
1,2-Dibromo-3-chloropropane	96-12-8		Ū	5.00	1.00
1,2-Dibromoethane	106-93-4		Ū	1.00	0.250
1,2-Dichlorobenzene	95-50-1		Ū	1.00	0.125
1,2-Dichloroethane	107-06-2		υ	1.00	0.250
cis-1,2-Dichloroethene	156-59-2	6.44		1.00	0.250
trans-1,2-Dichloroethene	156-60-5		Ū	1.00	0.250
1,2-Dichloropropane	78-87-5		Ū	1.00	0.200
1,3-Dichlorobenzene	541-73-1		Ū	1.00	0.250
1,4-Dichlorobenzene	106-46-7		U	1.00	0.125
2-Butanone	78-93-3		U	10.0	2.50
2-Hexanone	591-78-6		U	10.0	2.50
4-Methyl-2-pentanone	108-10-1		υ	10.0	2.50
Acetone	67-64-1		υ	10.0	2.50
Benzene	71-43-2		υ	1.00	0.125
Bromodichloromethane	75-27-4		U	1.00	0.250
Bromoform	75-25-2		U	1.00	0.500
Bromomethane	74-83-9		U	1.00	0.500
Carbon disulfide	75-15-0		U	1.00	0.500
Carbon tetrachloride	56-23-5		υ	1.00	0.250
Chlorobenzene	108-90-7		Ū	1.00	0.125
Chloroethane	75-00-3		Ū	1.00	0.500
Chloroform	67-66-3	0.277	J	1.00	0.125
Chloromethane	74-87-3		U	1.00	0.250
cis-1,3-Dichloropropene	10061-01-5		U	1.00	0.250
Cyclohexane	110-82-7		υ	5.00	0.250
Dibromochloromethane	124-48-1		υ	1.00	0.250
Dichlorodifluoromethane	75-71-8		U	1.00	0.250
Ethyl benzene	100-41-4		U	1.00	0.250
Isopropylbenzene	98-82-8		U	1.00	0.250
Methyl acetate	79-20-9		U	10.0	0.250
Methyl tert-butyl ether	1634-04-4		U	5.00	0.500
Methylcyclohexane	108-87-2		U	10.0	0.250
Methylene chloride	75-09-2		U	2.00	0.250
Styrene	100-42-5	+	U	1.00	0.125
Tetrachloroethene	127-18-4	+	U	1.00	0.250
Toluene	108-88-3		U	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6	+	Ū	1.00	0.230
Trichloroethene	79-01-6	677	I	1.00	0.300
Trichlorofluoromethane	75-69-4	0//	T T	1.00	0.250
		+	-		
Vinyl chloride	75-01-4	+	U	1.00	0.250
Xylenes, Total	1330-20-7		U	1.00	0.500

00078627

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-02 PrePrep Method: NONE Instrument: HPMS11

Client ID: 47ww05-102007 Prep Method: 5030B Prep Date: 10/24/2007 16:53

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 16:53

 Collect Date: 10/20/2007 08:50
 Dilution: 1
 File ID: 11M46865

 Sample Tag: 01
 Units: ug/L

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	94.8	80	120	
Dibromofluoromethane	93.3	86	118	
p-Bromofluorobenzene	90.0	86	115	
Toluene-d8	88.6	88	110	

 $^{{\}tt U}\,\,$ Not detected at or above adjusted sample detection limit

J The analyte was positively identified, but the quantitation was below the RL

I Semiquantitative result (out of instrument calibration range)

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-02 PrePrep Method: NONE Instrument: HPMS10

 Workgroup Number: WG254006
 Analyst: MES
 Run Date: 10/27/2007 13:00

 Collect Date: 10/20/2007 08:50
 Dilution: 10
 File ID: 10M59917

 Sample Tag: DL01
 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6	1105420	U	10.0	2.50
1,1,2,2-Tetrachloroethane	79-34-5		υ	10.0	1.25
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	2.53	J	50.0	2.50
1,1,2-Trichloroethane	79-00-5		υ	10.0	2.50
1,1-Dichloroethane	75-34-3		υ	10.0	1.25
1,1-Dichloroethene	75-35-4		υ	10.0	5.00
1,2,4-Trichlorobenzene	120-82-1		υ	10.0	2.00
1,2-Dibromo-3-chloropropane	96-12-8		υ	50.0	10.0
1,2-Dibromoethane	106-93-4		Ū	10.0	2.50
1,2-Dichlorobenzene	95-50-1		Ū	10.0	1.25
1,2-Dichloroethane	107-06-2		U	10.0	2,50
cis-1,2-Dichloroethene	156-59-2	6.02	J	10.0	2.50
trans-1,2-Dichloroethene	156-60-5		U	10.0	2.50
1,2-Dichloropropane	78-87-5		U	10.0	2.00
1,3-Dichlorobenzene	541-73-1		U	10.0	2.50
1,4-Dichlorobenzene	106-46-7		U	10.0	1.25
2-Butanone	78-93-3		U	100	25.0
2-Hexanone	591-78-6		U	100	25.0
4-Methyl-2-pentanone	108-10-1		U	100	25.0
Acetone	67-64-1		U	100	25.0
Benzene	71-43-2		U	10.0	1.25
Bromodichloromethane	75-27-4		U	10.0	2.50
Bromoform	75-25-2		U	10.0	5.00
Bromomethane	74-83-9		U	10.0	5.00
Carbon disulfide	75-15-0		U	10.0	5.00
Carbon tetrachloride	56-23-5		U	10.0	2.50
Chlorobenzene	108-90-7		ū	10.0	1.25
Chloroethane	75-00-3		U	10.0	5.00
Chloroform	67-66-3		U	10.0	1.25
Chloromethane	74-87-3		ū	10.0	2.50
cis-1,3-Dichloropropene	10061-01-5		U	10.0	2.50
	110-82-7		U	50.0	2.50
Cyclohexane Dibromochloromethane	124-48-1		U	10.0	2.50
			-		
Dichlorodifluoromethane	75-71-8		Ŭ 	10.0	2.50
Ethyl benzene	100-41-4		Ŭ 	10.0	2.50
Isopropylbenzene	98-82-8		Ŭ 	10.0	2.50
Methyl acetate	79-20-9		U	100	2.50
Methyl tert-butyl ether	1634-04-4		U	50.0	5.00
Methylcyclohexane	108-87-2		U	100	2.50
Methylene chloride	75-09-2		U	20.0	2.50
Styrene	100-42-5		U	10.0	1.25
Tetrachloroethene	127-18-4		U	10.0	2.50
Toluene	108-88-3		Ū	10.0	2.50
trans-1,3-Dichloropropene	10061-02-6		Ū	10.0	5.00
Trichloroethene	79-01-6	759		10.0	2.50
Trichlorofluoromethane	75-69-4		υ	10.0	2.50
Vinyl chloride	75-01-4		Ū	10.0	2.50
Xylenes, Total	1330-20-7		U	10.0	5.00

00078629

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: **L0710596-02** PrePrep Method: NONE Instrument: HPMS10 Client ID: 47WW05-102007

Prep Method: 5030B Prep Date: 10/27/2007 13:00

Matrix: Water Analytical Method: 8260B Cal Date: 10/18/2007 16:51 Workgroup Number: WG254006 Analyst: MES Run Date: 10/27/2007 13:00 Collect Date: 10/20/2007 08:50 Dilution: 10 File ID:10M59917

Sample Tag: DL01 Units:ug/L

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	99.1	80	120	
Dibromofluoromethane	101	86	118	
p-Bromofluorobenzene	98.9	86	115	
Toluene-d8	96.5	88	110	

U Not detected at or above adjusted sample detection limit $_{\rm J}$ The analyte was positively identified, but the quantitation was below the RL

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-05 PrePrep Method: NONE Instrument: HPMS10

Workgroup Number: WG253794 Analyst: MES Run Date: 10/25/2007 12:40
Collect Date: 10/19/2007 09:45 Dilution: 1 File ID: 10M59859
Sample Tag: 01 Units: ug/L

Nove Look o	GNG North and	D	01	DOT	an-
Analyte 1,1,1-Trichloroethane	CAS. Number 71-55-6	Result	Qual	PQL 1.00	SDL 0.250
1,1,2,2-Tetrachloroethane	79-34-5		U U	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		U	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U U	1.00	0.250
1,1-Dichloroethane	75-34-3		U U	1.00	0.125
1,1-Dichloroethene	75-35-4		ū	1.00	0.125
1,2,4-Trichlorobenzene	120-82-1		U U	1.00	0.300
1,2-Dibromo-3-chloropropane	96-12-8		υ	5.00	1.00
1,2-Dibromoethane	106-93-4		ū	1.00	0.250
•	95-50-1		-	1.00	0.250
1,2-Dichlorobenzene			U		
1,2-Dichloroethane	107-06-2		U	1.00	0.250
cis-1,2-Dichloroethene	156-59-2		U	1.00	0.250
trans-1,2-Dichloroethene	156-60-5		U	1.00	0.250
1,2-Dichloropropane	78-87-5		U	1.00	0.200
1,3-Dichlorobenzene	541-73-1		U	1.00	0.250
1,4-Dichlorobenzene	106-46-7		U	1.00	0.125
2-Butanone	78-93-3		U	10.0	2.50
2-Hexanone	591-78-6		U	10.0	2.50
4-Methyl-2-pentanone	108-10-1		U	10.0	2.50
Acetone	67-64-1		U	10.0	2.50
Benzene	71-43-2		U	1.00	0.125
Bromodichloromethane	75-27-4		U	1.00	0.250
Bromoform	75-25-2		U	1.00	0.500
Bromomethane	74-83-9		U	1.00	0.500
Carbon disulfide	75-15-0		U	1.00	0.500
Carbon tetrachloride	56-23-5		U	1.00	0.250
Chlorobenzene	108-90-7		U	1.00	0.125
Chloroethane	75-00-3		U	1.00	0.500
Chloroform	67-66-3		U	1.00	0.125
Chloromethane	74-87-3		U	1.00	0.250
cis-1,3-Dichloropropene	10061-01-5		U	1.00	0.250
Cyclohexane	110-82-7		U	5.00	0.250
Dibromochloromethane	124-48-1		U	1.00	0.250
Dichlorodifluoromethane	75-71-8		U	1.00	0.250
Ethyl benzene	100-41-4		U	1.00	0.250
Isopropylbenzene	98-82-8		U	1.00	0.250
Methyl acetate	79-20-9		U	10.0	0.250
Methyl tert-butyl ether	1634-04-4		U	5.00	0.500
Methylcyclohexane	108-87-2	1	U	10.0	0.250
Methylene chloride	75-09-2	1	Ū	2.00	0.250
Styrene	100-42-5		U	1.00	0.125
Tetrachloroethene	127-18-4	1	Ū	1.00	0.250
Toluene	108-88-3		U	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6		U	1.00	0.500
Trichloroethene	79-01-6		U	1.00	0.250
Trichlorofluoromethane	75-69-4	 	U	1.00	0.250
Vinyl chloride	75-01-4		U	1.00	0.250
-	1330-20-7	-	U		0.250
Xylenes, Total	1330-20-7		U	1.00	0.500

00078631

Report Date : November 2, 2007

Report Number: L0710596

Sample Number: **L0710596-05** PrePrep Method: NONE Instrument: HPMS10

Client ID: 47WW23-101907 Prep Method: 5030B Prep Date: 10/25/2007 12:40 Matrix: Water Analytical Method: 8260B Cal Date: 10/18/2007 16:51 Workgroup Number: WG253794 Analyst: MES Run Date: 10/25/2007 12:40

Collect Date: 10/19/2007 09:45 Dilution: 1 File ID:10M59859 Units:ug/L Sample Tag: 01

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	102	80	120	
Dibromofluoromethane	103	86	118	
p-Bromofluorobenzene	99.2	86	115	
Toluene-d8	97.6	88	110	

U Not detected at or above adjusted sample detection limit

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-07 PrePrep Method: NONE Instrument: HPMS10

 Client ID: 47WW21-101807
 Prep Method: 5030B
 Prep Date: 10/25/2007 13:11

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/18/2007 16:51

 Workgroup Number: WG253794
 Analyst: MES
 Run Date: 10/25/2007 13:11

 Collect Date: 10/18/2007 14:20
 Dilution: 1
 File ID: 10M59860

 Sample Tag: 01
 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6	Result	U	1.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		U	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		U	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U	1.00	0.250
1,1-Dichloroethane	75-34-3	0.161	J	1.00	0.125
1,1-Dichloroethene	75-35-4	0.566	J	1.00	0.500
1,2,4-Trichlorobenzene	120-82-1		U	1.00	0.200
1,2-Dibromo-3-chloropropane	96-12-8		U	5.00	1.00
1,2-Dibromoethane	106-93-4		U	1.00	0.250
1,2-Dichlorobenzene	95-50-1		U	1.00	0.125
1,2-Dichloroethane	107-06-2		U	1.00	0.250
cis-1,2-Dichloroethene	156-59-2	1.99		1.00	0.250
trans-1,2-Dichloroethene	156-60-5		U	1.00	0.250
1,2-Dichloropropane	78-87-5		U	1.00	0.200
1,3-Dichlorobenzene	541-73-1		υ	1.00	0.250
1,4-Dichlorobenzene	106-46-7		U	1.00	0.125
2-Butanone	78-93-3		U	10.0	2.50
2-Hexanone	591-78-6		U	10.0	2.50
4-Methyl-2-pentanone	108-10-1		U	10.0	2.50
Acetone	67-64-1		U	10.0	2.50
Benzene	71-43-2		U	1.00	0.125
Bromodichloromethane	75-27-4		U	1.00	0.250
Bromoform	75-25-2		U	1.00	0.500
Bromomethane	74-83-9		U	1.00	0.500
Carbon disulfide	75-15-0		U	1.00	0.500
Carbon tetrachloride	56-23-5		U	1.00	0.250
Chlorobenzene	108-90-7		U	1.00	0.125
Chloroethane	75-00-3		U	1.00	0.500
Chloroform	67-66-3		U	1.00	0.125
Chloromethane	74-87-3		U	1.00	0.250
cis-1,3-Dichloropropene	10061-01-5		U	1.00	0.250
Cyclohexane	110-82-7		U	5.00	0.250
Dibromochloromethane	124-48-1		U	1.00	0.250
Dichlorodifluoromethane	75-71-8		U	1.00	0.250
Ethyl benzene	100-41-4		U	1.00	0.250
Isopropylbenzene	98-82-8		U	1.00	0.250
Methyl acetate	79-20-9		U	10.0	0.250
Methyl tert-butyl ether	1634-04-4		U	5.00	0.500
Methylcyclohexane	108-87-2		U	10.0	0.250
Methylene chloride	75-09-2		U	2.00	0.250
Styrene	100-42-5		υ	1.00	0.125
Tetrachloroethene	127-18-4		U	1.00	0.250
Toluene	108-88-3		U	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6		υ	1.00	0.500
Trichloroethene	79-01-6	2.61		1.00	0.250
Trichlorofluoromethane	75-69-4		U	1.00	0.250
Vinyl chloride	75-01-4		υ	1.00	0.250
Xylenes, Total	1330-20-7		U	1.00	0.500

00078633

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: **L0710596-07** PrePrep Method: NONE Instrument: HPMS10

Client ID: 47WW21-101807 Prep Method: 5030B Prep Date: 10/25/2007 13:11

Matrix: Water Analytical Method: 8260B Cal Date: 10/18/2007 16:51 Workgroup Number: WG253794 Analyst: MES Run Date: 10/25/2007 13:11 Collect Date: 10/18/2007 14:20 Dilution: 1 File ID:10M59860

Sample Tag: 01 Units:ug/L

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	100	80	120	
Dibromofluoromethane	102	86	118	
p-Bromofluorobenzene	96.6	86	115	
Toluene-d8	93.9	88	110	

U Not detected at or above adjusted sample detection limit $_{\rm J}$ The analyte was positively identified, but the quantitation was below the RL

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-08 PrePrep Method: NONE Instrument: HPMS11

 Client ID: 47WW21-101807-QC
 Prep Method: 5030B
 Prep Date: 10/24/2007 18:55

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 18:55

Collect Date: 10/18/2007 14:20

Sample Tag: 01

Units: ug/L

File ID: 11M46869

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6		U	1.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		U	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		U	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U	1.00	0.250
1,1-Dichloroethane	75-34-3	0.171	J	1.00	0.125
1,1-Dichloroethene	75-35-4		U	1.00	0.500
1,2,4-Trichlorobenzene	120-82-1		U	1.00	0.200
1,2-Dibromo-3-chloropropane	96-12-8		U	5.00	1.00
1,2-Dibromoethane	106-93-4		U	1.00	0.250
1,2-Dichlorobenzene	95-50-1		U	1.00	0.125
1,2-Dichloroethane	107-06-2		U	1.00	0.250
cis-1,2-Dichloroethene	156-59-2	2.10		1.00	0.250
trans-1,2-Dichloroethene	156-60-5		υ	1.00	0.250
1,2-Dichloropropane	78-87-5		U	1.00	0.200
1,3-Dichlorobenzene	541-73-1		U	1.00	0.250
1,4-Dichlorobenzene	106-46-7		υ	1.00	0.125
2-Butanone	78-93-3		U	10.0	2.50
2-Hexanone	591-78-6		U	10.0	2.50
4-Methyl-2-pentanone	108-10-1		U	10.0	2.50
Acetone	67-64-1		U	10.0	2.50
Benzene	71-43-2		U	1.00	0.125
Bromodichloromethane	75-27-4		Ū	1.00	0.250
Bromoform	75-25-2		υ	1.00	0.500
Bromomethane	74-83-9		U	1.00	0.500
Carbon disulfide	75-15-0		υ	1.00	0.500
Carbon tetrachloride	56-23-5		U	1.00	0.250
Chlorobenzene	108-90-7		U	1.00	0.125
Chloroethane	75-00-3		U	1.00	0.500
Chloroform	67-66-3		U	1.00	0.125
Chloromethane	74-87-3		U	1.00	0.250
cis-1,3-Dichloropropene	10061-01-5		U	1.00	0.250
Cyclohexane	110-82-7		υ	5.00	0.250
Dibromochloromethane	124-48-1		U	1.00	0.250
Dichlorodifluoromethane	75-71-8		U	1.00	0.250
Ethyl benzene	100-41-4		U	1.00	0.250
Isopropylbenzene	98-82-8		U	1.00	0.250
Methyl acetate	79-20-9		U	10.0	0.250
Methyl tert-butyl ether	1634-04-4		U	5.00	0.500
Methylcyclohexane	108-87-2		U	10.0	0.250
Methylene chloride	75-09-2		U	2.00	0.250
Styrene	100-42-5		U	1.00	0.125
Tetrachloroethene	127-18-4		U	1.00	0.250
Toluene	108-88-3		U	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6		U	1.00	0.500
Trichloroethene	79-01-6	3.06	0	1.00	0.300
Trichlorofluoromethane	75-69-4	3.00	U	1.00	0.250
			-		
Vinyl chloride	75-01-4		U	1.00	0.250
Xylenes, Total	1330-20-7		U	1.00	0.500

00078635

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-08 PrePrep Method: NONE Instrument: HPMS11

Client ID: 47ww21-101807-QC Prep Method: 5030B Prep Date: 10/24/2007 18:55

Matrix: Water Analytical Method: 8260B Cal Date: 10/01/2007 15:48

Workgroup Number: WG253678
Collect Date: 10/18/2007 14:20
Sample Tag: 01
Units: ug/L

Run Date: 10/24/2007 18:55
File ID: 11M46869

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	94.2	80	120	
Dibromofluoromethane	97.7	86	118	
p-Bromofluorobenzene	92.1	86	115	
Toluene-d8	89.1	88	110	

U Not detected at or above adjusted sample detection limit

J The analyte was positively identified, but the quantitation was below the RL

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-09 PrePrep Method: NONE Instrument: HPMS11

 Client ID: 47WW01-101807
 Prep Method: 5030B
 Prep Date: 10/24/2007 19:25

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 19:25

Collect Date: 10/18/2007 10:15

Sample Tag: 01

Units: ug/L

File ID: 11M46870

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6		Ū	1.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		U	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1610	I	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U	1.00	0.250
1,1-Dichloroethane	75-34-3	0.536	J	1.00	0.125
1,1-Dichloroethene	75-35-4		υ	1.00	0.500
1,2,4-Trichlorobenzene	120-82-1		υ	1.00	0.200
1,2-Dibromo-3-chloropropane	96-12-8		υ	5.00	1.00
1,2-Dibromoethane	106-93-4		Ū	1.00	0.250
1,2-Dichlorobenzene	95-50-1		U	1.00	0.125
1,2-Dichloroethane	107-06-2		U	1.00	0.250
cis-1,2-Dichloroethene	156-59-2		U	1.00	0.250
trans-1,2-Dichloroethene	156-60-5		U	1.00	0.250
1,2-Dichloropropane	78-87-5		U	1.00	0.200
1,3-Dichlorobenzene	541-73-1		υ	1.00	0.250
1,4-Dichlorobenzene	106-46-7		υ	1.00	0.125
2-Butanone	78-93-3		υ	10.0	2.50
2-Hexanone	591-78-6		U	10.0	2.50
4-Methyl-2-pentanone	108-10-1		U	10.0	2.50
Acetone	67-64-1		U	10.0	2.50
Benzene	71-43-2		U	1.00	0.125
Bromodichloromethane	75-27-4		U	1.00	0.250
Bromoform	75-25-2		U	1.00	0.500
Bromomethane	74-83-9		U	1.00	0.500
Carbon disulfide	75-15-0		U	1.00	0.500
Carbon tetrachloride	56-23-5		U	1.00	0.250
Chlorobenzene	108-90-7		U	1.00	0.125
Chloroethane	75-00-3		ū	1.00	0.500
Chloroform	67-66-3		U	1.00	0.125
Chloromethane	74-87-3	0.310	J	1.00	0.250
cis-1,3-Dichloropropene	10061-01-5	1 00020	п	1.00	0.250
Cyclohexane	110-82-7	1	ū	5.00	0.250
Dibromochloromethane	124-48-1		п	1.00	0.250
Dichlorodifluoromethane	75-71-8		U	1.00	0.250
Ethyl benzene	100-41-4		U	1.00	0.250
Isopropylbenzene	98-82-8		U	1.00	0.250
Methyl acetate	79-20-9		U	10.0	0.250
Methyl tert-butyl ether	1634-04-4		U	5.00	0.500
Methylcyclohexane	1034-04-4		U U	10.0	0.250
Methylene chloride	75-09-2		T T	2.00	0.250
Styrene	100-42-5		U U	1.00	0.125
Tetrachloroethene	127-18-4	+	U	1.00	0.123
Toluene	108-88-3	+	U	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6		U	1.00	0.250
Trichloroethene	79-01-6	0.337	J	1.00	0.500
Trichlorofluoromethane	79-01-6	0.337	ū	1.00	0.250
		1			
Vinyl chloride	75-01-4		U	1.00	0.250
Xylenes, Total	1330-20-7		U	1.00	0.500

00078637

Report Number: L0710596

Matrix: Water

Collect Date: 10/18/2007 10:15

Workgroup Number: WG253678

Sample Tag: 01

Report Date : November 2, 2007

 Sample Number: L0710596-09
 PrePrep Method: NONE
 Instrument: HPMS11

 Client ID: 47wW01-101807
 Prep Method: 5030B
 Prep Date: 10/24/

Prep Method: 5030B Prep Date: 10/24/2007 19:25
Analytical Method: 8260B Cal Date: 10/01/2007 15:48

Units:ug/L

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	93.5	80	120	
Dibromofluoromethane	94.2	86	118	
p-Bromofluorobenzene	89.4	86	115	
Toluene-d8	87.0	88	110	*

U Not detected at or above adjusted sample detection limit

 $^{{\}tt J}$ The analyte was positively identified, but the quantitation was below the RL

^{*} Surrogate or spike compound out of range

I Semiquantitative result (out of instrument calibration range)

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-09 PrePrep Method: NONE Instrument: HPMS10

 Client ID: 47WW01-101807
 Prep Method: 5030B
 Prep Date: 10/27/2007 13:32

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/18/2007 16:51

 Workgroup Number: WG254006
 Analyst: MES
 Run Date: 10/27/2007 13:32

 Collect Date: 10/18/2007 10:15
 Dilution: 20
 File ID: 10M59918

 Sample Tag: DL01
 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6		U	20.0	5.00
1,1,2,2-Tetrachloroethane	79-34-5		U	20.0	2.50
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1420		100	5.00
1,1,2-Trichloroethane	79-00-5		U	20.0	5.00
1,1-Dichloroethane	75-34-3		U	20.0	2.50
1,1-Dichloroethene	75-35-4		U	20.0	10.0
1,2,4-Trichlorobenzene	120-82-1		U	20.0	4.00
1,2-Dibromo-3-chloropropane	96-12-8		U	100	20.0
1,2-Dibromoethane	106-93-4		U	20.0	5.00
1,2-Dichlorobenzene	95-50-1		U	20.0	2.50
1,2-Dichloroethane	107-06-2		U	20.0	5.00
cis-1,2-Dichloroethene	156-59-2		U	20.0	5.00
trans-1,2-Dichloroethene	156-60-5		U	20.0	5.00
1,2-Dichloropropane	78-87-5		U	20.0	4.00
1,3-Dichlorobenzene	541-73-1		U	20.0	5.00
1,4-Dichlorobenzene	106-46-7		U	20.0	2.50
2-Butanone	78-93-3		U	200	50.0
2-Hexanone	591-78-6		U	200	50.0
4-Methyl-2-pentanone	108-10-1		U	200	50.0
Acetone	67-64-1		U	200	50.0
Benzene	71-43-2		U	20.0	2.50
Bromodichloromethane	75-27-4		U	20.0	5.00
Bromoform	75-25-2		U	20.0	10.0
Bromomethane	74-83-9		U	20.0	10.0
Carbon disulfide	75-15-0		U	20.0	10.0
Carbon tetrachloride	56-23-5		U	20.0	5.00
Chlorobenzene	108-90-7		U	20.0	2.50
Chloroethane	75-00-3		U	20.0	10.0
Chloroform	67-66-3		U	20.0	2.50
Chloromethane	74-87-3		U	20.0	5.00
cis-1,3-Dichloropropene	10061-01-5		U	20.0	5.00
Cyclohexane	110-82-7		U	100	5.00
Dibromochloromethane	124-48-1		U	20.0	5.00
Dichlorodifluoromethane	75-71-8		U	20.0	5.00
Ethyl benzene	100-41-4		U	20.0	5.00
Isopropylbenzene	98-82-8		U	20.0	5.00
Methyl acetate	79-20-9		U	200	5.00
Methyl tert-butyl ether	1634-04-4		U	100	10.0
Methylcyclohexane	108-87-2		Ū	200	5.00
Methylene chloride	75-09-2		Ū	40.0	5.00
Styrene	100-42-5		Ū	20.0	2.50
Tetrachloroethene	127-18-4		Ū	20.0	5.00
Toluene	108-88-3		U	20.0	5.00
trans-1,3-Dichloropropene	10061-02-6		U	20.0	10.0
Trichloroethene	79-01-6		U	20.0	5.00
Trichlorofluoromethane	75-69-4		U U	20.0	5.00
Vinyl chloride	75-01-4		U	20.0	5.00
	1330-20-7	1	U U	20.0	10.0

00078639

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-09 PrePrep Method: NONE Instrument: HPMS10

Client ID: 47WW01-101807 Prep Method: 5030B Prep Date: 10/27/2007 13:32

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/18/2007 16:51

 Workgroup Number: WG254006
 Analyst: MES
 Run Date: 10/27/2007 13:32

 Collect Date: 10/18/2007 10:15
 Dilution: 20
 File ID: 10M59918

Sample Tag: DL01 Units: ug/L

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	102	80	120	
Dibromofluoromethane	102	86	118	
p-Bromofluorobenzene	102	86	115	
Toluene-d8	97.4	88	110	

U Not detected at or above adjusted sample detection limit

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-10 PrePrep Method: NONE Instrument: HPMS10

 Client ID: 47WW04-101807
 Prep Method: 5030B
 Prep Date: 10/25/2007
 13:42

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/18/2007
 16:51

 Workgroup Number: WG253794
 Analyst: MES
 Run Date: 10/25/2007
 13:42

 Collect Date: 10/18/2007 11:30
 Dilution: 1
 File ID: 10M59861

 Sample Tag: 01
 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6		U	1.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		U	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		U	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U	1.00	0.250
1,1-Dichloroethane	75-34-3		U	1.00	0.125
1,1-Dichloroethene	75-35-4		U	1.00	0.500
1,2,4-Trichlorobenzene	120-82-1		U	1.00	0.200
1,2-Dibromo-3-chloropropane	96-12-8		U	5.00	1.00
1,2-Dibromoethane	106-93-4		U	1.00	0.250
1,2-Dichlorobenzene	95-50-1		U	1.00	0.125
1,2-Dichloroethane	107-06-2		U	1.00	0.250
cis-1,2-Dichloroethene	156-59-2		U	1.00	0.250
trans-1,2-Dichloroethene	156-60-5		U	1.00	0.250
1,2-Dichloropropane	78-87-5		U	1.00	0.200
1,3-Dichlorobenzene	541-73-1		U	1.00	0.250
1,4-Dichlorobenzene	106-46-7		U	1.00	0.125
2-Butanone	78-93-3		U	10.0	2.50
2-Hexanone	591-78-6		U	10.0	2.50
4-Methyl-2-pentanone	108-10-1		U	10.0	2.50
Acetone	67-64-1		U	10.0	2.50
Benzene	71-43-2		U	1.00	0.125
Bromodichloromethane	75-27-4		U	1.00	0.250
Bromoform	75-25-2		U	1.00	0.500
Bromomethane	74-83-9		U	1.00	0.500
Carbon disulfide	75-15-0		U	1.00	0.500
Carbon tetrachloride	56-23-5		U	1.00	0.250
Chlorobenzene	108-90-7		U	1.00	0.125
Chloroethane	75-00-3		U	1.00	0.500
Chloroform	67-66-3		U	1.00	0.125
Chloromethane	74-87-3		U	1.00	0.250
cis-1,3-Dichloropropene	10061-01-5		U	1.00	0.250
Cyclohexane	110-82-7		U	5.00	0.250
Dibromochloromethane	124-48-1		U	1.00	0.250
Dichlorodifluoromethane	75-71-8		U	1.00	0.250
Ethyl benzene	100-41-4		U	1.00	0.250
Isopropylbenzene	98-82-8		U	1.00	0.250
Methyl acetate	79-20-9		U	10.0	0.250
Methyl tert-butyl ether	1634-04-4		U	5.00	0.500
Methylcyclohexane	108-87-2		U	10.0	0.250
Methylene chloride	75-09-2		U	2.00	0.250
Styrene	100-42-5		U	1.00	0.125
Tetrachloroethene	127-18-4		U	1.00	0.250
Toluene	108-88-3		U	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6		U	1.00	0.500
Trichloroethene	79-01-6		U	1.00	0.250
Trichlorofluoromethane	75-69-4		U	1.00	0.250
Vinyl chloride	75-01-4		U	1.00	0.250
Xylenes, Total	1330-20-7		T T	1.00	0.500

00078641

Report Date : November 2, 2007

Report Number: L0710596

Sample Number: **L0710596-10** PrePrep Method: NONE Instrument: HPMS10

Client ID: 47WW04-101807 Prep Method: 5030B Prep Date: 10/25/2007 13:42 Matrix: Water Analytical Method: 8260B Cal Date: 10/18/2007 16:51

Workgroup Number: WG253794 Analyst: MES Run Date: 10/25/2007 13:42 Collect Date: 10/18/2007 11:30 Dilution: 1 File ID:10M59861 Units:ug/L Sample Tag: 01

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	107	80	120	
Dibromofluoromethane	103	86	118	
p-Bromofluorobenzene	96.0	86	115	
Toluene-d8	95.3	88	110	

U Not detected at or above adjusted sample detection limit

of

24

20

Report Number: L0710596

Sample Tag: 02

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Report Date : November 2, 2007

Sample Number: L0710596-11 PrePrep Method: NONE Instrument: HPMS10

Client ID: 47WWZZ-101807 Prep Method: 5030B Prep Date: 10/27/2007 14:05

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/18/2007 16:51

 Workgroup Number: WG254006
 Analyst: MES
 Run Date: 10/27/2007 14:05

 Collect Date: 10/18/2007 09:55
 Dilution: 1
 File ID: 10M59919

Units:ug/L

Result Analyte CAS. Number Qual PQL SDL 1,1,1-Trichloroethane 71-55-6 U 1.00 0.250 79-34-5 1.00 0.125 1,1,2,2-Tetrachloroethane U 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 5.00 0.250 υ 1,1,2-Trichloroethane 79-00-5 1.00 0.250 1,1-Dichloroethane 75-34-3 1.00 0.125 U 1,1-Dichloroethene 75-35-4 ΤŢ 1.00 0.500 1,2,4-Trichlorobenzene 120-82-1 TT 1.00 0.200 1,2-Dibromo-3-chloropropane 96-12-8 U 5.00 1.00 U 1.00 0.250 1,2-Dibromoethane 106-93-4 95-50-1 U 1.00 0.125 1,2-Dichlorobenzene 1,2-Dichloroethane 107-06-2 U 1.00 0.250 cis-1,2-Dichloroethene 156-59-2 υ 1.00 0.250 trans-1,2-Dichloroethene 156-60-5 U 1.00 0.250 1,2-Dichloropropane 78-87-5 U 1.00 0.200 541-73-1 1.00 1,3-Dichlorobenzene U 0.250 1,4-Dichlorobenzene 106-46-7 υ 1.00 0.125 2-Butanone 78-93-3 U 10.0 2.50 591-78-6 10.0 2.50 2-Hexanone U 4-Methyl-2-pentanone 108-10-1 ΤΤ 10.0 2.50 Acetone 67-64-1 TT 10.0 2.50 0.125 Benzene 71-43-2 U 1.00 Bromodichloromethane U 0.250 75-27-4 1.00 Bromoform 75-25-2 U 1.00 0.500 U Bromomethane 74-83-9 1.00 0.500 Carbon disulfide 75-15-0 1.01 1.00 0.500 Carbon tetrachloride 56-23-5 U 1.00 0.250 Chlorobenzene 108-90-7 U 1.00 0.125 Chloroethane 75-00-3 U 1.00 0.500 Chloroform 67-66-3 1.00 υ 0.125 0.809 Chloromethane 74-87-3 1.00 0.250 cis-1,3-Dichloropropene 10061-01-5 1.00 0.250 U Cyclohexane 110-82-7 ΤΤ 5.00 0.250 Dibromochloromethane 124-48-1 TT 1.00 0.250 ${\tt Dichlorodifluoromethane}$ 75-71-8 U 1.00 0.250 U Ethyl benzene 100-41-4 1.00 0.250 98-82-8 U 1.00 0.250 Isopropylbenzene Methyl acetate 79-20-9 U 10.0 0.250 Methyl tert-butyl ether 1634-04-4 υ 5.00 0.500 Methylcyclohexane 108-87-2 U 10.0 0.250 Methylene chloride 75-09-2 U 2.00 0.250 1.00 Styrene 100-42-5 U 0.125 Tetrachloroethene 127-18-4 1.00 0.250 υ Toluene 108-88-3 U 1.00 0.250 trans-1,3-Dichloropropene 10061-02-6 1.00 0.500 U Trichloroethene 79-01-6 ΤΤ 1.00 0.250

21 of 24

75-69-4

75-01-4

1330-20-7

TT

U

U

1.00

1.00

1.00

0.250

0.250

0.500

00078643

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: **L0710596-11** PrePrep Method: NONE Instrument: HPMS10

Client ID: 47WWZZ-101807 Prep Method: 5030B Prep Date: 10/27/2007 14:05

Matrix: Water Analytical Method: 8260B Cal Date: 10/18/2007 16:51 Workgroup Number: WG254006 Analyst:**MES** Run Date: 10/27/2007 14:05 Collect Date: 10/18/2007 09:55 Dilution: 1 File ID:10M59919

Units:ug/L Sample Tag: 02

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	98.6	80	120	
Dibromofluoromethane	95.2	86	118	
p-Bromofluorobenzene	91.6	86	115	
Toluene-d8	91.2	88	110	

U Not detected at or above adjusted sample detection limit $_{\rm J}$ The analyte was positively identified, but the quantitation was below the RL

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-15 PrePrep Method: NONE Instrument: HPMS11

 Client ID: TRIP BLANK
 Prep Method: 5030B
 Prep Date: 10/24/2007
 13:22

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007
 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007
 13:22

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,1,1-Trichloroethane	71-55-6	1105425	U	1.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		υ	1.00	0.125
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1		υ	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U	1.00	0.250
1,1-Dichloroethane	75-34-3		Ū	1.00	0.125
1,1-Dichloroethene	75-35-4		U	1.00	0.500
1,2,4-Trichlorobenzene	120-82-1		Ū	1.00	0.200
1,2-Dibromo-3-chloropropane	96-12-8		Ū	5.00	1.00
1,2-Dibromoethane	106-93-4		U	1.00	0.250
1,2-Dichlorobenzene	95-50-1		ū	1.00	0.125
1,2-Dichloroethane	107-06-2		U	1.00	0.250
cis-1,2-Dichloroethene	156-59-2		U	1.00	0.250
trans-1,2-Dichloroethene	156-60-5		U	1.00	0.250
1,2-Dichloropropane	78-87-5		П	1.00	0.200
1,3-Dichlorobenzene	541-73-1		П	1.00	0.250
1,4-Dichlorobenzene	106-46-7		ū	1.00	0.125
2-Butanone	78-93-3		ū	10.0	2.50
2-Hexanone	591-78-6		ū	10.0	2.50
4-Methyl-2-pentanone	108-10-1		ū	10.0	2.50
Acetone	67-64-1		ū	10.0	2.50
Benzene	71-43-2		Ū	1.00	0.125
Bromodichloromethane	75-27-4		U	1.00	0.123
	75-27-4		U		
Bromoform	75-25-2		U	1.00	0.500
Bromomethane Carbon disulfide				1.00	
Carbon disulfide Carbon tetrachloride	75-15-0 56-23-5		U	1.00	0.500
Carbon tetrachioride Chlorobenzene			U		
	108-90-7 75-00-3			1.00	0.125
Chloroform			U	1.00	
	67-66-3		U	1.00	0.125
Chloromethane	74-87-3		U	1.00	
cis-1,3-Dichloropropene	10061-01-5		U	1.00	0.250
Cyclohexane	110-82-7		U	5.00	0.250
Dibromochloromethane	124-48-1		Ū	1.00	0.250
Dichlorodifluoromethane	75-71-8		Ū	1.00	0.250
Ethyl benzene	100-41-4		Ū	1.00	0.250
Isopropylbenzene	98-82-8		Ū	1.00	0.250
Methyl acetate	79-20-9		Ū	10.0	0.250
Methyl tert-butyl ether	1634-04-4		Ū	5.00	0.500
Methylcyclohexane	108-87-2		υ	10.0	0.250
Methylene chloride	75-09-2		Ū	2.00	0.250
Styrene	100-42-5		Ū	1.00	0.125
Tetrachloroethene	127-18-4		υ	1.00	0.250
Toluene	108-88-3		υ	1.00	0.250
trans-1,3-Dichloropropene	10061-02-6		U	1.00	0.500
Trichloroethene	79-01-6		Ū	1.00	0.250
Trichlorofluoromethane	75-69-4		U	1.00	0.250
Vinyl chloride	75-01-4		υ	1.00	0.250
Xylenes, Total	1330-20-7		U	1.00	0.500

KEMRON ENVIRONMENTAL SERVICES

00078645

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-15 PrePrep Method: NONE Instrument: HPMS11

 Client ID: TRIP BLANK
 Prep Method: 5030B
 Prep Date: 10/24/2007 13:22

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 10/01/2007 15:48

 Workgroup Number: WG253678
 Analyst: MES
 Run Date: 10/24/2007 13:22

Collect Date: 10/20/2007 00:01

Sample Tag: 01

Dilution: 1

Units: ug/L

Surrogate	% Recovery	Lower	Upper	Qual
1,2-Dichloroethane-d4	88.0	80	120	
Dibromofluoromethane	91.6	86	118	
p-Bromofluorobenzene	90.9	86	115	
Toluene-d8	89.3	88	110	

U Not detected at or above adjusted sample detection limit

2.1.1.2 QC Summary Data

Example 8260 Calculations

1.0 Calculating the Response Factor (RF) from the initial calibration (ICAL) data:

RF = [(Ax) (Cis)] / [(Ais) (Cx)]

where:		<u>Example</u>
wilele.	Ax = Area of the characteristic ion for the compound being measured:	3399156
	Cis = Concentration of the specific internal standard (ug/mL)	25
	Ais = Area of the characteristic ion of the specific internal standard	846471
	Cx = Concentration of the compound in the standard being measured (ug/mL)	100
	RF = Calculated Response Factor	1.0039

2.0 Calculating the concentration (${\bf C}$) of a compound in water using the average RF: *

Cx = [(Ax) (Cis) (Vn)(D)] / [(Ais) (RF) (Vs)]

where:	Example
Ax = Area of the characteristic ion for the compound being measured	3122498
Cis = Concentration of the specific internal standard (ug/L)	25
D = Dilution factor for sample as a multiplier ($10x = 10$)	1
Ais = Area of the characteristic ion of the specific internal standard	611048
RF = Average RF from the ICAL	1.004
Vs = Purge volume of sample (mL)	10
Vn = Nominal purge volume of sample (mL) (10.0 mL)	10
Cx = Concentration of the compound in the sample being measured (ug/L)	127.2428

3.0 Calculating the concentration (${\bf C}$) of a compound in soil using the average RF: *

Cx = [(Ax)(Cis)(Wn)(D)]/[(Ais)(RF)(Ws)]

where:	Example
Ax = Area of the characteristic ion for the compound being measured	3122498
Cis = Concentration of the specific internal standard (ug/L)	25
D = Dilution factor for sample as a multiplier $(10x = 10)$	1
Ais = Area of the characteristic ion of the specific internal standard	611048
RF = Average RF from the ICAL	1.004
Ws = Weight of sample purged (g)	5
Wn = Nominal purge weight (g) (5.0 g)	5
Cx = Concentration of the compound in the sample being measured (ug/L)	127.2428
Dry weight correction:	
Percent solids (PCT_S)	50
$Cd = (Cx) (100)/PCT_S$	254.4856

^{*} Concentrations appearing on the instrument quantitation reports are on-column results and do not take into account initial volume, final volume, and the dilution factor.

4.0 Concentration from Linear Regression

Step 1: Retrieve Curve Data From Plot, y = mx + b

y = response ratio = response of analyte / response of IS = Ax/Ais

x = amount ratio = concentration analyte/concentration internal standard = Cx / Cis

m = slope from curve = 0.213

b = intercept from curve = - 0.00642

Step 2: Calculate y from Quantitation Report

y = 86550/593147 = 0.1459

Step 3: Solve for x

x = (y - b)/m = [(0.1459 - (-0.00642)]/0.213 = 0.7152

Step 4: Solve for analyte concentration Cx

Cx = Cis(x) = (25.0)(0.7152) = 17.88

Example Spreadsheet Calculation:

Slope from curve, m:
Intercept from curve, b:
Area of analyte, Ax:
Area of Internal Standard , Ais:
Concentration of IS, Cis
Response Ratio:
0.213
-0.00642
86550
593147
25.00
0.145917

Amount Ratio: 0.715195 Concentration: 17.87988

Units of Internal Standard: ug/L

5.0 Concentration from Quadratic Regression

Step 1 - Retrieve Curve Data from Plot, y = Ax^2 + Bx + C

Where:

 $Ax^2 + Bx + (C - y) = 0$

A, B, C = constants from the ICAL quadratic regression

y = Response ratio = Area of analyte/Area of internal standard (IS)

x = Amount ratio = Concentration of analyte/concentration of IS

Step 2: Calculate y from Quantitation Report

y = Ax/Ais

Step 3: Solve for x using the quadratic formula

 $Ax^2 + Bx + C - y = 0$

$$x = \frac{b \pm \sqrt{(b^2 - 4a(c - y))}}{2a}$$
 (Two possible solutions)

Step 4: Solve for analyte concentration Cx

Cx = (Cis)(Amount ratio)

Example Spreadsheet Calculation:

Value of A from plot:
Value of B from plot:
Value of C from plot:
Value of C from plot:
Area of unknown from quantitation report:
Area of IS from quantiation report:
784848

Response ratio, y: 0.374367

C - y: **-0.40197** Root 1 - Computed amount ratio , X1: **80.44567**

Root 2 - Computed amount ratio , X2: **0.794396** use this solution

Concentration of IS, Cis: 25.00
Concentration of analyte, Cx: 19.86 ug/L

Instrument Run Log

 Instrument:
 HPMS11
 Dataset:
 100107

 Analyst1:
 MES
 Analyst2:
 NA

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 10

 Method:
 5030/5035
 SOP:
 PAT01
 Rev:
 10

Maintenance Log ID: 21097

Internal Standard: STD21833 Surrogate Standard: STD22023

Column 1 ID: RTX502.2 Column 2 ID: NA

Workgroups: <u>WG251532,WG251619</u>

Comments:

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
1	11M46046	SYSTEM BLANK	NA	1	1		10/01/07 08:53
2	11M46047	11M46047 SYSTEM BLANK					10/01/07 09:23
3	11M46048	SYSTEM BLANK	NA	1	1		10/01/07 10:00
4	11M46049	SYSTEM BLANK	NA	1	1		10/01/07 10:40
5	11M46050	WG251532-01 50NG BFB STD 8260	NA	1	1	STD21685	10/01/07 11:15
6	11M46051	WG251532-02 0.3ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 11:40
7	11M46052	WG251532-03 0.4 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 12:11
8	11M46053	WG251532-04 1 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 12:42
9	11M46054	WG251532-05 2 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 13:12
10	11M46055	WG251532-06 5 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 13:42
11	11M46056	WG251532-07 20 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 14:18
12	11M46057	WG251532-08 50 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 14:48
13	11M46058	WG251532-09 100 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 15:18
14	11M46059	WG251532-10 200 ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 15:48
15	11M46060	SYSTEM BLANK	NA	1	1		10/01/07 16:19
16	11M46061	SYSTEM BLANK	NA	1	1		10/01/07 16:49
17	11M46062	SYSTEM BLANK	NA	1	1		10/01/07 17:23
18	11M46063	WG251532-11 20ug/L ALT SOURCE 8260	NA	1	1	STD22188	10/01/07 18:05
19	11M46064	WG251618-01 50NG BFB STD 8260	NA	1	1	STD21685	10/01/07 18:38
42	11M46065	WG251618-02 50ug/L WATER STD 8260	NA	1	1	STD22186	10/01/07 19:02
20	11M46066	SYSTEM BLANK	NA	1	1		10/01/07 19:32
21	11M46067	WG251532-11 20ug/L ALT SOURCE	NA	1	1	STD22188	10/01/07 20:02
22	11M46068	WG251619-01 VBLK1001 BLANK 8260	NA	1	1		10/01/07 20:32
23	11M46069	WG251619-01 VBLK1001 BLANK 8260	NA	1	1		10/01/07 21:02
24	11M46070	WG251619-02 20ug/L LCS 8260	NA	1	1	STD22188	10/01/07 21:32
25	11M46071	WG251619-03 20ug/L LCSDUP 8260	NA	1	1	STD22188	10/01/07 22:02
26	11M46072	L0709662-09 B D1 5X 826-SPE	<2	1	5		10/01/07 22:33
27	11M46073	L0709662-10 B D1 10X 826-SPE	<2	1	10		10/01/07 23:03
28	11M46074	L0709662-11 B D1 10X 826-SPE	5	1	10		10/01/07 23:33
29	11M46075	L0709499-11 B D1 10X 826-SPE	<2	1	10		10/02/07 00:03
30	11M46076	L0709540-08 A 826-SPE	<2	1	1		10/02/07 00:33
31	11M46077	L0709542-09 A 826-SPE	<2	1	1		10/02/07 01:03
32	11M46078	L0709540-01 A 826-SPE	<2	1	1		10/02/07 01:34
33	11M46079	L0709540-02 A 826-SPE	<2	1	1		10/02/07 02:04

Approved: October 03, 2007

Nien CE

Instrument Run Log

 Instrument:
 HPMS11
 Dataset:
 100107

 Analyst1:
 MES
 Analyst2:
 NA

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 10

 Method:
 5030/5035
 SOP:
 PAT01
 Rev:
 10

Maintenance Log ID: 21097

Internal Standard: STD21833 Surrogate Standard: STD22023

CCV: <u>STD22186</u> LCS: <u>STD22188</u> MS/MSD: <u>NA</u>

Column 1 ID: <u>RTX502.2</u> Column 2 ID: <u>NA</u>

Workgroups: WG251532,WG251619

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
34	11M46080	L0709540-04 A 826-SPE	<2	1	1		10/02/07 02:34
35	11M46081	L0709540-05 A 826-SPE	<2	1	1		10/02/07 03:04
36	11M46082	L0709540-06 A 826-SPE	<2	1	1		10/02/07 03:34
37	11M46083	L0709540-07 A 826-SPE	<2	1	1		10/02/07 04:05
38	11M46084	L0709538-05 A 826-SPE	<2	1	1		10/02/07 04:35
39	11M46085	L0709538-07 A 826-SPE	<2	1	1		10/02/07 05:05
40	11M46086	L0709600-19 A 826-SPE	<2	1	1		10/02/07 05:35
41	11M46087	L0709600-21 A 826-SPE	<2	1	1		10/02/07 06:05

Comments

Seq. Rerun Dil.	Reason	Analytes				
18						
File ID:11M46063						
Do not report.						

Approved: October 03, 2007

Nien Coto

Instrument Run Log

Instrument:	HPMS10	Dataset:	101807		
Analyst1:	MES	Analyst2:	NA		
Method:	8260B	SOP:	MSV01	Rev: <u>10</u>	
Method:	5030/5035	SOP:	PAT01	Rev: <u>10</u>	
Maintenance Log ID: Internal Standard: STD2201		Surrogate Standard: S	TD22132		
CCV: STD2256	55	LCS: S	TD22574	MS/MSD: NA	
W	Column 1 ID: /orkgroups: <u>WG</u>	RTX502.2 253187	Column 2 ID: NA		
Comments:					

Seq.	File ID	Sample Information	На	Mat	Dil	Reference	Date/Time
	1	· ·					
1	10M59716	WG253187-01 50NG BFB STD 8260	NA	1	1	STD22252	10/18/07 08:52
2	10M59717	SYSTEM BLANK	NA	1	1		10/18/07 09:18
3	10M59718	WG253187-02 0.3 ug/L WATER STD 8260	NA	1	1	STD22560	10/18/07 09:57
4	10M59719	WG253187-03 0.4 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 10:29
5	10M59720	WG253187-04 1 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 11:00
6	10M59721	WG253187-05 2 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 11:31
7	10M59722	WG253187-06 5 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 12:03
8	10M59723	WG253187-07 20 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 12:35
9	10M59724	WG253187-08 50 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 13:07
10	10M59725	WG253187-09 100 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 13:45
11	10M59726	WG253187-10 200 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 14:16
12	10M59727	WG253187-11 300 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 14:47
13	10M59728	SYSTEM BLANK	NA	1	1		10/18/07 15:18
14	10M59729	SYSTEM BLANK	NA	1	1		10/18/07 15:49
15	10M59730	SYSTEM BLANK	NA	1	1		10/18/07 16:20
16	10M59731	WG253187-03 0.4 ug/L WATER STD 8260	NA	1	1	STD22565	10/18/07 16:51
17	10M59732	WG253187-12 20ug/L ALT SOURCE	NA	1	1	STD22409	10/18/07 18:23
18	10M59733	WG253187-12 100ug/L MA OXY ALT SOUR	NA	1	1	STD22474	10/18/07 18:55
19	10M59734	WG253187-13 100ug/L MA OXY ALT SOUR	NA	1	1	STD22474	10/18/07 19:37
20	10M59735	SYSTEM BLANK	NA	1	1		10/18/07 20:08

Comments

Seq. Rerun Dil.	Reason	Analytes					
4							
File ID:10M59719							
Do not report.							
18							
File ID:10M59733							
Do not report.							

Approved: October 23, 2007

Nien Coto

Instrument Run Log

Instrument: HPMS11 Dataset: 102407

Analyst1: MES Analyst2: TMB

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 10

 Method:
 624
 SOP:
 MSV10
 Rev:
 9

 Method:
 5030/5035
 SOP:
 PAT01
 Rev:
 10

Maintenance Log ID: 21449

Internal Standard: STD22304 Surrogate Standard: STD22615

Column 1 ID: RTX502.2 Column 2 ID: NA

Workgroups: WG253678

Comments:

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
1	11M46848	SYSTEM BLANK	NA	1	1		10/24/07 08:23
2	11M46849	SYSTEM BLANK	NA	1	1		10/24/07 08:54
3	11M46850	WG253676-01 50ng BFB STD 8260	NA	1	1	STD22252	10/24/07 09:19
4	11M46851	WG253676-02 50ug/L CCV STD 8260	NA	1	1	STD22565	10/24/07 09:42
5	11M46852	WG253678-01 VBLK1024 BLANK 8260	NA	1	1		10/24/07 10:21
6	11M46853	WG253678-01 VBLK1024 BLANK 8260	NA	1	1		10/24/07 10:51
7	11M46854	WG253678-02 20ug/L LCS STD 8260	NA	1	1	STD22574	10/24/07 11:21
8	11M46855	WG253678-03 20ug/L LCSDUP STD 8260	NA	1	1	STD22574	10/24/07 11:52
9	11M46856	L0710605-01 A 826-BETX	<2	1	1		10/24/07 12:22
10	11M46857	L0710610-05 A 826-SPE	<2	1	1		10/24/07 12:52
11	11M46858	L0710596-15 A 826-SPE	<2	1	1		10/24/07 13:22
12	11M46859	L0710597-14 A 826-SPE	<2	1	1		10/24/07 13:52
13	11M46860	L0710610-01 A 826-SPE	<2	1	1		10/24/07 14:23
14	11M46861	L0710610-02 A 826-SPE	<2	1	1		10/24/07 14:53
15	11M46862	L0710610-03 A 826-SPE	<2	1	1		10/24/07 15:23
16	11M46863	L0710610-04 A 10X 826-SPE	<2	1	10		10/24/07 15:54
17	11M46864	L0710596-01 A 826-SPE	<2	1	1		10/24/07 16:23
18	11M46865	L0710596-02 A 826-SPE	5	1	1		10/24/07 16:53
19	11M46866	L0710596-05 A 826-SPE	<2	1	1		10/24/07 17:23
20	11M46867	L0710597-09 A 826-SPE	<2	1	1		10/24/07 17:54
21	11M46868	L0710596-07 A 826-SPE	<2	1	1		10/24/07 18:24
22	11M46869	L0710596-08 A 826-SPE	<2	1	1		10/24/07 18:55
23	11M46870	L0710596-09 A 826-SPE	<2	1	1		10/24/07 19:25
24	11M46871	L0710596-10 A 826-SPE	<2	1	1		10/24/07 19:56
25	11M46872	L0710596-11 A 826-SPE	<2	1	1		10/24/07 20:26
26	11M46873	L0710597-07 A 826-SPE	<2	1	1		10/24/07 20:56
27	11M46874	SYSTEM BLANK	NA	1	1		10/24/07 21:27
28	11M46875	WG253678-04 624 BLANK	NA	1	1		10/24/07 21:57
29	11M46876	L0710674-01 A 624-SPE	3	2	1		10/24/07 22:28
30	11M46877	L0710680-01 A 624-SPE	7	2	1		10/24/07 22:59

Comments

Sea	Rerun	Dil	Reason	Analytes

Approved: October 26, 2007

Nien Coto

Run 00078653

KEMRON Environmental Services

Instrument Run Log

Instrument: HPMS11 Dataset: 102407 Analyst1: MES Analyst2: TMB Method: 8260B SOP: MSV01 Rev: 10 Method: 624 SOP: MSV10 Rev: <u>9</u> Method: 5030/5035 SOP: PAT01 Rev: <u>10</u> Maintenance Log ID: 21449 Internal Standard: STD22304 Surrogate Standard: STD22615 CCV: <u>STD22565</u> LCS: STD22574 MS/MSD: NA Column 2 ID: NA Column 1 ID: RTX502.2 Workgroups: WG253678

Comments

	I	D.1		A 1.
Seq.	Rerun	Dil.	Reason	Analytes
16	Χ	1	Analyzed too dilute	
File ID:	11M4686	63		
	Do not re			
17	Χ	100	Over Calibration Range	cis-1,2-DCE and TCE
File ID:	11M4686	64		
18	Х	10	Over Calibration Range	TCE
File ID:	11M4686	65		
19	Х	1	Carry-over contamination	
File ID:	11M4686	66		
	Do not re	eport.		
20	Χ	5	Over Calibration Range	FREON-113
File ID:	11M4686	67		
21	Х	1	Carry-over contamination	
File ID:	11M4686	86		
	Do not re	eport.		
23	Χ	20	Over Calibration Range	FREON-113
File ID:	11M468	70		
24	Х	1	Carry-over contamination	
File ID:	11M468	71		
	Do not re	eport.		

Approved: October 26, 2007

Nien Coto

Instrument Run Log

 Instrument:
 HPMS10
 Dataset:
 102507

 Analyst1:
 MES
 Analyst2:
 NA

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 10

 Method:
 5030/5035
 SOP:
 PAT01
 Rev:
 10

Maintenance Log ID: 21463

Internal Standard: STD22019 Surrogate Standard: STD22132

CCV: <u>STD22565</u> LCS: <u>STD22574</u> MS/MSD: <u>NA</u>

Column 1 ID: RTX502.2 Column 2 ID: NA

Workgroups: WG253794

Comments:

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
		WG253793-01 50NG BFB STD 8260	NA				
1	10M59849			1	1	STD22252	10/25/07 07:51
2	10M59850	WG253793-01 50NG BFB STD 8260	NA	1	1	STD22252	10/25/07 08:04
3	10M59851	WG253793-02 50ug/L WATER STD 8260	NA	1	1	STD22565	10/25/07 08:27
4	10M59852	WG253794-01 VBLK1025 BLANK 8260	NA	1	1		10/25/07 09:00
5	10M59853	WG253794-01 VBLK1025 BLANK 8260	NA	1	1		10/25/07 09:31
6	10M59854	WG253794-02 20ug/L LCS 8260	NA	1	1	STD22574	10/25/07 10:03
7	10M59855	WG253794-03 20ug/L LCSDUP 8260	NA	1	1	STD22574	10/25/07 10:35
8	10M59856	L0710582-10 B D1 10X 826-LOW	<2	1	10		10/25/07 11:06
9	10M59857	L0710616-01 A 826-SPE	<2	1	1		10/25/07 11:37
10	10M59858	L0710557-03 B 826-SPE	<2	1	1		10/25/07 12:08
11	10M59859	L0710596-05 B 826-SPE	<2	1	1		10/25/07 12:40
12	10M59860	L0710596-07 B 826-SPE	<2	1	1		10/25/07 13:11
13	10M59861	L0710596-10 B 826-SPE	<2	1	1		10/25/07 13:42
14	10M59862	L0710582-11 B D1 10X 826-LOW	<2	1	10		10/25/07 14:13
15	10M59863	L0710582-15 B D1 10X 826-LOW	<2	1	10		10/25/07 14:44
16	10M59864	L0710582-05 B D1 10X 826-LOW	<2	1	10		10/25/07 15:15
17	10M59865	L0710616-02 A 826-SPE	<2	1	1		10/25/07 15:46
18	10M59866	L0710616-03 A 826-SPE	<2	1	1		10/25/07 16:17
19	10M59867	L0710616-04 A 826-SPE	<2	1	1		10/25/07 16:48
20	10M59868	L0710616-05 A 826-SPE	<2	1	1		10/25/07 17:19
21	10M59869	L0710616-06 A 826-SPE	<2	1	1		10/25/07 17:51
22	10M59870	L0710597-05 A 826-SPE	<2	1	1		10/25/07 18:23
23	10M59871	L0710597-06 A 826-SPE	<2	1	1		10/25/07 18:54
24	10M59872	L0710597-08 A 826-SPE	<2	1	1		10/25/07 19:26
25	10M59873	L0710597-10 A 826-SPE	<2	1	1		10/25/07 19:57
26	10M59874	SYSTEM BLANK	NA	1	1		10/25/07 20:28
27	10M59875	SYSTEM BLANK	NA	1	1		10/25/07 21:00
28	10M59877	SYSTEM CHECK	NA	1	1		10/25/07 21:32

Comments

Seq.	Rerun Dil.	Reason	Analytes			
1						
File ID:10M59849						

Approved: October 29, 2007

Nien Coto

Run 00078655

KEMRON Environmental Services

Instrument Run Log

	Instrumer	t: HPMS10	Dataset:	102507		
	Analyst	1: MES	Analyst2:	NA		
Method: <u>8260B</u>			SOP:	MSV01	Rev: <u>10</u>	
Method: 5030/5035			SOP:	PAT01	Rev: <u>10</u>	
	ntenance Log II		e Standard: S	TD22132		
	CCV: STD22		_	TD22574	MS/MSD: NA	
		Column 1 ID: RTX502.2 Workgroups: WG253794		Column 2 ID: NA		
			Comme	<u>ents</u>		
Seq. Rerun	Dil.	Reason			Analytes	
RR, BFI	B failed.					
24 X	25 Over	Calibration Range			TCE	
le ID:10M598	372					
25 X le ID:10M598	•	r-over contamination				
Do not r	report.					

Approved: October 29, 2007

Nien Coto

Instrument Run Log

 Instrument:
 HPMS10
 Dataset:
 102707

 Analyst1:
 MES
 Analyst2:
 NA

 Method:
 8260B
 SOP:
 MSV01
 Rev: 10

 Method:
 5030/5035
 SOP:
 PAT01
 Rev: 10

Maintenance Log ID: 21484

Internal Standard: STD22714 Surrogate Standard: STD22715

CCV: <u>STD22565</u> LCS: <u>STD22574</u> MS/MSD: <u>NA</u>

Column 1 ID: RTX502.2 Column 2 ID: NA

Workgroups: WG254006

Comments:

	Comments.						
Seq.	File ID	Sample Information	pН	Mat	Dil	Reference	Date/Time
1	10M59910	WG254005-01 50NG BFB STD 8260	NA	1	1	STD22252	10/27/07 09:21
2	10M59911	WG254005-02 50ug/L WATER STD 8260	NA	1	1	STD22565	10/27/07 09:47
3	10M59912	WG254006-01 VBLK1027 BLANK 8260	NA	1	1		10/27/07 10:19
4	10M59913	WG254006-01 VBLK1027 BLANK 8260	NA	1	1		10/27/07 10:52
5	10M59914	WG254006-02 20ug/L LCS 8260	NA	1	1	STD22574	10/27/07 11:24
6	10M59915	WG254006-03 20ug/L LCSDUP 8260	NA	1	1	STD22574	10/27/07 11:56
7	10M59916	L0710596-01 B D1 100X 826-SPE	<2	1	100		10/27/07 12:28
8	10M59917	L0710596-02 B D1 10X 826-SPE	5	1	10		10/27/07 13:00
9	10M59918	L0710596-09 B D1 20X 826-SPE	<2	1	20		10/27/07 13:32
10	10M59919	L0710596-11 B 826-SPE	<2	1	1		10/27/07 14:05
11	10M59920	L0710597-07 B 826-SPE	<2	1	1		10/27/07 14:37
12	10M59921	L0710582-07 B 826-LOW	<2	1	1		10/27/07 15:10
13	10M59922	L0710582-09 B 826-LOW	<2	1	1		10/27/07 15:42
14	10M59923	L0710582-16 B 826-LOW	<2	1	1		10/27/07 16:15
15	10M59924	L0710582-17 B 826-LOW	<2	1	1		10/27/07 16:46
16	10M59925	L0710597-09 B D1 5X 826-SPE	<2	1	5		10/27/07 17:19
17	10M59926	L0710447-03 B D1 10X 826-SPE	<2	1	10		10/27/07 17:51
18	10M59927	L0710447-04 B D1 5X 826-SPE	<2	1	5		10/27/07 18:24
19	10M59928	L0710447-07 B D1 5X 826-SPE	<2	1	5		10/27/07 18:56
20	10M59929	L0710494-03 B D1 20X 826-SPE	<2	1	20		10/27/07 19:29
21	10M59930	L0710494-04 B D1 20X 826-SPE	<2	1	20		10/27/07 20:03
22	10M59931	L0710494-05 B D1 50X 826-SPE	<2	1	50		10/27/07 20:35
23	10M59932	L0710494-07 B D1 5X 826-SPE	<2	1	5		10/27/07 21:08
24	10M59933	L0710582-04 A 826-LOW	<2	1	1		10/27/07 21:41
25	10M59934	SYSTEM BLANK	NA	1	1		10/27/07 22:13
26	10M59935	SYSTEM CHECK	NA	1	1		10/27/07 22:44

Comments

Seq.	Rerun	Dil.	Reason	Analytes	
24	Х	2.5	Missed Tune		
File ID:10M59933					

Approved: October 30, 2007

Nien CE

Che 00078657

KEMRON Environmental Services Data Checklist

Date: 01-OCT-2007

Analyst: MES

Analyst: NA

Method: 8260

Instrument: HPMS11

Curve Workgroup: NA

Runlog ID: 18538

Analytical Workgroups: WG251532,WG251619

BFB X Initial Calibration X X Average RF X Linear Reg or Higher Order Curve X X Second Source standard & Difference X X Second Source standard & X X Second Standards Second Second Standards Second		
Initial Calibration X Average RF X Linear Reg or Higher Order Curve X Second Source standard % Difference X Continuing Calibration /Check Standards X Project/Client Specific Requirements X Special Standards NA Blanks X TCL's X Surrogates X CS (Laboratory Control Sample) X Recoveries X Surrogates X Surrogates X TCL Hits X Sepectra of TCL Hits X Surrogates X Internal Standards Criteria X Ilbrary Searches NA Calculations & Correct Factors NA Dilutions Run X NA X Reruns NA Manual Integrations NA Case Narrative X Core Completeness X Core Core Completeness X		
Average RF Linear Reg or Higher Order Curve Second Source standard % Difference X Continuing Calibration /Check Standards X Project/Client Specific Requirements X Special Standards X Special Standards X TCL's X Surrogates X CS (Laboratory Control Sample) Recoveries Surrogates X MSMSD/Duplicates X MSMSD/Duplicates X Samples X TCL Hits X Spectra of TCL Hits X Surrogates X Surogates X Surog		
Linear Reg or Higher Order Curve X Second Source standard % Difference X Continuing Calibration /Check Standards X Project/Client Specific Requirements X Special Standards NA Blanks X TCL's X Surrogates X LCS (Laboratory Control Sample) X Recoveries X Surrogates X MSMSD/Duplicates X Samples X TCL Hits X Spectra of TCL Hits X Surrogates X Internal Standards Criteria X Library Searches X Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations X Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Initial Calibration	X
Second Source standard % Difference Continuing Calibration / Check Standards X Project/Client Specific Requirements Special Standards NA Blanks TCL's Surrogates LS (Laboratory Control Sample) Recoveries Surrogates X Surogates X MSMSD/Duplicates Samples TCL Hits X Spectra of TCL Hits X Spectra of TCL Hits X Surrogates X Internal Standards Criteria Library Searches Calculations & Correct Factors Dilutions Run Reruns Manual Integrations Case Narrative Results Reporting/Data Qualifiers X K SpRA Workgroup Data X Check for Completeness X X X X X X X X X X X X X X X X X X	Average RF	
Continuing Calibration /Check Standards X Project/Client Specific Requirements X Special Standards NA Blanks X TCL's X Surrogates X LCS (Laboratory Control Sample) X Recoveries X Surrogates X Surrogates X MSMSD/D/Duplicates X Samples X TCL Hits X Spectra of TCL Hits X Surrogates X Internal Standards Criteria X Library Searches X Calculations & Correct Factors NA Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Linear Reg or Higher Order Curve	
Project/Client Specific Requirements	Second Source standard % Difference	Х
Special Standards	Continuing Calibration /Check Standards	X
Signature Surrogates Surr	Project/Client Specific Requirements	Х
TCL's X X Surrogates X X X X X X X X X	Special Standards	NA
Surrogates	Blanks	X
LCS (Laboratory Control Sample) X Recoveries X Surrogates X MSMSD/Duplicates NA Samples X TCL Hits X Spectra of TCL Hits X Surrogates X Internal Standards Criteria X Library Searches X Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	TCL's	Х
Recoveries Surrogates MS/MSD/Duplicates MS/MSD/Duplicates Samples TCL Hits Spectra of TCL Hits Surrogates Internal Standards Criteria Library Searches Calculations & Correct Factors Dilutions Run Reruns Manual Integrations Case Narrative Results Reporting/Data Qualifiers KOBRA Workgroup Data Check for Completeness X X X X X X X X X X X X X X X X X X	Surrogates	X
Recoveries	LCS (Laboratory Control Sample)	X
MS/MSD/Duplicates NA Samples X TCL Hits X Spectra of TCL Hits X Surrogates X Internal Standards Criteria X Library Searches NA Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X		X
Samples X TCL Hits X Spectra of TCL Hits X Surrogates X Internal Standards Criteria X Library Searches NA Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Surrogates	X
TCL Hits Spectra of TCL Hits Surrogates Internal Standards Criteria Library Searches Calculations & Correct Factors Dilutions Run Reruns Manual Integrations Case Narrative Results Reporting/Data Qualifiers KOBRA Workgroup Data Check for Completeness X X X X X X X X X X X X X X X X X X	MS/MSD/Duplicates	NA
TCL Hits Spectra of TCL Hits Surrogates Internal Standards Criteria Library Searches Calculations & Correct Factors Dilutions Run Reruns Manual Integrations Case Narrative Results Reporting/Data Qualifiers KOBRA Workgroup Data Check for Completeness X X X X X X X X X X X X X X X X X X	Samples	X
Surrogates X Internal Standards Criteria X Library Searches NA Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X		X
Internal Standards Criteria	Spectra of TCL Hits	X
Library Searches NA Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Surrogates	X
Calculations & Correct Factors X Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Internal Standards Criteria	X
Dilutions Run X Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Library Searches	NA
Reruns NA Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Calculations & Correct Factors	X
Manual Integrations NA Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Dilutions Run	Х
Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Reruns	NA
Case Narrative X Results Reporting/Data Qualifiers X KOBRA Workgroup Data X Check for Completeness X	Manual Integrations	NA
KOBRA Workgroup Data Check for Completeness X		X
Check for Completeness X	Results Reporting/Data Qualifiers	X
	KOBRA Workgroup Data	Х
Primary Reviewer MFS	Check for Completeness	X
	Primary Reviewer	MES
Secondary Reviewer MDA	Secondary Reviewer	MDA
Check for compliance with method and project specific requirements X	Check for compliance with method and project specific requirements	X
Check the completeness of reported information X		
Check the information for the report narrative X		
Check the reasonableness of the results X	Check the reasonableness of the results	X

Primary Reviewer: 02-OCT-2007 Secondary Reviewer: 03-OCT-2007

Mand Smean

Generated: OCT-03-2007 10:10:17

^{Che}00078658

KEMRON Environmental Services Data Checklist

Date: <u>1</u>	18-OCT-2007
Analyst: N	MES
Analyst: N	NA
Method: 8	3260
Instrument: <u>F</u>	HPMS10
Curve Workgroup: N	NA
Runlog ID: 1	18888
Analytical Workgroups: V	WG253187

BFB	X
nitial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	X
econd Source standard % Difference	X
Continuing Calibration /Check Standards	NA
Project/Client Specific Requirements	NA
pecial Standards	NA
Blanks	NA
TCL's	NA
Surrogates	NA
CS (Laboratory Control Sample)	NA
Recoveries	NA
Surrogates	NA
MS/MSD/Duplicates	NA
amples	NA
TCL Hits	NA
Spectra of TCL Hits	NA
Surrogates	NA
Internal Standards Criteria	NA
Library Searches	NA
Calculations & Correct Factors	NA
Dilutions Run	NA
Reruns	NA
Manual Integrations	NA
Case Narrative	NA
Results Reporting/Data Qualifiers	X
OBRA Workgroup Data	X
Check for Completeness	X
Primary Reviewer	MES
econdary Reviewer	MDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Check the reasonableness of the results	X

Primary Reviewer: 22-OCT-2007

Secondary Reviewer: 23-OCT-2007

many Schilding

Generated: OCT-23-2007 11:16:45

^{Che}00078659

KEMRON Environmental Services Data Checklist

Date: 2	24-OCT-2007
Analyst: I	MES
Analyst:]	TMB
Method:	8260/624
Instrument: J	HPMS11
Curve Workgroup: J	NA
Runlog ID:	18964
Analytical Workgroups: \	WG253678

BFB	X
Initial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	X
Second Source standard % Difference	X
Continuing Calibration ICheck Standards	X
Project/Client Specific Requirements	X
Special Standards	NA
Blanks	X
TCL's	X
Surrogates	X
LCS (Laboratory Control Sample)	X
Recoveries	X
Surrogates	X
MS/MSD/Duplicates	NA
Samples	X
TCL Hits	X
Spectra of TCL Hits	X
Surrogates	X
Internal Standards Criteria	X
Library Searches	NA NA
Calculations & Correct Factors	X
Dilutions Run	NA NA
Reruns	X
Manual Integrations	NA NA
Case Narrative	X
Results Reporting/Data Qualifiers	X
KOBRA Workgroup Data	X
Check for Completeness	X
Primary Reviewer	MES
Secondary Reviewer	MDA
secondary reviewer	IVIDA
	
Check for compliance with method and project specific requirements	X
Check for compliance with method and project specific requirements Check the completeness of reported information	X
Check the information for the reported information Check the information for the report narrative	X X
Check the reasonableness of the results	X

Primary Reviewer: 25-OCT-2007

Secondary Reviewer: 26-OCT-2007

Mand Smean

Generated: OCT-26-2007 13:30:22

Che 00078660

KEMRON Environmental Services Data Checklist

Date: <u>25-OCT-200</u>	7
Analyst: MES	
Analyst: NA	
Method: <u>8260</u>	
Instrument: HPMS10	
Curve Workgroup: NA	
Runlog ID: 18983	
Analytical Workgroups: WG253794	

BFB	X
	X X
Initial Calibration	
Average RF	X
Linear Reg or Higher Order Curve	X
Second Source standard % Difference	X
Continuing Calibration /Check Standards	X
Project/Client Specific Requirements	X
Special Standards	NA NA
Blanks	X
TCL's	X
Surrogates	X
LCS (Laboratory Control Sample)	X
Recoveries	X
Surrogates	X
MS/MSD/Duplicates	NA
Samples	X
TCL Hits	X
Spectra of TCL Hits	X
Surrogates	X
Internal Standards Criteria	X
Library Searches	NA NA
Calculations & Correct Factors	X
Dilutions Run	X
Reruns	X
Manual Integrations	NA NA
Case Narrative	X
Results Reporting/Data Qualifiers	X
KOBRA Workgroup Data	X
Check for Completeness	X
Primary Reviewer	MES
Secondary Reviewer	MDA
secondary reviewer	WIDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
	X X
Check the reasonableness of the results	

Primary Reviewer: 26-OCT-2007

Secondary Reviewer: 29-OCT-2007

Mand Smean

Generated: OCT-29-2007 09:10:40

Che 00078661

KEMRON Environmental Services Data Checklist

Date:	27-OCT-2007
Analyst:	MES
Analyst:	NA
Method:	8260
Instrument:	HPMS10
Curve Workgroup:	NA
Runlog ID:	19007
Analytical Workgroups:	WG254006

BFB	X
Initial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	X
Second Source standard % Difference	X
Continuing Calibration /Check Standards	X
Project/Client Specific Requirements	X
Special Standards	NA
Blanks	X
TCL's	X
Surrogates	X
LCS (Laboratory Control Sample)	X
Recoveries	X
Surrogates	X
MS/MSD/Duplicates	NA
Samples	X
TCL Hits	X
Spectra of TCL Hits	X
Surrogates	X
Internal Standards Criteria	X
Library Searches	NA
Calculations & Correct Factors	X
Dilutions Run	X
Reruns	NA
Manual Integrations	NA
Case Narrative	X
Results Reporting/Data Qualifiers	X
KOBRA Workgroup Data	Х
Check for Completeness	X
Primary Reviewer	MES
Secondary Reviewer	MDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Check the reasonableness of the results	X

Primary Reviewer: 29-OCT-2007 Secondary Reviewer: 30-OCT-2007

Mand Smean

Generated: OCT-30-2007 08:43:08

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method:8260B

Login Number:L0710596

7 7 D# -	WG254006	
AAB#:	WGスちもひひち	

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WWZZ-101807	10/18/07	10/23/07	10/27/07	14	9.17	10/27/07	14	9.17	
47WW05-102007	10/20/07	10/23/07	10/27/07	14	7.17	10/27/07	14	7.17	
LHSMW56-102007	10/20/07	10/23/07	10/27/07	14	7.18	10/27/07	14	7.18	
47WW01-101807	10/18/07	10/23/07	10/27/07	14	9.14	10/27/07	14	9.14	

* EXT = SEE PROJECT QAPP REQUIREMENTS

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00078663

Analytical Method:8260B Login Number:L0710596

7. 7	ъ#	- T-T	G25	27	0.4	
AA	٧н#	: W	GZ5	1.37	94	

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WW21-101807	10/18/07	10/23/07	10/25/07	14	6.95	10/25/07	14	6.95	
47WW04-101807	10/18/07	10/23/07	10/25/07	14	7.09	10/25/07	14	7.09	
47WW23-101907	10/19/07	10/23/07	10/25/07	14	6.12	10/25/07	14	6.12	

* EXT = SEE PROJECT QAPP REQUIREMENTS

*ANAL = SEE PROJECT QAPP REQUIREMENTS

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method:8260B

Login Number:L0710596

AAR#•	WG253678

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WW05-102007	10/20/07	10/23/07	10/24/07	14	4.34	10/24/07	14	4.34	
TRIP BLANK	10/20/07	10/23/07	10/24/07	14	4.56	10/24/07	14	4.56	
47WW21-101807-QC	10/18/07	10/23/07	10/24/07	14	6.19	10/24/07	14	6.19	
LHSMW56-102007	10/20/07	10/23/07	10/24/07	14	4.34	10/24/07	14	4.34	
47WW01-101807	10/18/07	10/23/07	10/24/07	14	6.38	10/24/07	14	6.38	

^{*} EXT = SEE PROJECT QAPP REQUIREMENTS

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

SURROGATE STANDARDS

Login Number:L0710596 Method:8260

Instrument Id:HPMS11 ____ CAL ID: HPMS11-01-OCT-07

Workgroup (AAB#):WG253678 Matrix:Water

Sample Number	Dilution	Tag	1	2	3	4
L0710596-01	1.00	01	91.6	92.5	89.2	86.2
L0710596-02	1.00	01	94.8	93.3	90.0	88.6
L0710596-08	1.00	01	94.2	97.7	92.1	89.1
L0710596-09	1.00	01	93.5	94.2	89.4	87.0
L0710596-15	1.00	01	88.0	91.6	90.9	89.3
WG253678-01	1.00	01	90.9	90.6	88.4	<u>87.6</u>
WG253678-02	1.00	01	89.4	93.1	87.1	88.0
WG253678-03	1.00	01	90.1	93.3	87.5	89.5
WG253678-04	1.00	01	94.9	93.8	89.2	<u>87.4</u>

 Surrogates
 Surrogate Limits

 1 - 1,2-Dichloroethane-d4
 80 - 120

 2 - Dibromofluoromethane
 86 - 118

 3 - p-Bromofluorobenzene
 86 - 115

 4 - Toluene-d8
 88 - 110

Underline = Result out of surrogate limits

DL = surrogate diluted out
ND = surrogate not detected

SURROGATE STANDARDS

Login Number:L0710596
Instrument Id:HPMS10

Workgroup (AAB#):WG254006

Method:8260

CAL ID: HPMS10-18-OCT-07

Matrix:Water

Sample Number	Dilution	Tag	1	2	3	4
L0710596-01	100	DL01	96.8	99.5	102	98.2
L0710596-02	10.0	DL01	99.1	101	98.9	96.5
L0710596-09	20.0	DL01	102	102	102	97.4
L0710596-11	1.00	02	98.6	95.2	91.6	91.2
WG254006-01	1.00	01	98.2	96.5	97.5	94.7
WG254006-02	1.00	01	102	102	97.1	97.3
WG254006-03	1.00	01	98.3	101	101	99.4

	Surrogates	Surrog	gate I	Limits
1	- 1,2-Dichloroethane-d4	80	-	120
2	- Dibromofluoromethane	86	-	118
3	- p-Bromofluorobenzene	86	-	115
4	- Toluene-d8	88	-	110

Underline = Result out of surrogate limits

DL = surrogate diluted out
ND = surrogate not detected

SURROGATE STANDARDS

Login Number:L0710596

Instrument Id:HPMS10

Workgroup (AAB#):WG253794

Method:8260

CAL ID: HPMS10-18-OCT-07

Matrix:Water

Sample Number	Dilution	Tag	1	2	3	4
L0710596-05	1.00	01	102	103	99.2	97.6
L0710596-07	1.00	01	100	102	96.6	93.9
L0710596-10	1.00	01	107	103	96.0	95.3
WG253794-01	1.00	01	99.7	101	105	105
WG253794-02	1.00	01	99.3	102	96.6	98.5
WG253794-03	1.00	01	93.7	96.4	95.9	96.5

 Surrogates
 Surrogate Limits

 1 - 1,2-Dichloroethane-d4
 80 - 120

 2 - Dibromofluoromethane
 86 - 118

 3 - p-Bromofluorobenzene
 86 - 115

 4 - Toluene-d8
 88 - 110

Underline = Result out of surrogate limits

DL = surrogate diluted out
ND = surrogate not detected

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG253794

Blank File ID:10M59853 Blank Sample ID:WG253794-01

Prep Date:10/25/07 09:31 Instrument ID:HPMS10

Analyzed Date:10/25/07 09:31 Method:8260B

Analyst:MES

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253794-02	10M59854	10/25/07 10:03	01
LCS2	WG253794-03	10M59855	10/25/07 10:35	01
47WW23-101907	L0710596-05	10M59859	10/25/07 12:40	01
47WW21-101807	L0710596-07	10M59860	10/25/07 13:11	01
47WW04-101807	L0710596-10	10M59861	10/25/07 13:42	01

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG254006

Blank File ID:10M59913 Blank Sample ID:WG254006-01

Prep Date:10/27/07 10:52 Instrument ID:HPMS10

Analyzed Date:10/27/07 10:52 Method:8260B

Analyst:MES

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG254006-02	10M59914	10/27/07 11:24	01
LCS2	WG254006-03	10M59915	10/27/07 11:56	01
LHSMW56-102007	L0710596-01	10M59916	10/27/07 12:28	DL01
47WW05-102007	L0710596-02	10M59917	10/27/07 13:00	DL01
47WW01-101807	L0710596-09	10M59918	10/27/07 13:32	DL01
47wwzz-101807	L0710596-11	10M59919	10/27/07 14:05	02

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG253678

Blank File ID:11M46853 Blank Sample ID:WG253678-01

Prep Date:10/24/07 10:51 Instrument ID:HPMS11

Analyzed Date:10/24/07 10:51 Method:8260B

Analyst:MES

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253678-02	11M46854	10/24/07 11:21	01
LCS2	WG253678-03	11M46855	10/24/07 11:52	01
TRIP BLANK	L0710596-15	11M46858	10/24/07 13:22	01
LHSMW56-102007	L0710596-01	11M46864	10/24/07 16:23	01
47WW05-102007	L0710596-02	11M46865	10/24/07 16:53	01
47WW21-101807-QC	L0710596-08	11M46869	10/24/07 18:55	01
47WW01-101807	L0710596-09	11M46870	10/24/07 19:25	01

 Login Number:L0710596
 Prep Date:10/25/07 09:31
 Sample ID:WG253794-01

 Instrument ID:HPMS10
 Run Date:10/25/07 09:31
 Prep Method:5030B

 File ID:10M59853
 Analyst:MES
 Method:8260B

 Workgroup (AAB#):WG253794
 Matrix:Water
 Units:ug/L

Contract #:DACA56-94-D-0020 Cal ID:HPMS10-18-OCT-07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
1,1,1-Trichloroethane	0.250	1.00	0.250	1	Ū
1,1,2,2-Tetrachloroethane	0.125	1.00	0.125	1	υ
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.250	5.00	0.250	1	υ
1,1,2-Trichloroethane	0.250	1.00	0.250	1	υ
1,1-Dichloroethane	0.125	1.00	0.125	1	υ
1,1-Dichloroethene	0.500	1.00	0.500	1	υ
1,2,4-Trichlorobenzene	0.200	1.00	0.200	1	υ
1,2-Dibromo-3-chloropropane	1.00	5.00	1.00	1	υ
1,2-Dibromoethane	0.250	1.00	0.250	1	υ
1,2-Dichlorobenzene	0.125	1.00	0.125	1	υ
1,2-Dichloroethane	0.250	1.00	0.250	1	υ
cis-1,2-Dichloroethene	0.250	1.00	0.250	1	υ
trans-1,2-Dichloroethene	0.250	1.00	0.250	1	υ
1,2-Dichloropropane	0.200	1.00	0.200	1	υ
1,3-Dichlorobenzene	0.250	1.00	0.250	1	υ
1,4-Dichlorobenzene	0.125	1.00	0.125	1	υ
2-Butanone	2.50	10.0	2.50	1	υ
2-Hexanone	2.50	10.0	2.50	1	υ
4-Methyl-2-pentanone	2.50	10.0	2.50	1	υ
Acetone	2.50	10.0	2.50	1	υ
Benzene	0.125	1.00	0.125	1	υ
Bromodichloromethane	0.250	1.00	0.250	1	υ
Bromoform	0.500	1.00	0.500	1	υ
Bromomethane	0.500	1.00	0.500	1	υ
Carbon disulfide	0.500	1.00	0.500	1	υ
Carbon tetrachloride	0.250	1.00	0.250	1	υ
Chlorobenzene	0.125	1.00	0.125	1	υ
Chloroethane	0.500	1.00	0.500	1	υ
Chloroform	0.125	1.00	0.125	1	υ
Chloromethane	0.250	1.00	0.250	1	υ
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	υ
Cyclohexane	0.250	5.00	0.250	1	υ
Dibromochloromethane	0.250	1.00	0.250	1	υ
Dichlorodifluoromethane	0.250	1.00	0.250	1	υ
Ethyl benzene	0.250	1.00	0.250	1	υ
Isopropylbenzene	0.250	1.00	0.250	1	U
Methyl acetate	0.250	10.0	0.250	1	Ū
Methyl tert-butyl ether	0.500	5.00	0.500	1	U
Methylcyclohexane	0.250	10.0	0.250	1	Ū
Methylene chloride	0.250	2.00	0.250	1	Ū
Styrene	0.125	1.00	0.125	1	Ū
Tetrachloroethene	0.250	1.00	0.250	1	Ū

00078672

METHOD BLANK REPORT

Login Number:L0710596	Prep Date:10/25/07 09:31	Sample ID: WG253794-01
Instrument ID: HPMS10	Run Date:10/25/07 09:31	Prep Method: 5030B
File ID:10M59853	Analyst:MES	Method: 8260B
Workgroup (AAB#):WG253794	Matrix:Water	Units:ug/L
Contract #.DACA56-94-D-0020	Cal TD.UDMC1	0 _ 18_0です_07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Toluene	0.250	1.00	0.250	1	υ
trans-1,3-Dichloropropene	0.500	1.00	0.500	1	υ
Trichloroethene	0.250	1.00	0.250	1	υ
Trichlorofluoromethane	0.250	1.00	0.250	1	υ
Vinyl chloride	0.250	1.00	0.250	1	υ
Xylenes, Total	0.500	1.00	0.500	1	υ

Surrogates	% Recovery	Surro	Qualifier		
1,2-Dichloroethane-d4	99.7	80	-	120	PASS
Dibromofluoromethane	101	86	-	118	PASS
p-Bromofluorobenzene	105	86	-	115	PASS
Toluene-d8	105	88	-	110	PASS

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

Contract #:DACA56-94-D-0020 Cal ID:HPMS10-18-OCT-07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
1,1,1-Trichloroethane	0.250	1.00	0.250	1	Ū
1,1,2,2-Tetrachloroethane	0.125	1.00	0.125	1	υ
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.250	5.00	0.250	1	Ū
1,1,2-Trichloroethane	0.250	1.00	0.250	1	υ
1,1-Dichloroethane	0.125	1.00	0.125	1	Ū
1,1-Dichloroethene	0.500	1.00	0.500	1	υ
1,2,4-Trichlorobenzene	0.200	1.00	0.200	1	υ
1,2-Dibromo-3-chloropropane	1.00	5.00	1.00	1	Ū
1,2-Dibromoethane	0.250	1.00	0.250	1	υ
1,2-Dichlorobenzene	0.125	1.00	0.125	1	υ
1,2-Dichloroethane	0.250	1.00	0.250	1	υ
cis-1,2-Dichloroethene	0.250	1.00	0.250	1	υ
trans-1,2-Dichloroethene	0.250	1.00	0.250	1	Ū
1,2-Dichloropropane	0.200	1.00	0.200	1	Ū
1,3-Dichlorobenzene	0.250	1.00	0.250	1	Ū
1,4-Dichlorobenzene	0.125	1.00	0.125	1	υ
2-Butanone	2.50	10.0	2.50	1	Ū
2-Hexanone	2.50	10.0	2.50	1	Ū
4-Methyl-2-pentanone	2.50	10.0	2.50	1	Ū
Acetone	2.50	10.0	2.50	1	Ū
Benzene	0.125	1.00	0.125	1	υ
Bromodichloromethane	0.250	1.00	0.250	1	υ
Bromoform	0.500	1.00	0.500	1	Ū
Bromomethane	0.500	1.00	0.500	1	Ū
Carbon disulfide	0.500	1.00	0.500	1	υ
Carbon tetrachloride	0.250	1.00	0.250	1	υ
Chlorobenzene	0.125	1.00	0.125	1	υ
Chloroethane	0.500	1.00	0.500	1	υ
Chloroform	0.125	1.00	0.125	1	υ
Chloromethane	0.250	1.00	0.250	1	υ
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	U
Cyclohexane	0.250	5.00	0.250	1	υ
Dibromochloromethane	0.250	1.00	0.250	1	U
Dichlorodifluoromethane	0.250	1.00	0.250	1	U
Ethyl benzene	0.250	1.00	0.250	1	U
Isopropylbenzene	0.250	1.00	0.250	1	U
Methyl acetate	0.250	10.0	0.250	1	U
Methyl tert-butyl ether	0.500	5.00	0.500	1	υ
Methylcyclohexane	0.250	10.0	0.250	1	U
Methylene chloride	0.250	2.00	0.250	1	Ū
Styrene	0.125	1.00	0.125	1	Ū
Tetrachloroethene	0.250	1.00	0.250	1	υ

00078674

METHOD BLANK REPORT

Login Number:L0710596	Prep Date: 10/27/07 10:52	Sample ID: WG254006-01
Instrument ID: HPMS10	Run Date: 10/27/07 10:52	Prep Method: 5030B
File ID:10M59913	Analyst:MES	Method: 8260B
Workgroup (AAB#):WG254006	Matrix:Water	Units:ug/L
Contract #.DACA56-94-D-0020	Cal ID.UDMC1	0 _ 18_OCT_07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Toluene	0.250	1.00	0.250	1	υ
trans-1,3-Dichloropropene	0.500	1.00	0.500	1	υ
Trichloroethene	0.250	1.00	0.250	1	υ
Trichlorofluoromethane	0.250	1.00	0.250	1	υ
Vinyl chloride	0.250	1.00	0.250	1	υ
Xylenes, Total	0.500	1.00	0.500	1	υ

Surrogates	% Recovery	Surrogate		imits	Qualifier
1,2-Dichloroethane-d4	98.2	80	-	120	PASS
Dibromofluoromethane	96.5	86	-	118	PASS
p-Bromofluorobenzene	97.5	86	-	115	PASS
Toluene-d8	94.7	88	-	110	PASS

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

Contract #:DACA56-94-D-0020 Cal ID:HPMS11-01-OCT-07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
1,1,1-Trichloroethane	0.250	1.00	0.250	1	Ū
1,1,2,2-Tetrachloroethane	0.125	1.00	0.125	1	υ
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.250	5.00	0.250	1	υ
1,1,2-Trichloroethane	0.250	1.00	0.250	1	υ
1,1-Dichloroethane	0.125	1.00	0.125	1	υ
1,1-Dichloroethene	0.500	1.00	0.500	1	υ
1,2,4-Trichlorobenzene	0.200	1.00	0.200	1	υ
1,2-Dibromo-3-chloropropane	1.00	5.00	1.00	1	υ
1,2-Dibromoethane	0.250	1.00	0.250	1	υ
1,2-Dichlorobenzene	0.125	1.00	0.125	1	υ
1,2-Dichloroethane	0.250	1.00	0.250	1	υ
cis-1,2-Dichloroethene	0.250	1.00	0.250	1	υ
trans-1,2-Dichloroethene	0.250	1.00	0.250	1	Ū
1,2-Dichloropropane	0.200	1.00	0.200	1	Ū
1,3-Dichlorobenzene	0.250	1.00	0.250	1	Ū
1,4-Dichlorobenzene	0.125	1.00	0.125	1	υ
2-Butanone	2.50	10.0	2.50	1	υ
2-Hexanone	2.50	10.0	2.50	1	υ
4-Methyl-2-pentanone	2.50	10.0	2.50	1	υ
Acetone	2.50	10.0	2.50	1	Ū
Benzene	0.125	1.00	0.125	1	υ
Bromodichloromethane	0.250	1.00	0.250	1	υ
Bromoform	0.500	1.00	0.500	1	υ
Bromomethane	0.500	1.00	0.500	1	υ
Carbon disulfide	0.500	1.00	0.500	1	υ
Carbon tetrachloride	0.250	1.00	0.250	1	υ
Chlorobenzene	0.125	1.00	0.125	1	υ
Chloroethane	0.500	1.00	0.500	1	υ
Chloroform	0.125	1.00	0.125	1	υ
Chloromethane	0.250	1.00	0.250	1	υ
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	υ
Cyclohexane	0.250	5.00	0.250	1	υ
Dibromochloromethane	0.250	1.00	0.250	1	υ
Dichlorodifluoromethane	0.250	1.00	0.250	1	υ
Ethyl benzene	0.250	1.00	0.250	1	U
Isopropylbenzene	0.250	1.00	0.250	1	Ū
Methyl acetate	0.250	10.0	0.250	1	U
Methyl tert-butyl ether	0.500	5.00	0.500	1	U
Methylcyclohexane	0.250	10.0	0.250	1	U
Methylene chloride	0.250	2.00	0.250	1	U
Styrene	0.125	1.00	0.125	1	Ū
Tetrachloroethene	0.250	1.00	0.250	1	υ

METHOD BLANK REPORT

00078676

Login Number:L0710596	Prep Date:10/24/07 10:51	Sample ID: WG253678-01
Instrument ID: HPMS11	Run Date:10/24/07 10:51	Prep Method: 5030B
File ID:11M46853	Analyst:MES	Method: 8260B
Workgroup (AAB#):WG253678	Matrix:Water	_ Units:ug/L

Contract #:DACA56-94-D-0020 Cal ID:HPMS11-01-OCT-07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Toluene	0.250	1.00	0.250	1	υ
trans-1,3-Dichloropropene	0.500	1.00	0.500	1	υ
Trichloroethene	0.250	1.00	0.250	1	υ
Trichlorofluoromethane	0.250	1.00	0.250	1	υ
Vinyl chloride	0.250	1.00	0.250	1	υ
Xylenes, Total	0.500	1.00	0.500	1	υ

Surrogates	% Recovery	Surro	gate I	imits	Qualifier
1,2-Dichloroethane-d4	90.9	80	-	120	PASS
Dibromofluoromethane	90.6	86	-	118	PASS
p-Bromofluorobenzene	88.4	86	-	115	PASS
Toluene-d8	87.6	88	-	110	FAIL

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

Sample ID:WG254006-02 LCS File ID:10M59914 Run Date:10/27/2007 11:24
Sample ID:WG254006-03 LCS2 File ID:10M59915 Run Date:10/27/2007 11:56

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
1,1,1-Trichloroethane	20.0	22.5	112	20.0	21.6	108	4.00	80 - 134	20	\vdash
1,1,2,2-Tetrachloroethane	20.0	20.6	103	20.0	20.2	101	2.12	79 - 125	20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	20.0	20.4	102	20.0	19.0	94.9	7.11	80 - 130	20	
1,1,2-Trichloroethane	20.0	21.5	108	20.0	20.7	104	4.00	80 - 125	20	
1,1-Dichloroethane	20.0	21.2	106	20.0	20.3	102	4.33	80 - 125	20	
1,1-Dichloroethene	20.0	19.8	99.2	20.0	19.1	95.3	4.04	80 - 132	20	
1,2,4-Trichlorobenzene	20.0	18.9	94.4	20.0	19.3	96.7	2.43	65 - 135	20	
1,2-Dibromo-3-chloropropane	20.0	18.1	90.4	20.0	16.2	81.1	10.8	50 - 130	20	
1,2-Dibromoethane	20.0	22.2	111	20.0	21.5	107	3.44	80 - 125	20	\vdash
1,2-Dichlorobenzene	20.0	19.8	99.1	20.0	19.7	98.6	0.557	80 - 125	20	
1,2-Dichloroethane	20.0	22.4	112	20.0	21.3	106	5.26	80 - 129	20	\vdash
cis-1,2-Dichloroethene	20.0	22.1	111	20.0	21.5	107	2.97	70 - 125	20	\Box
trans-1,2-Dichloroethene	20.0	21.9	109	20.0	20.9	105	4.47	80 - 127	20	\vdash
1,2-Dichloropropane	20.0	21.8	109	20.0	21.6	108	0.854	80 - 120	20	
1,3-Dichlorobenzene	20.0	18.8	94.2	20.0	19.0	94.9	0.788	80 - 120	20	
1,4-Dichlorobenzene	20.0	18.2	91.1	20.0	18.4	92.0	0.915	80 - 120	20	
2-Butanone	20.0	15.0	74.9	20.0	13.1	65.3	13.6	30 - 150	20	
2-Hexanone	20.0	17.8	88.8	20.0	15.7	78.6	12.2	55 - 130	20	
4-Methyl-2-pentanone	20.0	20.0	99.8	20.0	18.7	93.6	6.36	64 - 140	20	\Box
Acetone	20.0	15.1	75.5	20.0	14.2	70.8	6.45	40 - 142	20	
Benzene	20.0	20.0	99.8	20.0	19.6	98.0	1.86	80 - 121	20	
Bromodichloromethane	20.0	23.2	116	20.0	22.2	111	4.51	80 - 131	20	
Bromoform	20.0	22.1	110	20.0	21.0	105	4.93	70 - 130	20	
Bromomethane	20.0	23.9	120	20.0	23.5	117	1.88	30 - 145	20	
Carbon disulfide	20.0	17.9	89.7	20.0	17.2	86.1	4.12	58 - 138	20	
Carbon tetrachloride	20.0	23.1	116	20.0	21.7	109	6.29	65 - 140	20	
Chlorobenzene	20.0	19.6	97.9	20.0	19.3	96.7	1.17	80 - 120	20	
Chloroethane	20.0	21.7	109	20.0	21.1	105	3.14	60 - 135	20	
Chloroform	20.0	22.0	110	20.0	21.1	106	4.23	80 - 125	20	
Chloromethane	20.0	19.8	98.8	20.0	18.9	94.7	4.26	40 - 125	20	
cis-1,3-Dichloropropene	20.0	23.3	117	20.0	22.4	112	3.83	70 - 130	20	
Cyclohexane	20.0	21.0	105	20.0	20.0	100	4.86	80 - 130	20	
Dibromochloromethane	20.0	22.1	110	20.0	21.6	108	2.01	60 - 135	20	
Dichlorodifluoromethane	20.0	24.1	121	20.0	22.2	111	8.18	50 - 133	20	
Ethyl benzene	20.0	20.8	104	20.0	20.4	102	1.99	80 - 122	20	
Isopropylbenzene	20.0	17.5	87.5	20.0	17.2	86.0	1.76	80 - 122	20	
Methyl acetate	20.0	25.9	130	20.0	22.7	113	13.4	80 - 130	20	
Methyl tert-butyl ether	20.0	23.9	119	20.0	22.5	113	5.70	65 - 125	20	
Methylcyclohexane	20.0	20.8	104	20.0	20.0	100	3.75	80 - 130	20	

Login	Number:L0710596	5		Analyst:MES		Prep Method: 5030B	
Instru	ment ID: HPMS10			Matrix:Water		Method: 8260B	
Workgroup	(AAB#):WG254006	5				Units:ug/L	
	QC Key:STD			Lot #:STD22574			
Sample	ID:WG254006-02	LCS F	ile	ID:10M59914	_Run l	Date:10/27/2007 11:24	_
Sample	TD:WG254006-03	LCS2 F	ile	TD:10M59915	Run I	Date:10/27/2007 11:56	

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
Styrene	20.0	19.3	96.6	20.0	19.0	95.0	1.66	80 - 123	20	Г
Tetrachloroethene	20.0	21.1	105	20.0	20.1	100	4.93	80 - 124	20	T
Toluene	20.0	21.1	105	20.0	20.6	103	2.05	80 - 124	20	İ
trans-1,3-Dichloropropene	20.0	21.3	107	20.0	20.4	102	4.49	80 - 130	20	T
Trichloroethene	20.0	22.2	111	20.0	21.0	105	5.56	80 - 122	20	T
Trichlorofluoromethane	20.0	17.9	89.4	20.0	16.8	83.9	6.34	62 - 151	20	T
Vinyl chloride	20.0	23.2	116	20.0	20.4	102	12.5	65 - 140	20	T
Xylenes, Total	60.0	63.5	106	60.0	62.3	104	1.87	80 - 121	20	T

	LCS	LCS2		
Surogates	% Recovery	% Recovery	Surrogate Limits	Qualifier
Dibromofluoromethane	102	101	86 - 118	PASS
1,2-Dichloroethane-d4	102	98.3	80 - 120	PASS
Toluene-d8	97.3	99.4	88 - 110	PASS
p-Bromofluorobenzene	97.1	101	86 - 115	PASS

^{*} FAILS %REC LIMIT

[#] FAILS RPD LIMIT

 Login Number:L0710596
 Analvst:MES
 Prep Method:5030B

 Instrument ID:HPMS10
 Matrix:Water
 Method:8260B

 Workgroup (AAB#):WG253794
 Units:ug/L

 QC Key:STD
 Lot #:STD22574

Sample ID:WG253794-02 LCS File ID:10M59854 Run Date:10/25/2007 10:03
Sample ID:WG253794-03 LCS2 File ID:10M59855 Run Date:10/25/2007 10:35

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
1,1,1-Trichloroethane	20.0	21.5	107	20.0	19.5	97.3	9.80	80 - 134	20	П
1,1,2,2-Tetrachloroethane	20.0	20.3	102	20.0	20.1	101	0.954	79 - 125	20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	20.0	19.7	98.7	20.0	17.8	89.1	10.2	80 - 130	20	
1,1,2-Trichloroethane	20.0	21.1	105	20.0	20.3	101	3.93	80 - 125	20	
1,1-Dichloroethane	20.0	20.8	104	20.0	19.2	95.9	8.14	80 - 125	20	
1,1-Dichloroethene	20.0	19.9	99.5	20.0	18.5	92.3	7.51	80 - 132	20	
1,2,4-Trichlorobenzene	20.0	19.7	98.3	20.0	19.3	96.5	1.86	65 - 135	20	
1,2-Dibromo-3-chloropropane	20.0	17.4	87.2	20.0	17.8	89.0	2.05	50 - 130	20	
1,2-Dibromoethane	20.0	22.0	110	20.0	20.9	104	5.45	80 - 125	20	
1,2-Dichlorobenzene	20.0	19.7	98.4	20.0	19.4	97.2	1.24	80 - 125	20	
1,2-Dichloroethane	20.0	21.1	106	20.0	19.5	97.3	8.14	80 - 129	20	
cis-1,2-Dichloroethene	20.0	22.4	112	20.0	20.7	104	7.83	70 - 125	20	
trans-1,2-Dichloroethene	20.0	21.4	107	20.0	20.1	101	6.37	80 - 127	20	
1,2-Dichloropropane	20.0	21.9	110	20.0	20.1	101	8.65	80 - 120	20	
1,3-Dichlorobenzene	20.0	19.1	95.5	20.0	18.6	93.1	2.53	80 - 120	20	
1,4-Dichlorobenzene	20.0	18.5	92.4	20.0	17.7	88.4	4.40	80 - 120	20	
2-Butanone	20.0	19.6	98.2	20.0	19.2	96.0	2.31	30 - 150	20	
2-Hexanone	20.0	17.7	88.7	20.0	17.9	89.3	0.714	55 - 130	20	
4-Methyl-2-pentanone	20.0	19.3	96.5	20.0	18.3	91.4	5.40	64 - 140	20	
Acetone	20.0	18.2	90.8	20.0	17.6	87.9	3.23	40 - 142	20	
Benzene	20.0	20.0	100	20.0	18.8	94.0	6.21	80 - 121	20	
Bromodichloromethane	20.0	22.0	110	20.0	20.4	102	7.57	80 - 131	20	
Bromoform	20.0	20.6	103	20.0	19.8	98.9	4.17	70 - 130	20	
Bromomethane	20.0	24.6	123	20.0	22.5	112	8.78	30 - 145	20	
Carbon disulfide	20.0	17.9	89.6	20.0	16.3	81.7	9.15	58 - 138	20	
Carbon tetrachloride	20.0	21.9	109	20.0	19.7	98.3	10.8	65 - 140	20	
Chlorobenzene	20.0	19.8	98.9	20.0	18.5	92.5	6.69	80 - 120	20	
Chloroethane	20.0	21.6	108	20.0	19.8	99.0	8.47	60 - 135	20	
Chloroform	20.0	21.2	106	20.0	19.7	98.4	7.44	80 - 125	20	
Chloromethane	20.0	18.7	93.3	20.0	17.5	87.7	6.16	40 - 125	20	
cis-1,3-Dichloropropene	20.0	22.9	115	20.0	21.7	108	5.61	70 - 130	20	
Cyclohexane	20.0	20.9	105	20.0	19.2	96.1	8.60	80 - 130	20	
Dibromochloromethane	20.0	21.6	108	20.0	20.5	102	5.24	60 - 135	20	
Dichlorodifluoromethane	20.0	23.4	117	20.0	21.1	105	10.2	50 - 133	20	
Ethyl benzene	20.0	21.3	106	20.0	19.9	99.7	6.39	80 - 122	20	
Isopropylbenzene	20.0	17.5	87.7	20.0	16.3	81.6	7.22	80 - 122	20	
Methyl acetate	20.0	24.9	125	20.0	24.1	121	3.21	80 - 130	20	
Methyl tert-butyl ether	20.0	25.6	128	20.0	24.1	121	6.03	65 - 125	20	*
Methylcyclohexane	20.0	20.7	104	20.0	18.9	94.3	9.55	80 - 130	20	
Methylene chloride	20.0	20.5	102	20.0	19.4	97.0	5.44	80 - 123	20	

Login	Number: L0710596	5		Analyst:MES	Prep	Method: 5030B	
-	ment ID:HPMS10	-		Matrix:Water		Method: 8260B	
Workgroup	(AAB#):WG253794	4				Units:ug/L	
-	QC Key:STD			Lot #:STD22574		_	
Sample	ID:WG253794-02	LCS	_File	ID:10M59854	Run Date:	10/25/2007 10:03	
Sample	ID:WG253794-03	LCS2	File	ID:10M59855	Run Date:	10/25/2007 10:35	

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
Styrene	20.0	19.3	96.7	20.0	18.1	90.7	6.37	80 - 123	20	Т
Tetrachloroethene	20.0	20.4	102	20.0	18.5	92.7	9.62	80 - 124	20	T
Toluene	20.0	21.5	108	20.0	19.9	99.5	7.75	80 - 124	20	T
trans-1,3-Dichloropropene	20.0	20.5	102	20.0	19.2	96.1	6.23	80 - 130	20	T
Trichloroethene	20.0	21.8	109	20.0	20.3	102	6.91	80 - 122	20	T
Trichlorofluoromethane	20.0	16.9	84.3	20.0	15.2	76.0	10.4	62 - 151	20	T
Vinyl chloride	20.0	20.9	105	20.0	17.8	88.8	16.5	65 - 140	20	T
Xylenes, Total	60.0	63.7	106	60.0	59.4	99.0	7.02	80 - 121	20	T

	LCS	LCS2		
Surogates	% Recovery	% Recovery	Surrogate Limits	Qualifier
Dibromofluoromethane	102	96.4	86 - 118	PASS
1,2-Dichloroethane-d4	99.3	93.7	80 - 120	PASS
Toluene-d8	98.5	96.5	88 - 110	PASS
p-Bromofluorobenzene	96.6	95.9	86 - 115	PASS

^{*} FAILS %REC LIMIT

[#] FAILS RPD LIMIT

LABORATORY CONTROL SAMPLE (LCS)

Sample ID:WG253678-02 LCS File ID:11M46854 Run Date:10/24/2007 11:21
Sample ID:WG253678-03 LCS2 File ID:11M46855 Run Date:10/24/2007 11:52

		LCS		LCS2				%Rec	RPD	\Box
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
1,1,1-Trichloroethane	20.0	21.5	108	20.0	21.0	105	2.46	80 - 134	20	\vdash
1,1,2,2-Tetrachloroethane	20.0	22.3	111	20.0	22.4	112	0.512	79 - 125	20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	20.0	20.3	102	20.0	19.8	99.0	2.56	80 - 130	20	\vdash
1,1,2-Trichloroethane	20.0	22.6	113	20.0	22.6	113	0.118	80 - 125	20	\vdash
1,1-Dichloroethane	20.0	21.6	108	20.0	21.1	106	2.12	80 - 125	20	
1,1-Dichloroethene	20.0	20.4	102	20.0	20.1	101	1.35	80 - 132	20	
1,2,4-Trichlorobenzene	20.0	22.1	111	20.0	22.0	110	0.611	65 - 135	20	
1,2-Dibromo-3-chloropropane	20.0	21.7	109	20.0	21.2	106	2.15	50 - 130	20	
1,2-Dibromoethane	20.0	22.2	111	20.0	22.0	110	0.915	80 - 125	20	
1,2-Dichlorobenzene	20.0	21.2	106	20.0	21.0	105	0.693	80 - 125	20	†
1,2-Dichloroethane	20.0	21.3	107	20.0	20.9	105	1.89	80 - 129	20	
cis-1,2-Dichloroethene	20.0	22.3	111	20.0	22.1	111	0.760	70 - 125	20	
trans-1,2-Dichloroethene	20.0	21.1	106	20.0	21.0	105	0.447	80 - 127	20	
1,2-Dichloropropane	20.0	21.2	106	20.0	21.6	108	1.94	80 - 120	20	
1,3-Dichlorobenzene	20.0	20.7	103	20.0	20.8	104	0.299	80 - 120	20	T
1,4-Dichlorobenzene	20.0	20.7	103	20.0	20.5	103	0.823	80 - 120	20	
2-Butanone	20.0	20.1	101	20.0	19.9	99.7	0.901	30 - 150	20	T
2-Hexanone	20.0	21.0	105	20.0	20.5	102	2.70	55 - 130	20	
4-Methy1-2-pentanone	20.0	21.4	107	20.0	20.6	103	4.02	64 - 140	20	
Acetone	20.0	21.2	106	20.0	22.0	110	3.80	40 - 142	20	
Benzene	20.0	21.1	105	20.0	21.3	106	0.861	80 - 121	20	
Bromodichloromethane	20.0	22.6	113	20.0	22.7	113	0.615	80 - 131	20	
Bromoform	20.0	21.8	109	20.0	21.4	107	1.63	70 - 130	20	
Bromomethane	20.0	25.6	128	20.0	26.1	131	1.99	30 - 145	20	
Carbon disulfide	20.0	18.6	92.8	20.0	17.7	88.6	4.63	58 - 138	20	
Carbon tetrachloride	20.0	19.5	97.4	20.0	19.0	95.1	2.38	65 - 140	20	
Chlorobenzene	20.0	20.1	100	20.0	20.1	100	0.177	80 - 120	20	
Chloroethane	20.0	22.4	112	20.0	22.7	113	1.09	60 - 135	20	
Chloroform	20.0	21.8	109	20.0	21.5	108	1.30	80 - 125	20	
Chloromethane	20.0	21.7	109	20.0	22.0	110	1.23	40 - 125	20	
cis-1,3-Dichloropropene	20.0	21.5	108	20.0	21.7	108	0.573	70 - 130	20	
Cyclohexane	20.0	20.0	99.8	20.0	19.5	97.7	2.07	80 - 130	20	
Dibromochloromethane	20.0	22.4	112	20.0	22.2	111	0.862	60 - 135	20	
Dichlorodifluoromethane	20.0	21.8	109	20.0	21.4	107	1.68	50 - 133	20	
Ethyl benzene	20.0	21.3	106	20.0	21.1	106	0.513	80 - 122	20	
Isopropylbenzene	20.0	17.5	87.6	20.0	17.5	87.5	0.139	80 - 122	20	
Methyl acetate	20.0	29.2	146	20.0	28.8	144	1.33	80 - 130	20	*
Methyl tert-butyl ether	20.0	25.4	127	20.0	24.8	124	2.36	65 - 125	20	*
Methylcyclohexane	20.0	19.7	98.6	20.0	19.5	97.7	0.909	80 - 130	20	
Methylene chloride	20.0	21.0	105	20.0	21.1	105	0.497	80 - 123	20	

LABORATORY CONTROL SAMPLE (LCS)

Login	Number:L0710596	5		Analvst:MES	F	rep Method: 5030B	
Instru	ment ID: HPMS11			Matrix:Water		Method: 8260B	
Workgroup	(AAB#):WG253678	3				Units:ug/L	
	QC Key:STD			Lot #:STD22574		_	
Sample	ID:WG253678-02	LCS	File	ID:11M46854	_Run Da	te: <u>10/24/2007 11:21</u>	
Sample	TD:WG253678-03	T.CS2	File	TD-11M46855	Run Da	te·10/24/2007 11·52	

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Lmt Q
Styrene	20.0	19.6	97.9	20.0	19.7	98.3	0.428	80 - 123	20	Т
Tetrachloroethene	20.0	19.0	95.1	20.0	18.7	93.5	1.61	80 - 124	20	Г
Toluene	20.0	20.8	104	20.0	20.8	104	0.0245	80 - 124	20	Г
trans-1,3-Dichloropropene	20.0	20.4	102	20.0	20.0	99.9	2.04	80 - 130	20	Г
Trichloroethene	20.0	21.8	109	20.0	21.3	106	2.30	80 - 122	20	Г
Trichlorofluoromethane	20.0	17.0	84.9	20.0	16.5	82.3	3.10	62 - 151	20	Г
Vinyl chloride	20.0	21.6	108	20.0	20.7	103	4.60	65 - 140	20	Г
Xylenes, Total	60.0	62.1	103	60.0	62.6	104	0.762	80 - 121	20	

	LCS	LCS2		
Surogates	% Recovery	% Recovery	Surrogate Limits	Qualifier
Dibromofluoromethane	93.1	93.3	86 - 118	PASS
1,2-Dichloroethane-d4	89.4	90.1	80 - 120	PASS
Toluene-d8	88.0	89.5	88 - 110	PASS
p-Bromofluorobenzene	87.1	87.5	86 - 115	PASS

^{*} FAILS %REC LIMIT

[#] FAILS RPD LIMIT

BFB

 Login Number: L0710596
 Tune ID: WG253187-01

 Instrument: HPMS10
 Run Date: 10/18/2007

 Analyst: MES
 Run Time: 08:52

 Workgroup: WG253187
 File ID: 10M59716

Cal ID: <u>HPMS10-18-OCT-07</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	22.0	7983	PASS
75.0	95.0	30.0	60.0	48.9	17728	PASS
95.0	95.0	100	100	100	36237	PASS
96.0	95.0	5.00	9.00	6.76	2448	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	80.4	29150	PASS
175	174	5.00	9.00	6.19	1804	PASS
176	174	95.0	101	98.5	28710	PASS
177	176	5.00	9.00	5.73	1644	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG253187-02	STD	01	10/18/2007 09:57	
WG253187-04	STD	01	10/18/2007 11:00	
WG253187-05	STD	01	10/18/2007 11:31	
WG253187-06	STD	01	10/18/2007 12:03	
WG253187-07	STD	01	10/18/2007 12:35	
WG253187-08	STD-CCV	01	10/18/2007 13:07	
WG253187-09	STD	01	10/18/2007 13:45	
WG253187-10	STD	01	10/18/2007 14:16	
WG253187-11	STD	01	10/18/2007 14:47	
WG253187-03	STD	01	10/18/2007 16:51	
WG253187-12	sscv	02	10/18/2007 18:23	
WG253187-12	sscv	01	10/18/2007 18:55	
WG253187-13	sscv	01	10/18/2007 19:37	

^{*} Sample past 12 hour tune limit

BFB

 Login Number: L0710596
 Tune ID: WG253793-01

 Instrument: HPMS10
 Run Date: 10/25/2007

 Analyst: MES
 Run Time: 08:04

 Workgroup: WG253793
 File ID: 10M59850

Cal ID: <u>HPMS10-18-OCT-07</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	21.8	8388	PASS
75.0	95.0	30.0	60.0	50.3	19337	PASS
95.0	95.0	100	100	100	38432	PASS
96.0	95.0	5.00	9.00	7.10	2727	PASS
173	174	0	2.00	0.648	205	PASS
174	95.0	50.0	100	82.3	31629	PASS
175	174	5.00	9.00	7.63	2414	PASS
176	174	95.0	101	97.0	30678	PASS
177	176	5.00	9.00	6.81	2088	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG253793-02	ccv	01	10/25/2007 08:27	
WG253794-01	BLANK	01	10/25/2007 09:31	
WG253794-02	LCS	01	10/25/2007 10:03	
WG253794-03	LCS2	01	10/25/2007 10:35	
L0710596-05	47WW23-101907	01	10/25/2007 12:40	
L0710596-07	47WW21-101807	01	10/25/2007 13:11	
L0710596-10	47WW04-101807	01	10/25/2007 13:42	

^{*} Sample past 12 hour tune limit

BFB

 Login Number: L0710596
 Tune ID: WG254005-01

 Instrument: HPMS10
 Run Date: 10/27/2007

 Analyst: MES
 Run Time: 09:21

 Workgroup: WG254005
 File ID: 10M59910

Cal ID: <u>HPMS10-18-OCT-07</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	23.6	8981	PASS
75.0	95.0	30.0	60.0	51.6	19625	PASS
95.0	95.0	100	100	100	38013	PASS
96.0	95.0	5.00	9.00	7.25	2756	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	79.5	30227	PASS
175	174	5.00	9.00	6.41	1937	PASS
176	174	95.0	101	96.7	29243	PASS
177	176	5.00	9.00	6.31	1844	PASS

This check relates to the following samples:

	Lab ID	Client ID	Tag	Date Analyzed	Q
	WG254005-02	ccv	01	10/27/2007 09:47	
	WG254006-01	BLANK	01	10/27/2007 10:52	
Γ	WG254006-02	LCS	01	10/27/2007 11:24	
	WG254006-03	LCS2	01	10/27/2007 11:56	
Γ	L0710596-01	LHSMW56-102007	DL01	10/27/2007 12:28	
	L0710596-02	47WW05-102007	DL01	10/27/2007 13:00	
Γ	L0710596-09	47WW01-101807	DL01	10/27/2007 13:32	
	L0710596-11	47WWZZ-101807	02	10/27/2007 14:05	

^{*} Sample past 12 hour tune limit

BFB

 Login Number: L0710596
 Tune ID: WG251532-01

 Instrument: HPMS11
 Run Date: 10/01/2007

 Analyst: MES
 Run Time: 11:15

 Workgroup: WG251532
 File ID: 11M46050

Cal ID: <u>HPMS11 - 01-OCT-07</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	28.5	12940	PASS
75.0	95.0	30.0	60.0	55.6	25260	PASS
95.0	95.0	100	100	100	45413	PASS
96.0	95.0	5.00	9.00	7.38	3351	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	55.4	25144	PASS
175	174	5.00	9.00	7.53	1894	PASS
176	174	95.0	101	98.4	24744	PASS
177	176	5.00	9.00	7.33	1814	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG251532-02	STD	01	10/01/2007 11:40	
WG251532-03	STD	01	10/01/2007 12:11	
WG251532-04	STD	01	10/01/2007 12:42	
WG251532-05	STD	01	10/01/2007 13:12	
WG251532-06	STD	01	10/01/2007 13:42	
WG251532-07	STD	01	10/01/2007 14:18	
WG251532-08	STD-CCV	01	10/01/2007 14:48	
WG251532-09	STD	01	10/01/2007 15:18	
WG251532-10	STD	01	10/01/2007 15:48	

^{*} Sample past 12 hour tune limit

BFB

 Login Number: L0710596
 Tune ID: WG251618-01

 Instrument: HPMS11
 Run Date: 10/01/2007

 Analyst: MES
 Run Time: 18:38

Workgroup: WG251618 File ID: 11M46064

Cal ID: <u>HPMS11 - 01-OCT-07</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	28.1	15873	PASS
75.0	95.0	30.0	60.0	54.1	30544	PASS
95.0	95.0	100	100	100	56448	PASS
96.0	95.0	5.00	9.00	6.83	3854	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	59.4	33531	PASS
175	174	5.00	9.00	7.80	2616	PASS
176	174	95.0	101	98.1	32907	PASS
177	176	5.00	9.00	7.16	2357	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q	
WG251532-11	sscv	01	10/01/2007 20:02		

^{*} Sample past 12 hour tune limit

KEMRON FORMS - Modified 03/12/2007 Version 1.3 PDF File ID: 921094 Report generated 10/30/2007 15:50

Page 108

BFB

 Login Number: L0710596
 Tune ID: WG253676-01

 Instrument: HPMS11
 Run Date: 10/24/2007

 Analyst: MES
 Run Time: 09:19

 Workgroup: WG253676
 File ID: 11M46850

Cal ID: <u>HPMS11 - 01-OCT-07</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	26.8	21342	PASS
75.0	95.0	30.0	60.0	54.4	43360	PASS
95.0	95.0	100	100	100	79645	PASS
96.0	95.0	5.00	9.00	6.91	5507	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	66.8	53218	PASS
175	174	5.00	9.00	7.97	4242	PASS
176	174	95.0	101	98.9	52613	PASS
177	176	5.00	9.00	5.91	3107	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG253676-02	ccv	01	10/24/2007 09:42	
WG253678-01	BLANK	01	10/24/2007 10:51	
WG253678-02	LCS	01	10/24/2007 11:21	
WG253678-03	LCS2	01	10/24/2007 11:52	
L0710596-15	TRIP BLANK	01	10/24/2007 13:22	
L0710596-01	LHSMW56-102007	01	10/24/2007 16:23	
L0710596-02	47WW05-102007	01	10/24/2007 16:53	
L0710596-08	47WW21-101807-QC	01	10/24/2007 18:55	
L0710596-09	47WW01-101807	01	10/24/2007 19:25	
WG253678-04	BLANK2	01	10/24/2007 21:57	*

^{*} Sample past 12 hour tune limit

Login Number:L0710596

Analytical Method:8260B

ICAL Workgroup:WG253187

Instrument ID:HPMS10 Initial Calibration Date:18-OCT-07 16:51 Column ID:F

Analyte		AVG RF	% RSD	LINEAR (R)	QUAD(R2)
1,1-Dichloroethene	CCC	0.2800	17.8		1.00
1,2-Dichloropropane	CCC	0.2830	6.65		
Chloroform	CCC	0.6766	4.91		
Ethylbenzene	CCC	0.5538	7.95		
Toluene	CCC	1.496	9.86		
Vinyl Chloride	CCC	0.2666	14.5		
1,1,2,2-Tetrachloroethane	SPCC	0.4069	11.9		
1,1-Dichloroethane	SPCC	0.6342	4.48		
Bromoform	SPCC	0.2059	9.21		
Chlorobenzene	SPCC	1.084	6.35		
Chloromethane	SPCC	0.3466	14.3		
1,1,1-Trichloroethane		0.6678	9.32		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.3924	3.52		
1,1,2-Trichloroethane		0.2498	6.24		
1,2,4-Trichlorobenzene		0.8839	9.53		
1,2-Dibromo-3-Chloropropane		0.07583	11.1		
1,2-Dibromoethane		0.2388	9.88		
1,2-Dichlorobenzene		1.366	7.24		
1,2-Dichloroethane		0.5033	6.76		
1,3-Dichlorobenzene		1.624	5.76		
1,4-Dichlorobenzene		1.710	4.91		
2-Butanone		0.06795	4.65		
2-Hexanone		0.1080	4.50		
4-Methyl-2-Pentanone		0.04997	8.69		
Acetone		0.05652	11.3		
Benzene		1.263	7.31		
Bromodichloromethane		0.4657	7.07		
Bromomethane		0.2330	6.15		
Carbon Disulfide		0.9550	8.03		
Carbon Tetrachloride		0.6168	13.0		
Chloroethane		0.2335	2.95		
Cyclohexane		0.5127	14.1		
Dibromochloromethane		0.3471	9.68		
Dichlorodifluoromethane		0.5643	7.39		
Isopropylbenzene		1.550	20.1		1.00
Methyl Tert Butyl Ether		0.6201	8.48		
Methyl acetate		0.1325	6.24	+	
Methylcyclohexane		0.4898	11.1		
Methylene Chloride		0.5198	63.2		1.00
Styrene		0.9348	24.3		1.00
Tetrachloroethene		0.3687	7.07		
Trichloroethene		0.3392	9.82		
Trichlorofluoromethane		0.7826	19.2		1.00
cis-1,2-Dichloroethene		0.3348	9.30		
cis-1,3-Dichloropropene		0.4349	14.4		

00078690

Login Number:L0710596

Analytical Method:8260B

ICAL Workgroup:WG253187

Instrument ID:HPMS10
Initial Calibration Date:18-OCT-07 16:51
Column ID:F

Analyte	AVG RF	% RSD	LINEAR (R)	QUAD(R2)
m-,p-Xylene	0.6626	10.9		
o-Xylene	0.6097	13.2		
trans-1,2-Dichloroethene	0.3243	10.7		
trans-1,3-Dichloropropene	0.5039	9.73		

R = Correlation coefficient; 0.995 minimum

 R^2 = Coefficient of determination; 0.99 minimum

Login Number:L0710596

Analytical Method:8260B

ICAL Workgroup:WG251532

Instrument ID:HPMS11 Initial Calibration Date:01-OCT-07 15:48 Column ID:F

Analyte		AVG RF	% RSD	LINEAR (R)	QUAD(R ²)
1,1-Dichloroethene	CCC	0.5856	17.3		1.00
1,2-Dichloropropane	CCC	0.2949	9.42		
Chloroform	CCC	0.5438	9.08		
Ethylbenzene	CCC	0.5272	14.3		
Toluene	CCC	1.521	10.7		
Vinyl Chloride	CCC	0.3573	16.5		1.00
1,1,2,2-Tetrachloroethane	SPCC	0.4632	5.71		
1,1-Dichloroethane	SPCC	0.6413	9.75		
Bromoform	SPCC	0.1592	10.4		
Chlorobenzene	SPCC	0.9874	7.61		
Chloromethane	SPCC	0.4467	6.42		
1,1,1-Trichloroethane		0.5202	15.0		
1,1,2-Trichloro-1,2,2-Trifluoroethane		0.2517	5.80		
1,1,2-Trichloroethane		0.2287	9.70		
1,2,4-Trichlorobenzene		0.8233	9.27		
1,2-Dibromo-3-Chloropropane		0.09771	8.36		
1,2-Dibromoethane		0.2272	8.17		
1,2-Dichlorobenzene		1.212	7.65		
1,2-Dichloroethane		0.5005	6.73		
1,3-Dichlorobenzene		1.377	12.8		
1,4-Dichlorobenzene		1.396	10.3		
2-Butanone		0.06584	5.59		
2-Hexanone		0.1555	4.45		
4-Methyl-2-Pentanone		0.06512	4.74		
Acetone		0.05000	11.0		
Benzene		1.001	6.65		
Bromodichloromethane		0.3822	10.1		
Bromomethane		0.1750	13.3		
Carbon Disulfide		0.7795	3.36		
Carbon Tetrachloride		0.4032	19.5		1.00
Chloroethane		0.2473	2.57		
Cyclohexane		0.5961	4.69		
Dibromochloromethane		0.3012	13.2		
Dichlorodifluoromethane		0.4914	7.24		
Isopropylbenzene		1.639	17.5		1.00
Methyl Tert Butyl Ether		0.6091	3.55		
Methyl acetate		0.1281	4.38		
Methylcyclohexane		0.3806	6.86		
Methylene Chloride		0.3950	54.7		1.00
Styrene		1.018	15.9	1.00	
Tetrachloroethene		0.2559	16.3		1.00
Trichloroethene		0.2327	13.2		
Trichlorofluoromethane		0.5591	24.6		1.00
cis-1,2-Dichloroethene		0.2615	12.4		
cis-1,3-Dichloropropene		0.3993	11.2		
•			-		

00078692

INITIAL CALIBRATION SUMMARY

Login Number:L0710596

Analytical Method:8260B

ICAL Workgroup:WG251532

Instrument ID:HPMS11
Initial Calibration Date:01-OCT-07 15:48
Column ID:F

Analyte	AVG RF	% RSD	LINEAR (R)	QUAD(R2)
m-,p-Xylene	0.6669	10.4		
o-Xylene	0.6374	11.6		
trans-1,2-Dichloroethene	0.2601	10.0		
trans-1,3-Dichloropropene	0.5556	11.1		

R = Correlation coefficient; 0.995 minimum

 R^2 = Coefficient of determination; 0.99 minimum

Instrument ID:HPMS10 Initial Calibration Date:18-OCT-07 16:51 Column ID:F

		WG253187-0	2	WG253187-03		WG253187-04			
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	NA	NA	NA	0.400	1885.00000	0.1667	1.00	7305.00000	0.2607
1,2-Dichloropropane	NA	NA	NA	0.400	2756.00000	0.2438	1.00	8147.00000	0.2907
Chloroform	0.300	6277.00000	0.6701	0.400	7102.00000	0.6282	1.00	18487.0000	0.6597
Ethylbenzene	NA	NA	NA	0.400	4131.00000	0.4594	1.00	12304.0000	0.5551
Toluene	NA	NA	NA	0.400	10642.0000	1.183	1.00	31152.0000	1.405
Vinyl Chloride	NA	NA	NA	0.400	2511.00000	0.2221	1.00	8865.00000	0.3163
1,1,2,2-Tetrachloroethane	NA	NA	NA	0.400	1555.00000	0.3143	1.00	4829.00000	0.3879
1,1-Dichloroethane	NA	NA	NA	0.400	6860.00000	0.6068	1.00	16737.0000	0.5972
Bromoform	NA	NA	NA	NA	NA	NA	1.00	3644.00000	0.1644
Chlorobenzene	NA	NA	NA	0.400	10238.0000	1.139	1.00	24273.0000	1.095
Chloromethane	NA	NA	NA	NA	NA	NA	1.00	11127.0000	0.3971
1,1,1-Trichloroethane	NA	NA	NA	0.400	6190.00000	0.5475	1.00	18148.0000	0.6476
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	NA	NA	NA	NA	NA	1.00	11449.0000	0.4086
1,1,2-Trichloroethane	NA	NA	NA	0.400	2302.00000	0.2560	1.00	5477.00000	0.2471
1,2,4-Trichlorobenzene	NA	NA	NA	0.400	4890.00000	0.9882	1.00	9046.00000	0.7267
1,2-Dibromo-3-Chloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	NA	NA	NA	0.400	1667.00000	0.1854	1.00	5085.00000	0.2294
1,2-Dichlorobenzene	0.300	4812.00000	1.230	0.400	6405.00000	1.294	1.00	15369.0000	1.235
1,2-Dichloroethane	NA	NA	NA	0.400	5429.00000	0.4802	1.00	13527.0000	0.4827
1,3-Dichlorobenzene	NA	NA	NA	0.400	7661.00000	1.548	1.00	18239.0000	1.465
1,4-Dichlorobenzene	0.300	6633.00000	1.695	0.400	8734.00000	1.765	1.00	21411.0000	1.720
2-Butanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	NA	NA	NA	0.400	12905.0000	1.142	1.00	31706.0000	1.131
Bromodichloromethane	NA	NA	NA	0.400	4864.00000	0.4302	1.00	11718.0000	0.4181
Bromomethane	NA	NA	NA	NA	NA	NA	1.00	5818.00000	0.2076
Carbon Disulfide	NA	NA	NA	0.400	8792.00000	0.7777	1.00	27106.0000	0.9673
Carbon Tetrachloride	NA	NA	NA	0.400	5024.00000	0.4444	1.00	16646.0000	0.5940
Chloroethane	NA	NA	NA	NA	NA	NA	1.00	6624.00000	0.2364
Cyclohexane	NA	NA	NA	NA	NA	NA	1.00	10681.0000	0.3811
Dibromochloromethane	NA	NA	NA	0.400	2474.00000	0.2751	1.00	7187.00000	0.3242
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	1.00	15250.0000	0.5442
Isopropylbenzene	NA	NA	NA	0.400	8559.00000	0.9518	1.00	27917.0000	1.260
Methyl Tert Butyl Ether	NA	NA	NA	NA	NA	NA	1.00	15287.0000	0.5455
Methyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylcyclohexane	NA	NA	NA	NA	NA	NA	1.00	11442.0000	0.4083
Methylene Chloride	NA	NA	NA	0.400	14063.0000	1.244	1.00	20344.0000	0.7260
Styrene	NA	NA	NA	0.400	5375.00000	0.5977	1.00	13384.0000	0.6038
Tetrachloroethene	NA	NA	NA	0.400	2821.00000	0.3137	1.00	8350.00000	0.3767
Trichloroethene	NA	NA	NA	0.400	2997.00000	0.2651	1.00	9091.00000	0.3244

Instrument ID:HPMS10 Initial Calibration Date:18-OCT-07 16:51

Column ID:F

		WG253187-0	5	WG253187-06			WG253187-0	7	
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	2.00	15287.0000	0.2715	5.00	42558.0000	0.3022	20.0	180665.000	0.3069
1,2-Dichloropropane	2.00	15196.0000	0.2699	5.00	41344.0000	0.2936	20.0	174588.000	0.2966
Chloroform	2.00	37694.0000	0.6694	5.00	102622.000	0.7287	20.0	419725.000	0.7130
Ethylbenzene	2.00	24162.0000	0.5439	5.00	65558.0000	0.5717	20.0	284174.000	0.5971
Toluene	2.00	65823.0000	1.482	5.00	182916.000	1.595	20.0	776711.000	1.632
Vinyl Chloride	2.00	17139.0000	0.3044	5.00	41513.0000	0.2948	20.0	152646.000	0.2593
1,1,2,2-Tetrachloroethane	2.00	12038.0000	0.4829	5.00	28928.0000	0.4454	20.0	112932.000	0.4174
1,1-Dichloroethane	2.00	35723.0000	0.6344	5.00	94651.0000	0.6721	20.0	388959.000	0.6607
Bromoform	2.00	9401.00000	0.2116	5.00	24005.0000	0.2093	20.0	104250.000	0.2190
Chlorobenzene	2.00	50576.0000	1.139	5.00	131659.000	1.148	20.0	528062.000	1.110
Chloromethane	2.00	23206.0000	0.4121	5.00	51889.0000	0.3684	20.0	202508.000	0.3440
1,1,1-Trichloroethane	2.00	37393.0000	0.6640	5.00	103358.000	0.7339	20.0	427717.000	0.7266
1,1,2-Trichloro-1,2,2-Trifluoroethane	2.00	22033.0000	0.3913	5.00	55893.0000	0.3969	20.0	236212.000	0.4012
1,1,2-Trichloroethane	2.00	12183.0000	0.2743	5.00	30420.0000	0.2653	20.0	119382.000	0.2508
1,2,4-Trichlorobenzene	2.00	20290.0000	0.8140	5.00	55085.0000	0.8481	20.0	242118.000	0.8949
1,2-Dibromo-3-Chloropropane	2.00	1595.00000	0.06400	5.00	4769.00000	0.07340	20.0	19160.0000	0.07080
1,2-Dibromoethane	2.00	11008.0000	0.2478	5.00	28597.0000	0.2494	20.0	124466.000	0.2615
1,2-Dichlorobenzene	2.00	37062.0000	1.487	5.00	95260.0000	1.467	20.0	392539.000	1.451
1,2-Dichloroethane	2.00	29116.0000	0.5170	5.00	78320.0000	0.5561	20.0	315717.000	0.5363
1,3-Dichlorobenzene	2.00	43128.0000	1.730	5.00	110836.000	1.707	20.0	456925.000	1.689
1,4-Dichlorobenzene	2.00	45641.0000	1.831	5.00	116311.000	1.791	20.0	465766.000	1.722
2-Butanone	NA	NA	NA	5.00	10391.0000	0.07380	20.0	38950.0000	0.06620
2-Hexanone	NA	NA	NA	5.00	11580.0000	0.1010	20.0	50374.0000	0.1058
4-Methyl-2-Pentanone	NA	NA	NA	5.00	5894.00000	0.04190	20.0	28737.0000	0.04880
Acetone	NA	NA	NA	5.00	9425.00000	0.06690	20.0	34128.0000	0.05800
Benzene	2.00	72788.0000	1.293	5.00	195190.000	1.386	20.0	791095.000	1.344
Bromodichloromethane	2.00	25970.0000	0.4612	5.00	70082.0000	0.4976	20.0	295680.000	0.5023
Bromomethane	2.00	12425.0000	0.2206	5.00	33063.0000	0.2348	20.0	138556.000	0.2354
Carbon Disulfide	2.00	53362.0000	0.9476	5.00	143650.000	1.020	20.0	589489.000	1.001
Carbon Tetrachloride	2.00	36557.0000	0.6492	5.00	95481.0000	0.6780	20.0	404158.000	0.6865
Chloroethane	2.00	12862.0000	0.2284	5.00	34147.0000	0.2425	20.0	140133.000	0.2380
Cyclohexane	2.00	25145.0000	0.4465	5.00	73667.0000	0.5231	20.0	333963.000	0.5673
Dibromochloromethane	2.00	16000.0000	0.3602	5.00	42545.0000	0.3710	20.0	176475.000	0.3708
Dichlorodifluoromethane	2.00	33123.0000	0.5882	5.00	85934.0000	0.6102	20.0	350987.000	0.5962
Isopropylbenzene	2.00	64554.0000	1.453	5.00	186995.000	1.631	20.0	868228.000	1.824
Methyl Tert Butyl Ether	2.00	31379.0000	0.5572	5.00	85244.0000	0.6053	20.0	370990.000	0.6302
Methyl acetate	2.00	8322.00000	0.1478	5.00	19185.0000	0.1362	20.0	75160.0000	0.1277
Methylcyclohexane	2.00	23891.0000	0.4243	5.00	67543.0000	0.4796	20.0	308513.000	0.5241
Methylene Chloride	2.00	30324.0000	0.5385	5.00	57224.0000	0.4063	20.0	195986.000	0.3329
Styrene	2.00	37636.0000	0.8472	5.00	111666.000	0.9737	20.0	532640.000	1.119
Tetrachloroethene	2.00	17301.0000	0.3895	5.00	44134.0000	0.3848	20.0	185017.000	0.3887
Trichloroethene	2.00	19229.0000	0.3415	5.00	49536.0000	0.3517	20.0	213441.000	0.3626
		1	1	1				1	

Instrument ID:HPMS10 Initial Calibration Date:18-OCT-07 16:51 Column ID:F

Chloroform 50.0 1059082.00 0.7029 100 2158957.00 0.6780 200 4108683.00 0.6396 58thylbenzene 50.0 749151.000 0.5951 100 1522153.00 0.5722 200 2832832.00 0.5357 100 100 14162783.00 1.572 200 2832832.00 0.5357 100 100 14162783.00 1.572 200 2832832.00 0.5357 100 100 14162783.00 1.572 200 2832832.00 0.5557 100 10164162783.00 1.570 200 200 200 200 200 178290.00 0.3965 1.570 200 200 178290.00 0.3965 1.570 200 200 178290.00 0.3965 1.570 200 200 178290.00 0.3965 1.570 20			WG253187-0	8	WG253187-09		WG253187-10			
1,2-Dichloropropane	Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Chloroform 50.0 1059062.00 0.7023 100 2158957.00 0.6780 200 4108683.00 0.6396 20thylbensene 50.0 749151.000 0.9591 100 1222153.00 0.75722 200 2333021.00 0.5356 100 1050000000000000000000000000000	1,1-Dichloroethene	50.0	475779.000	0.3158	100	1003530.00	0.3152	200	1935564.00	0.3013
Ethylbenzene	1,2-Dichloropropane	50.0	453632.000	0.3011	100	925271.000	0.2906	200	1784915.00	0.2779
Toliune 50.0 2026967.00 1.610 100 4162783.00 1.565 200 7913474.00 1.496 Vinyl Chloride 50.0 370547.000 0.4269 100 711287.000 0.2324 NA NA NA NA NA LIA (1.7,2.7-Etrachloroethane 50.0 291547.000 0.4102 100 59559.000 0.406 200 1178290.00 0.4065 1.1 1.7.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	Chloroform	50.0	1059062.00	0.7029	100	2158957.00	0.6780	200	4108683.00	0.6396
Vinyl Chloride	Ethylbenzene	50.0	749151.000	0.5951	100	1522153.00	0.5722	200	2832832.00	0.5357
1,1,2,2-Tetrachloroethane 50.0 291547.000 0.4102 100 594295.000 0.4006 200 1178290.00 0.3965 1.1-bichloroethane 50.0 39348.000 0.6566 100 2039676.00 0.6405 200 3886735.00 0.6072 0.0072 0	Toluene	50.0	2026967.00	1.610	100	4162783.00	1.565	200	7913474.00	1.496
1.1-Dichloroethane	Vinyl Chloride	50.0	370547.000	0.2459	100	711287.000	0.2234	NA	NA	NA
Bromoform 50.0 277168.000 0.2202 100 557539.000 0.2096 200 1095949.00 0.2072 101000 101000 101000 10100 101000 10100 101000 10100 101000 101000 101000 101000 101000 101000	1,1,2,2-Tetrachloroethane	50.0	291547.000	0.4102	100	594295.000	0.4006	200	1178290.00	0.3965
Chlorobenzene 50.0 1347846.00 1.071 100 2704431.00 1.017 200 5030440.00 0.9512 Chloromethane 50.0 488540.000 0.3242 100 975213.000 0.3663 200 1761649.00 0.2742 1,1,1-Trichloroethane 50.0 1084473.00 0.7719 100 2151763.00 0.6757 200 4029238.00 0.6273 1,1,2-Trichloroethane 50.0 597836.000 0.3968 100 1229619.00 0.3662 200 2347796.00 0.3655 1,1,2-Trichloroethane 50.0 30862.000 0.4449 100 619384.000 0.2328 200 1202179.00 0.3655 1,1,2-Trichloroethane 50.0 597836.000 0.9361 100 1404460.00 0.9362 200 2723271.00 0.9165 1,2-Dibromo-3-Chloropropane 50.0 565354.000 0.9361 100 1404460.00 0.9467 200 2723271.00 0.9165 1,2-Dibromo-3-Chloropropane 50.0 54813.0000 0.97710 100 121349.000 0.08180 200 2723271.00 0.6879 1,2-Dibromo-3-Chloropropane 50.0 317907.000 0.2526 100 654907.000 0.2462 200 1257275.00 0.2377 1,2-Dichlorobenzene 50.0 1099013.00 1.420 100 2058619.00 1.388 200 3929616.00 1.323 1,2-Dichlorobenzene 50.0 778177.000 0.5164 100 256519.00 1.388 200 3929616.00 1.323 1,2-Dichlorobenzene 50.0 1189583.00 1.674 100 2421127.00 1.632 200 4604178.00 1.550 1,4-Dichlorobenzene 50.0 1189583.00 1.674 100 2421127.00 1.632 200 4604178.00 1.550 1,4-Dichlorobenzene 50.0 137909.00 0.06550 100 243335.00 1.640 200 4604178.00 1.555 1,4-Dichlorobenzene 50.0 300910.00 1.676 100 2421127.00 1.632 200 4604178.00 1.555 1,4-Dichlorobenzene 50.0 38698.000 0.05510 100 2421107.00 0.05510 200 343201.00 0.05510 200 34201.00 0.05510 20	1,1-Dichloroethane	50.0	989348.000	0.6566	100	2039676.00	0.6405	200	3886735.00	0.6051
Chloromethane	Bromoform	50.0	277168.000	0.2202	100	557539.000	0.2096	200	1095949.00	0.2072
1,1-Trichloroethane	Chlorobenzene	50.0	1347846.00	1.071	100	2704431.00	1.017	200	5030440.00	0.9512
1.1.2-Trichloro-1.2,2-Trifluoroethane	Chloromethane	50.0	488540.000	0.3242	100	975213.000	0.3063	200	1761549.00	0.2742
1,1,2-Trichloroethane	1,1,1-Trichloroethane	50.0	1084473.00	0.7197	100	2151763.00	0.6757	200	4029238.00	0.6273
1.2.4—Trichlorobenzene	1,1,2-Trichloro-1,2,2-Trifluoroethane	50.0	597836.000	0.3968	100	1229619.00	0.3862	200	2347796.00	0.3655
1,2-Dibromo-3-Chloropropane 50.0 54813.0000 0.07710 100 121349.000 0.08180 200 261127.000 0.08790 1,2-Dibromoethane 50.0 317907.000 0.2526 100 654907.000 0.2462 200 1257275.00 0.2377 1,2-Dichlorobenzene 50.0 1009013.00 1.420 100 2058619.00 1.388 200 3929616.00 1.323 1,2-Dichlorobenzene 50.0 778177.000 0.5164 100 1543687.0 0.4848 200 2907627.00 0.4527 1,3-Dichlorobenzene 50.0 1189583.00 1.674 100 2421127.00 1.632 200 4604178.00 1.550 1,4-Dichlorobenzene 50.0 1190942.00 1.676 100 2433385.00 1.640 200 4604639.00 1.550 1,4-Dichlorobenzene 50.0 100214.000 0.06650 100 2433385.00 1.640 200 4604639.00 1.550 2-Butanone 50.0 100214.000 0.06650 100 26535.000 0.06490 200 433307.000 0.06750 2-Butanone 50.0 137209.000 0.05180 100 2881710.000 0.1059 200 588886.000 0.1114 4-Methyl-2-Pentanone 50.0 78046.0000 0.05180 100 162869.00 0.55110 200 33244.000 0.05190 Acetone 50.0 86089.0000 0.55110 100 178822.000 0.05510 200 344201.000 0.05380 Benzene 50.0 1986629.00 1.318 100 4052802.00 1.273 200 783302.00 1.220 Bromodichloromethane 50.0 358758.000 0.2391 100 784455.000 0.2464 200 1592103.00 0.2473 Bromomethane 50.0 1516838.00 1.005 100 2017377.00 0.4375 200 2847056.00 0.4432 Bromomethane 50.0 1516838.00 0.2319 100 784455.000 0.2464 200 1592103.00 0.2474 Carbon Tetrachloride 50.0 1015653.00 0.5749 100 2017377.00 0.3355 200 3693004.00 0.5749 Chloroethane 50.0 86198.000 0.5774 100 2017377.00 0.3355 200 3693004.00 0.5749 100 2017377.00 0.3574 200 1816062.00 0.3434 1260chloromethane 50.0 86198.000 0.5774 100 1796218.00 0.5661 200 3437904.00 0.5352 Dibromochloromethane 50.0 86198.000 0.5767 100 1742871.00 0.5574 200 1816062.00 0.3434 1260chloromethane 50.0 366871.00 0.5767 100 1742871.00 0.5563 200 389968.00 0.5767 100 1742871.00 0.5661 200 343904.00 0.5768 1260chloromethane 50.0 306871.00 0.5767 100 1742871.00 0.5667 200 389968.00 0.5767 100 1742871.00 0.5667 200 389968.00 0.5768 1260chloromethane 50.0 306871.00 0.5767 100 1742871.00 0.5667 200 389968.00 0.5767 100 1742871.00 0.5667 200 389968.00 0.5769 100 375991.00 0.5767 100 1742871.0	1,1,2-Trichloroethane	50.0	308262.000	0.2449	100	619384.000	0.2328	200	1202179.00	0.2273
1,2-Dibromoethane 50.0 317907.000 0.2526 100 654907.000 0.2462 200 1257275.00 0.2377 1,2-Dichlorobenzene 50.0 1009013.00 1.420 100 2058619.00 1.388 200 3929616.00 1.323 1,2-Dichlorobenzene 50.0 779177.000 0.5164 100 1543687.00 0.4848 200 2907627.00 0.4527 1,3-Dichlorobenzene 50.0 1189583.00 1.674 100 2421127.00 1.632 200 4604178.00 1.550 1,4-Dichlorobenzene 50.0 1190942.00 1.676 100 24333385.00 1.640 200 4604639.00 1.5550 1,4-Dichlorobenzene 50.0 100214.000 0.06650 100 20535.000 0.06490 200 433307.000 0.06750 2-Butanone 50.0 100214.000 0.06650 100 20535.000 0.06490 200 433307.000 0.06750 2-Butanone 50.0 137209.000 0.1090 100 281710.000 0.1059 200 588866.000 0.1114 4-Methyl-2-Pentanone 50.0 86089.000 0.05180 100 162869.000 0.05110 200 333244.000 0.05190 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05110 200 344201.000 0.05190 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05110 200 344201.000 0.05180 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05110 200 344201.000 0.05360 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05110 200 344201.000 0.05360 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05110 200 344201.000 0.05360 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05610 200 344201.000 0.05360 Acetone 50.0 1986629.00 1.318 100 162869.000 0.05610 200 344201.000 0.05360 Acetone 50.0 1986629.00 1.318 100 1607577.00 0.4735 200 2847056.00 0.4432 Acetone 50.0 1896629.00 1.318 100 170757.00 0.4735 200 2847056.00 0.4432 Acetone 50.0 181438.00 1.005 100 3111933.00 0.9773 200 6059794.00 0.2479 Acetone 50.0 181438.00 0.05410 100 217377.00 0.6335 200 1423490.00 0.25479 Acetone 50.0 181563.00 0.5718 100 311933.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 869812.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 869812.000 0.5767 100 1742871.00 0.5674 200 3132081.00 0.4876 Acetone 50.0 180841.00 0.56767 100 1742871.00 0.5676 200 3888696.00 0.1.579 Acetone 50.0 180845.00 0.5767 100 1742871.00 0.5676 200 3888696.00 0.1.579 Acetone 50.0 180845.00 0.5670 200 3888696.00 0.1.579 Ace	1,2,4-Trichlorobenzene	50.0	665354.000	0.9361	100	1404460.00	0.9467	200	2723271.00	0.9165
1,2-Dichlorobenzene 50.0 1009013.00 1.420 100 2058619.00 1.388 200 3929616.00 1.323 1,2-Dichloroethane 50.0 778177.000 0.5164 100 1543687.00 0.4848 200 2907627.00 0.4527 1,3-Dichlorobenzene 50.0 1189583.00 1.674 100 2421127.00 1.632 200 4604178.00 1.550 1,4-Dichlorobenzene 50.0 1190942.00 1.676 100 2423135.00 1.640 200 4604639.00 1.5550 1,4-Dichlorobenzene 50.0 100214.000 0.06650 100 206535.000 0.06490 200 43307.000 0.06750 2-Hexanone 50.0 137209.000 0.0190 100 281710.000 0.1059 200 588886.000 0.1114 4-Methyl-2-Pentanone 50.0 78046.0000 0.05180 100 162869.000 0.05110 200 333244.000 0.05190 Acetone 50.0 186689.0000 0.05180 100 178522.000 0.05610 200 34201.000 0.05360 Benzene 50.0 186689.0000 0.59710 100 178522.000 0.05610 200 34201.000 0.05360 Benzene 50.0 186689.000 0.4993 100 12072.000 0.26464 200 1892103.00 0.2479 Carbon Disulfide 50.0 1514838.00 1.005 100 3111933.00 0.9773 200 6059794.00 0.4343 Carbon Tetrachloride 50.0 358788.000 0.3359 100 784455.000 0.24464 200 1892103.00 0.2479 Chloroethane 50.0 355488.000 0.3359 100 738239.000 0.2318 200 343904.00 0.5749 Chloroethane 50.0 861588.000 0.5718 100 3111933.00 0.9773 200 6059794.00 0.9343 Chloroethane 50.0 861588.000 0.5718 100 311933.00 0.9773 200 6059794.00 0.5749 Chloroethane 50.0 861588.000 0.5718 100 1796210.00 0.5641 200 3437904.00 0.5216 Cyclohexane 50.0 861588.000 0.5718 100 1796210.00 0.5641 200 3437904.00 0.5369 Dibromochloromethane 50.0 86932.000 0.5718 100 1742871.00 0.5641 200 3437904.00 0.5364 Sopropylbenzene 50.0 86932.000 0.5767 100 1742871.00 0.5647 200 3437904.00 0.5369 Benzene 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1390 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methyl acetate 50.0 190839.000 0.5440 100 2153328.00 0.6674 200 328453.00 0.5902 Styrene 50.0 479284.000 0.3481 100 974917.000 0.3665 200 828426.000 0.1290 Styrene 50.0 479284.000 0.3481 100 974917.000 0.3665 200 1843044.00 0.3485	1,2-Dibromo-3-Chloropropane	50.0	54813.0000	0.07710	100	121349.000	0.08180	200	261127.000	0.08790
1,2-Dichloroethane	1,2-Dibromoethane	50.0	317907.000	0.2526	100	654907.000	0.2462	200	1257275.00	0.2377
1,3-Dichlorobenzene 50.0 1189583.00 1.674 100 2421127.00 1.632 200 4604178.00 1.550 1,4-Dichlorobenzene 50.0 1190942.00 1.676 100 2433385.00 1.640 200 4604639.00 1.550 2-Butanone 50.0 100214.000 0.06650 100 26353.000 0.06490 200 433307.000 0.06750 2-Hexanone 50.0 137209.000 0.1090 100 281710.000 0.05199 200 588886.000 0.1114 4-Methyl-2-Pentanone 50.0 78046.0000 0.05100 100 128522.000 0.05610 200 38244.000 0.05100 Acetone 50.0 186689.000 0.05710 100 178522.000 0.05610 200 344201.000 0.05360 Benzene 50.0 186689.000 0.4993 100 1507757.00 0.4735 200 2847056.00 0.4432 Bromodichloromethane 50.0 35878.000 0.2381 100 <t< td=""><td>1,2-Dichlorobenzene</td><td>50.0</td><td>1009013.00</td><td>1.420</td><td>100</td><td>2058619.00</td><td>1.388</td><td>200</td><td>3929616.00</td><td>1.323</td></t<>	1,2-Dichlorobenzene	50.0	1009013.00	1.420	100	2058619.00	1.388	200	3929616.00	1.323
1,4-Dichlorobenzene	1,2-Dichloroethane	50.0	778177.000	0.5164	100	1543687.00	0.4848	200	2907627.00	0.4527
2-Butanone 50.0 100214.000 0.06650 100 206535.000 0.06490 200 433307.000 0.06750 2-Hexanone 50.0 137209.000 0.1090 100 281710.000 0.1059 200 588866.000 0.1114 4-Methyl-2-Pentanone 50.0 78046.0000 0.05180 100 162869.000 0.05110 200 333244.000 0.05190 Acetone 50.0 86089.0000 0.05710 100 178522.000 0.05610 200 344201.000 0.05360 Benzene 50.0 1986629.00 1.318 100 4052802.00 1.273 200 7833302.00 1.220 Bromodichloromethane 50.0 752284.000 0.4993 100 1507757.00 0.4735 200 2847056.00 0.4432 Bromomethane 50.0 358758.000 0.2381 100 784455.000 0.2464 200 1592103.00 0.2479 Carbon Disulfide 50.0 1514838.00 1.005 100 3111933.00 0.773 200 6059794.00 0.9434 Carbon Tetrachloride 50.0 1016653.00 0.6740 100 2017377.00 0.6335 200 369304.00 0.5749 Chloroethane 50.0 861588.000 0.2359 100 738239.000 0.2318 200 1423490.00 0.2316 Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.368 100 967262.000 0.3368 200 388463.00 0.5119 Methylene Chloride 50.0 477284.000 0.3681 100 974917.000 0.3665 200 1843044.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	1,3-Dichlorobenzene	50.0	1189583.00	1.674	100	2421127.00	1.632	200	4604178.00	1.550
## 2-Hexanone	1,4-Dichlorobenzene	50.0	1190942.00	1.676	100	2433385.00	1.640	200	4604639.00	1.550
4-Methyl-2-Pentanone 50.0 78046.0000 0.05180 100 162869.000 0.05110 200 333244.000 0.05190 Acetone 50.0 86089.0000 0.05710 100 178522.000 0.05610 200 344201.000 0.05360 Benzene 50.0 1986629.00 1.318 100 4052802.00 1.273 200 7833302.00 1.220 Bromodichloromethane 50.0 752284.000 0.4993 100 1507757.00 0.4735 200 2847056.00 0.4432 Bromomethane 50.0 358758.000 0.2381 100 784455.000 0.2464 200 1592103.00 0.2479 Carbon Disulfide 50.0 1514838.00 1.005 100 3111933.00 0.9773 200 6059794.00 0.9434 Carbon Tetrachloride 50.0 1514638.00 0.6740 100 2017377.00 0.6335 200 369304.00 0.5749 Chlorocthane 50.0 355448.000 0.2359 100	2-Butanone	50.0	100214.000	0.06650	100	206535.000	0.06490	200	433307.000	0.06750
Acetone 50.0 86089.0000 0.05710 100 178522.000 0.05610 200 344201.000 0.05360 Benzene 50.0 1986629.00 1.318 100 4052802.00 1.273 200 7833302.00 1.220 Bromodichloromethane 50.0 752284.000 0.4993 100 1507757.00 0.4735 200 2847056.00 0.4432 Bromomethane 50.0 358758.000 0.2381 100 784455.000 0.2464 200 1592103.00 0.2479 Carbon Disulfide 50.0 1514838.00 1.005 100 3111933.00 0.9773 200 6059794.00 0.9434 Carbon Tetrachloride 50.0 1015653.00 0.6740 100 2017377.00 0.6335 200 3693004.00 0.5749 Chloroethane 50.0 355448.000 0.2359 100 738239.000 0.2318 200 1423490.00 0.2216 Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 471939.000 0.3749 100 950867.000 0.3574 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 430914.00 0.6708 Methyl acetate 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylcolohexane 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	2-Hexanone	50.0	137209.000	0.1090	100	281710.000	0.1059	200	588886.000	0.1114
Benzene 50.0 1986629.00 1.318 100 4052802.00 1.273 200 7833302.00 1.220 Bromodichloromethane 50.0 752284.000 0.4993 100 1507757.00 0.4735 200 2847056.00 0.4432 Bromomethane 50.0 358758.000 0.2381 100 784455.000 0.2464 200 1592103.00 0.2479 Carbon Disulfide 50.0 1514838.00 1.005 100 3111933.00 0.9773 200 6059794.00 0.9434 Carbon Tetrachloride 50.0 1015653.00 0.6740 100 2017377.00 0.6335 200 3693004.00 0.5749 Chloroethane 50.0 355448.000 0.2359 100 738239.000 0.2318 200 1423490.00 0.2316 Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 471939.000 0.5767 100 <	4-Methyl-2-Pentanone	50.0	78046.0000	0.05180	100	162869.000	0.05110	200	333244.000	0.05190
Bromodichloromethane 50.0 752284.000 0.4993 100 1507757.00 0.4735 200 2847056.00 0.4432	Acetone	50.0	86089.0000	0.05710	100	178522.000	0.05610	200	344201.000	0.05360
Bromomethane 50.0 358758.000 0.2381 100 784455.000 0.2464 200 1592103.00 0.2479	Benzene	50.0	1986629.00	1.318	100	4052802.00	1.273	200	7833302.00	1.220
Carbon Disulfide 50.0 1514838.00 1.005 100 3111933.00 0.9773 200 6059794.00 0.9434 Carbon Tetrachloride 50.0 1015653.00 0.6740 100 2017377.00 0.6335 200 3693004.00 0.5749 Chloroethane 50.0 355448.000 0.2359 100 738239.000 0.2318 200 1423490.00 0.2216 Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 471939.000 0.3749 100 950867.000 0.3574 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5919 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Bromodichloromethane	50.0	752284.000	0.4993	100	1507757.00	0.4735	200	2847056.00	0.4432
Carbon Tetrachloride 50.0 1015653.00 0.6740 100 2017377.00 0.6335 200 3693004.00 0.5749 Chloroethane 50.0 355448.000 0.2359 100 738239.000 0.2318 200 1423490.00 0.2216 Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 471939.000 0.3749 100 950867.000 0.3574 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methyl acetate 50.0 819734.000 0.5440	Bromomethane	50.0	358758.000	0.2381	100	784455.000	0.2464	200	1592103.00	0.2479
Chloroethane 50.0 355448.000 0.2359 100 738239.000 0.2318 200 1423490.00 0.2216 Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 471939.000 0.3749 100 950867.000 0.3574 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Carbon Disulfide	50.0	1514838.00	1.005	100	3111933.00	0.9773	200	6059794.00	0.9434
Cyclohexane 50.0 861588.000 0.5718 100 1796218.00 0.5641 200 3437904.00 0.5352 Dibromochloromethane 50.0 471939.000 0.3749 100 950867.000 0.3574 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168	Carbon Tetrachloride	50.0	1015653.00	0.6740	100	2017377.00	0.6335	200	3693004.00	0.5749
Dibromochloromethane 50.0 471939.000 0.3749 100 950867.000 0.3574 200 1816062.00 0.3434 Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Chloroethane	50.0	355448.000	0.2359	100	738239.000	0.2318	200	1423490.00	0.2216
Dichlorodifluoromethane 50.0 868912.000 0.5767 100 1742871.00 0.5473 200 3132081.00 0.4876 Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Cyclohexane	50.0	861588.000	0.5718	100	1796218.00	0.5641	200	3437904.00	0.5352
Isopropylbenzene 50.0 2306871.00 1.833 100 4702832.00 1.768 200 8880968.00 1.679 Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Dibromochloromethane	50.0	471939.000	0.3749	100	950867.000	0.3574	200	1816062.00	0.3434
Methyl Tert Butyl Ether 50.0 1000841.00 0.6642 100 2125328.00 0.6674 200 4309140.00 0.6708 Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 1428212.00 1.135 100 2974118.00 1.118 200 5735911.00 1.085 Tetrachloroethene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Dichlorodifluoromethane	50.0	868912.000	0.5767	100	1742871.00	0.5473	200	3132081.00	0.4876
Methyl acetate 50.0 190839.000 0.1267 100 406224.000 0.1276 200 828426.000 0.1290 Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 1428212.00 1.135 100 2974118.00 1.118 200 5735911.00 1.085 Tetrachloroethene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Isopropylbenzene	50.0	2306871.00	1.833	100	4702832.00	1.768	200	8880968.00	1.679
Methylcyclohexane 50.0 819734.000 0.5440 100 1708235.00 0.5365 200 3288453.00 0.5119 Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 1428212.00 1.135 100 2974118.00 1.118 200 5735911.00 1.085 Tetrachloroethene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Methyl Tert Butyl Ether	50.0	1000841.00	0.6642	100	2125328.00	0.6674	200	4309140.00	0.6708
Methylene Chloride 50.0 477284.000 0.3168 100 967262.000 0.3038 200 1864238.00 0.2902 Styrene 50.0 1428212.00 1.135 100 2974118.00 1.118 200 5735911.00 1.085 Tetrachloroethene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Methyl acetate	50.0	190839.000	0.1267	100	406224.000	0.1276	200	828426.000	0.1290
Styrene 50.0 1428212.00 1.135 100 2974118.00 1.118 200 5735911.00 1.085 Tetrachloroethene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Methylcyclohexane	50.0	819734.000	0.5440	100	1708235.00	0.5365	200	3288453.00	0.5119
Tetrachloroethene 50.0 479876.000 0.3812 100 974917.000 0.3665 200 1843044.00 0.3485	Methylene Chloride	50.0	477284.000	0.3168	100	967262.000	0.3038	200	1864238.00	0.2902
	Styrene	50.0	1428212.00	1.135	100	2974118.00	1.118	200	5735911.00	1.085
Trichloroethene 50.0 559436.000 0.3713 100 1137581.00 0.3572 200 2183560.00 0.3399	Tetrachloroethene	50.0	479876.000	0.3812	100	974917.000	0.3665	200	1843044.00	0.3485
	Trichloroethene	50.0	559436.000	0.3713	100	1137581.00	0.3572	200	2183560.00	0.3399

Instrument ID:HPMS10
Initial Calibration Date:18-OCT-07 16:51
Column ID:F

	WG253187-11				
Analyte	CONC	RESP	RF		
1,1-Dichloroethene	NA	NA	NA		
1,2-Dichloropropane	NA	NA	NA		
Chloroform	NA	NA	NA		
Ethylbenzene	NA	NA	NA		
Toluene	NA	NA	NA		
Vinyl Chloride	NA	NA	NA		
1,1,2,2-Tetrachloroethane	NA	NA	NA		
1,1-Dichloroethane	NA	NA	NA		
Bromoform	NA	NA	NA		
Chlorobenzene	NA	NA	NA		
Chloromethane	NA	NA	NA		
1,1,1-Trichloroethane	NA	NA	NA		
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	NA	NA		
1,1,2-Trichloroethane	NA	NA	NA		
1,2,4-Trichlorobenzene	NA	NA	NA		
1,2-Dibromo-3-Chloropropane	NA	NA	NA		
1,2-Dibromoethane	NA	NA	NA		
1,2-Dichlorobenzene	NA	NA	NA		
1,2-Dichloroethane	NA	NA	NA		
1,3-Dichlorobenzene	NA	NA	NA		
1,4-Dichlorobenzene	NA	NA	NA		
2-Butanone	300	663381.000	0.06880		
2-Hexanone	300	886864.000	0.1149		
4-Methyl-2-Pentanone	300	523327.000	0.05430		
Acetone	300	457084.000	0.04740		
Benzene	NA	NA	NA		
Bromodichloromethane	NA	NA	NA		
Bromomethane	NA	NA	NA		
Carbon Disulfide	NA	NA	NA		
Carbon Tetrachloride	NA	NA	NA		
Chloroethane	NA	NA	NA		
Cyclohexane	NA	NA	NA		
Dibromochloromethane	NA	NA	NA		
Dichlorodifluoromethane	NA	NA	NA		
Isopropylbenzene	NA	NA	NA		
Methyl Tert Butyl Ether	NA	NA	NA		
Methyl acetate	NA	NA	NA		
Methylcyclohexane	NA	NA	NA		
Methylene Chloride	NA	NA	NA		
Styrene	NA	NA	NA		
Tetrachloroethene	NA	NA	NA		
Trichloroethene	NA	NA	NA		

INITIAL CALIBRATION DATA

00078697

Login Number:L0710596
Analytical Method:8260B

Instrument ID:HPMS10
Initial Calibration Date:18-OCT-07 16:51

Column ID:F

		WG253187-02			WG253187-03			WG253187-04		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF	
Trichlorofluoromethane	NA	NA	NA	0.400	4902.00000	0.4336	1.00	22532.0000	0.8040	
cis-1,2-Dichloroethene	NA	NA	NA	0.400	3261.00000	0.2884	1.00	8145.00000	0.2906	
cis-1,3-Dichloropropene	NA	NA	NA	0.400	3962.00000	0.3504	1.00	9845.00000	0.3513	
m-,p-Xylene	NA	NA	NA	0.800	9552.00000	0.5311	2.00	25634.0000	0.5782	
o-Xylene	NA	NA	NA	NA	NA	NA	1.00	10610.0000	0.4787	
trans-1,2-Dichloroethene	NA	NA	NA	0.400	2815.00000	0.2490	1.00	8887.00000	0.3171	
trans-1,3-Dichloropropene	NA	NA	NA	0.400	3805.00000	0.4231	1.00	9940.00000	0.4484	

00078698

Login Number:L0710596
Analytical Method:8260B

Instrument ID:HPMS10
Initial Calibration Date:18-OCT-07 16:51

Column ID:F

	WG253187-05			WG253187-06			WG253187-07		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Trichlorofluoromethane	2.00	49072.0000	0.8714	5.00	125093.000	0.8882	20.0	518777.000	0.8812
cis-1,2-Dichloroethene	2.00	18147.0000	0.3223	5.00	48051.0000	0.3412	20.0	212252.000	0.3605
cis-1,3-Dichloropropene	2.00	21974.0000	0.3902	5.00	62793.0000	0.4459	20.0	287579.000	0.4885
m-,p-Xylene	4.00	59006.0000	0.6641	10.0	162481.000	0.7084	40.0	699373.000	0.7347
o-Xylene	2.00	23047.0000	0.5188	5.00	69801.0000	0.6087	20.0	320013.000	0.6724
trans-1,2-Dichloroethene	2.00	17095.0000	0.3036	5.00	47628.0000	0.3382	20.0	204636.000	0.3476
trans-1,3-Dichloropropene	2.00	21539.0000	0.4849	5.00	61213.0000	0.5338	20.0	266332.000	0.5596

00078699

Login Number:L0710596 Analytical Method:8260B

Instrument ID: HPMS10
Initial Calibration Date: 18-OCT-07 16:51

Column ID:F

		WG253187-08			WG253187-09			WG253187-10		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF	
Trichlorofluoromethane	50.0	1276651.00	0.8473	100	2556058.00	0.8027	200	4705785.00	0.7326	
cis-1,2-Dichloroethene	50.0	551863.000	0.3662	100	1146237.00	0.3600	200	2243726.00	0.3493	
cis-1,3-Dichloropropene	50.0	759522.000	0.5041	100	1553167.00	0.4878	200	2959906.00	0.4608	
m-,p-Xylene	100	1811635.00	0.7196	200	3722563.00	0.6997	400	7035503.00	0.6652	
o-Xylene	50.0	858507.000	0.6820	100	1764641.00	0.6633	200	3404334.00	0.6437	
trans-1,2-Dichloroethene	50.0	529464.000	0.3514	100	1113115.00	0.3496	200	2168851.00	0.3376	
trans-1,3-Dichloropropene	50.0	695994.000	0.5529	100	1398472.00	0.5257	200	2658193.00	0.5026	

00078700

Login Number:L0710596
Analytical Method:8260B

Instrument ID:HPMS10
Initial Calibration Date:18-OCT-07 16:51
Column ID:F

	WG253187-11					
Analyte	CONC	RESP	RF			
Trichlorofluoromethane	NA	NA	NA			
cis-1,2-Dichloroethene	NA	NA	NA			
cis-1,3-Dichloropropene	NA	NA	NA			
m-,p-Xylene	NA	NA	NA			
o-Xylene	NA	NA	NA			
trans-1,2-Dichloroethene	NA	NA	NA			
trans-1,3-Dichloropropene	NA	NA	NA			

Instrument ID:HPMS11 Initial Calibration Date:01-OCT-07 15:48 Column ID:F

		WG251532-0	2		WG251532-0	3		WG251532-0	4
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	NA	NA	NA	0.400	5459.00000	0.3406	1.00	22956.0000	0.5767
1,2-Dichloropropane	NA	NA	NA	0.400	3683.00000	0.2298	1.00	11307.0000	0.2841
Chloroform	0.300	6893.00000	0.5373	0.400	6707.00000	0.4185	1.00	22279.0000	0.5597
Ethylbenzene	NA	NA	NA	0.400	3644.00000	0.3495	1.00	13022.0000	0.5067
Toluene	NA	NA	NA	0.400	11758.0000	1.128	1.00	39735.0000	1.546
Vinyl Chloride	NA	NA	NA	0.400	4333.00000	0.2703	1.00	17176.0000	0.4315
1,1,2,2-Tetrachloroethane	NA	NA	NA	0.400	2458.00000	0.4556	1.00	5562.00000	0.4178
1,1-Dichloroethane	NA	NA	NA	0.400	7965.00000	0.4969	1.00	24401.0000	0.6131
Bromoform	NA	NA	NA	NA	NA	NA	1.00	3393.00000	0.1320
Chlorobenzene	NA	NA	NA	0.400	8476.00000	0.8130	1.00	25625.0000	0.9972
Chloromethane	NA	NA	NA	0.400	7022.00000	0.4381	1.00	17646.0000	0.4433
1,1,1-Trichloroethane	NA	NA	NA	0.400	5415.00000	0.3378	1.00	20488.0000	0.5147
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	NA	NA	NA	NA	NA	1.00	9564.00000	0.2403
1,1,2-Trichloroethane	NA	NA	NA	0.400	1851.00000	0.1775	1.00	5710.00000	0.2222
1,2,4-Trichlorobenzene	NA	NA	NA	0.400	3539.00000	0.6560	1.00	10704.0000	0.8041
1,2-Dibromo-3-Chloropropane	NA	NA	NA	NA	NA	NA	1.00	1140.00000	0.08560
1,2-Dibromoethane	NA	NA	NA	0.400	2030.00000	0.1947	1.00	5190.00000	0.2020
1,2-Dichlorobenzene	0.300	4763.00000	1.183	0.400	5312.00000	0.9846	1.00	16208.0000	1.218
1,2-Dichloroethane	NA	NA	NA	0.400	7081.00000	0.4418	1.00	20110.0000	0.5052
1,3-Dichlorobenzene	NA	NA	NA	0.400	5186.00000	0.9613	1.00	17647.0000	1.326
1,4-Dichlorobenzene	0.300	5161.00000	1.282	0.400	5753.00000	1.066	1.00	18398.0000	1.382
2-Butanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	NA	NA	NA	0.400	13570.0000	0.8466	1.00	38743.0000	0.9734
Bromodichloromethane	NA	NA	NA	0.400	4690.00000	0.2926	1.00	14758.0000	0.3708
Bromomethane	NA	NA	NA	NA	NA	NA	1.00	5941.00000	0.1493
Carbon Disulfide	NA	NA	NA	NA	NA	NA	1.00	29560.0000	0.7427
Carbon Tetrachloride	NA	NA	NA	0.400	3443.00000	0.2148	1.00	15952.0000	0.4008
Chloroethane	NA	NA	NA	NA	NA	NA	1.00	9542.00000	0.2397
Cyclohexane	NA	NA	NA	NA	NA	NA	1.00	22543.0000	0.5664
Dibromochloromethane	NA	NA	NA	0.400	2533.00000	0.2430	1.00	6241.00000	0.2429
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	1.00	18761.0000	0.4714
Isopropylbenzene	NA	NA	NA	0.400	9883.00000	0.9479	1.00	40841.0000	1.589
Methyl Tert Butyl Ether	NA	NA	NA	NA	NA	NA	1.00	23664.0000	0.5945
Methyl acetate	NA	NA	NA	NA	NA	NA	1.00	4790.00000	0.1203
Methylcyclohexane	NA	NA	NA	NA	NA	NA	1.00	13313.0000	0.3345
Methylene Chloride	NA	NA	NA	0.400	13939.0000	0.8697	1.00	21650.0000	0.5439
Styrene	NA	NA	NA	0.400	7224.00000	0.6929	1.00	22881.0000	0.8904
Tetrachloroethene	NA	NA	NA	0.400	1692.00000	0.1623	1.00	5980.00000	0.2327
Trichloroethene	NA	NA	NA	0.400	2552.00000	0.1592	1.00	9457.00000	0.2376

Instrument ID:HPMS11 Initial Calibration Date:01-OCT-07 15:48 Column ID:F

		WG251532-0	5		WG251532-06	5		WG251532-0	7
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	2.00	48476.0000	0.6182	5.00	125622.000	0.6336	20.0	535695.000	0.6421
1,2-Dichloropropane	2.00	24026.0000	0.3064	5.00	60721.0000	0.3063	20.0	255504.000	0.3063
Chloroform	2.00	44355.0000	0.5657	5.00	112252.000	0.5662	20.0	484435.000	0.5807
Ethylbenzene	2.00	27498.0000	0.5335	5.00	73404.0000	0.5622	20.0	307082.000	0.5615
Toluene	2.00	79868.0000	1.550	5.00	198698.000	1.522	20.0	872465.000	1.595
Vinyl Chloride	2.00	33432.0000	0.4264	5.00	75335.0000	0.3800	20.0	315490.000	0.3782
1,1,2,2-Tetrachloroethane	2.00	12732.0000	0.4763	5.00	33959.0000	0.5071	20.0	126680.000	0.4520
1,1-Dichloroethane	2.00	52354.0000	0.6677	5.00	132096.000	0.6663	20.0	573339.000	0.6872
Bromoform	2.00	7526.00000	0.1460	5.00	19891.0000	0.1523	20.0	89511.0000	0.1637
Chlorobenzene	2.00	55132.0000	1.070	5.00	128985.000	0.9879	20.0	549650.000	1.005
Chloromethane	2.00	39610.0000	0.5052	5.00	89663.0000	0.4523	20.0	388504.000	0.4657
1,1,1-Trichloroethane	2.00	44026.0000	0.5615	5.00	111298.000	0.5614	20.0	479025.000	0.5742
1,1,2-Trichloro-1,2,2-Trifluoroethane	2.00	19426.0000	0.2478	5.00	55122.0000	0.2780	20.0	218986.000	0.2625
1,1,2-Trichloroethane	2.00	11873.0000	0.2303	5.00	31952.0000	0.2447	20.0	128006.000	0.2341
1,2,4-Trichlorobenzene	2.00	23534.0000	0.8804	5.00	58779.0000	0.8777	20.0	242679.000	0.8658
1,2-Dibromo-3-Chloropropane	2.00	2948.00000	0.1103	5.00	6744.00000	0.1007	20.0	26187.0000	0.09340
1,2-Dibromoethane	2.00	12526.0000	0.2430	5.00	30764.0000	0.2356	20.0	129058.000	0.2360
1,2-Dichlorobenzene	2.00	34537.0000	1.292	5.00	84559.0000	1.263	20.0	346990.000	1.238
1,2-Dichloroethane	2.00	41756.0000	0.5325	5.00	104639.000	0.5278	20.0	437462.000	0.5244
1,3-Dichlorobenzene	2.00	39948.0000	1.495	5.00	97419.0000	1.455	20.0	407476.000	1.454
1,4-Dichlorobenzene	2.00	40610.0000	1.519	5.00	99812.0000	1.490	20.0	415174.000	1.481
2-Butanone	NA	NA	NA	5.00	14161.0000	0.07140	20.0	53500.0000	0.06410
2-Hexanone	NA	NA	NA	5.00	21234.0000	0.1626	20.0	82590.0000	0.1510
4-Methyl-2-Pentanone	NA	NA	NA	5.00	13461.0000	0.06790	20.0	50386.0000	0.06040
Acetone	NA	NA	NA	5.00	11470.0000	0.05790	20.0	42030.0000	0.05040
Benzene	2.00	80625.0000	1.028	5.00	202501.000	1.021	20.0	855276.000	1.025
Bromodichloromethane	2.00	30555.0000	0.3897	5.00	78106.0000	0.3940	20.0	336034.000	0.4028
Bromomethane	2.00	12430.0000	0.1585	5.00	29313.0000	0.1479	20.0	147898.000	0.1773
Carbon Disulfide	2.00	58739.0000	0.7491	5.00	152424.000	0.7688	20.0	661644.000	0.7931
Carbon Tetrachloride	2.00	32747.0000	0.4176	5.00	89399.0000	0.4509	20.0	372854.000	0.4469
Chloroethane	2.00	19584.0000	0.2498	5.00	48803.0000	0.2462	20.0	213904.000	0.2564
Cyclohexane	2.00	44380.0000	0.5660	5.00	126424.000	0.6377	20.0	513595.000	0.6156
Dibromochloromethane	2.00	14878.0000	0.2886	5.00	40156.0000	0.3075	20.0	178082.000	0.3256
Dichlorodifluoromethane	2.00	38939.0000	0.4966	5.00	107316.000	0.5413	20.0	440739.000	0.5283
Isopropylbenzene	2.00	88988.0000	1.726	5.00	225803.000	1.729	20.0	965695.000	1.766
Methyl Tert Butyl Ether	2.00	48149.0000	0.6141	5.00	123625.000	0.6236	20.0	518361.000	0.6213
Methyl acetate	2.00	10311.0000	0.1315	5.00	25413.0000	0.1282	20.0	110460.000	0.1324
Methylcyclohexane	2.00	28563.0000	0.3643	5.00	83180.0000	0.4196	20.0	320406.000	0.3841
Methylene Chloride	2.00	30890.0000	0.3940	5.00	60073.0000	0.3030	20.0	228546.000	0.2740
Styrene	2.00	50686.0000	0.9833	5.00	133672.000	1.024	20.0	599855.000	1.097
Tetrachloroethene	2.00	13373.0000	0.2594	5.00	36376.0000	0.2786	20.0	154520.000	0.2825
Trichloroethene	2.00	20157.0000	0.2571	5.00	45951.0000	0.2318	20.0	205345.000	0.2461

Instrument ID:HPMS11 Initial Calibration Date:01-OCT-07 15:48 Column ID:F

		WG251532-0	8		WG251532-0	9		WG251532-1	D
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	50.0	1358330.00	0.6364	100	2768992.00	0.6282	200	5351788.00	0.6087
1,2-Dichloropropane	50.0	666385.000	0.3122	100	1378462.00	0.3127	200	2646333.00	0.3010
Chloroform	50.0	1219971.00	0.5715	100	2470299.00	0.5604	200	4693723.00	0.5339
Ethylbenzene	50.0	811958.000	0.5700	100	1688680.00	0.5795	200	3271888.00	0.5543
Toluene	50.0	2287163.00	1.606	100	4789895.00	1.644	200	9297898.00	1.575
Vinyl Chloride	50.0	746728.000	0.3498	100	1474420.00	0.3345	200	2526768.00	0.2874
1,1,2,2-Tetrachloroethane	50.0	342935.000	0.4708	100	732844.000	0.4789	200	1407385.00	0.4472
1,1-Dichloroethane	50.0	1439098.00	0.6742	100	2975247.00	0.6750	200	5716785.00	0.6502
Bromoform	50.0	245089.000	0.1721	100	520920.000	0.1788	200	1001987.00	0.1698
Chlorobenzene	50.0	1424429.00	1.000	100	2995035.00	1.028	200	5893335.00	0.9984
Chloromethane	50.0	922415.000	0.4321	100	1824763.00	0.4140	200	3716884.00	0.4227
1,1,1-Trichloroethane	50.0	1204813.00	0.5644	100	2398980.00	0.5442	200	4428050.00	0.5036
1,1,2-Trichloro-1,2,2-Trifluoroethane	50.0	535729.000	0.2510	100	1092963.00	0.2480	200	2058927.00	0.2342
1,1,2-Trichloroethane	50.0	345205.000	0.2423	100	716499.000	0.2459	200	1374339.00	0.2328
1,2,4-Trichlorobenzene	50.0	633338.000	0.8695	100	1299497.00	0.8492	200	2466328.00	0.7837
1,2-Dibromo-3-Chloropropane	50.0	73182.0000	0.1005	100	156360.000	0.1022	200	287283.000	0.09130
1,2-Dibromoethane	50.0	338403.000	0.2376	100	704616.000	0.2418	200	1336701.00	0.2265
1,2-Dichlorobenzene	50.0	922841.000	1.267	100	1943041.00	1.270	200	3765189.00	1.196
1,2-Dichloroethane	50.0	1097447.00	0.5141	100	2211026.00	0.5016	200	4013581.00	0.4565
1,3-Dichlorobenzene	50.0	1071140.00	1.471	100	2217552.00	1.449	200	4425935.00	1.406
1,4-Dichlorobenzene	50.0	1077757.00	1.480	100	2240937.00	1.465	200	4410249.00	1.401
2-Butanone	50.0	139442.000	0.06530	100	294843.000	0.06690	200	540964.000	0.06150
2-Hexanone	50.0	219714.000	0.1542	100	473751.000	0.1626	200	868705.000	0.1472
4-Methyl-2-Pentanone	50.0	139434.000	0.06530	100	298847.000	0.06780	200	564567.000	0.06420
Acetone	50.0	103145.000	0.04830	100	224035.000	0.05080	200	374421.000	0.04260
Benzene	50.0	2236743.00	1.048	100	4623566.00	1.049	200	8913761.00	1.014
Bromodichloromethane	50.0	880197.000	0.4124	100	1801325.00	0.4087	200	3398229.00	0.3865
Bromomethane	50.0	405016.000	0.1897	100	887551.000	0.2014	200	1763726.00	0.2006
Carbon Disulfide	50.0	1700768.00	0.7968	100	3574373.00	0.8109	200	6992893.00	0.7954
Carbon Tetrachloride	50.0	956758.000	0.4482	100	1933183.00	0.4386	200	3582234.00	0.4074
Chloroethane	50.0	537813.000	0.2520	100	1094406.00	0.2483	200	2100042.00	0.2389
Cyclohexane	50.0	1295094.00	0.6067	100	2679162.00	0.6078	200	5035624.00	0.5727
Dibromochloromethane	50.0	476639.000	0.3346	100	1001787.00	0.3438	200	1911288.00	0.3238
Dichlorodifluoromethane	50.0	1048920.00	0.4914	100	2093046.00	0.4748	200	3836174.00	0.4363
Isopropylbenzene	50.0	2539791.00	1.783	100	5283210.00	1.813	200	10385710.0	1.760
Methyl Tert Butyl Ether	50.0	1333866.00	0.6249	100	2730573.00	0.6195	200	4976901.00	0.5661
Methyl acetate	50.0	282808.000	0.1325	100	581867.000	0.1320	200	1055829.00	0.1201
Methylcyclohexane	50.0	817556.000	0.3830	100	1727764.00	0.3920	200	3399088.00	0.3866
Methylene Chloride	50.0	561775.000	0.2632	100	1150287.00	0.2610	200	2208724.00	0.2512
Styrene	50.0	1609485.00	1.130	100	3420981.00	1.174	200	6804235.00	1.153
Tetrachloroethene	50.0	404909.000	0.2843	100	821236.000	0.2818	200	1568099.00	0.2657
Trichloroethene	50.0	527492.000	0.2471	100	1085515.00	0.2463	200	2074840.00	0.2360

INITIAL CALIBRATION DATA

00078704

Login Number:L0710596
Analytical Method:8260B

Instrument ID:HPMS11

Initial Calibration Date: 01-OCT-07 15:48

Column ID:F

		WG251532-02			WG251532-03			WG251532-04		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF	
Trichlorofluoromethane	NA	NA	NA	0.400	3610.00000	0.2252	1.00	23603.0000	0.5930	
cis-1,2-Dichloroethene	NA	NA	NA	0.400	3018.00000	0.1883	1.00	9585.00000	0.2408	
cis-1,3-Dichloropropene	NA	NA	NA	0.400	5024.00000	0.3134	1.00	14105.0000	0.3544	
m-,p-Xylene	NA	NA	NA	0.800	10564.0000	0.5066	2.00	32904.0000	0.6402	
o-Xylene	NA	NA	NA	0.400	4810.00000	0.4614	1.00	15978.0000	0.6218	
trans-1,2-Dichloroethene	NA	NA	NA	0.400	3162.00000	0.1973	1.00	10260.0000	0.2578	
trans-1,3-Dichloropropene	NA	NA	NA	0.400	4463.00000	0.4281	1.00	12893.0000	0.5017	

00078705

INITIAL CALIBRATION DATA

Login Number:L0710596
Analytical Method:8260B

Instrument ID: HPMS11
Initial Calibration Date: 01-OCT-07 15:48

Column ID:F

	WG251532-05			WG251532-06			WG251532-07		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Trichlorofluoromethane	2.00	47095.0000	0.6006	5.00	130638.000	0.6589	20.0	525028.000	0.6293
cis-1,2-Dichloroethene	2.00	21372.0000	0.2726	5.00	54650.0000	0.2757	20.0	233209.000	0.2795
cis-1,3-Dichloropropene	2.00	30331.0000	0.3868	5.00	82462.0000	0.4159	20.0	355044.000	0.4256
m-,p-Xylene	4.00	70508.0000	0.6839	10.0	177033.000	0.6779	40.0	766250.000	0.7005
o-Xylene	2.00	34116.0000	0.6619	5.00	85256.0000	0.6529	20.0	363364.000	0.6644
trans-1,2-Dichloroethene	2.00	20908.0000	0.2667	5.00	53357.0000	0.2691	20.0	230105.000	0.2758
trans-1,3-Dichloropropene	2.00	28922.0000	0.5611	5.00	76148.0000	0.5832	20.0	322114.000	0.5890

00078706

Login Number:L0710596
Analytical Method:8260B

Instrument ID: HPMS11
Initial Calibration Date: 01-OCT-07 15:48

Column ID:F

	WG251532-08			WG251532-09			WG251532-10		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Trichlorofluoromethane	50.0	1288293.00	0.6036	100	2623720.00	0.5952	200	4987810.00	0.5673
cis-1,2-Dichloroethene	50.0	598151.000	0.2802	100	1235747.00	0.2803	200	2413546.00	0.2745
cis-1,3-Dichloropropene	50.0	929595.000	0.4355	100	1935212.00	0.4390	200	3726097.00	0.4238
m-,p-Xylene	100	2029456.00	0.7124	200	4227699.00	0.7254	400	8126794.00	0.6884
o-Xylene	50.0	962946.000	0.6760	100	2001020.00	0.6867	200	3979858.00	0.6742
trans-1,2-Dichloroethene	50.0	585527.000	0.2743	100	1203115.00	0.2729	200	2348922.00	0.2672
trans-1,3-Dichloropropene	50.0	861380.000	0.6047	100	1775450.00	0.6093	200	3349096.00	0.5674

ALTERNATE SOURCE CALIBRATION REPORT

 Login Number: L0710596
 Run Date: 10/18/2007
 Sample ID: WG253187-12

 Instrument ID: HPMS10
 Run Time: 18:23
 Method: 8260B

 File ID: 10M59732
 Analyst: MES
 QC Key: STD

 ICal Workgroup: WG253187
 Cal ID: HPMS10 - 18-OCT-07

Analyte		Expected	Found	Units	RF	%D	UCL	Q
1,1-Dichloroethene	CCC	20.0	20.4	ug/L	0.324	1.90	30	
1,2-Dichloropropane	CCC	20.0	21.3	ug/L	0.301	6.30	30	
Chloroform	CCC	20.0	21.0	ug/L	0.711	5.10	30	
Ethylbenzene	CCC	20.0	21.7	ug/L	0.601	8.60	30	
Toluene	CCC	20.0	22.3	ug/L	1.67	11.6	30	
Vinyl Chloride	CCC	20.0	21.2	ug/L	0.282	5.80	30	
1,1,2,2-Tetrachloroethane	SPCC	20.0	19.9	ug/L	0.404	0.600	30	
1,1-Dichloroethane	SPCC	20.0	20.6	ug/L	0.654	3.10	30	
Bromoform	SPCC	20.0	19.4	ug/L	0.199	3.10	30	
Chlorobenzene	SPCC	20.0	20.2	ug/L	1.10	1.20	30	
Chloromethane	SPCC	20.0	21.3	ug/L	0.369	6.30	30	
1,1,1-Trichloroethane		20.0	21.6	ug/L	0.720	7.90	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane		20.0	20.4	ug/L	0.401	2.10	30	
1,1,2-Trichloroethane		20.0	20.0	ug/L	0.250	0.100	30	
1,2,4-Trichlorobenzene		20.0	20.9	ug/L	0.925	4.60	30	
1,2-Dibromo-3-Chloropropane		20.0	18.4	ug/L	0.0698	8.00	30	
1,2-Dibromoethane		20.0	20.6	ug/L	0.246	3.00	30	
1,2-Dichlorobenzene		20.0	21.0	ug/L	1.43	4.80	30	
1,2-Dichloroethane		20.0	19.9	ug/L	0.502	0.300	30	
cis-1,2-Dichloroethene		20.0	22.2	ug/L	0.371	10.9	30	
trans-1,2-Dichloroethene		20.0	22.0	ug/L	0.356	9.80	30	
1,3-Dichlorobenzene		20.0	20.9	ug/L	1.70	4.50	30	
1,4-Dichlorobenzene		20.0	19.7	ug/L	1.68	1.70	30	
2-Butanone		20.0	16.7	ug/L	0.0566	16.7	30	
2-Hexanone		20.0	17.1	ug/L	0.0926	14.3	30	
4-Methyl-2-Pentanone		20.0	17.8	ug/L	0.0445	10.8	30	
Acetone		20.0	19.4	ug/L	0.0547	3.20	30	
Benzene		20.0	20.2	ug/L	1.28	1.10	30	
Bromodichloromethane		20.0	20.9	ug/L	0.486	4.40	30	
Bromomethane		20.0	24.8	ug/L	0.289	23.9	30	
Carbon Disulfide		20.0	19.2	ug/L	0.918	3.90	30	
Carbon Tetrachloride		20.0	21.5	ug/L	0.662	7.30	30	
Chloroethane		20.0	22.2	ug/L	0.260	11.2	30	
cis-1,3-Dichloropropene		20.0	22.3	ug/L	0.484	11.3	30	
Cyclohexane		20.0	21.3	ug/L	0.547	6.60	30	
Dibromochloromethane		20.0	20.9	ug/L	0.362	4.40	30	
Dichlorodifluoromethane		20.0	25.0	ug/L	0.706	25.2	30	
Isopropylbenzene		20.0	18.4	ug/L	1.68	7.90	30	
Methyl acetate		20.0	19.2	ug/L	0.127	4.10	30	
Methyl Tert Butyl Ether		20.0	23.6	ug/L	0.732	18.0	30	
Methylcyclohexane		20.0	21.1	ug/L	0.517	5.60	30	
Methylene Chloride		20.0	20.6	ug/L	0.341	3.00	30	

00078708

ALTERNATE SOURCE CALIBRATION REPORT

Login Number:L0710596	Run Date:10/18/2007	Sample ID: WG253187-12
Instrument ID: HPMS10	Run Time:18:23	Method: 8260B
File ID:10M59732	Analyst:MES	QC Key: STD
ICal Workgroup:WG253187	Cal ID: HPMS10 - 18-OCT-0	7

Analyte	Expected	Found	Units	RF	%D	UCL	Q
Styrene	20.0	19.9	ug/L	1.12	0.300	30	
Tetrachloroethene	20.0	21.2	ug/L	0.390	5.90	30	
trans-1,3-Dichloropropene	20.0	20.2	ug/L	0.508	0.900	30	
Trichloroethene	20.0	22.1	ug/L	0.375	10.4	30	
Trichlorofluoromethane	20.0	17.1	ug/L	0.742	14.5	30	
Xylenes	60.0	66.7	ug/L	0.709	11.2	30	
m-,p-Xylene	40.0	44.2	ug/L	0.733	10.6	30	
o-Xylene	20.0	22.4	ug/L	0.684	12.2	30	
1,2-Dichloroethene	40.0	44.1	ug/L	0.364	10.3	30	

^{*} Exceeds %D Limit

CCC Calibration Check Compounds SPCC System Performance Check Compounds

ALTERNATE SOURCE CALIBRATION REPORT

 Login Number: L0710596
 Run Date: 10/01/2007
 Sample ID: WG251532-11

 Instrument ID: HPMS11
 Run Time: 20:02
 Method: 8260B

 File ID: 11M46067
 Analyst: MES
 QC Key: STD

 ICal Workgroup: WG251532
 Cal ID: HPMS11 - 01-OCT-07

Analyte		Expected	Found	Units	RF	%D	UCL	Q
1,1-Dichloroethene	CCC	20.0	19.5	ug/L	0.624	2.60	30	
1,2-Dichloropropane	CCC	20.0	21.3	ug/L	0.314	6.60	30	
Chloroform	CCC	20.0	20.9	ug/L	0.567	4.30	30	
Ethylbenzene	CCC	20.0	22.1	ug/L	0.582	10.4	30	
Toluene	CCC	20.0	21.7	ug/L	1.65	8.50	30	
Vinyl Chloride	CCC	20.0	19.9	ug/L	0.369	0.500	30	
1,1,2,2-Tetrachloroethane	SPCC	20.0	20.8	ug/L	0.481	3.90	30	
1,1-Dichloroethane	SPCC	20.0	20.9	ug/L	0.672	4.70	30	
Bromoform	SPCC	20.0	19.5	ug/L	0.155	2.60	30	
Chlorobenzene	SPCC	20.0	20.9	ug/L	1.03	4.30	30	
Chloromethane	SPCC	20.0	20.1	ug/L	0.450	0.700	30	
1,1,1-Trichloroethane		20.0	20.7	ug/L	0.539	3.50	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane		20.0	19.8	ug/L	0.249	1.00	30	
1,1,2-Trichloroethane		20.0	22.1	ug/L	0.253	10.6	30	
1,2,4-Trichlorobenzene		20.0	21.1	ug/L	0.869	5.60	30	
1,2-Dibromo-3-Chloropropane		20.0	19.0	ug/L	0.0928	5.00	30	
1,2-Dibromoethane		20.0	20.7	ug/L	0.235	3.70	30	
1,2-Dichlorobenzene		20.0	20.8	ug/L	1.26	4.00	30	
1,2-Dichloroethane		20.0	19.7	ug/L	0.492	1.60	30	
cis-1,2-Dichloroethene		20.0	21.9	ug/L	0.286	9.50	30	
trans-1,2-Dichloroethene		20.0	20.7	ug/L	0.269	3.50	30	
1,3-Dichlorobenzene		20.0	21.5	ug/L	1.48	7.70	30	
1,4-Dichlorobenzene		20.0	21.1	ug/L	1.48	5.70	30	
2-Butanone		20.0	19.4	ug/L	0.0639	3.00	30	
2-Hexanone		20.0	18.8	ug/L	0.146	6.20	30	
4-Methyl-2-Pentanone		20.0	19.4	ug/L	0.0631	3.00	30	
Acetone		20.0	20.2	ug/L	0.0504	0.800	30	
Benzene		20.0	21.2	ug/L	1.06	6.20	30	
Bromodichloromethane		20.0	21.2	ug/L	0.405	5.90	30	
Bromomethane		20.0	24.7	ug/L	0.216	23.4	30	
Carbon Disulfide		20.0	19.2	ug/L	0.748	4.00	30	
Carbon Tetrachloride		20.0	18.5	ug/L	0.422	7.50	30	
Chloroethane		20.0	22.3	ug/L	0.275	11.3	30	
cis-1,3-Dichloropropene		20.0	21.4	ug/L	0.428	7.20	30	
Cyclohexane		20.0	19.8	ug/L	0.590	1.10	30	
Dibromochloromethane		20.0	21.3	ug/L	0.321	6.70	30	
Dichlorodifluoromethane		20.0	21.5	ug/L	0.527	7.30	30	
Isopropylbenzene		20.0	18.2	ug/L	1.64	8.90	30	
Methyl acetate		20.0	26.2	ug/L	0.168	31.2	30	*
Methyl Tert Butyl Ether		20.0	21.2	ug/L	0.647	6.20	30	
Methylcyclohexane		20.0	20.0	ug/L	0.381	0	30	
Methylene Chloride		20.0	20.3	ug/L	0.279	1.50	30	

00078710

ALTERNATE SOURCE CALIBRATION REPORT

Login Number:L0710596	Run Date:10/01/2007	Sample ID: WG251532-11
Instrument ID: HPMS11	Run Time:20:02	Method: 8260B
File ID:11M46067	Analyst:MES	QC Key: STD
TCal Workgroup.WG251532	Cal TD:HPMS11 - 01-0CT-0	7

Analyte	Expected	Found	Units	RF	%D	UCL	Q
Styrene	20.0	20.3	ug/L	1.15	1.50	30	
Tetrachloroethene	20.0	19.9	ug/L	0.288	0.300	30	
trans-1,3-Dichloropropene	20.0	19.8	ug/L	0.551	0.900	30	
Trichloroethene	20.0	21.5	ug/L	0.250	7.60	30	
Trichlorofluoromethane	20.0	15.8	ug/L	0.488	21.1	30	
Xylenes	60.0	64.5	ug/L	0.699	7.40	30	
o-Xylene	20.0	21.2	ug/L	0.677	6.20	30	
m-,p-Xylene	40.0	43.2	ug/L	0.720	8.00	30	
1,2-Dichloroethene	40.0	42.6	ug/L	0.278	6.50	30	

^{*} Exceeds %D Limit

CCC Calibration Check Compounds SPCC System Performance Check Compounds

00078711

CONTINUING CALIBRATION VERIFICATION (CCV)

Analyte		Expected	Found	UNITS	RF	%D	UCL
1,1-Dichloroethene	CCC	50.0	52.1	ug/L	0.332	4.24	20
1,2-Dichloropropane	CCC	50.0	53.0	ug/L	0.300	5.92	20
Chloroform	CCC	50.0	52.4	ug/L	0.709	4.84	20
Ethylbenzene	CCC	50.0	51.6	ug/L	0.572	3.26	20
Toluene	CCC	50.0	53.3	ug/L	1.60	6.62	20
Vinyl Chloride	CCC	50.0	47.1	ug/L	0.251	5.76	20
1,1,2,2-Tetrachloroethane	SPCC	50.0	48.8	ug/L	0.397	2.48	40
1,1-Dichloroethane	SPCC	50.0	51.9	ug/L	0.658	3.79	40
Bromoform	SPCC	50.0	51.3	ug/L	0.211	2.54	40
Chlorobenzene	SPCC	50.0	48.4	ug/L	1.05	3.11	40
Chloromethane	SPCC	50.0	45.2	ug/L	0.314	9.54	40
1,1,1-Trichloroethane		50.0	52.9	ug/L	0.707	5.87	40
1,1,2-Trichloro-1,2,2-Trifluoroethane		50.0	51.9	ug/L	0.407	3.78	40
1,1,2-Trichloroethane		50.0	49.1	ug/L	0.245	1.88	40
1,2,4-Trichlorobenzene		50.0	50.5	ug/L	0.892	0.955	40
1,2-Dibromo-3-Chloropropane		50.0	46.8	ug/L	0.0709	6.45	40
1,2-Dibromoethane		50.0	52.6	ug/L	0.251	5.11	40
1,2-Dichlorobenzene		50.0	50.1	ug/L	1.37	0.176	40
1,2-Dichloroethane		50.0	49.7	ug/L	0.501	0.543	40
cis-1,2-Dichloroethene		50.0	55.8	ug/L	0.374	11.6	40
trans-1,2-Dichloroethene		50.0	55.9	ug/L	0.363	11.8	40
1,3-Dichlorobenzene		50.0	49.5	ug/L	1.61	0.962	40
1,4-Dichlorobenzene		50.0	47.5	ug/L	1.62	4.99	40
2-Butanone		50.0	45.1	ug/L	0.0612	9.87	40
2-Hexanone		50.0	47.1	ug/L	0.102	5.82	40
4-Methyl-2-Pentanone		50.0	49.9	ug/L	0.0499	0.121	40
Acetone		50.0	44.5	ug/L	0.0503	10.9	40
Benzene		50.0	53.1	ug/L	1.34	6.12	40
Bromodichloromethane		50.0	52.4	ug/L	0.488	4.77	40
Bromomethane		50.0	54.8	ug/L	0.256	9.68	40
Carbon Disulfide		50.0	52.4	ug/L	1.00	4.81	40
Carbon Tetrachloride		50.0	53.2	ug/L	0.656	6.30	40
Chloroethane		50.0	52.9	ug/L	0.247	5.90	40
cis-1,3-Dichloropropene		50.0	57.6	ug/L	0.501	15.2	40
Cyclohexane		50.0	55.9	ug/L	0.574	11.9	40
Dibromochloromethane		50.0	52.8	ug/L	0.366	5.51	40
Dichlorodifluoromethane		50.0	50.3	ug/L	0.568	0.629	40
Isopropylbenzene		50.0	48.8	ug/L	1.77	2.37	40
Methyl acetate		50.0	58.5	ug/L	0.155	17.0	40
Methyl Tert Butyl Ether		50.0	55.7	ug/L	0.690	11.3	40
Methylcyclohexane		50.0	54.9	ug/L	0.538	9.88	40
Methylene Chloride		50.0	51.4	ug/L	0.323	2.73	40

00078712

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596	Run Date:10/25/2007	Sample ID: WG253793-02
Instrument ID: HPMS10	Run Time: 08:27	Method: 8260B
File ID:10M59851	Analvst:MES	QC Key:STD
Workgroup (AAB#):WG253794	Cal ID:HPMS10 - 18-OCT	-07

Analyte	Expected	Found	UNITS	RF	%D	UCL	Q
Styrene	50.0	49.1	ug/L	1.11	1.72	40	
Tetrachloroethene	50.0	51.3	ug/L	0.378	2.61	40	
trans-1,3-Dichloropropene	50.0	53.8	ug/L	0.542	7.53	40	
Trichloroethene	50.0	55.5	ug/L	0.377	11.0	40	
Trichlorofluoromethane	50.0	50.4	ug/L	0.848	0.734	40	
Xylenes	150	163	ug/L	0.695	8.80	40	
1,2-Dichloroethene	100	112	ug/L	0.368	11.7	40	
m-,p-Xylene	100	108	ug/L	0.713	7.64	40	
o-Xylene	50.0	55.6	ug/L	0.678	11.1	40	

^{*} Exceeds %D Criteria

CCC Calibration Check Compounds SPCC System Performance Check Compounds

00078713

CONTINUING CALIBRATION VERIFICATION (CCV)

Analyte		Expected	Found	UNITS	RF	%D	UCL	Q
1,1-Dichloroethene	CCC	50.0	49.1	ug/L	0.312	1.87	20	
1,2-Dichloropropane	CCC	50.0	52.0	ug/L	0.294	3.91	20	
Chloroform	CCC	50.0	51.6	ug/L	0.698	3.17	20	
Ethylbenzene	CCC	50.0	49.0	ug/L	0.543	1.91	20	
Toluene	CCC	50.0	50.7	ug/L	1.52	1.32	20	
Vinyl Chloride	CCC	50.0	49.8	ug/L	0.266	0.411	20	
1,1,2,2-Tetrachloroethane	SPCC	50.0	48.7	ug/L	0.397	2.50	40	
1,1-Dichloroethane	SPCC	50.0	50.7	ug/L	0.643	1.35	40	
Bromoform	SPCC	50.0	53.6	ug/L	0.221	7.12	40	
Chlorobenzene	SPCC	50.0	46.2	ug/L	1.00	7.63	40	
Chloromethane	SPCC	50.0	46.4	ug/L	0.321	7.29	40	
1,1,1-Trichloroethane		50.0	51.9	ug/L	0.693	3.74	40	
1,1,2-Trichloro-1,2,2-Trifluoroethane		50.0	50.8	ug/L	0.399	1.67	40	
1,1,2-Trichloroethane		50.0	48.9	ug/L	0.244	2.16	40	
1,2,4-Trichlorobenzene		50.0	49.3	ug/L	0.872	1.31	40	
1,2-Dibromo-3-Chloropropane		50.0	44.6	ug/L	0.0677	10.8	40	
1,2-Dibromoethane		50.0	52.6	ug/L	0.251	5.21	40	
1,2-Dichlorobenzene		50.0	48.3	ug/L	1.32	3.32	40	
1,2-Dichloroethane		50.0	52.0	ug/L	0.523	3.90	40	
cis-1,2-Dichloroethene		50.0	54.6	ug/L	0.366	9.21	40	
trans-1,2-Dichloroethene		50.0	53.5	ug/L	0.347	6.95	40	
1,3-Dichlorobenzene		50.0	46.7	ug/L	1.52	6.62	40	
1,4-Dichlorobenzene		50.0	45.3	ug/L	1.55	9.34	40	
2-Butanone		50.0	43.0	ug/L	0.0585	13.9	40	
2-Hexanone		50.0	46.9	ug/L	0.101	6.20	40	
4-Methyl-2-Pentanone		50.0	50.6	ug/L	0.0506	1.21	40	
Acetone		50.0	41.2	ug/L	0.0466	17.6	40	
Benzene		50.0	50.6	ug/L	1.28	1.10	40	
Bromodichloromethane		50.0	53.2	ug/L	0.495	6.33	40	
Bromomethane		50.0	53.4	ug/L	0.249	6.88	40	
Carbon Disulfide		50.0	48.2	ug/L	0.920	3.67	40	
Carbon Tetrachloride		50.0	51.8	ug/L	0.639	3.63	40	
Chloroethane		50.0	52.6	ug/L	0.246	5.25	40	
cis-1,3-Dichloropropene		50.0	57.7	ug/L	0.502	15.4	40	
Cyclohexane		50.0	52.1	ug/L	0.535	4.28	40	
Dibromochloromethane		50.0	53.3	ug/L	0.370	6.66	40	
Dichlorodifluoromethane		50.0	52.1	ug/L	0.588	4.13	40	
Isopropylbenzene		50.0	46.5	ug/L	1.69	6.99	40	
Methyl acetate		50.0	61.1	ug/L	0.162	22.2	40	
Methyl Tert Butyl Ether		50.0	58.0	ug/L	0.719	16.0	40	
Methylcyclohexane		50.0	51.3	ug/L	0.502	2.54	40	
Methylene Chloride		50.0	51.5	ug/L	0.324	2.98	40	

00078714

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/27/2007 Sample ID:WG254005-02

Instrument ID:HPMS10 Run Time:09:47 Method:8260B

File ID:10M59911 Analyst:MES QC Key:STD

Workgroup (AAB#):WG254006 Cal ID:HPMS10 - 18-OCT-07

Analyte	Expected	Found	UNITS	RF	%D	UCL	Q
Styrene	50.0	47.8	ug/L	1.08	4.42	40	
Tetrachloroethene	50.0	48.2	ug/L	0.356	3.58	40	
trans-1,3-Dichloropropene	50.0	53.9	ug/L	0.543	7.85	40	
Trichloroethene	50.0	52.1	ug/L	0.354	4.25	40	
Trichlorofluoromethane	50.0	50.8	ug/L	0.856	1.69	40	
Xylenes	150	155	ug/L	0.663	3.26	40	
1,2-Dichloroethene	100	108	ug/L	0.356	8.08	40	
m-,p-Xylene	100	101	ug/L	0.670	1.15	40	
o-Xylene	50.0	53.7	ug/L	0.655	7.47	40	

^{*} Exceeds %D Criteria

CCC Calibration Check Compounds
SPCC System Performance Check Compounds

00078715

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/24/2007 Sample ID:WG253676-02

Instrument ID:HPMS11 Run Time:09:42 Method:8260B

File ID:11M46851 Analyst:MES QC Key:STD

Workgroup (AAB#):WG253678 Cal ID:HPMS11 - 01-OCT-07

Analyte		Expected	Found	UNITS	RF	%D	UCL (
1,1-Dichloroethene	CCC	50.0	51.0	ug/L	0.650	2.01	20
1,2-Dichloropropane	CCC	50.0	50.7	ug/L	0.299	1.43	20
Chloroform	CCC	50.0	52.5	ug/L	0.571	5.02	20
Ethylbenzene	CCC	50.0	50.5	ug/L	0.532	0.980	20
Toluene	CCC	50.0	50.1	ug/L	1.52	0.222	20
Vinyl Chloride	CCC	50.0	54.2	ug/L	0.384	8.46	20
1,1,2,2-Tetrachloroethane	SPCC	50.0	47.2	ug/L	0.437	5.63	40
1,1-Dichloroethane	SPCC	50.0	52.8	ug/L	0.677	5.55	40
Bromoform	SPCC	50.0	50.2	ug/L	0.160	0.456	40
Chlorobenzene	SPCC	50.0	47.4	ug/L	0.937	5.11	40
Chloromethane	SPCC	50.0	52.5	ug/L	0.469	5.04	40
1,1,1-Trichloroethane		50.0	53.4	ug/L	0.556	6.87	40
1,1,2-Trichloro-1,2,2-Trifluoroethane		50.0	58.4	ug/L	0.294	16.9	40
1,1,2-Trichloroethane		50.0	49.8	ug/L	0.228	0.323	40
1,2,4-Trichlorobenzene		50.0	50.7	ug/L	0.834	1.33	40
1,2-Dibromo-3-Chloropropane		50.0	47.5	ug/L	0.0928	5.00	40
1,2-Dibromoethane		50.0	49.3	ug/L	0.224	1.32	40
1,2-Dichlorobenzene		50.0	48.8	ug/L	1.18	2.38	40
1,2-Dichloroethane		50.0	49.3	ug/L	0.494	1.32	40
cis-1,2-Dichloroethene		50.0	52.8	ug/L	0.276	5.65	40
trans-1,2-Dichloroethene		50.0	52.9	ug/L	0.275	5.85	40
1,3-Dichlorobenzene		50.0	49.8	ug/L	1.37	0.352	40
1,4-Dichlorobenzene		50.0	49.3	ug/L	1.38	1.48	40
2-Butanone		50.0	47.6	ug/L	0.0627	4.73	40
2-Hexanone		50.0	47.3	ug/L	0.147	5.33	40
4-Methyl-2-Pentanone		50.0	47.1	ug/L	0.0614	5.73	40
Acetone		50.0	48.3	ug/L	0.0483	3.36	40
Benzene		50.0	51.0	ug/L	1.02	1.98	40
Bromodichloromethane		50.0	52.0	ug/L	0.397	3.99	40
Bromomethane		50.0	59.1	ug/L	0.207	18.1	40
Carbon Disulfide		50.0	53.5	ug/L	0.834	7.02	40
Carbon Tetrachloride		50.0	49.4	ug/L	0.446	1.13	40
Chloroethane		50.0	56.4	ug/L	0.279	12.9	40
cis-1,3-Dichloropropene		50.0	51.3	ug/L	0.410	2.70	40
Cyclohexane		50.0	54.3	ug/L	0.647	8.57	40
Dibromochloromethane		50.0	51.9	ug/L	0.313	3.76	40
Dichlorodifluoromethane		50.0	51.0	ug/L	0.501	1.98	40
Isopropylbenzene		50.0	46.5	ug/L	1.69	6.99	40
Methyl acetate		50.0	59.4	ug/L	0.152	18.8	40
Methyl Tert Butyl Ether		50.0	50.6	ug/L	0.617	1.24	40
Methylcyclohexane		50.0	54.1	ug/L	0.412	8.28	40
Methylene Chloride		50.0	49.1	ug/L	0.261	1.86	40

00078716

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596	Run Date:10/24/2007	Sample ID:WG253676-02
Instrument ID: HPMS11	Run Time:09:42	Method: 8260B
File ID:11M46851	Analyst:MES	QC Key:STD
Workgroup (AAR#):WG253678	Cal ID:HPMS11 - 01-0CT-07	

Analyte	Expected	Found	UNITS	RF	%D	UCL	Q
Styrene	50.0	46.3	ug/L	1.06	7.38	40	
Tetrachloroethene	50.0	46.8	ug/L	0.269	6.45	40	
trans-1,3-Dichloropropene	50.0	50.7	ug/L	0.563	1.31	40	
Trichloroethene	50.0	51.7	ug/L	0.241	3.38	40	
Trichlorofluoromethane	50.0	54.5	ug/L	0.661	8.91	40	
Xylenes	150	150	ug/L	0.651	0.0155	40	
1,2-Dichloroethene	100	106	ug/L	0.276	5.75	40	
m-,p-Xylene	100	100	ug/L	0.669	0.265	40	
o-Xylene	50.0	49.7	ug/L	0.634	0.577	40	

^{*} Exceeds %D Criteria

CCC Calibration Check Compounds SPCC System Performance Check Compounds

KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD AREA SUMMARY (COMPARED TO CCV)

Login Number:L0710596
Instrument ID:HPMS11
Workgroup (AAB#):WG253678

CCV Number: WG253676-02

CAL ID: HPMS11-01-OCT-07

Matrix:WATER

Sample :	Number	Dilution	Tag	IS-1	IS-2	IS-3
WG2536	76-02	NA	NA	367509	701985	1053473
Upper	Limit	NA	NA	735018	1403970	2106946
Lower	Limit	NA	NA	183755	350993	526737
L071059	6-01	1.00	01	317248	618124	926379
L071059	6-02	1.00	01	306278	603804	897293
L071059	6-08	1.00	01	284886	564007	834082
L071059	6-09	1.00	01	289842	566609	839954
L071059	6-15	1.00	01	326693	633168	952321
WG253678	8-01	1.00	01	341476	665863	982937
WG253678	8-02	1.00	01	357133	677099	998823
WG253678	8-03	1.00	01	355489	672208	996951
WG253678	8-04	1.00	01	271454	532147	787697

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

KEMRON FORMS - Modified 02/20/2007 Version 1.3 PDF File ID: 921096 Report generated 10/30/2007 15:50

KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD AREA SUMMARY (COMPARED TO CCV)

Login Number:L0710596

Instrument ID:HPMS10

Workgroup (AAB#):WG253794

CCV Number: WG253793-02

CAL ID: HPMS10-18-OCT-07

Matrix:WATER

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG253793-02	NA	NA	413338	728620	873658
Upper Limit	NA	NA	826676	1457240	1747316
Lower Limit	NA	NA	206669	364310	436829
L0710596-05	1.00	01	303260	547597	663618
L0710596-07	1.00	01	305159	550987	667655
L0710596-10	1.00	01	293671	525023	633960
WG253794-01	1.00	01	327196	585923	726288
WG253794-02	1.00	01	385292	646316	769398
WG253794-03	1.00	01	393152	679167	813970

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

KEMRON FORMS - Modified 02/20/2007 Version 1.3 PDF File ID: 921096 Report generated 10/30/2007 15:50

KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD AREA SUMMARY (COMPARED TO CCV)

Login Number:L0710596
Instrument ID:HPMS10
Workgroup (AAB#):WG254006

CCV Number: WG254005-02

CAL ID: HPMS10-18-OCT-07

Matrix:WATER

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG254005-02	NA	NA	413238	705438	829307
Upper Limit	NA	NA	826476	1410876	1658614
Lower Limit	NA	NA	206619	352719	414654
L0710596-01	100	DL01	325884	596208	727364
L0710596-02	10.0	DL01	311882	571245	687668
L0710596-09	20.0	DL01	292113	532866	652346
L0710596-11	1.00	02	289200	516269	628595
WG254006-01	1.00	01	342368	607071	730405
WG254006-02	1.00	01	377408	623479	725085
WG254006-03	1.00	01	367276	622980	739807

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

Underline = Response outside limits

KEMRON FORMS - Modified 02/20/2007 Version 1.3 PDF File ID: 921096 Report generated 10/30/2007 15:50

KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD RETENTION TIME SUMMARY (COMPARED TO CCV)

Login Number:L0710596

Instrument ID:HPMS11

Workgroup (AAB#):WG253678

CCV Number:WG253676-02

CAL ID: HPMS11-01-OCT-07

Matrix:WATER

				1	
Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG253676-02	NA	NA	16.81	14.01	10.38
Upper Limit	NA	NA	17.31	14.51	10.88
Lower Limit	NA	NA	16.31	13.51	9.88
L0710596-01	1.00	01	16.812	14.01	10.381
L0710596-02	1.00	01	16.812	14.01	10.381
L0710596-08	1.00	01	16.812	14.01	10.381
L0710596-09	1.00	01	16.812	14.01	10.381
L0710596-15	1.00	01	16.812	14.01	10.381
WG253678-01	1.00	01	16.812	14.01	10.381
WG253678-02	1.00	01	16.812	14.01	10.381
WG253678-03	1.00	01	16.812	14.01	10.381
WG253678-04	1.00	01	16.812	14.01	10.381

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

KEMRON FORMS - Modified 02/20/2007 Version 1.3 PDF File ID: 921098 Report generated 10/30/2007 15:50

KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD RETENTION TIME SUMMARY (COMPARED TO CCV)

Login Number:L0710596

Instrument ID:HPMS10

Workgroup (AAB#):WG253794

CCV Number:WG253793-02

CAL ID: HPMS10-18-OCT-07

Matrix:WATER

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG253793-02	NA	NA	17.74	14.73	10.85
Upper Limit	NA	NA	18.24	15.23	11.35
Lower Limit	NA	NA	17.24	14.23	10.35
L0710596-05	1.00	01	17.74	14.73	10.85
L0710596-07	1.00	01	17.75	14.73	10.85
L0710596-10	1.00	01	17.74	14.73	10.85
WG253794-01	1.00	01	17.74	14.73	10.85
WG253794-02	1.00	01	17.74	14.73	10.85
WG253794-03	1.00	01	17.74	14.73	10.85

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

KEMRON FORMS - Modified 02/20/2007 Version 1.3 PDF File ID: 921098 Report generated 10/30/2007 15:50

KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD RETENTION TIME SUMMARY (COMPARED TO CCV)

Login Number:L0710596
Instrument ID:HPMS10
Workgroup (AAB#):WG254006

CCV Number:WG254005-02

CAL ID: HPMS10-18-OCT-07

Matrix:WATER

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG254005-02	NA	NA	17.74	14.73	10.85
Upper Limit	NA	NA	18.24	15.23	11.35
Lower Limit	NA	NA	17.24	14.23	10.35
L0710596-01	100	DL01	17.74	14.73	10.85
L0710596-02	10.0	DL01	17.73	14.73	10.85
L0710596-09	20.0	DL01	17.74	14.73	10.85
L0710596-11	1.00	02	17.73	14.73	10.85
WG254006-01	1.00	01	17.73	14.73	10.85
WG254006-02	1.00	01	17.74	14.73	10.85
WG254006-03	1.00	01	17.73	14.73	10.85

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

Underline = Response outside limits

KEMRON FORMS - Modified 02/20/2007 Version 1.3 PDF File ID: 921098 Report generated 10/30/2007 15:50

2.2 Metals Data

2.2.1 Metals I C P Data

2.2.1.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston. TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
47WWZZ-101807	L0710596-12	6010B	1	23-OCT-07
47WWZZ-101807	L0710596-12	6010B	10	23-OCT-07
EQUIPMENT RINSE	L0710596-14	6010B	1	23-OCT-07

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 924246 Report generated 11/02/2007 10:41

1 OF 1

KEMRON ENVIRONMENTAL SERVICES

00078727

Report Date : November 2, 2007

Report Number: L0710596

Sample Number: L0710596-12 PrePrep Method: NONE Client ID: 47WWZZ-101807 Prep Method: 30052

Instrument:PE-ICP2
Prep Date:10/26/2007 05:30
Cal Date:10/31/2007 09:29
Run Date:10/31/2007 18:16

ion: 1 File ID: P2.103107.181650

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Dissolved	7429-90-5		Ū	0.100	0.0500
Beryllium, Dissolved	7440-41-7		U	0.00200	0.000500
Calcium, Dissolved	7440-70-2	307		0.200	0.100
Cobalt, Dissolved	7440-48-4	0.102		0.00500	0.00250
Iron, Dissolved	7439-89-6	16.7		0.100	0.0250
Potassium, Dissolved	7440-09-7	5.29		1.00	0.250
Magnesium, Dissolved	7439-95-4	192		0.500	0.250
Zinc, Dissolved	7440-66-6	0.0127	J	0.0200	0.00500

U Not detected at or above adjusted sample detection limit

1 of 3

J The analyte was positively identified, but the quantitation was below the RL

KEMRON ENVIRONMENTAL SERVICES

00078728

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-12
Client ID: 47WWZZ-101807 PrePrep Method: NONE
Prep Method: 3005A Instrument: PE-ICP2

Prep Date: 10/26/2007 05:30 Cal Date: 11/01/2007 08:36 Matrix: Water Analytical Method: 6010B Workgroup Number: WG254046 Analyst:**KRV** Run Date: 11/01/2007 10:04

Collect Date: 10/18/2007 09:55 Dilution: 10 File ID: P2.110107.100455 Sample Tag: DL01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Sodium, Dissolved	7440-23-5	873		5.00	2.50
Vanadium, Dissolved	7440-62-2		Ū	0.100	0.0500

U Not detected at or above adjusted sample detection limit

of

3

KEMRON ENVIRONMENTAL SERVICES

00078729

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-14
Client ID: EQUIPMENT RINSE PrePrep Method: NONE
Prep Method: 3005A

Instrument:PE-ICP2
Prep Date: 10/26/2007 05:30 Cal Date: 10/31/2007 09:29 Matrix: Water Analytical Method: 6010B Workgroup Number: WG254046 Analyst:KHR Run Date: 10/31/2007 18:22 Collect Date: 10/22/2007 14:20

File ID: P2.103107.182219 Dilution: 1 Sample Tag: 01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Dissolved	7429-90-5		Ū	0.100	0.0500
Beryllium, Dissolved	7440-41-7		υ	0.00200	0.000500
Calcium, Dissolved	7440-70-2	0.332		0.200	0.100
Cobalt, Dissolved	7440-48-4		Ū	0.00500	0.00250
Iron, Dissolved	7439-89-6		Ū	0.100	0.0250
Potassium, Dissolved	7440-09-7		Ū	1.00	0.250
Magnesium, Dissolved	7439-95-4		Ū	0.500	0.250
Sodium, Dissolved	7440-23-5	24.0		0.500	0.250
Vanadium, Dissolved	7440-62-2		U	0.0100	0.00500
Zinc, Dissolved	7440-66-6		U	0.0200	0.00500

U Not detected at or above adjusted sample detection limit

3

2.2.1.2 QC Summary Data

Example 6010 Calculations Perkin Elmer Optima 4300 DV

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Example 6010 Calculations Thermo Scientific IRIS Advantage

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

MS/ With HNO :1F HCl H ₂ O	E: 10/26/07 E: 5/m/ 510 22494 MSD: 5/m/510 22494 ness: 10 O3 Lot #: 126/1 HNO3: 12634 Lot #: 12634	7		Digestion Work Group: West General Digest	thod 3005A-Water thod 3050B-Soil ion thod 3020A-Water thod 3050B-Soil
Earl: Dige Hotl	iest Sample Due Date: 12 est Tube Lot #: 20 12 block #: block Temp - Start: 25 block Temp - End: 25	6/30/87		Relinquished By: Digest Received By:	
1011	KEMRON #	Initial WT/Vol	Final Volume	Comments	Due Date
-	<u> </u>	somi	some	LOB FILT	-02
2	LIW - CO - CO		1		9
} -	10.599696-12				10/70
	10.648.02				10/21
5	-14				(0)
	OY MS	,			604/
	14MD	 _L		1	· a +
					93
0					
1					
2					
3					-
4					
5					
6					
7					
8					
9		1			
0	,	10/26/07		,	
1		10/			
2					
3 4				- Total Control Contro	the same of the faces and the same and the same of the
5					
.6	_/				
7					
8					
<u> </u>					
	nments:				

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 103107HR.CSV

 Analyst1:
 KHR
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 6

 Maintenance Log ID:
 21515
 Rev: 6
 Rev: 6

Calibration Std: STD22439 ICV/CCV Std: STD22609 Post Spike: STD22493

ICSA: STD22610 ICSAB: STD22567

Workgroups: 254205, 254206, 254046, 254208, 254193

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	P2.103107.090411	WG254405-01	Calibration Point		1		10/31/07 09:04
2	P2.103107.091028	WG254405-02	Calibration Point		1		10/31/07 09:10
3	P2.103107.091655	WG254405-03	Calibration Point		1		10/31/07 09:16
4	P2.103107.092320	WG254405-04	Calibration Point		1		10/31/07 09:23
5	P2.103107.092948	WG254405-05	Calibration Point		1		10/31/07 09:29
6	P2.103107.093521	WG254405-06	Initial Calibration Verification		1		10/31/07 09:35
7	P2.103107.094150	WG254405-07	Initial Calib Blank		1		10/31/07 09:41
8	P2.103107.094822	WG254405-08	Interference Check		1		10/31/07 09:48
9	P2.103107.095342	WG254405-09	Interference Check		1		10/31/07 09:53
10	P2.103107.101817	WG254405-10	CCV		1		10/31/07 10:18
11	P2.103107.102434	WG254405-11	ССВ		1		10/31/07 10:24
12	P2.103107.103051	L0710200-04	BGA006	50/50	1		10/31/07 10:30
13	P2.103107.103715	L0710675-02	SS007MW010231007	50/50	1		10/31/07 10:37
14	P2.103107.104337	L0710675-03	SS007MW010231007DUP	50/50	1		10/31/07 10:43
15	P2.103107.105006	L0710675-04	MW4-35231007	50/50	1		10/31/07 10:50
16	P2.103107.105633	L0710675-05	SS007MW006231007	50/50	1		10/31/07 10:56
17	P2.103107.110255	L0710675-06	EB23100701	50/50	1		10/31/07 11:02
18	P2.103107.110913	L0710675-07	313WINDHAM231007	50/50	1		10/31/07 11:09
19	P2.103107.111542	WG254405-12	CCV		1		10/31/07 11:15
20	P2.103107.112201	WG254405-13	ССВ		1		10/31/07 11:22
21	P2.103107.112817	L0710675-09	SS007MW009231007	50/50	1		10/31/07 11:28
22	P2.103107.113542	L0710675-10	SS007MW008231007	50/50	1		10/31/07 11:35
23	P2.103107.114159	L0710675-11	MW4-36231007	50/50	1		10/31/07 11:41
24	P2.103107.114819	L0710675-12	MW4-36231007DUP	50/50	1		10/31/07 11:48
25	P2.103107.115443	L0710675-13	EB23100702	50/50	1		10/31/07 11:54
26	P2.103107.120058	WG253477-02	Method/Prep Blank	50/50	1		10/31/07 12:00
27	P2.103107.120718	WG254405-14	CCV		1		10/31/07 12:07
28	P2.103107.121339	WG254405-15	CCB		1		10/31/07 12:13
29	P2.103107.121954	WG253477-03	Laboratory Control Sample	50/50	1		10/31/07 12:19
30	P2.103107.122612	WG253477-01	Reference Sample		1	L0710444-01	10/31/07 12:26
31	P2.103107.123231	WG253477-04	Matrix Spike	50/50	1		10/31/07 12:32
32	P2.103107.123854	WG253477-05	Matrix Spike Duplicate	50/50	1		10/31/07 12:38
33	P2.103107.124519	L0710444-02	MW-3	50/50	1		10/31/07 12:45
34	P2.103107.125143	L0710444-03	MW-7	50/50	1		10/31/07 12:51
35	P2.103107.125814	L0710496-04	MW-8A	50/50	1		10/31/07 12:58
36	P2.103107.130430	WG254206-01	Post Digestion Spike		1		10/31/07 13:04
37	P2.103107.131059	WG254206-02	Serial Dilution		5		10/31/07 13:10

Page: 1 Approved: November 01, 2007

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 103107HR.CSV

 Analyst1:
 KHR
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 6

Maintenance Log ID: 21515

Calibration Std: STD22439 ICV/CCV Std: STD22609 Post Spike: STD22493

ICSA: STD22610 ICSAB: STD22567

Workgroups: 254205, 254206, 254046, 254208, 254193

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	P2.103107.131725	WG254405-16	CCV		1		10/31/07 13:17
39	P2.103107.132343	WG254405-17	ССВ		1		10/31/07 13:23
40	P2.103107.133004	L0710444-04	MW-1S	50/50	1		10/31/07 13:30
41	P2.103107.133628	L0710444-05	MW-2S	50/50	1		10/31/07 13:36
42	P2.103107.134246	L0710444-06	MW-3S	50/50	1		10/31/07 13:42
43	P2.103107.134904	L0710444-07	MW-7S	50/50	1		10/31/07 13:49
44	P2.103107.135527	L0710496-01	MW-2A	50/50	1		10/31/07 13:55
45	P2.103107.140044	L0710496-02	MW-2B	50/50	1		10/31/07 14:00
46	P2.103107.140705	L0710496-03	MW-2C	50/50	1		10/31/07 14:07
47	P2.103107.141325	L0710496-05	MW-8B	50/50	1		10/31/07 14:13
48	P2.103107.141947	L0710496-06	MW-7A	50/50	1		10/31/07 14:19
49	P2.103107.142504	WG254405-18	CCV		1		10/31/07 14:25
50	P2.103107.143125	WG254405-19	ССВ		1		10/31/07 14:31
51	P2.103107.143743	L0710496-07	MW-7B	50/50	1		10/31/07 14:37
52	P2.103107.144405	L0710513-01	MW-1	50/50	1		10/31/07 14:44
53	P2.103107.145029	L0710513-02	MW-4	50/50	1		10/31/07 14:50
54	P2.103107.145646	L0710513-03	MW-6	50/50	1		10/31/07 14:56
55	P2.103107.150311	L0710513-04	MW-4S	50/50	1		10/31/07 15:03
56	P2.103107.150935	L0710513-05	MW-6S	50/50	1		10/31/07 15:09
57	P2.103107.151549	WG254405-20	CCV		1		10/31/07 15:15
58	P2.103107.152215	WG254405-21	ССВ		1		10/31/07 15:22
59	P2.103107.152637	L0710675-04	MW4-35231007	50/50	10		10/31/07 15:26
60	P2.103107.153254	L0710675-12	MW4-36231007DUP	50/50	10		10/31/07 15:32
61	P2.103107.153916	WG253477-01	Reference Sample		5	L0710444-01	10/31/07 15:39
62	P2.103107.154540	WG253477-04	Matrix Spike	50/50	5		10/31/07 15:45
63	P2.103107.155157	WG253477-05	Matrix Spike Duplicate	50/50	5		10/31/07 15:51
64	P2.103107.155822	L0710444-02	MW-3	50/50	5		10/31/07 15:58
65	P2.103107.160447	L0710444-03	MW-7	50/50	5		10/31/07 16:04
66	P2.103107.161139	L0710444-04	MW-1S	50/50	5		10/31/07 16:11
67	P2.103107.161757	WG254405-22	CCV		1		10/31/07 16:17
68	P2.103107.162420	WG254405-23	ССВ		1		10/31/07 16:24
69	P2.103107.163045	L0710444-05	MW-2S	50/50	5		10/31/07 16:30
70	P2.103107.163703	L0710444-06	MW-3S		5		10/31/07 16:37
71	P2.103107.164327	L0710444-07	MW-7S	50/50	5		10/31/07 16:43
72	P2.103107.164952	L0710513-01	MW-1	50/50	5		10/31/07 16:49
73	P2.103107.165610	L0710513-02	MW-4	50/50	5		10/31/07 16:56
74	P2.103107.170235	L0710513-03	MW-6	50/50	5		10/31/07 17:02

Page: 2 Approved: November 01, 2007

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 103107HR.CSV

 Analyst1:
 KHR
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 6

 Maintenance Log ID:
 21515
 Rev: 6
 Rev: 6

Calibration Std: STD22439 ICV/CCV Std: STD22609 Post Spike: STD22493

ICSA: STD22610 ICSAB: STD22567

Workgroups: 254205, 254206, 254046, 254208, 254193

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	P2.103107.170900	L0710513-04	MW-4S	50/50	5		10/31/07 17:09
76	P2.103107.171518	L0710513-05	MW-6S	50/50	5		10/31/07 17:15
77	P2.103107.172139	WG254405-24	CCV		1		10/31/07 17:21
78	P2.103107.172757	WG254405-25	ССВ		1		10/31/07 17:27
79	P2.103107.173830	WG253902-02	Method/Prep Blank	50/50	1		10/31/07 17:38
80	P2.103107.174444	WG253902-03	Laboratory Control Sample	50/50	1		10/31/07 17:44
81	P2.103107.175112	L0710648-02	49WW01-102307	50/50	1		10/31/07 17:51
82	P2.103107.175734	WG253902-01	Reference Sample		1	L0710648-04	10/31/07 17:57
83	P2.103107.180358	WG253902-04	Matrix Spike	50/50	1		10/31/07 18:03
84	P2.103107.181024	WG253902-05	Matrix Spike Duplicate	50/50	1		10/31/07 18:10
85	P2.103107.181650	L0710596-12	47WWZZ-101807	50/50	1		10/31/07 18:16
86	P2.103107.182219	L0710596-14	EQUIPMENT RINSE	50/50	1		10/31/07 18:22
87	P2.103107.182844	WG254046-01	Post Digestion Spike		1		10/31/07 18:28
88	P2.103107.183508	WG254046-02	Serial Dilution		5		10/31/07 18:35
89	P2.103107.184129	WG254405-26	CCV		1		10/31/07 18:41
90	P2.103107.184746	WG254405-27	ССВ		1		10/31/07 18:47
91	P2.103107.185402	WG253791-02	Method/Prep Blank	50/50	1		10/31/07 18:54
92	P2.103107.190021	WG253791-03	Laboratory Control Sample	50/50	1		10/31/07 19:00
93	P2.103107.190643	L0710602-02	ST14-MW05-102	50/50	1		10/31/07 19:06
94	P2.103107.191304	WG253791-01	Reference Sample		1	L0710602-03	10/31/07 19:13
95	P2.103107.191919	WG253791-04	Matrix Spike	50/50	1		10/31/07 19:19
96	P2.103107.192543	WG253791-05	Matrix Spike Duplicate	50/50	1		10/31/07 19:25
97	P2.103107.193215	L0710657-02	AV-NCB-EB-1-102307	50/50	1		10/31/07 19:32
98	P2.103107.193829	L0710613-40	5248-W0001	50/50	1		10/31/07 19:38
99	P2.103107.194449	WG254208-01	Post Digestion Spike		1		10/31/07 19:44
100	P2.103107.195114	WG254208-02	Serial Dilution		5		10/31/07 19:51
101	P2.103107.195734	WG254405-28	CCV		1		10/31/07 19:57
102	P2.103107.200355	WG254405-29	CCB		1		10/31/07 20:03
103	P2.103107.201014	L0710575-01	WAR 01	50/50	5		10/31/07 20:10
104	P2.103107.201538	L0710575-03	WAR 02	50/50	5		10/31/07 20:15
105	P2.103107.202100	L0710575-05	WAR 03	50/50	5		10/31/07 20:21
106	P2.103107.202722	L0710613-41	5248-W0002	50/50	1		10/31/07 20:27
107	P2.103107.203337	L0710613-42	5248-W0004	50/50	1		10/31/07 20:33
108	P2.103107.203957	L0710602-04	ST14-MW23-102	50/50	1		10/31/07 20:39
109	P2.103107.204624	L0710602-05	ST14-MW19-103	50/50	1		10/31/07 20:46
110	P2.103107.205240	L0710602-06	ST14-MW12-102	50/50	1		10/31/07 20:52
111	P2.103107.205904	L0710599-22	5248-W0005	50/50	1		10/31/07 20:59

Page: 3 Approved: November 01, 2007

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 103107HR.CSV

 Analyst1:
 KHR
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 6

Maintenance Log ID: 21515

Calibration Std: STD22439 ICV/CCV Std: STD22609 Post Spike: STD22493

ICSA: STD22610 ICSAB: STD22567

Workgroups: 254205, 254206, 254046, 254208, 254193

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
112	P2.103107.210525	WG254405-30	CCV		1		10/31/07 21:05
113	P2.103107.211143	WG254405-31	ССВ		1		10/31/07 21:11
114	P2.103107.211759	L0710599-23	5248-W0009	50/50	1		10/31/07 21:17
115	P2.103107.212420	L0710611-02	WG-ST24-MW-19-040	50/50	1		10/31/07 21:24
116	P2.103107.212939	L0710611-04	WG-ST24-MW-20-040	50/50	1		10/31/07 21:29
117	P2.103107.213603	L0710611-06	WG-ST24-MW-4-040	50/50	1		10/31/07 21:36
118	P2.103107.214228	L0710611-08	WG-ST24-MW-16-040	50/50	1		10/31/07 21:42
119	P2.103107.214843	WG253903-02	Method/Prep Blank	50/50	1		10/31/07 21:48
120	P2.103107.215506	WG254405-32	CCV		1		10/31/07 21:55
121	P2.103107.220125	WG254405-33	ССВ		1		10/31/07 22:01
122	P2.103107.220740	WG253903-03	Laboratory Control Sample	50/50	1		10/31/07 22:07
123	P2.103107.221404	WG253903-01	Reference Sample		1	L0710661-01	10/31/07 22:14
124	P2.103107.222030	WG253903-04	Matrix Spike	50/50	1		10/31/07 22:20
125	P2.103107.222656	WG253903-05	Matrix Spike Duplicate	50/50	1		10/31/07 22:26
126	P2.103107.223321	L0710661-02	SW07-BRR-2	50/50	1		10/31/07 22:33
127	P2.103107.223945	L0710655-01	SW07	50/50	1		10/31/07 22:39
128	P2.103107.224612	L0710677-04	OUTFALL 003/COMP	50/50	1		10/31/07 22:46
129	P2.103107.225231	L0710679-01	OUTFALL 002/COMP	50/50	1		10/31/07 22:52
130	P2.103107.225850	WG254193-01	Post Digestion Spike		1		10/31/07 22:58
131	P2.103107.230510	WG254193-02	Serial Dilution		5		10/31/07 23:05
132	P2.103107.231129	WG254405-34	CCV		1		10/31/07 23:11
133	P2.103107.231742	WG254405-35	ССВ		1		10/31/07 23:17
134	P2.103107.232355	L0710667-01	72 FLUME	5/50	1		10/31/07 23:23
135	P2.103107.233013	L0710667-02	AFC EFFLUENT	5/50	1		10/31/07 23:30
136	P2.103107.233722	L0710667-03	AFC BLEED	5/50	1		10/31/07 23:37
137	P2.103107.234347	L0710677-06	OUTFALL 800/COMP	50/50	1		10/31/07 23:43
138	P2.103107.235006	L0710680-01	DRL-Z-OUTLET 006	50/50	1		10/31/07 23:50
139	P2.103107.235623	L0710681-01	DRL-Z-SS-1	50/50	1		10/31/07 23:56
140	P2.110107.000143	L0710681-02	DRL-Z-SS-2	50/50	1		11/01/07 00:01
141	P2.110107.000702	L0710684-01	SITE 1	50/50	1		11/01/07 00:07
142	P2.110107.001318	L0710684-02	SITE 2	50/50	1		11/01/07 00:13
143	P2.110107.001933	WG254405-36	CCV		1		11/01/07 00:19
144	P2.110107.002547	WG254405-37	ССВ		1		11/01/07 00:25
145	P2.110107.003200	L0710691-02	OUTFALL 001/COMP	50/50	1		11/01/07 00:32
146	P2.110107.003816	L0710691-04	OUTFALL 002/COMP	50/50	1		11/01/07 00:38
147	P2.110107.004432	L0710696-01	001	50/50	1		11/01/07 00:44
148	P2.110107.005052	L0710716-01	VEMH-4012	50/50	1		11/01/07 00:50

Page: 4 Approved: November 01, 2007

Run 00078738

KEMRON Environmental Services

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 103107HR.CSV

 Analyst1:
 KHR
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 6

Maintenance Log ID: 21515

Calibration Std: STD22439 ICV/CCV Std: STD22609 Post Spike: STD22493

ICSA: STD22610 ICSAB: STD22567

Workgroups: 254205, 254206, 254046, 254208, 254193

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
149	P2.110107.005612	L0710735-01	OHIO RIVER/Z07134	50/50	1		11/01/07 00:56
150	P2.110107.010232	L0710735-02	RANNEY WELL/Z07135	50/50	1		11/01/07 01:02
151	P2.110107.010849	WG254405-38	CCV		1		11/01/07 01:08
152	P2.110107.011502	WG254405-39	ССВ		1		11/01/07 01:15

Page: 5 Approved: November 01, 2007

KEMRON Environmental Services Data Checklist

Date: 31-OCT-2007 Analyst: KHR Analyst: NA Method: 6010B Instrument: PE-ICP2 Curve Workgroup: 254405 Runlog ID: <u>19043</u> Analytical Workgroups: <u>254205</u>, <u>254206</u>, <u>254046</u>, <u>254208</u>, <u>254193</u>

Calibration/Linearity X ICV/CCV X ICB/CCB X ICSA/CSAB X	
CV/CCV	
ICBICCB X	
ICSA/ICSAB Y	
CRI	
Blank/LCS X	
MS/MSD X	
Post Spike/Serial Dilution X	
Upload Results X	
Data Qualifiers	
Generate PDF Instrument Data X	
Sign/Annotate PDF Data X	
Upload Curve Data X	
Workgroup Forms X	
Case Narrative X	
Client Forms X	
Level X 444, 513, 575	
Level 3 596, 611, 648	
Level 4 200, 496, 599, 602, 613, 657, 675	
Check for compliance with method and project specific requirements X	
Check the completeness of reported information X	
Check the information for the report narrative X	
Primary Reviewer KHR	
Secondary Reviewer MMB	
Comments	

Primary Reviewer:
01-NOV-2007

Secondary Reviewer:
01-NOV-2007

Maren Blery

Generated: NOV-01-2007 15:08:33

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 6010B

Login Number: L0710596

7 7 D#	WG254	1016
AAB#	: W(+/.74	+1.1415

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WWZZ-101807	10/18/07	10/23/07	10/26/07	180	7.82	11/01/07	180	6.19	
EQUIPMENT RINSE	10/22/07	10/23/07	10/26/07	180	3.63	10/31/07	180	5.54	
47WWZZ-101807	10/18/07	10/23/07	10/26/07	180	7.82	10/31/07	180	5.53	

* EXT = SEE PROJECT QAPP REQUIREMENTS

*ANAL = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID: 922471 Report generated 11/01/2007 11:49

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG254046

Blank File ID:P2.103107.173830 Blank Sample ID:WG253902-02

Prep Date:10/26/07 05:30 Instrument ID:PE-ICP2

Analyzed Date:10/31/07 17:38 Method:6010B

Analyst:KHR

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253902-03	P2.103107.174444	10/31/07 17:44	01
47WWZZ-101807	L0710596-12	P2.103107.181650	10/31/07 18:16	01
EQUIPMENT RINSE	L0710596-14	P2.103107.182219	10/31/07 18:22	01
47WWZZ-101807	L0710596-12	P2.110107.100455	11/01/07 10:04	DL01

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID: 922472 Report generated 11/01/2007 11:49

METHOD	RT.ANK	REPORT

Login Number:L0710596	Prep Date:10/26/07 05:30	Sample ID: WG253902-02
Instrument ID:PE-ICP2	Run Date: 10/31/07 17:38	Prep Method: 3005A
File ID:P2.103107.173830	Analyst:KHR	Method: 6010B
Workgroup (AAB#):WG254046	Matrix:Water	Units:mg/L
Contract #:DACA56-94-D-0020	Cal ID:PE-IC	P-31-OCT-07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Aluminum, Dissolved	0.0500	0.100	0.0500	1	υ
Beryllium, Dissolved	0.000500	0.00200	0.000500	1	U
Calcium, Dissolved	0.100	0.200	0.100	1	υ
Cobalt, Dissolved	0.00250	0.00500	0.00250	1	υ
Iron, Dissolved	0.0250	0.100	0.0250	1	υ
Potassium, Dissolved	0.250	1.00	0.250	1	υ
Magnesium, Dissolved	0.250	0.500	0.250	1	υ
Sodium, Dissolved	0.250	0.500	0.250	1	υ
Vanadium, Dissolved	0.00500	0.0100	0.00500	1	υ
Zinc, Dissolved	0.00500	0.0200	0.00500	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID: 922473 Report generated 11/01/2007 09:24

^{*} Analyte concentration > RL

LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L0710596
 Run Date: 10/31/2007
 Sample ID: WG253902-03

 Instrument ID: PE-ICP2
 Run Time: 17:44
 Prep Method: 3005A

 File ID: P2.103107.174444
 Analyst: KHR
 Method: 6010B

 Workgroup (AAB#): WG254046
 Matrix: Water
 Units: mg/L

QC Key:STD Lot#:MI0058-81 Cal ID:PE-ICP-31-OCT-07

Analytes	Expected	Found	% Rec	LCS	Lim	its	Q
Aluminum, Dissolved	5.00	4.89	97.9	85	-	115	
Beryllium, Dissolved	0.0250	0.0238	95.0	85	-	115	
Calcium, Dissolved	5.00	4.88	97.7	85	-	115	
Cobalt, Dissolved	0.100	0.0959	95.9	85	-	115	
Iron, Dissolved	2.00	1.92	96.2	85	-	115	
Potassium, Dissolved	25.0	24.6	98.5	85	-	115	
Magnesium, Dissolved	5.00	4.80	95.9	85	-	115	
Sodium, Dissolved	25.0	24.4	97.6	85	-	115	
Vanadium, Dissolved	0.500	0.465	92.9	85	-	115	
Zinc, Dissolved	0.500	0.476	95.3	85	-	115	

KEMRON FORMS - Modified 09/06/2007 Version 1.5 PDF File ID: 922474 Report generated 11/01/2007 09:24

KEMRON Environmental Services MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

00078744

 Loginnum:L0710596
 Cal ID: PE-ICP2 Worknum: WG254046

 Instrument ID:PE-ICP2
 Contract #:DACA56-94-D-0020
 Method:6010B

 Parent ID:WG253902-01
 File ID:P2.103107.175734
 Dil:1
 Matrix:WATER

 Sample ID:WG253902-04
 MS
 File ID:P2.103107.180358
 Dil:1
 Units:mg/L

Sample ID:WG253902-05 MSD File ID:P2.103107.181024 Dil:1

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Beryllium, Dissolved	ND	0.0250	0.0235	94.1	0.0250	0.0236	94.3	0.130	80 - 120	20	
Calcium, Dissolved	346	5.00	347	19.6	5.00	343	-64.0	1.21	80 - 120	20	*
Cobalt, Dissolved	ND	0.100	0.0898	89.8	0.100	0.0904	90.4	0.580	80 - 120	20	
Iron, Dissolved	ND	2.00	1.82	90.9	2.00	1.80	89.8	1.22	80 - 120	20	
Magnesium, Dissolved	282	5.00	289	146	5.00	285	59.5	1.51	80 - 120	20	*
Potassium, Dissolved	9.57	25.0	43.5	136	25.0	44.8	141	3.05	80 - 120	20	*
Zinc, Dissolved	0.00573	0.500	0.450	88.9	0.500	0.455	89.9	1.15	80 - 120	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

KEMRON FORMS - Modified 09/25/2007 (wg_ms_msd_drywt)

Version 1.5 PDF File ID: 922475 Report generated 11/01/2007 11:49

[#] FAILS RPD LIMIT

00078745

MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum:L0710596
 Cal ID: PE-ICP2
 Worknum:WG254046

 Instrument ID:PE-ICP2
 Contract #:DACA56-94-D-0020
 Method:6010B

 Parent ID:WG253902-01
 File ID:P2.110107.101730
 Dil:10
 Matrix:WATER

 Sample ID:WG253902-05
 MSD
 File ID:P2.110107.103011
 Dil:10
 Units:mg/L

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Aluminum, Dissolved	0.0506	5.00	5.33	106	5.00	5.26	104	1.28	80 - 120	20	
Sodium, Dissolved	545	25.0	573	111	25.0	562	68.3	1.90	80 - 120	20	*
Vanadium, Dissolved	ND	0.500	0.423	84.5	0.500	0.425	85.0	0.542	80 - 120	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

KEMRON FORMS - Modified 09/25/2007 (wg_ms_msd_drywt)

Version 1.5 PDF File ID: 922475 Report generated 11/01/2007 11:49

[#] FAILS RPD LIMIT

KEMRON ENVIRONMENTAL SERVICES SERIAL DILUTION REPORT

 Sample Login ID:L0710596
 Worknum: WG254046

 Instrument ID:PE-ICP2
 Method:6010B

 Sample ID:L0710596-14 File ID:P2.103107.182219 Dil:1
 Units:mg/L

 Serial Dilution ID:WG254046-02 File ID:P2.103107.183508 Dil:5

Analyte	Sample	C	Serial Dilution	C	% Difference	Q
Aluminum	ND	U	ND	U		
Beryllium	0	υ	0	U		
Calcium	0.332	х	0.797	F	140	х
Cobalt	ND	υ	ND	U		
Iron	ND	υ	ND	U		
Magnesium	0	υ	0	U		
Potassium	0	υ	0	U		
Sodium	24.0		24.2	X	0.833	
Vanadium	ND	υ	ND	U		
Zinc	0	υ	0	U		

U = Result is below MDL

F = Result is between MDL and RL

X = Result is greater than RL and less than 50 times the MDL

E = %D exceeds control limit of 10% and initial
 sample result is greater than or equal to 50 times the MDL

KEMRON FORMS - Modified 02/14/2006 Version 1.3 PDF File ID: 922469 Report generated 11/01/2007 09:24

KEMRON ENVIRONMENTAL SERVICES POST SPIKE REPORT

 Sample Login ID: L0710596
 Worknum: WG254046

Instrument ID: PE-ICP2 Method: 6010B

 Post Spike ID: WG254046-01
 File ID:P2.103107.182844
 Dil:1
 Units: mg/L

 Sample ID: L0710596-14
 File ID:P2.103107.182219
 Dil:1
 Matrix: Water

	Post Spike		Sample		Spike	_	Control	
Analyte	Result	С	Result	C	Added(SA)	% R	Limit %R	Q
ALUMINUM	4.72		0	U	5	94.5	75 - 125	
BERYLLIUM	0.0239		0	U	.025	95.6	75 - 125	
CALCIUM	5.19		0.332		5	97.7	75 - 125	
COBALT	0.0954		0	U	.1	95.4	75 - 125	
IRON	1.80		0	U	2	90.2	75 - 125	
MAGNESIUM	4.63		0	U	5	92.7	75 - 125	
POTASSIUM	24.8		0	U	25	99.4	75 - 125	
SODIUM	45.5		24.0		25	95.8	75 - 125	
VANADIUM	0.476		0	U	.5	95.2	75 - 125	
ZINC	0.483		0	U	.5	96.5	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

KEMRON FORMS - Modified 04/20/2007 - POST_SPIKE Version 2.0 PDF File ID: 922470 Report generated 11/01/2007 09:24

INITIAL CALIBRATION SUMMARY

Login Number:L0710596

Analytical Method:6010B

ICAL Worknum:WG254405

Workgroup (AAB#):WG254046
Instrument ID:PE-ICP2

Initial Calibration Date:31-OCT-2007 09:29

	WG	254405-01	WG2	254405-02	WG	254405-03	WG:	254405-04	WG2	254405-05		
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	R	Q
Aluminum	0	625.5001312	.1	905.2598355	. 2	1705.212423	10	81147.55744	20	160061.4196	0.999978	
Beryllium	0	-767.551029	.0005	160.7462449	.001	352.0625377	.05	17896.7155	.1	36110.38222	0.999991	
Calcium	0	-35.0008123	.1	17.75105213	. 2	19.21006838	10	1230.210192	20	2518.368668	0.999931	
Cobalt	0	-46.6942808	.002	37.48564352	.004	93.13731387	.1	4524.779821	. 4	8949.21028	0.999984	
Iron	0	180230761	.04	28.24068599	.08	52.95571411	4	2440.903419	8	4825.771882	0.999985	
Magnesium	0	24.8648807	.1	59.21922232	. 2	112.4104987	10	5604.210786	20	11160.53034	0.999998	
Potassium	0	-54.2371874	.5	2373.749357	1	4526.152084	50	302641.9815	100	653115.0405	0.999999	
Sodium	0	419.2909972	. 5	5167.542095	1	9898.627452	50	528065.0704	100	1069683.303	1.00000	
Vanadium	0	3577.093024	.01	910.316234	.02	1528.366813	1	76846.35599	2	154249.6719	0.999998	
Zinc	0	.3724934012	.01	134.1543087	.02	211.0579649	1	10515.71254	2	21207.5188	0.999990	

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier

* = Out of Compliance; R < 0.995

KEMRON FORMS - Modified 03/08/2007 Version 1.5 PDF File ID: 922478 Report generated 11/01/2007 11:49

INITIAL CALIBRATION SUMMARY

00078749

Login Number:L0710596

Analytical Method:6010B

ICAL Worknum:WG254439

Workgroup (AAB#):WG254046

Instrument ID: PE-ICP2

Initial Calibration Date: 01-NOV-2007 08:36

	WG2	254439-01	WG2	254439-02	WG2	254439-03	WG	254439-04	WG	254439-05		
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	R	Q
Aluminum	0	471.4750489	.1	763.0876076	. 2	1485.677134	10	75609.34942	20	152114.4356	0.999996	
Beryllium	0	-761.806768	.0005	187.0849547	.001	353.5988314	.05	16952.69238	.1	34856.49787	0.999910	
Calcium	0	-39.4352849	.1	13.08955827	. 2	20.12598308	10	1163.19205	20	2403.849664	0.999877	
Cobalt	0	-53.5925967	.002	49.37365729	.004	99.65836886	.1	4299.796783	. 4	8580.308794	0.999999	
Iron	0	.1500506897	.04	20.53037645	.08	43.04205002	4	2069.379937	8	4125.701525	0.999999	
Magnesium	0	18.84600223	.1	52.11523527	. 2	97.96557357	10	4945.144736	20	9899.605427	1.00000	
Potassium	0	-35.0182110	. 5	2280.000383	1	4440.252232	50	286749.5832	100	617382.9618	1.00000	
Sodium	0	708.1935609	. 5	4631.55991	1	9195.329489	50	497046.404	100	1022406.727	1.00000	
Vanadium	0	3805.383002	.01	580.6514282	.02	1467.41639	1	72429.12977	2	148595.1123	0.999927	
Zinc	0	6.979116265	.01	117.2644459	.02	211.3238193	1	9962.190919	2	20382.66521	0.999937	

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier

* = Out of Compliance; R < 0.995

KEMRON FORMS - Modified 03/08/2007 Version 1.5 PDF File ID: 922478 Report generated 11/01/2007 11:49

KEMRON Environmental Services INITIAL CALIBRATION BLANK (ICB)

Login Number:L0710596 Run Date:10/31/2007 Sample ID: WG254405-07

Instrument ID:PE-ICP2 Run Time:09:41 Method: 6010

File ID:P2.103107.094150 Analyst:KHR Units: mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP2 - 31-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
ALUMINUM	.05	.1	0204	1	U
BERYLLIUM	.0005	.002	.000164	1	U
CALCIUM	.1	.2	.0702	1	υ
COBALT	.0025	.005	000227	1	υ
IRON	.025	.1	007	1	υ
MAGNESIUM	.25	.5	0172	1	υ
POTASSIUM	.25	1	.103	1	υ
SODIUM	.25	.5	.0361	1	υ
VANADIUM	.005	.01	.000767	1	υ
ZINC	.005	.02	.000519	1	υ

KEMRON FORMS - Modified 10/02/2007 Version 2.0 PDF File ID: 922480 Report generated 11/01/2007 11:49

KEMRON Environmental Services INITIAL CALIBRATION BLANK (ICB)

 Login Number: L0710596
 Run Date: 11/01/2007
 Sample ID: WG254439-07

 Instrument ID: PE-ICP2
 Run Time: 08:47
 Method: 6010

 File ID:P2.110107.084744 Analyst:KRV Units: mg/L Workgroup (AAB#):WG254046 Cal ID:PE-ICP2 - 01-NOV-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
ALUMINUM	.05	.1	.0082	1	υ
BERYLLIUM	.0005	.002	.000232	1	υ
CALCIUM	.1	.2	.0145	1	υ
COBALT	.0025	.005	.000147	1	υ
IRON	.025	.1	00184	1	υ
MAGNESIUM	.25	•5	0000589	1	υ
POTASSIUM	.25	1	.098	1	υ
SODIUM	.25	.5	.0367	1	υ
VANADIUM	.005	.01	.00277	1	υ
ZINC	.005	.02	.0021	1	Ū

KEMRON FORMS - Modified 10/02/2007 Version 2.0 PDF File ID: 922480 Report generated 11/01/2007 11:49

00078752

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-11

Instrument ID:PE-ICP2 Run Time:10:24 Method:6010B

File ID:P2.103107.102434 Analyst:KHR Units:mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Aluminum	0.0500	0.100	-0.0145	1	υ
Beryllium	0.000500	0.00200	0.000158	1	υ
Calcium	0.100	0.200	0.0383	1	υ
Cobalt	0.00250	0.00500	-0.000389	1	υ
Iron	0.0250	0.100	-0.00820	1	υ
Potassium	0.250	1.00	0.0908	1	υ
Magnesium	0.250	0.500	-0.00861	1	υ
Sodium	0.250	0.500	0.0344	1	υ
Vanadium	0.00500	0.0100	-0.000171	1	υ
Zinc	0.00500	0.0200	0.000413	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

* = Result is above RL

KEMRON FORMS - Modified 09/27/2006 Version 2.0 PDF File ID: 922483 Report generated 11/01/2007 11:50

00078753

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-25

Instrument ID:PE-ICP2 Run Time:17:27 Method:6010B

File ID:P2.103107.172757 Analyst:KHR Units:mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Aluminum	0.0500	0.100	-0.0315	1	υ
Beryllium	0.000500	0.00200	0.000203	1	υ
Calcium	0.100	0.200	0.103	1	F
Cobalt	0.00250	0.00500	-0.000466	1	υ
Iron	0.0250	0.100	-0.00794	1	υ
Potassium	0.250	1.00	0.0688	1	υ
Magnesium	0.250	0.500	-0.0172	1	υ
Sodium	0.250	0.500	0.0381	1	υ
Vanadium	0.00500	0.0100	-0.00306	1	υ
Zinc	0.00500	0.0200	0.000510	1	Ū

U = Result is less than MDL

F = Result is between MDL and RL

* = Result is above RL

00078754

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-27

Instrument ID:PE-ICP2 Run Time:18:47 Method:6010B

File ID:P2.103107.184746 Analyst:KHR Units:mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Aluminum	0.0500	0.100	-0.0274	1	U
Beryllium	0.000500	0.00200	0.000243	1	υ
Calcium	0.100	0.200	0.105	1	F
Cobalt	0.00250	0.00500	-0.000266	1	υ
Iron	0.0250	0.100	-0.00878	1	υ
Potassium	0.250	1.00	0.0795	1	υ
Magnesium	0.250	0.500	-0.00629	1	υ
Sodium	0.250	0.500	0.0743	1	υ
Vanadium	0.00500	0.0100	-0.00329	1	Ū
Zinc	0.00500	0.0200	0.000681	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

* = Result is above RL

00078755

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:11/01/2007 Sample ID:WG254439-11
Instrument ID:PE-ICP2 Run Time:09:11 Method:6010B
File ID:P2.110107.091105 Analyst:KRV Units:mg/L
Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 01-NOV-07
Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Aluminum	0.0500	0.100	0.00345	1	U
Beryllium	0.000500	0.00200	0.000242	1	υ
Calcium	0.100	0.200	0.0341	1	υ
Cobalt	0.00250	0.00500	0.000202	1	υ
Iron	0.0250	0.100	-0.00251	1	υ
Potassium	0.250	1.00	0.102	1	υ
Magnesium	0.250	0.500	-0.00505	1	υ
Sodium	0.250	0.500	0.0230	1	υ
Vanadium	0.00500	0.0100	0.00258	1	υ
Zinc	0.00500	0.0200	0.00200	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

^{* =} Result is above RL

00078756

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:11/01/2007 Sample ID:WG254439-13

Instrument ID:PE-ICP2 Run Time:10:42 Method:6010B

File ID:P2.110107.104257 Analyst:KRV Units:mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 01-NOV-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Aluminum	0.0500	0.100	0.00822	1	υ
Beryllium	0.000500	0.00200	0.000205	1	υ
Calcium	0.100	0.200	0.0343	1	υ
Cobalt	0.00250	0.00500	0.000160	1	υ
Iron	0.0250	0.100	-0.00126	1	υ
Potassium	0.250	1.00	0.0699	1	υ
Magnesium	0.250	0.500	-0.00338	1	υ
Sodium	0.250	0.500	0.0300	1	υ
Vanadium	0.00500	0.0100	0.00261	1	υ
Zinc	0.00500	0.0200	0.00215	1	Ū

U = Result is less than MDL

F = Result is between MDL and RL

* = Result is above RL

INITIAL CALIBRATION VERIFICATION (ICV)

00078757

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-06

Instrument ID:PE-ICP2 Run Time:09:35 Method:6010B

File ID:P2.103107.093521 Analyst:KHR Units:mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Aluminum	10	10.1	101	90 - 110	
Beryllium	.05	0.0507	101	90 - 110	
Calcium	10	10.4	104	90 - 110	
Cobalt	.2	0.201	100	90 - 110	
Iron	4	4.07	102	90 - 110	
Potassium	50	50.5	101	90 - 110	
Magnesium	10	9.95	99.5	90 - 110	
Sodium	50	49.4	98.8	90 - 110	
Vanadium	1	0.996	99.6	90 - 110	
Zinc	1	1.04	104	90 - 110	

^{*} Exceeds LIMITS Limit

00078758

INITIAL CALIBRATION VERIFICATION (ICV)

Login Number:L0710596 Run Date:11/01/2007 Sample ID:WG254439-06

Instrument ID:PE-ICP2 Run Time:08:41 Method:6010B

File ID:P2.110107.084128 Analyst:KRV Units:mg/L

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 01-NOV-07

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Aluminum	10	10.1	101	90 - 110	
Beryllium	.05	0.0497	99.4	90 - 110	
Calcium	10	10.4	104	90 - 110	
Cobalt	.2	0.203	101	90 - 110	
Iron	4	4.14	103	90 - 110	
Potassium	50	52.0	104	90 - 110	
Magnesium	10	10.1	101	90 - 110	
Sodium	50	50.5	101	90 - 110	
Vanadium	1	0.980	98.0	90 - 110	
Zinc	1	1.02	102	90 - 110	

^{*} Exceeds LIMITS Limit

00078759

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-10
Instrument ID:PE-ICP2 Run Time:10:18 Method:6010B
File ID:P2.103107.101817 Analyst:KHR QC Key:STD
Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Ç	2
Aluminum	10.0	9.79	mg/L	97.9	90 - 110		
Beryllium	0.0500	0.0486	mg/L	97.2	90 - 110		
Calcium	10.0	10.0	mg/L	100	90 - 110		
Cobalt	0.200	0.194	mg/L	96.8	90 - 110		
Iron	4.00	3.98	mg/L	99.5	90 - 110		
Potassium	50.0	49.0	mg/L	98.0	90 - 110		
Magnesium	10.0	9.70	mg/L	97.0	90 - 110		
Sodium	50.0	48.0	mg/L	96.0	90 - 110		
Vanadium	1.00	0.949	mg/L	94.9	90 - 110		
Zinc	1.00	0.994	mg/L	99.4	90 - 110		

^{*} Exceeds LIMITS Criteria

CONTINUING CALIBRATION VERIFICATION (CCV) 00078760

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-24

Instrument ID:PE-ICP2 Run Time:17:21 Method:6010B

File ID:P2.103107.172139 Analyst:KHR QC Key:STD

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.63	mg/L	96.3	90 - 110	
Beryllium	0.0500	0.0475	mg/L	94.9	90 - 110	
Calcium	10.0	9.85	mg/L	98.5	90 - 110	
Cobalt	0.200	0.190	mg/L	94.8	90 - 110	
Iron	4.00	3.77	mg/L	94.3	90 - 110	
Potassium	50.0	49.3	mg/L	98.7	90 - 110	
Magnesium	10.0	9.26	mg/L	92.6	90 - 110	
Sodium	50.0	47.5	mg/L	95.0	90 - 110	
Vanadium	1.00	0.929	mg/L	92.9	90 - 110	
Zinc	1.00	0.970	mg/L	97.0	90 - 110	

^{*} Exceeds LIMITS Criteria

00078761

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/31/2007 Sample ID:WG254405-26

Instrument ID:PE-ICP2 Run Time:18:41 Method:6010B

File ID:P2.103107.184129 Analyst:KHR QC Key:STD

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 31-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.59	mg/L	95.9	90 - 110	
Beryllium	0.0500	0.0472	mg/L	94.4	90 - 110	
Calcium	10.0	9.81	mg/L	98.1	90 - 110	
Cobalt	0.200	0.189	mg/L	94.4	90 - 110	
Iron	4.00	3.74	mg/L	93.5	90 - 110	
Potassium	50.0	48.0	mg/L	96.0	90 - 110	
Magnesium	10.0	9.33	mg/L	93.3	90 - 110	
Sodium	50.0	47.4	mg/L	94.9	90 - 110	
Vanadium	1.00	0.924	mg/L	92.4	90 - 110	
Zinc	1.00	0.960	mg/L	96.0	90 - 110	

^{*} Exceeds LIMITS Criteria

00078762

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:11/01/2007 Sample ID:WG254439-10

Instrument ID:PE-ICP2 Run Time:09:04 Method:6010B

File ID:P2.110107.090441 Analyst:KRV QC Key:STD

Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 01-NOV-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.2	mg/L	102	90 - 110	
Beryllium	0.0500	0.0505	mg/L	101	90 - 110	
Calcium	10.0	10.3	mg/L	103	90 - 110	
Cobalt	0.200	0.202	mg/L	101	90 - 110	
Iron	4.00	4.08	mg/L	102	90 - 110	
Potassium	50.0	52.1	mg/L	104	90 - 110	
Magnesium	10.0	9.95	mg/L	99.5	90 - 110	
Sodium	50.0	50.8	mg/L	102	90 - 110	
Vanadium	1.00	0.988	mg/L	98.8	90 - 110	
Zinc	1.00	1.04	mg/L	104	90 - 110	

^{*} Exceeds LIMITS Criteria

00078763

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:11/01/2007 Sample ID:WG254439-12
Instrument ID:PE-ICP2 Run Time:10:36 Method:6010B
File ID:P2.110107.103640 Analyst:KRV QC Key:STD
Workgroup (AAB#):WG254046 Cal ID:PE-ICP - 01-NOV-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.3	mg/L	103	90 - 110	
Beryllium	0.0500	0.0512	mg/L	102	90 - 110	
Calcium	10.0	10.6	mg/L	106	90 - 110	
Cobalt	0.200	0.207	mg/L	103	90 - 110	
Iron	4.00	4.19	mg/L	105	90 - 110	
Potassium	50.0	51.7	mg/L	103	90 - 110	
Magnesium	10.0	10.2	mg/L	102	90 - 110	
Sodium	50.0	51.1	mg/L	102	90 - 110	
Vanadium	1.00	1.01	mg/L	101	90 - 110	
Zinc	1.00	1.06	mg/L	106	90 - 110	

^{*} Exceeds LIMITS Criteria

KEMRON ENVIRONMENTAL SERVICES INTERFERENCE CHECK SAMPLES

Login number:L0710596 Workgroup (AAB#):WG254046

Instrument ID: PE-ICP2

 Sol. A: WG254405-08
 File ID: P2.103107.094822

 Sol. AB: WG254405-09
 File ID: P2.103107.095342

Method: 6010B
Units:mg/L

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	247	98.8	250	247	98.8	
Beryllium	NS	0.000300	NS	0.250	0.247	98.8	
Calcium	250	255	102	250	261	104	
Cobalt	NS	0.000420	NS	0.250	0.235	94.0	
Iron	100	98.2	98.2	100	99.6	99.6	
Magnesium	250	254	102	250	258	103	
Potassium	NS	-0.411	NS	5.00	5.85	117	
Sodium	NS	0.0668	NS	5.00	5.36	107	
Vanadium	NS	0.00800	NS	0.250	0.252	101	
Zinc	NS	-0.00707	NS	0.500	0.466	93.2	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project
 reporting limit (RL).

00078765

KEMRON ENVIRONMENTAL SERVICES INTERFERENCE CHECK SAMPLES

Login number:L0710596 Workgroup (AAB#):WG254046

Instrument ID:PE-ICP2

 Sol. A: WG254439-08
 File ID: P2.110107.085358

 Sol. AB: WG254439-09
 File ID: P2.110107.085917

Method:6010B
Units:mg/L

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	253	101	250	253	101	
Beryllium	NS	-0.000100	NS	0.250	0.250	100	
Calcium	250	258	103	250	267	107	
Cobalt	NS	0.000720	NS	0.250	0.241	96.4	
Iron	100	102	102	100	103	103	
Magnesium	250	264	106	250	265	106	
Potassium	NS	-0.493	NS	5.00	5.98	120	
Sodium	NS	0.0621	NS	5.00	5.65	113	
Vanadium	NS	0.00604	NS	0.250	0.257	103	
Zinc	NS	-0.00559	NS	0.500	0.479	95.8	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project
 reporting limit (RL).

INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Login Number: L0710596 Date: 01/08/2007 Method: 6010B Insturment ID: PE-ICP2

	Wave					
Analyte	Length	AG	AL	AS	В	BA
ALUMINUM	396.15	0	0	0.206	0	0
ANTIMONY	206.84	0	0	-0.740	0	0
ARSENIC	188.98	0	0.0237	0	0	0
BARIUM	233.53	0	0	0	0	0
BERYLLIUM	234.86	0	0	0	0	0
BORON	249.68	0	0	0	0	0
CADMIUM	228.80	0	-0.000453	1.00	0	0
CALCIUM	227.55	0	-0.370	0.0414	0	0
CHROMIUM	267.72	0	0	0	0	0
COBALT	228.62	0	0	0	0	-0.0647
COPPER	327.39	0	0	0	0	0
IRON	239.56	0	0	0	0	0
LEAD	220.35	0	-0.143	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	0	0	0	0
MANGANESE	257.61	-0.185	0	-0.231	-0.0949	-0.230
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.49	0	0	0	0	0
SELENIUM	196.03	0	0.0416	0	0	0
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0	0	0	0	0
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0.504	0	0.200	0	-0.130
ZINC	206.20	0	0	0	0	0

y) 00078767

KEMRON Environmental Services INTERELEMENT CORRECTION FACTORS (ANNUALLY)

 Login Number: L0710596
 Date: 01/08/2007

 Insturment ID: PE-ICP2
 Method: 6010B

	Wave					
Analyte	Length	BE	CA	CD	co	CR
ALUMINUM	396.15	0	0.274	0	0	0
ANTIMONY	206.84	0	0	0	0	19.8
ARSENIC	188.98	0	-0.0104	-0.0875	0	-3.78
BARIUM	233.53	0	0	0	0	0
BERYLLIUM	234.86	0	0	0	0	-0.0105
BORON	249.68	0	0.0238	50.1	3.51	1.50
CADMIUM	228.80	0	0	0	-7.33	0
CALCIUM	227.55	0	0	0	174	-21.8
CHROMIUM	267.72	0	0	0	0	0
COBALT	228.62	0	0	0	0	0.436
COPPER	327.39	0	-0.0137	0	0.380	-0.0467
IRON	239.56	0	0.0227	0	1.91	0.331
LEAD	220.35	0	-0.0214	0	0.666	-0.100
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	0.638	0	0	0
MANGANESE	257.61	-1.04	-0.0173	-0.755	-0.0418	-0.110
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0.948	0
POTASSIUM	766.49	0	0	0	0	0
SELENIUM	196.03	0	0.0228	0	-0.382	0
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0	0	0	0	0
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	0	0	0	2.97	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	-0.0233	0	0	0.297
VANADIUM	290.88	0	0.00481	0	0	0
ZINC	206.20	0	0.00300	0	0	-6.39

Services 00078768

KEMRON Environmental Services INTERELEMENT CORRECTION FACTORS (ANNUALLY)

 Login Number: L0710596
 Date: 01/08/2007

 Insturment ID: PE-ICP2
 Method: 6010B

	Wave					
Analyte	Length	CU	FE	K	LI	MG
ALUMINUM	396.15	0	0.108	0	0	0
ANTIMONY	206.84	0	0	0	0	0
ARSENIC	188.98	0	-0.115	0	0	0.0133
BARIUM	233.53	0	0.0217	0	0	0
BERYLLIUM	234.86	0	0.171	0	0	0
BORON	249.68	0	-4.09	0	0	0
CADMIUM	228.80	0	-0.00172	0	0	0
CALCIUM	227.55	-2.44	-8.15	0	0	0.104
CHROMIUM	267.72	0	-0.0115	0	0	0
COBALT	228.62	0	0	0	0	0
COPPER	327.39	0	-0.0550	0	0	0
IRON	239.56	0	0	0	0	0.0276
LEAD	220.35	0.341	0.0593	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	0.174	0	0	0
MANGANESE	257.61	-0.0457	-0.0659	-0.0181	-0.794	0.0147
MOLYBDENUM	202.03	0	-0.0342	0	11.9	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.49	0	0.831	0	0	0
SELENIUM	196.03	0	-0.444	0	0	0.00120
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0.0717	-0.0541	0	0	0.00521
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	-16.4	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0.0284
VANADIUM	290.88	0	-0.0723	0	0	-0.0542
ZINC	206.20	-0.309	0.00450	0	0	0

mental Services O0078769

KEMRON Environmental Services INTERELEMENT CORRECTION FACTORS (ANNUALLY)

 Login Number: L0710596
 Date: 01/08/2007

 Insturment ID: PE-ICP2
 Method: 6010B

	Wave					
Analyte	Length	MN	MO	NA	NI	PB
ALUMINUM	396.15	0	51.0	0	0	0
ANTIMONY	206.84	0	-17.4	0	0	0
ARSENIC	188.98	0	3.15	0	0	0
BARIUM	233.53	0	-0.740	0	0	0
BERYLLIUM	234.86	-0.131	-0.545	0	-0.00974	0
BORON	249.68	0	-2.08	0	0	0
CADMIUM	228.80	0	0	0	-0.0660	0
CALCIUM	227.55	0	-25.0	0	-1100	0
CHROMIUM	267.72	0.554	-0.0135	0	0	0
COBALT	228.62	0	-0.668	0	0.129	0
COPPER	327.39	0	-0.519	0	-0.0905	-0.0630
IRON	239.56	-1.38	0	0	0	0
LEAD	220.35	0.232	-2.35	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	-5.58	0	0	0.0252
MANGANESE	257.61	0	-0.0482	-0.00916	-0.0340	-0.0413
MOLYBDENUM	202.03	-0.209	0	0	0.134	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.49	0	0	0.0278	0	0
SELENIUM	196.03	1.11	0.199	0	-0.202	0
SILICON	251.61	0	12.9	0	0	0
SILVER	328.07	0.130	0.0781	0	0	0
SODIUM	589.59	0	0	0.181	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	-1.50	0.660	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0	0.578	0	0	0
ZINC	206.20	0	0	0	-0.244	-0.330

oces 00078770 (annually)

KEMRON Environmental Services INTERELEMENT CORRECTION FACTORS (ANNUALLY)

 Login Number: L0710596
 Date: 01/08/2007

 Insturment ID: PE-ICP2
 Method: 6010B

	Wave					
Analyte	Length	SB	SE	sı	SN	SR
ALUMINUM	396.15	0	0	0	0	0
ANTIMONY	206.84	0	0	0	-7.64	0
ARSENIC	188.98	0	0	0	0	0
BARIUM	233.53	0	0	0	0	0
BERYLLIUM	234.86	0	0	0	0	0
BORON	249.68	0	0	0	0	0
CADMIUM	228.80	0	0	0	0	0
CALCIUM	227.55	0	0	2.79	0	0
CHROMIUM	267.72	0	-0.0706	0	0	0
COBALT	228.62	0	0	0	0	0
COPPER	327.39	0	0	0	0	0
IRON	239.56	0	0	0	0	0
LEAD	220.35	-0.117	0	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	-0.0924	0	0	0
MANGANESE	257.61	-0.0505	-0.0281	-0.185	-0.0445	-0.625
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	-0.288	-0.262	0	0	0
POTASSIUM	766.49	0	0	0	0	0
SELENIUM	196.03	0	0	0	0	0
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0	0	0	0	1.61
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0	0	0	0	0
ZINC	206.20	-0.420	0	0	0	0

KEMRON Environmental Services INTERELEMENT CORRECTION FACTORS (ANNUALLY)

 Login Number: L0710596
 Date: 01/08/2007

 Insturment ID: PE-ICP2
 Method: 6010B

	Wave				
Analyte	Length	TI	TL	v	ZN
ALUMINUM	396.15	0	0	0	0
ANTIMONY	206.84	0	0	-3.59	0
ARSENIC	188.98	0	0	0.0930	0
BARIUM	233.53	0	0	-2.27	0
BERYLLIUM	234.86	0	0	0	0
BORON	249.68	0	0	0	0
CADMIUM	228.80	0	0	0.0980	0
CALCIUM	227.55	0	0	11.3	0
CHROMIUM	267.72	0	0	-0.605	-0.0845
COBALT	228.62	2.07	0	0	0
COPPER	327.39	-1.79	0	-0.842	-0.0613
IRON	239.56	0	0	0	0
LEAD	220.35	-0.776	0	-0.153	0
LITHIUM	670.78	0	0	0	0
MAGNESIUM	279.08	0	0	-0.0280	0
MANGANESE	257.61	-0.227	-0.0414	-0.0601	-0.0553
MOLYBDENUM	202.03	0	0	-0.288	0
NICKEL	231.60	0	0.286	0	0
POTASSIUM	766.49	0	0	0	0
SELENIUM	196.03	0	0	0.593	0
SILICON	251.61	0	0	0	0
SILVER	328.07	0	0	-6.38	0
SODIUM	589.59	0	0	0	0
STRONTIUM	407.77	0	0	0	0
THALLIUM	190.80	-10.1	0	0	0
TIN	189.93	0	0	0	0
TITANIUM	334.94	0	0	0	0
VANADIUM	290.88	0	0	0	0
ZINC	206.20	0	0	-0.100	0

 Login Number: L0710596
 Date: 09/11/2007

 Insturment ID: PE-ICP2
 Method: 6010B

	Integration Time	Concentration
Analyte	(Sec.)	(mg/L)
Aluminum	10.00	450.0
Antimony	10.00	36.0
Arsenic	10.00	9.0
Barium	10.00	9.0
Beryllium	10.00	1.8
Boron	10.00	18.0
Cadmium	10.00	2.7
Calcium	10.00	450.0
Chromium	10.00	45.0
Cobalt	10.00	45.0
Copper	10.00	45.0
Iron	10.00	360.0
Lead	10.00	45.0
Lithium	10.00	1.8
Magnesium	10.00	450.0
Manganese	10.00	27.0
Molybdenum	10.00	45.0
Nickel	10.00	45.0
Potassium	10.00	90.0
Selenium	10.00	45.0
Silicon	10.00	9.0
Silver	10.00	9.0
Sodium	10.00	180.0
Strontium	10.00	2.7
Thallium	10.00	45.0
Tin	10.00	45.0
Titanium	10.00	9.0
Vanadium	10.00	45.0
Zinc	10.00	36.0

Comments:

2.2.2 Metals ICP-MS Data

2.2.2.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta , OH 45750 (740)373-4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding

3010 Briarpark Drive Suite 4N Houston, TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID Method Lab ID Dilution Date Received 47WWZZ-101807 L0710596-12 6020 10 23-OCT-07 47WWZZ-101807 100 L0710596-12 6020 23-OCT-07 EQUIPMENT RINSE L0710596-14 6020 1 23-OCT-07

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 92424 Version 1.5 PDF File ID: 924247 Report generated 11/02/2007 10:41 1 OF 1

00078776

Report Number: L0710596

Report Date : November 2, 2007

 Sample Number: L0710596-12
 PrePrep Method: NONE
 Instrument: ELAN-ICP

 Client ID: 47WWZZ-101807
 Prep Method: 3015
 Prep Date: 10/24/2007 07:00

 Matrix: Water
 Analytical Method: 6020
 Cal Date: 10/25/2007 09:37

 Workgroup Number: WG253774
 Analyst: JYH
 Run Date: 10/25/2007 11:20

Collect Date: 10/18/2007 09:55

Sample Tag: DL01

Dilution: 10

Units: mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Silver, Dissolved	7440-22-4		Ū	0.0100	0.00250
Arsenic, Dissolved	7440-38-2	0.0115		0.0100	0.00250
Barium, Dissolved	7440-39-3	0.120		0.0300	0.00500
Cadmium, Dissolved	7440-43-9	0.00259	J	0.00500	0.00125
Chromium, Dissolved	7440-47-3	0.129		0.0200	0.00500
Copper, Dissolved	7440-50-8	0.0157	J	0.0200	0.00500
Lead, Dissolved	7439-92-1	0.00832		0.00500	0.00250
Manganese, Dissolved	7439-96-5	1.84		0.0200	0.00500
Antimony, Dissolved	7440-36-0		Ū	0.0100	0.00250
Selenium, Dissolved	7782-49-2	0.0446		0.0100	0.00500
Thallium, Dissolved	7440-28-0		U	0.00200	0.000500

U Not detected at or above adjusted sample detection limit

J The analyte was positively identified, but the quantitation was below the RL

KEMRON ENVIRONMENTAL SERVICES

00078777

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-12
Client ID: 47WWZZ-101807 PrePrep Method: NONE
Prep Method: 3015 Instrument: ELAN-ICP
Prep Date: 10/24/2007 07:00 Cal Date: 10/25/2007 09:37
Run Date: 10/25/2007 14:04 Matrix: Water Analytical Method: 6020 Workgroup Number: WG253774 Analyst:**JYH**

Collect Date: 10/18/2007 09:55 Dilution: 100 File ID: EL. 102507.140430 Sample Tag: DL02 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Nickel, Dissolved	7440-02-0	9.49		0.400	0.100

of 3

00078778

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-14
Client ID: EQUIPMENT RINSE Instrument: ELAN-ICP
Prep Date: 10/24/2007 07:00 PrePrep Method: NONE Prep Method: 3015 Cal Date: 10/25/2007 09:37 Matrix:**Water** Analytical Method: 6020 Workgroup Number: WG253774 Analyst:**JYH** Run Date: 10/25/2007 11:39 Collect Date: 10/22/2007 14:20 Dilution: 1 File ID: **EL.102507.113954** Sample Tag: 01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Silver, Dissolved	7440-22-4		Ū	0.00100	0.000250
Arsenic, Dissolved	7440-38-2		Ū	0.00100	0.000250
Barium, Dissolved	7440-39-3	0.0109		0.00300	0.000500
Cadmium, Dissolved	7440-43-9		Ū	0.000500	0.000125
Chromium, Dissolved	7440-47-3	0.00496		0.00200	0.000500
Copper, Dissolved	7440-50-8	0.00147	J	0.00200	0.000500
Lead, Dissolved	7439-92-1	0.000791		0.000500	0.000250
Manganese, Dissolved	7439-96-5	0.0285		0.00200	0.000500
Nickel, Dissolved	7440-02-0	0.00239	J	0.00400	0.00100
Antimony, Dissolved	7440-36-0		Ū	0.00100	0.000250
Selenium, Dissolved	7782-49-2		U	0.00100	0.000500
Thallium, Dissolved	7440-28-0		Ū	0.000200	0.0000500

U Not detected at or above adjusted sample detection limit J The analyte was positively identified, but the quantitation was below the RL $\,$

2.2.2.2 QC Summary Data

Example 6020 Calculations Perkin Elmer ELAN 6100

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	100
Vi = Initial volume	40
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/L)	0.25

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	200
Vi = Initial volume	0.5
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/kg)	40

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	40
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	50

50 ug/kg = 0.050 mg/kg

Perkin Elmer ELAN ICP/MS

STANDARDS KEY

QC Std 1 - ICV QC Std 2 - ICB QC Std 3 - CRI - Soil QC Std 4 - CRI - Water QC Std 5 - ICSA QC Std 6 - ICSAB QC Std 7 - CCV QC Std 8 - CCB

Calibration Solutions

Analyte	Stock Conc. (mg/L)	S1 (mg/L)	S2 (mg/L)	S3 (mg/L)	S4 (mg/L)
Al	10	0	0.0004	0.05	0.1
Sb	10	0	0.0004	0.05	0.1
As	10	0	0.0004	0.05	0.1
Ba	10	0	0.0004	0.05	0.1
Be	10	0	0.0004	0.05	0.1
Ca	1000	0	0.04	5	10
Cd	10	0	0.0004	0.05	0.1
Cr	10	0	0.0004	0.05	0.1
Co	10	0	0.0004	0.05	0.1
Cu	10	0	0.0004	0.05	0.1
Fe	1000	0	0.04	5	10
Pb	10	0	0.0004	0.05	0.1
Mg	1000	0	0.04	5	10
Mn	10	0	0.0004	0.05	0.1
Ni	10	0	0.0004	0.05	0.1
K	1000	0	0.04	5	10
Se	10	0	0.0004	0.05	0.1
Ag	10	0	0.0004	0.05	0.1
Na	1000	0	0.04	5	10
Tl	10	0	0.0004	0.05	0.1
V	10	0	0.0004	0.05	0.1
Zn	10	0	0.0004	0.05	0.1

Document Control No.: MC0130 Page 68 of 100

Microwave	Digestion	Log

	<u> </u>
Analyst(s): $\frac{\sqrt{C}}{\sqrt{2}\sqrt{2}}$ Date: $\sqrt{2}\sqrt{2}$	Box: 87 /298639
LCS: רורוב פתז את לה	Digestion Work Group: WG 2537/2
MS/MSD: ,] \ M(_ \(\) \ T \(\) \ \ Witness:	ME407 Revision # 8 Method 3015-Water
HNO ₃ Lot #: HCl Lot #:	ME406 Revision # Method 3051-Soil-Oil
Digest Tube Lot #: Lun 1769	
Earliest Sample Due Date: 1476 Microwave #	Relinquished By: Date: 10 Poly Date: 10 Poly Of the Poly Date: 10 Poly Of the Poly Date: 10 Poly Of the Poly Of th

	KEMRON	Initial	Final	Initial	Final		Due
	#	Wt/Vol	Volume	Weight	Weight	Comments	Date
1	PBW	York	lount	263 318	263 300	رن	
2	iy		(204.52	2045	. 03	
3	10-539-61			201.44	201.57	/ / /	
4	62			264.57	21495	LAB Filteral of	11/1
5	02 ms			206.35	2431	64	
6	02 MSO			24.57	264.55	US	
7	03			264.68	2446		
8	δÝ			2860	2851	LAB FIHEVED	11/1
9	54001			207.53	267.48	LAB FIHENCE	7 11
10	02			20104	267.81	LAP FITTENS	
11	03			26573	20569		-
12	64			20517	205.16	LAM FILLEN, R	
13	5 96-12		ŀ	26469	20607	LABFILLEVEL	14/30
14	14			266.77	20676	V	1
15	6100			204.87	24.86		10/26
16	52			208 23		,	•
17	63			20159	267.58		
18	oy			267.07	20706		
19	6501			24.11	266.71		1430
20	62			207.50	207.49		•
21	63		<u> </u>	266.71	2470		
22	64			20862	2862		
23	05			28.81	28.79		
24	Ülp	N	y .	20552	2550		
25							
26							
27	1 (Commence of the Commence of		1	K14/39/0			
28				129	又		
29							
30							

Comments:	
	\sim
era ¥ ·	21 1 A A A A A
Primary Review:	Unde Colly 10/04/07 Secondary Review: // 10/24/10
	Commence of the Commence of th

Instrument Run Log

 Instrument:
 ELAN-ICP
 Dataset:
 102507A.REP

 Analyst1:
 JYH
 Analyst2:
 N/A

 Method:
 6020
 SOP:
 ME700
 Rev: 4

Maintenance Log ID: 19692

Calibration Std: STD22444 ICV/CCV Std: STD22445 Post Spike: STD21680

ICSA: STD22489 ICSAB: STD22490

Workgroups: 253774,253588,253713

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	EL.102507.091113	Blank	Blank		1		10/25/07 09:11
2	EL.102507.091743	WG253869-01	Calibration Point		1		10/25/07 09:17
3	EL.102507.092413	WG253869-02	Calibration Point		1		10/25/07 09:24
4	EL.102507.093045	WG253869-03	Calibration Point		1		10/25/07 09:30
5	EL.102507.093716	WG253869-04	Calibration Point		1		10/25/07 09:37
6	EL.102507.094349	WG253869-05	Initial Calibration Verification		1		10/25/07 09:43
7	EL.102507.095031	WG253869-06	Initial Calib Blank		1		10/25/07 09:50
8	EL.102507.095714	WG253869-07	CRQL Check Solid		1		10/25/07 09:57
9	EL.102507.100350	WG253869-08	CRQL Check Water		1		10/25/07 10:03
10	EL.102507.101025	WG253869-09	Interference Check		1		10/25/07 10:10
11	EL.102507.101659	WG253869-10	Interference Check		1		10/25/07 10:16
12	EL.102507.102332	WG253869-11	CCV		1		10/25/07 10:23
13	EL.102507.103014	WG253869-12	ССВ		1		10/25/07 10:30
14	EL.102507.103654	WG253712-02	Method/Prep Blank	40/100	1		10/25/07 10:36
15	EL.102507.104324	WG253712-03	Laboratory Control S	40/100	1		10/25/07 10:43
16	EL.102507.104954	WG253712-01	Reference Sample		1	L0710539-02	10/25/07 10:49
17	EL.102507.105625	WG253712-04	Matrix Spike	40/100	1		10/25/07 10:56
18	EL.102507.110256	WG253712-05	Matrix Spike Duplica	40/100	1		10/25/07 11:02
19	EL.102507.110927	L0710610-01	GP-01		1		10/25/07 11:09
20	EL.102507.112018	L0710596-12	47WWZZ-101807	40/100	10		10/25/07 11:20
21	EL.102507.112650	WG253774-01	Post Digestion Spike		10	L0710596-12	10/25/07 11:26
22	EL.102507.113322	WG253774-02	Serial Dilution		50	L0710596-12	10/25/07 11:33
23	EL.102507.113954	L0710596-14	EQUIPMENT RINSE	40/100	1	WG253689-01	10/25/07 11:39
24	EL.102507.114625	WG253869-13	CCV		1		10/25/07 11:46
25	EL.102507.115307	WG253869-14	ССВ		1		10/25/07 11:53
26	EL.102507.115947	L0710610-01	GP-01	40/100	10		10/25/07 11:59
27	EL.102507.120619	L0710610-02	GP-02	40/100	10		10/25/07 12:06
28	EL.102507.121251	L0710610-03	GP-03	40/100	10		10/25/07 12:12
29	EL.102507.121924	L0710610-04	GP-04	40/100	10		10/25/07 12:19
30	EL.102507.122556	L0710615-01	071000315-1	40/100	1		10/25/07 12:25
31	EL.102507.123227	L0710615-02	071000315-2	40/100	1		10/25/07 12:32
32	EL.102507.123859	L0710615-03	071000315-3	40/100	1		10/25/07 12:38
33	EL.102507.124530	L0710615-04	071000315-4	40/100	1		10/25/07 12:45
34	EL.102507.125202	L0710615-05	071000315-5	40/100	1		10/25/07 12:52
35	EL.102507.125834	L0710615-06	071000315-6	40/100	1		10/25/07 12:58
36	EL.102507.130507	WG253869-15	CCV		1		10/25/07 13:05
37	EL.102507.131149	WG253869-16	ССВ		1		10/25/07 13:11

Page: 1 Approved: October 26, 2007

October 26, 2007 Maren Blery

Instrument Run Log

 Instrument:
 ELAN-ICP
 Dataset:
 102507A.REP

 Analyst1:
 JYH
 Analyst2:
 N/A

 Method:
 6020
 SOP:
 ME700
 Rev: 4

 Maintenance Log ID:
 19692

Calibration Std: STD22444 ICV/CCV Std: STD22445 Post Spike: STD21680

Workgroups: 253774,253588,253713

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	EL.102507.131830	L0710539-01	MIN-01	40/100	1		10/25/07 13:18
39	EL.102507.132503	L0710539-03	MIN-02	40/100	1	WG253433-04	10/25/07 13:25
40	EL.102507.133136	L0710539-04	MIN-02	40/100	1		10/25/07 13:31
41	EL.102507.133822	L0710540-01	SWL-01	40/100	1		10/25/07 13:38
42	EL.102507.134456	L0710540-02	SWL-01	40/100	1		10/25/07 13:44
43	EL.102507.135128	L0710540-03	SWL-01D	40/100	1		10/25/07 13:51
44	EL.102507.135759	L0710540-04	SWL-01D	40/100	1		10/25/07 13:57
45	EL.102507.140430	L0710596-12	47WWZZ-101807	40/100	100		10/25/07 14:04
46	EL.102507.141102	WG253774-01	Post Digestion Spike		100	L0710596-12	10/25/07 14:11
47	EL.102507.141735	WG253774-02	Serial Dilution		500	L0710596-12	10/25/07 14:17
48	EL.102507.142407	WG253869-17	CCV		1		10/25/07 14:24
49	EL.102507.143049	WG253869-18	ССВ		1		10/25/07 14:30
50	EL.102507.143729	L0710416-01	MW-05	40/100	1		10/25/07 14:37
51	EL.102507.144400	L0710416-02	MW-05D	40/100	1		10/25/07 14:44
52	EL.102507.145031	L0710416-03	MW-04	40/100	1		10/25/07 14:50
53	EL.102507.145703	L0710416-04	MW-03	40/100	1		10/25/07 14:57
54	EL.102507.150701	L0710557-01	47WW08-101707	40/100	100		10/25/07 15:07
55	EL.102507.151332	WG253869-19	CCV		1		10/25/07 15:13
56	EL.102507.152014	WG253869-20	ССВ		1		10/25/07 15:20
57	EL.102507.152655	L0710416-05	MW-02	40/100	1		10/25/07 15:26
58	EL.102507.153328	L0710416-06	MW-01	40/100	1		10/25/07 15:33
59	EL.102507.154001	L0710416-07	MW-07	40/100	1		10/25/07 15:40
60	EL.102507.154635	L0710416-08	MW-08	40/100	1		10/25/07 15:46
61	EL.102507.155308	L0710416-09	MW-09	40/100	1		10/25/07 15:53
62	EL.102507.155943	L0710416-10	MW-10	40/100	1		10/25/07 15:59
63	EL.102507.160615	WG253712-01	Reference Sample		100	L0710539-02	10/25/07 16:06
64	EL.102507.161245	WG253712-04	Matrix Spike	40/100	100		10/25/07 16:12
65	EL.102507.161916	WG253712-05	Matrix Spike Duplica	40/100	100		10/25/07 16:19
66	EL.102507.162548	WG253869-21	CCV		1		10/25/07 16:25
67	EL.102507.163230	WG253869-22	ССВ		1		10/25/07 16:32

Page: 2 Approved: October 26, 2007

October 26, 2007 Maren Blery

KEMRON Environmental Services Data Checklist

Date: <u>25-OCT-2007</u>
Analyst: <u>JYH</u>
Analyst: NA
Method: <u>6020</u>
Instrument: ELAN
Curve Workgroup: 253869
Runlog ID: <u>18958</u>
Analytical Workgroups: <u>253712,253588,253713</u>

CalibrationLinearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	X
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	
Case Narrative	539,540,596,610,615,557,416
Client Forms	X
Level X	539,540
Level 3	596,615,557
Level 4	416
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	MMB
Comments	

Primary Reviewer:

Secondary Reviewer: 26-OCT-2007

J'ye 1hu Maren Beery

Generated: OCT-26-2007 12:44:44

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 6020

Login Number: L0710596

AAR# .	WC25	377 <i>4</i>

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WWZZ-101807	10/18/07	10/23/07	10/24/07	180	5.88	10/25/07	180	1.18	
EQUIPMENT RINSE	10/22/07	10/23/07	10/24/07	180	1.69	10/25/07	180	1.19	
47WWZZ-101807	10/18/07	10/23/07	10/24/07	180	5.88	10/25/07	180	1.29	

* EXT = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID: 917011 Report generated 10/26/2007 08:05

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG253774

Blank File ID:EL.102507.103654 Blank Sample ID:WG253712-02

Prep Date:10/24/07 07:00 Instrument ID:ELAN-ICP

Analyzed Date:10/25/07 10:36 Method:6020

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253712-03	EL.102507.104324	10/25/07 10:43	01
47WWZZ-101807	L0710596-12	EL.102507.112018	10/25/07 11:20	DL01
EQUIPMENT RINSE	L0710596-14	EL.102507.113954	10/25/07 11:39	01
47WWZZ-101807	L0710596-12	EL.102507.140430	10/25/07 14:04	DL02

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID: 917012 Report generated 10/26/2007 08:05

KEMRON Environmental Services METHOD BLANK REPORT

00078788

Login Number:L0710596	Prep Date:10/24/07 07:00	Sample ID: WG253712-02
Instrument ID:ELAN-ICP	Run Date:10/25/07 10:36	Prep Method: 3015
File ID: EL. 102507. 103654	Analyst:JYH	Method: 6020
Workgroup (AAB#):WG253774	Matrix:Water	Units:mg/L

Contract #:DACA56-94-D-0020 Cal ID: <u>ELAN-I-25-OCT-07</u>

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Silver, Dissolved	0.000250	0.00100	0.000250	1	υ
Arsenic, Dissolved	0.000250	0.00100	0.000250	1	υ
Barium, Dissolved	0.000500	0.00300	0.000500	1	υ
Cadmium, Dissolved	0.000125	0.000500	0.000125	1	υ
Chromium, Dissolved	0.000500	0.00200	0.000500	1	υ
Copper, Dissolved	0.000500	0.00200	0.000500	1	υ
Lead, Dissolved	0.000250	0.000500	0.000250	1	υ
Manganese, Dissolved	0.000500	0.00200	0.000500	1	υ
Nickel, Dissolved	0.00100	0.00400	0.00100	1	υ
Antimony, Dissolved	0.000250	0.00100	0.000250	1	υ
Selenium, Dissolved	0.000500	0.00100	0.000500	1	υ
Thallium, Dissolved	0.0000500	0.000200	0.0000500	1	υ

SDL Method Detection Limit

PQLReporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

Analyte concentration > RL

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID: 917013 Report generated 10/26/2007 08:05

LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253712-03

 Instrument ID: ELAN-ICP
 Run Time: 10:43
 Prep Method: 3015

 File ID: EL.102507.104324
 Analyst: JYH
 Method: 6020

 Workgroup (AAB#): WG253774
 Matrix: Water
 Units: mg/L

QC Key:STD Lot#:STD21680 Cal ID:ELAN-I-25-OCT-07

Analytes	Expected	Found	% Rec	LCS	Limits	Q
Silver, Dissolved	0.0625	0.0572	91.5	80	- 1	20
Arsenic, Dissolved	0.0625	0.0598	95.6	80	- 1:	20
Barium, Dissolved	0.0625	0.0593	94.9	80	- 1	20
Cadmium, Dissolved	0.0625	0.0586	93.8	80	- 1:	20
Chromium, Dissolved	0.0625	0.0616	98.6	80	- 1:	20
Copper, Dissolved	0.0625	0.0619	99.1	80	- 1	20
Lead, Dissolved	0.0625	0.0589	94.2	80	- 1	20
Manganese, Dissolved	0.0625	0.0616	98.6	80	- 1	20
Nickel, Dissolved	0.0625	0.0618	98.8	80	- 1	20
Antimony, Dissolved	0.0625	0.0584	93.5	80	- 1	20
Selenium, Dissolved	0.0625	0.0600	96.0	80	- 1:	20
Thallium, Dissolved	0.0625	0.0582	93.2	80	- 1	20

00078790

MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum:L0710596
 Cal ID: ELAN-ICP Worknum:WG253774

 Instrument ID:ELAN-ICP
 Contract #:DACA56-94-D-0020
 Method:6020

 Parent ID:WG253712-01
 File ID:EL.102507.104954
 Dil:1
 Matrix:WATER

 Sample ID:WG253712-04
 MS
 File ID:EL.102507.110256
 Dil:1
 Units:mg/L

 Sample ID:WG253712-05
 MSD
 File ID:EL.102507.110256
 Dil:1
 Units:mg/L

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Antimony	0.000629	0.0625	0.0645	102	0.0625	0.0624	98.8	3.37	75 - 125	20	
Arsenic	0.0141	0.0625	0.0770	101	0.0625	0.0751	97.6	2.51	75 - 125	20	
Barium	0.162	0.0625	0.224	97.8	0.0625	0.218	89.0	2.49	75 - 125	20	
Cadmium	ND	0.0625	0.0609	97.4	0.0625	0.0574	91.8	5.94	75 - 125	20	
Chromium	0.0303	0.0625	0.0903	96.1	0.0625	0.0904	96.2	0.113	75 - 125	20	
Copper	0.00383	0.0625	0.0648	97.5	0.0625	0.0626	94.0	3.44	75 - 125	20	
Lead	0.000866	0.0625	0.0667	105	0.0625	0.0644	102	3.54	75 - 125	20	
Nickel	0.0334	0.0625	0.0918	93.4	0.0625	0.0897	90.0	2.31	75 - 125	20	
Selenium	0.0150	0.0625	0.0784	101	0.0625	0.0769	98.9	1.96	75 - 125	20	
Silver	ND	0.0625	0.0548	87.6	0.0625	0.0527	84.3	3.87	75 - 125	20	
Thallium	0.000153	0.0625	0.0655	105	0.0625	0.0637	102	2.74	75 - 125	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

KEMRON FORMS - Modified 09/25/2007 (wg_ms_msd_drywt)

Version 1.5 PDF File ID: 917015 Report generated 10/26/2007 12:22

[#] FAILS RPD LIMIT

MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

00078791

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD		
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q	
Manganese	3.52	0.0625	3.54	19.7	0.0625	3.61	129	1.92	75 - 125	20	*	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

KEMRON FORMS - Modified 09/25/2007 (wg_ms_msd_drywt)

Version 1.5 PDF File ID: 917015 Report generated 10/26/2007 12:22

[#] FAILS RPD LIMIT

KEMRON ENVIRONMENTAL SERVICES SERIAL DILUTION REPORT

 Sample Login ID:L0710596
 Worknum: WG253774

 Instrument ID:ELAN-ICP
 Method:6020

 Sample ID:L0710596-12 File ID:EL.102507.112018 Dil:10
 Units:ug/L

Analyte	Sample	C	Serial Dilution	С	% Difference	Q
Antimony	ND	Ū	0	U		
Arsenic	4.59	х	8.67	F	88.9	E
Barium	48.1	х	37.2	F	22.7	E
Cadmium	1.04	F	3.66	F	252	E
Chromium	51.8	х	53.8	х	3.86	
Copper	6.28	F	0	U	100	E
Lead	3.33	х	9.06	F	172	E
Manganese	736		709	Х	3.67	
Nickel	3560		3550		0.281	
Selenium	17.8	х	25.8	Х	44.9	E
Silver	0	U	7.84	F	666	E
Thallium	0	υ	1.76	F	666	E

Serial Dilution ID: WG253774-02 File ID: EL. 102507.113322 Dil: 50

- U = Result is below MDL
- F = Result is between MDL and RL
- X = Result is greater than RL and less than 100 times the MDL
- E = %D exceeds control limit of 10% and initial
 sample result is greater than or equal to100 times the MDL

KEMRON ENVIRONMENTAL SERVICES SERIAL DILUTION REPORT

 Sample Login ID:L0710596
 Worknum: WG253774

 Instrument ID:ELAN-ICP
 Method:6020

 Sample ID:L0710596-12 File ID:EL.102507.140430 Dil:100
 Units:ug/L

 Serial Dilution ID:WG253774-02 File ID:EL.102507.141735 Dil:500

Analyte	Sample	C	Serial Dilution	C	% Difference	Q
Antimony	ND	U	0	U		
Arsenic	0	U	0	U		
Barium	40.8	F	0	U	100	E
Cadmium	0	U	0	U		
Chromium	99.5	х	226	F	127	E
Copper	0	U	0	U		
Lead	0	U	0	Ū		
Manganese	737	х	675	х	8.41	
Nickel	3800	х	3740	х	1.58	
Selenium	34.5	F	0	U	100	E
Silver	0	U	0	U		
Thallium	ND	U	0	U		

- U = Result is below MDL
- F = Result is between MDL and RL
- X = Result is greater than RL and less than 100 times the MDL
- E = %D exceeds control limit of 10% and initial
 sample result is greater than or equal to100 times the MDL

KEMRON ENVIRONMENTAL SERVICES POST SPIKE REPORT

Sample Login ID: L0710596 Worknum: WG253774

Instrument ID: ELAN-ICP Method: 6020

 Post Spike ID: WG253774-01
 File ID:EL.102507.112650
 Dil:10
 Units: ug/L

 Sample ID: L0710596-12
 File ID:EL.102507.112018
 Dil:10
 Matrix: Water

	Post Spike	_	Sample	_	Spike		Control	
Analyte	Result	С	Result	С	Added(SA)	% R	Limit %R	Q
ANTIMONY	50.5		0	U	50	101.0	75 - 125	
ARSENIC	49.6		0.459		50	98.3	75 - 125	
BARIUM	51.9		4.81		50	94.3	75 - 125	
CADMIUM	48.8		0.104	F	50	97.5	75 - 125	
CHROMIUM	52.3		5.18		50	94.2	75 - 125	
COPPER	48.5		0.628	F	50	95.7	75 - 125	
LEAD	48.8		0.333		50	97.0	75 - 125	
MANGANESE	118		73.6		50	89.2	75 - 125	
NICKEL	413		356		50	114.3	75 - 125	
SELENIUM	50.6		1.78		50	97.6	75 - 125	
SILVER	44.1		0	U	50	88.2	75 - 125	
THALLIUM	48.4		0	U	50	96.8	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

KEMRON FORMS - Modified 04/20/2007 - POST_SPIKE Version 2.0 PDF File ID: 917010 Report generated 10/26/2007 08:05

KEMRON ENVIRONMENTAL SERVICES POST SPIKE REPORT

Sample Login ID: L0710596 Worknum: WG253774

 Instrument ID: ELAN-ICP
 Method: 6020

 Post Spike ID: WG253774-01
 File ID:EL.102507.141102
 Dil:100
 Units: ug/L

Sample ID: L0710596-12 File ID:EL.102507.140430 Dil:100 Matrix: Water

	Post Spike		Sample		Spike	_	Control	
Analyte	Result	C	Result	C	Added(SA)	% R	Limit %R	Q
ANTIMONY	46.6		0	U	50	93.2	75 - 125	
ARSENIC	46.6		0	U	50	93.2	75 - 125	
BARIUM	46.0		0.408	F	50	91.3	75 - 125	
CADMIUM	46.8		0	U	50	93.6	75 - 125	
CHROMIUM	47.6		0.995		50	93.1	75 - 125	
COPPER	46.9		0	U	50	93.8	75 - 125	
LEAD	44.5		0	U	50	89.0	75 - 125	
MANGANESE	52.0		7.37		50	89.3	75 - 125	
NICKEL	83.8		38.0		50	91.6	75 - 125	
SELENIUM	45.1		0.345	F	50	89.5	75 - 125	
SILVER	43.6		0	U	50	87.3	75 - 125	
THALLIUM	44.4		0	U	50	88.7	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

KEMRON FORMS - Modified 04/20/2007 - POST_SPIKE Version 2.0 PDF File ID: 917010 Report generated 10/26/2007 08:05

INITIAL CALIBRATION SUMMARY

Login Number:L0710596

Analytical Method:6020

ICAL Worknum:WG253869

Workgroup (AAB#):WG253774

Instrument ID: ELAN-ICP
Initial Calibration Date: 25-OCT-2007 09:37

	WG2	253869-01	WG2	253869-02	WG:	253869-03	WG	253869-04		
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	R	Q
Antimony	0	32.196	. 4	1705.543	50	168729.889	100	323333.612	0.999988	
Arsenic	0	-429.155	. 4	255.496	50	67776.933	100	130116.491	0.999999	
Barium	0	55.001	. 4	746.046	50	81662.124	100	156761.59	0.999998	
Cadmium	0	9.823	. 4	447.863	50	53950.143	100	105102.54	0.999918	
Chromium	0	13541.628	. 4	17209.546	50	447149.527	100	860087.079	0.999962	
Copper	0	140.003	. 4	1175.108	50	114556.801	100	217242.245	0.999984	
Lead	0	279.338	. 4	9339.801	50	1087175.501	100	2121886.924	1.00000	
Manganese	0	2038.98	. 4	6913.748	50	581134.93	100	1110139.861	0.999999	
Nickel	0	38.667	. 4	964.742	50	105369.239	100	201404.542	0.999998	
Selenium	0	-12.096	. 4	60.019	50	5631.261	100	10649.544	0.999977	
Silver	0	27.667	. 4	2695.536	50	316308.218	100	606489.765	0.999988	
Thallium	0	31	. 4	2895.282	50	342140.105	100	664888.358	0.999997	

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier

* = Out of Compliance; R < 0.995

KEMRON Environmental Services INITIAL CALIBRATION BLANK (ICB)

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253869-06

 Instrument ID: ELAN-ICP
 Run Time: 09:50
 Method: 6020

 File ID: <u>EL.102507.095031</u> Analyst: <u>JYH</u> Units: mg/L

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
SILVER	.0001	.0004	.0000137	1	U
ARSENIC	.0001	.0004	0000058	1	υ
BARIUM	.0002	.0012	0000031	1	U
CADMIUM	.00005	.0002	.0000289	1	υ
CHROMIUM	.0002	.0008	.0000417	1	U
COPPER	.0002	.0008	0000174	1	υ
MANGANESE	.0002	.0008	.0000429	1	υ
NICKEL	.0004	.0016	000007	1	υ
LEAD	.0001	.0002	.0000086	1	Ū
ANTIMONY	.0001	.0004	.000116	1	F
SELENIUM	.0002	.0004	000003	1	Ū
THALLIUM	.00002	.00008	.0000053	1	U

00078798

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-12

Instrument ID:ELAN-ICP Run Time:10:30 Method:6020

File ID:EL.102507.103014 Analyst:JYH Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Silver	0.100	0.400	0.00700	1	U
Arsenic	0.100	0.400	0.0492	1	υ
Barium	0.200	1.20	-0.00220	1	U
Cadmium	0.0500	0.200	0.0288	1	υ
Chromium	0.200	0.800	0.0505	1	υ
Copper	0.200	0.800	-0.0181	1	υ
Lead	0.100	0.200	0.00310	1	υ
Manganese	0.200	0.800	0.0270	1	υ
Nickel	0.400	1.60	-0.00830	1	υ
Antimony	0.100	0.400	0.104	1	F
Selenium	0.200	0.400	0.0367	1	υ
Thallium	0.0200	0.0800	-0.000900	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

* = Result is above RL

00078799

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-14

Instrument ID:ELAN-ICP Run Time:11:53 Method:6020

File ID:EL.102507.115307 Analyst:JYH Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Silver	0.100	0.400	0.00730	1	υ
Arsenic	0.100	0.400	0.0264	1	υ
Barium	0.200	1.20	-0.00190	1	υ
Cadmium	0.0500	0.200	0.0287	1	υ
Chromium	0.200	0.800	-0.0243	1	υ
Copper	0.200	0.800	-0.0112	1	υ
Lead	0.100	0.200	0.00340	1	υ
Manganese	0.200	0.800	-0.0236	1	υ
Nickel	0.400	1.60	-0.00820	1	υ
Antimony	0.100	0.400	0.119	1	F
Selenium	0.200	0.400	0.0226	1	υ
Thallium	0.0200	0.0800	0.000300	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

^{* =} Result is above RL

00078800

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-16

Instrument ID:ELAN-ICP Run Time:13:11 Method:6020

File ID:EL.102507.131149 Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Silver	0.100	0.400	0.00760	1	υ
Arsenic	0.100	0.400	0.0203	1	υ
Barium	0.200	1.20	-0.00400	1	υ
Cadmium	0.0500	0.200	0.0391	1	υ
Chromium	0.200	0.800	-0.0192	1	υ
Copper	0.200	0.800	-0.0146	1	υ
Lead	0.100	0.200	0.00330	1	υ
Manganese	0.200	0.800	-0.0525	1	υ
Nickel	0.400	1.60	-0.0120	1	υ
Antimony	0.100	0.400	0.145	1	F
Selenium	0.200	0.400	0.00990	1	υ
Thallium	0.0200	0.0800	-0.000800	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

^{* =} Result is above RL

00078801

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-18

Instrument ID:ELAN-ICP Run Time:14:30 Method:6020

File ID:EL.102507.143049 Analyst:JYH Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Silver	0.100	0.400	0.0127	1	υ
Arsenic	0.100	0.400	0.0142	1	υ
Barium	0.200	1.20	-0.00270	1	υ
Cadmium	0.0500	0.200	0.0327	1	υ
Chromium	0.200	0.800	0.238	1	F
Copper	0.200	0.800	-0.000800	1	υ
Lead	0.100	0.200	0.00790	1	υ
Manganese	0.200	0.800	-0.0747	1	υ
Nickel	0.400	1.60	-0.00460	1	υ
Antimony	0.100	0.400	0.0907	1	υ
Selenium	0.200	0.400	0.00760	1	υ
Thallium	0.0200	0.0800	0.00330	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

^{* =} Result is above RL

00078802

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-20

Instrument ID:ELAN-ICP Run Time:15:20 Method:6020

File ID:EL.102507.152014 Analyst:JYH Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Silver	0.100	0.400	0.00920	1	υ
Arsenic	0.100	0.400	-0.0315	1	U
Barium	0.200	1.20	-0.00230	1	Ū
Cadmium	0.0500	0.200	0.0262	1	υ
Chromium	0.200	0.800	0.159	1	U
Copper	0.200	0.800	-0.0171	1	υ
Lead	0.100	0.200	0.00480	1	υ
Manganese	0.200	0.800	-0.0663	1	υ
Nickel	0.400	1.60	-0.00690	1	υ
Antimony	0.100	0.400	0.0719	1	υ
Selenium	0.200	0.400	-0.0276	1	υ
Thallium	0.0200	0.0800	0.00230	1	υ

U = Result is less than MDL

F = Result is between MDL and RL

^{* =} Result is above RL

00078803

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-22

Instrument ID:ELAN-ICP Run Time:16:32 Method:6020

File ID:EL.102507.163230 Analyst:JYH Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Silver	0.100	0.400	0.00570	1	U
Arsenic	0.100	0.400	0.0271	1	U
Barium	0.200	1.20	-0.00240	1	Ū
Cadmium	0.0500	0.200	0.0117	1	U
Chromium	0.200	0.800	0.180	1	U
Copper	0.200	0.800	-0.0146	1	U
Lead	0.100	0.200	0.000300	1	υ
Manganese	0.200	0.800	-0.0743	1	U
Nickel	0.400	1.60	-0.00910	1	υ
Antimony	0.100	0.400	0.0663	1	U
Selenium	0.200	0.400	0.0866	1	υ
Thallium	0.0200	0.0800	-0.00340	1	U

U = Result is less than MDL

F = Result is between MDL and RL

^{* =} Result is above RL

INITIAL CALIBRATION VERIFICATION (ICV)

00078804

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-05

Instrument ID:ELAN-ICP Run Time:09:43 Method:6020

File ID:EL.102507.094349 Analyst:JYH Units:ug/L

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	%REC	LIMITS	Q
Silver	50	47.7	95.3	90 - 110	
Arsenic	50	49.0	98.0	90 - 110	
Barium	50	48.9	97.7	90 - 110	
Cadmium	50	48.6	97.3	90 - 110	
Chromium	50	49.3	98.7	90 - 110	
Copper	50	50.7	101	90 - 110	
Lead	50	50.2	100	90 - 110	
Manganese	50	49.5	99.1	90 - 110	
Nickel	50	49.6	99.1	90 - 110	
Antimony	50	49.2	98.4	90 - 110	
Selenium	50	50.3	101	90 - 110	
Thallium	50	49.1	98.1	90 - 110	

^{*} Exceeds LIMITS Limit

QC Key:STD

CONTINUING CALIBRATION VERIFICATION (CCV) 00078805

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-11
Instrument ID:ELAN-ICP Run Time:10:23 Method:6020
File ID:EL.102507.102332 Analyst:JYH QC Key:STD
Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Silver	50.0	48.1	ug/L	96.2	90 - 110	
Arsenic	50.0	49.8	ug/L	99.6	90 - 110	
Barium	50.0	49.3	ug/L	98.5	90 - 110	
Cadmium	50.0	50.0	ug/L	100	90 - 110	
Chromium	50.0	50.4	ug/L	101	90 - 110	
Copper	50.0	50.8	ug/L	102	90 - 110	
Lead	50.0	51.7	ug/L	103	90 - 110	
Manganese	50.0	50.0	ug/L	100	90 - 110	
Nickel	50.0	50.7	ug/L	101	90 - 110	
Antimony	50.0	50.2	ug/L	100	90 - 110	
Selenium	50.0	49.6	ug/L	99.1	90 - 110	
Thallium	50.0	51.2	ug/L	102	90 - 110	

^{*} Exceeds LIMITS Criteria

CONTINUING CALIBRATION VERIFICATION (CCV) 00078806

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253869-13

 Instrument ID: ELAN-ICP
 Run Time: 11:46
 Method: 6020

 File ID: EL.102507.114625
 Analyst: JYH
 QC Key: STD

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Silver	50.0	47.7	ug/L	95.3	90 - 110	
Arsenic	50.0	48.4	ug/L	96.8	90 - 110	
Barium	50.0	49.8	ug/L	99.5	90 - 110	
Cadmium	50.0	49.7	ug/L	99.5	90 - 110	
Chromium	50.0	47.7	ug/L	95.3	90 - 110	
Copper	50.0	48.6	ug/L	97.1	90 - 110	
Lead	50.0	50.6	ug/L	101	90 - 110	
Manganese	50.0	48.8	ug/L	97.5	90 - 110	
Nickel	50.0	48.4	ug/L	96.9	90 - 110	
Antimony	50.0	49.1	ug/L	98.1	90 - 110	
Selenium	50.0	49.2	ug/L	98.4	90 - 110	
Thallium	50.0	49.7	ug/L	99.4	90 - 110	

^{*} Exceeds LIMITS Criteria

00078807

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-15

Instrument ID:ELAN-ICP Run Time:13:05 Method:6020

File ID:EL.102507.130507 Analyst:JYH QC Key:STD

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Silver	50.0	47.7	ug/L	95.3	90 - 110	
Arsenic	50.0	48.5	ug/L	96.9	90 - 110	
Barium	50.0	49.1	ug/L	98.1	90 - 110	
Cadmium	50.0	48.5	ug/L	97.0	90 - 110	
Chromium	50.0	48.5	ug/L	97.0	90 - 110	
Copper	50.0	48.8	ug/L	97.7	90 - 110	
Lead	50.0	50.9	ug/L	102	90 - 110	
Manganese	50.0	49.0	ug/L	98.0	90 - 110	
Nickel	50.0	48.6	ug/L	97.2	90 - 110	
Antimony	50.0	49.3	ug/L	98.6	90 - 110	
Selenium	50.0	49.5	ug/L	99.0	90 - 110	
Thallium	50.0	49.8	ug/L	99.6	90 - 110	

^{*} Exceeds LIMITS Criteria

CONTINUING CALIBRATION VERIFICATION (CCV) 00078808

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-17

Instrument ID:ELAN-ICP Run Time:14:24 Method:6020

File ID:EL.102507.142407 Analyst:JYH QC Key:STD

Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Silver	50.0	47.3	ug/L	94.6	90 - 110	
Arsenic	50.0	49.9	ug/L	99.9	90 - 110	
Barium	50.0	49.7	ug/L	99.4	90 - 110	
Cadmium	50.0	50.2	ug/L	100	90 - 110	
Chromium	50.0	50.6	ug/L	101	90 - 110	
Copper	50.0	50.5	ug/L	101	90 - 110	
Lead	50.0	50.2	ug/L	100	90 - 110	
Manganese	50.0	47.5	ug/L	94.9	90 - 110	
Nickel	50.0	50.7	ug/L	101	90 - 110	
Antimony	50.0	50.4	ug/L	101	90 - 110	
Selenium	50.0	49.4	ug/L	98.8	90 - 110	
Thallium	50.0	49.0	ug/L	97.9	90 - 110	

^{*} Exceeds LIMITS Criteria

CONTINUING CALIBRATION VERIFICATION (CCV)

00078809

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-19
Instrument ID:ELAN-ICP Run Time:15:13 Method:6020
File ID:EL.102507.151332 Analyst:JYH QC Key:STD
Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Silver	50.0	48.1	ug/L	96.2	90 - 110	
Arsenic	50.0	50.5	ug/L	101	90 - 110	
Barium	50.0	49.8	ug/L	99.5	90 - 110	
Cadmium	50.0	49.9	ug/L	99.8	90 - 110	
Chromium	50.0	51.1	ug/L	102	90 - 110	
Copper	50.0	51.3	ug/L	103	90 - 110	
Lead	50.0	50.4	ug/L	101	90 - 110	
Manganese	50.0	48.9	ug/L	97.9	90 - 110	
Nickel	50.0	51.5	ug/L	103	90 - 110	
Antimony	50.0	50.3	ug/L	101	90 - 110	
Selenium	50.0	50.4	ug/L	101	90 - 110	
Thallium	50.0	49.6	ug/L	99.2	90 - 110	

^{*} Exceeds LIMITS Criteria

00078810

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253869-21
Instrument ID:ELAN-ICP Run Time:16:25 Method:6020
File ID:EL.102507.162548 Analyst:JYH QC Key:STD
Workgroup (AAB#):WG253774 Cal ID:ELAN-I - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Silver	50.0	47.3	ug/L	94.6	90 - 110	
Arsenic	50.0	49.8	ug/L	99.6	90 - 110	
Barium	50.0	50.2	ug/L	100	90 - 110	
Cadmium	50.0	50.0	ug/L	100	90 - 110	
Chromium	50.0	51.1	ug/L	102	90 - 110	
Copper	50.0	50.9	ug/L	102	90 - 110	
Lead	50.0	48.7	ug/L	97.4	90 - 110	
Manganese	50.0	48.7	ug/L	97.4	90 - 110	
Nickel	50.0	51.6	ug/L	103	90 - 110	
Antimony	50.0	50.0	ug/L	100	90 - 110	
Selenium	50.0	48.9	ug/L	97.8	90 - 110	
Thallium	50.0	47.9	ug/L	95.8	90 - 110	

^{*} Exceeds LIMITS Criteria

KEMRON ENVIRONMENTAL SERVICES INTERFERENCE CHECK SAMPLES

Login number:L0710596 Workgroup (AAB#):WG253774

Instrument ID:ELAN-ICP

 Sol. A: WG253869-09
 File ID: EL. 102507.101025

 Sol. AB: WG253869-10
 File ID: EL. 102507.101659

Method: 6020 Units:ug/L

		Sol. A		Sol. AB			
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Antimony	NS	-0.00830	NS	100	101	101	
Arsenic	NS	-0.00460	NS	100	98.3	98.3	
Barium	NS	0.0366	NS	100	98.7	98.7	
Cadmium	NS	0.0880	NS	100	98.8	98.8	
Chromium	NS	0.265	NS	100	99.1	99.1	
Copper	NS	0.375	NS	100	96.2	96.2	
Lead	NS	0.0730	NS	100	96.4	96.4	
Manganese	NS	0.404	NS	100	97.9	97.9	
Nickel	NS	1.14	NS	100	97.8	97.8	
Selenium	NS	-0.134	NS	100	95.7	95.7	
Silver	NS	0.00800	NS	100	94.1	94.1	
Thallium	NS	-0.00100	NS	100	95.9	95.9	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project
 reporting limit (RL).

CRI SAMPLE

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253869-08

 Instrument ID: ELAN-ICP
 Run Time: 10:03
 Prep Method: 3015

File ID:EL.102507.100350 Analyst:JYH Method: 6020 Units:ug/L Workgroup (AAB#):WG253869 Matrix:Water

Contract #:DACA56-94-D-0020 Cal ID: ELAN-ICP-25-OCT-2007 09:37

Analytes	Expected	Found	% Rec	Limits	Q
Cadmium, Dissolved	0.200	0.193	96.5	50 - 150	
Thallium, Dissolved	0.0800	0.0804	101	50 - 150	

KEMRON FORMS - Modified 02/14/2006 Version 1.5 PDF File ID: 917017 Report generated 10/25/2007 15:29

 Login Number: L0710596
 Date: 09/07/2007

 Insturment ID: ELAN-ICP
 Method: 6020

	Integration Time	Concentration
Analyte	(Sec.)	(ug/L)
Antimony	1.00	100.0
Arsenic	1.00	100.0
Barium	1.00	100.0
Cadmium	1.00	100.0
Chromium	1.00	100.0
Cobalt	1.00	100.0
Copper	1.00	100.0
Lead	1.00	100.0
Manganese	1.00	100.0
Nickel	1.00	100.0
Selenium	1.00	100.0
Silver	1.00	100.0
Thallium	1.00	100.0
Vanadium	1.00	100.0
Zinc	1.00	100.0

Comments:

2.2.3 Metals CVAA Data (Mercury)

2.2.3.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta , OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston. TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
47wwzz-101807	L0710596-12	7470A	1	23-OCT-07
EQUIPMENT RINSE	L0710596-14	7470A	1	23-OCT-07

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 924248 Report generated 11/02/2007 10:41

1 OF 1

KEMRON ENVIRONMENTAL SERVICES

00078817

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-12
Client ID: 47WWZZ-101807

PrePrep Method: NONE
Prep Method: METHOD Instrument: HYDRA
Prep Date: 10/24/2007 07:30 Cal Date: 10/25/2007 13:09 Matrix: Water Analytical Method: 7470A Workgroup Number: WG253832 Analyst:**ED** Run Date: 10/25/2007 13:35

Collect Date: 10/18/2007 09:55 File ID: HY. 102507.133541 ${\tt Dilution:} \underline{\bf 1}$ Sample Tag: 01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Dissolved	7439-97-6		Ū	0.000200	0.000100

U Not detected at or above adjusted sample detection limit

of

2

KEMRON ENVIRONMENTAL SERVICES

00078818

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-14
Client ID: EQUIPMENT RINSE PrePrep Method: MONE
Prep Method: METHOD Instrument:HYDRA
Prep Date:10/24/2007 07:30 Cal Date: 10/25/2007 13:09 Matrix:**Water** Analytical Method: 7470A Workgroup Number: WG253832 Analyst:**ED** Run Date: 10/25/2007 13:40

Collect Date: 10/22/2007 14:20 File ID: HY. 102507.134035 ${\tt Dilution:} \underline{\bf 1}$ Sample Tag: 01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Dissolved	7439-97-6		υ	0.000200	0.000100

U Not detected at or above adjusted sample detection limit

of

2

2.2.3.2 QC Summary Data

Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and five standards.

2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to Volume (mL)	40
Vi = Aliquot Volume (mL)	40
D = Manual dilution factor, if required (10X = 10)	1
Cx = Concentration of element in ppb (ug/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Ws} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to volume (mL)	40
Ws = Aliquot weight (g)	0.6
D = Manual dilution factor	1
Cx = Concentration of element in ug/kg	6.67

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

1 Cx = Concentration calculated as received (wet basis)	6.67
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	8.33

8.33 ug/kg = 0.00833 mg/kg

Document Control No. MPL0154 Page 50 of 50

Mercury	Digestion	n Log
---------	-----------	-------

Analyst(s):	Box: / 5
Date: 19/19/07 LCS: 4/m/ STO 22648	Digestion Work Group: WG_25JL89
MS/MSD: 4/m/ 810 22648 Witness: VC H ₂ SO ₄ Lot #:Con /2284	ME404 Revision # 10 - Method 7470A-Water
K2S ₂ O ₈ Lot #: <u>PLT 12163</u> KMNO ₄ Lot #: <u>PLT 12163</u>	ME405 Revision # Method 7471A-Soil Hot Block Temperature at start: 94.9°c 0730
HNO ₃ Lot #: <u>Con 12617</u> Digest Tube Lot #: <u>Con 1469</u>	Hot Block Temperature at end: 94.78 930
Aqua Regia: NP Earliest Sample Due Date: 19/24/07	Relinquished By:
ICV / CCV: 570 22650 Stds: 0, 0.2, 1, 2, 5, 10: 570 2265/0 22656	Digest Received By: Date: 10-24-67

	KEMRON #	Initial Wt/Vol	Final Volume	Comments		Due Date
1	MIN	Yomi	40m1	100 FICT 18/22	602	Bute
2	USW		1		97	
3	10.539-02			LAB FILT 10/22		11/1
4	-04	٧.				
5	10.540.02					11/1
6	if					
7	10.541-02					11/1
8	10.541-02 10.541-02 10.546-12 "14			<u></u>		11/1
9	10.596-12			IND FILT WAY		10/30
10	-14	_ با		<u> </u>	~8/	
11	-14ms	76 pl			· K/	
12	-14 MCD			<u></u>	.0	
13	10.610-01	400-1			····	10/26
14						
15	4)3					
16	04	+				
17	10.499.01	411		W12536298 1300		
18	10.499.01			·		10/29
19						
20	J					
21	10.522-01					10/29
22	10.722.01					10/24
23	10.532.01	121/2	-			10/29
24	J.M.	10/24/07				
_25						

_25			
Comments:	·		
Primary Review: /// 10/24/07	Secondary Review:	Vich Cells 10/	74/07

Instrument Run Log

Instrument:	HYDRA	Da	aset:	102507C.PRN	
Analyst1:	ED	Ana	lyst2:	NA	
Method:	7470A		SOP:	404	Rev: <u>10</u>
Maintenance Log ID:	21448				
Calibration Std: STE	22656	ICV/CCV Std	ST	D22650	Post Spike: STD22656
ICSA: N/A		ICSAB:	N/	Α	_
	Workgroups:	WG253832			
Comments:					

Seq.	File ID	Sample	ID	Prep	Dil	Doforance	Date/Time
	HY.102507.130002	WG253865-01	Calibration Point	Prep		Reference	10/25/07 13:00
1					1		
2	HY.102507.130152	WG253865-02	Calibration Point		1		10/25/07 13:01
3	HY.102507.130411	WG253865-03	Calibration Point		1		10/25/07 13:04
4	HY.102507.130548	WG253865-04	Calibration Point		1		10/25/07 13:05
5	HY.102507.130730	WG253865-05	Calibration Point		1		10/25/07 13:07
6	HY.102507.130923	WG253865-06	Calibration Point		1		10/25/07 13:09
7	HY.102507.131112	WG253865-07	Initial Calibration Verification		1		10/25/07 13:11
8	HY.102507.131251	WG253865-08	Initial Calib Blank		1		10/25/07 13:12
9	HY.102507.131432	WG253865-09	CCV		1		10/25/07 13:14
10	HY.102507.131619	WG253865-10	CCB		1		10/25/07 13:16
11	HY.102507.131756	WG253689-02	Method/Prep Blank	40/40	1		10/25/07 13:17
12	HY.102507.132003	WG253689-03	Laboratory Control S	40/40	1		10/25/07 13:20
13	HY.102507.132224	L0710539-02	MIN-01	40/40	1	WG253712-01	10/25/07 13:22
14	HY.102507.132445	WG253832-01	Post Digestion Spike		1	L0710539-02	10/25/07 13:24
15	HY.102507.132622	L0710539-04	MIN-02	40/40	1		10/25/07 13:26
16	HY.102507.132823	L0710540-02	SWL-01	40/40	1		10/25/07 13:28
17	HY.102507.133015	L0710540-04	SWL-01D	40/40	1		10/25/07 13:30
18	HY.102507.133155	L0710541-02	MTE-01	40/40	1		10/25/07 13:31
19	HY.102507.133401	L0710542-02	STA-01	40/40	1		10/25/07 13:34
20	HY.102507.133541	L0710596-12	47WWZZ-101807	40/40	1		10/25/07 13:35
21	HY.102507.133720	WG253865-11	CCV		1		10/25/07 13:37
22	HY.102507.133857	WG253865-12	CCB		1		10/25/07 13:38
23	HY.102507.134035	WG253689-01	Reference Sample		1	L0710596-14	10/25/07 13:40
24	HY.102507.134214	WG253689-04	Matrix Spike	36/40	1		10/25/07 13:42
25	HY.102507.134354	WG253689-05	Matrix Spike Duplica	36/40	1		10/25/07 13:43
26	HY.102507.134536	L0710610-01	GP-01	40/40	1		10/25/07 13:45
27	HY.102507.134732	L0710610-02	GP-02	40/40	1		10/25/07 13:47
28	HY.102507.134911	L0710610-03	GP-03	40/40	1		10/25/07 13:49
29	HY.102507.135110	L0710610-04	GP-04	40/40	1		10/25/07 13:51
30	HY.102507.135251	WG253629-01	Fluid Blank		1		10/25/07 13:52
31	HY.102507.135433	L0710499-01	LOWER LOT BURN PILE S	4/40	1	WG253714-01	10/25/07 13:54
32	HY.102507.135624	WG253832-02	Post Digestion Spike		1	L0710499-01	10/25/07 13:56
33	HY.102507.135805	WG253865-13	CCV		1		10/25/07 13:58
34	HY.102507.135942	WG253865-14	ССВ		1		10/25/07 13:59
35	HY.102507.140143	L0710499-02	LOWER LOT BURN PILE S	4/40	1		10/25/07 14:01
36	HY.102507.140324	L0710499-03	LOWER LOT BURN PILE N	4/40	1		10/25/07 14:03
37	HY.102507.140522	L0710520-01	ATHENS CO	4/40	1		10/25/07 14:05
			1		-		5, _ 5, 5

Page: 1 Approved: October 25, 2007

October 25, 2007 Maren Blery

Run 00078823

KEMRON Environmental Services

Instrument Run Log

			_			1	
Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	HY.102507.140722	L0710522-01	WASHINGTON CO	4/40	1		10/25/07 14:07
39	HY.102507.140910	L0710532-01	#1 STRIPPING COLUMN	4/40	1		10/25/07 14:09
40	HY.102507.141100	WG253865-15	CCV		1		10/25/07 14:11
41	HY.102507.141236	WG253865-16	ССВ		1		10/25/07 14:12

Page: 2 Approved: October 25, 2007

October 25, 2007 Maren Blery

KEMRON Environmental Services Data Checklist

Date:	25-OCT-2007
Analyst:	ED
Analyst:	NA
Method:	7470A
Instrument:	HYDRA
Curve Workgroup:	WG253865
Runlog ID:	18963
Analytical Workgroups:	WG253832

Calibration/Linearity	X		
ICV/CCV	X		
ICB/CCB	X		
ICSA/ICSAB			
CRI			
Blank/LCS	X		
MS/MSD	X		
Post Spike/Serial Dilution	X		
Upload Results	X		
Data Qualifiers			
Generate PDF Instrument Data	X		
Sign/Annotate PDF Data	X		
Upload Curve Data	X		
Workgroup Forms	X		
Case Narrative	539,540,541,542,596,610,520,522		
Client Forms			
Level X	539,540,541,542,520,522		
Level 3	596		
Level 4			
Check for compliance with method and project specific requirements	X		
Check the completeness of reported information	X		
Check the information for the report narrative	X		
Primary Reviewer	ED		
Secondary Reviewer	MMB		
Comments			

Primary Reviewer: 25-OCT-2007

Secondary Reviewer: 25-OCT-2007 Errily Decker Maren Beery

Generated: OCT-25-2007 19:58:45

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 7470A

Login Number: L0710596

AAB#:	WG253832	

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WWZZ-101807	10/18/07	10/23/07	10/24/07	28	5.90	10/25/07	28	1.25	
EQUIPMENT RINSE	10/22/07	10/23/07	10/24/07	28	1.72	10/25/07	28	1.26	

* EXT = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID: 916886 Report generated 10/25/2007 15:03

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG253832

Blank File ID:HY.102507.131756 Blank Sample ID:WG253689-02

Prep Date:10/24/07 07:30 Instrument ID:HYDRA

Analyzed Date:10/25/07 13:17 Method:7470A

Analyst:ED

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253689-03	HY.102507.132003	10/25/07 13:20	01
47WWZZ-101807	L0710596-12	HY.102507.133541	10/25/07 13:35	01
EQUIPMENT RINSE	L0710596-14	HY.102507.134035	10/25/07 13:40	01

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID: 916887 Report generated 10/25/2007 15:03

KEMRON Environmental Services METHOD BLANK REPORT

00078827

Login Number:L0710596	Prep Date: 10/24/07 07:30	Sample ID: WG253689-02
Instrument ID:HYDRA	Run Date: 10/25/07 13:17	Prep Method: METHOD
File ID:HY.102507.131756	Analyst:ED	Method: 7470A

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Mercury, Dissolved	0.000100	0.000200	0.000100	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID: 916888 Report generated 10/25/2007 15:03

LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253689-03

 Instrument ID: HYDRA
 Run Time: 13:20
 Prep Method: METHOD

 File ID: HY.102507.132003
 Analyst: ED
 Method: 7470A

 Workgroup (AAB#): WG253832
 Matrix: Water
 Units: mg/L

 QC Key: STD
 Lot#: MI-7470-01
 Cal ID: HYDRA-25-OCT-07

Analytes	Expected	Found	% Rec	LCS Limi	ts	Q
Mercury, Dissolved	0.00400	0.00432	108	85 -	115	

KEMRON FORMS - Modified 09/06/2007 Version 1.5 PDF File ID: 916889 Report generated 10/25/2007 15:03

00078829

MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Mercury, Dissolved	ND	0.00444	0.00500	113	0.00444	0.00483	109	3.39	85 - 115	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

KEMRON FORMS - Modified 09/25/2007 (wg_ms_msd_drywt)

Version 1.5 PDF File ID: 916890 Report generated 10/25/2007 15:03

[#] FAILS RPD LIMIT

KEMRON ENVIRONMENTAL SERVICES POST SPIKE REPORT

 Sample Login ID: L0710596
 Worknum: WG253832

Instrument ID: HYDRA Method: 7470A

Post Spike ID: WG253832-01 File ID:HY.102507.132445 Dil:1 Units: ug/L
Sample ID: L0710539-02 File ID:HY.102507.132224 Dil:1 Matrix: Water

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
MERCURY	1.13		0	U	1	113.0	85 - 115	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

KEMRON FORMS - Modified 04/20/2007 - POST_SPIKE Version 2.0 PDF File ID: 916885 Report generated 10/25/2007 15:03 INITIAL CALIBRATION SUMMARY

Login Number: L0710596 Analytical Method: 7470A ICAL Worknum: WG253865

Workgroup (AAB#):WG253832 Instrument ID: HYDRA Initial Calibration Date: 10/25/2007 13:09

		WG2	53865-01	WG2	53865-02	WG253865-03		WG253865-04		WG253865-05		WG253865-06	
Analy	rte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT
Mercury	7	0	2224	0.200	11934	1.00	58389	2.00	109561	5.00	272243	10.0	561455

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier * = Out of Compliance; R < 0.995

KEMRON FORMS - Modified 02/02/2007 Version 1.5 PDF File ID: 916891 Report generated 10/25/2007 15:03

Login Number: L0710596 Analytical Method: 7470A ICAL Worknum: WG253865

Workgroup (AAB#):WG253832 Instrument ID: HYDRA Initial Calibration Date: 10/25/2007 13:09

Analyte	R	Q
Mercury	1.000	

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

KEMRON FORMS - Modified 02/02/2007 Version 1.5 PDF File ID: 916891 Report generated 10/25/2007 15:03

KEMRON Environmental Services INITIAL CALIBRATION BLANK (ICB)

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253865-08

 Instrument ID: HYDRA
 Run Time: 13:12
 Method: 7471

 File ID:HY.102507.131251 Analyst:ED Units: mg/L Workgroup (AAB#):WG253832 Cal ID:HYDRA - 25-OCT-07

Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
MERCURY	.0001	.0002	.00006	1	υ

KEMRON FORMS - Modified 10/02/2007 Version 2.0 PDF File ID: 916893 Report generated 10/25/2007 15:04

00078834

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596	Run Date:10/25/2007	Sample ID: WG253865-10
Instrument ID: HYDRA	Run Time:13:16	Method: 7470A
File ID:HY.102507.131619	Analyst:ED	Units:ug/L
Workgroup (AAB#):WG253832	Cal ID: HYDRA - 25-OCT-0	07
Matrix:WATER		

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Mercury	0.100	0.200	0.0650	1	υ

U = Result is less than MDL F = Result is between MDL and RL * = Result is above RL

KEMRON FORMS - Modified 09/27/2006 Version 2.0 PDF File ID: 916895 Report generated 10/25/2007 15:04

00078835

CONTINUING CALIBRATION BLANK (CCB)

Login Number:L0710596	Run Date:10/25/2007	Sample ID: WG253865-12
Instrument ID:HYDRA	Run Time:13:38	Method: 7470A
File ID:HY.102507.133857	Analyst:ED	Units:ug/L
Workgroup (AAB#):WG253832	Cal ID: HYDRA - 25-OCT-	-
Matrix:WATER		

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Mercury	0.100	0.200	-0.0280	1	υ

U = Result is less than MDL F = Result is between MDL and RL * = Result is above RL

KEMRON FORMS - Modified 09/27/2006 Version 2.0 PDF File ID: 916895 Report generated 10/25/2007 15:04

00078836

CONTINUING CALIBRATION BLANK (CCB)

 Login Number: L0710596
 Run Date: 10/25/2007
 Sample ID: WG253865-14

 Instrument ID: HYDRA
 Run Time: 13:59
 Method: 7470A

 File ID: HY.102507.135942
 Analyst: ED
 Units: ug/L

 Workgroup (AAB#):WG253832 Cal ID: HYDRA - 25-OCT-07 Matrix:WATER

Analytes	MDL	RDL	Concentration	Dilution	Qualifier
Mercury	0.100	0.200	-0.0430	1	Ū

U = Result is less than MDL F = Result is between MDL and RL

* = Result is above RL

KEMRON FORMS - Modified 09/27/2006 Version 2.0 PDF File ID: 916895 Report generated 10/25/2007 15:04

INITIAL CALIBRATION VERIFICATION (ICV)

00078837

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253865-07

Instrument ID:HYDRA Run Time:13:11 Method:7470A

File ID:HY.102507.131112 Analvst:ED Units:ug/L

Workgroup (AAB#):WG253832 Cal ID: HYDRA - 25-OCT-07

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Mercury	2	2.09	105	90 - 110	

^{*} Exceeds LIMITS Limit

KEMRON FORMS - Modified 09/06/2007 (ICV) Version 1.5 PDF File ID: 916892 Report generated 10/25/2007 15:03

00078838

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596	Run Date:10/25/2007	Sample ID: WG253865-09
Instrument ID:HYDRA	Run Time:13:14	Method: 7470A
File ID:HY.102507.131432	Analyst:ED	QC Key: STD
Workgroup (AAR#):WG253832	Cal ID: HYDRA - 25-OCT-07	

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00203	mg/L	102	80 - 120	

^{*} Exceeds LIMITS Criteria

KEMRON FORMS - Modified 09/06/2007 - (CCV) Version 1.5 PDF File ID: 916894 Report generated 10/25/2007 15:04

00078839

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253865-11

Instrument ID:HYDRA Run Time:13:37 Method:7470A

File ID:HY.102507.133720 Analvst:ED QC Key:STD

Workgroup (AAB#):WG253832 Cal ID: HYDRA - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00204	mg/L	102	80 - 120	

^{*} Exceeds LIMITS Criteria

KEMRON FORMS - Modified 09/06/2007 - (CCV) Version 1.5 PDF File ID: 916894 Report generated 10/25/2007 15:04

00078840

CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L0710596 Run Date:10/25/2007 Sample ID:WG253865-13

Instrument ID:HYDRA Run Time:13:58 Method:7470A

File ID:HY.102507.135805 Analvst:ED QC Key:STD

Workgroup (AAB#):WG253832 Cal ID: HYDRA - 25-OCT-07

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00207	mg/L	104	80 - 120	

^{*} Exceeds LIMITS Criteria

KEMRON FORMS - Modified 09/06/2007 - (CCV) Version 1.5 PDF File ID: 916894 Report generated 10/25/2007 15:04

2.3 General Chemistry Data

2.3.1 Perchlorate Data

2.3.1.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta , OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston. TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
LHSMW60-101807	L0710596-03	314.0	1	23-OCT-07
LHSMW60-101807-QC	L0710596-04	314.0	1	23-OCT-07
47WW27-101907	L0710596-06	314.0	1	23-OCT-07
47WW27-101907	L0710596-06	314.0	15	23-OCT-07
EQUIPMENT RINSE	L0710596-13	314.0	1	23-OCT-07

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 924249 Report generated 11/02/2007 10:41

1 OF 1

00078845

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-03 PrePrep Method: NONE Instrument: IC1

Client ID: LHSMW60-101807 Prep Method: 314.0 Prep Date: 10/29/2007 13:39

Matrix: Water Analytical Method: 314.0 Cal Date: 10/23/2007 12:32

 Workgroup Number: WG254202
 Analyst: DSF
 Run Date: 10/29/2007 13:39

 Collect Date: 10/18/2007 15:50
 Dilution: 1
 File ID: I11029071339.15

 Sample Tag: DL01
 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Perchlorate	14797-73-0		U	1.00	0.500

U Not detected at or above adjusted sample detection limit

of

00078846

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: LO710596-04 PrePrep Method: NONE Instrument: IC1

Client ID: LHSMW60-101807-QC Prep Method: 314.0 Prep Date: 10/29/2007 13:59

Matrix: Water Analytical Method: 314.0 Cal Date: 10/23/2007 12:32

Workgroup Number: WG254202 Analyst: DSF Run Date: 10/29/2007 13:59
Collect Date: 10/18/2007 15:50 Dilution: 1 File ID: I11029071359.16
Sample Tag: DL01 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Perchlorate	14797-73-0		U	1.00	0.500

U Not detected at or above adjusted sample detection limit

of

00078847

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-06 PrePrep Method: NONE Instrument: IC1

Client ID: 47ww27-101907 Prep Method: 314.0 Prep Date: 10/29/2007 14:19

Matrix: Water Analytical Method: 314.0 Cal Date: 10/23/2007 12:32

Workgroup Number: WG254202 Analyst: DSF Run Date: 10/29/2007 14:19
Collect Date: 10/19/2007 08:20 Dilution: 1 File ID: I11029071419.17
Sample Tag: 01 Units: ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Perchlorate	14797-73-0	969	I	1.00	0.500

I Semiquantitative result (out of instrument calibration range)

of

00078848

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-06 PrePrep Method: NONE Instrument: IC1

Client ID: 47ww27-101907 Prep Method: 314.0 Prep Date: 10/29/2007 17:03

 Matrix: Water
 Analytical Method: 314.0
 Cal Date: 10/23/2007 12:32

 Workgroup Number: WG254202
 Analyst: DSF
 Run Date: 10/29/2007 17:03

 Collect Date: 10/19/2007 08:20
 Dilution: 15
 File ID: I11029071703.25

Sample Tag: DL01 Units:ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Perchlorate	14797-73-0	1170		15.0	7.50

4 of 5

00078849

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-13

Client ID: EQUIPMENT RINSE
Matrix: Water

Workgroup Number: WG254202 Collect Date: 10/22/2007 14:20

Sample Tag:01

PrePrep Method: NONE Instrument: IC1

Prep Method: 314.0 Prep Date: 10/29/2007 14:40
Analytical Method: 314.0 Cal Date: 10/23/2007 12:32

Analyst: DSF Run Date: 10/29/2007 14:40
Dilution: 1 File ID: I11029071440.18

Units:ug/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Perchlorate	14797-73-0		U	1.00	0.500

U Not detected at or above adjusted sample detection limit

of

2.3.1.2 QC Summary Data

9056/300 Calculations

The concentrations (ppm) of the calibration standards and the resulting area counts are used to determine the equation of a linear or quadratic plot.

The slope and y-intercept of that line are used to calculate the quantity of the analyzed unkown samples.

Amount(ppm) = [(slope)(area count of unknown) + y-intercept](dilution)

(The slope is the amt/area also identified as the CF or calibration factor)

Instrument Run Log

	instrument:	IC1		Dataset:	102907 CLO4 IC1	.SEQ		
	Analyst1:	DSF		Analyst2:	NA			
	Method:	CLO4		SOP:	IC2	Rev	: 4	
Mair	ntenance Log ID:	21488						
		Column 1 ID:	AS16-4MM		Column 2 ID: I	NA		
Workgroups:	WG254202							_
Internal STD:	NA		Surrogate STD:	NA		Calibration STD	STD20008	
	Comments:							

Seq.	File ID	Sample Information	Mat	Dil	Reference	Date/Time
1	I11029070853.01	CLO4 @ 100 ppb	1	1		10/29/07 08:53
2	I11029070913.02	CLO4 @ 50 ppb	1	1		10/29/07 09:13
3	I11029070934.03	CLO4 @ 25 ppb	1	1		10/29/07 09:34
4	I11029070954.04	CLO4 @ 10 ppb	1	1		10/29/07 09:54
5	I11029071015.05	CLO4 @ 4 ppb	1	1		10/29/07 10:15
6	I11029071035.06	CLO4 @ 1 ppb	1	1		10/29/07 10:35
7	I11029071055.07	CLO4 ALT @ 25 ppb	1	1		10/29/07 10:55
8	I11029071116.08	ELUENT	1	1		10/29/07 11:16
9	I11029071136.09	MCT \#4 (@25 ppb)	1	1		10/29/07 11:36
10	I11029071157.10	MCT \#5 (@25 ppb)	1	1		10/29/07 11:57
11	I11029071217.11	CCV (1 ppb) CLO4	1	1		10/29/07 12:17
12	I11029071237.12	WG254202-01 BLANK	1	1		10/29/07 12:37
13	I11029071258.13	WG254202-02 LCS (25 ppb)	1	1		10/29/07 12:58
14	I11029071318.14	L0710597-01 1/10	1	10		10/29/07 13:18
15	I11029071339.15	L0710596-03 1/2 RS	1	2		10/29/07 13:39
16	I11029071359.16	L0710596-04 1/2 DS	1	2		10/29/07 13:59
17	I11029071419.17	L0710596-06	1	1		10/29/07 14:19
18	I11029071440.18	L0710596-13	1	1		10/29/07 14:40
19	I11029071500.19	L0710643-01 1/3	1	3		10/29/07 15:00
20	I11029071521.20	L0710643-02 1/3 REF	1	3		10/29/07 15:21
21	I11029071541.21	WG254202-04 DUP 643-02 1/3	1	3		10/29/07 15:41
22	I11029071602.22	CCV (25 ppb) CLO4	1	1		10/29/07 16:02
23	I11029071622.23	WG254202-05 MS 1/3 643-02	1	3		10/29/07 16:22
24	I11029071642.24	WG254202-06 MSD 1/3 643-02	1	3		10/29/07 16:42
25	I11029071703.25	L0710596-06 RR 1/15	1	15		10/29/07 17:03
26	I11029071723.26	CCV (100 ppb) CLO4	1	1		10/29/07 17:23

Comments

Seq.	Rerun	Dil.	Reason	Analytes					
14		10							
	Sample analyzed at a dilution only due to high conductivity reading.								
15		2							
	Sample	analyzed	at a dilution only due to high conductivity rea	ading.					
16		2							
	Sample analyzed at a dilution only due to high conductivity reading.								

Page 273

Page: 1 Approved: 30-OCT-07

Run 00078853

KEMRON Environmental Services

Instrument Run Log

		Instr	ument:	IC1	Dataset:	102907 CLO4 IC1.SEQ	_	
		Ar	nalyst1:	DSF	Analyst2:	NA	_	
		N	lethod:	<u>CLO4</u>	SOP:	IC2	Rev: <u>4</u>	
	Mair	ntenance	J					
\^/I			C	Column 1 ID: AS16-4MM		Column 2 ID: NA		
vvork	(groups:	WG2542	202					
Interna	al STD:	NA		Surrogate STD:	NA		STD20008	
					Comme	ents		
Seq.	Rerun	Dil.		Reason			Analytes	
17	Х	15	Over Ca	libration Range	Perchl	orate		
			1					
19		3						
	Sample	analyzed	at a dilu	tion only due to high conductivi	ty reading.			
20		3		, v				
	Sample		at a dilu:	tion only due to high conductivi	ty roading			
	Dample	ananyzeu	at a ullu	don only due to high conductivi	ty reading.			

Page: 2 Approved: 30-OCT-07

Page 274

KEMRON Environmental Services Data Checklist

Date: 29-OCT-2007	
Analyst: DSF	
Analyst: NA	
Method: CLO4	
Instrument: IC1	
Curve Workgroup: NA	
Runlog ID: <u>19015</u>	
alytical Workgroups: <u>L0710597-01, L0710596, L0710643</u>	

ANALYTICAL	
System Performance Check	Х
DFTPP (MS)	NA
Endrin/DDT breakdown (8081/MS)	NA
Pentachlorophenol/benzidine tailing (MS)	NA
Eluent check (IC)/system pressure (HPLC)	Х
Window standard (FID)	NA
Initial Calibration	X
Average RF	NA
Linear regression or higher order curve	X
Alternate source standard (ICV) % Difference	Х
Continuing Calibration (CCV)	X
% D/% Drift	Х
Minimum response factors (MS)	NA
Continuing calibration blank (CCB) (IC)	NA
Special standards	NA
Blanks	Х
TCL hits	X
Surrogate recoveries	NA
LCS/LCSD (Laboratory Control Sample)	X
Recoveries	Х
Surrogate recoveries	NA
MS/MSD/Sample duplicates	X
Recoveries	Х
%RPD	X
Samples	X
TCL hits	X
Mass spectra (MS/HPLC)/2nd column confirmations (ECD/FID/HPLC)	NA
Surrogate recoveries	NA
Internal standard areas (MS)	NA
Library searches (MS)	NA
Calculations & correct factors	X
Compounds above calibration range	X
Reruns	X
Manual integrations	X
Project/client specific requirements	X
REPORTING	
Upload batch form	X
KOBRA workgroup data/forms/bench sheets	X
Case narratives	X
Check for completeness	X
Primary Reviewer	DSF
SUPERVISORY/SECONDARY REVIEW	
Check for compliance with method and project specific requirements	X
Check the completeness/accuracy of reported information	X
Data qualifiers	X
Secondary Reviewer	MDC

Primary Reviewer: Secondary Reviewer: 30-OCT-2007

Debra S. Frederick Michael Confunction

Generated: OCT-30-2007 12:31:54

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 314.0

Login Number: L0710596

AAB#: WG254202

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
47WW27-101907	10/19/07	10/23/07	10/29/07	28	10.2	10/29/07	28	10.2	
LHSMW60-101807	10/18/07	10/23/07	10/29/07	28	10.9	10/29/07	28	10.9	
LHSMW60-101807-QC	10/18/07	10/23/07	10/29/07	28	10.9	10/29/07	28	10.9	
EQUIPMENT RINSE	10/22/07	10/23/07	10/29/07	28	7.01	10/29/07	28	7.01	
47WW27-101907	10/19/07	10/23/07	10/29/07	28	10.4	10/29/07	28	10.4	

* EXT = SEE PROJECT QAPP REQUIREMENTS

*ANAL = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID: 920477 Report generated 10/30/2007 14:56

METHOD BLANK SUMMARY

Login Number: L0710596 Work Group: WG254202

Blank File ID: I11029071237.12 Blank Sample ID: WG254202-01

Prep Date: 10/29/07 12:37 Instrument ID: IC1

Analyzed Date: 10/29/07 12:37 Method: 314.0

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG254202-02	I11029071258.13	10/29/07 12:58	01
LHSMW60-101807	L0710596-03	I11029071339.15	10/29/07 13:39	DL01
LHSMW60-101807-QC	L0710596-04	I11029071359.16	10/29/07 13:59	DL01
47WW27-101907	L0710596-06	I11029071419.17	10/29/07 14:19	01
EQUIPMENT RINSE	L0710596-13	I11029071440.18	10/29/07 14:40	01
DUP	WG254202-04	I11029071541.21	10/29/07 15:41	DL01
47ww27-101907	L0710596-06	I11029071703.25	10/29/07 17:03	DL01

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID: 920478 Report generated 10/30/2007 14:56

Analyst:DSF

KEMRON Environmental Services METHOD BLANK REPORT

00078857

Login Number:L0710596	Prep Date: 10/29/07 12:37	Sample ID: WG254202-01
Instrument ID:IC1	Run Date: 10/29/07 12:37	Prep Method: 314.0
File ID: <u>I11029071237.12</u>	Analyst:DSF	Method: 314.0
Workgroup (AAB#):WG254202	Matrix:Water	Units:ug/L

Cal ID: IC1-23-OCT-07

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Perchlorate	0.500	1.00	0.500	1	U

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

Contract #:DACA56-94-D-0020

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID: 920479 Report generated 10/30/2007 14:56

00078858

LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L0710596
 Run Date: 10/29/2007
 Sample ID: WG254202-02

 Instrument ID: IC1
 Run Time: 12:58
 Prep Method: 314.0

 File ID: I11029071258.13
 Analyst: DSF
 Method: 314.0

 Workgroup (AAB#): WG254202
 Matrix: Water
 Units: ug/L

 QC Key: STD
 Lot#: STD20008
 Cal ID: IC1-23-OCT-07

Analytes	Expected	Found	% Rec	LCS Limits	Q
Perchlorate	25.0	23.9	95.6	85 - 115	

KEMRON FORMS - Modified 09/06/2007 Version 1.5 PDF File ID: 920480 Report generated 10/30/2007 14:56

Conductivity Probe

Perchlorate Conductivity Check

Working MCT Level: _______µs/cm

Calibration Check: 1412-/1410 μs/cm

Sample	Conductivity (µs/cm)	Pretreatment or Dilution Needed		
L0710598-01	6070 728	No Dil for Conductivity		
L0710596-03	1261 662	1/2 "		
- 204	1265 662	1/2 "		
· - 06	3 36			
-13	6-0			
L0710643-61	2190, 766	13 Dil for Conductivity		
" -02	2160 765	1/3 "		
2	,			
ģ.	ч.			
·				
	8			
j				
	7:			
		,		
		(*		
		3		
		1		

ASF	
Analyst	

10/29/07 10:30 Date/Time

DCN#71622

2.3.2 Total Dissolved Solids Data

2.3.2.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta , OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston. TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received		
47WWZZ-101807	L0710596-11	160.1	1	23-OCT-07		
EQUIPMENT RINSE	L0710596-13	160.1	1	23-OCT-07		

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 924250 Report generated 11/02/2007 10:41

1 OF 1

KEMRON ENVIRONMENTAL SERVICES

00078863

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-11
Client ID: 47WWZZ-101807 PrePrep Method: NONE
Prep Method: 160.1 Instrument: OVEN
Prep Date: 10/23/2007 15:45 Cal Date:
Run Date: 10/23/2007 15:45 Matrix: Water Analytical Method: 160.1 Workgroup Number: WG253612 Analyst: TMM

Collect Date: 10/18/2007 09:55 File ID: EN. 0710231545-12 ${\tt Dilution:} \underline{\bf 1}$ Units:mg/L

Analyte CAS. Number Result Qual PQL SDL Total Dissolved Solids 3960 20.0 10.0

> of 2

KEMRON ENVIRONMENTAL SERVICES

00078864

Report Date : November 2, 2007

Report Number: L0710596

Sample Number: L0710596-13
Client ID: EQUIPMENT RINSE Instrument:OVEN

Prep Date: 10/23/2007 15:45

Cal Date:
Run Date: 10/23/2007 15:45 PrePrep Method: NONE
Prep Method: 160.1 Matrix: Water Analytical Method: 160.1 Workgroup Number: WG253612 Analyst: TMM

Collect Date: 10/22/2007 14:20 File ID: EN. 0710231545-13 Dilution: 1 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Total Dissolved Solids			U	10.0	5.00

U Not detected at or above adjusted sample detection limit

of

2

2.3.2.2 QC Summary Data

Example Total Dissolved Solids Calculations

[(WT2 - WT1) * 1000000]/volume = mg/L

where:

WT1 = weight (grams) of empty container. WT2 = weight (grams) of dried sample and container. 1000000 = factor to get to mg/L. volume = mL of sample used.

Che 00078867

KEMRON Environmental Services Data Checklist

Date: 2	23-OCT-2007
Analyst: <u>T</u>	MM
Analyst: <u>F</u>	-UR
Method: <u>T</u>	DS
Instrument: C	OVEN
Curve Workgroup: N	NA .
Runlog ID:	
Analytical Workgroups: V	NC253612

CalibrationLinearity	10/23/07
Second Source Check	
CV/CCV (std)	
ICB/CCB	
Blank	X
LCS/LCS Dup	X
MS/MSD	
Duplicate	X
Upload Results	X
Client Forms	X
QC Violation Sheet	
Case Narratives	X
Signed Raw Data	X
STD/LCS on benchsheet	X
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	HJR
Secondary Reviewer	DIH
,	
Comments	

Primary Reviewer: 25-OCT-2007

Secondary Reviewer: 26-OCT-2007

132Rl Dannalpsson

Generated: OCT-26-2007 13:03:05

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 160.1

Login Number: L0710596

7 7 E # •	WC2536	17

Client ID	Date Collected	Date Received	Date Extracted		Time Held Ext.		Max Hold Time Anal	Time Held Anal.	Q
47WWZZ-101807	10/18/07	10/23/07	10/23/07	7	5.24	10/23/07	7	5.24	
EQUIPMENT RINSE	10/22/07	10/23/07	10/23/07	7	1.06	10/23/07	7	1.06	

* EXT = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID: 918095 Report generated 10/26/2007 11:25

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG253612

Blank File ID:EN.0710231545-01 Blank Sample ID:WG253612-01

Prep Date:10/23/07 15:45 Instrument ID:OVEN

Analyzed Date:10/23/07 15:45 Method:160.1

Analyst:TMM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253612-02	EN.0710231545-02	10/23/07 15:45	
LCS2	WG253612-03	EN.0710231545-03	10/23/07 15:45	
47WWZZ-101807	L0710596-11	EN.0710231545-12	10/23/07 15:45	
EQUIPMENT RINSE	L0710596-13	EN.0710231545-13	10/23/07 15:45	
DUP	WG253612-05	EN.0710231545-14	10/23/07 15:45	

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID: 918096 Report generated 10/26/2007 11:25

KEMRON Environmental Services METHOD BLANK REPORT

00078870

Login Number:L0710596	Prep Date:10/23/07 15:45	Sample ID: WG253612-01
Instrument ID: OVEN	Run Date: 10/23/07 15:45	Prep Method: 160.1
File ID: EN. 0710231545-01	Analyst:TMM	Method: 160.1
Workgroup (AAB#):WG253612	Matrix:Water	Units:mg/L

Contract #:DACA56-94-D-0020	Cal ID: OVEN-

Analytes	SDL	PQL	Concentration	Dilution	Qualifier	
Total Dissolved Solids	5.00	10.0	5.00	1	υ	

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID: 918097 Report generated 10/26/2007 11:25

LABORATORY CONTROL SAMPLE (LCS)

Login	Number: L0710596	5	Analy	st:TMM	Prep	Method: 160	0.1	
Instru	ment ID:OVEN		Matr	ix:Water		Method: 160	0.1	
Workgroup	(AAB#):WG253612	2	_			Units:mg	/L	
	QC Key:STD		Lot	#:STD19758				
Sample	ID:WG253612-02	LCS Fil	e ID:EN.	0710231545-02	_Run Date:1	L0/23/2007	15:45	
Sample	TD • WG253612-03	T.CS2 Fil	A TD.EN	0710231545-03	Run Date 1	0/23/2007	15.45	

	LCS			LCS2				%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
Total Dissolved Solids	500	506	101	500	508	102	0.394	80 - 120	25	

KEMRON FORMS - Modified 02/08/2007 Version 1.5 PDF File ID: 918098 Report generated 10/26/2007 11:25

2.3.2.3 Raw Data

WORKGROUP: WG253612

TOTAL DISSOLVED SOLIDS

SOP K1601 Revision #: 10 EPA 160.1/ SM2540C Workgroup #: Balance: AND GR-202 / Other Other:
LCS: 544 14758

Daily Dilution: 5(5000)/50=560 Matrix Spike: _ Daily Dilution:

	SAMPLE	#	VOLUME (mL)	INITIAL WEIGHT WT1 (g)	DRY WEIGHT WT2A (g)	DRY WEIGHT WT2B (g)	DRY WEIGHT WT2C (g)
	BLANK /60	15	100	80,1023	80,1025	80.1024	
	LCS:mg/L	18	50	56.8653	56.8903	56.8906)
	LCSDUP: 60 mg/L	15		50.6211	50.46	50,646)
	10-554-04	12B		53.3241	53.3340	53.3341	
	-06	4		50,9178	50.9294	50,9294	
	10-572-01	16		53.8878	53.9371	53,9370	
	10-564-01	11	<u> </u>	49.4519	49.4682	49.4683	
	10-572-03	19	25	53.6293	53.1099	53.1100	
	10-573-01	M3	- 	59,7797 57,9495	59.8434	59.8435 58.0158	
	10-576-01	74 F4	<u> </u>	59.8744	58.0159 59.8817	59.8814	
ł	596-11	6	30	51.0824	51.2809	51.2805	
J	-13	10	00	46.9519	44,9719	46.9720)
ł		,	100	101111	44,171	1411720	
ı							
l							
ľ							
					,		
						vo ¹	
-	SIN SON	100		F1 (2-5)	51.58025	51.5810	
	10-545 Old	101	5Q	51.5737	51.5734	131.5743	_

DATE/TIME: __(off) 10 - 74-07

DATE/TIME: ___(off)

DCN#71542

Approved: October 26, 2007

KEMRON ENVIRONMENTAL SERVICES GRAVIMETRIC REPORT

Workgroup (AAB#):WG253612

Analyst:TMM

Product: 160.1

Run Date: 10/23/2007 15:45

Analyte: TOTAL DISSOLVED SOLIDS

SAMPLE NUMBER	INITIAL VOL	INITIAL WT	FINAL WT	Anal. Conc	Rep. Conc.	Units
WG253612-01	100	80.1023	80.1024	1.000	1.000	mg/L
WG253612-02	50	56.8653	56.8906	506.0	506.0	mg/L
WG253612-03	50	50.6211	50.6465	508.0	508.0	mg/L
L0710554-04	50	53.3241	53.3341	200.0	200.0	mg/L
L0710554-06	50	50.9178	50.9294	232.0	232.0	mg/L
L0710572-01	50	53.8878	53.937	984.0	984.0	mg/L
L0710564-01	50	49.4519	49.4683	328.0	328.0	mg/L
L0710572-03	25	53.0293	53.11	3228	3228	mg/L
L0710573-01	25	59.7797	59.8435	2552	2552	mg/L
L0710576-01	25	57.9495	58.0158	2652	2652	mg/L
L0710594-01	50	59.8744	59.8814	140.0	140.0	mg/L
WG253612-04	50	59.8744	59.8814	140.0	140.0	mg/L
L0710596-11	50	51.0824	51.2805	3962	3962	mg/L
L0710596-13	100	46.9719	46.972	1.000	ND	mg/L
WG253612-05	50	51.5737	51.581	146.0	146.0	mg/L

KEMRON FORMS - Modified 02/26/2007

Report generated 10/25/2007 10:57

Approved: October 26, 2007

2.3.3 Total Suspended Solids Data

2.3.3.1 Summary Data

L0710596

11/02/07 10:41

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta , OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston. TX 77042

Attention: Larry Duty

Account Number: 2773

Work ID: LHAAD

P.O. Number: 322255 OP

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
47WWZZ-101807	L0710596-11	160.2	1	23-OCT-07
EQUIPMENT RINSE	L0710596-13	160.2	1	23-OCT-07

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 924251 Report generated 11/02/2007 10:41

1 OF 1

KEMRON ENVIRONMENTAL SERVICES

00078878

Report Number: L0710596

Report Date : November 2, 2007

Instrument: OVEN
Prep Date: 10/24/2007 10:50
Cal Date:
Run Date: 10/24/2007 10:50 Sample Number: L0710596-11
Client ID: 47WWZZ-101807 PrePrep Method: NONE
Prep Method: 160.2 Matrix: Water Analytical Method: 160.2 Workgroup Number: WG253700 Analyst: TMM

Collect Date: 10/18/2007 09:55 Dilution: 1 File ID: EN. 0710241050-04 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Total Suspended Solids		6790		100	50.0

of 2 KEMRON ENVIRONMENTAL SERVICES

00078879

Report Number: L0710596

Report Date : November 2, 2007

Sample Number: L0710596-13
Client ID: EQUIPMENT RINSE Instrument:OVEN
Prep Date:10/24/2007 10:50
Cal Date:
Run Date:10/24/2007 10:50 PrePrep Method: NONE
Prep Method: 160.2 Matrix: Water
Workgroup Number: WG253700 Analytical Method: 160.2

Analyst: TMM Collect Date: 10/22/2007 14:20 Dilution: 1 File ID: EN. 0710241050-12 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Total Suspended Solids		12.0		5.00	2.50

of 2

2.3.3.2 QC Summary Data

Example Total Suspended Solids Calculations

[(WT2 - WT1) * 1000000]/volume = mg/L

where:

WT1 = weight (grams) of empty container. WT2 = weight (grams) of dried sample and container. 1000000 = factor to get to mg/L. volume = mL of sample used.

Che 00078882

KEMRON Environmental Services Data Checklist

Date: <u>2</u> 4	4-OCT-2007
Analyst: <u>TN</u>	MM
Analyst: <u>H</u>	UR
Method: TS	SS
Instrument: O	OVEN
Curve Workgroup: N	IA .
Runlog ID: _	
Analytical Workgroups: W	VG253700

CalibrationLinearity	10/24/07
Second Source Check	
CV/CCV (std)	
ICB/CCB	
Blank	X
LCS/LCS Dup	X
MS/MSD	
Duplicate	X
Upload Results	X
Client Forms	Χ
QC Violation Sheet	
Case Narratives	X
Signed Raw Data	X
STD/LCS on benchsheet	Х
Check for compliance with method and project specific requirements	Х
Check the completeness of reported information	X
Check the information for the report narrative	Х
Primary Reviewer	HJR
Secondary Reviewer	DIH
Comments	

Primary Reviewer: 26-OCT-2007

Secondary Reviewer: 26-OCT-2007

1) IRI Danna/psson

Generated: OCT-26-2007 15:58:07

KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 160.2

Login Number: L0710596

7 7 E # 4	WG253700	١

Client ID	Date Collected	Date Received	Date Extracted		Time Held Ext.		Max Hold Time Anal	Time Held Anal.	Q
EQUIPMENT RINSE	10/22/07	10/23/07	10/24/07	7	1.85	10/24/07	7	1.85	
47WWZZ-101807	10/18/07	10/23/07	10/24/07	7	6.04	10/24/07	7	6.04	

* EXT = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID: 918554 Report generated 10/26/2007 14:50

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

METHOD BLANK SUMMARY

Login Number:L0710596 Work Group:WG253700

Blank File ID:EN.0710241050-01 Blank Sample ID:WG253700-01

Prep Date:10/24/07 10:50 Instrument ID:OVEN

Analyzed Date:10/24/07 10:50 Method:160.2

Analyst:TMM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG253700-02	EN.0710241050-02	10/24/07 10:50	
LCS2	WG253700-03	EN.0710241050-03	10/24/07 10:50	
47WWZZ-101807	L0710596-11	EN.0710241050-04	10/24/07 10:50	
EQUIPMENT RINSE	L0710596-13	EN.0710241050-12	10/24/07 10:50	
DUP	WG253700-05	EN.0710241050-19	10/24/07 10:50	

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID: 918555 Report generated 10/26/2007 14:50

KEMRON Environmental Services METHOD BLANK REPORT

00078885

Login Number:L0710596	Prep Date: 10/24/07 10:50	Sample ID: WG253700-01
Instrument ID: OVEN	Run Date: 10/24/07 10:50	Prep Method: 160.2
File ID: EN. 0710241050-01	Analyst:TMM	Method: 160.2
orkgroup (AAB#):WG253700	Matrix:Water	Units:mg/L

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Total Suspended Solids	2.50	5.00	2.50	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID: 918556 Report generated 10/26/2007 14:50

LABORATORY CONTROL SAMPLE (LCS)

Login	Number: L0710596	5		Analyst:TMM	Prep	Method: 160	. 2	
Instru	ment ID:OVEN			Matrix:Water		Method: 160	.2	
Workgroup	(AAB#):WG253700)				Units:mg/	L	
	QC Key:STD			Lot #:STD22620				
Sample	ID:WG253700-02	LCS	File	ID:EN.0710241050-02	_Run Date:	10/24/2007	10:50	
Sample	TD:WG253700-03	T.CS2	File	TD.EN 0710241050-03	Run Date:	10/24/2007	10.50	

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
Total Suspended Solids	50.0	54.0	108	50.0	56.0	112	3.64	75 - 125	25	

KEMRON FORMS - Modified 02/08/2007 Version 1.5 PDF File ID: 918557 Report generated 10/26/2007 14:50

2.3.3.3 Raw Data

WORKGROUP: WG253700

TOTAL SUSPENDED SOLIDS

- 1							
	SAMPLE	#	VOLUME	INITIAL WEIGHT WT1 (g)	DRY WEIGHT	DRY WEIGHT	DRY WEIGHT
			(mL)	WII(g)	WT2A (g)	WT2B (g)	WT2C (g)
	BLANK	BIK	200	00921	0.0922	(092Z	
	LCS: 50 mg/L	LUS	160	0.0909	0.0965	0.0963	
İ	LCSDUP: <u>50</u> mg/L	1,057	1	0.0909	0.09lde	0.0965	
	10-596-11		10	0.0955	0.1635	0.1634	
	10-570-08	S	50	0.0961	0.1086	0.1084	****
	10-544-02	3		0.0942	0.1033	0.1031	· · · · · · · · · · · · · · · · · · ·
	600-01	4	700	0.0955	0.0959	0.0959	
	614-01	5	50	0.0954	0.1287	0,1288	
	-02	6	4	0.0946	0.1108	0.1106	
	591-01	7	200	0.0950	0.1003	0.1001	
	594 -01	В	c	0.0949	0.0952	0.0951	
٧	R 596-13	q		0.0931	0.0958	0.095	>
	1041-05	10		0.0936	0.1026	0.1025	
	-07	11	50	0.0931	0.1318	0.1316	
	-09	17	200	0.0926	0.1064	0.1064	
	614-0904	13	50	0.0936	0.1110	0.1109	
	-05	14	100	0.0931	0.1047	0.1045	
	06	15	10,0.695	6 0.09315	11 50	0.1675	
		ib	802	0.0936	10.1618		
L		n	FUR	0.0940	54.A2		
		18	10-5 V-0>	0.0937			
L		19		0.0933	N-24-07		
		Zo		0.0926	X010-00	0.01	
	DUP: 10-114-01	Dro	10	0.0950	0.1652	1.651	
	1			31			

Jamy Morris

31 DATE/TIME: (011) 10-24-07 1050

DATE/TIME: (off) 10-25-07 0915

DATE/TIME: (off) 10-25-0713/5

DATE/TIME: (off)

DCN#71552

Approved: October 26, 2007

KEMRON ENVIRONMENTAL SERVICES GRAVIMETRIC REPORT

Workgroup (AAB#):WG253700

Analyst:TMM

Product: 160.2

Run Date: 10/24/2007 10:50

Analyte: TOTAL SUSPENDED SOLIDS

SAMPLE NUMBER	INITIAL VOL	INITIAL WT	FINAL WT	Anal. Conc	Rep. Conc.	Units
WG253700-01	200	0.0921	0.0922	0.5000	0.5000	mg/L
WG253700-02	100	0.0909	0.0963	54.00	54.00	mg/L
WG253700-03	100	0.0909	0.0965	56.00	56.00	mg/L
L0710596-11	10	0.0955	0.1634	6790	6790	mg/L
L0710570-08	50	0.0961	0.1084	246.0	246.0	mg/L
L0710544-02	50	0.0942	0.1031	178.0	178.0	mg/L
L0710600-01	200	0.0955	0.0959	2.000	ND	mg/L
L0710614-01	50	0.0954	0.1288	668.0	668.0	mg/L
L0710614-02	50	0.0946	0.1106	320.0	320.0	mg/L
L0710591-01	200	0.095	0.1001	25.50	25.50	mg/L
L0710594-01	200	0.0949	0.0951	1.000	ND	mg/L
L0710596-13	200	0.0931	0.0955	12.00	12.00	mg/L
L0710641-05	200	0.0936	0.1025	44.50	44.50	mg/L
L0710641-07	50	0.0931	0.1316	770.0	770.0	mg/L
L0710641-09	200	0.0926	0.1064	69.00	69.00	mg/L
L0710614-04	50	0.0936	0.1109	346.0	346.0	mg/L
L0710614-05	100	0.0931	0.1045	114.0	114.0	mg/L
L0710614-06	10	0.095	0.1675	7250	7250	mg/L
WG253700-04	10	0.095	0.1675	7250	7250	mg/L
WG253700-05	10	0.0931	0.1651	7200	7200	mg/L

KEMRON FORMS - Modified 02/26/2007

Version 1.3

Report generated 10/26/2007 13:52

Approved: October 26, 2007

3.0 Attachments

Kemron Environmental Services Analyst Listing November 2, 2007

AJF - AMANDA J. FICKIESEN	ALB - ANNIE L. BROWN	AML - ANTHONY M. LONG
ARA - ADRIAN R. ACHTERMANN	ASP - AARON S. PETRIE	BRG - BRENDA R. GREGORY
CAA - CASSIE A. AUGENSTEIN	CAF - CHERYL A. FLOWERS	CEB - CHAD E. BARNES
CLC - CHRYS L. CRAWFORD	CLW - CHARISSA L. WINTERS	CM - CHARLIE MARTIN
CMS - CRYSTAL M. STEPHENS	CPD - CHAD P. DAVIS	CSH - CHRIS S. HILL
DD - DIANE M. DENNIS	DDE - DEBRA D. ELLIOTT	DEL - DON E. LIGHTFRITZ
DEV - DAVID E. VANDENBERG	DGB - DOUGLAS G. BUTCHER	DIH - DEANNA I. HESSON
DLB - DAVID L. BUMGARNER	DLP - DOROTHY L. PAYNE	DLR - DIANNA L. RAUCH
DR - DEANNA ROBERTS	DRP - DAVE R. PITZER	DSF - DEBRA S. FREDERICK
DST - DENNIS S. TEPE	ECL - ERIC C. LAWSON	ED - EMILY E. DECKER
ERE - ERIN R. ELDER	FJB - FRANCES J. BOLDEN	HAV - HEMA VILASAGAR
HJR - HOLLY J. REED	JAB - JUANITA A. BECKER	JAL - JOHN A. LENT
JBK - JEREMY B. KINNEY	JCO - JOE C. OWENS	JDH - JUSTIN D. HESSON
JKP - JACQUELINE K. PARSONS	JKT - JANE K. THOMPSON	JWR - JOHN W. RICHARDS
JWS - JACK W. SHEAVES	JYH - JI Y. HU	KCZ - KEVIN C. ZUMBRO
KEB - KATHRYN E. BARNES	KHR - KIM H. RHODES	KJW - KATIE J. WIEFERICH
KRA - KATHY R. ALBERTSON	KRV - KATHRINE R. VICKERS	LKN - LINDA K. NEDEFF
LSB - LESLIE S. BUCINA	MDA - MIKE D. ALBERTSON	MDC - MICHAEL D. COCHRAN
MES - MARY E. SCHILLING	MKZ - MARILYN K. ZUMBRO	MLR - MARY L. ROCHOTTE
MMB - MAREN M. BEERY	MRT - MICHELLE R. TAYLOR	MSW - MATT S. WILSON
NJB - NATALIE J. BOOTH	PJM - PAUL J. MILLER	RAH - ROY A. HALSTEAD
RB - ROBERT BUCHANAN	REK - ROBERT E. KYER	RLF - RACHEL L. FRYE
RLK - ROBIN L. KLINGER	RNP - RICK N. PETTY	RWC - RODNEY W. CAMPBELL
SLM - STEPHANIE L. MOSSBURG	SLP - SHERI L. PFALZGRAF	SMH - SHAUNA M. HYDE
TDH - TRICIA D. HUCK	TMB - TIFFANY M. BAILEY	TMM - TAMMY M. MORRIS
VC - VICKI COLLIER	WFM - WALTER F. MARTIN	

KEMRON Environmental Services

List of Valid Qualifiers November 02, 2007

Qualkey: STD

Qualifier	Description
*	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Result is greater than the associated numerical value.
Α	See the report narrative
В	Analyte present in method blank
С	Confirmed by GC/MS
CG	Confluent growth
DL	Surrogate or spike compound was diluted out
Е	Estimated concentration due to sample matrix interference
EDL	Elevated sample reporting limits, presence of non-target analytes
EMPC	Estimated Maximum Possible Concentration
FL	Free Liquid
I	Semiquantitative result (out of instrument calibration range)
J	The analyte was positively identified, but the quantitation was below the RL
J,B	Analyte detected in both the method blank and sample above the MDL.
J,P	Estimate; columns don't agree to within 40%
J,S	Estimated concentration; analyzed by method of standard addition (MSA)
L	Sample reporting limits elevated due to matrix interference
M	Matrix effect; the concentration is an estimate due to matrix effect.
N	Tentatively identified compound(TIC)
NA ND	Not applicable Not detected at or above the reporting limit
ND,L	Not detected at or above the reporting limit Not detected; sample reporting limit (RL) elevated due to interference
ND,E ND,S	Not detected; sample reporting limit (RE) elevated due to interier ence
NF	Not found by library search
NFL	No free liquid
NI	Non-ignitable
NR	Analyte is not required to be analyzed
NS	Not spiked
P	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria fail. See narrative.
QNS	Quantity of sample not sufficient to perform analysis
RA	Reanalysis confirms reported results
RE	Reanalysis confirms sample matrix interference
S	Analyzed by method of standard addition (MSA)
SMI	Sample matrix interference on surrogate
SP	Reported results are for spike compounds only
TIC	Library Search Compound
TNTC	Too numerous to count
U	Undetected; the concentration is below the reported MDL.
UJ	Undetected; the MDL and RL are estimated due to quality control discrepancies.
W	Post-digestion spike for furnace AA out of control limits
X	Exceeds regulatory limit
X, S	Exceeds regulatory limit; method of standard additions (MSA)
Z	Cannot be resolved from isomer - see below

- ***Special Notes for Organic Analytes

 1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.

 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- 3. N-nitrosodiphenylamine cannot be separated from diphenylamine.

- 3. Methylphenol and 4-Methylphenol are unresolvable compounds.
 5. m-Xylene and p-Xylene are unresolvable compounds.
 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

Page 314

Chain of Custody

NO. 10305

Shaw* Shaw Environmental & Infrastructure, Inc.

3010 Briarpark Drive, Suite 400 Houston, TX 77042 (713) 996-4400

Lal	poratory Name: Kemron	Lab	95		Add	dress:	154 Starlite Drive Marietta, Ohio			Conta	ct: S	led hen	ie sbog		
	ect Name LHMP			Project Location Karnack, Texa)				Analysis and Method Desired (Indicate separate containers)							Remarks
Poin	ot of Contact: Lary Duty othone No. (713) 996-45	<u>.</u> 47		ect Co	ntact Nilly	Pr	Project Telephone No. [713] 247-9292 Dject Manager/Supervisor: Privastav	Number of Containers	25 826	Perchlovate	TALMETALS *	/TDS			* To BE Filtered @ Lab
Jem No.	SAMP CE Jumber	Date	Time	Comp	Grab	Matrix	Sample Description, Location	Z En Z	Š	(7g)	18	221.			TRIP BLANK INCL.
1	LHSMWS6-DZOO7				~	w	LHSMWS6	3	*						
2	47WW05-102007	9/20/67	68:≥6		1	W	47WW05	3	X						
3	LHSMWCO-101807	W18 07	15:50		V	w	LHSMWLO	a		Х					fice Dopurage 4 REG.
4	47WW23-101967	10/19/07	69:45		/	w	47WWZ3	3	X						
5	47WWZ7-101907	10/190	08:20		U	w	49ww27		•	X					
6			14:20		/	W	47WWZ1	\$	X	•					FIELD DOP t Regular Sample
7	47WWG1-101807	10/18/6	10:15		1	W	47WWO1	3	X						•
8	F08101-40WWFH	l	1		1	W	47WWF4	3	Χ						
9	47WWZZ-101807	1/8/19	09:55		^	W	47WWZZ	45	X		Χ	X			1 VOA BROKE
10	EQUIPMENT RINGE #2	10/22/19	14:20		1	ω	ER#2	2		X		X			From Bledder Pump
1	Transfers Relinquished By (signate	ure)		te/Tim		1	ransfers Accepted By (signature)	Date	/Time	•		ctions Merals		pe filter	ed C lab.
						<				FedEx	Airbill 1	No.:	11.	0	
	TIT 0					Labo	Tola Dun		7 0950				St. A	lli	
	TAT: Standard Ru	ush Date			Seal	s Intact	? Y XXXX Reco	eived Goo	d Condit	ion	<u> </u>	N	Cold		

SAMPLE RECEIPT FORM

156 Starlite Drive Marietta, OH 45750 (740) 373-4071

Client:	Sha.	N- LHAA	10			-		(,-	
Workorde			<u> </u>						\dashv
Date Rece		0-23-07	·					· · · · · · · · · · · · · · · · · · ·	
Delivered		<u>() Fedx</u>	(LYUPS	() Client	() Cou	rier	Ti	me: 0950	_
Opened b		21.14	(0) 01 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, <u>, , , , , , , , , , , , , , , , , , </u>			0400	
IR Temp ((1)	() G					<u> </u>	\dashv
Logged by		7		 	L	10	-50	16	\dashv
Logged b) •					- ,0	<u> </u>		
Cooler inf	ormation								
Cooler ID	Temp C	Airbill#			CO	C#_		Other	
1822		17 401	1.1.2.22	1005 5867	10:	305,	IND	of Soil = wate	2
LOAG		12 701	66369	1000 7867	- I		105	1, 1012, 0001 C	
				· · · · · · · · · · · · · · · · · · ·	10:	304			
	 			· · · · · · · · · · · · · · · · · · ·					
	ļ								
								la. in	
Inspection					_	N.	NA	Discrepancy ID	
Were ship							<u> </u>		
Were cust					<u> </u>		<u> </u>		
		tures in rang	je of 0 - 6?		<u> </u>		ļ	<u> </u>	
Was ice pr	resent?						ļ		
Were COC	o's receive	d/ informatio	n complete/s	signed and dated?	RAPE	V	1		
				match COC?		V	1	<u> </u>	
		tainers and			-				
		atives used					ļ.,		
		eptable? (vo		d)			V		
		free of heads			7		1	2)	
Were sam	ples receiv	ed within EF	'A hold time	s?	-IV	L	J		
Dicaranar	au/Camm	onto/Othor	Droblome						
		ents/Other		Rec. 3 hottles	10100	4 117	(15)	18 - 101807 (Field	11/10
ω_0	<u>Chain</u>	10304 :00.			<u>caybelo</u>	<u> </u>	<u> </u>	3" but notion	a la la alla
			Did not	Rec. 3 bottles					DOUGHO
				· 3 bottles 1	Cholo C	1 (H	5 m	W36-101907	some time
								unt Blank"; Cha	
		~~~		Equipment Ris			<del>mp11</del>	arr blarry Co	
12	··· <u>-</u> <del></del> -	(RY) (R)	lanth to	rin Blanks W	THE RE	بالماط	15 tl	re size of a pea.	
			ACT	Q ins	2 H2 1	0	Mak	als Bottle, Shair	Says TSSITAS
Distributi	on		TA(F) K	jurpment kins	x -a - 1	KLGO	1 west	ا رساندا دعد	1- 118-
Name of K	EMRON r	epresentativ	9						
Client/Con					•				
Person Co	ontacted:								
Date conta	acted:								
Resolutio	n/other co	omments:							
	·			· · · · · · · · · · · · · · · · · · ·					
							.,		
									<del></del>

CFR-1

7-CFR-1

06/11/2007

#### KEMRON Environmental Services

Internal Chain of Custody Report

**Login:** L0710596 Account: 2773 **Project:** 2773.025

Samples: 15

**Due Date:** 30-OCT-2007

Samplenum Container ID Products L0710596-04 387487 CLO4

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:01	AML	
2	ANALYZ	W1	SEM	29-OCT-2007 07:29	DSF	ERE
3	STORE	SEM	A1	01-NOV-2007 12:25	JKT	DSF

Samplenum Container ID Products L0710596-01 387484 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:00	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:00	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:00	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Samplenum Container ID Products L0710596-08 387491 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

#### KEMRON Environmental Services

Internal Chain of Custody Report

**Login:** L0710596 Account: 2773 **Project:** 2773.025

Samples: 15

**Due Date:** 30-OCT-2007

Samplenum Container ID Products L0710596-09 387492 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Samplenum Container ID Products L0710596-03 387486 CLO4

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:01	AML	
2	ANALYZ	W1	SEM	29-OCT-2007 07:30	DSF	ERE
3	STORE	SEM	A1	01-NOV-2007 12:25	JKT	DSF

Samplenum Container ID Products L0710596-11 387495 TSS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:02	AML	
2	ANALYZ	W1	WET	23-OCT-2007 15:38	HJR	ERE
3	STORE	WET	A1	25-OCT-2007 08:49	ERE	HJR

Container ID Products Samplenum L0710596-15 387797 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 14:33	BRG	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:32	KJW	ERE

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

**Login:** L0710596 Account: 2773 **Project:** 2773.025

Samples: 15

**Due Date:** 30-OCT-2007

Samplenum Container ID Products L0710596-07 387490 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Samplenum Container ID Products L0710596-02 387485 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

Internal Chain of Custody Report

**Login:** L0710596 Account: 2773 **Project:** 2773.025

Samples: 15

**Due Date:** 30-OCT-2007

Samplenum Container ID Products L0710596-05 387488 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Samplenum Container ID Products

L0710596-14 387499

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish				
1	LOGIN	COOLER		23-OCT-2007 11:02	AML					
Bo++1	tottle: 2									

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		23-OCT-2007 11:02	AML	

Samplenum Container ID Products L0710596-06 387489 CLO4

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:01	AML	
2	ANALYZ	W1	SEM	29-OCT-2007 07:29	DSF	ERE
3	STORE	SEM	A1	01-NOV-2007 12:25	JKT	DSF

<u>Samplenum</u> Container ID Products L0710596-13 387497 CLO4

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:02	AML	
2	ANALYZ	W1	SEM	29-OCT-2007 07:29	DSF	ERE
3	STORE	SEM	A1	01-NOV-2007 12:25	JKT	DSF

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

Internal Chain of Custody Report

**Login:** L0710596 Account: 2773 **Project:** 2773.025

Samples: 15

Due Date: 30-OCT-2007

Samplenum Container ID Products L0710596-11 387494 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:02	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:02	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:32	KJW	ERE

Container ID Products Samplenum

L0710596-12 387496 V-D NA-D ZN-D K-D AL-D CA-D FE-D HG-D MG-D CO-

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:02	AML	
2	PREP	W1	DIG	24-OCT-2007 05:52	REK	ERE
3	STORE	DIG	A1	24-OCT-2007 09:03	RLK	REK
4	PREP	W1	DIG	25-OCT-2007 14:18	REK	ERE
5	STORE	DIG	A1	26-OCT-2007 14:12	ERE	REK

Samplenum Container ID Products

L0710596-14 387796 AL-D AS-MS-D BA-MS-D BE-AX-D CA-D CD-MS-D CO-I

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 14:32	BRG	
2	PREP	W1	DIG	24-OCT-2007 05:52	REK	ERE
3	STORE	DIG	A1	24-OCT-2007 09:03	RLK	REK
4	PREP	W1	DIG	25-OCT-2007 14:18	REK	ERE
5	STORE	DIG	A1	26-OCT-2007 14:12	ERE	REK

Container ID Products Samplenum

L0710596-13 387498 TSS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	23-OCT-2007 11:02	AML	
2	ANALYZ	W1	WET	23-OCT-2007 15:38	HJR	ERE
3	STORE	WET	A1	25-OCT-2007 08:49	ERE	HJR

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

Internal Chain of Custody Report

**Login:** L0710596 Account: 2773 **Project:** 2773.025

Samples: 15

**Due Date:** 30-OCT-2007

Samplenum Container ID Products L0710596-10 387493 826-SPE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	23-OCT-2007 11:01	AML	
2	ANALYZ	V1	ORG4	24-OCT-2007 09:31	KJW	ERE

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login V1 - Volatiles Refrigerator in Login

**Amanda Fickiesen - Client Services Specialist** 

**Annie Brown - Client Services Specialist** 

afickiesen@kemron-lab.com

abrown@kemron-lab.com

kbarnes@kemron-lab.com

jparsons@kemron-lab.com

Katie Barnes - Team Assistant

**Jacqueline Parsons - Team Assistant** 



156 Starlite Drive, Marietta, OH 45750 • TEL 740-373-4071 • FAX 740-373-4835 • http://www.kemron.com

Laboratory Report Number: L08020524

Please find enclosed the analytical results for the samples you submitted to KEMRON Environmental Services.

Review and compilation of your report was completed by KEMRON's Sales and Service Team. If you have questions, comments or require further assistance regarding this report, please contact your team member noted in the reviewed box bleow at 800-373-4071. Team member e-mail addresses also appear here for your convenience.

**Debra Elliott - Team Leader** 

delliott@kemron-lab.com

Kathy Albertson - Team Chemist/Data Specialist

kalbertson@kemron-lab.com

Stephanie Mossburg - Team Chemist/Data Specialist

smossburg@kemron-lab.com

**Brenda Gregory - Client Services Specialist** 

bgregory@kemron-lab.com

**Tony Long - Client Services Specialist** 

tlong@kemron-lab.com

This report was reviewed on February 29, 2008.

Stephanie Mossburg

STEPHANIE MOSSBURG - Team Chemist/Data Specialist

I certify that all test results meet all of the requirements of the NELAP standards and other applicable contract terms and conditions. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of KEMRON Environmental Services.

This report was certified on February 29, 2008.

David Vandenberg - Vice President

FL DOH NELAP ID: E8755

Divid & Vande berg

This report contains a total of 53 pages.

**Protecting Our Environmental Future** 



### KEMRON REPORT L08020524 PREPARED FOR Shaw E 1, Inc. WORK ID: LONGHORN AAP KARNACK TX

1.0 Introduction	3
2.1 Volatiles Data	
2.1.1 Volatiles GCMS Data (8260)	10
2.1.1.1 Summary Data	
2.1.1.2 QC Summary Data	
3.0 Attachments	

# 1.0 Introduction

#### KEMRON ENVIRONMENTAL SERVICES REPORT NARRATIVE

KEMRON Login No.: L08020524

CHAIN OF CUSTODY: The chain of custody number was 5420.

SHIPMENT CONDITIONS: The chain of custody forms were received sealed in a cooler. The cooler temperature

was 0 degrees C.

**SAMPLE MANAGEMENT:** All samples received were intact.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and KEMRON Environmental Services, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Approved: 27-FEB-08
Sityphanic Mossburg

#### **Laboratory Data Package Cover Page**

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- √R1 Field chain-of-custody documentation;
- √R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
  - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
  - b) dilution factors,
  - c) preparation methods,
  - d) Cleanup methods, and
  - e) If required for the project, tentatively identified compounds (TICs)
- ✓ R4 Surrogate recovery data including:
  - a) Calculated recovery (%R) for each analyte, and
  - b) The laboratory's surrogate QC limits.
- √R5 Test reports/summary forms for blank samples;
- √R6 Test reports/summary forms for laboratory control samples (LCSs) including:
  - a) LCS spiking amount,
  - b) Calculated %R for each analyte, and
  - c) The laboratory"s LCS QC limits.
- √R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
  - a) Samples associated with the MS/MSD clearly identified,
  - b) MS/MSD spiking amounts,
  - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
  - d) Calculated %R and relative percent differences (RPDs), and
  - e) The laboratory's MS/MSD QC limits
- √R8 Laboratory analytical duplicate (if applicable) revocery and precision:
  - a) the amount of analyte measured in the duplicate,
  - b) the calculated RPD, and
  - c) the laboratory's QC limits for anlytical duplicates.
- √R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- $\sqrt{R10}$  Other problems or anomalies.
- √The exception Report for every "No" or "Not Reviewed (NR)" item IN laboratory review checklist.

**Release statement:** I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

MIKE D. ALBERTSON	Nien CE	Volatiles Lab Supervisor	February 28, 2008
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

Laboratory Review Checklist

Laboratory Name: KEMRON
Laboratory Log Number: L08020524
Project Name: 798-LONGHORN
Method: 8260B
Prep Batch Number(s): 263965
Reviewer Name: MIKE D. ALBERTSON

Reviewer Name: MIKE D. ALBERTSON
LRC Date: February 28, 2008

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	<b>√</b>				
receipt?					
Were all departures from standard conditions described in an exception report?	<b>√</b>				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	<b>√</b>				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	<b>√</b>				
Test reports					
Were all samples prepared and analyzed within holding times?	<b>√</b>				
Other than those results <mql, all="" bracketed="" by="" calibration="" other="" raw="" standards?<="" td="" values="" were=""><td><b>√</b></td><td></td><td></td><td></td><td></td></mql,>	<b>√</b>				
	<b>\</b>				
Were calculations checked by a peer or supervisor?	<b>✓</b>				
Were all analyte identifications checked by a peer or supervisor?					
Were sample quantitation limits reported for all analytes not detected?	<b>√</b>				
Were all results for soil and sediment samples reported on a dry weight basis?	<b>√</b>				
Were % moisture (or solids) reported for all soil and sediment samples?	<b>√</b>				
If required for the project, TICs reported?			<b>√</b>		
Surrogate recovery data					
Were surrogates added prior to extraction?	✓				
Were surrogate percent recoveries in all samples within the laboratory QC limits?	✓				
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	<b>√</b>				
Were blanks analyzed at the appropriate frequency?	<b>√</b>				
Were method blanks taken through the entire analytical process, including preparation and,	<b>√</b>				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td><b>√</b></td><td></td><td></td><td></td><td></td></mql?<>	<b>√</b>				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	<b>√</b>				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	<b>√</b>				
Were LCSs analyzed at the required frequency?	<b>√</b>				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	<b>,</b>	1			1
Does the detectability data document the laboratorys capability to detect the COCs at the	<b>/</b>	<u> </u>			
MDL used to calculate the SQLs?	•				
Was the LCSD RPD within QC limits?	<b>\</b>				
Matrix spike (MS) and matrix spike duplicate (MSD) data	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Were the project/method specified analytes included in the MS and MSD?			<b>√</b>		
Were MS/MSD analyzed at the appropriate frequency?			<b>✓</b>		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			<b>√</b>		

Description	Yes	No	NA( <b>)</b> (	0078903
Were MS/MSD RPDs within laboratory QC limits?			<b>√</b>	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			<b>√</b>	
Were analytical duplicates analyzed at the appropriate frequency?			<b>√</b>	
Were RPDs or relative standard deviations within the laboratory QC limits?			<b>√</b>	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	<b>√</b>			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	<b>√</b>			
Are unadjusted MQLs included in the laboratory data package?	<b>√</b>			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	<b>√</b>			
Were all necessary corrective actions performed for the reported data?	<b>√</b>			
Was applicable and available technology used to lower the SQL minimize the matrix	<b>√</b>			
interference affects on the sample results?				
ICAL				
Were response factors and/or relative response factors for each analyte within QC limits?	<b>√</b>			
Were percent RSDs or correlation coefficient criteria met?	<b>√</b>			
Was the number of standards recommended in the method used for all analytes?	<b>√</b>			
Were all points generated between the lowest and highest standard used to calculate the	<b>√</b>			
curve?				
Are ICAL data available for all instruments used?	<b>√</b>			
Has the initial calibration curve been verified using an appropriate second source standard?	<b>√</b>			
Initial and continuing calibration verification (ICV and CCV) and continuing				
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?	<b>√</b>			
Were percent differences for each analyte within the method-required QC limits?	<b>√</b>			
Was the ICAL curve verified for each analyte?	✓			
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓	
Mass spectral tuning:				
Was the appropriate compound for the method used for tuning?	<b>√</b>			
Were ion abundance data within the method-required QC limits?	✓			
Internal standards (IS):				
Were IS area counts and retention times within the method-required QC limits?	<b>√</b>			
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section 4.12.2)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	<b>√</b>			
Were data associated with manual integrations flagged on the raw data?	<b>√</b>			
Dual column confirmation				
Did dual column confirmation results meet the method-required QC?			<b>√</b>	
Tentatively identified compounds (TICs):				
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			<b>√</b>	
Interference Check Sample (ICS) results:				
Were percent recoveries within method QC limits?			<b>√</b>	
Serial dilutions, post digestion spikes, and method of standard additions				
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			<b>√</b>	
Method detection limit (MDL) studies				
Was a MDL study performed for each reported analyte?	<b>1</b>			
Is the MDL either adjusted or supported by the analysis of DCSs?	· ✓			
Proficiency test reports:	<u> </u>			
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	<b>√</b>			

			$\sim$ $\sim$	1079	വെ
Description	Yes	No	NA( <b>)</b> (	JNR(2)O	<b>ERRO</b>
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	<b>√</b>				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	<b>√</b>				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	<b>√</b>				
Is documentation of the analyst's competency up-to-date and on file?	<b>√</b>				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	<b>√</b>				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	<b>√</b>				

#### **EXCEPTIONS REPORT**

#### ER# - Description

#1: Dichlorodifluoromethane exceeded the upper advisory limit.

#### Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

# 2.1 Volatiles Data

# 2.1.1 Volatiles GCMS Data (8260)

# 2.1.1.1 Summary Data

L08020524

02/29/08 11:39

Submitted By

KEMRON Environmental Services 156 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

For

Account Name: Shaw E & I. Inc.
ABB Lummus Biulding

3010 Briarpark Drive Suite 4N Houston, TX 77042

Attention: Larry Duty

Project Number: 2773.025

Project: Longhorn AAP

Site: LONGHORN AAP KARNACK TX

P.O. Number: 322255 OP

#### Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
50WW07-021908	L08020524-01	8260B	1	23-FEB-08

KEMRON FORMS - Modified 11/30/2005 Version 1.5 PDF File ID: 1030539 Report generated 02/29/2008 11:39

1 OF 1

Report Number: L08020524

Report Date : February 29, 2008

Sample Number: L08020524-01 PrePrep Method: NONE Instrument: HPMS14

 Client ID: 50WW07-021908
 Prep Method: 5030B
 Prep Date: 02/25/2008 19:50

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 02/11/2008 22:54

 Workgroup Number: WG263965
 Analyst: CMS
 Run Date: 02/25/2008 19:50

Analyte CAS. Number Result Qual PQL SDL Acetone 67-64-1 3.54 J 10.0 2.50 71-43-2 0.125 Benzene U 1.00 108-86-1 1.00 0.125 Bromobenzene υ Bromochloromethane 74-97-5 U 1.00 0.200 Bromodichloromethane 75-27-4 1.00 0.250 U Bromoform 75-25-2 ΤΤ 1.00 0.500 Bromomethane 74-83-9 TT 1.00 0.500 2-Butanone 78-93-3 U 10.0 2.50 U n-Butylbenzene 104-51-8 1.00 0.250 135-98-8 U 1.00 0.250 sec-Butylbenzene tert-Butylbenzene 98-06-6 U 1.00 0.250 Carbon disulfide 75-15-0 υ 1.00 0.500 Carbon tetrachloride 56-23-5 U 1.00 0.250 Chlorobenzene 108-90-7 U 1.00 0.125 Chlorodibromomethane 124-48-1 U 1.00 0.250 Chloroethane 75-00-3 υ 1.00 0.500 2-Chloroethyl vinyl ether 110-75-8 U 10.0 2.00 Chloroform 67-66-3 1.00 0.125 U Chloromethane 74-87-3 ΤΤ 1.00 0.250 2-Chlorotoluene 95-49-8 TT 1.00 0.125 106-43-4 0.250 4-Chlorotoluene U 1.00 U 1,2-Dibromo-3-chloropropane 96-12-8 5.00 1.00 1,2-Dibromoethane 106-93-4 U 1.00 0.250 U Dibromomethane 74-95-3 1.00 0.250 1,2-Dichlorobenzene 95-50-1 υ 1.00 0.125 1,3-Dichlorobenzene 541-73-1 U 1.00 0.250 1,4-Dichlorobenzene 106-46-7 U 1.00 0.125 75-71-8 Dichlorodifluoromethane U 1.00 0.250 1,1-Dichloroethane 75-34-3 υ 1.00 0.125 1,2-Dichloroethane 107-06-2 U 1.00 0.250 1,1-Dichloroethene 75-35-4 1.00 0.500 U cis-1,2-Dichloroethene 156-59-2 ΤΤ 1.00 0.250 trans-1,2-Dichloroethene 156-60-5 TT 1.00 0.250 1,2-Dichloropropane 78-87-5 U 1.00 0.200 1,3-Dichloropropane U 142-28-9 1.00 0.200 2,2-Dichloropropane 594-20-7 U 1.00 0.250 cis-1,3-Dichloropropene 10061-01-5 U 1.00 0.250 trans-1,3-Dichloropropene 10061-02-6 υ 1.00 0.500 1,1-Dichloropropene 563-58-6 U 1.00 0.250 Ethylbenzene 100-41-4 U 1.00 0.250 591-78-6 2-Hexanone U 10.0 2.50 Hexachlorobutadiene 87-68-3 1.00 0.250 υ Isopropylbenzene 98-82-8 U 1.00 0.250 99-87-6 1.00 0.250 p-Isopropyltoluene U 4-Methyl-2-pentanone 108-10-1 ΤΤ 10.0 2.50 Methylene chloride 75-09-2 TT 5.00 0.250 Naphthalene 91-20-3 U 1.00 0.200 103-65-1 U 1.00 0.125 n-Propylbenzene

1 of 2

00078914

Report Number: L08020524

Report Date : February 29, 2008

Sample Number: L08020524-01 PrePrep Method: NONE Instrument: HPMS14

 Client ID: 50WW07-021908
 Prep Method: 5030B
 Prep Date: 02/25/2008 19:50

 Matrix: Water
 Analytical Method: 8260B
 Cal Date: 02/11/2008 22:54

 Workgroup Number: WG263965
 Analyst: CMS
 Run Date: 02/25/2008 19:50

Collect Date: 02/19/2008 11:15
Sample Tag: 01
Units: ug/L

CAS. Number Result Analyte Qual PQL SDL Styrene 100-42-5 U 1.00 0.125 630-20-6 U 1.00 0.250 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 79-34-5 U 1.00 0.125 Tetrachloroethene 127-18-4 U 1.00 0.250 108-88-3 U 1.00 0.250 1,2,3-Trichlorobenzene 87-61-6 ΤΤ 1.00 0.125 1,2,4-Trichlorobenzene 1.00 0.200 120-82-1 TT 0.250 1,1,1-Trichloroethane 71-55-6 1.00 U 1,1,2-Trichloroethane 79-00-5 U 1.00 0.250 Trichloroethene 79-01-6 U 1.00 0.250 Trichlorofluoromethane 75-69-4 U 1.00 0.250 1,2,3-Trichloropropane 96-18-4 υ 1.00 0.500 1,2,4-Trimethylbenzene 95-63-6 U 1.00 0.250 1.00 1,3,5-Trimethylbenzene 108-67-8 U 0.250 Vinyl acetate 108-05-4 U 10.0 2.50 Vinyl chloride 75-01-4 U 1.00 0.250 95-47-6 U 1.00 0.250 o-Xylene m-,p-Xylene 136777-61-2 U 1.00 0.500

Surrogate	% Recovery	Lower	Upper	Qual
Dibromofluoromethane	104	86	118	
1,2-Dichloroethane-d4	103	80	120	
Toluene-d8	106	88	110	
4-Bromofluorobenzene	102	86	115	

U Not detected at or above adjusted sample detection limit

J The analyte was positively identified, but the quantitation was below the RL

# 2.1.1.2 QC Summary Data

#### **Example 8260 Calculations**

#### 1.0 Calculating the Response Factor (RF) from the initial calibration (ICAL) data:

RF = [ (Ax) (Cis) ] / [ (Ais) (Cx) ]

where:		<u>Example</u>
wilele.	Ax = Area of the characteristic ion for the compound being measured:	3399156
	Cis = Concentration of the specific internal standard (ug/mL)	25
	Ais = Area of the characteristic ion of the specific internal standard	846471
	Cx = Concentration of the compound in the standard being measured (ug/mL)	100
	RF = Calculated Response Factor	1.0039

#### 2.0 Calculating the concentration ( ${\bf C}$ ) of a compound in water using the average RF: *

Cx = [(Ax) (Cis) (Vn)(D)] / [(Ais) (RF) (Vs)]

where:	Example
Ax = Area of the characteristic ion for the compound being measured	3122498
Cis = Concentration of the specific internal standard (ug/L)	25
D = Dilution factor for sample as a multiplier ( $10x = 10$ )	1
Ais = Area of the characteristic ion of the specific internal standard	611048
RF = Average RF from the ICAL	1.004
Vs = Purge volume of sample (mL)	10
Vn = Nominal purge volume of sample (mL) (10.0 mL)	10
Cx = Concentration of the compound in the sample being measured (ug/L)	127.2428

#### 3.0 Calculating the concentration ( ${\bf C}$ ) of a compound in soil using the average RF: *

Cx = [(Ax)(Cis)(Wn)(D)]/[(Ais)(RF)(Ws)]

	<u>Example</u>
where:	
Ax = Area of the characteristic ion for the compound being measured	3122498
Cis = Concentration of the specific internal standard (ug/L)	25
D = Dilution factor for sample as a multiplier ( 10x = 10)	1
Ais = Area of the characteristic ion of the specific internal standard	611048
RF = Average RF from the ICAL	1.004
Ws = Weight of sample purged (g)	5
Wn = Nominal purge weight $(g)$ $(5.0 g)$	5
Cx = Concentration of the compound in the sample being measured (ug/L)	127.2428
Dry weight correction:	
Percent solids (PCT_S)	50
$Cd = (Cx) (100)/PCT_S$	254.4856

^{*} Concentrations appearing on the instrument quantitation reports are on-column results and do not take into account initial volume, final volume, and the dilution factor.

#### 4.0 Concentration from Linear Regression

#### Step 1: Retrieve Curve Data From Plot, y = mx + b

y = response ratio = response of analyte / response of IS = Ax/Ais

x = amount ratio = concentration analyte/concentration internal standard = Cx / Cis

m = slope from curve = 0.213

b = intercept from curve = - 0.00642

#### Step 2: Calculate y from Quantitation Report

y = 86550/593147 = 0.1459

Step 3: Solve for x

x = (y - b)/m = [(0.1459 - (-0.00642)]/0.213 = 0.7152

Step 4: Solve for analyte concentration Cx

Cx = Cis(x) = (25.0)(0.7152) = 17.88

#### **Example Spreadsheet Calculation:**

Slope from curve, m:
Intercept from curve, b:
Area of analyte, Ax:
Area of Internal Standard , Ais:
Concentration of IS, Cis
Response Ratio:
Amount Ratio:
0.213
-0.00642
86550
593147
25.00
0.145917
0.715195

Concentration: 17.87988

Units of Internal Standard: ug/L

#### 5.0 Concentration from Quadratic Regression

#### Step 1 - Retrieve Curve Data from Plot, $y = Ax^2 + Bx + C$

Where:

 $Ax^2 + Bx + (C - y) = 0$ 

A, B, C = constants from the ICAL quadratic regression

y = Response ratio = Area of analyte/Area of internal standard (IS)

x = Amount ratio = Concentration of analyte/concentration of IS

#### Step 2: Calculate y from Quantitation Report

y = Ax/Ais

#### Step 3: Solve for $\boldsymbol{x}$ using the quadratic formula

 $Ax^2 + Bx + C - y = 0$ 

$$x = \frac{b \pm \sqrt{(b^2 - 4a(c - y))}}{2a}$$
 (Two possible solutions)

#### Step 4: Solve for analyte concentration Cx

Cx = ( Cis )( Amount ratio)

#### **Example Spreadsheet Calculation:**

Value of A from plot:
Value of B from plot:
Value of C from plot:
Value of C from plot:
Area of unknown from quantitation report:
Area of IS from quantiation report:
784848

Response ratio, y: 0.374367

C - y: **-0.40197** Root 1 - Computed amount ratio , X1: **80.44567** 

Root 2 - Computed amount ratio , X2: **0.794396** use this solution

Concentration of IS, Cis: 25.00
Concentration of analyte, Cx: 19.86 ug/L

#### Instrument Run Log

Instrument: HPMS14 Dataset: 021108

Analyst1: CMS Analyst2: NA

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 10

 Method:
 624
 SOP:
 MSV10
 Rev:
 9

 Method:
 5030B
 SOP:
 PAT01
 Rev:
 10

Maintenance Log ID: 22912

Internal Standard: STD24496 Surrogate Standard: STD24497

Column 1 ID: RTX502.2 Column 2 ID: NA

Workgroups: WG262907

Comments:

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
1	14M03425	WG262819-01 BFB 50ng STD 8260	NA	1	1	STD24474	02/11/08 08:58
2	14M03427	WG262819-02 50ug/L STD 8260	NA	1	1	STD24465	02/11/08 10:06
3	14M03428	BLANK-NEW TRAP+SPARGE	NA	1	1		02/11/08 11:38
4	14M03429	BLANK-NEW TRAP+SPARGE	NA	1	1		02/11/08 12:09
5	14M03431	WG262819-01 BFB 50ng STD 8260	NA	1	1	STD24474	02/11/08 12:56
6	14M03432	WG262819-01 BFB 50ng STD 8260	NA	1	1	STD24474	02/11/08 13:11
7	14M03433	WG262819-02 50ug/L STD 8260	NA	1	1	STD24465	02/11/08 13:34
8	14M03434	SYSTEM BLANK	NA	1	1		02/11/08 14:08
9	14M03435	SYSTEM BLANK NEW TRAP 2	NA	1	1		02/11/08 16:31
10	14M03436	STD CHK	NA	1	1		02/11/08 17:20
11	14M03437	WG262907-01 BFB 50ng STD 8260	NA	1	1	STD24474	02/11/08 17:49
12	14M03438	WG262907-02 0.30ug/L STD 8260	NA	1	1	STD24465	02/11/08 18:15
13	14M03439	WG262907-03 0.40ug/L STD 8260	NA	1	1	STD24465	02/11/08 18:46
14	14M03440	WG262907-04 1ug/L STD 8260	NA	1	1	STD24465	02/11/08 19:18
15	14M03441	WG262907-05 2ug/L STD 8260	NA	1	1	STD24465	02/11/08 19:49
16	14M03442	WG262907-06 5ug/L STD 8260	NA	1	1	STD24465	02/11/08 20:19
17	14M03443	WG262907-07 20ug/L STD 8260	NA	1	1	STD24465	02/11/08 20:51
18	14M03444	WG262907-08 50ug/L STD 8260	NA	1	1	STD24465	02/11/08 21:21
19	14M03445	WG262907-09 100ug/L STD 8260	NA	1	1	STD24465	02/11/08 21:52
20	14M03446	WG262907-10 200ug/L STD 8260	NA	1	1	STD24465	02/11/08 22:23
21	14M03447	WG262907-11 300ug/L STD 8260	NA	1	1	STD24465	02/11/08 22:54
22	14M03448	SYSTEM BLANK	NA	1	1		02/11/08 23:27
23	14M03449	SYSTEM BLANK	NA	1	1		02/11/08 23:57
24	14M03450	WG262907-12 20ug/L ALT SRC STD 8260	NA	1	1	STD24411	02/12/08 00:28
25	14M03451	SYSTEM BLANK	NA	1	1		02/12/08 00:59

Approved: February 18, 2008

Nien CE

Page: 1

#### Instrument Run Log

Instrument:	HPMS14	Dataset	t: <u>022508</u>		
Analyst1:	CMS	Analyst2	2: <b>NA</b>		
Method:	8260B	SOP	: MSV01	Rev: <u>10</u>	
Method:	624	SOP	: MSV10	Rev: <u>7</u>	
Maintenance Log ID:		Surrogate Standard:	STD24497		
CCV: STD2468	38		STD24700	MS/MSD: NA	
v	Column 1 ID: /orkgroups: <u>WG</u>	RTX502.2 263965	Column 2 ID: NA		
Comments:					٦

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
1	14M03774	WG263964-01 50ng BFB STD	NA	1	1	STD24474	02/25/08 12:07
2	14M03775	WG263964-02 50ug/L STD 8260	NA	1	1	STD24688	02/25/08 12:34
3	14M03776	WG263964-02 50ug/L STD 8260	NA	1	1	STD24688	02/25/08 13:07
4	14M03777	WG263965-01 VBLK0225 BLANK 8260	NA	1	1		02/25/08 13:38
5	14M03778	WG263965-01 VBLK0225 BLANK 8261	NA	1	1		02/25/08 14:09
6	14M03779	WG263965-02 20ug/L LCS STD 8260	NA	1	1	STD24700	02/25/08 14:39
7	14M03780	WG263965-03 20ug/L LCSDUP STD 8260	NA	1	1	STD24700	02/25/08 15:10
8	14M03781	WG263965-04 624 BLANK	NA	2	1		02/25/08 15:41
9	14M03782	L08020478-02 B 2.5X 624	7	2	2.5		02/25/08 16:13
10	14M03783	L08020479-02 B 5X 625	7	2	5		02/25/08 16:44
11	14M03784	L08020402-01 B 826-LOW	<2	1	1		02/25/08 17:15
12	14M03785	L08020444-04 B 50X 826-LOW	<2	1	50		02/25/08 17:46
13	14M03786	L08020414-01 A 25X 826-SPE	<2	1	25		02/25/08 18:16
14	14M03787	L08020377-03 A 826-SPLP	NA	18	1		02/25/08 18:47
15	14M03788	L08020523-01 A 826-LOW	<2	1	1		02/25/08 19:18
16	14M03789	L08020524-01 A 826-LOW	<2	1	1		02/25/08 19:50
17	14M03790	L08020525-01 A 826-LOW	<2	1	1		02/25/08 20:20
18	14M03791	L08020525-02 A 826-LOW	<2	1	1		02/25/08 20:52
19	14M03792	L08020525-03 A 826-LOW	<2	1	1		02/25/08 21:23
20	14M03793	L08020513-03 A 826-LOW	<2	1	1		02/25/08 21:54
21	14M03794	L08020513-05 A 826-LOW	<2	1	1		02/25/08 22:25
22	14M03795	L08020513-01 A 826-LOW	<2	1	1		02/25/08 22:56
23	14M03796	L08020513-07 A 826-LOW	<2	1	1		02/25/08 23:27
24	14M03797	L08020376-01 A 500X 8260	11	12	500		02/25/08 23:58
25	14M03798	SYSTEM BLANK	NA	1	1		02/26/08 00:29
26	14M03799	SYSTEM BLANK	NA	1	1		02/26/08 01:01

#### Comments

Seq.	Rerun Dil.	Reason	Analytes
2	X		
File ID:	14M03775		
4	X		

Approved: February 28, 2008

Vien Coto

Page: 1

Run 00078920

#### **KEMRON Environmental Services**

#### Instrument Run Log

Instrument:	HPMS14	Dataset:	022508		
Analyst1:	CMS	Analyst2:	NA		
Method:	8260B	SOP:	MSV01	Rev: <u>10</u>	
Method:	624	SOP:	MSV10	Rev: <u>7</u>	
Maintenance Log ID:  Internal Standard: STD2449	6 Suri	rogate Standard: <u>S</u>		_	
CCV: STD2468	8	LCS: S	TD24700	MS/MSD: <u>NA</u>	
W	Column 1 ID: RTX5 orkgroups: WG2639		Column 2 ID: NA		
Comments:					

#### Comments

Seq.	Rerun	Dil.	Reason	Analytes
File ID:	14M0377	7		
9	X 14M0378	10	Over Calibration Range	VC
FIIE ID.	14100376	) <u>Z</u>		
13	Х	100	Over Calibration Range	СТ
File ID:	14M0378	6		
15	Х	10	Over Calibration Range	MECL
File ID:	14M0378	8		
18	Х	50	Over Calibration Range	CIS12DCE, TCE
File ID:	14M0379	1		
19	Х		Carry-over contamination	
File ID:	14M0379	2		
20	Х		Carry-over contamination	
File ID:	14M0379	3		
21	Х		Carry-over contamination	
File ID:	14M0379	14		
22	Х		Carry-over contamination	
File ID:	14M0379	5		

Approved: February 28, 2008

Nien Cato

Page: 2

^{Che}00078921

### KEMRON Environmental Services Data Checklist

Date:	<u>11-FEB-2008</u>
Analyst:	CMS
Analyst:	NA
Method:	8260B/624
Instrument:	HPMS14
Curve Workgroup:	NA
Runlog ID:	20708
Analytical Workgroups:	WG262907

System Performance Check	X
BFB	X
Initial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	
Second Source standard % Difference	X
Continuing Calibration /Check Standards	NA NA
Project/Client Specific Requirements	NA NA
Special Standards	NA NA
Blanks	NA NA
TCL's	NA NA
Surrogates	NA NA
LCS (Laboratory Control Sample)	NA NA
Recoveries	NA
Surrogates	NA
MS/MSD/Duplicates	NA
Samples	NA
TCL Hits	NA
Spectra of TCL Hits	NA
Surrogates	NA
Internal Standards Criteria	NA
Library Searches	NA
Calculations & Correct Factors	NA
Dilutions Run	NA
Reruns	NA
Manual Integrations	X
Case Narrative	NA NA
Results Reporting/Data Qualifiers	X
KOBRA Workgroup Data	X
Check for Completeness	X
Primary Reviewer	CMS
Secondary Reviewer	MDA
pecondary neviewer	IVIDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Check the reasonableness of the results	X

Primary Reviewer: 14-FEB-2008 Secondary Reviewer: 18-FEB-2008

Curtol Fephens vien CE

Generated: FEB-18-2008 09:08:00

Che 00078922

### KEMRON Environmental Services Data Checklist

Date: <u>25-FEB-</u>	2008
Analyst: CMS	
Analyst: NA	
Method: <u>8260</u>	
Instrument: HPMS14	
Curve Workgroup: NA	
Runlog ID: <u>20913</u>	
Analytical Workgroups: WG2636	.05

	NA NA
System Performance Check	NA NA
BFB	X
Initial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	X
Second Source standard % Difference	X
Continuing Calibration /Check Standards	X
Project/Client Specific Requirements	X
Special Standards	X
Blanks	Х
TCL's	Х
Surrogates	Х
LCS (Laboratory Control Sample)	Х
Recoveries	Х
Surrogates	Х
MS/MSD/Duplicates	Х
Samples	X
TCL Hits	X
Spectra of TCL Hits	X
Surrogates	X
Internal Standards Criteria	X
Calculations & Correct Factors	X
Dilutions Run	X
Reruns	X
Manual Integrations	X
Excel Spreadsheets	X
Case Narrative	X
Narrative Summary	NA NA
Results Reporting/Data Qualifiers	X
Client Data Package Assembly	X
Check for Completeness	X
Primary Reviewer	SMH
Secondary Reviewer	MDA
Secondary Reviewer	IVIDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Check the resonableness of the results	X

Primary Reviewer: 28-FEB-2008 Secondary Reviewer: 28-FEB-2008

Shauna Agle Ven CE

Generated: FEB-28-2008 14:41:58

### KEMRON Environmental Services HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method:8260B

Login Number:L08020524

AAR	#:WG263965	;

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
50WW07-021908	02/19/08	02/23/08	02/25/08	14	6.36	02/25/08	14	6.36	

* EXT = SEE PROJECT QAPP REQUIREMENTS

KEMRON FORMS - Modified 11/20/2006 Version 1.5 PDF File ID:1030014 Report generated 02/28/2008 16:26

^{*}ANAL = SEE PROJECT QAPP REQUIREMENTS

#### SURROGATE STANDARDS

Login Number:L08020524

Instrument Id:HPMS14

Workgroup (AAB#):WG263965

Method: 8260

CAL ID: HPMS14-11-FEB-08

Matrix:Water

Sample Number	Dilution	Tag	1	2	3	4
L08020524-01	1.00	01	103	104	102	106
WG263965-01	1.00	01	93.5	99.8	101	107
WG263965-02	1.00	01	94.3	102	102	104
WG263965-03	1.00	01	93.0	102	100	104
WG263965-04	1.00	01	94.5	100	101	107

 Surrogates
 Surrogate Limits

 1 - 1,2-Dichloroethane-d4
 80 - 120

 2 - Dibromofluoromethane
 86 - 118

 3 - 4-Bromofluorobenzene
 86 - 115

 4 - Toluene-d8
 88 - 110

Underline = Result out of surrogate limits

DL = surrogate diluted out
ND = surrogate not detected

KEMRON FORMS - Modified 09/27/2006 Version 1.5 PDF File ID:1030020 Report generated 02/28/2008 16:27

#### METHOD BLANK SUMMARY

Login Number:L08020524 Work Group:WG263965

Blank File ID:14M03778 Blank Sample ID:WG263965-01

Prep Date:02/25/08 14:09 Instrument ID:HPMS14

Analyzed Date:02/25/08 14:09 Method:8260B

Analyst:CMS

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG263965-02	14M03779	02/25/08 14:39	01
LCS2	WG263965-03	14M03780	02/25/08 15:10	01
50WW07-021908	L08020524-01	14M03789	02/25/08 19:50	01

KEMRON FORMS - Modified 01/31/2007 Version 1.5 PDF File ID:1030015 Report generated 02/28/2008 16:26 

 Login Number: L08020524
 Prep Date: 02/25/08 14:09
 Sample ID: WG263965-01

 Instrument ID: HPMS14
 Run Date: 02/25/08 14:09
 Prep Method: 5030B

 File ID: 14M03778
 Analyst: CMS
 Method: 8260B

 Workgroup (AAB#): WG263965
 Matrix: Water
 Units: ug/L

Contract #:DACA56-94-D-0020 Cal ID:HPMS14-11-FEB-08

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Acetone	2.50	10.0	2.50	1	υ
Benzene	0.125	1.00	0.125	1	υ
Bromobenzene	0.125	1.00	0.125	1	υ
Bromochloromethane	0.200	1.00	0.200	1	υ
Bromodichloromethane	0.250	1.00	0.250	1	υ
Bromoform	0.500	1.00	0.500	1	υ
Bromomethane	0.500	1.00	0.500	1	υ
2-Butanone	2.50	10.0	2.50	1	υ
n-Butylbenzene	0.250	1.00	0.250	1	υ
sec-Butylbenzene	0.250	1.00	0.250	1	υ
tert-Butylbenzene	0.250	1.00	0.250	1	υ
Carbon disulfide	0.500	1.00	0.500	1	υ
Carbon tetrachloride	0.250	1.00	0.250	1	υ
Chlorobenzene	0.125	1.00	0.125	1	υ
Chlorodibromomethane	0.250	1.00	0.250	1	υ
Chloroethane	0.500	1.00	0.500	1	υ
2-Chloroethyl vinyl ether	2.00	10.0	2.00	1	υ
Chloroform	0.125	1.00	0.125	1	υ
Chloromethane	0.250	1.00	0.250	1	U
2-Chlorotoluene	0.125	1.00	0.125	1	U
4-Chlorotoluene	0.250	1.00	0.250	1	U
1,2-Dibromo-3-chloropropane	1.00	5.00	1.00	1	U
1,2-Dibromoethane	0.250	1.00	0.250	1	U
Dibromomethane	0.250	1.00	0.250	1	U
1,2-Dichlorobenzene	0.125	1.00	0.125	1	U
1,3-Dichlorobenzene	0.250	1.00	0.250	1	U
1,4-Dichlorobenzene	0.125	1.00	0.125	1	U
Dichlorodifluoromethane	0.250	1.00	0.250	1	U
1,1-Dichloroethane	0.125	1.00	0.125	1	υ
1,2-Dichloroethane	0.250	1.00	0.250	1	υ
1,1-Dichloroethene	0.500	1.00	0.500	1	υ
cis-1,2-Dichloroethene	0.250	1.00	0.250	1	υ
trans-1,2-Dichloroethene	0.250	1.00	0.250	1	υ
1,2-Dichloropropane	0.200	1.00	0.200	1	U
1,3-Dichloropropane	0.200	1.00	0.200	1	U
2,2-Dichloropropane	0.250	1.00	0.250	1	U
cis-1,3-Dichloropropene	0.250	1.00	0.250	1	υ
trans-1,3-Dichloropropene	0.500	1.00	0.500	1	U
1,1-Dichloropropene	0.250	1.00	0.250	1	υ
Ethylbenzene	0.250	1.00	0.250	1	U
2-Hexanone	2.50	10.0	2.50	1	Ū
     Hexachlorobutadiene	0.250	1.00	0.250	1	υ

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID:1030016 Report generated 02/28/2008 16:26

#### METHOD BLANK REPORT

Analytes SDL PQL Concentration Dilution Qualifier 0.250 1.00 0.250 Isopropylbenzene U 1 0.250 0.250 U p-Isopropyltoluene 1.00 1 10.0 4-Methyl-2-pentanone 2.50 2.50 1 U Methylene chloride 0.250 0.250 5.00 1 U Naphthalene 0.200 1.00 0.200 1 U 0.125 0.125 n-Propylbenzene 1.00 1 U 0.125 0.125 Styrene 1.00 1 U 1,1,1,2-Tetrachloroethane 0.250 1.00 0.250 1 υ 1,1,2,2-Tetrachloroethane 0.125 1.00 0.125 1 U Tetrachloroethene 0.250 1.00 0.250 1 U 0.250 0.250 Toluene 1.00 TT 1 1,2,3-Trichlorobenzene 0.125 1.00 0.125 1 U 1,2,4-Trichlorobenzene 0.200 1.00 0.200 1 U 1,1,1-Trichloroethane 0.250 1.00 0.250 1 TT 0.250 U 1,1,2-Trichloroethane 0.250 1.00 1 Trichloroethene 0.250 1.00 0.250 1 υ Trichlorofluoromethane 0.250 1.00 0.250 1 U 1,2,3-Trichloropropane 0.500 1.00 0.500 1 U 1,2,4-Trimethylbenzene 0.250 1.00 0.250 1 U 1,3,5-Trimethylbenzene 0.250 1.00 0.250 1 υ Vinyl acetate 2.50 10.0 2.50 1 υ Vinyl chloride 0.250 1.00 0.250 1 TT 0.250 0.250 o-Xylene 1.00 1 υ m-,p-Xylene 0.500 1.00 0.500 1 U

Surrogates	% Recovery	Surro	Qualifier		
Dibromofluoromethane	99.8	86	-	118	PASS
1,2-Dichloroethane-d4	93.5	80	-	120	PASS
Toluene-d8	107	88	-	110	PASS
4-Bromofluorobenzene	101	86	-	115	PASS

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* Analyte concentration > RL

KEMRON FORMS - Modified 12/07/2006 Version 1.5 PDF File ID:1030016 Report generated 02/28/2008 16:26

#### LABORATORY CONTROL SAMPLE (LCS)

Sample ID:WG263965-02 LCS File ID:14M03779 Run Date:02/25/2008 14:39
Sample ID:WG263965-03 LCS2 File ID:14M03780 Run Date:02/25/2008 15:10

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
Acetone	20.0	18.4	91.9	20.0	18.6	93.1	1.25	40 - 142	20	
Benzene	20.0	20.8	104	20.0	20.1	101	3.44	80 - 121	20	
Bromobenzene	20.0	20.7	104	20.0	20.1	101	2.94	80 - 120	20	
Bromochloromethane	20.0	20.2	101	20.0	19.7	98.6	2.58	65 - 130	20	
Bromodichloromethane	20.0	22.0	110	20.0	21.4	107	2.77	80 - 131	20	
Bromoform	20.0	17.4	87.0	20.0	17.2	85.9	1.30	70 - 130	20	
Bromomethane	20.0	26.1	131	20.0	25.6	128	2.19	30 - 145	20	
2-Butanone	20.0	19.7	98.6	20.0	19.9	99.3	0.695	30 - 150	20	
n-Butylbenzene	20.0	22.8	114	20.0	21.7	109	4.56	80 - 131	20	
sec-Butylbenzene	20.0	22.8	114	20.0	21.8	109	4.82	80 - 127	20	
tert-Butylbenzene	20.0	22.3	112	20.0	21.4	107	4.06	80 - 126	20	
Carbon disulfide	20.0	22.5	113	20.0	21.4	107	5.19	58 - 138	20	
Carbon tetrachloride	20.0	23.5	118	20.0	22.1	110	6.35	65 - 140	20	T
Chlorobenzene	20.0	20.7	103	20.0	20.1	100	2.81	80 - 120	20	
Chlorodibromomethane	20.0	18.5	92.3	20.0	18.1	90.5	1.89	60 - 135	20	
Chloroethane	20.0	22.7	114	20.0	22.1	111	2.71	60 - 135	20	
2-Chloroethyl vinyl ether	20.0	13.8	69.0	20.0	12.9	64.3	6.97	58 - 151	20	
Chloroform	20.0	21.3	106	20.0	20.5	102	3.86	80 - 125	20	
Chloromethane	20.0	22.2	111	20.0	21.6	108	2.96	40 - 125	20	
2-Chlorotoluene	20.0	21.0	105	20.0	20.4	102	2.86	80 - 127	20	
4-Chlorotoluene	20.0	21.2	106	20.0	20.4	102	3.61	80 - 126	20	Т
1,2-Dibromo-3-chloropropane	20.0	16.6	82.9	20.0	16.8	83.8	1.11	50 - 130	20	
1,2-Dibromoethane	20.0	20.0	99.9	20.0	19.8	99.1	0.839	80 - 125	20	
Dibromomethane	20.0	20.8	104	20.0	20.5	103	1.24	75 - 125	20	
1,2-Dichlorobenzene	20.0	19.7	98.6	20.0	19.5	97.6	1.04	80 - 125	20	Т
1,3-Dichlorobenzene	20.0	20.3	102	20.0	19.8	99.0	2.62	80 - 120	20	
1,4-Dichlorobenzene	20.0	19.6	97.8	20.0	19.1	95.6	2.33	80 - 120	20	
Dichlorodifluoromethane	20.0	29.6	148	20.0	27.6	138	6.96	50 - 133	20	*
1,1-Dichloroethane	20.0	21.4	107	20.0	20.6	103	3.93	80 - 125	20	
1,2-Dichloroethane	20.0	20.3	102	20.0	19.8	99.0	2.62	80 - 129	20	
1,1-Dichloroethene	20.0	22.9	114	20.0	21.7	108	5.34	80 - 132	20	
cis-1,2-Dichloroethene	20.0	22.2	111	20.0	21.2	106	4.77	70 - 125	20	
trans-1,2-Dichloroethene	20.0	22.1	111	20.0	21.0	105	5.41	80 - 127	20	
1,2-Dichloropropane	20.0	20.7	103	20.0	20.1	101	2.77	80 - 120	20	
1,3-Dichloropropane	20.0	19.8	99.2	20.0	19.5	97.5	1.71	80 - 120	20	
2,2-Dichloropropane	20.0	24.9	125	20.0	23.3	117	6.51	80 - 133	20	
cis-1,3-Dichloropropene	20.0	21.0	105	20.0	20.6	103	1.68	70 - 130	20	
trans-1,3-Dichloropropene	20.0	19.3	96.5	20.0	19.3	96.4	0.152	80 - 130	20	
1,1-Dichloropropene	20.0	22.5	112	20.0	21.2	106	5.87	75 - 130	20	
Ethylbenzene	20.0	22.3	112	20.0	21.4	107	4.00	80 - 122	20	

KEMRON FORMS - Modified 02/08/2007 Version 1.5 PDF File ID:1029691 Report generated 02/28/2008 16:27

#### LABORATORY CONTROL SAMPLE (LCS)

Login Number:L08020524	Analvst:CMS	Prep Method: 5030B
Instrument ID: HPMS14	Matrix:Water	Method: 8260B
Workgroup (AAB#):WG263965		Units:ug/L
QC Key:STD	Lot #:STD24700	
Sample ID:WG263965-02 LCS	File ID:14M03779	Run Date: 02/25/2008 14:39

Sample ID:WG263965-03 LCS2 File ID:14M03780 Run Date:02/25/2008 15:10

		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
2-Hexanone	20.0	17.5	87.6	20.0	18.1	90.3	2.94	55 - 130	20	
Hexachlorobutadiene	20.0	21.5	108	20.0	20.4	102	5.39	72 - 132	20	
Isopropylbenzene	20.0	20.1	101	20.0	19.5	97.3	3.46	80 - 122	20	
p-Isopropyltoluene	20.0	22.4	112	20.0	21.3	107	4.78	80 - 122	20	
4-Methyl-2-pentanone	20.0	18.2	90.8	20.0	18.5	92.7	2.11	64 - 140	20	
Methylene chloride	20.0	20.7	104	20.0	20.4	102	1.68	80 - 123	20	
Naphthalene	20.0	16.7	83.4	20.0	17.1	85.3	2.20	59 - 149	20	
n-Propylbenzene	20.0	23.0	115	20.0	21.9	109	5.01	80 - 129	20	
Styrene	20.0	21.6	108	20.0	21.2	106	2.12	80 - 123	20	
1,1,1,2-Tetrachloroethane	20.0	21.7	108	20.0	21.2	106	2.21	80 - 130	20	
1,1,2,2-Tetrachloroethane	20.0	19.2	96.1	20.0	19.3	96.5	0.442	79 - 125	20	
Tetrachloroethene	20.0	22.4	112	20.0	21.3	107	4.97	80 - 124	20	
Toluene	20.0	21.2	106	20.0	20.5	103	3.46	80 - 124	20	
1,2,3-Trichlorobenzene	20.0	17.4	87.2	20.0	17.3	86.5	0.746	55 - 140	20	
1,2,4-Trichlorobenzene	20.0	18.5	92.7	20.0	18.2	90.9	1.98	65 - 135	20	
1,1,1-Trichloroethane	20.0	22.8	114	20.0	21.5	108	5.56	80 - 134	20	
1,1,2-Trichloroethane	20.0	19.7	98.3	20.0	19.3	96.5	1.86	80 - 125	20	
Trichloroethene	20.0	22.1	111	20.0	21.4	107	3.42	80 - 122	20	
Trichlorofluoromethane	20.0	20.4	102	20.0	19.1	95.6	6.66	62 - 151	20	
1,2,3-Trichloropropane	20.0	19.1	95.6	20.0	18.9	94.6	1.02	75 - 125	20	
1,2,4-Trimethylbenzene	20.0	21.8	109	20.0	21.1	106	3.35	80 - 125	20	
1,3,5-Trimethylbenzene	20.0	22.6	113	20.0	21.7	109	3.98	80 - 127	20	
Vinyl acetate	20.0	16.3	81.7	20.0	15.5	77.4	5.49	10 - 150	20	
Vinyl chloride	20.0	24.0	120	20.0	22.5	113	6.31	65 - 140	20	
o-Xylene	20.0	21.7	109	20.0	21.2	106	2.41	80 - 122	20	
m-,p-Xylene	40.0	44.0	110	40.0	42.7	107	2.97	80 - 122	20	

	LCS	LCS2				
Surogates	% Recovery	% Recovery	Surrog	ate	Limits	Qualifier
Dibromofluoromethane	102	102	86	-	118	PASS
1,2-Dichloroethane-d4	94.3	93.0	80	-	120	PASS
Toluene-d8	104	104	88	-	110	PASS
4-Bromofluorobenzene	102	100	86	-	115	PASS

* FAILS %REC LIMIT

# FAILS RPD LIMIT

KEMRON FORMS - Modified 02/08/2007 Version 1.5 PDF File ID:1029691 Report generated 02/28/2008 16:27

### KEMRON ENVIRONMENTAL SERVICES ORGANIC INSTRUMENT CHECK

#### BFB

 Login Number: L08020524
 Tune ID: WG262907-01

 Instrument: HPMS14
 Run Date: 02/11/2008

 Analyst: CMS
 Run Time: 17:49

 Workgroup: WG262907
 File ID: 14M03437

Cal ID: <u>HPMS14-11-FEB-08</u>

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	21.4	3989	PASS
75.0	95.0	30.0	60.0	48.9	9097	PASS
95.0	95.0	100	100	100	18599	PASS
96.0	95.0	5.00	9.00	7.05	1312	PASS
173	174	0	2.00	0.266	35	PASS
174	95.0	50.0	100	70.7	13145	PASS
175	174	5.00	9.00	7.05	927	PASS
176	174	95.0	101	96.2	12649	PASS
177	176	5.00	9.00	6.59	834	PASS

#### This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG262907-02	STD	01	02/11/2008 18:15	
WG262907-03	STD	01	02/11/2008 18:46	
WG262907-04	STD	01	02/11/2008 19:18	
WG262907-05	STD	01	02/11/2008 19:49	
WG262907-06	STD	01	02/11/2008 20:19	
WG262907-07	STD	01	02/11/2008 20:51	
WG262907-08	STD-CCV	01	02/11/2008 21:21	
WG262907-09	STD	01	02/11/2008 21:52	
WG262907-10	STD	01	02/11/2008 22:23	
WG262907-11	STD	01	02/11/2008 22:54	
WG262907-12	sscv	01	02/12/2008 00:28	

^{*} Sample past 12 hour tune limit

KEMRON FORMS - Modified 03/12/2007 Version 1.3 PDF File ID:1030018 Report generated 02/28/2008 16:27

### KEMRON ENVIRONMENTAL SERVICES ORGANIC INSTRUMENT CHECK

#### BFB

 Login Number: L08020524
 Tune ID: WG263964-01

 Instrument: HPMS14
 Run Date: 02/25/2008

 Analyst: CMS
 Run Time: 12:07

Workgroup: WG263964 File ID: 14M03774

Cal ID: HPMS14-11-FEB-08

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
50.0	95.0	15.0	40.0	21.1	3922	PASS
75.0	95.0	30.0	60.0	49.4	9168	PASS
95.0	95.0	100	100	100	18553	PASS
96.0	95.0	5.00	9.00	6.79	1260	PASS
173	174	0	2.00	0.368	50	PASS
174	95.0	50.0	100	73.3	13601	PASS
175	174	5.00	9.00	7.33	997	PASS
176	174	95.0	101	96.2	13087	PASS
177	176	5.00	9.00	6.35	831	PASS

#### This check relates to the following samples:

	Lab ID	Client ID	Tag	Date Analyzed	Q
	WG263964-02	ccv	01	02/25/2008 13:07	
Ī	WG263965-01	BLANK	01	02/25/2008 14:09	
Ī	WG263965-02	LCS	01	02/25/2008 14:39	
Ī	WG263965-03	LCS2	01	02/25/2008 15:10	
Ī	WG263965-04	BLANK2	01	02/25/2008 15:41	
Ī	L08020524-01	50WW07-021908	01	02/25/2008 19:50	

^{*} Sample past 12 hour tune limit

KEMRON FORMS - Modified 03/12/2007 Version 1.3 PDF File ID:1030018 Report generated 02/28/2008 16:27

Page 31

Login Number:L08020524
Analytical Method:8260B
ICAL Workgroup:WG262907

# Instrument ID:HPMS14 Initial Calibration Date:11-FEB-08 22:54 Column ID:F

Analyte		AVG RF	% RSD	LINEAR (R)	QUAD(R ² )
1,1-Dichloroethene	CCC	0.3950	12.2		
1,2-Dichloropropane	CCC	0.2687	5.93		
Chloroform	CCC	0.4822	7.13		
Ethylbenzene	CCC	0.5065	10.9		
Toluene	ccc	1.437	7.40		
Vinyl Chloride	ccc	0.1332	14.9		
1,1,2,2-Tetrachloroethane	SPCC	0.4451	8.24		
1,1-Dichloroethane	SPCC	0.5160	6.60		
Bromoform	SPCC	0.1423	21.7		1.00
Chlorobenzene	SPCC	0.9520	9.47		
Chloromethane	SPCC	0.1996	22.2		1.00
1,1,1,2-Tetrachloroethane		0.3154	9.67		
1,1,1-Trichloroethane		0.4229	11.8		
1,1,2-Trichloroethane		0.2215	4.59		
1,1-Dichloropropene		0.3619	12.1		
1,2,3-Trichlorobenzene		0.9424	10.1		
1,2,3-Trichloropropane		0.1377	6.58		
1,2,4-Trichlorobenzene		1.090	10.2		
1,2,4-Trimethylbenzene		2.791	7.95		
1,2-Dibromo-3-Chloropropane		0.08567	16.9		1.00
1,2-Dibromoethane		0.2102	9.52		
1,2-Dichlorobenzene		1.353	4.23		
1,2-Dichloroethane		0.3534	4.13		
1,3,5-Trimethylbenzene		2.592	11.9		
1,3-Dichlorobenzene		1.513	5.18		
1,3-Dichloropropane		0.4123	3.67		
1,4-Dichlorobenzene		1.558	6.87		
2,2-Dichloropropane		0.3876	14.2		
2-Butanone		0.07142	9.33		
2-Chloroethyl Vinyl Ether		0.08980	13.0		
2-Chlorotoluene		2.373	4.66		
2-Hexanone		0.1317	10.0		
4-Chlorotoluene		2.443	11.2		
4-Methyl-2-Pentanone		0.05564	12.7		
Acetone		0.05118	14.6		
Benzene		1.061	4.32		
Bromobenzene		0.7001	4.59		
Bromochloromethane		0.1376	6.04		
Bromodichloromethane		0.3248	11.3		
Bromomethane		0.1345	16.3		1.00
Carbon Disulfide		0.6697	17.8		1.00
Carbon Tetrachloride		0.3646	14.6		
Chloroethane		0.1765	6.04		
Dibromochloromethane		0.2603	16.1	1.00	
Dibromomethane		0.1178	8.69		

KEMRON FORMS - Modified 01/18/2007 Version 1.5 PDF File ID:1030017 Report generated 02/28/2008 16:27 Login Number:L08020524
Analytical Method:8260B
ICAL Workgroup:WG262907

Instrument ID:HPMS14
Initial Calibration Date:11-FEB-08 22:54
Column ID:F

Analyte	AVG RF	% RSD	LINEAR (R)	QUAD(R2)
Dichlorodifluoromethane	0.2993	7.27		
Hexachlorobutadiene	0.4814	7.88		
Isopropylbenzene	1.556	12.1		
Methylene Chloride	0.2852	20.4		1.00
Naphthalene	1.883	7.12		
Styrene	0.9719	13.1		
Tetrachloroethene	0.3372	11.6		
Trichloroethene	0.2527	11.6		
Trichlorofluoromethane	0.4375	13.6		
Vinyl Acetate	0.2641	14.4		
cis-1,2-Dichloroethene	0.2695	7.05		
cis-1,3-Dichloropropene	0.3635	13.0		
m-,p-Xylene	0.6271	10.4		
n-Butylbenzene	2.805	11.5		
n-Propylbenzene	3.648	13.2		
o-Xylene	0.6094	9.84		
p-Isopropyltoluene	2.798	13.0		
sec-Butylbenzene	3.313	13.0		
tert-Butylbenzene	0.5381	11.2		
trans-1,2-Dichloroethene	0.2481	10.5		
trans-1,3-Dichloropropene	0.4152	12.8		

R = Correlation coefficient; 0.995 minimum

 $R^2$  = Coefficient of determination; 0.99 minimum

## Instrument ID:HPMS14 Initial Calibration Date:11-FEB-08 22:54

Column ID:F

		WG262907-0	2		WG262907-0	3		WG262907-0	4
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	NA	NA	NA	NA	NA	NA	1.00	4809.00000	0.3299
1,2-Dichloropropane	NA	NA	NA	0.400	1450.00000	0.2447	1.00	3639.00000	0.2497
Chloroform	0.300	2378.00000	0.5245	0.400	2531.00000	0.4271	1.00	6378.00000	0.4376
Ethylbenzene	NA	NA	NA	0.400	1974.00000	0.4772	1.00	5014.00000	0.4910
Toluene	NA	NA	NA	0.400	5556.00000	1.343	1.00	13872.0000	1.358
Vinyl Chloride	NA	NA	NA	0.400	900.000000	0.1519	1.00	2402.00000	0.1648
1,1,2,2-Tetrachloroethane	NA	NA	NA	0.400	797.000000	0.3812	1.00	2179.00000	0.4132
1,1-Dichloroethane	NA	NA	NA	0.400	2763.00000	0.4662	1.00	7056.00000	0.4841
Bromoform	NA	NA	NA	NA	NA	NA	1.00	1002.00000	0.09810
Chlorobenzene	NA	NA	NA	0.400	4258.00000	1.029	1.00	9980.00000	0.9773
Chloromethane	NA	NA	NA	NA	NA	NA	1.00	2396.00000	0.1644
1,1,1,2-Tetrachloroethane	NA	NA	NA	0.400	1168.00000	0.2824	1.00	3059.00000	0.2996
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	1.00	5069.00000	0.3478
1,1,2-Trichloroethane	NA	NA	NA	0.400	840.000000	0.2031	1.00	2308.00000	0.2260
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA	1.00	4375.00000	0.3001
1,2,3-Trichlorobenzene	NA	NA	NA	0.400	2360.00000	1.129	1.00	5075.00000	0.9623
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA	1.00	630.000000	0.1195
1,2,4-Trichlorobenzene	NA	NA	NA	0.400	2713.00000	1.298	1.00	6102.00000	1.157
1,2,4-Trimethylbenzene	NA	NA	NA	0.400	5373.00000	2.570	1.00	13808.0000	2.618
1,2-Dibromo-3-Chloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	NA	NA	NA	0.400	701.000000	0.1695	1.00	2109.00000	0.2065
1,2-Dichlorobenzene	NA	NA	NA	0.400	3000.00000	1.435	1.00	6987.00000	1.325
1,2-Dichloroethane	NA	NA	NA	0.400	2017.00000	0.3403	1.00	5047.00000	0.3463
1,3,5-Trimethylbenzene	NA	NA	NA	0.400	4525.00000	2.164	1.00	12005.0000	2.277
1,3-Dichlorobenzene	NA	NA	NA	0.400	3385.00000	1.619	1.00	7842.00000	1.487
1,3-Dichloropropane	NA	NA	NA	0.400	1632.00000	0.3946	1.00	4174.00000	0.4087
1,4-Dichlorobenzene	NA	NA	NA	0.400	3652.00000	1.747	1.00	8467.00000	1.606
2,2-Dichloropropane	NA	NA	NA	0.400	1739.00000	0.2934	1.00	5065.00000	0.3475
2-Butanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloroethyl Vinyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chlorotoluene	NA	NA	NA	0.400	4757.00000	2.275	1.00	12080.0000	2.291
2-Hexanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorotoluene	NA	NA	NA	0.400	5123.00000	2.450	1.00	12527.0000	2.375
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	NA	NA	NA	0.400	6423.00000	1.084	1.00	15534.0000	1.066
Bromobenzene	NA	NA	NA	0.400	1423.00000	0.6805	1.00	3684.00000	0.6986
Bromochloromethane	NA	NA	NA	0.400	749.000000	0.1264	1.00	1883.00000	0.1292
Bromodichloromethane	NA	NA	NA	0.400	1586.00000	0.2676	1.00	4246.00000	0.2913
Bromomethane	NA	NA	NA	NA	NA	NA	1.00	1633.00000	0.1120
Carbon Disulfide	NA	NA	NA	NA	NA	NA	1.00	7848.00000	0.5384
Carbon Tetrachloride	NA	NA	NA	NA	NA	NA	1.00	4182.00000	0.2869

## Instrument ID:HPMS14 Initial Calibration Date:11-FEB-08 22:54 Column ID:F

AnalyteCONCRESPRFCONCRESPRFCONCRESPRFCONCRESPRF1,1-Dichloroethene2.009354.00000.32385.0029512.00000.411720.0128362.0000.4331,2-Dichloropropane2.007547.00000.26125.0020217.00000.282020.082707.00000.282Chloroform2.0013261.00000.45905.0036535.00000.509720.0148252.0000.50Ethylbenzene2.009888.000000.48575.0028936.00000.563020.0120555.0000.57Toluene2.0028574.00001.4035.0079917.00001.55520.0332159.0001.57Vinyl Chloride2.003372.000000.11675.009700.000000.135320.038465.00000.131,1,2,2-Tetrachloroethane2.004411.000000.41985.0012035.00000.456420.049931.00000.4561,1-Dichloroethane2.0013898.00000.48105.0038739.00000.540420.0161570.0000.55Bromoform2.002178.00000.10705.006870.000000.133720.030686.00000.14Chloromethane2.004727.000000.16365.0012073.00000.168420.053760.00000.341,1,1-Trichloroethane2.006445.000000.31665.0017473.00000.441020.0135370.	i	WG262907-0		5	WG262907-0		
1,2-Dichloropropane       2.00       7547.00000       0.2612       5.00       20217.0000       0.2820       20.0       82707.0000       0.28.0         Chloroform       2.00       13261.0000       0.4590       5.00       36535.0000       0.5097       20.0       148252.000       0.50         Ethylbenzene       2.00       9888.00000       0.4857       5.00       28936.0000       0.5630       20.0       120555.000       0.57         Toluene       2.00       28574.0000       1.403       5.00       79917.0000       1.555       20.0       332159.000       1.57         Vinyl Chloride       2.00       3372.00000       0.1167       5.00       9700.0000       0.1353       20.0       38465.0000       0.13         1,1,2,2-Tetrachloroethane       2.00       4411.00000       0.4198       5.00       12035.0000       0.4564       20.0       49931.0000       0.45         1,1-Dichloroethane       2.00       13898.0000       0.4810       5.00       38739.0000       0.5404       20.0       161570.000       0.55         Bromoform       2.00       2178.0000       0.1070       5.00       6870.0000       0.1337       20.0       30686.0000       0.14         Chlorome	RF CO	RESP	CONC	RF	RESP	CONC	Analyte
Chloroform         2.00         13261.0000         0.4590         5.00         36535.0000         0.5097         20.0         148252.000         0.500           Ethylbenzene         2.00         9888.00000         0.4857         5.00         28936.0000         0.5630         20.0         120555.000         0.57           Toluene         2.00         28574.0000         1.403         5.00         79917.0000         1.555         20.0         332159.000         1.57           Vinyl Chloride         2.00         3372.00000         0.1167         5.00         9700.00000         0.1353         20.0         38465.0000         0.13           1,1,2,2-Tetrachloroethane         2.00         4411.00000         0.4198         5.00         12035.0000         0.4564         20.0         49931.0000         0.45           1,1-Dichloroethane         2.00         13898.0000         0.4810         5.00         38739.0000         0.5404         20.0         161570.000         0.55           Bromoform         2.00         2178.00000         0.1070         5.00         6870.00000         0.1337         20.0         30686.0000         0.14           Chloromethane         2.00         4727.00000         0.1636         5.00         120	0.4117 20	29512.0000	5.00	0.3238	9354.00000	2.00	1,1-Dichloroethene
Ethylbenzene         2.00         9888.00000         0.4857         5.00         28936.0000         0.5630         20.0         120555.000         0.57           Toluene         2.00         28574.0000         1.403         5.00         79917.0000         1.555         20.0         332159.000         1.57           Vinyl Chloride         2.00         3372.00000         0.1167         5.00         9700.00000         0.1353         20.0         38465.0000         0.13           1,1,2,2-Tetrachloroethane         2.00         4411.00000         0.4198         5.00         12035.0000         0.4564         20.0         49931.0000         0.45           1,1-Dichloroethane         2.00         13898.0000         0.4810         5.00         38739.0000         0.5404         20.0         161570.000         0.55           Bromoform         2.00         2178.00000         0.1070         5.00         6870.00000         0.1337         20.0         30686.0000         0.14           Chlorobenzene         2.00         19167.0000         0.9414         5.00         52857.0000         1.029         20.0         212121.000         1.00           Chloromethane         2.00         4727.00000         0.1636         5.00         12	0.2820 20	20217.0000	5.00	0.2612	7547.00000	2.00	1,2-Dichloropropane
Toluene 2.00 28574.0000 1.403 5.00 79917.0000 1.555 20.0 332159.000 1.57  Vinyl Chloride 2.00 3372.00000 0.1167 5.00 9700.00000 0.1353 20.0 38465.0000 0.13  1,1,2,2-Tetrachloroethane 2.00 4411.00000 0.4198 5.00 12035.0000 0.4564 20.0 49931.0000 0.45  1,1-Dichloroethane 2.00 13898.0000 0.4810 5.00 38739.0000 0.5404 20.0 161570.000 0.55  Bromoform 2.00 2178.00000 0.1070 5.00 6870.00000 0.1337 20.0 30686.0000 0.14  Chlorobenzene 2.00 19167.0000 0.9414 5.00 52857.0000 1.029 20.0 212121.000 1.00  Chloromethane 2.00 4727.00000 0.1636 5.00 12073.0000 0.1684 20.0 53760.0000 0.18  1,1,1,2-Tetrachloroethane 2.00 6445.00000 0.3166 5.00 17473.0000 0.3400 20.0 73625.0000 0.34	0.5097 20	36535.0000	5.00	0.4590	13261.0000	2.00	Chloroform
Vinyl Chloride         2.00         3372.00000         0.1167         5.00         9700.00000         0.1353         20.0         38465.0000         0.13           1,1,2,2-Tetrachloroethane         2.00         4411.00000         0.4198         5.00         12035.0000         0.4564         20.0         49931.0000         0.45           1,1-Dichloroethane         2.00         13898.0000         0.4810         5.00         38739.0000         0.5404         20.0         161570.000         0.55           Bromoform         2.00         2178.00000         0.1070         5.00         6870.00000         0.1337         20.0         30686.0000         0.14           Chlorobenzene         2.00         19167.0000         0.9414         5.00         52857.0000         1.029         20.0         212121.000         1.00           Chloromethane         2.00         4727.00000         0.1636         5.00         12073.0000         0.1684         20.0         53760.0000         0.34           1,1,1,2-Tetrachloroethane         2.00         6445.00000         0.3166         5.00         17473.0000         0.3400         20.0         73625.0000         0.34	0.5630 20	28936.0000	5.00	0.4857	9888.00000	2.00	Ethylbenzene
1,1,2,2-Tetrachloroethane       2.00       4411.00000       0.4198       5.00       12035.0000       0.4564       20.0       49931.0000       0.4564         1,1-Dichloroethane       2.00       13898.0000       0.4810       5.00       38739.0000       0.5404       20.0       161570.000       0.55         Bromoform       2.00       2178.00000       0.1070       5.00       6870.00000       0.1337       20.0       30686.0000       0.14         Chlorobenzene       2.00       19167.0000       0.9414       5.00       52857.0000       1.029       20.0       212121.000       1.00         Chloromethane       2.00       4727.00000       0.1636       5.00       12073.0000       0.1684       20.0       53760.0000       0.18         1,1,1,2-Tetrachloroethane       2.00       6445.00000       0.3166       5.00       17473.0000       0.3400       20.0       73625.0000       0.34	1.555 20	79917.0000	5.00	1.403	28574.0000	2.00	Toluene
1,1-Dichloroethane       2.00       13898.0000       0.4810       5.00       38739.0000       0.5404       20.0       161570.000       0.55         Bromoform       2.00       2178.00000       0.1070       5.00       6870.00000       0.1337       20.0       30686.0000       0.14         Chlorobenzene       2.00       19167.0000       0.9414       5.00       52857.0000       1.029       20.0       212121.000       1.00         Chloromethane       2.00       4727.00000       0.1636       5.00       12073.0000       0.1684       20.0       53760.0000       0.18         1,1,1,2-Tetrachloroethane       2.00       6445.00000       0.3166       5.00       17473.0000       0.3400       20.0       73625.0000       0.34	0.1353 20	9700.00000	5.00	0.1167	3372.00000	2.00	Vinyl Chloride
Bromoform         2.00         2178.00000         0.1070         5.00         6870.00000         0.1337         20.0         30686.0000         0.14           Chlorobenzene         2.00         19167.0000         0.9414         5.00         52857.0000         1.029         20.0         212121.000         1.00           Chloromethane         2.00         4727.00000         0.1636         5.00         12073.0000         0.1684         20.0         53760.0000         0.18           1,1,1,2-Tetrachloroethane         2.00         6445.00000         0.3166         5.00         17473.0000         0.3400         20.0         73625.0000         0.34	0.4564 20	12035.0000	5.00	0.4198	4411.00000	2.00	1,1,2,2-Tetrachloroethane
Chlorobenzene         2.00         19167.0000         0.9414         5.00         52857.0000         1.029         20.0         212121.000         1.00           Chloromethane         2.00         4727.00000         0.1636         5.00         12073.0000         0.1684         20.0         53760.0000         0.18           1,1,1,2-Tetrachloroethane         2.00         6445.00000         0.3166         5.00         17473.0000         0.3400         20.0         73625.0000         0.34	0.5404 20	38739.0000	5.00	0.4810	13898.0000	2.00	1,1-Dichloroethane
Chloromethane         2.00         4727.00000         0.1636         5.00         12073.0000         0.1684         20.0         53760.0000         0.18           1,1,1,2-Tetrachloroethane         2.00         6445.00000         0.3166         5.00         17473.0000         0.3400         20.0         73625.0000         0.34	0.1337 20	6870.00000	5.00	0.1070	2178.00000	2.00	Bromoform
1,1,1,2-Tetrachloroethane 2.00 6445.00000 0.3166 5.00 17473.0000 0.3400 20.0 73625.0000 0.34	1.029 20	52857.0000	5.00	0.9414	19167.0000	2.00	Chlorobenzene
	0.1684 20	12073.0000	5.00	0.1636	4727.00000	2.00	Chloromethane
1,1,1-Trichloroethane 2.00 10269.0000 0.3554 5.00 31613.0000 0.4410 20.0 135370.000 0.46	0.3400 20	17473.0000	5.00	0.3166	6445.00000	2.00	1,1,1,2-Tetrachloroethane
	0.4410 20	31613.0000	5.00	0.3554	10269.0000	2.00	1,1,1-Trichloroethane
1,1,2-Trichloroethane 2.00 4382.00000 0.2152 5.00 11954.0000 0.2326 20.0 47184.0000 0.22	0.2326 20	11954.0000	5.00	0.2152	4382.00000	2.00	1,1,2-Trichloroethane
1,1-Dichloropropene 2.00 8728.00000 0.3021 5.00 27068.0000 0.3776 20.0 118643.000 0.40	0.3776 20	27068.0000	5.00	0.3021	8728.00000	2.00	1,1-Dichloropropene
1,2,3-Trichlorobenzene 2.00 9951.00000 0.9470 5.00 25758.0000 0.9769 20.0 103462.000 0.94	0.9769 20	25758.0000	5.00	0.9470	9951.00000	2.00	1,2,3-Trichlorobenzene
1,2,3-Trichloropropane 2.00 1401.00000 0.1333 5.00 3741.00000 0.1419 20.0 15335.0000 0.14	0.1419 20	3741.00000	5.00	0.1333	1401.00000	2.00	1,2,3-Trichloropropane
1,2,4-Trichlorobenzene 2.00 11014.0000 1.048 5.00 29425.0000 1.116 20.0 121377.000 1.10	1.116 20	29425.0000	5.00	1.048	11014.0000	2.00	1,2,4-Trichlorobenzene
1,2,4-Trimethylbenzene 2.00 28067.0000 2.671 5.00 80542.0000 3.055 20.0 334246.000 3.05	3.055 20	80542.0000	5.00	2.671	28067.0000	2.00	1,2,4-Trimethylbenzene
1,2-Dibromo-3-Chloropropane 2.00 652.000000 0.06200 5.00 2041.00000 0.07740 20.0 9070.00000 0.082	0.07740 20	2041.00000	5.00	0.06200	652.000000	2.00	1,2-Dibromo-3-Chloropropane
1,2-Dibromoethane 2.00 3978.00000 0.1954 5.00 11149.0000 0.2169 20.0 45953.0000 0.21	0.2169 20	11149.0000	5.00	0.1954	3978.00000	2.00	1,2-Dibromoethane
1,2-Dichlorobenzene 2.00 13839.0000 1.317 5.00 36418.0000 1.381 20.0 151265.000 1.38	1.381 20	36418.0000	5.00	1.317	13839.0000	2.00	1,2-Dichlorobenzene
1,2-Dichloroethane 2.00 10056.0000 0.3481 5.00 27103.0000 0.3781 20.0 105786.000 0.36	0.3781 20	27103.0000	5.00	0.3481	10056.0000	2.00	1,2-Dichloroethane
1,3,5-Trimethylbenzene 2.00 25244.0000 2.402 5.00 75490.0000 2.863 20.0 326364.000 2.98	2.863 20	75490.0000	5.00	2.402	25244.0000	2.00	1,3,5-Trimethylbenzene
1,3-Dichlorobenzene 2.00 15171.0000 1.444 5.00 41261.0000 1.565 20.0 171427.000 1.56	1.565 20	41261.0000	5.00	1.444	15171.0000	2.00	1,3-Dichlorobenzene
1,3-Dichloropropane 2.00 8106.00000 0.3981 5.00 21961.0000 0.4273 20.0 88467.0000 0.41	0.4273 20	21961.0000	5.00	0.3981	8106.00000	2.00	1,3-Dichloropropane
1,4-Dichlorobenzene 2.00 15960.0000 1.519 5.00 42205.0000 1.601 20.0 172123.000 1.57	1.601 20	42205.0000	5.00	1.519	15960.0000	2.00	1,4-Dichlorobenzene
2,2-Dichloropropane 2.00 9616.00000 0.3328 5.00 29452.0000 0.4109 20.0 128220.000 0.43	0.4109 20	29452.0000	5.00	0.3328	9616.00000	2.00	2,2-Dichloropropane
2-Butanone NA NA NA 5.00 5959.00000 0.08310 20.0 20477.0000 0.070	0.08310 20	5959.00000	5.00	NA	NA	NA	2-Butanone
2-Chloroethyl Vinyl Ether NA NA 5.00 5055.00000 0.07050 20.0 24490.0000 0.083	0.07050 20	5055.00000	5.00	NA	NA	NA	2-Chloroethyl Vinyl Ether
2-Chlorotoluene 2.00 23873.0000 2.272 5.00 67113.0000 2.545 20.0 275238.000 2.51	2.545 20	67113.0000	5.00	2.272	23873.0000	2.00	2-Chlorotoluene
2-Hexanone 2.00 2212.00000 0.1086 5.00 6269.00000 0.1220 20.0 27050.0000 0.122	0.1220 20	6269.00000	5.00	0.1086	2212.00000	2.00	2-Hexanone
4-Chlorotoluene 2.00 25631.0000 2.439 5.00 71053.0000 2.695 20.0 293527.000 2.68	2.695 20	71053.0000	5.00	2.439	25631.0000	2.00	4-Chlorotoluene
4-Methyl-2-Pentanone 2.00 1285.00000 0.04450 5.00 3564.00000 0.04970 20.0 15712.0000 0.053	0.04970 20	3564.00000	5.00	0.04450	1285.00000	2.00	4-Methyl-2-Pentanone
Acetone NA NA NA 5.00 4611.00000 0.06430 20.0 13680.0000 0.046	0.06430 20	4611.00000	5.00	NA	NA	NA	Acetone
Benzene 2.00 29487.0000 1.021 5.00 79481.0000 1.109 20.0 323440.000 1.10	1.109 20	79481.0000	5.00	1.021	29487.0000	2.00	Benzene
Bromobenzene 2.00 7236.00000 0.6886 5.00 19657.0000 0.7455 20.0 80408.0000 0.73			5.00		7236.00000	2.00	Bromobenzene
Bromochloromethane 2.00 3725.00000 0.1289 5.00 10328.0000 0.1441 20.0 42410.0000 0.14	0.1441 20	10328.0000	5.00	0.1289	3725.00000	2.00	Bromochloromethane
Bromodichloromethane 2.00 8318.00000 0.2879 5.00 24195.0000 0.3375 20.0 101750.000 0.34		24195.0000	5.00	0.2879	8318.00000	2.00	Bromodichloromethane
Bromomethane 2.00 3046.00000 0.1054 5.00 8481.00000 0.1183 20.0 41602.0000 0.14		8481.00000	5.00	0.1054	3046.00000	2.00	Bromomethane
Carbon Disulfide 2.00 13477.0000 0.4665 5.00 48738.0000 0.6799 20.0 221991.000 0.75		48738.0000			13477.0000		
Carbon Tetrachloride 2.00 8380.00000 0.2900 5.00 27273.0000 0.3805 20.0 119617.000 0.40	0.3805 20	27273.0000	5.00	0.2900	8380.00000	2.00	Carbon Tetrachloride

## Instrument ID:HPMS14 Initial Calibration Date:11-FEB-08 22:54 Column ID:F

CONC   RESP   RF   CONC   RESP   RF   CONC   RESP   RF   CONC   RESP   RF   L1,1-Dichloroethene   50.0   314916.000   0.4356   100   608178.000   0.4182   200   1192499.00   0.406   1,2-Dichloropropane   50.0   208066.000   0.2878   100   399821.000   0.2749   200   781926.000   0.266   Chloroform   50.0   367170.000   0.5079   100   712703.000   0.4900   200   1399215.00   0.477   Ethylbenzene   50.0   293335.000   0.5508   100   550451.000   0.5071   200   939058.000   0.405   Chloroform   50.0   810948.000   1.523   100   1573720.00   1.450   200   2984598.00   1.281   Vinyl chloride   50.0   90430.0000   0.1251   100   155641.000   0.1070   NA   NA   NA   1,1,2,2-Tetrachloroethane   50.0   397542.000   0.4667   100   283596.000   0.4667   200   614258.000   0.477   1,1-Dichloroethane   50.0   397542.000   0.5499   100   775783.000   0.5334   200   1525360.00   0.520   Bromoform   50.0   90313.0000   0.1696   100   182568.000   0.1682   200   403518.000   0.174   Chloromethane   50.0   518957.000   0.9745   100   979451.000   0.9023   200   1752466.00   0.756   Chloromethane   50.0   144212.000   0.1995   100   341933.000   0.2351   200   826901.000   0.226   1,1,1,2-Tetrachloroethane   50.0   185413.000   0.3482   100   346969.000   0.3196   200   619250.000   0.267   1,1,1-Trichloroethane   50.0   288598.000   0.3482   100   346969.000   0.3864   200   1279997.00   0.436   1,2,3-Trichlorobenzene   50.0   288598.000   0.3992   100   559389.000   0.3866   200   1279997.00   0.436   1,2,3-Trichlorobenzene   50.0   287047.000   0.9201   100   518149.000   0.8581   200   128654.000   0.868   1,2,3-Trichlorobenzene   50.0   287047.000   0.9201   100   518149.000   0.3865   200   128241.000   0.991   1,2,4-Trimethylbenzene   50.0   37594.000   0.3466   100   61002.000   0.1389   200   186563.000   0.144   1,2,4-Trimethylbenzene   50.0   287047.000   0.9201   100   518149.000   0.3460   200   128241.000   0.999   1,2-Dibromo-3-chloropropane   50.0   287047.000   0.9301   100   57149.000   0.3460   200   128241.0
1,2-Dichloropropane
Chloroform
Ethylbenzene         50.0         293335.000         0.5508         100         550451.000         0.5071         200         93958.000         0.405           Toluene         50.0         810948.000         1.523         100         1573720.00         1.450         200         2984598.00         1.280           Vinyl Chloride         50.0         90430.0000         0.1251         100         155641.000         0.1070         NA         NA         NA           1,1,2,2-Tetrachloroethane         50.0         143200.000         0.4867         100         283596.000         0.4697         200         614258.000         0.477           1,1-Dichloroethane         50.0         397542.000         0.5499         100         775783.000         0.5334         200         152560.00         0.529           Bromoform         50.0         9313.0000         0.5499         100         775783.000         0.5334         200         152560.00         0.520           Chloromethane         50.0         518957.000         0.9745         100         979451.000         0.9023         200         1752466.00         0.756           Chloromethane         50.0         144212.000         0.1995         100         341933.000         <
Toluene 50.0 810948.000 1.523 100 1573720.00 1.450 200 2984598.00 1.281 Vinyl Chloride 50.0 90430.0000 0.1251 100 155641.000 0.1070 NA NA NA  1,1,2,2-Tetrachloroethane 50.0 143200.000 0.4867 100 283596.000 0.4697 200 614258.000 0.477  1,1-Dichloroethane 50.0 397542.000 0.5499 100 775783.000 0.5334 200 1525360.00 0.520  Bromoform 50.0 90313.0000 0.1696 100 182568.000 0.1682 200 403518.000 0.174  Chlorobenzene 50.0 518957.000 0.9745 100 979451.000 0.9023 200 1752466.00 0.756  Chloromethane 50.0 144212.000 0.1995 100 341933.000 0.2351 200 826901.000 0.282  1,1,1-Trichloroethane 50.0 185413.000 0.3482 100 346969.000 0.3196 200 619250.000 0.267  1,1,1-Trichloroethane 50.0 335814.000 0.4645 100 657416.000 0.4520 200 1279997.00 0.436  1,1,2-Trichloropropene 50.0 288598.000 0.3992 100 559389.000 0.3846 200 1066554.00 0.363  1,2,3-Trichlorobenzene 50.0 43089.0000 0.1464 100 83899.0000 0.1389 200 185063.000 0.144  1,2,4-Trichlorobenzene 50.0 31541.000 1.066 100 610002.000 1.010 200 1881430.00 0.914  1,2,4-Trimethylbenzene 50.0 877339.000 2.982 100 173923.00 2.855 200 324210.00 0.991  1,2,2-Dibromo-3-Chloropropane 50.0 88615.000 0.2982 100 173923.00 2.855 200 324210.00 0.991  1,2,2-Dibromo-5-Chloropropane 50.0 877339.000 2.982 100 173923.00 2.855 200 324210.00 0.991  1,2,2-Dibromo-5-Chloropropane 50.0 408615.000 1.389 100 812279.000 1.345 200 108514.000 0.9946  1,2-Dibromo-5-Chloropropane 50.0 408615.000 1.389 100 812279.000 1.345 200 160314.00 1.247  1,2-Dibromo-5-Chloropropane 50.0 408615.000 1.389 100 812279.000 1.345 200 160314.00 1.247  1,2-Dibromoethane 50.0 408615.000 1.389 100 812279.000 1.345 200 998374.000 0.340  1,3,5-Trimethylbenzene 50.0 408615.000 1.389 100 812279.000 1.3423 200 998374.000 0.340  1,3,5-Trimethylbenzene 50.0 454474.000 1.545 100 907880.000 1.504 200 1763970.00 1.337
Vinyl Chloride         50.0         90430.0000         0.1251         100         155641.000         0.1070         NA         NA         NA           1,1,2,2-Tetrachloroethane         50.0         143200.000         0.4867         100         283596.000         0.4697         200         614258.000         0.477           1,1-Dichloroethane         50.0         397542.000         0.5499         100         775783.000         0.5334         200         1525360.00         0.520           Bromoform         50.0         90313.0000         0.1696         100         182568.000         0.1682         200         403518.000         0.174           Chloromethane         50.0         144212.000         0.1995         100         341933.000         0.2331         200         826901.000         0.282           1,1,1-Z-Tetrachloroethane         50.0         185413.000         0.3482         100         346969.000         0.3196         200         619250.000         0.262           1,1,1-Trichloroethane         50.0         124872.000         0.2345         100         349699.000         0.3452         200         1279997.00         0.436           1,1-Dichloroptopene         50.0         288598.000         0.3922         100
1,1,2,2-Tetrachloroethane
1,1-Dichloroethane
Bromoform
Chlorobenzene 50.0 518957.000 0.9745 100 979451.000 0.9023 200 1752466.00 0.756 Chloromethane 50.0 144212.000 0.1995 100 341933.000 0.2351 200 826901.000 0.282 1,1,1,2-Tetrachloroethane 50.0 185413.000 0.3482 100 346969.000 0.3196 200 619250.000 0.267 1,1,1-Trichloroethane 50.0 335814.000 0.4645 100 657416.000 0.4520 200 1279997.00 0.436 1,1,2-Trichloroethane 50.0 124872.000 0.2345 100 239108.000 0.2203 200 501862.000 0.216 1,1-Dichloropropene 50.0 288598.000 0.3992 100 559389.000 0.3846 200 1066554.00 0.363 1,2,3-Trichlorobenzene 50.0 270747.000 0.9201 100 518149.000 0.8581 200 1029389.00 0.800 1,2,3-Trichloropropane 50.0 43089.0000 0.1464 100 83899.0000 0.1389 200 185063.000 0.144 1,2,4-Trichlorobenzene 50.0 313541.000 1.066 100 610002.000 1.010 200 1181430.00 0.919 1,2,4-Trimethylbenzene 50.0 877339.000 2.982 100 1723923.00 2.855 200 3242101.00 2.522 1,2-Dibromo-3-Chloropropane 50.0 28624.0000 0.09730 100 57149.0000 0.09460 200 128241.000 0.0998 1,2-Dibromoethane 50.0 124916.000 0.2346 100 239119.000 0.2203 200 511552.000 0.220 1,2-Dichlorobenzene 50.0 408615.000 1.389 100 812279.000 1.345 200 1603114.00 1.247 1,2-Dichlorobenzene 50.0 408615.000 1.389 100 812279.000 1.345 200 998374.000 0.340 1,3,5-Trimethylbenzene 50.0 840465.000 2.856 100 1661417.00 2.752 200 3138105.00 2.442 1,3-Dichlorobenzene 50.0 454474.000 1.545 100 907880.000 1.504 200 1763970.00 1.375
Chloromethane 50.0 144212.000 0.1995 100 341933.000 0.2351 200 826901.000 0.282   1,1,1,2-Tetrachloroethane 50.0 185413.000 0.3482 100 346969.000 0.3196 200 619250.000 0.267   1,1,1-Trichloroethane 50.0 335814.000 0.4645 100 657416.000 0.4520 200 1279997.00 0.436   1,1,2-Trichloroethane 50.0 124872.000 0.2345 100 239108.000 0.2203 200 501862.000 0.216   1,1-Dichloropropene 50.0 288598.000 0.3992 100 559389.000 0.3846 200 1066554.00 0.363   1,2,3-Trichlorobenzene 50.0 270747.000 0.9201 100 518149.000 0.8581 200 1029389.00 0.800   1,2,3-Trichloropropane 50.0 43089.0000 0.1464 100 83899.0000 0.1389 200 185063.000 0.144   1,2,4-Trichlorobenzene 50.0 313541.000 1.066 100 610002.000 1.010 200 1181430.00 0.919   1,2,4-Trimethylbenzene 50.0 877339.000 2.982 100 1723923.00 2.855 200 3242101.00 2.522   1,2-Dibromo-3-Chloropropane 50.0 28624.0000 0.09730 100 57149.0000 0.09460 200 128241.000 0.0998   1,2-Dichlorobenzene 50.0 408615.000 1.389 100 812279.000 1.345 200 1603114.00 1.247   1,2-Dichlorobenzene 50.0 267459.000 0.3700 100 497921.000 0.3423 200 998374.000 0.340   1,3,5-Trimethylbenzene 50.0 840465.000 2.856 100 1661417.00 2.752 200 3138105.00 2.442   1,3-Dichlorobenzene 50.0 454474.000 1.545 100 907880.000 1.504 200 1763970.00 1.375
1,1,1,2-Tetrachloroethane       50.0       185413.000       0.3482       100       346969.000       0.3196       200       619250.000       0.267         1,1,1-Trichloroethane       50.0       335814.000       0.4645       100       657416.000       0.4520       200       1279997.00       0.436         1,1,2-Trichloroethane       50.0       124872.000       0.2345       100       239108.000       0.2203       200       501862.000       0.216         1,1-Dichloropropene       50.0       288598.000       0.3992       100       559389.000       0.3846       200       1066554.00       0.363         1,2,3-Trichlorobenzene       50.0       270747.000       0.9201       100       518149.000       0.8581       200       1029389.00       0.800         1,2,3-Trichloropropane       50.0       43089.0000       0.1464       100       83899.0000       0.1389       200       185063.000       0.144         1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       <
1,1,1-Trichloroethane       50.0       335814.000       0.4645       100       657416.000       0.4520       200       1279997.00       0.436         1,1,2-Trichloroethane       50.0       124872.000       0.2345       100       239108.000       0.2203       200       501862.000       0.216         1,1-Dichloropropene       50.0       288598.000       0.3992       100       559389.000       0.3846       200       1066554.00       0.363         1,2,3-Trichlorobenzene       50.0       270747.000       0.9201       100       518149.000       0.8581       200       1029389.00       0.800         1,2,3-Trichloropropane       50.0       43089.0000       0.1464       100       83899.0000       0.1389       200       185063.000       0.144         1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.522         1,2-Dibromo-3-Chloropropane       50.0       28624.000       0.09730       100       57149.000       0.09460       200       128241.000
1,1,2-Trichloroethane       50.0       124872.000       0.2345       100       239108.000       0.2203       200       501862.000       0.216         1,1-Dichloropropene       50.0       288598.000       0.3992       100       559389.000       0.3846       200       1066554.00       0.363         1,2,3-Trichlorobenzene       50.0       270747.000       0.9201       100       518149.000       0.8581       200       1029389.00       0.800         1,2,3-Trichloropropane       50.0       43089.0000       0.1464       100       83899.0000       0.1389       200       185063.000       0.144         1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.522         1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00 <t< td=""></t<>
1,1-Dichloropropene       50.0       288598.000       0.3992       100       559389.000       0.3846       200       1066554.00       0.363         1,2,3-Trichlorobenzene       50.0       270747.000       0.9201       100       518149.000       0.8581       200       1029389.00       0.800         1,2,3-Trichloropropane       50.0       43089.0000       0.1464       100       83899.0000       0.1389       200       185063.000       0.144         1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.522         1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00
1,2,3-Trichlorobenzene       50.0       270747.000       0.9201       100       518149.000       0.8581       200       1029389.00       0.800         1,2,3-Trichloropropane       50.0       43089.000       0.1464       100       83899.000       0.1389       200       185063.000       0.144         1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.523         1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.24°         1,3-Dichlorobenzene       50.0       840465.000       2.856       100       1661417.00       2.752       200       3138105.00       2.44
1,2,3-Trichloropropane       50.0       43089.0000       0.1464       100       83899.0000       0.1389       200       185063.000       0.144         1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.522         1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.247         1,2-Dichloroethane       50.0       267459.000       0.3700       100       497921.000       0.3423       200       998374.000       0.340         1,3,5-Trimethylbenzene       50.0       454474.000       1.545       100       1661417.00       2.752       200       3138105.00       2.4
1,2,4-Trichlorobenzene       50.0       313541.000       1.066       100       610002.000       1.010       200       1181430.00       0.919         1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.522         1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.24°         1,2-Dichloroethane       50.0       267459.000       0.3700       100       497921.000       0.3423       200       998374.000       0.340         1,3,5-Trimethylbenzene       50.0       454474.000       2.856       100       1661417.00       2.752       200       3138105.00       2.442         1,3-Dichlorobenzene       50.0       454474.000       1.545       100       907880.000       1.504       200       1763970.00       1.372
1,2,4-Trimethylbenzene       50.0       877339.000       2.982       100       1723923.00       2.855       200       3242101.00       2.522         1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.24°         1,2-Dichloroethane       50.0       267459.000       0.3700       100       497921.000       0.3423       200       998374.000       0.340         1,3,5-Trimethylbenzene       50.0       840465.000       2.856       100       1661417.00       2.752       200       3138105.00       2.44°         1,3-Dichlorobenzene       50.0       454474.000       1.545       100       907880.000       1.504       200       1763970.00       1.37°
1,2-Dibromo-3-Chloropropane       50.0       28624.0000       0.09730       100       57149.0000       0.09460       200       128241.000       0.0998         1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.24°         1,2-Dichloroethane       50.0       267459.000       0.3700       100       497921.000       0.3423       200       998374.000       0.340         1,3,5-Trimethylbenzene       50.0       840465.000       2.856       100       1661417.00       2.752       200       3138105.00       2.44°         1,3-Dichlorobenzene       50.0       454474.000       1.545       100       907880.000       1.504       200       1763970.00       1.37°
1,2-Dibromoethane       50.0       124916.000       0.2346       100       239119.000       0.2203       200       511552.000       0.220         1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.24°         1,2-Dichloroethane       50.0       267459.000       0.3700       100       497921.000       0.3423       200       998374.000       0.340         1,3,5-Trimethylbenzene       50.0       840465.000       2.856       100       1661417.00       2.752       200       3138105.00       2.44°         1,3-Dichlorobenzene       50.0       454474.000       1.545       100       907880.000       1.504       200       1763970.00       1.37°
1,2-Dichlorobenzene       50.0       408615.000       1.389       100       812279.000       1.345       200       1603114.00       1.24°         1,2-Dichloroethane       50.0       267459.000       0.3700       100       497921.000       0.3423       200       998374.000       0.340         1,3,5-Trimethylbenzene       50.0       840465.000       2.856       100       1661417.00       2.752       200       3138105.00       2.44°         1,3-Dichlorobenzene       50.0       454474.000       1.545       100       907880.000       1.504       200       1763970.00       1.37°
1,2-Dichloroethane     50.0     267459.000     0.3700     100     497921.000     0.3423     200     998374.000     0.340       1,3,5-Trimethylbenzene     50.0     840465.000     2.856     100     1661417.00     2.752     200     3138105.00     2.442       1,3-Dichlorobenzene     50.0     454474.000     1.545     100     907880.000     1.504     200     1763970.00     1.372
1,3,5-Trimethylbenzene     50.0     840465.000     2.856     100     1661417.00     2.752     200     3138105.00     2.442       1,3-Dichlorobenzene     50.0     454474.000     1.545     100     907880.000     1.504     200     1763970.00     1.372
1,3-Dichlorobenzene 50.0 454474.000 1.545 100 907880.000 1.504 200 1763970.00 1.372
TO 0 02200C 000 0 4270C 000 0 410C 000 0 410C 000 0 000 0 000
1,3-Dichloropropane   50.0   233026.000   0.4376   100   447946.000   0.4126   200   926420.000   0.399
1,4-Dichlorobenzene 50.0 456670.000 1.552 100 906403.000 1.501 200 1759744.00 1.369
2,2-Dichloropropane 50.0 316565.000 0.4379 100 619139.000 0.4257 200 1214901.00 0.414
2-Butanone 50.0 52786.0000 0.07300 100 97817.0000 0.06730 200 209781.000 0.0716
2-Chloroethyl Vinyl Ether 50.0 71626.0000 0.09910 100 139167.000 0.09570 200 299345.000 0.102
2-Chlorotoluene 50.0 702998.000 2.389 100 1380574.00 2.286 200 3100587.00 2.412
2-Hexanone 50.0 77894.0000 0.1463 100 150813.000 0.1389 200 333066.000 0.143
4-Chlorotoluene 50.0 759077.000 2.580 100 1506774.00 2.495 200 2349446.00 1.828
4-Methyl-2-Pentanone 50.0 44930.0000 0.06210 100 85457.0000 0.05880 200 189588.000 0.064
Acetone 50.0 34592.0000 0.04780 100 67883.0000 0.04670 200 147370.000 0.0503
Benzene 50.0 786167.000 1.088 100 1512234.00 1.040 200 2862744.00 0.976
Bromobenzene 50.0 211359.000 0.7183 100 416258.000 0.6894 200 829413.000 0.645
Bromochloromethane 50.0 106934.000 0.1479 100 201825.000 0.1388 200 410701.000 0.140
Bromodichloromethane 50.0 262704.000 0.3634 100 511323.000 0.3516 200 1029287.00 0.351
Bromomethane 50.0 110314.000 0.1526 100 226059.000 0.1554 200 455966.000 0.155
Carbon Disulfide 50.0 555091.000 0.7678 100 1079406.00 0.7421 200 2151367.00 0.734
Carbon Tetrachloride 50.0 296183.000 0.4097 100 569763.000 0.3917 200 1126507.00 0.384

Instrument ID:HPMS14
Initial Calibration Date:11-FEB-08 22:54
Column ID:F

	WG262907-11					
Analyte	CONC	RESP	RF			
1,1-Dichloroethene	NA	NA	NA			
1,2-Dichloropropane	NA	NA	NA			
Chloroform	NA	NA	NA			
Ethylbenzene	NA	NA	NA			
Toluene	NA	NA	NA			
Vinyl Chloride	NA	NA	NA			
1,1,2,2-Tetrachloroethane	NA	NA	NA			
1,1-Dichloroethane	NA	NA	NA			
Bromoform	NA	NA	NA			
Chlorobenzene	NA	NA	NA			
Chloromethane	NA	NA	NA			
1,1,1,2-Tetrachloroethane	NA	NA	NA			
1,1,1-Trichloroethane	NA	NA	NA			
1,1,2-Trichloroethane	NA	NA	NA			
1,1-Dichloropropene	NA	NA	NA			
1,2,3-Trichlorobenzene	NA	NA	NA			
1,2,3-Trichloropropane	NA	NA	NA			
1,2,4-Trichlorobenzene	NA	NA	NA			
1,2,4-Trimethylbenzene	NA	NA	NA			
1,2-Dibromo-3-Chloropropane	NA	NA	NA			
1,2-Dibromoethane	NA	NA	NA			
1,2-Dichlorobenzene	NA	NA	NA			
1,2-Dichloroethane	NA	NA	NA			
1,3,5-Trimethylbenzene	NA	NA	NA			
1,3-Dichlorobenzene	NA	NA	NA			
1,3-Dichloropropane	NA	NA	NA			
1,4-Dichlorobenzene	NA	NA	NA			
2,2-Dichloropropane	NA	NA	NA			
2-Butanone	300	283421.000	0.06350			
2-Chloroethyl Vinyl Ether	300	391301.000	0.08770			
2-Chlorotoluene	NA	NA	NA			
2-Hexanone	300	437212.000	0.1339			
4-Chlorotoluene	NA	NA	NA			
4-Methyl-2-Pentanone	300	250026.000	0.05600			
Acetone	NA	NA	NA			
Benzene	NA	NA	NA			
Bromobenzene	NA	NA	NA			
Bromochloromethane	NA	NA	NA			
Bromodichloromethane	NA	NA	NA			
Bromomethane	NA	NA	NA			
Carbon Disulfide	NA	NA	NA			
Carbon Tetrachloride	NA	NA	NA			

Login Number:L08020524
Analytical Method:8260B

## Instrument ID:HPMS14 Initial Calibration Date:11-FEB-08 22:54

Column ID:F

	V	WG262907-0	)2	WG262907-03			WG262907-04		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Chloroethane	NA	NA	NA	NA	NA	NA	1.00	2725.00000	0.1869
Dibromochloromethane	NA	NA	NA	0.400	824.000000	0.1992	1.00	2166.00000	0.2121
Dibromomethane	NA	NA	NA	0.400	579.000000	0.09770	1.00	1613.00000	0.1107
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	1.00	4624.00000	0.3172
Hexachlorobutadiene	NA	NA	NA	0.400	902.000000	0.4314	1.00	2391.00000	0.4534
Isopropylbenzene	NA	NA	NA	NA	NA	NA	1.00	13170.0000	1.290
Methylene Chloride	NA	NA	NA	NA	NA	NA	1.00	5763.00000	0.3954
Naphthalene	NA	NA	NA	0.400	4547.00000	2.175	1.00	9777.00000	1.854
Styrene	NA	NA	NA	NA	NA	NA	1.00	7909.00000	0.7745
Tetrachloroethene	NA	NA	NA	0.400	1093.00000	0.2643	1.00	3241.00000	0.3174
Trichloroethene	NA	NA	NA	0.400	1171.00000	0.1976	1.00	3467.00000	0.2379
Trichlorofluoromethane	NA	NA	NA	0.400	1858.00000	0.3135	1.00	6918.00000	0.4746
Vinyl Acetate	NA	NA	NA	NA	NA	NA	1.00	3424.00000	0.2349
cis-1,2-Dichloroethene	NA	NA	NA	0.400	1435.00000	0.2421	1.00	3576.00000	0.2453
cis-1,3-Dichloropropene	NA	NA	NA	0.400	1763.00000	0.2975	1.00	4542.00000	0.3116
m-,p-Xylene	NA	NA	NA	0.800	4893.00000	0.5915	2.00	12427.0000	0.6085
n-Butylbenzene	NA	NA	NA	0.400	5107.00000	2.442	1.00	13173.0000	2.498
n-Propylbenzene	NA	NA	NA	0.400	6057.00000	2.897	1.00	17083.0000	3.239
o-Xylene	NA	NA	NA	0.400	2140.00000	0.5174	1.00	5843.00000	0.5722
p-Isopropyltoluene	NA	NA	NA	0.400	4635.00000	2.217	1.00	13226.0000	2.508
sec-Butylbenzene	NA	NA	NA	0.400	5510.00000	2.635	1.00	15799.0000	2.996
tert-Butylbenzene	NA	NA	NA	0.400	926.000000	0.4429	1.00	2704.00000	0.5127
trans-1,2-Dichloroethene	NA	NA	NA	0.400	1194.00000	0.2015	1.00	3322.00000	0.2279
trans-1,3-Dichloropropene	NA	NA	NA	0.400	1386.00000	0.3351	1.00	3639.00000	0.3563

Login Number:L08020524
Analytical Method:8260B

### Instrument ID: HPMS14 Initial Calibration Date: 11-FEB-08 22:54

Column ID:F

	WG262907-05				WG262907-0	6	WG262907-07			
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF	
Chloroethane	2.00	4936.00000	0.1708	5.00	13128.0000	0.1831	20.0	54596.0000	0.1866	
Dibromochloromethane	2.00	4651.00000	0.2284	5.00	13512.0000	0.2629	20.0	58525.0000	0.2777	
Dibromomethane	2.00	3251.00000	0.1125	5.00	8839.00000	0.1233	20.0	35669.0000	0.1219	
Dichlorodifluoromethane	2.00	7502.00000	0.2597	5.00	22345.0000	0.3117	20.0	93332.0000	0.3191	
Hexachlorobutadiene	2.00	4595.00000	0.4373	5.00	13436.0000	0.5096	20.0	57752.0000	0.5277	
Isopropylbenzene	2.00	27037.0000	1.328	5.00	84522.0000	1.645	20.0	364983.000	1.732	
Methylene Chloride	2.00	9486.00000	0.3283	5.00	20425.0000	0.2849	20.0	75701.0000	0.2588	
Naphthalene	2.00	18589.0000	1.769	5.00	50319.0000	1.908	20.0	204969.000	1.873	
Styrene	2.00	16988.0000	0.8344	5.00	51174.0000	0.9958	20.0	227298.000	1.079	
Tetrachloroethene	2.00	6523.00000	0.3204	5.00	18914.0000	0.3680	20.0	79874.0000	0.3790	
Trichloroethene	2.00	6589.00000	0.2281	5.00	19396.0000	0.2706	20.0	82058.0000	0.2805	
Trichlorofluoromethane	2.00	11124.0000	0.3850	5.00	33699.0000	0.4701	20.0	142109.000	0.4858	
Vinyl Acetate	2.00	9120.00000	0.3157	5.00	23178.0000	0.3233	20.0	78316.0000	0.2677	
cis-1,2-Dichloroethene	2.00	7390.00000	0.2558	5.00	20301.0000	0.2832	20.0	83901.0000	0.2868	
cis-1,3-Dichloropropene	2.00	9245.00000	0.3200	5.00	26253.0000	0.3662	20.0	115068.000	0.3934	
m-,p-Xylene	4.00	24961.0000	0.6130	10.0	71287.0000	0.6936	40.0	296777.000	0.7041	
n-Butylbenzene	2.00	26362.0000	2.509	5.00	81395.0000	3.087	20.0	353204.000	3.227	
n-Propylbenzene	2.00	35673.0000	3.395	5.00	108544.000	4.117	20.0	467418.000	4.271	
o-Xylene	2.00	11752.0000	0.5772	5.00	33647.0000	0.6547	20.0	142289.000	0.6752	
p-Isopropyltoluene	2.00	26439.0000	2.516	5.00	80824.0000	3.065	20.0	351816.000	3.215	
sec-Butylbenzene	2.00	30851.0000	2.936	5.00	96197.0000	3.648	20.0	416473.000	3.805	
tert-Butylbenzene	2.00	5168.00000	0.4918	5.00	15846.0000	0.6010	20.0	67132.0000	0.6134	
trans-1,2-Dichloroethene	2.00	6691.00000	0.2316	5.00	18976.0000	0.2647	20.0	79787.0000	0.2727	
trans-1,3-Dichloropropene	2.00	7557.00000	0.3712	5.00	22236.0000	0.4327	20.0	95028.0000	0.4509	

Login Number:L08020524
Analytical Method:8260B

## Instrument ID:HPMS14 Initial Calibration Date:11-FEB-08 22:54 Column ID:F

	WG262907-08				WG262907-0	9	WG262907-10			
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF	
Chloroethane	50.0	130198.000	0.1801	100	247729.000	0.1703	200	463071.000	0.1580	
Dibromochloromethane	50.0	163147.000	0.3064	100	323816.000	0.2983	200	688878.000	0.2973	
Dibromomethane	50.0	93674.0000	0.1296	100	177947.000	0.1223	200	364867.000	0.1245	
Dichlorodifluoromethane	50.0	223717.000	0.3095	100	429185.000	0.2951	200	828281.000	0.2826	
Hexachlorobutadiene	50.0	150515.000	0.5115	100	308426.000	0.5108	200	603538.000	0.4696	
Isopropylbenzene	50.0	922363.000	1.732	100	1820586.00	1.677	200	3456951.00	1.492	
Methylene Chloride	50.0	185227.000	0.2562	100	349739.000	0.2405	200	680934.000	0.2323	
Naphthalene	50.0	568450.000	1.932	100	1083862.00	1.795	200	2256734.00	1.756	
Styrene	50.0	589286.000	1.107	100	1157917.00	1.067	200	2194423.00	0.9469	
Tetrachloroethene	50.0	199053.000	0.3738	100	385757.000	0.3554	200	740163.000	0.3194	
Trichloroethene	50.0	201705.000	0.2790	100	392018.000	0.2695	200	756882.000	0.2582	
Trichlorofluoromethane	50.0	344190.000	0.4761	100	664612.000	0.4570	200	1283651.00	0.4379	
Vinyl Acetate	50.0	190603.000	0.2636	100	369198.000	0.2538	200	698581.000	0.2383	
cis-1,2-Dichloroethene	50.0	208616.000	0.2886	100	409135.000	0.2813	200	800725.000	0.2732	
cis-1,3-Dichloropropene	50.0	301701.000	0.4173	100	583008.000	0.4008	200	1175474.00	0.4010	
m-,p-Xylene	100	723575.000	0.6794	200	1350421.00	0.6220	400	2340557.00	0.5050	
n-Butylbenzene	50.0	911744.000	3.099	100	1792562.00	2.969	200	3351021.00	2.607	
n-Propylbenzene	50.0	1182597.00	4.019	100	2317334.00	3.838	200	4385046.00	3.412	
o-Xylene	50.0	359586.000	0.6752	100	698144.000	0.6431	200	1298066.00	0.5601	
p-Isopropyltoluene	50.0	924901.000	3.143	100	1831149.00	3.033	200	3455418.00	2.688	
sec-Butylbenzene	50.0	1088663.00	3.700	100	2163141.00	3.583	200	4113472.00	3.200	
tert-Butylbenzene	50.0	171826.000	0.5839	100	337501.000	0.5590	200	642802.000	0.5001	
trans-1,2-Dichloroethene	50.0	197848.000	0.2737	100	388061.000	0.2668	200	720964.000	0.2460	
trans-1,3-Dichloropropene	50.0	254956.000	0.4787	100	494108.000	0.4552	200	1022492.00	0.4412	

### 00078941

Login Number:L08020524
Analytical Method:8260B

Instrument ID:HPMS14
Initial Calibration Date:11-FEB-08 22:54
Column ID:F

		WG262907-1	1
Analyte	CONC	RESP	RF
Chloroethane	NA	NA	NA
Dibromochloromethane	NA	NA	NA
Dibromomethane	NA	NA	NA
Dichlorodifluoromethane	NA	NA	NA
Hexachlorobutadiene	NA	NA	NA
Isopropylbenzene	NA	NA	NA
Methylene Chloride	NA	NA	NA
Naphthalene	NA	NA	NA
Styrene	NA	NA	NA
Tetrachloroethene	NA	NA	NA
Trichloroethene	NA	NA	NA
Trichlorofluoromethane	NA	NA	NA
Vinyl Acetate	300	960960.000	0.2153
cis-1,2-Dichloroethene	NA	NA	NA
cis-1,3-Dichloropropene	NA	NA	NA
m-,p-Xylene	NA	NA	NA
n-Butylbenzene	NA	NA	NA
n-Propylbenzene	NA	NA	NA
o-Xylene	NA	NA	NA
p-Isopropyltoluene	NA	NA	NA
sec-Butylbenzene	NA	NA	NA
tert-Butylbenzene	NA	NA	NA
trans-1,2-Dichloroethene	NA	NA	NA
trans-1,3-Dichloropropene	NA	NA	NA

#### ALTERNATE SOURCE CALIBRATION REPORT

Login Number: L08020524 Run Date: 02/12/2008 Sample ID: WG262907-12 Instrument ID:HPMS14 Run Time:00:28 Method:8260B File ID:14M03450 Analyst:CMS QC Key:STD

ICal Workgroup:WG262907 Cal ID:HPMS14 - 11-FEB-08

Analyte		Expected	Found	Units	RF	%D	UCL	Q
Chloroform	CCC	20.0	20.7	ug/L	0.499	3.50	30	
1,1-Dichloroethene	CCC	20.0	20.9	ug/L	0.412	4.30	30	
1,2-Dichloropropane	CCC	20.0	20.9	ug/L	0.281	4.50	30	
Ethylbenzene	CCC	20.0	22.2	ug/L	0.563	11.2	30	
Toluene	CCC	20.0	21.3	ug/L	1.53	6.60	30	
Vinyl Chloride	CCC	20.0	19.7	ug/L	0.132	1.30	30	
Bromoform	SPCC	20.0	17.7	ug/L	0.140	11.4	30	
Chlorobenzene	SPCC	20.0	20.7	ug/L	0.985	3.50	30	
Chloromethane	SPCC	20.0	18.8	ug/L	0.176	5.90	30	
1,1-Dichloroethane	SPCC	20.0	20.8	ug/L	0.536	3.90	30	
1,1,2,2-Tetrachloroethane	SPCC	20.0	21.0	ug/L	0.467	4.80	30	
Acetone		20.0	22.1	ug/L	0.0566	10.6	30	
Benzene		20.0	20.5	ug/L	1.09	2.40	30	
Bromobenzene		20.0	21.0	ug/L	0.736	5.20	30	
Bromochloromethane		20.0	21.1	ug/L	0.145	5.30	30	
Bromodichloromethane		20.0	21.7	ug/L	0.353	8.50	30	
Bromomethane		20.0	21.4	ug/L	0.160	7.00	30	 
2-Butanone		20.0	21.8	ug/L	0.0777	8.80	30	
n-Butylbenzene		20.0	22.1	ug/L	3.10	10.4	30	 
sec-Butylbenzene		20.0	22.2	ug/L	3.68	11.0	30	
tert-Butylbenzene		20.0	22.1	ug/L	0.596	10.7	30	
Carbon Disulfide		20.0	21.9	ug/L	0.821	9.40	30	
Carbon Tetrachloride		20.0	21.4	ug/L	0.391	7.20	30	
Dibromochloromethane		20.0	19.0	ug/L	0.279	5.00	30	
Chloroethane		20.0	21.3	ug/L	0.189	6.70	30	
2-Chloroethyl Vinyl Ether		20.0	19.3	ug/L	0.0866	3.60	30	
2-Chlorotoluene		20.0	20.9	ug/L	2.48	4.50	30	
4-Chlorotoluene		20.0	21.0	ug/L	2.56	4.90	30	
1,2-Dibromo-3-Chloropropane		20.0	19.0	ug/L	0.0847	5.20	30	
1,2-Dibromoethane		20.0	21.0	ug/L	0.221	5.20	30	
Dibromomethane		20.0	21.2	ug/L	0.125	6.00	30	
1,2-Dichlorobenzene		20.0	20.3	ug/L	1.37	1.40	30	
1,3-Dichlorobenzene		20.0	20.2	ug/L	1.53	1.20	30	
1,4-Dichlorobenzene		20.0	19.7	ug/L	1.53	1.60	30	
Dichlorodifluoromethane		20.0	20.1	ug/L	0.301	0.400	30	
1,2-Dichloroethane		20.0	20.0	ug/L	0.354	0.100	30	
cis-1,2-Dichloroethene		20.0	21.7	ug/L	0.292	8.30	30	
trans-1,2-Dichloroethene		20.0	21.2	ug/L	0.262	5.80	30	
1,3-Dichloropropane		20.0	20.9	ug/L	0.430	4.40	30	
2,2-Dichloropropane		20.0	20.2	ug/L	0.393	1.20	30	
cis-1,3-Dichloropropene		20.0	20.8	ug/L	0.378	4.00	30	
trans-1,3-Dichloropropene		20.0	19.6	ug/L	0.406	2.10	30	

#### ALTERNATE SOURCE CALIBRATION REPORT

 Login Number:L08020524
 Run Date:02/12/2008
 Sample ID:WG262907-12

 Instrument ID:HPMS14
 Run Time:00:28
 Method:8260B

 File ID:14M03450
 Analyst:CMS
 QC Key:STD

 ICal Workgroup:WG262907
 Cal ID:HPMS14 - 11-FEB-08

Analyte	Expected	Found	Units	RF	%D	UCL	Q
1,1-Dichloropropene	20.0	21.4	ug/L	0.388	7.20	30	
2-Hexanone	20.0	20.8	ug/L	0.137	4.00	30	
Hexachlorobutadiene	20.0	21.2	ug/L	0.510	6.00	30	
Isopropylbenzene	20.0	20.2	ug/L	1.57	0.900	30	
p-Isopropyltoluene	20.0	21.8	ug/L	3.05	8.90	30	
4-Methyl-2-Pentanone	20.0	21.1	ug/L	0.0586	5.30	30	
Methylene Chloride	20.0	20.3	ug/L	0.262	1.30	30	
Naphthalene	20.0	20.3	ug/L	1.91	1.30	30	
n-Propylbenzene	20.0	22.3	ug/L	4.07	11.6	30	
Styrene	20.0	22.4	ug/L	1.09	12.0	30	
1,1,1,2-Tetrachloroethane	20.0	21.7	ug/L	0.342	8.30	30	
Tetrachloroethene	20.0	21.8	ug/L	0.367	8.80	30	
1,2,3-Trichlorobenzene	20.0	19.9	ug/L	0.939	0.300	30	
1,2,4-Trichlorobenzene	20.0	19.8	ug/L	1.08	1.10	30	
1,1,1-Trichloroethane	20.0	21.3	ug/L	0.451	6.70	30	
1,1,2-Trichloroethane	20.0	20.7	ug/L	0.229	3.30	30	
Trichloroethene	20.0	21.8	ug/L	0.276	9.00	30	
Trichlorofluoromethane	20.0	17.8	ug/L	0.390	10.8	30	
1,2,3-Trichloropropane	20.0	20.7	ug/L	0.142	3.30	30	
1,2,4-Trimethylbenzene	20.0	21.7	ug/L	3.02	8.40	30	
1,3,5-Trimethylbenzene	20.0	22.4	ug/L	2.90	12.0	30	
Vinyl Acetate	20.0	20.4	ug/L	0.269	2.00	40	
o-Xylene	20.0	22.1	ug/L	0.674	10.6	30	
m-,p-Xylene	40.0	43.9	ug/L	0.688	9.70	30	

^{*} Exceeds %D Limit

CCC Calibration Check Compounds
SPCC System Performance Check Compounds

KEMRON FORMS - Modified 09/06/2007 - (ALT) Version 1.5 PDF File ID:1029692 Report generated 02/28/2008 16:27

#### CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L08020524 Run Date:02/25/2008 Sample ID:WG263964-02

Instrument ID:HPMS14 Run Time:13:07 Method:8260B

File ID:14M03776 Analyst:CMS QC Key:STD

Workgroup (AAB#):WG263965 Cal ID:HPMS14 - 11-FEB-08

Analyte		Expected	Found	UNITS	RF	%D	UCL	Q
Chloroform	CCC	50.0	53.4	ug/L	0.515	6.78	20	
1,1-Dichloroethene	CCC	50.0	57.5	ug/L	0.454	14.9	20	
1,2-Dichloropropane	CCC	50.0	52.4	ug/L	0.282	4.77	20	
Ethylbenzene	CCC	50.0	55.5	ug/L	0.562	11.0	20	
Toluene	CCC	50.0	53.2	ug/L	1.53	6.39	20	
Vinyl Chloride	CCC	50.0	50.1	ug/L	0.133	0.121	20	
Bromoform	SPCC	50.0	48.1	ug/L	0.159	3.73	40	
Chlorobenzene	SPCC	50.0	51.7	ug/L	0.984	3.38	40	
Chloromethane	SPCC	50.0	49.4	ug/L	0.204	1.19	40	
1,1-Dichloroethane	SPCC	50.0	53.7	ug/L	0.554	7.42	40	
1,1,2,2-Tetrachloroethane	SPCC	50.0	49.3	ug/L	0.439	1.34	40	
Acetone		50.0	41.1	ug/L	0.0421	17.8	40	
Benzene		50.0	51.6	ug/L	1.09	3.11	40	
Bromobenzene		50.0	51.3	ug/L	0.719	2.66	40	
Bromochloromethane		50.0	50.6	ug/L	0.139	1.27	40	
Bromodichloromethane		50.0	55.6	ug/L	0.361	11.2	40	
Bromomethane		50.0	62.8	ug/L	0.193	25.7	40	
2-Butanone		50.0	40.4	ug/L	0.0577	19.2	40	
n-Butylbenzene		50.0	56.2	ug/L	3.15	12.5	40	
sec-Butylbenzene		50.0	57.0	ug/L	3.78	14.0	40	
tert-Butylbenzene		50.0	55.8	ug/L	0.600	11.5	40	
Carbon Disulfide		50.0	56.0	ug/L	0.843	12.0	40	
Carbon Tetrachloride		50.0	59.2	ug/L	0.431	18.3	40	
Dibromochloromethane		50.0	49.9	ug/L	0.296	0.285	40	
Chloroethane		50.0	51.4	ug/L	0.182	2.77	40	
2-Chloroethyl Vinyl Ether		50.0	37.7	ug/L	0.0678	24.5	40	
2-Chlorotoluene		50.0	51.1	ug/L	2.43	2.24	40	
4-Chlorotoluene		50.0	53.3	ug/L	2.61	6.69	40	
1,2-Dibromo-3-Chloropropane		50.0	43.7	ug/L	0.0809	12.7	40	
1,2-Dibromoethane		50.0	52.1	ug/L	0.219	4.14	40	
Dibromomethane		50.0	52.4	ug/L	0.124	4.82	40	
1,2-Dichlorobenzene		50.0	50.5	ug/L	1.36	0.902	40	
1,3-Dichlorobenzene		50.0	51.9	ug/L	1.57	3.84	40	
1,4-Dichlorobenzene		50.0	50.4	ug/L	1.57	0.764	40	
Dichlorodifluoromethane		50.0	56.3	ug/L	0.337	12.6	40	
1,2-Dichloroethane		50.0	50.8	ug/L	0.359	1.62	40	
cis-1,2-Dichloroethene		50.0	54.3	ug/L	0.293	8.54	40	
trans-1,2-Dichloroethene		50.0	56.8	ug/L	0.282	13.5	40	
1,3-Dichloropropane		50.0	50.0	ug/L	0.412	0.0368	40	
2,2-Dichloropropane		50.0	63.5	ug/L	0.492	26.9	40	
cis-1,3-Dichloropropene		50.0	57.0	ug/L	0.414	14.0	40	
trans-1,3-Dichloropropene		50.0	56.4	ug/L	0.469	12.8	40	

KEMRON FORMS - Modified 09/06/2007 - (CCV) Version 1.5 PDF File ID:1029693 Report generated 02/28/2008 16:27 KEMRON Environmental Services

### 00078945

#### CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number:L08020524 Run Date:02/25/2008 Sample ID:WG263964-02

Instrument ID:HPMS14 Run Time:13:07 Method:8260B

File ID:14M03776 Analyst:CMS QC Key:STD

Workgroup (AAB#):WG263965 Cal ID:HPMS14 - 11-FEB-08

Analyte	Expected	Found	UNITS	RF	%D	UCL	Q
1,1-Dichloropropene	50.0	56.4	ug/L	0.409	12.9	40	
2-Hexanone	50.0	43.6	ug/L	0.115	12.9	40	
Hexachlorobutadiene	50.0	54.9	ug/L	0.529	9.79	40	
Isopropylbenzene	50.0	56.9	ug/L	1.77	13.7	40	
p-Isopropyltoluene	50.0	57.8	ug/L	3.23	15.6	40	
4-Methyl-2-Pentanone	50.0	44.2	ug/L	0.0491	11.7	40	
Methylene Chloride	50.0	50.7	ug/L	0.253	1.43	40	
Naphthalene	50.0	43.3	ug/L	1.63	13.3	40	
n-Propylbenzene	50.0	56.8	ug/L	4.14	13.5	40	
Styrene	50.0	56.5	ug/L	1.10	13.1	40	
1,1,1,2-Tetrachloroethane	50.0	55.6	ug/L	0.351	11.2	40	
Tetrachloroethene	50.0	57.3	ug/L	0.387	14.6	40	
1,2,3-Trichlorobenzene	50.0	43.9	ug/L	0.828	12.1	40	
1,2,4-Trichlorobenzene	50.0	46.8	ug/L	1.02	6.31	40	
1,1,1-Trichloroethane	50.0	57.2	ug/L	0.484	14.4	40	
1,1,2-Trichloroethane	50.0	49.3	ug/L	0.218	1.47	40	
Trichloroethene	50.0	56.3	ug/L	0.285	12.6	40	
Trichlorofluoromethane	50.0	58.8	ug/L	0.514	17.5	40	
1,2,3-Trichloropropane	50.0	48.2	ug/L	0.133	3.62	40	
1,2,4-Trimethylbenzene	50.0	54.2	ug/L	3.03	8.45	40	
1,3,5-Trimethylbenzene	50.0	56.9	ug/L	2.95	13.8	40	
Vinyl Acetate	50.0	53.8	ug/L	0.284	7.61	40	
o-Xylene	50.0	56.0	ug/L	0.683	12.1	40	
m-,p-Xylene	100	110	ug/L	0.692	10.3	40	
1,2-Dichloroethene	100	111	ug/L	0.287	11.0	40	
Xylenes	150	166	ug/L	0.688	10.9	40	

^{*} Exceeds %D Criteria

CCC Calibration Check Compounds SPCC System Performance Check Compounds

KEMRON FORMS - Modified 09/06/2007 - (CCV) Version 1.5 PDF File ID:1029693 Report generated 02/28/2008 16:27

# KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD AREA SUMMARY (COMPARED TO CCV)

Instrument ID:HPMS14
Workgroup (AAB#):WG263965

CCV Number: WG263964-02

CAL ID: HPMS14-11-FEB-08

Matrix:WATER

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG263964-02	NA	NA	162517	296787	400038
Upper Limit	NA	NA	325034	593574	800076
Lower Limit	NA	NA	81259	148394	200019
L08020524-01	1.00	01	123044	233289	329026
WG263965-01	1.00	01	141650	266963	376753
WG263965-02	1.00	01	146498	279315	377116
WG263965-03	1.00	01	149101	280320	379583
WG263965-04	1.00	01	138601	264286	370022

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

# KEMRON ENVIRONMENTAL SERVICES INTERNAL STANDARD RETENTION TIME SUMMARY (COMPARED TO CCV)

Login Number:L08020524

Instrument ID:HPMS14

Workgroup (AAB#):WG263965

CCV Number:WG263964-02

CAL ID: HPMS14-11-FEB-08

Matrix:WATER

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG263964-02	NA	NA	17.24	14.45	10.84
Upper Limit	NA	NA	17.74	14.95	11.34
Lower Limit	NA	NA	16.74	13.95	10.34
L08020524-01	1.00	01	17.242	14.454	10.847
WG263965-01	1.00	01	17.242	14.454	10.847
WG263965-02	1.00	01	17.242	14.454	10.847
WG263965-03	1.00	01	17.242	14.454	10.847
WG263965-04	1.00	01	17.242	14.454	10.847

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

# 3.0 Attachments

#### Kemron Environmental Services Analyst Listing February 29, 2008

AJF - AMANDA J. FICKIESEN	ALB - ANNIE L. BROWN	AML - ANTHONY M. LONG
ARA - ADRIAN R. ACHTERMANN	ASP - AARON S. PETRIE	BRG - BRENDA R. GREGORY
CAA - CASSIE A. AUGENSTEIN	CAF - CHERYL A. FLOWERS	CAH - CHARLES A. HALL
CEB - CHAD E. BARNES	CLC - CHRYS L. CRAWFORD	CLW - CHARISSA L. WINTERS
CM - CHARLIE MARTIN	CMS - CRYSTAL M. STEPHENS	CPD - CHAD P. DAVIS
CSH - CHRIS S. HILL	DD - DIANE M. DENNIS	DDE - DEBRA D. ELLIOTT
DEL - DON E. LIGHTFRITZ	DEV - DAVID E. VANDENBERG	DGB - DOUGLAS G. BUTCHER
DIH - DEANNA I. HESSON	DLB - DAVID L. BUMGARNER	DLP - DOROTHY L. PAYNE
DLR - DIANNA L. RAUCH	DR - DEANNA ROBERTS	DRP - DAVE R. PITZER
DSF - DEBRA S. FREDERICK	ECL - ERIC C. LAWSON	ED - EMILY E. DECKER
ERE - ERIN R. ELDER	FJB - FRANCES J. BOLDEN	HAV - HEMA VILASAGAR
HJR - HOLLY J. REED		
JBK - JEREMY B. KINNEY	JDH - JUSTIN D. HESSON	JKP - JACQUELINE K. PARSONS
JKT - JANE K. THOMPSON	JLK - JUSTEN L. KNOPP	JWR - JOHN W. RICHARDS
JWS - JACK W. SHEAVES	JYH - JI Y. HU	KCZ - KEVIN C. ZUMBRO
KEB - KATHRYN E. BARNES	KHR - KIM H. RHODES	KJW - KATIE J. WIEFERICH
KRA - KATHY R. ALBERTSON	LKN - LINDA K. NEDEFF	LSB - LESLIE S. BUCINA
MDA - MIKE D. ALBERTSON	MDC - MICHAEL D. COCHRAN	MES - MARY E. SCHILLING
MKZ - MARILYN K. ZUMBRO	MLR - MARY L. ROCHOTTE	MMB - MAREN M. BEERY
MRT - MICHELLE R. TAYLOR	MSW - MATT S. WILSON	NJB - NATALIE J. BOOTH
NPM - NATHANIEL P. MILLER	PJM - PAUL J. MILLER	RAH - ROY A. HALSTEAD
RB - ROBERT BUCHANAN	REK - ROBERT E. KYER	RLF - RACHEL L. FRYE
RLK - ROBIN L. KLINGER	RNP - RICK N. PETTY	RWC - RODNEY W. CAMPBELL
SLM - STEPHANIE L. MOSSBURG	SLP - SHERI L. PFALZGRAF	SMH - SHAUNA M. HYDE
TDH - TRICIA D. HUCK	TMB - TIFFANY M. BAILEY	TMM - TAMMY M. MORRIS
VC - VICKI COLLIER	WFM - WALTER F. MARTIN	

#### **KEMRON Environmental Services**

List of Valid Qualifiers February 29, 2008

STD Qualkey:

Qualifier	Description
*	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Result is greater than the associated numerical value.
Α	See the report narrative
В	Analyte present in method blank
С	Confirmed by GC/MS
CG	Confluent growth
DL	Surrogate or spike compound was diluted out
E	Estimated concentration due to sample matrix interference
EDL	Elevated sample reporting limits, presence of non-target analytes
EMPC	Estimated Maximum Possible Concentration
FL	Free Liquid
I	Semiquantitative result (out of instrument calibration range)
J	The analyte was positively identified, but the quantitation was below the RL
J,B	Analyte detected in both the method blank and sample above the MDL.
J,P	Estimate; columns don't agree to within 40%
J,S	Estimated concentration; analyzed by method of standard addition (MSA)
L	Sample reporting limits elevated due to matrix interference
M	Matrix effect; the concentration is an estimate due to matrix effect.
N	Tentatively identified compound(TIC)
NA ND	Not applicable  Not detected at or above the reporting limit
ND,L	Not detected at or above the reporting limit  Not detected; sample reporting limit (RL) elevated due to interference
ND,E ND,S	Not detected; sample reporting limit (RE) elevated due to interier ence
NF	Not found by library search
NFL	No free liquid
NI	Non-ignitable
NR	Analyte is not required to be analyzed
NS	Not spiked
P	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria fail. See narrative.
QNS	Quantity of sample not sufficient to perform analysis
RA	Reanalysis confirms reported results
RE	Reanalysis confirms sample matrix interference
S	Analyzed by method of standard addition (MSA)
SMI	Sample matrix interference on surrogate
SP	Reported results are for spike compounds only
TIC	Library Search Compound
TNTC	Too numerous to count
U	Undetected; the concentration is below the reported MDL.
UJ	Undetected; the MDL and RL are estimated due to quality control discrepancies.
W	Post-digestion spike for furnace AA out of control limits
X	Exceeds regulatory limit
X, S	Exceeds regulatory limit; method of standard additions (MSA)
Z	Cannot be resolved from isomer - see below

- ***Special Notes for Organic Analytes

  1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.

  2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- 3. N-nitrosodiphenylamine cannot be separated from diphenylamine.

- 3. Methylphenol and 4-Methylphenol are unresolvable compounds.
   5. m-Xylene and p-Xylene are unresolvable compounds.
   6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

### **Chain of Custody**

Shaw* Shaw Environmental & Infrastructure, Inc. 3010 Briarpark Drive, Suite 400 Houston, TX 77042 (713) 996-4400

Page

	A second															
Laboratory Name: Kemron  Address: 156 Starlite Drive  Marrietta, Ohio								(	440)	513	ssture.	) <u>}\</u>				
	1						Analysi (Indicat	s and M e separa	ethod C	esired ainers)			Remarks			
Proj	ect Name Langharn AAP		Proje	ect Cor		IUOI	Karnack Tx Project Telephone No.	+	Π	1						
FIO	SEE REMARKS		1 1			MURE		20	0			1	_		}	7-day TAY
Poir			100	14	\$\$10-		pject Manager/Supervisor:	늘	<b>১</b>		Ž		1	2		
. 0.	t of Contact: Jennifer Hear	2					· ·	8		χ	5	E	4	3		
Tele	phone No. (713) 996-440°	1				Y	raveen Srivostav	Number of Containers	ž ,	YOC	TCLP METALS	<b>VTV</b>	PANCETABLITA	CORROSSIVITY		,
Item No.	Sample Number	Date	Time	Сошр	Grab	Matrix	Sample Description, Location	Z	\20\ \20\	Tew	لغ	REACTIVITY	120	S		
1	17 WW7 - 021908	inte	13:10		V.	w	Site 17	3	χ	!						117591.00048800
_	T	2/20/08			~	w	Size 47	3	አ							17591-00098810
			17:10		~	W	Site 47	3	X							11751,00098810
	50 WWO 7-021908	3/19/05	11:15		V	w	Site 50	3	Χ							17591.60098820
5	Whate CharacterRation	2/20/4	11:25	V		S	All Sites	3		X	X	X	ኣ	x		17591.00648500
	47 WW 33 - 02 20 8 - QC	1611			1	W	Site 47	3	X							117591.00098810
7																
8																
9														-	_	
10														<u> </u>		
	Transfers Relinquished By (signat	ure)	Da	ate/Tim	e		Transfers Accepted By (signature)		:/Time	Speci	al Instru	ctions :	* Sec	temer	ks 🎋	or grojed Hs
<u> </u>	U.llica		9/21/08	; K:	30	the	Middle 25308	10:25	·	*	7-da	u T	kτ			
$\vdash$			-			╁		-		FedE	x Airbill	No.:				
Lab			Labo	oratory			Samp	ler's Sig	nature	11.	Ill		1			
	TAT: 7-day Standard R	ush Date			Sea	is Intac	t?YN Rec	eived Goo	od Condi	tion	Υ _	N		Cold		

KEMRON Environmental Services

#### SAMPLE RECEIPT FORM

156 Starlite Drive Marietta, OH 45750 (740) 373-4071

Client: Shoul - Longhorn				
Workorder Number: B —				
Date Received: 2 23 08	Couri	<u> </u>	Tir	ne: 10 . 25
Delivered by: ( ) Fedx (X) UPS ( ) Client ( )	Cour	<u> </u>	- 111	10.60
Opened by OR V				
R Temp Gun: (X) D () G		S 800	557	5524
Logged by: RUC	<u> </u>	ع لا د	سا بن ر	
Cooler information		<del>5</del>		Other
Cooler ID Temp C Airbill#	CO	<i>⊒</i> #		Other
m98 0 Ja08643 2917	·			7 days
V/10   V				
	<del> </del> -			
	ļ			
	+			
	<del></del>		1	(D)
Inspection Checklist	LY.	N	NA	Discrepancy ID
Were shipping coolers sealed?	14	_		
Were custody seals intact?	10			
Were cooler temperatures in range of 0 - 6?			<u> </u>	
Was ice present?	11/		<u> </u>	
Were COC's received/ information complete/signed and dated?	11/		<del> </del>	
Were sample containers and labels intact and match COC?	<u> </u>	<u> </u>	1	(1)
Were the correct containers and volumes received?	100			
Were correct preservatives used? (water only)			$\perp \nu$	
Were pH ranges acceptable? (voa's excluded)			10	- No.
Were VOA samples free of headspace?			1	1,000
Were samples received within EPA hold times?	<u></u>	1		
Discrepancy/Comments/Other Problems (1) Samde: Daste Characteration - 2jo  A) TCLP, Motals; TCLP VOL  B Reactivity, ignitability, Corrosivity		los 11:21	F	on alsolor
Distribution				
Name of KEMRON representative				
Client/Company:				
Person Contacted:				
Date contacted:				
Resolution/other comments:	,,			
		-		

7-CFR-1

06/11/2007

#### KEMRON Environmental Services

Internal Chain of Custody Report

**Login:** L08020524

Account: 2773 **Project:** 2773.025

Samples: 1

**Due Date:** 03-MAR-2008

Samplenum Container ID Products L08020524-01 428602 826-LOW

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	25-FEB-2008 13:15	RLK	
2	ANALYZ	V1	ORG4	25-FEB-2008 15:05	KJW	ERE

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	25-FEB-2008 13:15	RLK	
2	ANALYZ	V1	ORG4	25-FEB-2008 15:05	KJW	ERE

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	25-FEB-2008 13:15	RLK	
2	ANALYZ	V1	ORG4	25-FEB-2008 15:05	KJW	ERE

A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login







04/10/07



#### **Technical Report for**

Shaw E & I, Inc.

**Longhorn Army Ammunition Plant** 

PROJECT #117591

**Accutest Job Number: T16445** 

Sampling Dates: 02/22/07 - 02/23/07

#### Report to:

Shaw E & I, Inc.

diane.meyer@shawgrp.com

ATTN: Diane Meyer

Total number of pages in report: 187





Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ron Martino Laboratory Manager

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

### **Sections:**

-1-

**Table of Contents** 

Section 1: Sample Summary	4
Section 2: Case Narrative/Conformance Summary	6
Section 3: Sample Results	<b>10</b>
<b>3.1:</b> T16445-1: 29WW38-FEB2007	11
<b>3.2:</b> T16445-2: 47WW30-FEB2007	16
<b>3.3:</b> T16445-3: LHSMW43-FEB2007	20
<b>3.4:</b> T16445-4: 50WW06-FEB2007	
<b>3.5:</b> T16445-5: 50WW05-FEB2007	28
<b>3.6:</b> T16445-6: 50WW02-FEB2007	_
<b>3.7:</b> T16445-7: 17WW16-FEB2007	
<b>3.8:</b> T16445-8: 17WW02-FEB2007	
<b>3.9:</b> T16445-9: 17WW02-FEB2007 FD	
<b>3.10:</b> T16445-10: 29WW35-FEB2007	
<b>3.11:</b> T16445-11: 29WW35-FEB2007 FD	
<b>3.12:</b> T16445-12: 29WW06-FEB2007	
<b>3.13:</b> T16445-13: 17WW05-FEB2007	
<b>3.14:</b> T16445-14: 7WW06-FEB2007	
<b>3.15:</b> T16445-15: TRIP BLANK	
<b>3.16:</b> T16445-18: 17WW130-FEB2007	
Section 4: Misc. Forms	
<b>4.1:</b> Chain of Custody	
<b>4.2:</b> LRC Form	
Section 5: GC/MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	
5.2: Blank Spike Summary	
5.3: Matrix Spike/Matrix Spike Duplicate Summary	
5.4: Instrument Performance Checks (BFB)	
5.5: Internal Standard Area Summaries	
5.6: Surrogate Recovery Summaries	
5.7: Initial and Continuing Calibration Summaries	
Section 6: General Chemistry - QC Data Summaries	
6.1: Method Blank and Spike Results Summary	135
6.2: Duplicate Results Summary	136
6.3: Matrix Spike Results Summary	137
Section 7: Misc. Forms (Accutest Laboratories Southeast, Inc.)	138
7.1: Chain of Custody	139
Section 8: GC Volatiles - QC Data (Accutest Laboratories Southeast, Inc.)	142
8.1: Method Blank Summary	143
8.2: Blank Spike Summary	144
8.3: Matrix Spike Summary	145
8.4: Duplicate Summary	146
8.5: Initial and Continuing Calibration Summaries	14/

















### 00078956

#### **Sections:**

-2-

**Table of Contents** 

Section 9: GC Semi-volatiles - QC Data (Accutest Laboratories Southeast, Inc.)	152
9.1: Method Blank Summary	153
9.2: Blank Spike Summary	155
9.3: Matrix Spike/Matrix Spike Duplicate Summary	157
9.4: Surrogate Recovery Summaries	158
9.5: GC Surrogate Retention Time Summaries	159
9.6: Initial and Continuing Calibration Summaries	162
Section 10: General Chemistry - QC Data (Accutest Laboratories Southeast, Inc.)	
10.1: Method Blank and Spike Results Summary	181
10.2: Duplicate Results Summary	182
10.3: Matrix Spike Results Summary	
10.4: Inst QC GN24408: Perchlorate	184
<b>10.5:</b> Inst QC GN24437: Perchlorate	



ယ

4

-

-







### **Sample Summary**

Shaw E & I, Inc.

Job No:

T16445

Longhorn Army Ammunition Plant Project No: PROJECT #117591

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
T16445-1	02/22/07	09:30 SMC	02/24/07	AQ	Ground Water	29WW38-FEB2007
T16445-2	02/22/07	09:41 SMC	02/24/07	AQ	Ground Water	47WW30-FEB2007
T16445-3	02/22/07	11:00 SMC	02/24/07	AQ	Ground Water	LHSMW43-FEB2007
T16445-4	02/22/07	15:36 SMC	02/24/07	AQ	Ground Water	50WW06-FEB2007
T16445-5	02/23/07	10:46 SMC	02/24/07	AQ	Ground Water	50WW05-FEB2007
T16445-5D	02/23/07	10:46 SMC	02/24/07	AQ	Water Dup/MSD	50WW05-FEB2007 MSD
T16445-5S	02/23/07	10:46 SMC	02/24/07	AQ	Water Matrix Spike	50WW05-FEB2007 MS
T16445-6	02/23/07	14:53 SMC	02/24/07	AQ	Ground Water	50WW02-FEB2007
T16445-7	02/22/07	10:30 SMC	02/24/07	AQ	Ground Water	17WW16-FEB2007
T16445-8	02/22/07	14:18 SMC	02/24/07	AQ	Ground Water	17WW02-FEB2007
T16445-9	02/22/07	14:18 SMC	02/24/07	AQ	Ground Water	17WW02-FEB2007 FD
T16445-10	02/22/07	12:45 SMC	02/24/07	AQ	Ground Water	29WW35-FEB2007
T16445-11	02/22/07	12:45 SMC	02/24/07	AQ	Ground Water	29WW35-FEB2007 FD



Accutest Laboratories

## Sample Summary (continued)

Shaw E & I, Inc.

Job No:

T16445

Longhorn Army Ammunition Plant Project No: PROJECT #117591

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
T16445-12	02/22/07	15:00 SMC	02/24/07	AQ	Ground Water	29WW06-FEB2007
T16445-13	02/23/07	15:33 SMC	02/24/07	AQ	Ground Water	17WW05-FEB2007
T16445-14	02/23/07	16:30 SMC	02/24/07	AQ	Ground Water	7WW06-FEB2007
T16445-15	02/22/07	00:00 SMC	02/24/07	AQ	Trip Blank Water	TRIP BLANK
T16445-18	02/23/07	10:47 SMC	02/24/07	AQ	Ground Water	17WW130-FEB2007





#### SAMPLE DELIVERY GROUP CASE NARRATIVE

**Client:** Shaw E & I, Inc. **Job No** T16445

Site: Longhorn Army Ammunition Plant Report Date 3/19/2007 4:57:35 PM

15 Samples and 1 Trip Blank were collected on between 02/22/2007 and 02/23/2007 and were received at Accutest on 02/24/2007 properly preserved, at 11 Deg. C and intact. These Samples received an Accutest job number of T16445. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### Volatiles by GCMS By Method SW846 8260B

Matrix AQ Batch ID: VF2314

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5MS, T16445-5MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for Trichloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Matrix AQ Batch ID: VF2315

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-3MS, T16445-3MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for cis-1,2-Dichloroethylene, Trichloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- T16445-3: For QC only.

Matrix AQ Batch ID: VF2318

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-4MS, T16445-4MSD were used as the QC samples indicated.

#### Volatiles by GC By Method RSKSOP-147/175

Matrix AQ Batch ID: F:GXY992

Analysis performed at Accutest Laboratories, Orlando, FL.

#### Extractables by GC By Method SW846 8330A

Matrix AQ Batch ID: F:OP19677

All hits confirmed by reanalysis on a dissimilar column. Analysis performed at Accutest Laboratories, Orlando, FL.



#### Wet Chemistry By Method EPA 120.1

Matrix AQ Batch ID: F:R17941

Specific Conductivity: Analysis performed at Accutest Laboratories, Orlando, FL.

Matrix AQ Batch ID: GN11355

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP were used as the QC samples for Specific Conductivity.

#### Wet Chemistry By Method EPA 150.1/9040

Matrix AQ Batch ID: GN11323

Sample(s) T16445-18DUP, T16445-5DUP, T16445-7DUP were used as the QC samples for pH.

#### Wet Chemistry By Method EPA 310.1

Matrix AQ Batch ID: GN11375

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Alkalinity, Total as CaCO3.

#### Wet Chemistry By Method EPA 314

Matrix AQ Batch ID: F:GP9044

- Perchlorate: Analysis performed at Accutest Laboratories, Orlando, FL.
- Estimated value, above calibration range. Analysis performed at Accutest Laboratories, Orlando, FL.

#### Wet Chemistry By Method EPA 325.3

Matrix AQ Batch ID: GN11343

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Chloride.

#### Wet Chemistry By Method EPA 353.2

Matrix AQ Batch ID: GN11290

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Nitrogen, Nitrite.

Matrix AQ Batch ID: GN11291

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

Matrix AQ Batch ID: GN11300

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-18DUP, T16445-18MS were used as the QC samples for Nitrogen, Nitrite.

Matrix AQ Batch ID: GN11301

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-18DUP, T16445-18MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.
- The following samples were run outside of holding time for method EPA 353.2: T16445-18



#### Wet Chemistry By Method EPA 375.3

Matrix AQ

Batch ID: GN11356

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Sulfate.

#### Wet Chemistry By Method EPA 376.1

Matrix AO

Batch ID: GN11313

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP were used as the QC samples for Sulfide.

#### Wet Chemistry By Method EPA 415.1/9060

Matrix AQ

Batch ID: GN11304

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-18DUP, T16445-18MS were used as the QC samples for Total Organic Carbon.

Matrix AQ

Batch ID: GN11311

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Total Organic Carbon.

Matrix AQ

Batch ID: GN11317

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-8DUP, T16445-8MS were used as the QC samples for Total Organic Carbon.

#### Wet Chemistry By Method SM18 4500NO3E/NO2B

Matrix AQ

Batch ID: R15434

Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Accutest Laboratories Gulf Coast (ALGC) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALGC and as stated on the COC. ALGC certifies that the data meets the Data QualityObjectives for precision, accuracy and completeness as specified in the ALGC Quality Manual except as noted above. This report is to be used in its entirety. ALGC is not responsible for any assumptions of data quality if partial data packages are used



Client: Accutest Laboratories Gulf Coast, Inc. Job No: T16445

Site: ITTXHO: Longhorn Army Ammunition Plant Report Date: 3/19/2007 10:48:45

16 Samples were collected on between 02/22/2007 and 02/23/2007 and were received at Accutest SE on 02/28/2007 properly preserved, at 1.8 Deg. C and intact. These Samples had an Accutest job number of T16445. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### Volatiles by GC by Method RSKSOP-147/175

Matrix: AQ Batch ID: GXY992

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples T16445-5DUP, T16445-5MS were used as the QC samples indicated.

#### Extractables by GC by Method SW846 8330A

Matrix: AQ Batch ID: OP19677

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F47539-3MS, F47539-3MSD were used as the QC samples indicated.

T16445-12: Confirmation run.

T16445-12: All hits confirmed by reanalysis on a dissimilar column.

#### Wet Chemistry by Method EPA 314

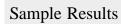
Matrix: AQ Batch ID: GP9044

All samples were prepped within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples T16445-5DUP, T16445-5MS, T16445-6DUP, T16445-6MS were used as the QC samples for Perchlorate.


T16445-12 for Perchlorate: Dilution required due to matrix interference.

T16445-6 for Perchlorate: Estimated value, above calibration range. Results confirmed by re-analysis.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:	
	Date: March 19, 2007
Ellen Pampel, Inorganic QA (signature on file)	





Report of Analysis



#### **Report of Analysis**

Client Sample ID: 29WW38-FEB2007

 Lab Sample ID:
 T16445-1
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1F0079178.D103/07/07LJn/an/aVF2314

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	0.63 U	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



#### Accutest Laboratories

#### **Report of Analysis**

Page 2 of 2

Client Sample ID: 29WW38-FEB2007

 Lab Sample ID:
 T16445-1
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

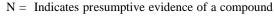
 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	109% 103% 109% 129%		66-1 77-1	39% 39% 48% 50%	

U = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 







#### **Report of Analysis**

Page 1 of 1

Client Sample ID: 29WW38-FEB2007

Lab Sample ID: T16445-1 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: RSKSOP-147/175 Percent Solids: n/a

Project: Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025255.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.46	0.50	0.30	ug/l	J
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

### **Report of Analysis**

Client Sample ID: 29WW38-FEB2007

Lab Sample ID: T16445-1 **Date Sampled:** 02/22/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8330A SW846 3535A Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 a GG020214.D 1 03/02/07 **AFL** 03/01/07 F:OP19677 F:GGG906

Run #2

**Final Volume Initial Volume** Run #1 1050 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.057 U	0.19	0.057	ug/l	
121-82-4	RDX	0.071 U	0.19	0.071	ug/l	
99-65-0	1,3-Dinitrobenzene	0.067 U	0.19	0.067	ug/l	
606-20-2	2,6-Dinitrotoluene	0.062 U	0.19	0.062	ug/l	
121-14-2	2,4-Dinitrotoluene	0.071 U	0.19	0.071	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.067 U	0.19	0.067	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.076 U	0.19	0.076	ug/l	
98-95-3	Nitrobenzene	0.057 U	0.19	0.057	ug/l	
88-72-2	o-Nitrotoluene	0.057 U	0.19	0.057	ug/l	
99-08-1	m-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
99-99-0	p-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
479-45-8	Tetryl	0.071 U	0.19	0.071	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.090 U	0.19	0.090	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.076 U	0.19	0.076	ug/l	
					-	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	82%		70-13	36%	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



#### **Report of Analysis**

Page 1 of 1

Client Sample ID: 29WW38-FEB2007

Lab Sample ID:T16445-1Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

#### ______

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 16:00	AFL	EPA 314
Alkalinity, Total as CaCO3	132	10	0.30	mg/l	2	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	83.0	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	9.0	1.0	0.57	mg/l	1	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.030 B	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	408	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	126	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	1.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
pН	6.5			su	1	03/01/07 13:00	TW	EPA 150.1/9040

⁽a) Analysis performed at Accutest Laboratories, Orlando, FL.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL





⁽b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: 47WW30-FEB2007

 Lab Sample ID:
 T16445-2
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
Run #1	F0079173.D	1	03/07/07	LJ	n/a	n/a	VF2314
Run #2	F0079179.D	10	03/07/07	LJ	n/a	n/a	VF2314

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	1.9	2.0	0.68	ug/l	J
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	6.8	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	1060 a	20	6.3	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$ 



ķ

Page 1 of 2

### Page 2 of 2

**Report of Analysis** 

Client Sample ID: 47WW30-FEB2007

 Lab Sample ID:
 T16445-2
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 104% 106% 118%	104% 101% 107% 128%	73-1 66-1 77-1 84-1	39% 48%	

(a) Result is from Run# 2

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



3.2

Page 1 of 1

Client Sample ID: 47WW30-FEB2007

Lab Sample ID: T16445-2 **Date Sampled:** 02/22/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: Percent Solids: n/a RSKSOP-147/175

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025256.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Dun #2							

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8 74-84-0	Methane Ethane	1.68 0.60 U	0.50 1.0	0.30 0.60	ug/l ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 47WW30-FEB2007

Lab Sample ID:T16445-2Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 16:15	AFL	EPA 314
Alkalinity, Total as CaCO3	752	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	150	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	726	20	0.57	mg/l	20	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	4130	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	637	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	2.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
рН	7.1			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





Page 1 of 2

# **Report of Analysis**

Client Sample ID: LHSMW43-FEB2007

Lab Sample ID: T16445-3 **Date Sampled:** 02/22/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F0079232.D	1	03/08/07	LJ	n/a	n/a	VF2318
Run #2 a	F0079190.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #3	F0079233.D	100	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml
Run #3	5.0 ml

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	1.8	2.0	0.52	ug/l	J
75-35-4	1,1-Dichloroethylene	10.3	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	605 b	200	83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	1.9	2.0	0.75	ug/l	J
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	1.8	2.0	0.66	ug/l	J
127-18-4	Tetrachloroethylene	82.0	2.0	0.74	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



### Page 2 of 2

**Report of Analysis** 

Client Sample ID: LHSMW43-FEB2007

 Lab Sample ID:
 T16445-3
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	11600 b	200	63	ug/l	
75-01-4	Vinyl chloride	3.7	2.0	0.32	ug/l	
1330-20-7	Xylene (total)	1.1 U	6.0	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits
1868-53-7	Dibromofluoromethane	107%	106%	1029	<b>%</b>	73-139%
17060-07-0	1,2-Dichloroethane-D4	102%	106%	94%		66-139%
2037-26-5	Toluene-D8	100%	102%	1049		77-148%
460-00-4	4-Bromofluorobenzene	112%	123%	1119		84-150%

(a) For QC only.

(b) Result is from Run# 3

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound





Page 1 of 1

### Accutest Laboratories

# **Report of Analysis**

Client Sample ID: LHSMW43-FEB2007

Lab Sample ID:T16445-3Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Method:RSKSOP-147/175Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025257.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	7.07	0.50	0.30	ug/l	
74-84-0	Ethane	0.62	1.0	0.60	ug/l	J
74-85-1	Ethene	2.7	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: LHSMW43-FEB2007

Lab Sample ID:T16445-3Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	Ву	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 16:29	AFL	EPA 314
Alkalinity, Total as CaCO3	295	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	93.0	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	290	33	0.57	mg/l	33.3	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	2920	0.50	0.50	umhos/cm	1	03/27/07	AFL	EPA 120.1
Sulfate	756	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	4.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
pН	6.8			su	1	03/01/07 13:00	TW	EPA 150.1/9040

⁽a) Analysis performed at Accutest Laboratories, Orlando, FL.

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



ယ

MDL = Method Detection Limit



⁽b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 2

Client Sample ID: 50WW06-FEB2007

Lab Sample ID: T16445-4 **Date Sampled:** 02/22/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8260B Percent Solids: n/a

Longhorn Army Ammunition Plant **Project:** 

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 F0079226.D 1 03/08/07 LJ n/an/a VF2318

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	2.0	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



### Accutest Laboratories

# **Report of Analysis**

Page 2 of 2

Client Sample ID: 50WW06-FEB2007

 Lab Sample ID:
 T16445-4
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		73-1	39%	
17060-07-0	1,2-Dichloroethane-D4	98%		66-1	39%	
2037-26-5	Toluene-D8	106%		77-1	48%	
460-00-4	4-Bromofluorobenzene	119%		84-1	50%	

U = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



T16445

₍₃

Page 1 of 1

Client Sample ID: 50WW06-FEB2007

Lab Sample ID: T16445-4 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: RSKSOP-147/175 Percent Solids: n/a

Project: Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025258.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	2.50	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

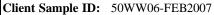
(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range


J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound





Page 1 of 1



Lab Sample ID:T16445-4Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 16:43	AFL	EPA 314
Alkalinity, Total as CaCO3	278	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	44.0	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	209	20	0.57	mg/l	20	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.040 B	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	1260	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	203	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	3.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
рH	7.1			su	1	03/01/07 13:00	TW	EPA 150.1/9040

⁽a) Analysis performed at Accutest Laboratories, Orlando, FL.

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



3.4

indicates a result > = MDL but < KL

U = Indicates a result < MDL

⁽b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Client Sample ID: 50WW05-FEB2007

Accutest Laboratories

Lab Sample ID: T16445-5 **Date Sampled:** 02/23/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
Run #1	F0079169.D	1	03/07/07	LJ	n/a	n/a	VF2314
Run #2	F0079180.D	20	03/07/07	LJ	n/a	n/a	VF2314

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	1.3	2.0	0.52	ug/l	J
75-35-4	1,1-Dichloroethylene	12.9	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	13.5	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	48.2	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	5.1	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	1460 a	40	13	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 2 of 2

Client Sample ID: 50WW05-FEB2007

Lab Sample ID: T16445-5 **Date Sampled:** 02/23/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	2.5 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 105% 105% 114%	105% 104% 108% 129%	73-1 66-1 77-1 84-1	39% 48%	

(a) Result is from Run# 2

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 50WW05-FEB2007

 Lab Sample ID:
 T16445-5
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025259.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	2.93	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 50WW05-FEB2007

Lab Sample ID:T16445-5Date Sampled:02/23/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	27.8	10	4.0	ug/l	1	03/02/07 16:58	AFL	EPA 314
Alkalinity, Total as CaCO3	457	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	73.0	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	253	20	0.57	mg/l	20	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	1800	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	286	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	2.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
рH	7.1			su	1	03/01/07 13:00	TW	EPA 150.1/9040

⁽a) Analysis performed at Accutest Laboratories, Orlando, FL.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





⁽b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Accutest Laboratories

# **Report of Analysis**

Client Sample ID: 50WW02-FEB2007

 Lab Sample ID:
 T16445-6
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
Run #1	F0079194.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #2	F0079234.D	100	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.46	2.0	0.23	ug/l	J
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	4.2	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	5.4	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	6.5	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	18.8	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	855 ^a	200	83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	2.6	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.92	2.0	0.66	ug/l	J
127-18-4	Tetrachloroethylene	9.3	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	5420 a	200	63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



4.

Page 1 of 2

Page 2 of 2

Client Sample ID: 50WW02-FEB2007

 Lab Sample ID:
 T16445-6
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	15.2 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	108% 109% 109% 133%	103% 98% 105% 115%	73-13 66-13 77-14 84-15	39% 48%	

(a) Result is from Run# 2

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



T16445







### Accutest Laboratories

# **Report of Analysis**

Client Sample ID: 50WW02-FEB2007

Lab Sample ID: T16445-6 **Date Sampled:** 02/23/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: RSKSOP-147/175 Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025260.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	1.87	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

3.6

Page 1 of 1

Client Sample ID: 50WW02-FEB2007

Lab Sample ID: T16445-6 **Date Sampled:** 02/23/07 **Date Received:** 02/24/07 Matrix: AQ - Ground Water Percent Solids: n/a

Project: Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	532	10	4.0	ug/l	1	03/02/07 17:12	AFL	EPA 314
Alkalinity, Total as CaCO3	138	5.0	0.30	mg/l	1	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	140	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	219	10	0.57	mg/l	10	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.020 B	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^c	1400	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	198	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	3.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
pH	6.3			su	1	03/01/07 13:00	TW	EPA 150.1/9040

⁽a) Estimated value, above calibration range. Analysis performed at Accutest Laboratories, Orlando, FL.

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





⁽b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

⁽c) Analysis performed at Accutest Laboratories, Orlando, FL.

Page 1 of 2

# **Report of Analysis**

Client Sample ID: 17WW16-FEB2007

Lab Sample ID: T16445-7 **Date Sampled:** 02/22/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8260B Percent Solids: n/a

Longhorn Army Ammunition Plant **Project:** 

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 F0079229.D 1 03/08/07 LJ n/an/a VF2318

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.6	50	2.8	ug/l	J
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	0.63 U	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



### Accutest Laboratories

# **Report of Analysis**

Page 2 of 2

Client Sample ID: 17WW16-FEB2007

Lab Sample ID: T16445-7 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	104% 94% 104% 106%	73-139% 66-139% 77-148% 84-150%			

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound





Client Sample ID: 17WW16-FEB2007

Lab Sample ID:T16445-7Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Method:RSKSOP-147/175Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025261.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	804	0.50	0.30	ug/l	
74-84-0 74-85-1	Ethane Ethene	1.7 2.1	1.0 1.0	0.60 0.80	ug/l ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



C

Client Sample ID: 17WW16-FEB2007

 Lab Sample ID:
 T16445-7
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8330A
 SW846 3535A
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a GG020215.D 1 03/02/07 AFL 03/01/07 F:OP19677 F:GGG906

Run #2

Run #1 Initial Volume Final Volume
1000 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.060 U	0.20	0.060	ug/l	
121-82-4	RDX	0.075 U	0.20	0.075	ug/l	
99-65-0	1,3-Dinitrobenzene	0.070 U	0.20	0.070	ug/l	
606-20-2	2,6-Dinitrotoluene	0.065 U	0.20	0.065	ug/l	
121-14-2	2,4-Dinitrotoluene	0.075 U	0.20	0.075	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.070 U	0.20	0.070	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.080 U	0.20	0.080	ug/l	
98-95-3	Nitrobenzene	0.060 U	0.20	0.060	ug/l	
88-72-2	o-Nitrotoluene	0.060 U	0.20	0.060	ug/l	
99-08-1	m-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
99-99-0	p-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
479-45-8	Tetryl	0.075 U	0.20	0.075	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.095 U	0.20	0.095	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.080 U	0.20	0.080	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
610-39-9	3,4-Dinitrotoluene	109%	70-136%			

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



د

### Accutest Laboratories

**General Chemistry** 

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 17WW16-FEB2007

Lab Sample ID:T16445-7Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

### _____

Analyte	Result	RL	MDL	Units	DF	Analyzed	Ву	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 17:55	AFL	EPA 314
All 1: '- T - 1 C CO2	457	25	0.20	/1	~			
Alkalinity, Total as CaCO3	457	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	0.0 B	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	216	10	0.57	mg/l	10	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	0.30	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.30	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	1700	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	44.0	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	14.0	1.0	0.092	mg/l	1	02/27/07 15:10	LN	EPA 415.1/9060
pН	11.2			su	1	03/01/07 13:00	TW	EPA 150.1/9040

⁽a) Analysis performed at Accutest Laboratories, Orlando, FL.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL





⁽b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Page 1 of 2

Client Sample ID: 17WW02-FEB2007

Lab Sample ID: T16445-8 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F0079196.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #2	F0079235.D	5	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	5.3	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	40.7	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	4.5	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.85	2.0	0.75	ug/l	J
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	479 a	10	3.2	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Page 2 of 2

Client Sample ID: 17WW02-FEB2007

 Lab Sample ID:
 T16445-8
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	Limits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 100% 106% 113%	105% 103% 107% 118%	73-1 66-1 77-1 84-1	39%	

(a) Result is from Run# 2

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



ö

Page 1 of 1

# **Report of Analysis**

Client Sample ID: 17WW02-FEB2007

 Lab Sample ID:
 T16445-8
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025264.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	7.48	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Client Sample ID: 17WW02-FEB2007

 Lab Sample ID:
 T16445-8
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8330A
 SW846 3535A
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a GG020216.D 1 03/02/07 AFL 03/01/07 F:OP19677 F:GGG906

Run #2

Run #1 Initial Volume Final Volume
1000 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.060 U	0.20	0.060	ug/l	
121-82-4	RDX	0.075 U	0.20	0.075	ug/l	
99-65-0	1,3-Dinitrobenzene	0.070 U	0.20	0.070	ug/l	
606-20-2	2,6-Dinitrotoluene	0.065 U	0.20	0.065	ug/l	
121-14-2	2,4-Dinitrotoluene	0.075 U	0.20	0.075	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.070 U	0.20	0.070	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.080 U	0.20	0.080	ug/l	
98-95-3	Nitrobenzene	0.060 U	0.20	0.060	ug/l	
88-72-2	o-Nitrotoluene	0.060 U	0.20	0.060	ug/l	
99-08-1	m-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
99-99-0	p-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
479-45-8	Tetryl	0.075 U	0.20	0.075	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.095 U	0.20	0.095	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.080 U	0.20	0.080	ug/l	
G L G N		D // 1	D // 0			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
610-39-9	3,4-Dinitrotoluene	107%		70-1	36%	
0.000	e, . z iiiii otolaene	10770 70-130				

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



c

Page 1 of 1

Client Sample ID: 17WW02-FEB2007

Lab Sample ID:T16445-8Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 18:10	AFL	EPA 314
Alkalinity, Total as CaCO3	347	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	110	5.0	0.50	mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	994	50	0.57	mg/l	50	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.060	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	3450	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	123	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	3.0	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
pН	6.8			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





Page 1 of 2

Client Sample ID: 17WW02-FEB2007 FD

Lab Sample ID: T16445-9 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
Run #1	F0079197.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #2	F0079236.D	5	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	5.2	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	42.1	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	4.2	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.88	2.0	0.75	ug/l	J
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	468 ^a	10	3.2	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



### Page 2 of 2

**Report of Analysis** 

Client Sample ID: 17WW02-FEB2007 FD

 Lab Sample ID:
 T16445-9
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

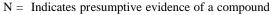
**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 104% 109% 117%	105% 101% 107% 117%	73-1 66-1 77-1 84-1	39% 48%	

(a) Result is from Run# 2

U = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 









Page 1 of 1

Client Sample ID: 17WW02-FEB2007 FD

 Lab Sample ID:
 T16445-9
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	Analytical Batch
Run #1 a	XY025265.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	5.95	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



### Accutest Laboratories

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 17WW02-FEB2007 FD

Lab Sample ID:T16445-9Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

Project: Longhorn Army Ammunition Plant

### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 18:24	AFL	EPA 314
Alkalinity, Total as CaCO3	336	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	110	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	969	50	0.57	mg/l	50	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.050	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	3540	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	130	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	3.0	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
pН	6.8			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





Page 1 of 2

# **Report of Analysis**

Client Sample ID: 29WW35-FEB2007

Lab Sample ID: T16445-10 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Longhorn Army Ammunition Plant **Project:** 

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F0079198.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #2	F0079237.D	5	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume
un #1	5.0 ml
un #2	5.0 ml

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	3.7	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	237 ^a	25	3.4	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	25.6	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



### Accutest Laboratories

# **Report of Analysis**

Page 2 of 2

Client Sample ID: 29WW35-FEB2007

Lab Sample ID: T16445-10 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	109% 107% 108% 116%	104% 100% 104% 115%	73-1 66-1 77-1 84-1	39% 48%	

(a) Result is from Run# 2

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound



 Lab Sample ID:
 T16445-10
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025266.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	5.08	0.50	0.30	ug/l	
74-84-0 74-85-1	Ethane Ethene	0.60 U 0.80 U	1.0 1.0	0.60 0.80	ug/l ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



C

Page 1 of 1

# **Report of Analysis**

Client Sample ID: 29WW35-FEB2007

Lab Sample ID: T16445-10 **Date Sampled:** 02/22/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8330A SW846 3535A Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 03/01/07 Run #1 a GG020217.D 1 03/02/07 **AFL** F:OP19677 F:GGG906

Run #2

**Final Volume Initial Volume** Run #1 1050 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.057 U	0.19	0.057	ug/l	
121-82-4	RDX	0.071 U	0.19	0.071	ug/l	
99-65-0	1,3-Dinitrobenzene	0.067 U	0.19	0.067	ug/l	
606-20-2	2,6-Dinitrotoluene	0.062 U	0.19	0.062	ug/l	
121-14-2	2,4-Dinitrotoluene	0.071 U	0.19	0.071	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.067 U	0.19	0.067	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.076 U	0.19	0.076	ug/l	
98-95-3	Nitrobenzene	0.057 U	0.19	0.057	ug/l	
88-72-2	o-Nitrotoluene	0.057 U	0.19	0.057	ug/l	
99-08-1	m-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
99-99-0	p-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
479-45-8	Tetryl	0.071 U	0.19	0.071	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.090 U	0.19	0.090	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.076 U	0.19	0.076	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
610-39-9	3,4-Dinitrotoluene	98%		70-13	86%	

⁽a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 29WW35-FEB2007

Lab Sample ID: T16445-10 **Date Sampled:** 02/22/07 **Date Received:** 02/24/07 Matrix: AQ - Ground Water Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	21.5	10	4.0	ug/l	1	03/02/07 18:39	AFL	EPA 314
	20.5	٥.	0.20	/4	_			
Alkalinity, Total as CaCO3	295	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	19.0	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride ^b	77.0	2.0	0.57	mg/l	2	04/04/07 13:20	EB	EPA 325.3
Nitrogen, Nitrate ^c	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	618	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	49.0	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	0.70 B	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
pH	7.5			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Confirmation Sample. Analyzed outside of hold time.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



#### Accutest Laboratories

# **Report of Analysis**

Page 1 of 2

Client Sample ID: 29WW35-FEB2007 FD

Lab Sample ID: **Date Sampled:** 02/22/07 T16445-11 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: Percent Solids: n/a SW846 8260B

**Project:** Longhorn Army Ammunition Plant

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 F0079199.D 1 03/07/07 LJ n/aVF2315 n/a

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	2.8	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	168	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	23.4	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 2 of 2

Client Sample ID: 29WW35-FEB2007 FD

Lab Sample ID: T16445-11 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 99% 108% 118%		73-1 66-1 77-1 84-1	39% 48%	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 



Page 1 of 1

Client Sample ID: 29WW35-FEB2007 FD

Lab Sample ID: T16445-11 **Date Sampled:** 02/22/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: RSKSOP-147/175 Percent Solids: n/a

Project: Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025267.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	5.70	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Client Sample ID: 29WW35-FEB2007 FD

 Lab Sample ID:
 T16445-11
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8330A
 SW846 3535A
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a GG020218.D 1 03/02/07 AFL 03/01/07 F:OP19677 F:GGG906

Run #2

Run #1 1050 ml Final Volume
10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.057 U	0.19	0.057	ug/l	
121-82-4	RDX	0.071 U	0.19	0.071	ug/l	
99-65-0	1,3-Dinitrobenzene	0.067 U	0.19	0.067	ug/l	
606-20-2	2,6-Dinitrotoluene	0.062 U	0.19	0.062	ug/l	
121-14-2	2,4-Dinitrotoluene	0.071 U	0.19	0.071	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.067 U	0.19	0.067	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.076 U	0.19	0.076	ug/l	
98-95-3	Nitrobenzene	0.057 U	0.19	0.057	ug/l	
88-72-2	o-Nitrotoluene	0.057 U	0.19	0.057	ug/l	
99-08-1	m-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
99-99-0	p-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
479-45-8	Tetryl	0.071 U	0.19	0.071	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.090 U	0.19	0.090	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.076 U	0.19	0.076	ug/l	
					Ü	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
610-39-9	3,4-Dinitrotoluene	117%		70-13	36%	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



c

# ____

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 29WW35-FEB2007 FD

Lab Sample ID:T16445-11Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	5.1 B	10	4.0	ug/l	1	03/02/07 18:53	AFL	EPA 314
Alkalinity, Total as CaCO3	303	10	0.30	mg/l	2	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	15.0	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride ^b	77.0	2.0	0.57	mg/l	2	04/04/07 13:20	EB	EPA 325.3
Nitrogen, Nitrate ^c	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	796	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	36.0	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	0.90 B	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
pН	7.6			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Confirmation Sample. Analyzed outside of hold time.

(c) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



C

Page 1 of 2

Client Sample ID: 29WW06-FEB2007

 Lab Sample ID:
 T16445-12
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F0079230.D 1 03/08/07 LJ n/a n/a VF2318

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	0.63 U	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



#### Accutest Laboratories

# **Report of Analysis**

Page 2 of 2

Client Sample ID: 29WW06-FEB2007

 Lab Sample ID:
 T16445-12
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

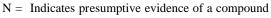
 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

Compound	Result	RL	MDL	Units	Q
Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 98% 104%		66-13 77-1	39% 48%	
· ·	Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4	Vinyl chloride Xylene (total)  Surrogate Recoveries  Run# 1  Dibromofluoromethane 1,2-Dichloroethane-D4  Γoluene-D8  0.32 U 1.1 U 1.1 U 98% 104%	Vinyl chloride Xylene (total)  Surrogate Recoveries  Run# 1  Run# 2  Dibromofluoromethane 1,2-Dichloroethane-D4  Γoluene-D8  Run# 1  105% 104%	Vinyl chloride       0.32 U       2.0       0.32         Xylene (total)       1.1 U       6.0       1.1         Surrogate Recoveries       Run# 1       Run# 2       Limi         Dibromofluoromethane       105%       73-12         1,2-Dichloroethane-D4       98%       66-12         Γoluene-D8       104%       77-14	Vinyl chloride       0.32 U       2.0       0.32 ug/l         Xylene (total)       1.1 U       6.0       1.1 ug/l         Surrogate Recoveries       Run# 1       Run# 2       Limits         Dibromofluoromethane       105%       73-139%         1,2-Dichloroethane-D4       98%       66-139%         Γoluene-D8       104%       77-148%

U = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 





Page 1 of 1

Client Sample ID: 29WW06-FEB2007

 Lab Sample ID:
 T16445-12
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025268.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.30 U	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



#### Page 1 of 1

# **Report of Analysis**

Client Sample ID: 29WW06-FEB2007

 Lab Sample ID:
 T16445-12
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8330A
 SW846 3535A
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
Run #1 a	GG020219.D	1	03/03/07	AFL	03/01/07	F:OP19677	F:GGG906
Run #2 b	GG020236.D	1	03/05/07	AFL	03/01/07	F:OP19677	F:GGG907

	Initial Volume	Final Volume
Run #1	1050 ml	10.0 ml
Run #2	1050 ml	10.0 ml

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.057 U	0.19	0.057	ug/l	
121-82-4	RDX	0.071 U	0.19	0.071	ug/l	
99-65-0	1,3-Dinitrobenzene	0.067 U	0.19	0.067	ug/l	
606-20-2	2,6-Dinitrotoluene	0.062 U	0.19	0.062	ug/l	
121-14-2	2,4-Dinitrotoluene	0.16	0.19	0.071	ug/l	J
35572-78-2	2-amino-4,6-Dinitrotoluene	0.067 U	0.19	0.067	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.17	0.19	0.076	ug/l	J
98-95-3	Nitrobenzene	0.057 U	0.19	0.057	ug/l	
88-72-2	o-Nitrotoluene	0.057 U	0.19	0.057	ug/l	
99-08-1	m-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
99-99-0	p-Nitrotoluene	0.071 U	0.19	0.071	ug/l	
479-45-8	Tetryl	0.071 U	0.19	0.071	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.090 U	0.19	0.090	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.076 U	0.19	0.076	ug/l	
					Ü	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
610-39-9	3,4-Dinitrotoluene	103%	90%	70-13	36%	

⁽a) All hits confirmed by reanalysis on a dissimilar column. Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



C

⁽b) Confirmation run. Analysis performed at Accutest Laboratories, Orlando, FL.

Page 1 of 1

Client Sample ID: 29WW06-FEB2007

Lab Sample ID:T16445-12Date Sampled:02/22/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	20 U	50	20	ug/l	5	03/07/07 18:35	AFL	EPA 314
Alkalinity, Total as CaCO3	856	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	270	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	298	20	0.57	mg/l	20	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	1.3	0.25	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	1.3	0.20	0.0050	mg/l	4	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^c	2640	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	726	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	38.0	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
На	6.8			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Dilution required due to matrix interference. Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(c) Analysis performed at Accutest Laboratories, Orlando, FL.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



c

Page 1 of 2

Client Sample ID: 17WW05-FEB2007

 Lab Sample ID:
 T16445-13
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F0079231.D 1 03/08/07 LJ n/a n/a VF2318

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	0.63 U	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 2 of 2

Client Sample ID: 17WW05-FEB2007

 Lab Sample ID:
 T16445-13
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 100% 103% 109%		73-1 66-1 77-1 84-1	39% 48%	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 



Page 1 of 1

Client Sample ID: 17WW05-FEB2007

 Lab Sample ID:
 T16445-13
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025269.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8 74-84-0	Methane Ethane	349 0.60 U	0.50 1.0	0.30 0.60	ug/l ug/l	
74-84-0	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 17WW05-FEB2007

 Lab Sample ID:
 T16445-13
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8330A
 SW846 3535A
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1 aGG020220.D103/03/07AFL03/01/07F:OP19677F:GGG906

Run #2

Run #1 1000 ml Final Volume
10.0 ml

Run #2

Compound	Result	RL	MDL	Units	Q
HMX	0.060 U	0.20	0.060	ug/l	
RDX	0.075 U	0.20	0.075	ug/l	
1,3-Dinitrobenzene	0.070 U	0.20	0.070	ug/l	
2,6-Dinitrotoluene	0.065 U	0.20	0.065	ug/l	
2,4-Dinitrotoluene	0.075 U	0.20	0.075	ug/l	
2-amino-4,6-Dinitrotoluene	0.070 U	0.20	0.070	ug/l	
4-amino-2,6-Dinitrotoluene	0.080 U	0.20	0.080	ug/l	
Nitrobenzene	0.060 U	0.20	0.060	ug/l	
o-Nitrotoluene	0.060 U	0.20	0.060	ug/l	
m-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
p-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
Tetryl	0.075 U	0.20	0.075	ug/l	
1,3,5-Trinitrobenzene	0.095 U	0.20	0.095	ug/l	
2,4,6-Trinitrotoluene	0.080 U	0.20	0.080	ug/l	
<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	its	
3,4-Dinitrotoluene	107%		70-1	36%	
	HMX RDX 1,3-Dinitrobenzene 2,6-Dinitrotoluene 2,4-Dinitrotoluene 2-amino-4,6-Dinitrotoluene 4-amino-2,6-Dinitrotoluene Nitrobenzene o-Nitrotoluene m-Nitrotoluene p-Nitrotoluene Tetryl 1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene  Surrogate Recoveries	HMX       0.060 U         RDX       0.075 U         1,3-Dinitrobenzene       0.070 U         2,6-Dinitrotoluene       0.065 U         2,4-Dinitrotoluene       0.075 U         2-amino-4,6-Dinitrotoluene       0.070 U         4-amino-2,6-Dinitrotoluene       0.080 U         Nitrobenzene       0.060 U         o-Nitrotoluene       0.075 U         p-Nitrotoluene       0.075 U         Tetryl       0.075 U         1,3,5-Trinitrobenzene       0.095 U         2,4,6-Trinitrotoluene       0.080 U    Surrogate Recoveries Run# 1	HMX         0.060 U         0.20           RDX         0.075 U         0.20           1,3-Dinitrobenzene         0.070 U         0.20           2,6-Dinitrotoluene         0.065 U         0.20           2,4-Dinitrotoluene         0.075 U         0.20           2-amino-4,6-Dinitrotoluene         0.080 U         0.20           4-amino-2,6-Dinitrotoluene         0.080 U         0.20           Nitrobenzene         0.060 U         0.20           o-Nitrotoluene         0.060 U         0.20           m-Nitrotoluene         0.075 U         0.20           p-Nitrotoluene         0.075 U         0.20           Tetryl         0.075 U         0.20           1,3,5-Trinitrobenzene         0.095 U         0.20           2,4,6-Trinitrotoluene         0.080 U         0.20           Surrogate Recoveries         Run# 1         Run# 2	HMX         0.060 U         0.20         0.060 U           RDX         0.075 U         0.20         0.075           1,3-Dinitrobenzene         0.070 U         0.20         0.070           2,6-Dinitrotoluene         0.065 U         0.20         0.065           2,4-Dinitrotoluene         0.075 U         0.20         0.075           2-amino-4,6-Dinitrotoluene         0.070 U         0.20         0.070           4-amino-2,6-Dinitrotoluene         0.080 U         0.20         0.080           Nitrobenzene         0.060 U         0.20         0.060           o-Nitrotoluene         0.060 U         0.20         0.060           m-Nitrotoluene         0.075 U         0.20         0.075           p-Nitrotoluene         0.075 U         0.20         0.075           Tetryl         0.075 U         0.20         0.075           1,3,5-Trinitrobenzene         0.095 U         0.20         0.095           2,4,6-Trinitrotoluene         0.080 U         0.20         0.080    Surrogate Recoveries  Run# 1  Run# 2  Limit	HMX         0.060 U         0.20         0.060 ug/l           RDX         0.075 U         0.20         0.075 ug/l           1,3-Dinitrobenzene         0.070 U         0.20         0.070 ug/l           2,6-Dinitrotoluene         0.065 U         0.20         0.065 ug/l           2,4-Dinitrotoluene         0.075 U         0.20         0.075 ug/l           2-amino-4,6-Dinitrotoluene         0.070 U         0.20         0.070 ug/l           4-amino-2,6-Dinitrotoluene         0.080 U         0.20         0.080 ug/l           Nitrobenzene         0.060 U         0.20         0.060 ug/l           o-Nitrotoluene         0.060 U         0.20         0.060 ug/l           m-Nitrotoluene         0.075 U         0.20         0.075 ug/l           p-Nitrotoluene         0.075 U         0.20         0.075 ug/l           Tetryl         0.075 U         0.20         0.075 ug/l           1,3,5-Trinitrobenzene         0.095 U         0.20         0.095 ug/l           2,4,6-Trinitrotoluene         0.080 U         0.20         0.080 ug/l    Surrogate Recoveries  Run# 1  Run# 2  Limits

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



c

# C.

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 17WW05-FEB2007

Lab Sample ID:T16445-13Date Sampled:02/23/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 19:22	AFL	EPA 314
Alkalinity, Total as CaCO3	422	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	5.2	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	174	20	0.57	mg/l	20	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	1170	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	34.0	20	2.6	mg/l	2	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	3.0	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
рН	8.2			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



ယ

#### Accutest Laboratories

# **Report of Analysis**

Page 1 of 2

Client Sample ID: 7WW06-FEB2007

Lab Sample ID: T16445-14 **Date Sampled:** 02/23/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F0079202.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #2	F0079238.D	5	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	1.5	2.0	0.52	ug/l	J
75-35-4	1,1-Dichloroethylene	6.9	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	8.0	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	9.5	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	2.6	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	205 a	10	3.2	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 



#### Accutest Laboratories

# **Report of Analysis**

Page 2 of 2

Client Sample ID: 7WW06-FEB2007

Lab Sample ID: T16445-14 **Date Sampled:** 02/23/07 Matrix: **Date Received:** 02/24/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

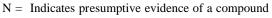
**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 105% 106% 117%	104% 97% 105% 123%	66-1	39% 39% 48% 50%	

(a) Result is from Run# 2

U = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 





Page 1 of 1

# **Report of Analysis**

Client Sample ID: 7WW06-FEB2007

 Lab Sample ID:
 T16445-14
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
Run #1 a	XY025270.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	1.79	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 7WW06-FEB2007

Lab Sample ID: T16445-14 **Date Sampled:** 02/23/07 Matrix: AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8330A SW846 3535A Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 a GG020221.D 1 03/03/07 **AFL** 03/01/07 F:OP19677 F:GGG906

Run #2

**Final Volume Initial Volume** Run #1 1000 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.060 U	0.20	0.060	ug/l	
121-82-4	RDX	0.075 U	0.20	0.075	ug/l	
99-65-0	1,3-Dinitrobenzene	0.070 U	0.20	0.070	ug/l	
606-20-2	2,6-Dinitrotoluene	0.065 U	0.20	0.065	ug/l	
121-14-2	2,4-Dinitrotoluene	0.075 U	0.20	0.075	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.070 U	0.20	0.070	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.080 U	0.20	0.080	ug/l	
98-95-3	Nitrobenzene	0.060 U	0.20	0.060	ug/l	
88-72-2	o-Nitrotoluene	0.060 U	0.20	0.060	ug/l	
99-08-1	m-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
99-99-0	p-Nitrotoluene	0.075 U	0.20	0.075	ug/l	
479-45-8	Tetryl	0.075 U	0.20	0.075	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.095 U	0.20	0.095	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.080 U	0.20	0.080	ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	102%		70-13	36%	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



# 4

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 7WW06-FEB2007

Lab Sample ID:T16445-14Date Sampled:02/23/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 19:36	AFL	EPA 314
All-11::4 T-4-1 C-CO2	226	25	0.20	/1	_	02/02/07 12 50	ED	TD 1 210 1
Alkalinity, Total as CaCO3	336	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	4.8 B	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	1110	50	0.57	mg/l	50	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 09:23	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.0050 U	0.050	0.0050	mg/l	1	02/26/07 09:23	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/24/07 14:28	LN	EPA 353.2
Specific Conductivity ^a	3240	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	92.0	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	4.0	1.0	0.092	mg/l	1	02/28/07 09:08	LN	EPA 415.1/9060
pH	8.2			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



ယ

Page 1 of 2

**Client Sample ID:** TRIP BLANK

Lab Sample ID: **Date Sampled:** 02/22/07 T16445-15 Matrix: AQ - Trip Blank Water **Date Received:** 02/24/07 Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 F0079185.D 1 03/07/07 LJ n/aVF2315 n/a

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	0.63 U	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: TRIP BLANK

 Lab Sample ID:
 T16445-15
 Date Sampled:
 02/22/07

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	106%		73-1	39%	
17060-07-0	1,2-Dichloroethane-D4	102%		66-1	39%	
2037-26-5	Toluene-D8	112%		77-1	48%	
460-00-4	4-Bromofluorobenzene	131%		84-1	50%	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound



L

Page 1 of 2

# **Report of Analysis**

Client Sample ID: 17WW130-FEB2007

 Lab Sample ID:
 T16445-18
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F0079203.D 1 03/08/07 LJ n/a n/a VF2315

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	4.9	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83	2.0	0.83	ug/l	J
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	25.1	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



#### Accutest Laboratories

# **Report of Analysis**

Page 2 of 2

Client Sample ID: 17WW130-FEB2007

 Lab Sample ID:
 T16445-18
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

#### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl chloride	0.32 U	2.0	0.32	ug/l	
1330-20-7	Xylene (total)	1.1 U	6.0	1.1	ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	105%	73-139%			
17060-07-0	1,2-Dichloroethane-D4	102%	66-139%			
2037-26-5	Toluene-D8	106%	77-148%			
460-00-4	4-Bromofluorobenzene	116%	84-150%			

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 



# د

Accutest Laboratories

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 17WW130-FEB2007

 Lab Sample ID:
 T16445-18
 Date Sampled:
 02/23/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/24/07

 Method:
 RSKSOP-147/175
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025271.D	1	03/01/07	AFL	n/a	n/a	F:GXY992
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.51	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

### **Report of Analysis**

Client Sample ID: 17WW130-FEB2007

Lab Sample ID: T16445-18 **Date Sampled:** 02/23/07 **Matrix:** AQ - Ground Water **Date Received:** 02/24/07 Method: SW846 8330A SW846 3535A Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 a GG020222.D 1 03/03/07 **AFL** 03/01/07 F:OP19677 F:GGG906

Run #2

**Final Volume Initial Volume** Run #1 1030 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.058 U	0.19	0.058	ug/l	
121-82-4	RDX	0.073 U	0.19	0.073	ug/l	
99-65-0	1,3-Dinitrobenzene	0.068 U	0.19	0.068	ug/l	
606-20-2	2,6-Dinitrotoluene	0.063 U	0.19	0.063	ug/l	
121-14-2	2,4-Dinitrotoluene	0.073 U	0.19	0.073	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.068 U	0.19	0.068	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.078 U	0.19	0.078	ug/l	
98-95-3	Nitrobenzene	0.058 U	0.19	0.058	ug/l	
88-72-2	o-Nitrotoluene	0.058 U	0.19	0.058	ug/l	
99-08-1	m-Nitrotoluene	0.073 U	0.19	0.073	ug/l	
99-99-0	p-Nitrotoluene	0.073 U	0.19	0.073	ug/l	
479-45-8	Tetryl	0.073 U	0.19	0.073	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.092 U	0.19	0.092	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.078 U	0.19	0.078	ug/l	
					-	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Limi	ts	
610-39-9	3,4-Dinitrotoluene	106%		70-13	36%	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



#### Accutest Laboratories

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 17WW130-FEB2007

Lab Sample ID:T16445-18Date Sampled:02/23/07Matrix:AQ - Ground WaterDate Received:02/24/07Percent Solids:n/a

**Project:** Longhorn Army Ammunition Plant

#### **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 19:51	AFL	EPA 314
Alkalinity, Total as CaCO3	567	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	228	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	1030	50	0.57	mg/l	50	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	2.7	0.55	0.0050	mg/l	1	02/26/07 14:00	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	2.7	0.50	0.0050	mg/l	10	02/26/07 13:03	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/26/07 14:00	LN	EPA 353.2
Specific Conductivity ^a	4140	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	173	40	2.6	mg/l	4	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	6.0	1.0	0.092	mg/l	1	02/27/07 09:10	LN	EPA 415.1/9060
pН	6.7			su	1	03/01/07 13:00	TW	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- LRC Form



### **CHAIN-OF-CUSTODY**

No. 10494

Houston, TX 77042 (713) 996-4400						CHAIN-UF-CUST	OD.	T							110.	10-10-1	
	aboratory Name: Accus	tes	t		Add	fress:	HOUSTON TX 7		Conta	o ect:		M3-		- V	200		
Proje	ughoru Army Et Name Ammunition No.	v Pr	int	Proje	ct Loca	ation H	•	Analysis and Method Desired								Rem	ıarks
Proje	ot No.		Project	Contac	:t		Project Telephone No.					0 4	LO.	Ī~	_		
	117591		KAY	Eu	eRe.	tte	713-996-4421	<u>\$</u>	00	128	7	* a	5 4	ح غا	- 1. .s.	ار ا	İ
	of contact: Diane n	Ney	೯೯	,		Proje	713-996-4421  tt Manager/Supervisor:  LAUCEN	f Contai	82608	S S	376 2	اد 10 م	SOP	e 12	<b>→</b>	. Je	
Telep	hone No. 713-996	96-4408				S	vivastav	ě	િ	ν O	1.5	بح إ	<b>3</b>	-	( ا	30	
No.	Sample Number	Date	Time	Comp	Grab	Matrix	Sample Description, Location	Num	0 >	SKINGOFIZE ANIONS 300.0	Swl	2	GAS	Alkalinity	P	Fxplosive	<del>-</del>
1	29WW38-Feb2007		<del>ග</del> ි			$\omega$	Site 29 GW	3	V								
1	294W 38 - Feb 2007	2-22	0930		V	w	Site 29 GW	3					\				
<u> </u>  3_	29 NW 38 Feb 2007		<i>0930</i>		V	W	Site 29, GW	3							~		
4	29WW38-Feb2007	2-22	<u>093</u> 0			u	Site 29, GW	1		<							
11	2946W38-Feb2007	2-25	0930			W	517e 29, GW	ŀ			<b>V</b>						
6	29WW38-Feb2007	2 -22	<i>0</i> 930		✓	w	Site 27, GW	ı				<b>^</b>					
	29WW38-Feb2007	2-27	Ø930		ď	W	Site 29,6W	1						<b>~</b>			
8,	29WW38-Feb2007	12	<u>ი</u> 9- <u>3</u> ა		<u> </u>		Site 29, GW	2								1	
ajk	<u>ر</u>		ļ														
10																	
						7	ansfers Accepted By (Signature)	Date/		Special i	nstruction	18				,	
Sperry M. Aloo 2-32-07						$\Rightarrow$	at Belsing	7,7	2/07								
Sett Berner 708:36					_	V			we	Makin Ma							
Laborato					$\triangle \mathcal{O}$	Colum 26407/11: Sampler's Signature Sherry M.S. Adoc											
	TAT: Standard Rush	Due:	<u> </u>		alo Int		1. Koch a	194101	40:1	Sample	rs Signa	sture S	Be	rn	(2	22	5 Adoo
	Sandard Rushi			- 36	ens inte	U. r	Y_N Received 6000d C	onaltion	<u> </u>	N_	c	id		~~~	<u>۔ د</u>		

White - Lab Copy Canary - Field Copy Pink - File Copy

T16445: Chain of Custody Page 1 of 10



41	U	44	5
----	---	----	---

TAT:

Standard

Rush Due:

(	Sł	<b>Aw</b> ° Shaw Enviro	nmer	ntal, Ind	С.														
		Briarpark Drive, Suite 4N ston, TX 77042 (713) 996-440													No. 10928				
	La	aboratory Name: Accute	ST			Add	iress:	Houston TX			Conta	ict: A	SNE	s : 7	13 -6	271-	470	0	
Ì	Projec	LONG HORN A			Proje	ct Loca	ation /	Karnack, TX		Analysis and Method Desired (Indicate separate containers)							Remarks		
- 1	Projec			Project C	Contac メモバ	it Te		Project Telephone No. 713-996 442	(	ers	٥	0	6.7	<b></b>	1.	10.1	_		
	Point	11759 / of contact: DIANE Mey	وفر					t Manager/Supervisor.		Number of Containers	8260	300	376.	SI SI	SLI	MKALINITY 310	1124		
	Telept	hone No. 713-996-4	108	1	_		1	1UASTAV		mber of	ږږ	Sanatal Arabas	Sulfres	م ج	£	1.5	J		
г	R e		Date	Time	Comp	Grab	Matrix	Sample Description, I		Ñ	Vocs	23	S	कु	G145 BS		Toc		
2	1	47 WW30-FEB2007	2/22/07	0941		X	Gω	47WW30		13	$\times$	$ \times $	X	$\times$	X	X	X		
3	4	LHS MW43-FEB 2007	<i>८५/८५/७७</i>	1100		Х	GW	LHS MW 43		13	人	х	X	X	人	X	X		
H	3	SOWWOG-PERLOUT	عاضاه	1530		×	6W	SOWWOO		13	×	×	×	X	X	X	Q		
-	4																		
ļ	5																		
Ĺ	6													Ī					
	7																		
	8																		$\neg$
	9																		$\exists$
Ĺ	10																		
F			ate/Time Transfers Accepted By (Signature)				Date/		Special in	struction	s								
Ļ	<del>- (</del>	J. Rel		2/22/0-	lor @1800 Joan Posing				18:00										

White - Lab Copy Canary - Field Copy Pink - File Copy

Received Good Condition

Sampler's Signature

T16445: Chain of Custody Page 2 of 10



776445	7	lec	145
--------	---	-----	-----

Shaw [®] Shaw Environmen	ucu, ii ic	J.			CHAIN-OF-CUS	TODY	7							No. 10918
Houston, TX 77042 (713) 996-4400 Laboratory Name: Accu fest			Add	ress:	10165 Harwin de	, # 15°		act: As	gnes.	_				
Longhorn Army				. \	Houston TX. 77	<u>036</u>		Analys	7/3 sis and N	≁ & I Method		20		T
Project Name Annunition Phases	Project (	Projec	t Loca	ation F	Project Telephone No.			(Indica	te separ	ate con	tainers)	· · · · · ·		Remarks
117591 Point of contact: DIANE Meyer	Project C Kay Eviza:	217 <b>E</b>			713-996-4421	Sea	1 2		۲,	<del>,</del>	.,	-3		
Point of contact: DIPLIE Meyer					ct Manager/Supervisor: 人分いさとん	Contai	30	300	376,2	2.	SLI	386	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Telephone No. 713-996-4408	· · · · · · · · · · · · · · · · · · ·				CIVASTAV	per of	\ \sigma		des	orah	%	417		
Sample Number Date	Time	Сотр	Grab	Matrix	Sample Description, Location	Number of Containers	\ Voc.\s	PAIONS	Sulfides	And lorate 314	Gases	AKAlindy 310,	لم	
50WW 05-P082007 20007	1046		Х	GW	SOWWOS	137	Х	X	X	X	メ	×		ms/msp Include
\$ SOWWOJ-FEBZOOT 23507	1453		X	GW	50WW02	13	X	X	X	X	X	X	X	
3														
5														
6						-								
7						1								
8														
9														
10		l												
Transfers Relinquished By (Signature)	Date	e/Time		Ţŗ	ansfers Accepted By (Signature)	Date/		Special I	nstruction	3				
	<u> 2020 - 2020 - 2</u>			$\leq$	cott Bac sing	2/23	107							
Scott Belsings	18	00		0			INTS FedEx/	Vialen bi						
				Laborat	ory O	Phylos		Sample						· ·
TAT: Standard Rush Due:		Sei	als inte	ct? 🔻	Y_N Received 600		सान्त	7 .	$\eta \ddot{s}$		<u> </u>			

T16445: Chain of Custody Page 3 of 10



_	T16445	
Shaw •	Shaw Environmental, Inc.	
3010 Priomork		

Houston, TX 77042 (713) 996-4400 CHAIN-OF-CUS																No.	10930	
	Laboratory Name: Accutest Address: Houston TX 770											rgn:	లక	(7	13).	27	14	700
	ct Name LHAAP			Proje	ct Loca		Sarnack	TX	Analysis and Method Desired (Indicate separate containers)					Remarks				
Proje	117.591		Project 사스, 년	Contac	*		Project Telephone I	4421	819				1				1,0,11,0	110
- 1	of contact: D. Meye	r5				Proje	ct Manager/Supervise	or:	Number of Containers	0	Š.	34	lora	0.	かいり	-	Ve5	
	hone No. (113) 99	<u>ا - کا</u>	<del>440</del>		Γ_		<del></del>		uper o	و را	50	وبي	J ±	35	25. 20. 20. 20.	12 12 12	305	
No He	Sample Number	Date	Time	g	Grab	Matrix	Sample Descript	on, Location	Ž	2%	ξų	9215 276	Perchlor 314	Cases	AIN	P -	EXP195	
7 1	17WW16-Feb2007	2-22 07	1030	<u>L</u> .	~	W	GW, Sit	دا۲	15	3	1	1	1	3	1	3	2	<u></u>
3 2	17WW02-Feb2007		1418 1036	Star.	✓	$\omega$	GW, Si	te 17	15	3	l	1	1	უ	1	3	2	
1 3	17WW02-Feb2007	242	1418		<u> </u>	w	GW, SH	<del>و</del> ۱۳	15	3	1	$\perp$	I	m	1	B	೩	FD
4																		
5																		
6																		
7																		
8																		
9																		
10	repeters Relinquished By (Signatu	ire)	Do	te/Time				(5)				اا						
Ze	Date/Time Transfers Accepted By (Signature)  2/23/07 8:22 Well Result								Date/ 2/23		Special in	struction	15					
	South Source 2/23/27																	
-					$\dashv$	Laborat		1,-	المارية	i	edEX A			_		<del>-</del>		-
	TAT: Standard Rush I	Due:		Sea	als Intac	#?	N	Received Good C	ondition_	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	N_	Col	_		-1			
						Vhite	- Lab Copy Can	ary - Field C	DDV P	ink - F	ile Cor				0			

T16445: Chain of Custody Page 4 of 10



T16445
Shaw Environmental, Inc.
3010 Briamark Drive Suite 4M

3010 Briarpark Drive, Suite 4N Houston, TX 77042 (713) 996-4400		CHAIN-OF-CUSTODY										No. 10957		
Laboratory Name: Accute	st	Address:	10165 H	AGWIN	De	# 1 Conta	50 ict:		A	326	ے		· · · · · ·	1
			Houston	3. TX 7	70.	36						<u>- 4-</u>	200	l
LONGHORN ARMY	1				Analysis and Method Desired								1	
Project Name Ammunitios ( Project No.	Location P	TARIVE C	(Indicate separate containers)								Remarks	1		
					10 2		0	<b>K</b>	우그램	1 - <del>1</del>	<u>ا</u> ب √	<b>†</b>		
Point of contact:	THATEN	<u>eRelle</u>	713-996- ct Manager/Supervise	4421	ξg	ک کا	i	300.0	ې نړ	\$ 'G	2+	1 5		l
Point of contact: DiANE Men	yer		ct Manager/Supervisor: と合しととん		Containers	30P175	7	-	326.2 USides	0.0	m 2	18,		ĺ
Telephone No. 713-996-4	408	5	RIVASTA	ŧv	رت وا	S	(ل	0	4	يك	Œ	1 🛪		ĺ
Sample Number Date	Time C	Grab	Sample Descript		- N	GASES	o F	2 U	ر) ک	Perch	All Kall	M X		
10 29WW35-Feb2007 07	1245	VW	Siteag		3	3	٦	,	7	1	1	$\vdash$	15container	_
2923035-Fcb 2007-Fi 07		VW	Site 29			3	B		,	1	<u>'</u>	a	FDs	
12 29WWO6-Feb 2007 07	1500	√ W	Site 29	5W (15		3	<b>3</b>	7	7	1	7	2.	15 contains	٥٥
4				:									13 00 2 (1110)	
5														ĺ
6														
7														ì
8				-										
9													·	
10														
Transfers Relinquished By (Signature)	Date/Time	Ŧş	ansfers Accepted By	(Signature)	Date/		Special In	struction	,				·	
Spercy M. Adon	2-22-07 1700 2/23/07 08:30		con Fasige		<u>ح</u> /ح: 17	00	_							٠
Jan Maria	08.30					+	edex A	No llidrin	.:			•		
		Laborat	or () . Roca	w	Hodes	Hirr	Sampler	's Signa	ture	Ber		22	25 Pdo	
TAT: Standard Rush Due:	Seals	s Intact? 🦳	YN	Received Good C	Condition		N_	<u> Ceof</u>	1	200	$\overline{\mathbf{x}}$		COT EXON	

White - Lab Copy Canary - Field Copy Pink - File Copy

T16445: Chain of Custody Page 5 of 10



		ı
	_	Ĺ

- T1644S												,	75011
110443				:									
Shaw Shaw Environmer	ntal, Inc.												
3010 Briarpark Drive, Sulte 4N Houston, TX 77042 (713) 996-4400	_		CHAIN-O	F-CUST	OD.	Y							No. 10956
Laboratory Name: Accutes	<u>.</u>	Address				Cont	50 act:		Agi	ves			
Project Name Ammunition T		·	Houston	<u>, TX 7</u>	<u>יסל</u>	36			713	-27	1-4	204	<u> </u>
Project Name Ammunitiont	A NT Proje	ect Location	YARNACK	TX				is and M te sepan					Remarks
I I D C O I	Project Conta	ıct	Project Telephone I	No.	, s	60	2 2	-	0	4	0 0	18	_
117591 Point of contact: Diane Mey	IKAY EN	erett	7/3-996 ect Manager/Superviso	<u>-4421</u>	ajie	2608	100	1 5	30°.	ې بې	₹ E		
DIANETHEY	E1C.	Ħ	EAU CEN	<b>"</b> .	Sol	22	Se 1	) 7	" Y	治귀	r 8	$5   \bar{2}$	
Telephone No. 713-996-44			eivasta	<u> </u>	jo Jo	ا ّ د	), n	ار_ ا	ā	(1)	द्र		
	Time S	Grab Matrix			Number of Containers	(	SASES-C	101	ANIONS	Pi3I7	314.	취직	
Sample Number Date	Time &	୍ର ଅ ଅ	Sample Descript		Z	>	ଅ	)-4	æ	SL	(2)	阿	
13 17WW 05-FEB-2007 7/23/27	1533	1- W	97W 17W1	WAS.	15	3	3	3	T	ī	1 /2	1	-
14 Awwos - FEBROOTEN	16:34	VL	GW 17WU		14	3	-2	3		1	1 1	7,	
3 +b QR-2-2407			1		<del>, ,</del>	<b>-</b>	1	<del>"</del>	*	<del>'</del>	<del>`  </del> '	++	
0 4						$\vdash$	Н	-+	-+			$\dashv$	
7 5		<del>                                     </del>		<u> </u>					-	$\dashv$	$\dashv$	++	
6	<del> </del>	$\vdash$	<del> </del>					-		-+		+	
7	<del>                                     </del>	$\vdash$	<del> </del>	-					- 4		_	44	
18 17 WW 1 30 - FEB 2007 2/33	10:47	R- 2-8	102				-		_	_	$\dashv$	11	
9	10.47 /	K. 200	<i>101</i>						_			11	
									_4	_		$\sqcup$	
	Date/Tim		1		لـــــــا							1	
M. 1881 -7	2/23/07		ransfers Accepted By	(Signature)	Date/ >/2 /7	Time 3/07	Special in	structions	ŀ				
Sex Beer	2/23/07/		· Lines	X	17:		و						
		<del>-'0</del>					FOODERA	irbiil No.	:				
		Labora	tory 1. Karl	1/2	Hauls	2/11	Sempler	's Signat	ure /	///	1/1/		$\overline{}$
TAT: Standard Rush Due:	Se	eals intact?	D_N	Received Good C	ondition_	41	<u>.,                                    </u>	M-Coré		1/	4		
		White	- Lab Copy Can	ary - Field Co	nny P	ink - E	ile Cor						

T16445: Chain of Custody Page 6 of 10



ACCUTEST.	TEST.	VARIANCE MEMO SAMPLE LOG-IN	
SAMPLE(S) VAYIOUS PROJECT / 444D	ious		DATE 47407
1 1			TIUMS
VARIANCE - Che	VARIANCE - Check applicable items(s):	s(s):	
lnsuffic	Insufficient sample sent for proper analysis;	oroper analysis; received approx.	
Sample	e bottle received brok	Sample bottle received broken and/or cap not intact.	
Sample	es received without pa	Samples received without paperwork; paperwork received without samples.	ımples.
X sample deeme	es received without pr ad necessary. Temne	deemed necessary. Temperature at receipt:	
Illegible	e sample number or k	Illegible sample number or label missing from bottle.	
Numbe	ers on sample not the	Numbers on sample not the same as numbers on paper work.	
incom	plete instructions rece	incomplete instructions received with sample(s) ie.,no request	
no due	no due date, etc. Tempe	no due date, etc. Temperature at reciept:	
Sample	es received in imprope	Samples received in improper container or lacking proper preservation.	
Physical (	al characteristics diffe	Physical characteristics different than those on sampling sheets;	
Rush s	samples on hold becar	Rush samples on hold because of incomplete paperwork.	
Other (	(specify) # (I - RC'A . W ON Exp	1. W One Explosive Container	not two.
418-17	DWISO FER	2007 was an extra samole 1211. & with in the Poll	not my the Col
38	Se attached 11st	of Samples actived act	of temp.
CORRECTIVE ACTION TAKEN	TION TAKEN		
Dirue M.	Person Contacted	ted By phone.	
Client	Client informed verbally.		Samples processed for informa-
Client	Client informed by memofletter. Gmail		tion only and noted on report.
Sample	Samples processed as is.	Samples	Samples processed with higher
Sample	Samples preserved by lab.		detection limits accepted.
Notes: Analy at	<u>u</u>	Samples rejected.	ejected.
18) Analyze All		2 How.	
1	SXIS DER DIANE		
ROUTING	LH	ŀ	
Sample Manager		INITIALS CORRECTED?	
Login:	2/20/A	 	
Comments:			
			Form: SM006

T16445: Chain of Custody Page 7 of 10



1- plastic sou me woll habt & Zinc Acetate.

Sampted out of temp.: 11.0°C # A- 47 www 30- Feb 2007 - 2/18/04.00 oq:41
A- Plastic 1000 milk unpreserved.

# 7-17 WW16-FEB 2007- Horlot @ 10:30.

1- Plastic 1000 ml unpreserved

2- Plastic 1000 ml4 unpreserved

1- Plastic 1000 ml4 unpreserved

1- Plastic 1000 ml4 unpreserved.

# 0- 24 WW25-FEB 2007- 2/37/07/0/14:18- FB

2- Plastic 1000 ml2 unpreserved.

1- Plastic 1000 ml2 unpreserved.

1- Plastic 1000 ml2 unpreserved.

1- Plastic 500 ml2 unpreserved.

2- Plastic 1000 ml2 unpreserved.

1- Plastic 500 ml2 unpreserved.

2- Plastic 1000 ml2 unpreserved.

2- Plastic 1000 ml2 unpreserved.

T16445: Chain of Custody Page 8 of 10



													!								(	90	<del>07</del>	90	)4	4_
			nge.	ners. stody.			U. <2, >12. NA		U, <2, >12, NA	(1)2,3,4,5,6, (0) <2, >12, NA	U(C), >12, NA	(1)2,3,4,5,6 (10)<2, >12, NA	U, <2, >12, NA	U, <2, >12, NA	U, <2, >12, NA	92,3,4,5,6 (y <2, >12, NA	12,3,4,5,6 (0) <2, >12, NA	U, 💋>12, NA	U, <2, >12, NA	U, <2, >12, NA	U, <2, >12, NA	()2,3,4,5,6 () <2, >12, NA			1 '	O O
			nation): thin temp. ra	roper contain chain of cus			1,2,3,4,5,6		1,2,3,4,5,6	(1)2,3,4,5,6,	1,2,3,4	(1)2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6	92,3,4,5,6	(1)2,3,4,5,6	1,2,3,4, <b>£</b> )6	1,2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6	(1)2,3,4,5,6				COOLER TEMP: 0-6
<u>S</u> ::	Ž		see variance for explanation): Samples received within temp. range	<ul> <li>Sample received in proper containers.</li> <li>Sample received with chain of custody</li> </ul>		-	N P T	SWB	ak, H		}	SWB	VIREF	SIMB	sk, 2	_		<b>-</b>	VREF	Sub	れれ	-			2	70
11/69/1	INITIALS	INITIALS.		N Sample N Sample	rainers. ofer.	oottles.	Contract of the second	_	-1	Ploor	PSOU	SHOOD	Your.		4	Provu	P50b	-	40 ml.		$\overline{}$	(100)	e Freezer			COOLER TEMP:_ COOLER TEMP:_
( ) J	j			4. @	llysis on con evident on co	t evident on t	2																ct EF: Encore Freeze H 6: Other	Comments:		
ביבים סאונים			" for no or NA. ondition.	/sis.	e ius and ana id tamper not i	and tamper no	2/22	000	==			7	243	}								{	SUB: Subcontract EF: En 4: H2SO4 5: NAOH 6: Other		-	ı
	1		sle "Y" for yes and "N ved in undamaged o	ved with proper pH. ne sufficient for analy	tody matches <b>samp</b> i tdspace acceptable eal received intact ar	seal received intact	12.10	4-6	54	6)-01	ارځ	14-12	1-9	81 - 01	19-27	28-32	33-35	36-28	6-1	44	b-t			iding volatiles	_	- 1
+	<b> </b>		dition/Variance (Circ	N Sample recei	N Chair of Cus N Samples Hea N NA Custody so		1 126 280			7	( 2.340 Bul	8 18	9						3	_			CATION: WI: Walk-in ESERVATIVES: 1: Non	of waters checked exclu	of soils N/A	Delivery method: Courier:
SIII / type/fe The percenter Applit # 801	Shaw		Spatition/ N	5. N Sample received with proper pH. 5. N Sample volume sufficient for analysis. 7. N Chain of Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c	No. Chain or Custody matches sample lus and analysis on containers.  R. R. N. Samples Headspace acceptable.  9. R. N. NA. Custody seal received intact and tamper not evident on cooler.	O. Y N N Custody sea	12/01/01/02/0	9-6	bt	e1-01 T 1			6-1	( 81-01	19-27	28-32	33-14	34-38	1 - 2 - 1 n	4.4	b-t		LOCATION: WI: Walk-in VR: Volatile Refrig. SUB: Subco PRESERVATIVES: 1: None 2: HCL 3: HNO3 4: H2SO4 5: 1		ecked excluding valatiles	Λ

SAMPLE RECEIPT LOG

T16445: Chain of Custody Page 9 of 10



T16445: Chain of Custody Page 10 of 10



# **Appendix A** Laboratory Data Package Cover Page

	package (			
Ţ.	This s	si gnat	ure page, the laboratory revie	w checklist, and the following reportable data:
Ţ.	R1	Fiel	d chain-of-custody document	ation;
į.	R2	San	ple identification cross-refer	ence:
	R3			ts) for each environmental sample that includes:
-	103			C 5.13 or ISO/IEC 17025 Section 5.10
				C 3.13 01 ISO/IEC 17023 Section 3.10
		,	dilution factors,	
			preparation methods,	
			cleanup methods, and	
		e)	if required for the project, te	ntatively identified compounds (TICs).
	R4	Sur	ogate recovery data includin	<u>z</u> :
		a)	Calculated recovery (%R), a	nd
		b)	• , , , ,	
	R5	- /	reports/summary forms for	
ļ	R6			aboratory control samples (LCSs) including:
Ļ	NO			aboratory control samples (ECSS) including.
			LCS spiking amounts,	1
			Calculated %R for each ana	
			The laboratory's LCS QC li	
Ţ.	R7			ike/matrix spike duplicates (MS/MSDs) including:
		a)	Samples associated with the	MS/MSD clearly identified,
		b)	MS/MSD spiking amounts,	
		c)	Concentration of each MS/N	ASD analyte measured in the parent and spiked samples,
				percent differences (RPDs), and
			The laboratory's MS/MSD (	
	R8			f applicable) recovery and precision:
	No			
			the amount of analyte measu	red in the duplicate,
			the calculated RPD, and	
			the laboratory's QC limits for	
Ţ.	R9			s (MQLs) for each analyte for each method and matrix;
Ţ.			er problems or anomalies.	
	The	Excep	otion Report for every "No" of	or "Not Reviewed (NR)" item in laboratory review checklist.
			•	•
Rele	reviewed used, exc to the bes affect the	by the cept we st of note that the cept we have a september 1. The cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that the cepter that	e laboratory and is complete here noted by the laboratory ny knowledge, all problems/a ty of the data, have been iden	ease of this laboratory data package. This data package has been and technically compliant with the requirements of the methods in the attached exception reports. By me signature below, I affirm nomalies, observed by the laboratory as having the potential to ntified by the laboratory in the Laboratory Review Checklist, and withheld that would affect the quality of the data.
Che	respond APAR)	ing to in wh	rule. The official signing	y is an in-house laboratory controlled by the person the cover page of the rule-required report (for example, the responsible for releasing this data package and is by signature true.
Ron	Martino		Kon Mark	Lab Director 3/19/2007
Nam	e (Printed	l)	Signature	Official Title (printed) Date



1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

		dix A (cont'd): Laboratory Review Checkli						
Labo	oratoi	ry Name: Accutest Laboratories Gulf Coast	RC Date: 3/19/2007					
Proj	ect N	ame: Longhorn	aboratory Job Number: T16445					
Revi	iewer	Name: Ron Martino Pr	rep Batch Number(s):					
#1		Description		Yes	No	$NA^3$	NR ⁴	ER#
		Chain-of-custody (C-O-C)						
R1	OI	Did samples meet the laboratory's standard conditions of sar	mple acceptability upon receipt?	X	İ			
		Were all departures from standard conditions described in an		X				
R2	OI	Sample and quality control (QC) identification						
	01	Are all field sample ID numbers cross-referenced to the labo	ratory ID numbers?	X				
	!	Are all laboratory ID numbers cross-referenced to the correspondence		X			Ì	
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding times	s?	X	İ			
	İ	Other than those results < MQL, were all other raw values by	racketed by calibration standards?	X	ĺ	ĺ	Ì	
		Were calculations checked by a peer or supervisor?		X				
		Were all analyte identifications checked by a peer or supervision		X				
		Were sample quantitation limits reported for all analytes not	detected?	X				
		Were all results for soil and sediment samples reported on a			ļ	X		
		Were % moisture (or solids) reported for all soil and sedimer	nt samples?	ļ		X		
		If required for the project, TICs reported?				X		
R4	О	Surrogate recovery data						
		Were surrogates added prior to extraction?		X				
		Were surrogate percent recoveries in all samples within the l	aboratory QC limits?	X				
R5	OI	Test reports/summary forms for blank samples			ļ	i		
		Were appropriate type(s) of blanks analyzed?		X				
		Were blanks analyzed at the appropriate frequency?		X				
		Were method blanks taken through the entire analytical proc	ess, including preparation and, if	X				
		applicable, cleanup procedures? Were blank concentrations < MQL?		X				
R6	OI	Laboratory control samples (LCS):		Λ				
L C	O1 	Were all COCs included in the LCS?		X				
		Was each LCS taken through the entire analytical procedure,	including prep and cleanup steps?	X				
		Were LCSs analyzed at the required frequency?	the lading prop and oleanap stops.	X				
		Were LCS (and LCSD, if applicable) %Rs within the laborat	ory OC limits?	X				
		Does the detectability data document the laboratory's capabi		X			Ì	
		to calculate the SQLs?	.,					
		Was the LCSD RPD within QC limits?				X		
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) dat	a					
		Were the project/method specified analytes included in the M	AS and MSD?	X	ļ	ļ		
		Were MS/MSD analyzed at the appropriate frequency?		X	ļ	ļ		
		Were MS (and MSD, if applicable) %Rs within the laborator	ry QC limits?		X			2
		Were MS/MSD RPDs within laboratory QC limits?		X				
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each mat		X			]	
		Were analytical duplicates analyzed at the appropriate freque		X				
	0-	Were RPDs or relative standard deviations within the laborat	tory QC limits?	X				
R9	OI	Method quantitation limits (MQLs):		-				
		Are the MQLs for each method analyte included in the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of the laboration of		X				
		Do the MQLs correspond to the concentration of the lowest i		X				
D10	0.7	Are unadjusted MQLs included in the laboratory data packag	ge?	X				
<b>K10</b>	OI	Other problems/anomalies	' d' IDC   IEDO	<b>X</b> 7				
	 	Are all known problems/anomalies/special conditions noted		X				
		Were all necessary corrective actions performed for the repo - organic analyses; I = inorganic analyses (and general chemistry, wh		X				

- 2. = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
   3. NA = Not applicable;
- 4. NR = Not reviewed;
- ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).



		į						
Project N	Name: L	Lai	boratory Job Number: T16445					
		I I	ep Batch Number(s):					
$\#^1$	$A^2$	Description		Yes	No	$NA^3$	NR ⁴	ER#
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for each	analyte within QC limits?	X				
		Were percent RSDs or correlation coefficient criteria met?		X				
		Was the number of standards recommended in the method used	•	X			ļ	1
		Were all points generated between the lowest and highest standa	ard used to calculate the curve?	X		 	ļ	}
		Are ICAL data available for all instruments used?		X		 		-
S2	OI	Has the initial calibration curve been verified using an appropria Initial and continuing calibration verification (ICCV and CO		Α				
32	OI	Was the CCV analyzed at the method-required frequency?	CV) and continuing canoration	X				
		Were percent differences for each analyte within the method-rec	uired OC limits?	X		 	ļ	ł
		Was the ICAL curve verified for each analyte?	funca QC mints.	X		! 	İ	ì
		Was the absolute value of the analyte concentration in the inorga	anic CCB < MDL?	X		! 		ì
S3	О	Mass spectral tuning:						
	İ	Was the appropriate compound for the method used for tuning?		X				
	İ	Were ion abundance data within the method-required QC limits	?	X			Ì	Ì
S4	O	Internal standards (IS):						
		Were IS area counts and retention times within the method-requ		X				
S5	OI	Raw data (NELAC section 1 appendix A glossary, and section						
		Were the raw data (for example, chromatograms, spectral data)		X			ļ	
9.6	_	Were data associated with manual integrations flagged on the ra	w data?	X				
S6	О	Dual column confirmation	0.00			<b>T</b> 7		
C/T		Did dual column confirmation results meet the method-required	QC?			X		
S7	О	Tentatively identified compounds (TICs):  If TICs were requested, were the mass spectra and TIC data sub	icat to ammonwista absolve?			X		
S8	I	Interference Check Sample (ICS) results:	ject to appropriate checks?			Λ		
50	1	Were percent recoveries within method QC limits?				X		
	I	Serial dilutions, post digestion spikes, and method of standar	rd additions			21		
		Were percent differences, recoveries, and the linearity within the				X		
S10	OI	Method detection limit (MDL) studies	e qui minis specimes in me memou.					
		Was a MDL study performed for each reported analyte?		X		İ		
	lor	Is the MDL either adjusted or supported by the analysis of DCS	69	X			İ	Ĺ
S11	OI	Proficiency test reports:						
	İ	Was the laboratory's performance acceptable on the applicable p	proficiency tests or evaluation studies?	X				
S12	OI	Standards documentation	Ž					
		Are all standards used in the analyses NIST-traceable or obtaine	ed from other appropriate sources?	$\mathbf{X}$				
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification docume	ented?	X				
S14	OI	Demonstration of analyst competency (DOC)	O/FEG 40	<b>T</b> 7				
		Was DOC conducted consistent with NELAC Chapter 5C or ISo		X				
C1 <i>E</i>	OI	Is documentation of the analyst's competency up-to-date and on		X				
S15	OI	Verification/validation documentation for methods (NELAC		v				
S16		Are all the methods used to generate the data documented, verif	ieu, and vandated, where applicable?	X				
210	OI	Laboratory standard operating procedures (SOPs):  Are laboratory SOPs current and on file for each method performed?  X						

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.



O= organic analyses; I= inorganic analyses (and general chemistry, when applicable). NA=Not applicable.

³ 

NR = Not Reviewed.

 $ER\#=Exception\ Report\ identification\ number\ (an\ Exception\ Report\ should\ be\ completed\ for\ an\ item\ if\ "NR"\ or\ "No"\ is\ checked).$ 

Laborat	ory Name: Accutest Laboratories Gulf Coast	LRC Date: 3/19/2007						
Project :	Name: Longhorn	Laboratory Job Number: T16445						
Review	er Name: Ron Martino	Prep Batch Number(s):						
ER# ¹	DESCRIPTION	·						
1 2	For reporting purposes, the MQL is defined in the report as the RL. The unadjusted MQL/RL is reported in the method blank. The SQL/MDL is defined in the report as the MDL.  All anomalies are discussed in the case narrative.							

 $ER\# = Exception \ Report \ identification \ number \ (an \ Exception \ Report \ should \ be \ completed \ for \ an \ item \ if \ ``NR" \ or \ ``No" \ is \ checked \ on \ the \ LRC)$ 

## GC/MS Volatiles

## QC Data Summaries

### Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries



# **Method Blank Summary**

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2314-MB	F0079164.D	1	03/07/07	LJ	n/a	n/a	VF2314

The QC reported here applies to the following samples: Method: SW846 8260B

T16445-1, T16445-2, T16445-5

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	2.8	ug/l
71-43-2	Benzene	ND	2.0	0.23	ug/l
75-27-4	Bromodichloromethane	ND	2.0	0.33	ug/l
75-25-2	Bromoform	ND	2.0	0.65	ug/l
108-90-7	Chlorobenzene	ND	2.0	0.54	ug/l
75-00-3	Chloroethane	ND	2.0	0.46	ug/l
67-66-3	Chloroform	ND	2.0	0.66	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.62	ug/l
56-23-5	Carbon tetrachloride	ND	2.0	0.52	ug/l
75-34-3	1,1-Dichloroethane	ND	2.0	0.52	ug/l
75-35-4	1,1-Dichloroethylene	ND	2.0	0.68	ug/l
107-06-2	1,2-Dichloroethane	ND	2.0	0.53	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.59	ug/l
124-48-1	Dibromochloromethane	ND	2.0	0.68	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	2.0	0.83	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.59	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.75	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.61	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	1.9	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	7.3	ug/l
74-83-9	Methyl bromide	ND	2.0	0.47	ug/l
74-87-3	Methyl chloride	ND	2.0	0.60	ug/l
75-09-2	Methylene chloride	ND	5.0	0.67	ug/l
78-93-3	Methyl ethyl ketone	ND	10	3.0	ug/l
100-42-5	Styrene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.37	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.46	ug/l
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.66	ug/l
127-18-4	Tetrachloroethylene	ND	2.0	0.74	ug/l
108-88-3	Toluene	ND	2.0	0.54	ug/l
79-01-6	Trichloroethylene	ND	2.0	0.63	ug/l
75-01-4	Vinyl chloride	ND	2.0	0.32	ug/l
1330-20-7	Xylene (total)	ND	6.0	1.1	ug/l



# 00079052

**Method:** SW846 8260B

Page 2 of 2

# **Method Blank Summary Job Number:** T16445

ITTXHO Shaw E & I, Inc. Account:

**Project:** Longhorn Army Ammunition Plant

Sample VF2314-MB	<b>File ID</b> F0079164.D	<b>DF</b> 1	<b>Analyzed</b> 03/07/07	By LJ	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VF2314

The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-5

CAS No.	<b>Surrogate Recoveries</b>	Limits

1868-53-7	Dibromofluoromethane	104%	73-139%
17060-07-0	1,2-Dichloroethane-D4	100%	66-139%
2037-26-5	Toluene-D8	106%	77-148%
460-00-4	4-Bromofluorobenzene	113%	84-150%







## **Method Blank Summary**

**Job Number:** T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2315-MB	F0079184.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples:

 $T16445-3,\ T16445-6,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-11,\ T16445-14,\ T16445-15,\ T16445-18$ 

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	2.8	ug/l
71-43-2	Benzene	ND	2.0	0.23	ug/l
75-27-4	Bromodichloromethane	ND	2.0	0.33	ug/l
75-25-2	Bromoform	ND	2.0	0.65	ug/l
108-90-7	Chlorobenzene	ND	2.0	0.54	ug/l
75-00-3	Chloroethane	ND	2.0	0.46	ug/l
67-66-3	Chloroform	ND	2.0	0.66	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.62	ug/l
56-23-5	Carbon tetrachloride	ND	2.0	0.52	ug/l
75-34-3	1,1-Dichloroethane	ND	2.0	0.52	ug/l
75-35-4	1,1-Dichloroethylene	ND	2.0	0.68	ug/l
107-06-2	1,2-Dichloroethane	ND	2.0	0.53	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.59	ug/l
124-48-1	Dibromochloromethane	ND	2.0	0.68	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	2.0	0.83	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.59	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.75	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.61	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	1.9	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	7.3	ug/l
74-83-9	Methyl bromide	ND	2.0	0.47	ug/l
74-87-3	Methyl chloride	ND	2.0	0.60	ug/l
75-09-2	Methylene chloride	ND	5.0	0.67	ug/l
78-93-3	Methyl ethyl ketone	ND	10	3.0	ug/l
100-42-5	Styrene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.37	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.46	ug/l
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.66	ug/l
127-18-4	Tetrachloroethylene	ND	2.0	0.74	ug/l
108-88-3	Toluene	ND	2.0	0.54	ug/l
79-01-6	Trichloroethylene	ND	2.0	0.63	ug/l
75-01-4	Vinyl chloride	ND	2.0	0.32	ug/l
1330-20-7	Xylene (total)	ND	6.0	1.1	ug/l



Page 2 of 2

**Method:** SW846 8260B

**Method Blank Summary Job Number:** T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample VF2315-MB	<b>File ID</b> F0079184.D	<b>DF</b> 1	<b>Analyzed</b> 03/07/07	By LJ	Prep Date n/a	Prep Batch n/a	Analytical Batch VF2315

The QC reported here applies to the following samples:

T16445-3, T16445-6, T16445-8, T16445-9, T16445-10, T16445-11, T16445-14, T16445-15, T16445-18

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	103%	73-139%
17060-07-0	1,2-Dichloroethane-D4	98%	66-139%
2037-26-5	Toluene-D8	109%	77-148%
460-00-4	4-Bromofluorobenzene	129%	84-150%







## **Method Blank Summary**

**Job Number:** T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2318-M	B F0079225.D	1	03/08/07	LJ	n/a	n/a	VF2318

### The QC reported here applies to the following samples:

T16445-3, T16445-4, T16445-6, T16445-7, T16445-8, T16445-9, T16445-10, T16445-12, T16445-13, T16445-14

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	2.8	ug/l
71-43-2	Benzene	ND	2.0	0.23	ug/l
75-27-4	Bromodichloromethane	ND	2.0	0.33	ug/l
75-25-2	Bromoform	ND	2.0	0.65	ug/l
108-90-7	Chlorobenzene	ND	2.0	0.54	ug/l
75-00-3	Chloroethane	ND	2.0	0.46	ug/l
67-66-3	Chloroform	ND	2.0	0.66	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.62	ug/l
56-23-5	Carbon tetrachloride	ND	2.0	0.52	ug/l
75-34-3	1,1-Dichloroethane	ND	2.0	0.52	ug/l
75-35-4	1,1-Dichloroethylene	ND	2.0	0.68	ug/l
107-06-2	1,2-Dichloroethane	ND	2.0	0.53	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.59	ug/l
124-48-1	Dibromochloromethane	ND	2.0	0.68	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	2.0	0.83	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.59	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.75	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.61	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	1.9	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	7.3	ug/l
74-83-9	Methyl bromide	ND	2.0	0.47	ug/l
74-87-3	Methyl chloride	ND	2.0	0.60	ug/l
75-09-2	Methylene chloride	ND	5.0	0.67	ug/l
78-93-3	Methyl ethyl ketone	ND	10	3.0	ug/l
100-42-5	Styrene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.37	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.46	ug/l
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.66	ug/l
127-18-4	Tetrachloroethylene	ND	2.0	0.74	ug/l
108-88-3	Toluene	ND	2.0	0.54	ug/l
79-01-6	Trichloroethylene	ND	2.0	0.63	ug/l
75-01-4	Vinyl chloride	ND	2.0	0.32	ug/l
1330-20-7	Xylene (total)	ND	6.0	1.1	ug/l



# Page 2 of 2

**Method Blank Summary** 

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
VF2318-MB	F0079225.D	1	03/08/07	LJ	n/a	n/a	VF2318

### The QC reported here applies to the following samples:

 $T16445-3,\ T16445-4,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-12,\ T16445-13,\ T16445-14$ 

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	103%	73-139%
17060-07-0	1,2-Dichloroethane-D4	97%	66-139%
2037-26-5	Toluene-D8	108%	77-148%
460-00-4	4-Bromofluorobenzene	121%	84-150%



Page 1 of 2

# **Blank Spike Summary Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2314-BS	F0079163.D	1	03/07/07	LJ	n/a	n/a	VF2314

The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	109	87	31-158
71-43-2	Benzene	25	22.8	91	67-118
75-27-4	Bromodichloromethane	25	21.5	86	66-115
75-25-2	Bromoform	25	22.4	90	57-119
108-90-7	Chlorobenzene	25	22.3	89	72-116
75-00-3	Chloroethane	25	24.7	99	61-135
67-66-3	Chloroform	25	23.2	93	66-117
75-15-0	Carbon disulfide	25	19.0	76	39-136
56-23-5	Carbon tetrachloride	25	25.0	100	67-131
75-34-3	1,1-Dichloroethane	25	23.1	92	63-125
75-35-4	1,1-Dichloroethylene	25	22.3	89	52-143
107-06-2	1,2-Dichloroethane	25	23.6	94	61-120
78-87-5	1,2-Dichloropropane	25	22.6	90	64-118
124-48-1	Dibromochloromethane	25	21.7	87	67-117
156-59-2	cis-1,2-Dichloroethylene	25	21.9	88	65-116
10061-01-5	cis-1,3-Dichloropropene	25	21.9	88	67-118
156-60-5	trans-1,2-Dichloroethylene	25	22.2	89	66-128
10061-02-6	trans-1,3-Dichloropropene	25	22.9	92	73-126
100-41-4	Ethylbenzene	25	22.1	88	71-119
591-78-6	2-Hexanone	125	115	92	45-132
108-10-1	4-Methyl-2-pentanone	125	121	97	46-127
74-83-9	Methyl bromide	25	21.3	85	51-126
74-87-3	Methyl chloride	25	20.7	83	47-130
75-09-2	Methylene chloride	25	20.5	82	53-130
78-93-3	Methyl ethyl ketone	125	115	92	47-128
100-42-5	Styrene	25	18.5	74	69-115
71-55-6	1,1,1-Trichloroethane	25	24.1	96	67-128
79-34-5	1,1,2,2-Tetrachloroethane	25	21.7	87	57-121
79-00-5	1,1,2-Trichloroethane	25	22.9	92	62-117
127-18-4	Tetrachloroethylene	25	23.7	95	72-128
108-88-3	Toluene	25	22.4	90	70-121
79-01-6	Trichloroethylene	25	23.1	92	69-120
75-01-4	Vinyl chloride	25	23.0	92	59-145
1330-20-7	Xylene (total)	75	67.8	90	72-120



Page 2 of 2

# **Blank Spike Summary Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
VF2314-BS	F0079163.D	1	03/07/07	LJ	n/a	n/a	VF2314

### The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-5

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	105%	73-139%
17060-07-0	1,2-Dichloroethane-D4	102%	66-139%
2037-26-5	Toluene-D8	103%	77-148%
460-00-4	4-Bromofluorobenzene	98%	84-150%



Page 1 of 2

## **Blank Spike Summary**

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

|--|

The QC reported here applies to the following samples:

 $T16445-3,\ T16445-6,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-11,\ T16445-14,\ T16445-15,\ T16445-18$ 

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	103	82	31-158
71-43-2	Benzene	25	25.1	100	67-118
75-27-4	Bromodichloromethane	25	23.8	95	66-115
75-25-2	Bromoform	25	22.2	89	57-119
108-90-7	Chlorobenzene	25	24.3	97	72-116
75-00-3	Chloroethane	25	26.6	106	61-135
67-66-3	Chloroform	25	25.7	103	66-117
75-15-0	Carbon disulfide	25	21.7	87	39-136
56-23-5	Carbon tetrachloride	25	27.6	110	67-131
75-34-3	1,1-Dichloroethane	25	26.2	105	63-125
75-35-4	1,1-Dichloroethylene	25	25.4	102	52-143
107-06-2	1,2-Dichloroethane	25	24.1	96	61-120
78-87-5	1,2-Dichloropropane	25	25.2	101	64-118
124-48-1	Dibromochloromethane	25	22.4	90	67-117
156-59-2	cis-1,2-Dichloroethylene	25	24.3	97	65-116
10061-01-5	cis-1,3-Dichloropropene	25	25.0	100	67-118
156-60-5	trans-1,2-Dichloroethylene	25	25.2	101	66-128
10061-02-6	trans-1,3-Dichloropropene	25	24.7	99	73-126
100-41-4	Ethylbenzene	25	23.9	96	71-119
591-78-6	2-Hexanone	125	101	81	45-132
108-10-1	4-Methyl-2-pentanone	125	111	89	46-127
74-83-9	Methyl bromide	25	23.0	92	51-126
74-87-3	Methyl chloride	25	23.0	92	47-130
75-09-2	Methylene chloride	25	23.5	94	53-130
78-93-3	Methyl ethyl ketone	125	107	86	47-128
100-42-5	Styrene	25	20.0	80	69-115
71-55-6	1,1,1-Trichloroethane	25	26.2	105	67-128
79-34-5	1,1,2,2-Tetrachloroethane	25	21.4	86	57-121
79-00-5	1,1,2-Trichloroethane	25	22.9	92	62-117
127-18-4	Tetrachloroethylene	25	26.4	106	72-128
108-88-3	Toluene	25	24.3	97	70-121
79-01-6	Trichloroethylene	25	26.1	104	69-120
75-01-4	Vinyl chloride	25	25.2	101	59-145
1330-20-7	Xylene (total)	75	74.2	99	72-120



Page 2 of 2

**Blank Spike Summary Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	<b>File ID</b>	<b>DF</b>	<b>Analyzed</b> 03/07/07	By	Prep Date	Prep Batch	Analytical Batch
VF2315-BS	F0079183.D	1		LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples:

 $T16445-3,\ T16445-6,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-11,\ T16445-14,\ T16445-15,\ T16445-18$ 

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	104%	73-139%
17060-07-0	1,2-Dichloroethane-D4	101%	66-139%
2037-26-5	Toluene-D8	102%	77-148%
460-00-4	4-Bromofluorobenzene	99%	84-150%



Page 1 of 2

## **Blank Spike Summary**

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2318-BS	F0079224.D	1	03/08/07	LJ	n/a	n/a	VF2318

### The QC reported here applies to the following samples:

 $T16445-3,\ T16445-4,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-12,\ T16445-13,\ T16445-14$ 

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	87.0	70	31-158
71-43-2	Benzene	25	24.3	97	67-118
75-27-4	Bromodichloromethane	25	22.4	90	66-115
75-25-2	Bromoform	25	20.6	82	57-119
108-90-7	Chlorobenzene	25	24.0	96	72-116
75-00-3	Chloroethane	25	24.1	96	61-135
67-66-3	Chloroform	25	24.6	98	66-117
75-15-0	Carbon disulfide	25	20.1	80	39-136
56-23-5	Carbon tetrachloride	25	27.0	108	67-131
75-34-3	1,1-Dichloroethane	25	24.3	97	63-125
75-35-4	1,1-Dichloroethylene	25	23.0	92	52-143
107-06-2	1,2-Dichloroethane	25	22.7	91	61-120
78-87-5	1,2-Dichloropropane	25	24.3	97	64-118
124-48-1	Dibromochloromethane	25	21.1	84	67-117
156-59-2	cis-1,2-Dichloroethylene	25	23.4	94	65-116
10061-01-5	cis-1,3-Dichloropropene	25	23.6	94	67-118
156-60-5	trans-1,2-Dichloroethylene	25	23.3	93	66-128
10061-02-6	trans-1,3-Dichloropropene	25	22.2	89	73-126
100-41-4	Ethylbenzene	25	23.9	96	71-119
591-78-6	2-Hexanone	125	87.1	70	45-132
108-10-1	4-Methyl-2-pentanone	125	95.6	76	46-127
74-83-9	Methyl bromide	25	21.3	85	51-126
74-87-3	Methyl chloride	25	22.5	90	47-130
75-09-2	Methylene chloride	25	21.8	87	53-130
78-93-3	Methyl ethyl ketone	125	87.5	70	47-128
100-42-5	Styrene	25	19.3	77	69-115
71-55-6	1,1,1-Trichloroethane	25	26.5	106	67-128
79-34-5	1,1,2,2-Tetrachloroethane	25	19.4	78	57-121
79-00-5	1,1,2-Trichloroethane	25	20.9	84	62-117
127-18-4	Tetrachloroethylene	25	26.1	104	72-128
108-88-3	Toluene	25	23.9	96	70-121
79-01-6	Trichloroethylene	25	25.5	102	69-120
75-01-4	Vinyl chloride	25	22.5	90	59-145
1330-20-7	Xylene (total)	75	72.3	96	72-120



Page 2 of 2

# **Blank Spike Summary Job Number:** T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

ample F2318-BS	<b>File ID</b> F0079224.D	<b>DF</b> 1	<b>Analyzed</b> 03/08/07	By LJ	Prep Date n/a	Prep Batch n/a	Analytical Batch VF2318

### The QC reported here applies to the following samples:

 $T16445-3,\ T16445-4,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-12,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,\ T16445-13,$ 

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	106%	73-139%
17060-07-0	1,2-Dichloroethane-D4	97%	66-139%
2037-26-5	Toluene-D8	103%	77-148%
460-00-4	4-Bromofluorobenzene	101%	84-150%



Page 1 of 2

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
T16445-5MS	F0079170.D	1	03/07/07	LJ	n/a	n/a	VF2314
T16445-5MSD	F0079171.D	1	03/07/07	LJ	n/a	n/a	VF2314
T16445-5	F0079169.D	1	03/07/07	LJ	n/a	n/a	VF2314
T16445-5	F0079180.D	20	03/07/07	LJ	n/a	n/a	VF2314

The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-5

CAS No.	Compound	T16445 ug/l	-5 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	50 U		125	121	97	121	97	0	39-130/26
71-43-2	Benzene	2.0 U		25	23.6	94	22.9	92	3	65-122/15
75-27-4	Bromodichloromethane	2.0 U		25	22.6	90	21.7	87	4	64-119/22
75-25-2	Bromoform	2.0 U		25	23.7	95	22.9	92	3	50-123/28
108-90-7	Chlorobenzene	2.0 U		25	22.8	91	22.4	90	2	72-118/20
75-00-3	Chloroethane	2.0 U		25	26.5	106	25.7	103	3	60-136/25
67-66-3	Chloroform	2.0 U		25	24.0	96	23.6	94	2	65-120/20
75-15-0	Carbon disulfide	2.0 U		25	19.4	78	19.7	79	2	37-140/24
56-23-5	Carbon tetrachloride	2.0 U		25	25.3	101	25.0	100	1	64-135/23
75-34-3	1,1-Dichloroethane	1.3	J	25	25.7	98	25.0	95	3	65-126/21
75-35-4	1,1-Dichloroethylene	12.9		25	35.8	92	36.0	92	1	55-140/25
107-06-2	1,2-Dichloroethane	13.5		25	39.1	102	38.0	98	3	57-125/25
78-87-5	1,2-Dichloropropane	2.0 U		25	23.8	95	23.2	93	3	63-121/22
124-48-1	Dibromochloromethane	2.0 U		25	21.9	88	22.0	88	0	60-123/23
156-59-2	cis-1,2-Dichloroethylene	48.2		25	72.1	96	72.9	99	1	62-120/24
10061-01-5	cis-1,3-Dichloropropene	2.0 U		25	22.2	89	22.2	89	0	61-119/23
156-60-5	trans-1,2-Dichloroethylene	2.0 U		25	24.0	96	23.5	94	2	64-130/22
10061-02-6	trans-1,3-Dichloropropene	2.0 U		25	22.6	90	22.5	90	0	65-129/23
100-41-4	Ethylbenzene	2.0 U		25	22.4	90	22.2	89	1	70-123/18
591-78-6	2-Hexanone	10 U		125	126	101	124	99	2	41-137/27
108-10-1	4-Methyl-2-pentanone	10 U		125	133	106	132	106	1	41-133/22
74-83-9	Methyl bromide	2.0 U		25	23.2	93	22.1	88	5	47-129/27
74-87-3	Methyl chloride	2.0 U		25	23.7	95	22.5	90	5	45-133/24
75-09-2	Methylene chloride	5.0 U		25	22.3	89	21.5	86	4	49-128/21
78-93-3	Methyl ethyl ketone	10 U		125	126	101	125	100	1	43-125/29
100-42-5	Styrene	2.0 U		25	18.7	75	18.4	74	2	65-120/21
71-55-6	1,1,1-Trichloroethane	2.0 U		25	24.8	99	24.5	98	1	68-131/21
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U		25	22.1	88	22.7	91	3	50-128/22
79-00-5	1,1,2-Trichloroethane	2.0 U		25	22.9	92	23.0	92	0	58-120/22
127-18-4	Tetrachloroethylene	5.1		25	28.7	94	29.1	96	1	69-132/21
108-88-3	Toluene	2.0 U		25	22.7	91	22.3	89	2	70-123/18
79-01-6	Trichloroethylene	1460 ^b		25	1680	200* a	1680	200* a	0	70-120/19
75-01-4	Vinyl chloride	2.5		25	28.3	103	27.3	99	4	51-147/24
1330-20-7	Xylene (total)	6.0 U		75	68.6	91	67.6	90	1	71-122/16



Page 2 of 2

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
T16445-5MS	F0079170.D	1	03/07/07	LJ	n/a	n/a	VF2314
T16445-5MSD	F0079171.D	1	03/07/07	LJ	n/a	n/a	VF2314
T16445-5	F0079169.D	1	03/07/07	LJ	n/a	n/a	VF2314
T16445-5	F0079180.D	20	03/07/07	LJ	n/a	n/a	VF2314

The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-5

CAS No. Surrogate Re	ecoveries MS	MSD	T16445-5	T16445-5	Limits
1868-53-7 Dibromofluor	comethane 110%	112%	107%	105%	73-139%
17060-07-0 1,2-Dichloroe	ethane-D4 109%	108%	105%	104%	66-139%
2037-26-5 Toluene-D8	107%	107%	105%	108%	77-148%
460-00-4 4-Bromofluor	robenzene 102%	103%	114%	129%	84-150%

- (a) Outside control limits due to high level in sample relative to spike amount.
- (b) Result is from Run #2.



Page 1 of 2

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
T16445-3MS	F0079191.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3MSD	F0079192.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3 a	F0079190.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples:

T16445-3, T16445-6, T16445-8, T16445-9, T16445-10, T16445-11, T16445-14, T16445-15, T16445-18

CAS No.	Compound	T16445 ug/l	7-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	P			<b>G</b> -						
67-64-1	Acetone	50 U		125	103	82	98.2	79	5	39-130/26
71-43-2	Benzene	2.0 U		25	23.6	94	24.0	96	2	65-122/15
75-27-4	Bromodichloromethane	2.0 U		25	22.5	90	22.3	89	1	64-119/22
75-25-2	Bromoform	2.0 U		25	20.5	82	20.7	83	1	50-123/28
108-90-7	Chlorobenzene	2.0 U		25	22.8	91	23.3	93	2	72-118/20
75-00-3	Chloroethane	2.0 U		25	24.6	98	23.8	95	3	60-136/25
67-66-3	Chloroform	2.0 U		25	24.9	100	25.4	102	2	65-120/20
75-15-0	Carbon disulfide	2.0 U		25	20.2	81	19.9	80	1	37-140/24
56-23-5	Carbon tetrachloride	2.0 U		25	25.6	102	25.8	103	1	64-135/23
75-34-3	1,1-Dichloroethane	2.0		25	27.3	101	26.7	99	2	65-126/21
75-35-4	1,1-Dichloroethylene	10.9		25	34.9	96	33.5	90	4	55-140/25
107-06-2	1,2-Dichloroethane	2.0		25	24.5	90	24.1	88	2	57-125/25
78-87-5	1,2-Dichloropropane	2.0 U		25	23.2	93	24.2	97	4	63-121/22
124-48-1	Dibromochloromethane	2.0 U		25	21.4	86	22.0	88	3	60-123/23
156-59-2	cis-1,2-Dichloroethylene	699	E	25	685	-56* b	690	-36* b	1	62-120/24
10061-01-5	cis-1,3-Dichloropropene	2.0 U		25	23.5	94	23.8	95	1	61-119/23
156-60-5	trans-1,2-Dichloroethylene	2.1		25	26.1	96	26.0	96	0	64-130/22
10061-02-6	trans-1,3-Dichloropropene	2.0 U		25	24.4	98	24.1	96	1	65-129/23
100-41-4	Ethylbenzene	2.0 U		25	22.8	91	23.5	94	3	70-123/18
591-78-6	2-Hexanone	10 U		125	105	84	101	81	4	41-137/27
108-10-1	4-Methyl-2-pentanone	10 U		125	114	91	110	88	4	41-133/22
74-83-9	Methyl bromide	2.0 U		25	21.6	86	20.8	83	4	47-129/27
74-87-3	Methyl chloride	2.0 U		25	23.2	93	22.1	88	5	45-133/24
75-09-2	Methylene chloride	5.0 U		25	22.8	91	22.5	90	1	49-128/21
78-93-3	Methyl ethyl ketone	10 U		125	108	86	105	84	3	43-125/29
100-42-5	Styrene	2.0 U		25	18.9	76	19.0	76	1	65-120/21
71-55-6	1,1,1-Trichloroethane	2.0 U		25	25.2	101	24.8	99	2	68-131/21
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U		25	20.8	83	21.4	86	3	50-128/22
79-00-5	1,1,2-Trichloroethane	1.7	J	25	23.7	88	24.0	89	1	58-120/22
127-18-4	Tetrachloroethylene	83.1		25	107	96	106	92	1	69-132/21
108-88-3	Toluene	2.0 U		25	22.8	91	23.4	94	3	70-123/18
79-01-6	Trichloroethylene	6520	E	25	6200	-1280*	^b 6140	-1520*	^b 1	70-120/19
75-01-4	Vinyl chloride	3.8		25	28.3	98	27.1	93	4	51-147/24
1330-20-7	Xylene (total)	6.0 U		75	69.8	93	70.7	94	1	71-122/16



Page 2 of 2

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
T16445-3MS	F0079191.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3MSD	F0079192.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3 a	F0079190.D	1	03/07/07	LJ	n/a	n/a	VF2315

### The QC reported here applies to the following samples:

T16445-3, T16445-6, T16445-8, T16445-9, T16445-10, T16445-11, T16445-14, T16445-15, T16445-18

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	T16445-3	Limits
1868-53-7	Dibromofluoromethane	106%	107%	106%	73-139%
17060-07-0	1,2-Dichloroethane-D4	106%	107%	106%	66-139%
2037-26-5	Toluene-D8	101%	104%	102%	77-148%
460-00-4	4-Bromofluorobenzene	99%	103%	123%	84-150%

⁽a) For QC only.



⁽b) Outside control limits due to high level in sample relative to spike amount.

Page 1 of 2

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	Ву	<b>Prep Date</b>	Prep Batch	Analytical Batch
T16445-4MS	F0079227.D	1	03/08/07	LJ	n/a	n/a	VF2318
T16445-4MSD	F0079228.D	1	03/08/07	LJ	n/a	n/a	VF2318
T16445-4	F0079226.D	1	03/08/07	LJ	n/a	n/a	VF2318

The QC reported here applies to the following samples:

 $T16445-3,\ T16445-4,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-12,\ T16445-13,\ T16445-14$ 

CAS No.	Compound	T16445 ug/l	-4 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67.64.1	Acetone	50 II		125	00.5	70		86	0	20 120/26
67-64-1	Renzene	50 U		25	98.5 23.2	79	107 23.1	92	8	39-130/26
71-43-2		2.0 U		25 25	23.2	93	23.1	92 89	0 1	65-122/15
75-27-4 75-25-2	Bromodichloromethane Bromoform	2.0 U 2.0 U		25 25	21.7	88 87	22.2	88	2	64-119/22 50-123/28
13-23-2 108-90-7	Chlorobenzene	2.0 U		25 25	23.0	92	22.1	91	1	72-118/20
75-00-3	Chloroethane	2.0 U		25 25	25.0 26.1	104	24.8	91	5	60-136/25
67-66-3	Chloroform	2.0 U		25 25	24.0	96	23.5	99	2	65-120/20
75-15-0	Carbon disulfide	2.0 U		25 25	19.5	78	18.9	76	3	37-140/24
56-23-5	Carbon tetrachloride	2.0 U		25 25	25.6	102	25.4	102	1	64-135/23
							23.4	94	3	
75-34-3 75-35-4	1,1-Dichloroethane 1,1-Dichloroethylene	2.0 U		25 25	24.3 23.0	97 92	23.3	88	3 4	65-126/21
	•	2.0 U				92 92	22.6	90	2	55-140/25
107-06-2	1,2-Dichloroethane	2.0 U		25 25	23.0		23.3		0	57-125/25
78-87-5 124-48-1	1,2-Dichloropropane Dibromochloromethane	2.0 U		25 25	23.4 21.2	94 85	23.3	93 89	5	63-121/22 60-123/23
156-59-2		2.0 U		25 25	22.3		22.2		0	
	cis-1,2-Dichloroethylene	2.0 U 2.0 U		25 25	23.2	89 93	23.0	89 92	1	62-120/24
10061-01-5	cis-1,3-Dichloropropene trans-1,2-Dichloroethylene			25 25	23.2	93	23.0	92 88	4	61-119/23
156-60-5		2.0 U					23.5		4	64-130/22
10061-02-6	, , ,	2.0 U		25 25	22.6	90	23.5	94 91		65-129/23
100-41-4	Ethylbenzene	2.0 U			22.8	91			0	70-123/18
591-78-6	2-Hexanone	10 U		125	101	81	112	90	10	41-137/27
108-10-1	4-Methyl-2-pentanone	10 U		125	112	90	118	94	5 2	41-133/22
74-83-9	Methyl bromide	2.0 U		25	23.1	92	22.6 23.5	90	6	47-129/27
74-87-3	Methyl chloride	2.0 U		25	24.9	100		94	2	45-133/24
75-09-2	Methylene chloride	5.0 U		25	21.8	87	21.4 112	86	7	49-128/21
78-93-3	Methyl ethyl ketone	10 U		125	104	83		90	0	43-125/29
100-42-5	Styrene	2.0 U		25	19.1	76	19.1	76		65-120/21
71-55-6	1,1,1-Trichloroethane	2.0 U		25	25.0	100	24.2	97	3	68-131/21
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U		25	20.8	83	21.6	86	4	50-128/22
79-00-5	1,1,2-Trichloroethane	2.0 U		25	22.0	88	22.4	90	2	58-120/22
127-18-4	Tetrachloroethylene	2.0 U		25	25.0	100	24.9	100	0	69-132/21
108-88-3	Toluene	2.0 U		25	23.0	92	23.1	92	0	70-123/18
79-01-6	Trichloroethylene	2.0		25	26.3	97	25.9	96	2	70-120/19
75-01-4	Vinyl chloride	2.0 U		25	25.9	104	23.5	94	10	51-147/24
1330-20-7	Xylene (total)	6.0 U		75	70.3	94	69.8	93	1	71-122/16



Page 2 of 2

### ىن س

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
T16445-4MS	F0079227.D	1	03/08/07	LJ	n/a	n/a	VF2318
T16445-4MSD	F0079228.D	1	03/08/07	LJ	n/a	n/a	VF2318
T16445-4	F0079226.D	1	03/08/07	LJ	n/a	n/a	VF2318

### The QC reported here applies to the following samples:

 $T16445-3,\ T16445-4,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-12,\ T16445-13,\ T16445-14$ 

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	T16445-4	Limits
1868-53-7	Dibromofluoromethane	106%	105%	102%	73-139%
17060-07-0	1,2-Dichloroethane-D4	104%	102%	98%	66-139%
2037-26-5	Toluene-D8	103%	105%	106%	77-148%
460-00-4	4-Bromofluorobenzene	99%	99%	119%	84-150%



## **Instrument Performance Check (BFB)**

Job Number: T16445

Account: ITTXHO Shaw E & I, Inc. Longhorn Army Ammunition Plant Project:

Sample: **Injection Date:** 02/28/07 VF2305-BFB Lab File ID: **Injection Time:** 14:36 F0078963.D

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Raw Abundance	% Relat Abunda		Pass/Fail
50	15.0 - 40.0% of mass 95	7281	16.0		Pass
75	30.0 - 60.0% of mass 95	18364	40.3		Pass
95	Base peak, 100% relative abundance	45541	100.0		Pass
96	5.0 - 9.0% of mass 95	2793	6.1		Pass
173	Less than 2.0% of mass 174	107	0.23	$(0.27)^{a}$	Pass
174	50.0 - 100.0% of mass 95	39123	85.9		Pass
175	5.0 - 9.0% of mass 174	3023	6.6	(7.7) a	Pass
176	95.0 - 101.0% of mass 174	37355	82.0	(95.5) a	Pass
177	5.0 - 9.0% of mass 176	2802	6.2	$(7.5)^{b}$	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VF2305-IC2305	F0078964.D	02/28/07	15:10	00:34	Initial cal 2
VF2305-IC2305	F0078965.D	02/28/07	15:41	01:05	Initial cal 5
VF2305-IC2305	F0078966.D	02/28/07	16:12	01:36	Initial cal 20
VF2305-ICC2305	F0078967.D	02/28/07	16:44	02:08	Initial cal 40
VF2305-IC2305	F0078968.D	02/28/07	17:16	02:40	Initial cal 70
VF2305-IC2305	F0078969.D	02/28/07	17:46	03:10	Initial cal 100
VF2305-IC2305	F0078970.D	02/28/07	18:18	03:42	Initial cal 200
VF2305-BS	F0078972.D	02/28/07	19:21	04:45	Blank Spike
VF2305-MB	F0078974.D	02/28/07	20:24	05:48	Method Blank
ZZZZZZ	F0078975.D	02/28/07	20:55	06:19	(unrelated sample)
ZZZZZZ	F0078976.D	02/28/07	21:26	06:50	(unrelated sample)
ZZZZZZ	F0078977.D	02/28/07	21:58	07:22	(unrelated sample)
T16395-2	F0078978.D	02/28/07	22:30	07:54	(used for QC only; not part of job T16445)
T16395-2MS	F0078979.D	02/28/07	23:00	08:24	Matrix Spike
T16395-2MSD	F0078980.D	02/28/07	23:32	08:56	Matrix Spike Duplicate
ZZZZZZ	F0078981.D	03/01/07	00:03	09:27	(unrelated sample)
ZZZZZZ	F0078982.D	03/01/07	00:35	09:59	(unrelated sample)
ZZZZZZ	F0078983.D	03/01/07	01:06	10:30	(unrelated sample)
ZZZZZZ	F0078984.D	03/01/07	01:38	11:02	(unrelated sample)
ZZZZZZ	F0078989.D	03/01/07	04:15	13:39	(unrelated sample)
ZZZZZZ	F0078990.D	03/01/07	04:47	14:11	(unrelated sample)
ZZZZZZ	F0078991.D	03/01/07	05:19	14:43	(unrelated sample)
ZZZZZZ	F0078992.D	03/01/07	05:50	15:14	(unrelated sample)



⁽b) Value is % of mass 176

## **Instrument Performance Check (BFB)**

Job Number: T16445

Account: ITTXHO Shaw E & I, Inc. Longhorn Army Ammunition Plant Project:

Sample: VF2314-BFB **Injection Date:** 03/07/07 Lab File ID: **Injection Time:** 02:16 F0079161.D

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	7377	17.5	Pass
75	30.0 - 60.0% of mass 95	17646	41.8	Pass
95	Base peak, 100% relative abundance	42171	100.0	Pass
96	5.0 - 9.0% of mass 95	2522	6.0	Pass
173	Less than 2.0% of mass 174	89	0.21 (0.25) a	Pass
174	50.0 - 100.0% of mass 95	36285	86.0	Pass
175	5.0 - 9.0% of mass 174	2662	6.3 (7.3) a	Pass
176	95.0 - 101.0% of mass 174	34632	82.1 (95.4) a	Pass
177	5.0 - 9.0% of mass 176	2164	5.1 (6.2) b	Pass

⁽a) Value is % of mass 174

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
VF2314-CC2305 VF2314-BS VF2314-MB ZZZZZZ ZZZZZZ ZZZZZZ T16445-5 T16445-5MS T16445-5MSD	F0079162.D F0079163.D F0079164.D F0079165.D F0079166.D F0079167.D F0079170.D F0079171.D	03/07/07 03/07/07 03/07/07 03/07/07 03/07/07 03/07/07 03/07/07 03/07/07 03/07/07	02:47 03:18 03:50 04:21 04:53 05:24 06:26 06:58 07:29	00:31 01:02 01:34 02:05 02:37 03:08 04:10 04:42 05:13	Continuing cal 40 Blank Spike Method Blank (unrelated sample) (unrelated sample) (unrelated sample) 50WW05-FEB2007 Matrix Spike Matrix Spike Duplicate
T16445-2 ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ T16445-1 T16445-2 T16445-5	F0079173.D	03/07/07	08:32	06:16	47WW30-FEB2007
	F0079174.D	03/07/07	09:03	06:47	(unrelated sample)
	F0079175.D	03/07/07	09:35	07:19	(unrelated sample)
	F0079176.D	03/07/07	10:06	07:50	(unrelated sample)
	F0079177.D	03/07/07	10:37	08:21	(unrelated sample)
	F0079178.D	03/07/07	11:10	08:54	29WW38-FEB2007
	F0079179.D	03/07/07	11:41	09:25	47WW30-FEB2007
	F0079180.D	03/07/07	12:12	09:56	50WW05-FEB2007



⁽b) Value is % of mass 176

## **Instrument Performance Check (BFB)**

**Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Sample:
 VF2315-BFB
 Injection Date:
 03/07/07

 Lab File ID:
 F0079181.D
 Injection Time:
 12:44

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance		Pass/Fail
50	15.0 - 40.0% of mass 95	7668	19.2		Pass
75	30.0 - 60.0% of mass 95	16756	42.0		Pass
95	Base peak, 100% relative abundance	39853	100.0		Pass
96	5.0 - 9.0% of mass 95	2768	6.9		Pass
173	Less than 2.0% of mass 174	96	0.24	$(0.28)^{a}$	Pass
174	50.0 - 100.0% of mass 95	34109	85.6		Pass
175	5.0 - 9.0% of mass 174	2473	6.2	(7.3) a	Pass
176	95.0 - 101.0% of mass 174	33421	83.9	(98.0) a	Pass
177	5.0 - 9.0% of mass 176	2339	5.9	$(7.0)^{b}$	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VF2315-CC2305	F0079182.D	03/07/07	13:19	00:35	Continuing cal 40
VF2315-BS	F0079183.D	03/07/07	13:54	01:10	Blank Spike
VF2315-MB	F0079184.D	03/07/07	14:26	01:42	Method Blank
T16445-15	F0079185.D	03/07/07	14:58	02:14	TRIP BLANK
ZZZZZZ	F0079186.D	03/07/07	15:28	02:44	(unrelated sample)
ZZZZZZ	F0079187.D	03/07/07	15:59	03:15	(unrelated sample)
ZZZZZZ	F0079188.D	03/07/07	16:30	03:46	(unrelated sample)
ZZZZZZ	F0079189.D	03/07/07	17:01	04:17	(unrelated sample)
T16445-3	F0079190.D	03/07/07	17:32	04:48	LHSMW43-FEB2007
T16445-3MS	F0079191.D	03/07/07	18:04	05:20	Matrix Spike
T16445-3MSD	F0079192.D	03/07/07	18:35	05:51	Matrix Spike Duplicate
T16445-6	F0079194.D	03/07/07	19:38	06:54	50WW02-FEB2007
T16445-8	F0079196.D	03/07/07	20:41	07:57	17WW02-FEB2007
T16445-9	F0079197.D	03/07/07	21:12	08:28	17WW02-FEB2007 FD
T16445-10	F0079198.D	03/07/07	21:44	09:00	29WW35-FEB2007
T16445-11	F0079199.D	03/07/07	22:15	09:31	29WW35-FEB2007 FD
T16445-14	F0079202.D	03/07/07	23:49	11:05	7WW06-FEB2007
T16445-18	F0079203.D	03/08/07	00:20	11:36	17WW130-FEB2007



⁽b) Value is % of mass 176

## **Instrument Performance Check (BFB)**

**Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Sample:
 VF2318-BFB
 Injection Date:
 03/08/07

 Lab File ID:
 F0079222.D
 Injection Time:
 10:25

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Abundance Criteria Raw Abundance		Pass/Fail
50	15.0 - 40.0% of mass 95	6198	16.4	Pass
75	30.0 - 60.0% of mass 95	15579	41.3	Pass
95	Base peak, 100% relative abundance	37709	100.0	Pass
96	5.0 - 9.0% of mass 95	2320	6.2	Pass
173	Less than 2.0% of mass 174	83	0.22 (0.26) a	Pass
174	50.0 - 100.0% of mass 95	32211	85.4	Pass
175	5.0 - 9.0% of mass 174	2369	6.3 (7.4) a	Pass
176	95.0 - 101.0% of mass 174	31824	84.4 (98.8) ^a	Pass
177	5.0 - 9.0% of mass 176	2216	5.9 (7.0) b	Pass

⁽a) Value is % of mass 174

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
VF2318-CC2305	F0079223.D	03/08/07	10:59	00:34	Continuing cal 40
VF2318-BS	F0079224.D	03/08/07	11:33	01:08	Blank Spike
VF2318-MB	F0079225.D	03/08/07	12:05	01:40	Method Blank
T16445-4	F0079226.D	03/08/07	12:37	02:12	50WW06-FEB2007
T16445-4MS	F0079227.D	03/08/07	13:09	02:44	Matrix Spike
T16445-4MSD	F0079228.D	03/08/07	14:05	03:40	Matrix Spike Duplicate
T16445-7	F0079229.D	03/08/07	14:36	04:11	17WW16-FEB2007
T16445-12	F0079230.D	03/08/07	15:08	04:43	29WW06-FEB2007
T16445-13	F0079231.D	03/08/07	15:39	05:14	17WW05-FEB2007
T16445-3	F0079232.D	03/08/07	16:11	05:46	LHSMW43-FEB2007
T16445-3	F0079233.D	03/08/07	16:42	06:17	LHSMW43-FEB2007
T16445-6	F0079234.D	03/08/07	17:14	06:49	50WW02-FEB2007
T16445-8	F0079235.D	03/08/07	17:45	07:20	17WW02-FEB2007
T16445-9	F0079236.D	03/08/07	18:17	07:52	17WW02-FEB2007 FD
T16445-10	F0079237.D	03/08/07	18:49	08:24	29WW35-FEB2007
T16445-14	F0079238.D	03/08/07	19:21	08:56	7WW06-FEB2007
ZZZZZZ	F0079239.D	03/08/07	19:53	09:28	(unrelated sample)
ZZZZZZ	F0079240.D	03/08/07	20:24	09:59	(unrelated sample)
ZZZZZZ	F0079241.D	03/08/07	20:56	10:31	(unrelated sample)
ZZZZZZ	F0079242.D	03/08/07	21:28	11:03	(unrelated sample)
ZZZZZZ	F0079243.D	03/08/07	22:00	11:35	(unrelated sample)
					• •



⁽b) Value is % of mass 176

S

# Page 1 of 1

### Volatile Internal Standard Area Summary

Job Number: T16445

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Check Std:
 VF2314-CC2305
 Injection Date:
 03/07/07

 Lab File ID:
 F0079162.D
 Injection Time:
 02:47

**Instrument ID:** GCMSF **Method:** SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT
Check Std	671218	11.87	539776	15.94	225030	19.21
Upper Limit ^a	1342436	12.37	1079552	16.44	450060	19.71
Lower Limit b	335609	11.37	269888	15.44	112515	18.71
Lab	IS 1		IS 2		IS 3	
Sample ID	AREA	RT	AREA	RT	AREA	RT
VF2314-BS	763258	11.87	585053	15.95	230789	19.20
VF2314-MB	761236	11.87	554989	15.95	171804	19.22
ZZZZZZ	715869	11.87	528018	15.95	164528	19.21
ZZZZZZ	713777	11.87	527108	15.95	157669	19.22
ZZZZZZ	714014	11.87	515957	15.94	155677	19.21
T16445-5	696275	11.87	518491	15.94	157926	19.21
T16445-5MS	690323	11.87	531735	15.95	212449	19.21
T16445-5MSD	718441	11.88	554101	15.95	216829	19.21
T16445-2	673074	11.86	503844	15.94	144956	19.20
ZZZZZZ	676854	11.85	489839	15.02	140401	19.20

15.94 136958

15.94 127852

15.94 137112

15.93 130143

15.94 127880

15.95 126817

19.20

19.20

19.20

19.20

19.21

19.21

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4

668299

668450

650403

665672

676833

675974

ZZZZZZ

ZZZZZZ

ZZZZZZ

T16445-1

T16445-2

T16445-5

(a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

11.86 481794

11.86 482234

11.86 471126

11.86 484146

11.87 486651

11.87 487525



## **Volatile Internal Standard Area Summary**

**Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Check Std:
 VF2315-CC2305
 Injection Date:
 03/07/07

 Lab File ID:
 F0079182.D
 Injection Time:
 13:19

**Instrument ID:** GCMSF **Method:** SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT
Check Std	698014	11.87	549946	15.95	231402	19.21
Upper Limit ^a	1396028	12.37	1099892	16.45	462804	19.71
Lower Limit b	349007	11.37	274973	15.45	115701	18.71
Lab	IS 1		IS 2		IS 3	
Sample ID	AREA	RT	AREA	RT	AREA	RT
VF2315-BS	751267	11.87	582464	15.95	220558	19.22
VF2315-MB	739731	11.88	521309	15.96	135288	19.23
T16445-15	709635	11.88	498169	15.96	130636	19.23
ZZZZZZ	713511	11.89	505249	15.96	133789	19.22
ZZZZZZ	670598	11.89	482656	15.97	127882	19.23
ZZZZZZ	692002	11.89	498481	15.96	134149	19.23
ZZZZZZ	694603	11.89	509623	15.97	139087	19.23
T16445-3 ^c	692901	11.89	523917	15.96	140544	19.22
T16445-3MS	703380	11.89	542581	15.97	203275	19.23
T16445-3MSD	721789	11.88	551007	15.96	199926	19.23
T16445-6	701179	11.88	509297	15.96	124874	19.22
T16445-8	672132	11.88	483654	15.95	147428	19.22
T16445-9	655210	11.87	474247	15.95	142235	19.21
T16445-10	658250	11.88	479882	15.95	141112	19.22
T16445-11	645297	11.88	465709	15.95	134763	19.22
T16445-14	633357	11.87	461754	15.95	129759	19.21
T16445-18	630021	11.88	455820	15.95	129210	19.21

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4

- (a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (c) For QC only.



## **Volatile Internal Standard Area Summary**

**Job Number:** T16445

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Check Std:
 VF2318-CC2305
 Injection Date:
 03/08/07

 Lab File ID:
 F0079223.D
 Injection Time:
 10:59

**Instrument ID:** GCMSF **Method:** SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	
Check Std	698975	11.87	551152	15.94	223338	19.21	
Upper Limit ^a	1397950	12.37	1102304	16.44	446676	19.71	
Lower Limit b	349488	11.37	275576	15.44	111669	18.71	
Lab	IS 1		IS 2		IS 3		
Sample ID	AREA	RT	AREA	RT	AREA	RT	
VF2318-BS	746410	11.87	580582	15.94	210100	19.21	
VF2318-MB	745444	11.88	531800	15.96	140552	19.22	
T16445-4	739935	11.88	531107	15.96	143733	19.22	
T16445-4MS	707673	11.88	540763	15.95	204404	19.22	
T16445-4MSD	763469	11.88	578582	15.95	218177	19.22	
T16445-7	721619	11.89	534862	15.97	175880	19.23	
T16445-12	648782	11.89	490210	15.97	162557	19.23	
T16445-13	701074	11.89	520078	15.96	161875	19.23	
T16445-3	671762	11.90	510964	15.97	157114	19.24	
T16445-3	661266	11.89	484654	15.96	144861	19.24	
T16445-6	650121	11.89	473895	15.97	134032	19.23	
T16445-8	642529	11.89	461686	15.97	128039	19.23	
T16445-9	627515	11.89	448085	15.96	125224	19.23	
T16445-10	623811	11.88	456759	15.96	122979	19.22	
T16445-14	620723	11.89	447599	15.96	114685	19.22	
ZZZZZZ	612552	11.89	445736	15.96	121452	19.23	
ZZZZZZ	570298	11.88	412673	15.95	110551*	19.22	
ZZZZZZ	579619	11.87	421291	15.95	109077*	19.22	
ZZZZZZ	599201	11.87	424322	15.95	107464*	19.21	
ZZZZZZ	591981	11.87	425080	15.95	108784*	19.21	

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4

- (a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



# **Volatile Surrogate Recovery Summary**

**Job Number:** T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Method: SW846 8260B Matrix: AQ

### Samples and QC shown here apply to the above method

Lab	Lab	<b>~</b> 4	<b></b>	~~	~.
Sample ID	File ID	S1	<b>S2</b>	S3	<b>S4</b>
T16445-1	F0079178.D	109.0	103.0	109.0	129.0
T16445-2	F0079179.D	104.0	101.0	107.0	128.0
T16445-2	F0079173.D	107.0	104.0	106.0	118.0
T16445-3	F0079232.D	107.0	102.0	100.0	112.0
T16445-3	F0079233.D	102.0	94.0	104.0	111.0
T16445-3	F0079190.D	106.0	106.0	102.0	123.0
T16445-4	F0079226.D	102.0	98.0	106.0	119.0
T16445-5	F0079180.D	105.0	104.0	108.0	129.0
T16445-5	F0079169.D	107.0	105.0	105.0	114.0
T16445-6	F0079234.D	103.0	98.0	105.0	115.0
T16445-6	F0079194.D	108.0	109.0	109.0	133.0
T16445-7	F0079229.D	104.0	94.0	104.0	106.0
T16445-8	F0079235.D	105.0	103.0	107.0	118.0
T16445-8	F0079196.D	102.0	100.0	106.0	113.0
T16445-9	F0079236.D	105.0	101.0	107.0	117.0
T16445-9	F0079197.D	107.0	104.0	109.0	117.0
T16445-10	F0079237.D	104.0	100.0	104.0	115.0
T16445-10	F0079198.D	109.0	107.0	108.0	116.0
T16445-11	F0079199.D	105.0	99.0	108.0	118.0
T16445-12	F0079230.D	105.0	98.0	104.0	105.0
T16445-13	F0079231.D	105.0	100.0	103.0	109.0
T16445-14	F0079238.D	104.0	97.0	105.0	123.0
T16445-14	F0079202.D	105.0	105.0	106.0	117.0
T16445-15	F0079185.D	106.0	102.0	112.0	131.0
T16445-18	F0079203.D	105.0	102.0	106.0	116.0
T16445-3MS	F0079191.D	106.0	106.0	101.0	99.0
T16445-3MSD	F0079192.D	107.0	107.0	104.0	103.0
T16445-4MS	F0079227.D	106.0	104.0	103.0	99.0
T16445-4MSD	F0079228.D	105.0	102.0	105.0	99.0
T16445-5MS	F0079170.D	110.0	109.0	107.0	102.0
T16445-5MSD	F0079171.D	112.0	108.0	107.0	103.0
VF2314-BS	F0079163.D	105.0	102.0	103.0	98.0
VF2314-MB	F0079164.D	104.0	100.0	106.0	113.0
VF2315-BS	F0079183.D	104.0	101.0	102.0	99.0
VF2315-MB	F0079184.D	103.0	98.0	109.0	129.0
VF2318-BS	F0079224.D	106.0	97.0	103.0	101.0
VF2318-MB	F0079225.D	103.0	97.0	108.0	121.0



Page 2 of 2

## **Volatile Surrogate Recovery Summary**

**Job Number:** T16445

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Method: SW846 8260B Matrix: AQ

### Samples and QC shown here apply to the above method

Surrogate Recovery Compounds Limits

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 73-139%

 S2 = 1,2-Dichloroethane-D4
 66-139%

 S3 = Toluene-D8
 77-148%

 S4 = 4-Bromofluorobenzene
 84-150%



### **Initial Calibration Summary**

Page 1 of 3 Job Number: T16445 Sample: VF2305-ICC2305 Account: ITTXHO Shaw E & I, Inc. Lab FileID: F0078967.D

**Project:** Longhorn Army Ammunition Plant

Response Factor Report GC/MS F

: C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator) Method

: SW846 8260B and EPA 624 Title Last Update : Thu Mar 01 07:31:12 2007 Response via : Initial Calibration

Calibration Files

1 =F0078964.D 2 =F0078965.D 3 =F0078966.D

=F0078967.D 5 =F0078968.D 6 =F0078969.D 7 =F0078970.D

1 2 3 4 5 6 7 Avg %RSD -----ISTD-----1) I Fluorobenzene 2) Dichlorodifluorom 0.157 0.162 0.153 0.171 0.181 0.178 0.196 0.171 3)P Chloromethane 0.353 0.368 0.326 0.309 0.319 0.297 0.331 0.329 7.50 4)C Vinyl Chloride 0.279 0.316 0.268 0.280 0.287 0.269 0.300 0.286 6.01 5) Bromomethane 0.275 0.253 0.223 0.215 0.216 0.204 0.190 0.225 12.95 6) Chloroethane 0.203 0.232 0.219 0.222 0.222 0.210 0.211 0.217 4.37 7) Trichlorofluorome 0.137 0.154 0.142 0.159 0.166 0.162 0.164 0.155 7.23 8) Acrolein 0.030 0.030 0.031 0.036 0.036 0.033 0.033 9)C 1,1-Dichloroethen 0.287 0.299 0.298 0.320 0.322 0.306 0.312 0.306 9.61 4.56 3.74 15) Methylene Chlorid 0.410 0.424 0.407 0.404 0.396 0.378 0.376 0.399 4.34 16) Tert Butyl Alcoho 0.015 0.018 0.018 0.015 0.017 0.018 0.018 0.017 8.14 17) trans-1,2-Dichlor 0.328 0.340 0.340 0.351 0.337 0.344 0.341 2.11 18) Acrylonitrile 0.086 0.099 0.097 0.091 0.097 0.098 0.097 0.095 4.82 19) Methyl Tert Butyl 0.577 0.603 0.572 0.555 0.578 0.587 0.594 0.581 2.70 0.300 0.281 0.283 0.341 0.346 0.320 0.315 0.312 8.32 20) Hexane 21)P 1,1-Dichloroethan 0.428 0.457 0.436 0.445 0.450 0.430 0.435 0.440 2.44 22) Vinyl acetate 0.513 0.554 0.582 0.564 0.569 0.552 0.517 0.550 4.74 23) Di-isopropyl ethe 0.944 1.012 0.992 0.981 0.988 0.943 0.934 0.971 3.09 24) Ethyl tert-butyl 0.721 0.735 0.733 0.737 0.753 0.739 0.749 0.738 1.43 25) 2,2-Dichloropropa 0.208 0.200 0.197 0.210 0.209 0.202 0.195 0.203 2.91 26) cis-1,2-Dichloroe 0.282 0.305 0.302 0.308 0.307 0.302 0.307 0.302 3.03 27) 2-Butanone 0.113 0.118 0.120 0.105 0.111 0.112 0.109 0.113 4.48 28) Bromochloromethan 0.124 0.142 0.145 0.146 0.147 0.149 0.150 0.143 6.13 29)C Chloroform 0.343 0.363 0.358 0.362 0.364 0.353 0.362 0.358 2.09 30) Tetrahydrofuran 0.048 0.035 0.033 0.030 0.031 0.031 0.029 0.034 19.44 ---- Linear regression ---- Coefficient = 0.9988 Response Ratio = 0.00148 + 0.02898 *A31) 1,1,1-Trichloroet 0.196 0.201 0.204 0.213 0.218 0.210 0.215 0.208 32)S Dibromofluorometh 0.211 0.221 0.210 0.217 0.221 0.221 0.226 0.218 33) Cyclohexane 0.390 0.405 0.413 0.479 0.485 0.453 0.447 0.439 34) 1,1-Dichloroprope 0.283 0.279 0.292 0.313 0.321 0.312 0.316 0.302 Carbon Tetrachlor 0.142 0.161 0.164 0.176 0.181 0.177 0.183 0.169 36)S 1,2-Dichloroethan 0.159 0.173 0.166 0.161 0.165 0.162 0.166 0.165 37) Benzene 1.089 1.108 1.092 1.113 1.134 1.098 1.119 1.108 38) 1,2-Dichloroethan 0.181 0.193 0.200 0.205 0.200 0.204 0.201 0.198 4.13 39) tert-amyl methyl 0.712 0.774 0.759 0.736 0.767 0.769 0.782 0.757 40) Trichloroethene 0.212 0.223 0.218 0.229 0.233 0.229 0.236 0.226 41) Methylcyclohexane 0.318 0.332 0.335 0.391 0.401 0.384 0.388 0.364 9.38 42)C 1,2-Dichloropropa 0.320 0.304 0.310 0.316 0.320 0.310 0.318 0.314 1.90 43) Dibromomethane 0.129 0.147 0.169 0.160 0.166 0.165 0.170 0.158 9.61



Page 2 of 3 **Sample:** VF2305-ICC2305

 Job Number:
 T16445
 Sample:
 VF2305-ICC23

 Account:
 ITTXHO Shaw E & I, Inc.
 Lab FileID:
 F0078967.D

**Project:** Longhorn Army Ammunition Plant

```
0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 17.15
           ---- Linear regression ---- Coefficient = 0.9989
             Response Ratio = -0.00341 + 0.00271 *A
45)
    Bromodichlorometh 0.287 0.300 0.298 0.307 0.311 0.306 0.317 0.304
                                                                       3.19
    2-Nitropropane 0.046 0.042 0.041 0.037 0.038 0.039 0.038 0.040
46)
47)
    2-Chloroethyl vin 0.094 0.104 0.122 0.125 0.136 0.143 0.152 0.125
           ---- Linear regression ---- Coefficient = 0.9983
             Response Ratio = -0.06248 + 0.15260 *A
    4-Methyl-2-pentan 0.229 0.239 0.249 0.234 0.246 0.246 0.237 0.240
48)
                                                                       3.06
    cis-1,3-Dichlorop 0.369 0.397 0.420 0.427 0.443 0.439 0.454 0.421
                                                                       6.95
       Chlorobenzene-d5
                             -----ISTD-----
51)S Toluene-d8
                     1.147 1.122 1.060 1.073 1.083 1.079 1.120 1.098
                                                                       2.89
52)C Toluene
                      1.382 1.408 1.358 1.387 1.384 1.367 1.417 1.386
53) trans-1,3-Dichlor 0.340 0.364 0.391 0.402 0.406 0.409 0.428 0.391
54) 1,1,2-Trichloroet 0.263 0.295 0.289 0.279 0.283 0.284 0.289 0.283
    Tetrachloroethene 0.272 0.280 0.293 0.302 0.309 0.299 0.307 0.294
55)
                                                                       4.70
56)
    2-hexanone
                      0.170 0.180 0.203 0.194 0.206 0.211 0.208 0.196
                                                                       8.04
57) 1,3-Dichloropropa 0.605 0.605 0.602 0.593 0.592 0.591 0.602 0.599
                                                                       1.05
58) Dibromochlorometh 0.254 0.312 0.303 0.296 0.299 0.304 0.315 0.298
                                                                       6.92
59) 1,2-Dibromoethane 0.283 0.310 0.305 0.302 0.314 0.320 0.331 0.309
                                                                       4.87
60) 1-Chlorohexane
                      0.464 0.467 0.465 0.505 0.517 0.509 0.535 0.495
                                                                       5.83
61)P Chlorobenzene 0.877 0.857 0.851 0.870 0.877 0.867 0.897 0.871
                                                                       1.73
62) 1,1,1,2-Tetrachlo 0.264 0.284 0.283 0.282 0.281 0.279 0.288 0.280
63)C Ethylbenzene 1.475 1.458 1.433 1.493 1.499 1.470 1.518 1.478
64) m,p-Xylene
                      0.970 0.990 1.008 1.040 1.057 1.039 1.067 1.025
                                                                       3.51
                      1.021 1.033 1.058 1.084 1.107 1.077 1.111 1.070
65) o-Xylene
                0.796 0.855 0.910 0.960 0.983 0.978 1.013 0.928 0.142 0.077 0.184 0.179 0.195 0.199 0.205 0.169
66) Styrene
67)P Bromoform
            ---- Linear regression ---- Coefficient = 0.9995
             Response Ratio = -0.01246 + 0.20679 *A
       1,4-Dichlorobenzene-d -----ISTD-----ISTD-----
69) Isopropylbenzene 3.394 3.422 2.803 2.838 2.780 2.731 2.618 2.941 11.11
70) Cyclohexanone 0.023 0.030 0.027 0.025 0.026 0.029 0.027 0.027
71)S 4-Bromofluorobenz 1.169 1.004 0.864 0.853 0.853 0.860 0.845 0.921
                                                                      13.32
                  0.997 0.963 0.842 0.837 0.823 0.822 0.788 0.867
72) Bromobenzene
                                                                       9.15
73)P 1,1,2,2-Tetrachlo 1.339 1.320 1.146 1.011 1.011 1.030 0.983 1.120
                                                                      13.59
74) Trans-1,4-Dichlor 0.143 0.182 0.177 0.182 0.188 0.192 0.192 0.179
75) 1,2,3-Trichloropr 0.257 0.296 0.253 0.232 0.230 0.236 0.225 0.247
76) n-Propylbenzene 4.567 4.426 4.010 4.105 4.023 3.954 3.865 4.136
    2-Chlorotoluene 3.164 2.888 2.531 2.500 2.416 2.351 2.285 2.591
                                                                      12.31
    4-Chlorotoluene 2.569 2.376 2.183 2.187 2.133 2.116 2.076 2.234
                                                                       7.90
    1,3,5-Trimethylbe 2.668 2.535 2.320 2.351 2.287 2.250 2.168 2.368
                                                                       7.33
80)
    sec-Butylbenzene 3.329 3.252 3.038 3.232 3.150 3.042 2.937 3.140
                                                                       4.47
    1,3-Dichlorobenze 1.316 1.426 1.364 1.413 1.441 1.419 1.422 1.400
81)
                                                                       3.16
82)
    4-Isopropyltoluen 2.408 2.304 2.224 2.403 2.346 2.277 2.220 2.312
                                                                       3.37
    1,4-Dichlorobenze 1.528 1.430 1.389 1.429 1.420 1.423 1.424 1.435
83)
                                                                       3.04
    tert-Butylbenzene 0.533 0.438 0.430 0.445 0.436 0.429 0.410 0.446
84)
                                                                       8.90
85)
    n-Butylbenzene 1.465 1.572 1.892 2.173 2.149 2.132 2.214 1.942 15.91
           ---- Linear regression ---- Coefficient = 0.9997
             Response Ratio = -0.08322 + 2.22219 *A
86)
    1,2-Dichlorobenze 1.206 1.332 1.314 1.336 1.345 1.359 1.369 1.323
87)
    1,2,4-Trimethylbe 2.566 2.449 2.311 2.410 2.354 2.310 2.242 2.377
    1,2-Dibromo-3-Chl 0.068 0.106 0.082 0.072 0.077 0.089 0.088 0.083 15.22
           ---- Linear regression ---- Coefficient = 0.9968
```



## **Initial Calibration Summary**

Page 3 of 3

**Job Number:** T16445 Sample: VF2305-ICC2305 F0078967.D ITTXHO Shaw E & I, Inc. Lab FileID: Account:

Longhorn Army Ammunition Plant **Project:** 

Response Ratio = -0.00467 + 0.08863 *A

89) 1,2,4-Trichlorobe 0.166 0.135 0.302 0.403 0.468 0.530 0.585 0.370 47.33 ---- Linear regression ---- Coefficient = 0.9944

Response Ratio = -0.09820 + 0.59565 *A

90) Hexachlorobutadie 0.058 0.088 0.170 0.207 0.204 0.208 0.202 0.162 38.83 ---- Linear regression ---- Coefficient = 0.9993

Response Ratio = -0.00579 + 0.20548 *A

0.526 0.280 0.475 0.606 0.781 0.975 1.125 0.681 43.48 91) Naphthalene ---- Quadratic regression ---- Coefficient = 0.9974 Response Ratio =  $-0.07686 + 0.74236 *A + 0.10172 *A^2$ 

92) 1,2,3-Trichlorobe 0.167 0.113 0.217 0.276 0.334 0.389 0.421 0.274 41.95 ---- Linear regression ---- Coefficient = 0.9938 Response Ratio = -0.07169 + 0.43007 *A

(#) = Out of Range

VF2305C.M Thu Mar 01 07:44:03 2007



Continuing Calibration Summary Job Number: T16445 VF2314-CC2305 Sample:

ITTXHO Shaw E & I, Inc. Lab FileID: F0079162.D Account:

Project: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\VF2313\F0079162.D
Acq On : 7 Mar 2007 2:47 am Vial: 2 Operator: lydiaj Sample : cc2305-40 Misc : ms3885,vf2314,,,,5,1,water Inst : GC/MS F Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator)
Title : SW846 8260B and EPA 624

Last Update : Thu Mar 01 07:31:12 2007 Response via : Multiple Level Calibration

Min. RRF : 0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Fluorobenzene	1.000	1.000	0.0 82 -0.08
2	Dichlorodifluoromethane	0.171	0.149	12.9 72 -0.05
3 P	Chloromethane	0.329	0.336	-2.1 90 -0.06
4 C	Vinyl Chloride	0.286	0.303	-5.9 89 -0.06
5	Bromomethane	0.225	0.230	-2.2 88 -0.07
6	Chloroethane	0.217	0.235	-8.3 87 -0.07
7	Trichlorofluoromethane	0.155	0.171	-10.3 89 -0.06
8	Acrolein	0.033	0.030	9.1 69 -0.08
9 C	1,1-Dichloroethene	0.306	0.310	-1.3 80 -0.07
10	Freon 113	0.205	0.205	0.0   75 - 0.07
11	Acetone	0.056	0.058	-3.6 93 -0.07
12	Iodomethane	0.434	0.433	0.2 82 -0.07
13	Methyl acetate	0.191	0.220	-15.2 101 -0.07
14	Carbon Disulfide	0.889	0.861	3.1 78 -0.07
15	Methylene Chloride	0.399	0.417	-4.5 85 $-0.07$
16	Tert Butyl Alcohol	0.017	0.020	-17.6 106 -0.08
17	trans-1,2-Dichloroethene	0.341	0.353	-3.5 85 -0.07
18	Acrylonitrile	0.095	0.108	-13.7 97 $-0.07$
19	Methyl Tert Butyl Ether	0.581	0.615	-5.9 91 -0.08
20	Hexane	0.312	0.282	9.6 68 -0.08
21 P	1,1-Dichloroethane	0.440	0.464	-5.5 86 -0.08
22	Vinyl acetate	0.550	0.626	-13.8 92 -0.08
23	Di-isopropyl ether	0.971	1.067	-9.9 90 -0.07
24	Ethyl tert-butyl ether	0.738	0.798	-8.1 89 -0.07
25	2,2-Dichloropropane	0.203	0.181	10.8 71 -0.07
26	cis-1,2-Dichloroethene	0.302	0.321	-6.3 86 -0.08
27	2-Butanone	0.113	0.129	-14.2 101 -0.08
28	Bromochloromethane	0.143	0.153	-7.0 87 -0.08
29 C	Chloroform	0.358	0.376	-5.0 86 -0.08
30	Tetrahydrofuran	0.034	0.036	-5.9 99 -0.08
31	1,1,1-Trichloroethane	0.208	0.219	-5.3 85 -0.08
32 S	Dibromofluoromethane	0.218	0.250	-14.7 95 $-0.07$
33	Cyclohexane	0.439	0.461	-5.0 79 -0.08
34 35	1,1-Dichloropropene Carbon Tetrachloride	0.302	0.319	-5.6 $84$ $-0.08$ $-6.5$ $84$ $-0.08$
		0.169	0.180 0.192	
36 S 37	1,2-Dichloroethane-d4	0.165 1.108	0.192 $1.171$	
38	Benzene 1,2-Dichloroethane	0.198	0.218	
	•		0.218	
39 40	tert-amyl methyl ether Trichloroethene	0.757 0.226	0.810	-7.0 91 $-0.08$ $-5.3$ 85 $-0.08$
40 41	Methylcyclohexane	0.226	0.238	0.3 76 -0.08
41 42 C	1,2-Dichloropropane	0.364	0.363	-8.9 89 -0.08
42 C	I, Z-DICHIOLOPLOPAHE	0.314	0.342	-0.9 09 -0.08



## Continuing Calibration Summary

Continu Job Numb Account: Project:	ring Calibration Summary er: T16445 ITTXHO Shaw E & I, Inc. Longhorn Army Ammunition Plant		Sample: Lab FileI		F2314-0 079162	CC2305	Page 2 of 2
43	Dibromomethane	0.158	0.173	-9.5	89	-0.09	
44	1,4-Dioxane	0.002	0.003	-50.0#	100	-0.08	
45	Bromodichloromethane	0.304	0.328	-7.9	88	-0.08	
46	2-Nitropropane	0.040		-12.5	99	-0.09	
47	2-Chloroethyl vinyl ether	0.125	0.133	-6.4	88	-0.08	
48	4-Methyl-2-pentanone	0.240		-20.8#		-0.09	
49	cis-1,3-Dichloropropene	0.421	0.442	-5.0	85	-0.08	
50 I	Chlorobenzene-d5	1.000	1.000	0.0	89	-0.08	
51 S	Toluene-d8	1.098	1.140	-3.8	94	-0.08	
52 C	Toluene	1.386	1.356	2.2	87	-0.08	
53	trans-1,3-Dichloropropene	0.391	0.395	-1.0	87	-0.08	
54	1,1,2-Trichloroethane	0.283	0.288	-1.8	91	-0.08	
55	Tetrachloroethene	0.294	0.293	0.3	86	-0.09	
56 57	2-hexanone	0.196		-13.8	102	-0.08	
57 50	1,3-Dichloropropane	0.599	0.605 0.306	-1.0 $-2.7$	90 92	-0.08	
58 59	Dibromochloromethane 1,2-Dibromoethane	0.298 0.309	0.320	-2.7 -3.6	94	-0.08 -0.09	
60	1,2-Dibromoethane 1-Chlorohexane	0.309	0.458	7.5	80	-0.09	
61 P	Chlorobenzene	0.495	0.456	0.6	88	-0.09	
62	1,1,1,2-Tetrachloroethane	0.280	0.283	-1.1	89	-0.09	
63 C	Ethylbenzene	1.478	1.455	1.6	86	-0.09	
64	m,p-Xylene	1.025	1.024	0.1	87	-0.09	
65	o-Xylene	1.070	1.091	-2.0	89	-0.09	
66	Styrene	0.928	0.947	-2.0	87	-0.08	
67 P	Bromoform	0.169		-18.9	100	-0.09	
68 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	90	-0.09	l
69	Isopropylbenzene	2.941	2.700	8.2	86	-0.08	1
70	Cyclohexanone	0.027	0.042	-55.6#	149	-0.10	1
71 S	4-Bromofluorobenzene	0.921	0.903	2.0	96	-0.09	1
72	Bromobenzene	0.867	0.837	3.5	90	-0.10	1
73 P	1,1,2,2-Tetrachloroethane	1.120	1.088	2.9	97	-0.09	
74	Trans-1,4-Dichloro-2-Butene	0.179	0.171	4.5	85	-0.09	
75	1,2,3-Trichloropropane	0.247	0.252	-2.0	99	-0.10	
76	n-Propylbenzene	4.136	3.884	6.1	86	-0.09	
77	2-Chlorotoluene	2.591	2.414	6.8	87	-0.09	
78	4-Chlorotoluene	2.234	2.100	6.0	87	-0.10	
79	1,3,5-Trimethylbenzene	2.368	2.226	6.0	86	-0.09	
80	sec-Butylbenzene	3.140	3.014	4.0	84	-0.09	
81	1,3-Dichlorobenzene	1.400	1.412	-0.9	90	-0.10	
82 83	<pre>4-Isopropyltoluene 1,4-Dichlorobenzene</pre>	2.312 1.435	2.210 1.389	4.4 3.2	83 88	-0.09 -0.09	
84	tert-Butylbenzene	0.446	0.422	5.4	86	-0.10	
85	n-Butylbenzene	1.942	1.915	1.4	80	-0.10	
86	1,2-Dichlorobenzene	1.323	1.344	-1.6	91	-0.10	
87	1,2,4-Trimethylbenzene	2.377	2.293	3.5	86	-0.09	
88	1,2-Dibromo-3-Chloropropane	0.083	0.075	9.6	94	-0.09	
89	1,2,4-Trichlorobenzene	0.370	0.387	-4.6	87	-0.10	
90	Hexachlorobutadiene	0.162		-16.7	83	-0.11	
91	Naphthalene	0.681	0.633	7.0	94	-0.11	
92	1,2,3-Trichlorobenzene	0.274	0.283	-3.3	93	-0.12	
							_

Average % D = 7.3

(#) = Out of Range SPCC's out = 0 CCC's out = 0 F0078967.D VF2305C.M Wed Mar 07 10:06:33 2007



Continuing Calibration Summary Job Number: T16445 Sample: VF2315-CC2305

ITTXHO Shaw E & I, Inc. Lab FileID: F0079182.D Account:

Project: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Vial: 2 Data File : C:\HPCHEM\1\DATA\VF2315~1\F0079182.D Acq On : 7 Mar 2007 1:19 pm Operator: lydiaj Sample : cc2305-40 Misc : ms3885,vf2315,,,,5,1,water Inst : GC/MS F Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator)
Title : SW846 8260B and EPA 624

Last Update : Thu Mar 01 07:31:12 2007 Response via : Multiple Level Calibration

Min. RRF : 0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area	Dev(min)
1 I	Fluorobenzene	1.000	1.000	0.0 86	5 -0.08
2	Dichlorodifluoromethane	0.171	0.148	13.5 7	1 -0.04
3 P	Chloromethane	0.329	0.330	-0.3 92	2 -0.05
4 C	Vinyl Chloride	0.286	0.292	-2.1 90	0 -0.06
5	Bromomethane	0.225	0.223	0.9 89	9 -0.07
6	Chloroethane	0.217	0.226	-4.1 88	3 -0.06
7	Trichlorofluoromethane	0.155	0.162	-4.5 8	
8	Acrolein	0.033	0.034	-3.0 83	
9 C	1,1-Dichloroethene	0.306	0.297	2.9 80	
10	Freon 113	0.205	0.193	5.9 73	
11	Acetone	0.056	0.051	8.9 84	
12	Iodomethane	0.434	0.399	8.1 78	
13	Methyl acetate	0.191	0.208	-8.9 100	
14	Carbon Disulfide	0.889	0.797	10.3 7	
15	Methylene Chloride	0.399	0.419	-5.0 89	
16	Tert Butyl Alcohol	0.017	0.019	-11.8 103	
17	trans-1,2-Dichloroethene	0.341	0.339	0.6 84	
18	Acrylonitrile	0.095	0.092	3.2 86	
19	Methyl Tert Butyl Ether	0.581	0.574	1.2 89	
20	Hexane	0.312	0.316	-1.3 79	
21 P	1,1-Dichloroethane	0.440	0.453	-3.0 8'	
22	Vinyl acetate	0.550	0.609	-10.7 93	
23	Di-isopropyl ether	0.971	1.066	-9.8 93	
24	Ethyl tert-butyl ether	0.738	0.773	-4.7 90	
25	2,2-Dichloropropane	0.203	0.210	-3.4 86	
26	cis-1,2-Dichloroethene	0.302	0.307	-1.7 86	
27	2-Butanone	0.113	0.108	4.4 88	
28	Bromochloromethane	0.143	0.147	-2.8 86	
29 C	Chloroform	0.358	0.370	-3.4 88	
30	Tetrahydrofuran	0.034	0.032	5.9 91	
31 32 S	1,1,1-Trichloroethane	0.208	0.210	-1.0 84 $-4.1$ 90	
32 S 33	Dibromofluoromethane	0.218	0.227	-4.1 90 $-2.7$ 81	
3 <i>3</i>	Cyclohexane	0.439	0.451		
34 35	1,1-Dichloropropene Carbon Tetrachloride	0.302	0.317 0.174	-5.0 8' -3.0 8!	
		0.169	0.174		
36 S 37	1,2-Dichloroethane-d4	0.165 1.108	1.127		
38	Benzene 1,2-Dichloroethane	0.198	0.213	-1.7 8' -7.6 89	
30 39	tert-amyl methyl ether	0.198	0.213	-7.6 6: -2.6 9:	
39 40	Trichloroethene	0.757	0.777	-2.6 9. -2.7 8'	
40 41	Methylcyclohexane	0.226	0.232	-2.7 8 -1.9 81	
41 42 C	1,2-Dichloropropane	0.364	0.371	-1.9 8. -7.0 9i	
42 C	I, Z-DICHIOLOPLOPAHE	0.314	0.330	- 7.0 9.	-0.09



Page 2 of 2

## **Continuing Calibration Summary**

Job Numb	er: T16445		Sample:	VF2315-CC2305
Account:	ITTXHO Shaw E & I, Inc.		Lab FileID:	F0079182.D
Project:	Longhorn Army Ammunition Plant			
43	Dibromomethane	0.158	0.169 -7	7.0 91 -0.09
44	1,4-Dioxane	0.002		0.0# 106 -0.09
45	Bromodichloromethane	0.304		5.6 90 -0.08
46	2-Nitropropane	0.040		5.0 98 -0.08
47	2-Chloroethyl vinyl ether	0.125		0.8 85 -0.08
48	4-Methyl-2-pentanone	0.240		1.7 87 -0.09
49	cis-1,3-Dichloropropene	0.421		9.5 93 -0.08
50 I	Chlorobenzene-d5	1.000	1.000	0.0 90 -0.08
51 S	Toluene-d8	1.098	1.096	0.2 92 -0.08
52 C	Toluene	1.386	1.363	1.7 89 -0.08
53	trans-1,3-Dichloropropene	0.391	0.405 -3	3.6 91 -0.07
54	1,1,2-Trichloroethane	0.283		2.1 93 -0.08
55	Tetrachloroethene	0.294	0.299 -1	1.7 89 -0.09
56	2-hexanone	0.196	0.182	7.1 85 -0.08
57	1,3-Dichloropropane	0.599	0.606 -1	.2 92 -0.08
58	Dibromochloromethane	0.298		2.7 94 -0.08
59	1,2-Dibromoethane	0.309		0.3 93 -0.08
60	1-Chlorohexane	0.495		.2 90 -0.09
61 P	Chlorobenzene	0.871		0.6 91 -0.09
62	1,1,1,2-Tetrachloroethane	0.280		2.1 92 -0.08
63 C	Ethylbenzene	1.478		0.3 89 -0.09
64	m,p-Xylene	1.025		1.4 90 -0.08
65	o-Xylene	1.070		3.0 92 -0.09
66	Styrene	0.928		3.9 91 -0.08
67 P	Bromoform	0.169		7.2 100 -0.09
68 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0 93 -0.09
69	Isopropylbenzene	2.941	2.758	5.2 90 -0.08
70	Cyclohexanone	0.027	0.039 -44	1.4# 142 -0.10
71 S	4-Bromofluorobenzene	0.921	0.840	3.8 92 -0.09
72	Bromobenzene	0.867	0.840	3.1 93 -0.09
73 P	1,1,2,2-Tetrachloroethane	1.120	1.065 4	1.9 98 -0.09
74	Trans-1,4-Dichloro-2-Butene	0.179	0.176 1	1.7 90 -0.09
75	1,2,3-Trichloropropane	0.247	0.240 2	2.8 96 -0.09
76	n-Propylbenzene	4.136	4.041 2	2.3 92 -0.09
77	2-Chlorotoluene	2.591	2.463	1.9 92 -0.09
78	4-Chlorotoluene	2.234	2.117 5	5.2 90 -0.10
79	1,3,5-Trimethylbenzene	2.368	2.281	3.7 90 -0.09
80	sec-Butylbenzene	3.140	3.101 1	.2 89 -0.09
81	1,3-Dichlorobenzene	1.400	1.439 -2	2.8 95 -0.09
82	4-Isopropyltoluene	2.312	2.294	0.8 89 -0.09
83	1,4-Dichlorobenzene	1.435	1.431	0.3 93 -0.09
84	tert-Butylbenzene	0.446	0.438 1	1.8 91 -0.10
85	n-Butylbenzene	1.942	2.030 -4	1.5 87 -0.10
86	1,2-Dichlorobenzene	1.323		2.2 94 -0.09
87	1,2,4-Trimethylbenzene	2.377		0.1 92 -0.09
88	1,2-Dibromo-3-Chloropropane	0.083		1.5 92 -0.10
89	1,2,4-Trichlorobenzene	0.370		7.3 79 -0.09
90	Hexachlorobutadiene	0.162	0.192 -18	
91	Naphthalene	0.681		9.2 84 -0.12
92	1,2,3-Trichlorobenzene	0.274		9.9 83 -0.12

Average % D = 5.5

(#) = Out of Range SPCC's out = 0 CCC's out = 0 F0078967.D VF2305C.M Thu Mar 08 11:48:42 2007



Continuing Calibration Summary Job Number: T16445 Sample: VF2318-CC2305 Lab FileID: F0079223.D

ITTXHO Shaw E & I, Inc. Account: Project: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

Vial: 2 Data File : C:\HPCHEM\1\DATA\VF2318~1\F0079223.D Acq On : 8 Mar 2007 10:59 am Operator: lydiaj Sample : cc2305-40 Misc : ms3889,vf2318,,,,5,1,water Inst : GC/MS F Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator) Method

: SW846 8260B and EPA 624 Title Last Update : Thu Mar 01 07:31:12 2007 Response via : Multiple Level Calibration

Min. RRF : 0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Fluorobenzene	1.000	1.000	0.0 86 -0.08
2	Dichlorodifluoromethane	0.171	0.134	21.6# 68 -0.04
3 P	Chloromethane	0.329	0.313	4.9 87 -0.05
4 C	Vinyl Chloride	0.286	0.273	4.5 84 -0.06
5	Bromomethane	0.225	0.222	1.3 89 -0.07
6	Chloroethane	0.217	0.229	-5.5 89 -0.06
7	Trichlorofluoromethane	0.155	0.168	-8.4 91 -0.07
8	Acrolein	0.033	0.033	0.0 81 -0.07
9 C	1,1-Dichloroethene	0.306	0.303	1.0 81 -0.07
10	Freon 113	0.205	0.207	-1.0 79 -0.07
11	Acetone	0.056	0.042	25.0# 70 -0.07
12	Iodomethane	0.434	0.423	2.5 83 -0.07
13	Methyl acetate	0.191	0.176	7.9 84 -0.07
14	Carbon Disulfide	0.889	0.841	5.4 80 -0.08
15	Methylene Chloride	0.399	0.413	-3.5 88 -0.07
16	Tert Butyl Alcohol	0.017	0.017	0.0 92 -0.07
17	trans-1,2-Dichloroethene	0.341	0.350	-2.6 87 -0.07
18	Acrylonitrile	0.095	0.078	17.9 73 -0.07
19	Methyl Tert Butyl Ether	0.581	0.562	3.3 87 -0.07
20	Hexane	0.312	0.315	-1.0 79 -0.08
21 P	1,1-Dichloroethane	0.440	0.464	-5.5 89 -0.07
22	Vinyl acetate	0.550	0.547	0.5 83 -0.07
23	Di-isopropyl ether	0.971	1.060	-9.2 93 -0.07
24 25	Ethyl tert-butyl ether	0.738	0.774	-4.9 90 $-0.07$ $-14.3$ 95 $-0.07$
25 26	2,2-Dichloropropane	0.203 0.302	0.232 0.324	
⊿6 27	cis-1,2-Dichloroethene 2-Butanone	0.302	0.324	-7.3 90 -0.08 20.4# 74 -0.08
28	Bromochloromethane	0.113	0.090	-4.2 88 -0.08
20 29 C	Chloroform	0.143	0.149	-8.1 92 $-0.08$
30	Tetrahydrofuran	0.338	0.028	17.6 80 -0.08
31	1,1,1-Trichloroethane	0.208	0.020	-7.7 90 -0.08
32 S	Dibromofluoromethane	0.218	0.236	-8.3 93 -0.07
33	Cyclohexane	0.439	0.472	-7.5 85 -0.08
34	1,1-Dichloropropene	0.302	0.328	-8.6 90 -0.08
35	Carbon Tetrachloride	0.169	0.187	-10.7 91 -0.07
36 S	1,2-Dichloroethane-d4	0.165	0.169	-2.4 90 -0.08
37	Benzene	1.108	1.177	-6.2 91 -0.07
38	1,2-Dichloroethane	0.198	0.206	-4.0 86 -0.08
39	tert-amyl methyl ether	0.757	0.767	-1.3 90 -0.08
40	Trichloroethene	0.226	0.248	-9.7 93 -0.08
41	Methylcyclohexane	0.364	0.394	-8.2 87 -0.08
42 C	1,2-Dichloropropane	0.314	0.345	-9.9 94 -0.08
-	,			



Page 2 of 2

## **Continuing Calibration Summary**

Job Numb Account: Project:	ount: ITTXHO Shaw E & I, Inc.		Sample: Lab File		F2318-0 0079223	CC2305	rage 2
43	Dibromomethane	0.158	0.163	-3.2	88	-0.08	
44	1,4-Dioxane	0.002	0.002	0.0	89	-0.08	
45	Bromodichloromethane	0.304	0.332	-9.2	93	-0.08	
46	2-Nitropropane	0.040	0.036	10.0	84	-0.08	
47	2-Chloroethyl vinyl ether	0.125	0.110	12.0	76	-0.08	
48	4-Methyl-2-pentanone	0.240	0.206	14.2	76	-0.08	
49	cis-1,3-Dichloropropene	0.421	0.471	-11.9	95	-0.08	
50 I	Chlorobenzene-d5	1.000	1.000	0.0	90	-0.08	
51 S	Toluene-d8	1.098	1.138	-3.6	96	-0.08	
52 C	Toluene	1.386	1.437	-3.7	94	-0.08	
53	trans-1,3-Dichloropropene	0.391	0.405	-3.6	91	-0.07	
54	1,1,2-Trichloroethane	0.283	0.284	-0.4	92	-0.08	
55	Tetrachloroethene	0.294	0.324	-10.2	97	-0.09	
56	2-hexanone	0.196	0.157	19.9	73	-0.08	
57	1,3-Dichloropropane	0.599	0.582	2.8	89	-0.08	
58	Dibromochloromethane	0.298	0.305	-2.3	93	-0.08	
59	1,2-Dibromoethane	0.309	0.301	2.6	90	-0.08	
60	1-Chlorohexane	0.495	0.527	-6.5	94	-0.08	
61 P	Chlorobenzene	0.871	0.923	-6.0	96	-0.09	
62	1,1,1,2-Tetrachloroethane	0.280	0.299	-6.8	96	-0.09	
63 C	Ethylbenzene	1.478	1.578	-6.8	96	-0.09	
64	m,p-Xylene	1.025	1.080	-5.4	94	-0.08	
65	o-Xylene	1.070	1.152	-7.7		-0.08	
66	Styrene	0.928	0.989	-6.6	93	-0.08	
67 P	Bromoform	0.169	0.180	-6.5	91	-0.09	
68 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	90	-0.09	
69	Isopropylbenzene	2.941	3.019	-2.7	95	-0.08	
70	Cyclohexanone	0.027	0.046	-70.4		-0.10	
71 S	4-Bromofluorobenzene	0.921	0.912	1.0	96	-0.09	
72	Bromobenzene	0.867	0.917	-5.8	98	-0.09	
73 P	1,1,2,2-Tetrachloroethane	1.120	1.007	10.1	89	-0.09	
74	Trans-1,4-Dichloro-2-Butene	0.179	0.160	10.6	79	-0.10	
75	1,2,3-Trichloropropane	0.247	0.233	5.7	90	-0.09	
76	n-Propylbenzene	4.136	4.335	-4.8	95	-0.09	
77	2-Chlorotoluene	2.591	2.658	-2.6	95	-0.09	
78 70	4-Chlorotoluene	2.234	2.314	-3.6	95	-0.10	
79	1,3,5-Trimethylbenzene	2.368	2.500	-5.6	95	-0.08	
80 81	sec-Butylbenzene 1,3-Dichlorobenzene	$3.140 \\ 1.400$	3.327 1.523	-6.0 -8.8	92 97	-0.09 -0.09	
82	4-Isopropyltoluene	2.312	2.458	-6.3	92	-0.09	
83	1,4-Dichlorobenzene	1.435	1.494	-4.1	94	-0.09	
84	tert-Butylbenzene	0.446	0.456	-2.2	92	-0.10	
85	n-Butylbenzene	1.942	2.065	-6.3	85	-0.10	
86	1,2-Dichlorobenzene	1.323	1.387	-4.8	93	-0.09	
87	1,2,4-Trimethylbenzene	2.377	2.512	-5.7	94	-0.09	
88	1,2-Dibromo-3-Chloropropane	0.083	0.069	16.9	85	-0.09	
89	1,2,4-Trichlorobenzene	0.370	0.322	13.0	72	-0.09	
90	Hexachlorobutadiene	0.162	0.322	-24.1		-0.10	
91	Naphthalene	0.681	0.464	31.9		-0.11	
92	1,2,3-Trichlorobenzene	0.274	0.216	21.2		-0.11	
92	1,2,3-Trichlorobenzene			21.2	‡ 70 	-0.11	

Average % D = 8.2

(#) = Out of Range SPCC's out = 0 CCC's out = 0 F0078967.D VF2305C.M Fri Mar 09 16:10:50 2007





## General Chemistry

QC Data Summaries

## Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16445 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Total as CaCO3	GN11375	5.0	<5.0	mg/l	2500	2500	100.0	80-120
Chloride	GN11343	1.0	<1.0	mg/l	xxxxxxx	1020	102.0	92-107
Nitrogen, Nitrate + Nitrite	GN11291	0.050	<0.050	mg/l	0.500	0.51	102.0	89-112
Nitrogen, Nitrate + Nitrite	GN11301	0.050	<0.050	mg/l	0.500	0.51	102.0	89-112
Nitrogen, Nitrite	GN11290	0.050	<0.050	mg/l	0.500	0.49	98.0	89-117
Nitrogen, Nitrite	GN11300	0.050	<0.050	mg/l	0.500	0.49	98.0	89-117
Sulfate	GN11356	10	<10	mg/l	100	95.0	95.0	80-120
Sulfate	GN11356			mg/l	xxxxxxx		*	80-120
Sulfide	GN11313	0.20	<0.20	mg/l	1600	1380	85.0	80-120
Total Organic Carbon	GN11304	1.0	<1.0	mg/l	25.0	26.0	104.0	83-110
Total Organic Carbon	GN11311	1.0	<1.0	mg/l	25.0	25.0	100.0	83-110
Total Organic Carbon	GN11317	1.0	<1.0	mg/l	25.0	25.0	100.0	83-110

#### Associated Samples:

Batch GN11290: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11291: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11300: T16445-18 Batch GN11301: T16445-18

Batch GN11304: T16445-18

Batch GN11311: T16445-1, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7

Batch GN11313: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11317: T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-8, T16445-9

Batch GN11343: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4,  $\mathtt{T}16445-5\,,\ \mathtt{T}16445-6\,,\ \mathtt{T}16445-7\,,\ \mathtt{T}16445-8\,,\ \mathtt{T}16445-9$ 

Batch GN11356: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11375: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

(*) Outside of QC limits

## DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16445
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Alkalinity, Total as CaCO3	GN11375	T16445-5	mg/l	457	457	0.0	0-10%
Chloride	GN11343	T16445-5	mg/l	253	258	2.0	0-5%
Nitrogen, Nitrate + Nitrite	GN11291	T16445-5	mg/l	0.0050 U	<0.050	0.0	0-10%
Nitrogen, Nitrate + Nitrite	GN11301	T16445-18	mg/l	2.7	2.7	0.0	0-10%
Nitrogen, Nitrite	GN11290	T16445-5	mg/l	0.0030 U	<0.050	0.0	0-10%
Nitrogen, Nitrite	GN11300	T16445-18	mg/l	0.0030 U	<0.050	0.0	0-10%
Sulfate	GN11356	T16445-5	mg/l	286	291	1.7	0-20%
Sulfide	GN11313	T16445-5	mg/l	0.0 B	<0.20	0.0	0-20%
Total Organic Carbon	GN11304	T16445-18	mg/l	6.0	6.0	0.0	0-11%
Total Organic Carbon	GN11311	T16445-5	mg/l	2.0	2.0	0.0	0-11%
Total Organic Carbon	GN11317	T16445-8	mg/l	3.0	3.0	0.0	0-11%
рН	GN11323	T16445-5	su	7.1	7.1	0.0	0-6.8%
рН	GN11323	T16445-7	su	11.2	11.1	1.8	0-6.8%
рН	GN11323	T16445-18	su	6.7	7.0	3.5	0-6.8%

Associated Samples:

Batch GN11290: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11291: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11300: T16445-18 Batch GN11301: T16445-18

Batch GN11301: 116445-18

Batch GN11311: T16445-1, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7

Batch GN11313: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

 $\mathtt{Batch\ GN11317:\ T16445-10,\ T16445-11,\ T16445-12,\ T16445-13,\ T16445-14,\ T16445-8,\ T16445-9}$ 

Batch GN11323: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11343: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11356: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11375: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

(*) Outside of QC limits

#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16445 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Alkalinity, Total as CaCO3	GN11375	T16445-5	mg/l	457	125	590	106.0	79-122%
Chloride	GN11343	T16445-5	mg/l	253	xxxxxxx	462	104.0	81-119%
Nitrogen, Nitrate + Nitrite	GN11291	T16445-5	mg/l	0.0050 U	0.100	0.097	97.0	80-119%
Nitrogen, Nitrate + Nitrite	GN11291	T16445-5	mg/l	0.0050 U	0.100	0.10	100.0	80-119%
Nitrogen, Nitrate + Nitrite	GN11301	T16445-18	mg/l	2.7	1.00	3.7	100.0	80-119%
Nitrogen, Nitrite	GN11290	T16445-5	mg/l	0.0030 U	0.100	0.096	96.0	75-134%
Nitrogen, Nitrite	GN11290	T16445-5	mg/l	0.0030 U	0.100	0.096	96.0	75-134%
Nitrogen, Nitrite	GN11300	T16445-18	mg/l	0.0030 U	0.100	0.094	94.0	75-134%
Sulfate	GN11356	T16445-5	mg/l	286	100	296	100.0	75-125%
Sulfate	GN11356	T16445-5	mg/l	286	xxxxxxx		*	75-125%
Total Organic Carbon	GN11304	T16445-18	mg/l	6.0	10.0	16.0	100.0	74-121%
Total Organic Carbon	GN11311	T16445-5	mg/l	2.0	10.0	13.0	110.0	74-121%
Total Organic Carbon	GN11311	T16445-5	mg/l	2.0	10.0	12.0	100.0	74-121%
Total Organic Carbon	GN11317	T16445-8	mg/l	3.0	10.0	14.0	110.0	74-121%

Associated Samples:

Batch GN11290: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-2, T16445-3, T16445-4, T16445-5,

T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11291: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-2, T16445-3, T16445-4, T16445-5,

T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11300: T16445-18 Batch GN11301: T16445-18 Batch GN11304: T16445-18

Batch GN11311: T16445-1, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7

Batch GN11317: T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-8, T16445-9

Batch GN11343: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4,

 $\mathtt{T}16445-5\,,\ \mathtt{T}16445-6\,,\ \mathtt{T}16445-7\,,\ \mathtt{T}16445-8\,,\ \mathtt{T}16445-9$ 

Batch GN11356: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

Batch GN11375: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits



**Section 7** 

## Misc. Forms

## Custody Documents and Other Forms

(Accutest Laboratories Southeast, Inc.)

Includes the following where applicable:

• Chain of Custody



10165 Harwin, Suite 150 - Ho	TII	4 5	CH.									FED-E					- 10	attle C	rder Cor	ntrol #	Pag	je <u>1</u> of
Laboratories 10165 Varwin Suito 150 Ho	I J G I	7026	) 712 2'	71 47	ሰብ ብ		712	271	4*	770		1		-								
10103 Hai will, Suite 130 - Ho	uston, 1A	/030	- /13-2	/ 1-4 /	00 12	ax:	/13-		4	/ / 0			st Quo				Į		l Job#			T16445
Subcontract Information				roject in	formatic	- I			1 7 7 7			(Simply)	M(1 12)	11586	Market Strada ba	Re	guest	ed An	alvses	12 10 10 10 10 10 10 10 10 10 10 10 10 10	Marrie	Matrix Code
pany Name		Send R	eport to:	i oject ili	tormatic	JII [		. 9.0	7 ///			1		,		T	T					DW - Drinking Wa
E-ORLANDO		Agnes	v@accutes	t.com												1			1			GW - Ground Wa
ct Contact		Bill to															- 1	-				WW - Wastewat
159		Accute	est Laborat	orles								4										SL - Sludge
			-	0. "	- 450							E		ĺ								01 - 01
State	Zip	10165 City	Harwin Dri	ve, Sult	e 150	State	,			2	(lp	Ethene (RSK147)										LIQ - Other Liqu
ORLANDO			Houston,	TX 770:	36						·	- B						ĺ				SOL - Other So
No.	Fax No.	Phone I		271-470	nn / 713	2-271	-4770		F	x No.		8	İ					ľ			1	
	· · · · · · · · ·	Accutes	st Purchase O		001110	/-2.7	-1110			_		Ě	١.,	ş ş			- 1		İ			
		Collect	ion			Nii	mber	of pre	serv	ed b	ottles	1 4	Į į	8		- 1		1				
Accutest Sample ID		Conce	T	1	# of	₽	8 8		8	X .		e e	Perchlorates	CC30 Explosiv						1		LAB USE ON
		ete	Time	Matrix	bottles		}	Š	ă	1		+-							$\dashv$		4	LAB USE ON
T16445-1	2/22	/2007	930	GW	5	2	$\bot \!\!\! \bot$				3	X	X	Х								
T16445-2	2/22	y2007	941	GW	3	2				Ì	1	X	Х									
T16445-3	2/22	/2007	1536	GW	3	2					1	Х	Х					$\top$				
T16445-5 + MS/MSD	2/23	/2007	1048	GW	9	в		TT	T		3	Х	Х							$\top$	$\Box$	
T16445-6	2/23	V2007	1453	GW	3	2					1	Х	Х					T.	T		$\Box$	
T16445-7	2/22	/2007	1030	GW	5	2					3	Х	Х	Х								
T16445-8	2/22	/2007	1418	GW	5	2		Ħ	T		3	Х	Х	Х				$\exists$				
T16445-9	2/22	/2007	1418	GW	3	2	$\top$	П			1	Х	Х				$\neg$		T		T	
T16445-10	2/22	/2007	1245	GW	5	2					3	Х	Х	Х								
T16445-11	2/22	/2007	1245	GW	5	2					3	Х	Х	Х							$\Box$	FD. Only 1 -1L A
	And the last the second second	1.1	(Allendary)	Data C	Caliverable	a Infor	mation	www.	الطائلة	1	(A) A K	414	1 mg/s	Pan's	cold, de		Comm	ients / F	Remark	5	MALA	
10 Day STANDARD Ap	proved By:/ Date:			tercial *A		_	State F															
4 Day RUSH			XX TRRP	nercial "B			EDD Fo				-		_									
3 Day EMERGENCY			XX Reduc		,		Other_															

FV

T16445: Chain of Custody
Page 1 of 3
Accutest Laboratories Southeast, Inc.

On los

D.A 7 (11.8.3.0



	-	

impany N	RLANDO		7036	- 713-2	71-47	700 f														cutest J	ala #			T16445
LSE-OF	ame RLANDO	A. A. a. San				00 1	ax:	: /1	1.5	271	-4	//U		Accut	est Quo	te #			Ac	SUIOSI J	00 #			110443
LSE-OF	ame RLANDO		i thinks to a rive	iliani p	roject li	formati		and the	s a service	والتلفظ	Davi Co	See ( Edic), 2	Dan Kata		i Parintina Laurania					Anal		Miles Miles		Matrix Code
Ject Cor				eport to:	roject ii	HOIME	011	1.0042	2 Killer Service	Service Line	245.4	19019	CHATA		1	The same of	Marian Au	T			T		Name and Associated Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, St	DW - Drinking Wa
				v@accute:	st.com									1						-				GW - Ground Wa
iress	itact		BIII to												1						1	-		WW - Wastewati 80 - Soll
			Accut	est Laborat	orles									-						- 1		ı	1	SL-Sludge
														₹				- 1		- 1				01 - 011
	State	Zlp	10165 City	Harwin Dr	ive, Sui	te 150	Sta	ı ta					lp.	(RSK147)	i			ĺ						LIQ - Other Liqu
	ORLANDO		J.,	Houston,	TX 770	36	-					-				İ	1		-		1			SOL - Other Sol
ne No.		Fax No.	Phone								Fa	x No.		Etherne										
			Accute	713 et Purchase C	-271-47	00 / 713	3-27	71-47	770					Ę	1	g	ĺ			ı				
							_					٠.,-		լ £	1 5	Explosiv		1			1			İ
	Accutest Sample ID		Collect	ion	ł		H	lumb	1 1	_				Methane	Perchlorates	5		İ		1				
	Accordance to	De	te	Time	Metrix	# of bottles	Ţ.	1	8	1280	8	OS I	Į.	3	l F	92.53				1				LAB USE ON
	T16445-12	2/22/2	2007	1500	GW	5	2	Т	П		$\neg$		3	X	X	Х				T	Τ			
	T16445-13	2/23/2	2007	1533	GW	5	2	$\top$		$\Box$	1	7	3	Х	Х	Х							$\vdash$	
	T16445-14	2/23/2	2007		GW	- 6	2	1	Н	$\dashv$	$\dashv$	$\top$	2	X	X	х		_	_	+	+-	+	+	Only 1-1L Am
<u>-</u>	T16445-18	2/23/2	2007	1630	GW	5	2	+	$\vdash$	-	+		3	X	X	Х			+-	+-	+	+-	<del> </del>	
	T16445-4	2/22/2		1047	GW	3	2	4		$\dashv$	+	+	1	X	×	~			+	+-	+-	+	┼-	-
				1536	-	<del>ٺ</del>	-	+	$\vdash$		+		+-	<u>  ^</u>		-		_	+	+	+	+	+	<del>                                     </del>
				<del> </del>			-	+	-	-+	-+	-	+				+	+		+-		+	<del> </del> -	
				<del> </del>	<del> </del>	-		Н	H	-	+	+	+	-	<u> </u>	-							┼	<del> </del>
		-		ļ	ļ.—			$\vdash$	Н	+	$\dashv$	+	+				$\dashv$		+-	+	+	+-	-	
				ļ			_	Н	H	_	4	4	-	_			_		+-	-	+	-	<del> </del>	
Windshit.	Turnaround Time ( Business days)	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		TOTAL PARK WANT			<u> </u>									anda ii wa	SLULDICE.		L	_لـ	Ļ	Ш.	200.004	C. C. Marie
		By:/ Date:	#/#OVIDE().		nercial "A	Deliverable "	e inic		te Fo			No.			Topical Co.		(Miller Late)		ommei	nte / Re	manks		Pasaman	
	5 Day RUSH	.,			nercial "B		=	_		mat .														
	4 Day RUSH			XX TRRP			H	Oth																
	3 Day EMERGENCY			XX Reduc																				
	2 Day EMERGENCY			_																				
	1 Day EMERGENCY			Comme	ercial "A"	≖ Result	s On	ıly							l									
	Other			Comme	ercia! "B"	= Result	8 & 5	Standa	ard Q	C														
LL ALL	SAMPLE CUSTOR	OY MUST BE DOC	UMENT	D BELOW E	ACH TÍME	SAMPLE	ES CI	HANG	E PC	SSES	SIOI	v, INC	СОБІЛ	cour	IER DE	Liver	· · · ·		199	<b>新沙河</b>	SOLUTION	0.004		The April 19
linguisi	ned by Sampler:	Data Time;		Received By					7	Reling	piețe.	а Ву:	$\overline{a}$			Date Ti	ne:		Rec	elved B	y:			
elingulah	ed by:	Date Time:		1 Received By						2 /	<u> </u>	a av:	<b>Y</b> /2	Λ-		Date Ti	ا مراوه		2	elved B	v:			
	•			3						4	7		KØ	ľΝ	\	NY.	HOH	ほむ	12	,		σX		
lelingulah	ed by:	Date Time:	4:30	Received By					-	Custo	80	al #	•	7	1	red Whe	o applica	ble			0	10e	Coole	r Temp.

T16445: Chain of Custody Page 2 of 3



ACCUTEST LABORATORIES SAN	VT: ALGC PROJECT: T16445
ACCUTEST'S JOB NUMBER: 16445 CLIEN	PROJECT:
DATE/TIME RECEIVED: 03-38-07 09:30 # OF	coolers received: 4 cooler temps: 3.0, 2.4, 1.8, 3.0
	TEST COURIER GREYHOUND DELIVERY OTHER
AIRBILL NUMBERS:	1986 1726 3879
COOLER INFORMATION	SAMPLE INFORMATION
CUSTODY SEAL NOT PRESENT OR NOT INTACT	SAMPLE LABELS NOT PRESENT ON ALL BOTTLES
CHAIN OF CUSTODY NOT RECEIVED (COC)	CORRECT NUMBER OF CONTAINERS USED
ANALYSIS REQUESTED IS UNCLEAR OR MISSING	SAMPLE RECEIVED IMPROPERLY PRESERVED
SAMPLE DATES OR TIMES UNCLEAR OR MISSING	INSUFFICIENT VOLUME FOR ANALYSIS
TEMPERATURE CRITERIA NOT MET	TIMES ON COC DOES NOT MATCH LABEL(S)
, .	ID'S ON COC DOES NOT MATCH LABEL(S)
TRIP BLANK INFORMATION	VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
TRIP BLANK PROVIDED	BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
TRIP BLANK NOT PROVIDED	NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
TRIP BLANK NOT ON COC	UNCLEAR FILTERING INSTRUCTIONS
TRIP BLANK INTACT	UNCLEAR COMPOSITING INSTRUCTIONS
TRIP BLANK NOT INTACT	SAMPLE CONTAINER(S) RECEIVED BROKEN
RECEIVED WATER TRIP BLANK	% SOLIDS JAR NOT RECEIVED
RECEIVED SOIL TRIP BLANK	5035 FIELD KIT NOT FROZEN WITHIN 48 HOUR'S
· ·	RESIDUAL CHLORINE PRESENT
MISC. INFORMATION	( APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS
NUMBER OF ENCORES ?	
NUMBER OF 5035 FIELD KITS?	
Number or lab filtered metals?	
PIDGIADY OF COLDENIES	
SUMMARY OF COMMENTS:	

T16445: Chain of Custody Page 3 of 3



**Section 8** 



GC Volatiles

## QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

### Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries
- GC Surrogate Retention Time Summaries
- Initial and Continuing Calibration Summaries



Page 1 of 1

## **Method Blank Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample GXY992-MB	<b>File ID DF</b> XY025253. D 1	<b>Analyzed</b> 03/01/07	By TD	<b>Prep Date</b> n/a	Prep Batch n/a	Analytical Batch GXY992

#### The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18

CAS No.	Compound	Result	RL	MDL	Units Q
74-82-8	Methane	ND	0.50	0.30	ug/l
74-84-0	Ethane	ND	1.0	0.60	ug/l
74-85-1	Ethene	ND	1.0	0.80	ug/l



Page 1 of 1

## **Blank Spike Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample GXY992-BS	File ID DF XY025254.D1	<b>Analyzed</b> 03/01/07	By TD	<b>Prep Date</b> n/a	Prep Batch n/a	Analytical Batch GXY992

#### The QC reported here applies to the following samples:

T16445-1, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
74-82-8	Methane	108	123	114	54-149
74-84-0	Ethane	219	245	112	57-143
74-85-1	Ethene	290	319	110	57-143



Page 1 of 1

## **Matrix Spike Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

<b>Sample</b>	File ID DF	<b>Analyzed</b> 03/01/07 03/01/07	By	Prep Date	Prep Batch	Analytical Batch
T16445-5MS	XY025273.D1		TD	n/a	n/a	GXY992
T16445-5	XY025259.D1		TD	n/a	n/a	GXY992

#### The QC reported here applies to the following samples:

 $T16445-1,\ T16445-2,\ T16445-3,\ T16445-4,\ T16445-5,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-11,\ T16445-12,\ T16445-13,\ T16445-14,\ T16445-18$ 

CAS No.	Compound	T16445-5 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
74-82-8	Methane	2.93	108	144	131	54-149
74-84-0	Ethane	1.0 U	219	286	131	57-143
74-85-1	Ethene	1.0 U	290	371	128	57-143



Page 1 of 1

## œ

## **Duplicate Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

	<b>Sample</b> T16445-5DUP T16445-5	File ID XY025272 XY025259		<b>Analyzed</b> 03/01/07 03/01/07	By TD TD	<b>Prep Date</b> n/a n/a	Prep Batch n/a n/a	Analytical Batch GXY992 GXY992
--	------------------------------------------	---------------------------------	--	-----------------------------------	----------------	--------------------------	--------------------------	--------------------------------------

#### The QC reported here applies to the following samples:

 $T16445-1,\ T16445-2,\ T16445-3,\ T16445-4,\ T16445-5,\ T16445-6,\ T16445-7,\ T16445-8,\ T16445-9,\ T16445-10,\ T16445-11,\ T16445-12,\ T16445-13,\ T16445-14,\ T16445-18$ 

CAS No.	Compound	T16445-5 ug/l Q	DUP ug/l Q	RPD	Limits
74-82-8	Methane	2.93	3.38	14	24
74-84-0	Ethane	1.0 U	ND	nc	23
74-85-1	Ethene	1.0 U	ND	nc	10



**Initial Calibration Summary** 

Job Number: T16445 Sample: GXY989-ICC989

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025202.D

**Project:** ITTXHO: Longhorn Army Ammunition Plant

Response Factor Report VOA5

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Title : Dissolved Gases in Water Last Update : Thu Feb 22 15:36:18 2007 Response via : Initial Calibration

Calibration Files

1 = XY025194.D 2 = XY025195.D 3 = XY025201.D 4 = XY025197.D

5 = XY025202.D 6 = XY025199.D 7 = XY025200.D

 Compound
 1
 2
 3
 4
 5
 6
 7
 Avg
 %RSD

 1)c Methane
 1.442 0.904 1.128 1.220 0.672 0.793 0.957 1.017 E4 26.02

 2)c Ethylene
 2.415 1.896 1.964 2.128 1.306 1.522 1.817 1.864 E4 19.76

 3)c Ethane
 2.311 1.873 1.880 2.068 1.280 1.499 1.798 1.816 E4 18.87

(#) = Out of Range

RSK147XY.M Thu Feb 22 15:38:10 2007



#### **Initial Calibration Verification**

Job Number: T16445 Sample: GXY989-ICV989

ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025203.D Account:

**Project:** ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\022207\XY025203.D Vial: 100 Acq On : 22 Feb 2007 1:27 pm Operator: Trangd Sample : ICV989-1000 Misc : gc7062,gxy989,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Thu Feb 22 15:36:18 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound ______ 
 1000.000
 1154.410
 -15.4
 175
 0.20
 0.88 1.48

 1000.000
 1202.152
 -20.2
 172
 0.31
 2.54 3.34

 1000.000
 1245.774
 -24.6
 177
 0.32
 3.14 3.94
 1 c Methane 2 c Ethylene 3 c Ethane ._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025202.D RSK147XY.M Thu Feb 22 15:37:53 2007



### **Continuing Calibration Summary**

Job Number: T16445 Sample: GXY992-CC989 Lab FileID: XY025251.D

ALGC Accutest Laboratories Gulf Coast, Inc. Account:

ITTXHO: Longhorn Army Ammunition Plant **Project:** 

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\030107\XY025251.D Vial: 100 Acq On : 1 Mar 2007 9:53 am Operator: Trangd Sample : CC989-1000 Misc : gc7109,gxy992,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Fri Mar 02 09:28:32 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound ______ 

 1 c
 Methane
 1000.000 1006.127
 -0.6 152 -0.11
 1.16- 1.76

 2 c
 Ethylene
 1000.000 1069.950
 -7.0 153 -0.09
 2.96- 3.76

 3 c
 Ethane
 1000.000 1082.186
 -8.2 153 -0.08
 3.58- 4.38

 ._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025202.D RSK147XY.M Fri Mar 02 10:53:27 2007



**Continuing Calibration Summary** 

Job Number: T16445 Sample: GXY992-CC989
Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025262.D

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Title : Dissolved Gases in Water
Last Update : Fri Mar 02 09:28:32 2007
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

 Compound
 Amount Calc.
 %Drift Area% Dev(min)RT Window

 1 c Methane
 500.000 411.874
 17.6 69 0.09 1.16-1.76

 2 c Ethylene
 500.000 450.472
 9.9 79 0.14 2.96-3.76

 3 c Ethane
 500.000 453.565
 9.3 80 0.15 3.58-4.38

_____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025197.D RSK147XY.M Fri Mar 02 09:55:28 2007

■ 150 of 187

ACCUTEST.

T16445 Laboratories

### **Continuing Calibration Summary**

Job Number: T16445 Sample: GXY992-ECC989 Lab FileID: XY025274.D

ALGC Accutest Laboratories Gulf Coast, Inc. Account:

ITTXHO: Longhorn Army Ammunition Plant Project:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\030107\XY025274.D Vial: 100 Acq On : 1 Mar 2007 4:48 pm Operator: Trangd Sample : ECC989-1000 Misc : gc7128,gxy992,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Fri Mar 02 09:28:32 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound ______ 
 1 c
 Methane
 1000.000 1171.434
 -17.1 177 0.00 1.16- 1.76

 2 c
 Ethylene
 1000.000 1277.743 -27.8 182 0.00 2.96- 3.76

 3 c
 Ethane
 1000.000 1297.361 -29.7 184 0.00 3.58- 4.38
 ._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025202.D RSK147XY.M Fri Mar 02 09:55:08 2007



## GC Semi-volatiles

## QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

### Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries
- GC Surrogate Retention Time Summaries
- Initial and Continuing Calibration Summaries



Page 1 of 1

## **Method Blank Summary**

**Job Number:** T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP19677-MB	GG020203.	D 1	03/02/07	MRE	03/01/07	OP19677	GGG906

#### The QC reported here applies to the following samples:

T16445-1, T16445-7, T16445-8, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18

CAS No.	Compound	Result	RL	MDL	Units Q
2691-41-0	HMX	ND	0.20	0.060	ng/1
121-82-4	RDX	ND ND	0.20	0.000	ug/l ug/l
99-65-0	1,3-Dinitrobenzene	ND	0.20	0.070	ug/l
606-20-2	2,6-Dinitrotoluene	ND	0.20	0.065	ug/l
121-14-2	2,4-Dinitrotoluene	ND	0.20	0.075	ug/l
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.20	0.070	ug/l
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.20	0.080	ug/l
98-95-3	Nitrobenzene	ND	0.20	0.060	ug/l
88-72-2	o-Nitrotoluene	ND	0.20	0.060	ug/l
99-08-1	m-Nitrotoluene	ND	0.20	0.075	ug/l
99-99-0	p-Nitrotoluene	ND	0.20	0.075	ug/l
479-45-8	Tetryl	ND	0.20	0.075	ug/l
99-35-4	1,3,5-Trinitrobenzene	ND	0.20	0.095	ug/l
118-96-7	2,4,6-Trinitrotoluene	ND	0.20	0.080	ug/l

#### CAS No. Surrogate Recoveries Limits

610-39-9 3,4-Dinitrotoluene 102% 70-136%



Page 1 of 1

## **Method Blank Summary**

**Job Number:** T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Sample OP19677-MB	File ID GG020233	<b>DF</b> .D1	<b>Analyzed</b> 03/05/07	By MRE	<b>Prep Date</b> 03/01/07	Prep Batch OP19677	Analytical Batch GGG907

#### The QC reported here applies to the following samples:

T16445-1, T16445-7, T16445-8, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18

CAS No.	Compound	Result	RL	MDL	Units Q
2691-41-0	HMX	ND	0.20	0.060	ug/l
121-82-4	RDX	ND	0.20	0.075	ug/l
99-65-0	1,3-Dinitrobenzene	ND	0.20	0.070	ug/l
606-20-2	2,6-Dinitrotoluene	ND	0.20	0.065	ug/l
121-14-2	2,4-Dinitrotoluene	ND	0.20	0.075	ug/l
35572-78-2	2-amino-4, 6-Dinitrotoluene	ND	0.20	0.070	ug/l
19406-51-0	4-amino-2, 6-Dinitrotoluene	ND	0.20	0.080	ug/l
98-95-3	Nitrobenzene	ND	0.20	0.060	ug/l
88-72-2	o-Nitrotoluene	ND	0.20	0.060	ug/l
99-08-1	m-Nitrotoluene	ND	0.20	0.075	ug/l
99-99-0	p-Nitrotoluene	ND	0.20	0.075	ug/l
479-45-8	Tetryl	ND	0.20	0.075	ug/l
99-35-4	1,3,5-Trinitrobenzene	ND	0.20	0.095	ug/l
118-96-7	2,4,6-Trinitrotoluene	ND	0.20	0.080	ug/l

#### CAS No. Surrogate Recoveries Limits

610-39-9 3,4-Dinitrotoluene 80% 70-136%



Page 1 of 1

# **Blank Spike Summary Job Number:** T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample OP19677-BS	File ID GG020202	<b>DF</b> .D1	<b>Analyzed</b> 03/02/07	By MRE	Prep Date 03/01/07	Prep Batch OP19677	Analytical Batch GGG906

The QC reported here applies to the following samples:

 $T16445-1,\ T16445-7,\ T16445-8,\ T16445-10,\ T16445-11,\ T16445-12,\ T16445-13,\ T16445-14,\ T16445-18$ 

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
2691-41-0	HMX	5	5.3	106	74-152
121-82-4	RDX	5	5.4	108	80-124
99-65-0	1,3-Dinitrobenzene	5	5.3	106	84-123
606-20-2	2,6-Dinitrotoluene	5	5.3	106	84-133
121-14-2	2,4-Dinitrotoluene	5	5.1	102	77-116
35572-78-2	2-amino-4,6-Dinitrotoluene	5	5.2	104	78-117
19406-51-0	4-amino-2,6-Dinitrotoluene	5	5.1	102	84-123
98-95-3	Nitrobenzene	5	5.5	110	76-128
88-72-2	o-Nitrotoluene	5	5.0	100	76-120
99-08-1	m-Nitrotoluene	5	5.2	104	74-124
99-99-0	p-Nitrotoluene	5	5.3	106	81-125
479-45-8	Tetryl	5	4.6	92	62-117
99-35-4	1,3,5-Trinitrobenzene	5	5.3	106	85-127
118-96-7	2,4,6-Trinitrotoluene	5	5.3	106	71-128

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
610-39-9	3,4-Dinitrotoluene	124%	70-136%



Page 1 of 1

# **Blank Spike Summary Job Number:** T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample OP19677-BS	File ID GG020232	<b>DF</b>	<b>Analyzed</b> 03/05/07	By MRE	<b>Prep Date</b> 03/01/07	Prep Batch OP19677	Analytical Batch GGG907

The QC reported here applies to the following samples:

 $T16445-1,\ T16445-7,\ T16445-8,\ T16445-10,\ T16445-11,\ T16445-12,\ T16445-13,\ T16445-14,\ T16445-18$ 

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
2691-41-0	HMX	5	5.9	118	74-152
121-82-4	RDX	5	5.5	110	80-124
99-65-0	1,3-Dinitrobenzene	5	5.3	106	84-123
606-20-2	2,6-Dinitrotoluene	5	5.1	102	84-133
121-14-2	2,4-Dinitrotoluene	5	5.1	102	77-116
35572-78-2	2-amino-4,6-Dinitrotoluene	5	5.2	104	78-117
19406-51-0	4-amino-2,6-Dinitrotoluene	5	5.1	102	84-123
98-95-3	Nitrobenzene	5	6.4	128	76-128
88-72-2	o-Nitrotoluene	5	5.0	100	76-120
99-08-1	m-Nitrotoluene	5	5.3	106	74-124
99-99-0	p-Nitrotoluene	5	5.3	106	81-125
479-45-8	Tetryl	5	4.6	92	62-117
99-35-4	1,3,5-Trinitrobenzene	5	5.5	110	85-127
118-96-7	2,4,6-Trinitrotoluene	5	5.7	114	71-128

CAS No.	Surrogate Recoveries	BSP	Limits
610-39-9	3,4-Dinitrotoluene	100%	70-136%



Page 1 of 1

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

File ID	DF	Analyzed	Ву	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
GG020207.D	1	03/02/07	MRE	03/01/07	OP19677	GGG906
GG020208.D	1	03/02/07	MRE	03/01/07	OP19677	GGG906
GG020206.D	1	03/02/07	MRE	03/01/07	OP19677	GGG906
	GG020207.D GG020208.D	File ID DF GG020207.D 1 GG020208.D 1 GG020206.D 1	GG020207.D1 03/02/07 GG020208.D1 03/02/07	GG020207.D1 03/02/07 MRE GG020208.D1 03/02/07 MRE	GG020207.D1 03/02/07 MRE 03/01/07 GG020208.D1 03/02/07 MRE 03/01/07	GG020207.D1 03/02/07 MRE 03/01/07 OP19677 GG020208.D1 03/02/07 MRE 03/01/07 OP19677

The QC reported here applies to the following samples:

T16445-1, T16445-7, T16445-8, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18

CAS No.	Compound	F47539-3 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
2691-41-0	HMX	ND	10	11.0	110	11.8	118	7	74-152/21
121-82-4	RDX	ND	10	10.3	103	10.7	107	4	80-124/20
99-65-0	1,3-Dinitrobenzene	ND	10	10.3	103	10.9	109	6	84-123/23
606-20-2	2,6-Dinitrotoluene	ND	10	9.9	99	10.6	106	7	84-133/23
121-14-2	2,4-Dinitrotoluene	ND	10	9.7	97	10.3	103	6	77-116/26
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	10	9.4	94	10.5	105	11	78-117/28
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	10	9.1	91	10.2	102	11	84-123/27
98-95-3	Nitrobenzene	ND	10	10.5	105	11.1	111	6	76-128/28
88-72-2	o-Nitrotoluene	ND	10	9.3	93	10.2	102	9	76-120/30
99-08-1	m-Nitrotoluene	ND	10	9.5	95	10.6	106	11	74-124/32
99-99-0	p-Nitrotoluene	ND	10	9.7	97	10.7	107	10	81-125/34
479-45-8	Tetryl	ND	10	7.4	74	7.9	79	7	62-117/28
99-35-4	1,3,5-Trinitrobenzene	ND	10	9.8	98	10.4	104	6	85-127/21
118-96-7	2,4,6-Trinitrotoluene	ND	10	9.8	98	10.4	104	6	71-128/21

CAS No.	Surrogate Recoveries	MS	MSD	F47539-3	Limits
610-39-9	3 4-Dinitrotoluene	94%	98%	102%	70-136%



## **Semivolatile Surrogate Recovery Summary**

Job Number: T16445

**Account:** ALGC Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

**Method:** SW846 8330A Matrix: AQ

#### Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1 a
T16445-1	GG020214.D	82.0
T16445-7	GG020215.D	109.0
T16445-8	GG020216.D	107.0
T16445-10	GG020217.D	98.0
T16445-11	GG020218.D	117.0
T16445-12	GG020236.D	90.0
T16445-12	GG020219.D	103.0
T16445-13	GG020220.D	107.0
T16445-14	GG020221.D	102.0
T16445-18	GG020222.D	106.0
OP19677-BS	GG020202.D	124.0
OP19677-BS	GG020232.D	100.0
OP19677-MB	GG020203.D	102.0
OP19677-MB	GG020233.D	80.0
OP19677-MS	GG020207.D	94.0
OP19677-MSD	GG020208.D	98.0

Surrogate Recovery Compounds Limits

S1 = 3,4-Dinitrotoluene 70-136%

(a) Recovery from GC signal #1



## **GC Surrogate Retention Time Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

 Check Std:
 GGG906-CC825
 Injection Date:
 03/02/07

 Lab File ID:
 GG020201.D
 Injection Time:
 16:17

**Instrument ID:** GCGG **Method:** SW846 8330A

S1 ^a RT

Check Std 13.50

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT
OP19677-BS	GG020202.D	03/02/07	16:45	13.49
OP19677-MB	GG020203.D	03/02/07	17:12	13.50
ZZZZZZ	GG020204.D	03/02/07	17:27	13.50
ZZZZZZ	GG020205.D	03/02/07	17:54	13.50
F47539-3	GG020206.D	03/02/07	18:22	13.49
OP19677-MS	GG020207.D	03/02/07	18:50	13.47
OP19677-MSD	GG020208.D	03/02/07	19:17	13.46
ZZZZZZ	GG020209.D	03/02/07	19:45	13.47
ZZZZZZ	GG020210.D	03/02/07	20:12	13.44
ZZZZZZ	GG020211.D	03/02/07	20:40	13.43

#### Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1



# c

## **GC Surrogate Retention Time Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

 Check Std:
 GGG906-CC825
 Injection Date:
 03/02/07

 Lab File ID:
 GG020212.D
 Injection Time:
 21:07

**Instrument ID:** GCGG Method: SW846 8330A

S1 ^a RT

Check Std	13.45

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT
T16445-1	GG020214.D	03/02/07	22:03	13.44
T16445-7	GG020215.D	03/02/07	22:30	13.42
T16445-8	GG020216.D	03/02/07	22:58	13.43
T16445-10	GG020217.D	03/02/07	23:25	13.43
T16445-11	GG020218.D	03/02/07	23:53	13.43
T16445-12	GG020219.D	03/03/07	00:20	13.40
T16445-13	GG020220.D	03/03/07	00:48	13.42
T16445-14	GG020221.D	03/03/07	01:16	13.43
T16445-18	GG020222.D	03/03/07	01:43	13.41
ZZZZZZ	GG020223.D	03/03/07	02:11	13.42

#### Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1



# 9

## **GC Surrogate Retention Time Summary**

Job Number: T16445

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

 Check Std:
 GGG907-CC827
 Injection Date:
 03/05/07

 Lab File ID:
 GG020231.D
 Injection Time:
 13:23

**Instrument ID:** GCGG Method: SW846 8330A

S1 ^a S1 ^b RT RT

Check Std 10.72 10.72

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT	S1 ^b RT
OP19677-BS	GG020232.D	03/05/07	13:43	10.72	
OP19677-MB	GG020233.D	03/05/07	14:02	10.72	
ZZZZZZ	GG020234.D	03/05/07	14:22	10.72	
T16445-12	GG020236.D	03/05/07	15:01	10.71	
GGG907-ECC827	GG020238.D	03/05/07	15:40	10.72	10.72

#### Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1

(b) Retention time from GC signal #2



### **Initial Calibration Summary**

Sample: GGG825-ICC825

**Job Number:** T16445 ALGC Accutest Laboratories Gulf Coast, Inc. Account: Lab FileID: GG018282.D

ITTXHO: Longhorn Army Ammunition Plant **Project:** 

Response Factor Report G1315B

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330 Last Update : Thu Oct 19 11:32:41 2006 Response via : Initial Calibration

Calibration Files

20 =GG018279.D 100 =GG018280.D 250 =GG018281.D 500 =GG018282.D 750 =GG018283.D 1000=GG018284.D 2000=GG018285.D ICV =GG018286.D

Co	ompound	20	100	250	500	750	1000	2000	ICV	Avg	%RSD	
1)	HMX	2.870	2.789	2.757	2.694	2.719	2.735	2.786		2.764	E3	2.09
2)	TNX	5.916	6.424	6.486	6.331	6.453	6.468	6.587	(	6.381	E3	3.43
3)	DNX	4.900	5.156	5.125	4.986	5.037	5.057	5.155	!	5.059	E3	1.88
4)	MNX	4.909	4.991	4.972	4.807	4.886	4.901	4.995		4.923	E3	1.38
,			3.565							3.512		4.27
	1,3,5-Trinit									7.667		1.70
-	1,3-Dinitrob									1.057		1.49
,	Tetryl		6.168							6.127		1.17
	Nitrobenzene									6.962		1.85
	3,4-Dinitrot									4.661		1.56
	2,4,6-Trinit									7.320		1.42
	4-Amino-2,6-									5.242		1.37
	2-Amino-4,6-									7.177		1.35
	2,6-Dinitrot									5.068		4.37
	2,4-Dinitrot									1.009 4.532		6.36 5.53
	o-Nitrotolue p-Nitrotolue									3.800		4.06
	m-Nitrotolue									4.830		2.26
10)	III-NICIOCOIUE	4.233	4.000	4.050	4.023	4.003	4.012	4.344		1.030	EЭ	2.20
Signa	al #2											
1 )	HMX	Ω 151	8.148	Ω 100	Ω 012	8 090	8 092	8 238	,	8.132	E.3	0.91
	TNX		0.980							0.981		1.55
,			8.044							8.000		3.05
,			7.781							7.794		1.14
-	RDX		5.727							5.748	_	8.08
	1,3,5-Trinit									1.545		2.85
	1,3-Dinitrob									1.267	E4	1.91
8)	Tetryl	1.037	1.106	1.123	1.092	1.106	1.105	1.129		1.100	E4	2.76
9)	Nitrobenzene	3.263	3.394	3.343	3.176	3.205	3.190	3.274		3.264	E3	2.50
10)	3,4-Dinitrot	6.324	6.522	6.468	6.218	6.242	6.243	6.394	(	6.344	E3	1.89
	2,4,6-Trinit									1.075	E4	1.85
	4-Amino-2,6-								:	1.425	E4	1.62
	2-Amino-4,6-									1.208		2.20
	2,6-Dinitrot									7.038		6.64
	2,4-Dinitrot									0.930		8.36
	o-Nitrotolue									4.789		4.46
	p-Nitrotolue									7.549		3.15
18)	m-Nitrotolue	6.835	7.097	7.192	6.782	7.103	7.117	7.290		7.060	E3	2.62

(#) = Out of Range ### Number of calibration levels exceeded format ###

Fri Oct 20 16:25:52 2006 8330 EX.M



#### **Initial Calibration Verification**

Page 1 of 2
Sample: GGG825-ICV825

Job Number:T16445Sample:GGG825-ICVAccount:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG018286.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\HPCHEM\1\DATA\1018ODS\GG018286.D\dad1B.ch Vial: 10

Signal #2 : G:\HPCHEM\1\DATA\1018ODS\GG018286.D\dad1A.ch

 Acq On
 : 18-Oct-2006, 17:39:03
 Operator: MIKEE

 Sample
 : ICV825-500
 Inst
 : G1315B

 Misc
 : OP18202,ggg825,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Oct 19 11:32:41 2006 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	C Ca	alc.	%Drift	Area%	Dev(m	in)RT Window
1 2	HMX TNX	500.000	531.		-6.2 NA-			3.83- 4.83
3	DNX				NA-			
4 5	MNX	F00 000	F 0 7		NA-			C 10 7 10
5 6	RDX	500.000			-1.4 -6.8	0	0.00	6.10- 7.10 8.41- 9.41
7	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	500.000			-6.8 -4.8	0	0.00	10.38-11.38
8	Tetryl	500.000			3.1	0	0.00	11.18-12.18
9	Nitrobenzene	500.000			-6.2	0	0.00	11.86-12.86
10 S	3,4-Dinitrotoluene		001		NA-			11.00 12.00
11	2,4,6-Trinitrotoluene	500.000	507.	486	-1.5	0	0.00	13.56-14.56
12	4-Amino-2,6-Dinitrotol	500.000	515.	. 885	-3.2	0	0.00	14.25-15.25
13	2-Amino-4,6-Dinitrotol	500.000	480.	.846	3.8	0	0.00	15.03-16.03
14	2,6-Dinitrotoluene	500.000			0.7	0	0.00	16.01-17.01
15	2,4-Dinitrotoluene	500.000			-0.5	0	0.00	16.52-17.52
16	o-Nitrotoluene	500.000			-0.2	0	0.00	19.59-20.59
17	p-Nitrotoluene	500.000			-4.1	0	0.00	20.92-21.92
18	m-Nitrotoluene	500.000	509.	.118	-1.8	0	0.00	22.61-23.61
****	Signal #2 ****							
1	HMX	500.000	537.		-7.6			3.83- 4.83
2	TNX				NA-			
3	DNX				NA-			
4	MNX				NA-			
5	RDX	500.000			-5.1	0	0.00	6.10- 7.10
6 7	1,3,5-Trinitrobenzene	500.000			-6.8	0	0.00	8.41- 9.41
8	1,3-Dinitrobenzene Tetryl	500.000			-5.9 2.1	0	0.00	10.38-11.38 11.18-12.18
9	Nitrobenzene	500.000			-6.4	0	0.00	11.86-12.86
10 S	3,4-Dinitrotoluene	300.000	331.	-	-0.4 NA-	-		11.00-12.00
11	2,4,6-Trinitrotoluene	500.000	505		-1.2	0	0.00	13.56-14.56
12	4-Amino-2,6-Dinitrotol				-3.2	0	0.00	14.25-15.25
13	2-Amino-4,6-Dinitrotol				3.9	0	0.00	15.03-16.03
14	2,6-Dinitrotoluene	500.000			1.3	0	0.00	16.01-17.01
15	2,4-Dinitrotoluene	500.000	499.	.987	0.0	0	0.00	16.52-17.52
16	o-Nitrotoluene	500.000	503.	639	-0.7	0	0.00	19.59-20.59
17	p-Nitrotoluene	500.000			-4.7	0	0.00	20.92-21.92
18	m-Nitrotoluene	500.000	512.	492	-2.5	0	0.00	22.61-23.61



## 00079117

**Initial Calibration Verification** Page 2 of 2

Job Number:T16445Sample:GGG825-ICV825Account:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG018286.D

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG018286.D

Project: ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018286.D 8330_EX.M Fri Oct 20 16:26:22 2006



### **Initial Calibration Verification**

Job Number:T16445Sample:GGG826-ICV825Account:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG018300.D

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\HPCHEM\1\DATA\1019ODS\GG018300.D\dad1B.ch Vial: 4

Signal #2 : G:\HPCHEM\1\DATA\1019ODS\GG018300.D\dad1A.ch

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Oct 19 11:32:41 2006 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

1 HMX
2       TNX       500.000 514.364 -2.9 0 0.00 4.15-5.15         3       DNX       500.000 511.166 -2.2 0 0.00 4.58-5.58         4       MNX       500.000 518.059 -3.6 0 -0.01 5.34-6.34         5       RDX      NA         6       1,3,5-TrinitrobenzeneNA      NA         7       1,3-DinitrobenzeneNA         8       TetrylNA         9       Nitrobenzene
4       MNX       500.000 518.059       -3.6       0 -0.01       5.34-6.34         5       RDX      NA         6       1,3,5-Trinitrobenzene      NA         7       1,3-Dinitrobenzene      NA         8       Tetryl      NA         9       Nitrobenzene      NA         10       S       3,4-Dinitrotoluene      NA         11       2,4,6-Trinitrotoluene      NA         12       4-Amino-2,6-Dinitrotoluen      NA
4       MNX       500.000 518.059       -3.6       0 -0.01       5.34-6.34         5       RDX      NA         6       1,3,5-Trinitrobenzene      NA         7       1,3-Dinitrobenzene      NA         8       Tetryl      NA         9       Nitrobenzene      NA         10       S       3,4-Dinitrotoluene      NA         11       2,4,6-Trinitrotoluene      NA         12       4-Amino-2,6-Dinitrotoluen      NA
5       RDX      NA         6       1,3,5-Trinitrobenzene      NA         7       1,3-Dinitrobenzene      NA         8       Tetryl      NA         9       Nitrobenzene      NA         10       S       3,4-Dinitrotoluene      NA         11       2,4,6-Trinitrotoluene      NA         12       4-Amino-2,6-Dinitrotoluen      NA
6       1,3,5-Trinitrobenzene      NA         7       1,3-Dinitrobenzene      NA         8       Tetryl      NA         9       Nitrobenzene      NA         10 S       3,4-Dinitrotoluene      NA         11       2,4,6-Trinitrotoluene      NA         12       4-Amino-2,6-Dinitrotoluen      NA
7       1,3-Dinitrobenzene      NA         8       Tetryl      NA         9       Nitrobenzene      NA         10 S       3,4-Dinitrotoluene      NA         11       2,4,6-Trinitrotoluene      NA         12       4-Amino-2,6-Dinitrotoluen      NA
8       Tetryl      NA         9       Nitrobenzene      NA         10 S       3,4-Dinitrotoluene      NA         11       2,4,6-Trinitrotoluene      NA         12       4-Amino-2,6-Dinitrotoluen      NA
10 S 3,4-DinitrotolueneNA 11 2,4,6-TrinitrotolueneNA 12 4-Amino-2,6-DinitrotoluenNA
11
12 4-Amino-2,6-DinitrotoluenNA
- 1
13 2-Amino-4,6-DinitrotoluenNA
2,6-DinitrotolueneNA
15 2,4-DinitrotolueneNA
16 o-NitrotolueneNA
17 p-NitrotolueneNA
18 m-NitrotolueneNA
**** Signal #2 ****
1 HMXNA
2 TNX 500.000 509.991 -2.0 0 0.00 4.15-5.15
3 DNX 500.000 523.209 -4.6 0 0.00 4.58-5.58
4 MNX 500.000 527.451 -5.5 0 -0.01 5.34-6.34
5 RDXNA
6 1,3,5-TrinitrobenzeneNA
7 1,3-DinitrobenzeneNA
8 TetrylNA
9 NitrobenzeneNA
10 S 3,4-DinitrotolueneNA
11 2,4,6-TrinitrotolueneNA
12 4-Amino-2,6-DinitrotoluenNA
13 2-Amino-4,6-DinitrotoluenNA
14 2,6-DinitrotolueneNA
15 2,4-DinitrotolueneNA
16 o-NitrotolueneNA
17 p-NitrotolueneNA
18 m-NitrotolueneNA



Page 2 of 2

### **Initial Calibration Verification**

Job Number:T16445Sample:GGG826-ICV825Account:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG018300.D

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018286.D 8330_EX.M Fri Oct 20 16:54:56 2006



## **Initial Calibration Summary**

GGG827-ICC827 Sample:

**Job Number:** T16445 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG018316.D Account:

Project: ITTXHO: Longhorn Army Ammunition Plant

Response Factor Report G1315B

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330 Last Update : Fri Oct 20 14:03:32 2006 Response via : Initial Calibration

Calibration Files

20 =GG018313.D 100 =GG018314.D 250 =GG018315.D 500 =GG018316.D

750 =GG018317.D 1000=GG018318.D 2000=GG018319.D

	Compound	20	100	250	500	750	1000	200	) Avg	9	RSD
1)	TNX	6.022	6.861	7.022	6.686	6.915	6.925	7.121	6.793	E3	5.38
2)	HMX						2.481				7.51
3)	DNX						5.545				3.05
4)	MNX						4.976				3.73
5)	1,3,5-Trinitroben	7.302	7.899	8.123	7.797	7.946	7.847	8.236	7.879	E3	3.78
6)	RDX						3.686				5.39
7)	1,3-Dinitrobenzen										1.56
8)	Nitrobenzene	6.720	7.206	7.440	7.104	7.286	7.290	7.513	7.223	E3	3.61
9)	2,4,6-Trinitrotol										3.39
10)	Tetryl						5.862				7.10
11)S	3,4-Dinitrotoluen										1.46
12)	2,6-Dinitrotoluen										3.38
13)	2,4-Dinitrotoluen	1.200	1.036	1.034	0.995	1.012	1.007	1.038	1.046	E4	6.68
14)	o-Nitrotoluene	5.021	4.648	4.729	4.526	4.679	4.666	4.837	4.729	E3	3.36
15)	p-Nitrotoluene										2.49
16)	4-Amino-2,6-Dinit	5.109	5.368	5.518	5.300	5.406	5.380	5.621	5.386	E3	3.01
17)	m-Nitrotoluene	4.743	4.946	5.173	4.937	5.131	5.119	5.324	5.053	E3	3.79
18)	2-Amino-4,6-Dinit	7.249	7.503	7.692	7.547	7.548	7.525	7.845	7.558	E3	2.42
Signa	1 #2										
1)	TNX	0.828	1.032	1.066	1.024	1.037	1.032	1.073	1.013	E4	8.25
2)	HMX	8.967	9.716	9.270	8.345	8.192	8.095	8.326	8.702	E3	7.15
3)	DNX	0.786	1.108	1.019	0.937	0.919	0.897	0.935	0.943	E4	10.65
4)	MNX	7.457	8.346	8.580	8.147	8.087	7.895	8.399	8.130	E3	4.58
5)	1,3,5-Trinitroben	1.449	1.617	1.667	1.594	1.616	1.593	1.673	1.601	E4	4.64
6)	RDX	6.077	6.386	6.563	6.283	6.229	6.181	6.460	6.311	E3	2.67
7)	1,3-Dinitrobenzen	1.294	1.326	1.427	1.333	1.365	1.364	1.397	1.358	E4	3.31
8)	Nitrobenzene	3.190	3.096	3.823	3.281	3.391	3.385	3.476	3.378	E3	6.96
9)	2,4,6-Trinitrotol	1.098	1.109	1.152	1.104	1.122	1.113	1.169	1.124	E4	2.37
10)	Tetryl						1.059				6.67
	3,4-Dinitrotoluen	6.832	6.775	6.813	6.648	6.692	6.629	6.906	6.756	E3	1.53
12)	2,6-Dinitrotoluen										3.83
13)	2,4-Dinitrotoluen										6.94
14)	o-Nitrotoluene										5.09
15)	p-Nitrotoluene						1.926				4.82
16)	4-Amino-2,6-Dinit										2.66
17)							2.567				4.52
18)	2-Amino-4,6-Dinit										1.92

(#) = Out of Range

8330_RP.M Mon Oct 23 13:34:29 2006



#### **Initial Calibration Verification**

Page 1 of 2 **Job Number:** T16445 Sample: GGG827-ICV827 Lab FileID: GG018320.D

ALGC Accutest Laboratories Gulf Coast, Inc. Account:

ITTXHO: Longhorn Army Ammunition Plant **Project:** 

#### Evaluate Continuing Calibration Report

Signal #1 : G:\HPCHEM\1\DATA\1020RP\GG018320.D\dad1B.ch Vial: 10

Signal #2 : G:\HPCHEM\1\DATA\1020RP\GG018320.D\dad1A.ch

Acq On : 20-Oct-2006, 14:03:23 Operator: MIKEE : ICV827-250 Sample Inst : G1315B Misc : OP18202,ggg827,1000,,,10,,water Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: events2.e

: C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator) Method

Title : Explosives by 8330

Last Update : Fri Oct 20 14:03:32 2006 Response via: Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amoun	t Calc.	%Drift	Area%	Dev(mi	n)RT Window
1	TNX	250.000	258.384	-3.4	100	0.00	4.21- 5.21
2	HMX	250.000	260.989	-4.4	104	0.00	4.69- 5.69
3	DNX		254.013	-1.6	100	0.00	4.83- 5.83
4	MNX		255.142	-2.1	98	0.00	5.66- 6.66
5	1,3,5-Trinitrobenzene		264.789	-5.9	103	0.00	6.12- 7.12
6	RDX		252.023	-0.8	97	0.00	6.51- 7.51
7	1,3-Dinitrobenzene		257.308	-2.9	101	0.00	7.70- 8.70
8	Nitrobenzene		266.121	-6.4	103	0.00	8.24- 9.24
9	2,4,6-Trinitrotoluene		268.228	-7.3	105	0.00	8.71- 9.71
10	Tetryl	250.000	205.504	17.8#		0.00	9.41-10.41
11 S	3,4-Dinitrotoluene						
12	2,6-Dinitrotoluene		254.196	-1.7	101	0.00	10.49-11.49
13	2,4-Dinitrotoluene		244.946	2.0	99	0.00	10.95-11.95
14	o-Nitrotoluene		248.278	0.7	99	0.00	11.79-12.79
15	p-Nitrotoluene		258.872	-3.5	103	0.00	12.45-13.45
16	4-Amino-2,6-Dinitrotol			-2.4	100	0.00	12.83-13.83
17	m-Nitrotoluene		252.478	-1.0	99	0.00	13.29-14.29
18	2-Amino-4,6-Dinitrotol	250.000	236.039	5.6	93	0.00	14.31-15.31
****	Signal #2 ****						
1	TNX	250.000	262.147	-4.9	100	0.00	4.22- 5.22
2	HMX		276.033	-10.4	104	0.00	4.69- 5.69
3	DNX		263.149	-5.3	97	0.00	4.83- 5.83
4	MNX		255.967	-2.4	97	0.00	5.66- 6.66
5	1,3,5-Trinitrobenzene	250.000	265.613	-6.2	102	0.00	6.12- 7.12
6	RDX	250.000	248.723	0.5	96	0.00	6.51- 7.51
7	1,3-Dinitrobenzene	250.000	276.649	-10.7	105	0.00	7.70- 8.70
8	Nitrobenzene	250.000	301.148	-20.5#	106	0.00	8.24- 9.24
9	2,4,6-Trinitrotoluene	250.000	269.121	-7.6	105	0.00	8.71- 9.71
10	Tetryl	250.000	203.173	18.7#	78	0.00	9.41-10.41
11 S	3,4-Dinitrotoluene			NA-			
12	2,6-Dinitrotoluene	250.000	252.008	-0.8	101	0.00	10.49-11.49
13	2,4-Dinitrotoluene		241.694	3.3	98	0.00	10.95-11.95
14	o-Nitrotoluene		241.466	3.4	98	0.00	11.79-12.79
15	p-Nitrotoluene		250.555	-0.2	102	0.00	12.46-13.46
16	4-Amino-2,6-Dinitrotol			-2.1	100	0.00	12.83-13.83
17	m-Nitrotoluene		250.572	-0.2	100	0.00	13.28-14.28
18	2-Amino-4,6-Dinitrotol	250.000	234.881	6.0	93	0.00	14.31-15.31



Page 2 of 2

### **Initial Calibration Verification**

Job Number: T16445 Sample: GGG827-ICV827

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG018320.D Project: ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018315.D 8330_RP.M Mon Oct 23 13:35:35 2006



## **Continuing Calibration Summary**

Job Number: T16445 Sample: GGG906-CC825 Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020201.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #2 : G:\DATA\03020DS\GG020201.D\dad1A.ch

 Acq On
 : 02-Mar-2007, 16:17:48
 Operator: MIKEE

 Sample
 : CC825-500
 Inst : G1315B

 Misc
 : OP19677,ggg906,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Mar 01 11:02:09 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amoun	t Calc.	%Drift	Area%	Dev(mi	n)RT Window
1	НМХ	500.000	490.559	1.9	101	0.00	3.86- 4.86
2	TNX	500.000	512.293	-2.5	103	-0.01	4.20- 5.20
3	DNX		511.151	-2.2	104	0.00	4.60- 5.60
4	MNX		508.598	-1.7	104	0.01	5.37- 6.37
5	RDX		518.998	-3.8	104	0.00	6.15- 7.15
6	1,3,5-Trinitrobenzene		498.455	0.3	103	0.02	8.43- 9.43
7	1,3-Dinitrobenzene		498.190	0.4	102	0.02	10.43-11.43
8	Tetryl		498.475	0.3	102	0.03	11.21-12.21
9	Nitrobenzene		503.313	-0.7	104	0.03	11.93-12.93
10 S	3,4-Dinitrotoluene		496.619	0.7	102	0.04	12.95-13.95
11	2,4,6-Trinitrotoluene		503.597	-0.7	103	0.04	13.60-14.60
12	4-Amino-2,6-Dinitrotol		496.441	0.7	102	0.05	14.37-15.37
13	2-Amino-4,6-Dinitrotol		500.727	-0.1	103	0.05	15.14-16.14
14	2,6-Dinitrotoluene		510.258	-2.1	107	0.05	16.10-17.10
15	2,4-Dinitrotoluene		480.817	3.8	101	0.05	16.60-17.60
16	o-Nitrotoluene		497.302	0.5	106	0.06	19.73-20.73
17	p-Nitrotoluene		500.449	-0.1	106	0.06	21.06-22.06
18	m-Nitrotoluene	500.000	506.087	-1.2	106	0.07	22.76-23.76
****	Signal #2 ****						
1	HMX		500.092	-0.0	102	0.00	3.86- 4.86
2	TNX	500.000	509.529	-1.9	103	0.00	4.18- 5.18
3	DNX	500.000	520.538	-4.1	104	0.00	4.60- 5.60
4	MNX	500.000	521.239	-4.2	106	0.01	5.37- 6.37
5	RDX		566.452	-13.3	111	0.00	6.15- 7.15
6	1,3,5-Trinitrobenzene	500.000	505.722	-1.1	103	0.02	8.43- 9.43
7	1,3-Dinitrobenzene		502.475	-0.5	102	0.02	10.43-11.43
8	Tetryl		507.037	-1.4	102	0.03	11.21-12.21
9	Nitrobenzene		499.803	0.0	103	0.03	11.93-12.93
10 S	3,4-Dinitrotoluene		495.718	0.9	101	0.04	12.95-13.95
11	2,4,6-Trinitrotoluene		500.992	-0.2	103	0.04	13.60-14.60
12	4-Amino-2,6-Dinitrotol		497.188	0.6	102	0.05	14.37-15.37
13	2-Amino-4,6-Dinitrotol			0.2	103	0.05	15.14-16.14
14	2,6-Dinitrotoluene	500.000	496.978	0.6	105	0.05	16.10-17.10
15	2,4-Dinitrotoluene		472.110	5.6	100	0.05	16.60-17.60
16	o-Nitrotoluene		489.795	2.0	104	0.05	19.73-20.73
17	p-Nitrotoluene		496.698	0.7	105	0.06	21.06-22.06
18	m-Nitrotoluene	500.000	503.963	-0.8	105	0.07	22.77-23.77

_____



Page 2 of 2

### **Continuing Calibration Summary Job Number:** T16445

Job Number:T16445Sample:GGG906-CC825Account:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG020201.D

Project: ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018282.D 8330_EX.M Mon Mar 05 11:42:29 2007



## **Continuing Calibration Summary**

Job Number: T16445 Sample: GGG906-CC825
Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020212.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\DATA\0302ODS\GG020212.D\dad1B.ch Vial: 3

Signal #2 : G:\DATA\03020DS\GG020212.D\dad1A.ch

 Acq On
 : 02-Mar-2007, 21:07:57
 Operator: MIKEE

 Sample
 : CC825-1000
 Inst : G1315B

 Misc
 : OP19677,ggg906,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Mar 01 11:02:09 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift Area% Dev(min)RT Window
1 2 3 4 5 6 7 8 9 10 S 11 12 13 14 15	HMX TNX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Tetryl Nitrobenzene 3,4-Dinitrotoluene 2,4,6-Trinitrotoluene 4-Amino-2,6-Dinitrotol 2-Amino-4,6-Dinitrotol 2,6-Dinitrotoluene 2,4-Dinitrotoluene	1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000	1012.847 1011.041 1001.768 1012.522 982.133 981.873 979.286 995.199 971.158 991.752 975.490 987.191 995.657 946.550	3.1 98 0.00 3.86-4.86 -1.3 100 -0.02 4.20-5.20 -1.1 101 0.00 4.60-5.60 -0.2 101 0.00 5.37-6.37 -1.3 100 -0.01 6.15-7.15 1.8 99 0.00 8.43-9.43 1.8 99 0.00 10.43-11.43 2.1 98 0.00 11.21-12.21 0.5 100 0.00 11.93-12.93 2.9 98 0.00 12.95-13.95 0.8 99 0.00 13.60-14.60 2.5 98 0.00 14.37-15.37 1.3 99 0.00 15.14-16.14 0.4 102 0.00 16.10-17.10 5.3 98 0.00 16.60-17.60
16 17	o-Nitrotoluene p-Nitrotoluene	1000.000		3.8 99 -0.01 19.73-20.73 2.5 99 -0.01 21.06-22.06
18	m-Nitrotoluene	1000.000	997.451	0.3 100 0.00 22.76-23.76
****	Signal #2 ****			
1 2 3 4 5 6 7 8 9 10 S 11 12 13 14 15 16 17 18	HMX TNX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene Tetryl Nitrobenzene 3,4-Dinitrotoluene 2,4,6-Trinitrotoluene 4-Amino-2,6-Dinitrotol 2-Amino-4,6-Dinitrotol 2,6-Dinitrotoluene 2,4-Dinitrotoluene 0-Nitrotoluene p-Nitrotoluene m-Nitrotoluene	1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000	1002.891 1012.877 1004.320 1044.793 984.579 989.010 997.573 992.439 962.803 983.229 974.885 978.179 974.861 935.023 961.820 982.213	1.6 99 0.00 3.86-4.86 -0.3 100 0.00 4.18-5.18 -1.3 101 0.00 4.60-5.60 -0.4 101 0.00 5.37-6.37 -4.5 101 -0.02 6.15-7.15 1.5 99 0.00 8.43-9.43 1.1 99 0.00 10.43-11.43 0.2 99 0.00 11.21-12.21 0.8 102 0.00 11.93-12.93 3.7 98 0.00 12.95-13.95 1.7 99 0.00 13.60-14.60 2.5 98 0.00 14.37-15.37 2.2 99 0.00 15.14-16.14 2.5 101 0.00 16.10-17.10 6.5 97 0.00 16.60-17.60 3.8 98 -0.01 19.73-20.73 1.8 99 0.00 21.06-22.06 -0.2 99 -0.01 22.77-23.77

_____



Page 2 of 2

# Continuing Calibration Summary Job Number: T16445

Sample: GGG906-CC825 GG020212.D

ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: Account: **Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0 GG018284.D 8330_EX.M Mon Mar 05 11:42:13 2007



## **Continuing Calibration Summary**

Job Number: T16445 Sample: GGG906-CC825
Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020224.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\DATA\0302ODS\GG020224.D\dadlB.ch Vial: 3

Signal #2 : G:\DATA\03020DS\GG020224.D\dad1A.ch

 Acq On
 : 03-Mar-2007, 02:38:33
 Operator: MIKEE

 Sample
 : CC825-1000
 Inst : G1315B

 Misc
 : OP19677,ggg906,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Compound

Last Update : Thu Mar 01 11:02:09 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Amount Calc. %Drift Area% Dev(min)RT Window

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Alliount	Caic.	*Drift Area* Dev(min)Ri window
1	HMX	1000.000		3.6 97 0.00 3.86-4.86
2	TNX	1000.000	1010.267	-1.0 $100$ $-0.02$ $4.20-5.20$
3	DNX	1000.000	1005.452	-0.5 101 0.00 4.60- 5.60
4	MNX	1000.000	1000.098	-0.0 100 0.00 5.37-6.37
5	RDX	1000.000	1025.240	-2.5 102 -0.02 6.15- 7.15
6	1,3,5-Trinitrobenzene	1000.000	993.055	0.7 100 0.00 8.43- 9.43
7	1,3-Dinitrobenzene	1000.000		1.9 99 -0.01 10.43-11.43
8	Tetryl	1000.000	974.910	2.5 98 -0.02 11.21-12.21
9	Nitrobenzene	1000.000	982.824	1.7 99 -0.01 11.93-12.93
10 S	3,4-Dinitrotoluene	1000.000	957.890	4.2 96 -0.01 12.95-13.95
11	2,4,6-Trinitrotoluene	1000.000	980.868	1.9 98 -0.01 13.60-14.60
12	4-Amino-2,6-Dinitrotol	1000.000	962.421	3.8 97 0.00 14.37-15.37
13	2-Amino-4,6-Dinitrotol	1000.000	1009.138	-0.9 101 0.00 15.14-16.14
14	2,6-Dinitrotoluene	1000.000	1335.440	-33.5# 137 0.00 16.10-17.10
15	2,4-Dinitrotoluene	1000.000	1096.840	-9.7 113 -0.01 16.60-17.60
16	o-Nitrotoluene	1000.000	979.988	2.0 101 -0.02 19.73-20.73
17	p-Nitrotoluene	1000.000	1001.774	-0.2 102 -0.02 21.06-22.06
18	m-Nitrotoluene	1000.000	1009.574	-1.0 101 -0.02 22.76-23.76
****	Signal #2 ****			
1	HMX	1000.000	940.821	5.9 95 0.00 3.86- 4.86
2	TNX	1000.000	949.976	5.0 95 0.00 4.18-5.18
3	DNX	1000.000		3.8 96 0.00 4.60-5.60
4	MNX	1000.000	1000.037	-0.0 101 0.00 5.37-6.37
5	RDX	1000.000	1048.505	-4.9 101 -0.02 6.15- 7.15
6	1,3,5-Trinitrobenzene	1000.000		0.8 100 0.00 8.43- 9.43
7	1,3-Dinitrobenzene	1000.000		1.0 99 -0.01 10.43-11.43
8	Tetryl	1000.000	995.610	0.4 99 -0.02 11.21-12.21
9	Nitrobenzene	1000.000	966.310	3.4 99 -0.01 11.93-12.93
10 S	3,4-Dinitrotoluene	1000.000	952.955	4.7 97 -0.01 12.95-13.95
11	2,4,6-Trinitrotoluene	1000.000		2.5 98 -0.01 13.60-14.60
12	4-Amino-2,6-Dinitrotol			3.1 98 0.00 14.37-15.37
13	2-Amino-4,6-Dinitrotol			1.9 99 0.00 15.14-16.14
14	2,6-Dinitrotoluene		1062.649	-6.3 110 0.00 16.10-17.10
15	2,4-Dinitrotoluene	1000.000		0.9 103 -0.01 16.60-17.60
16	o-Nitrotoluene	1000.000		2.7 99 -0.02 19.73-20.73
17	p-Nitrotoluene	1000.000		0.7 100 -0.02 21.06-22.06
18	m-Nitrotoluene		1007.492	-0.7 100 -0.03 22.77-23.77

_____



Page 2 of 2

### **Continuing Calibration Summary Job Number:** T16445

Job Number: T16445 Sample: GGG906-CC825 Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020224.D

Project: ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018284.D 8330_EX.M Mon Mar 05 11:42:13 2007



## **Continuing Calibration Summary**

Job Number: T16445 Sample: GGG907-CC827
Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020231.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #2 : G:\DATA\0305RP\GG020231.D\dad1A.ch

 Acq On
 : 05-Mar-2007, 13:23:34
 Operator: MIKEE

 Sample
 : CC827-500
 Inst : G1315B

 Misc
 : OP19677,ggg907,1000,,,10,,water
 Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Fri Jan 26 08:35:20 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift	Area	.% Dev(m	in)RT Window
1	TNX	500 000	551.245	-10.2	 112	0.02	4.24- 5.24
2	HMX		527.482	-5.5	113	0.02	4.75- 5.75
3	DNX		526.884	-5.4	111	0.01	4.87- 5.87
4	MNX		525.950	-5.2	106	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene		507.541	-1.5	103	0.00	6.17- 7.17
6	RDX		498.345	0.3	100	0.02	6.56- 7.56
7	1,3-Dinitrobenzene		495.147	1.0	101	0.00	7.78- 8.78
8	Nitrobenzene		509.807	-2.0	104	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene		506.824	-1.4	103	-0.01	8.80- 9.80
10	Tetryl		535.862	-7.2	104	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene		492.695	1.5	101	0.00	10.21-11.21
12	2,6-Dinitrotoluene		489.618	2.1	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene		483.678	3.3	102	-0.02	11.06-12.06
14	o-Nitrotoluene		502.970	-0.6	105	-0.01	11.86-12.86
15	p-Nitrotoluene		503.359	-0.7	105	-0.01	12.53-13.53
16	4-Amino-2,6-Dinitrotol			-0.4	102	-0.03	12.95-13.95
17	m-Nitrotoluene		523.547	-4.7	107	-0.02	13.38-14.38
18	2-Amino-4,6-Dinitrotol			-0.8	101	-0.03	14.45-15.45
	ŕ						
****	Signal #2 *****						
1	TNX	500.000	539.038	-7.8	107	0.02	4.24- 5.24
2	HMX		501.388	-0.3	105	0.00	4.75- 5.75
3	DNX	500.000	520.169	-4.0	105	0.01	4.87- 5.87
4	MNX	500.000	520.287	-4.1	104	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene		508.259	-1.7	102	0.00	6.17- 7.17
6	RDX		496.557	0.7	100	0.02	6.56- 7.56
7	1,3-Dinitrobenzene	500.000	499.335	0.1	102	0.00	7.78- 8.78
8	Nitrobenzene	500.000	521.041	-4.2	107	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene	500.000	510.092	-2.0	104	-0.01	8.80- 9.80
10	Tetryl	500.000	533.664	-6.7	103	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene	500.000	488.383	2.3	99	0.00	10.21-11.21
12	2,6-Dinitrotoluene	500.000	487.517	2.5	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene	500.000	483.800	3.2	102	-0.02	11.06-12.06
14	o-Nitrotoluene	500.000	519.246	-3.8	108	-0.01	11.86-12.86
15	p-Nitrotoluene	500.000	515.868	-3.2	110	0.00	12.54-13.54
16	4-Amino-2,6-Dinitrotol	500.000	499.988	0.0	102	-0.03	12.95-13.95
17	m-Nitrotoluene	500.000	538.963	-7.8	110	-0.02	13.37-14.37
18	2-Amino-4,6-Dinitrotol	500.000	499.905	0.0	100	-0.03	14.45-15.45

_____



Page 2 of 2

**Continuing Calibration Summary Job Number:** T16445

**b Number:** T16445 **Sample:** GGG907-CC827

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020231.D Project: ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018316.D 8330_RP.M Tue Mar 06 10:57:51 2007



## **Continuing Calibration Summary**

Page 1 of 2

Sample: GGG907-ECC827

Lab FileID: GG020238.D

Job Number: T16445
Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

Signal #1 : G:\DATA\0305RP\GG020238.D\dad1B.ch Vial: 3

Signal #2 :  $G:\DATA\0305RP\GG020238.D\dad1A.ch$ 

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Fri Jan 26 08:35:20 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift A	Area%	Dev(min	)RT Window
1	TNX	1000.000	 1064.078	-6.4	104	0.02	4.24- 5.24
2	HMX		1064.872	-6.5	113	0.00	4.75- 5.75
3	DNX	1000.000	1029.858	-3.0	106	0.00	4.87- 5.87
4	MNX	1000.000	1052.110	-5.2	107	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene	1000.000	1020.840	-2.1	102	0.00	6.17- 7.17
6	RDX	1000.000	1020.894	-2.1	103	0.02	6.56- 7.56
7	1,3-Dinitrobenzene	1000.000	1005.302	-0.5	101	0.00	7.78- 8.78
8	Nitrobenzene		1031.078	-3.1	102	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene	1000.000	1033.117	-3.3	104	-0.01	8.80- 9.80
10	Tetryl	1000.000	1104.790	-10.5	112	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene	1000.000	1016.218	-1.6	103	0.00	10.21-11.21
12	2,6-Dinitrotoluene	1000.000		0.2	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene	1000.000	987.663	1.2	103	-0.02	11.06-12.06
14	o-Nitrotoluene		1040.619	-4.1	105	-0.01	11.86-12.86
15	p-Nitrotoluene		1034.751	-3.5	104	-0.01	12.53-13.53
16	4-Amino-2,6-Dinitrotol			-1.8	102	-0.02	12.95-13.95
17	m-Nitrotoluene		1063.626	-6.4	105	-0.02	13.38-14.38
18	2-Amino-4,6-Dinitrotol	1000.000	1018.025	-1.8	102	-0.02	14.45-15.45
****	Signal #2 ****						
1	TNX	1000.000	1065.753	-6.6	105	0.02	4.24- 5.24
2	HMX	1000.000		4.0	103	0.00	4.75- 5.75
3	DNX		1023.085	-2.3	108	0.01	4.87- 5.87
4	MNX		1036.881	-3.7	107	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene		1018.352	-1.8	102	0.00	6.17- 7.17
6	RDX	1000.000		0.5	102	0.02	6.56- 7.56
7	1,3-Dinitrobenzene	1000.000	1003.575	-0.4	100	0.00	7.78- 8.78
8	Nitrobenzene	1000.000	1035.575	-3.6	103	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene	1000.000	1043.825	-4.4	105	-0.01	8.80- 9.80
10	Tetryl	1000.000	1097.433	-9.7	111	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene	1000.000	1002.293	-0.2	102	0.00	10.21-11.21
12	2,6-Dinitrotoluene	1000.000		0.8	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene	1000.000	990.702	0.9	103	-0.02	11.06-12.06
14	o-Nitrotoluene	1000.000	1071.751	-7.2	108	-0.01	11.86-12.86
15	p-Nitrotoluene		1073.626	-7.4	108	0.00	12.54-13.54
16	4-Amino-2,6-Dinitrotol			-0.7	101	-0.02	12.95-13.95
17	m-Nitrotoluene		1093.803	-9.4	107	-0.02	13.37-14.37
18	2-Amino-4,6-Dinitrotol	1000.000	1006.963	-0.7	101	-0.02	14.45-15.45

_____



Page 2 of 2

**Continuing Calibration Summary Job Number:** T16445

Sample: GGG907-ECC827

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Sample: GGG907-ECC Lab FileID: GG020238.D

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018318.D 8330_RP.M Tue Mar 06 10:58:20 2007





**Section 10** 

## General Chemistry

## QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC



#### 

Login Number: T16445 Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Perchlorate	GP9044/GN24408	10	<10	ug/l	50	50.1	100.2	85-115%

Associated Samples:
Batch GP9044: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9
(*) Outside of QC limits



## DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16445

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Perchlorate	GP9044/GN24408	T16445-5	ug/l	27.8	29.4	5.6	0-15%
Perchlorate	GP9044/GN24408	T16445-6	ug/l	532	550	3.3	0-15%

Associated Samples:

Batch GP9044: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

(*) Outside of QC limits



## MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16445

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Perchlorate	GP9044/GN24408	T16445-5	ug/l	27.8	50	79.8	104.0	80-120%
Perchlorate	GP9044/GN24408	T16445-6	ug/l	532	50	583	102.0	80-120%

#### Associated Samples:

Batch GP9044: T16445-1, T16445-10, T16445-11, T16445-12, T16445-13, T16445-14, T16445-18, T16445-2, T16445-3, T16445-4, T16445-5, T16445-6, T16445-7, T16445-8, T16445-9

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits



## Accutest Laboratories Instrument Runlog Inorganics Analyses

#### Login Number: T16445

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

File ID: 207030201.TXT

Date Analyzed: 03/02/07 Run ID: GN24408

02/07 Methods: EPA 314

Ana	e ID: 207030201. Lyst: MP ameters: Perchlo		Date Analyzed: 03/02/07 Run ID: GN24408	Methods: EPA 314
	Sample Description	Dilution PS Factor Recov	Comments	
14:05	GN24408-CCV1	1		
14:20	GN24408-CCB1	1		
14:34	GP9044-MB1	1		
14:49	GP9044-B1	1		
15:31	GN24408-CRI1	1		
15:46	GN24408-IPC1	1		
16:00	T16445-1	1		
16:15	T16445-2	1		
16:29	T16445-3	1		
16:43	T16445-4	1		
16:58	T16445-5	1		
17:12	T16445-6	1		
17:27	GN24408-CCV2	1		
17:41	GN24408-CCB2	1		
17:55	T16445-7	1		
18:10	T16445-8	1		
18:24	T16445-9	1		
18:39	T16445-10	1		
18:53	T16445-11	1		
19:22	T16445-13	1		
19:36	T16445-14	1		
19:51	T16445-18	1		
20:05	ZZZZZZ	1		
20:19	GN24408-CCV3	1		
20:34	GN24408-CCB3	1		
20:48	GP9044-D1	1		
21:03	GP9044-S1	1		
21:17	GP9044-D2	1		
21:32	GP9044-S2	1		
21:46	GN24408-CCV4	1		

Refer to raw data for calibration curve and standards.

22:00 GN24408-CCB4 1



## Instrument QC Summary Inorganics Analyses

#### Login Number: T16445

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN24408-CCV1	Perchlorate	52.1	10	4.0	50	104.2	85-115
GN24408-CCB1	Perchlorate	4.0 U	10	4.0			
GN24408-CRI1	Perchlorate	4.0 U	10	4.0	3	86.6	75-125
GN24408-IPC1	Perchlorate	23.2	10	4.0	25	92.8	80-120
GN24408-CCV2	Perchlorate	50.4	10	4.0	50	100.8	85-115
GN24408-CCB2	Perchlorate	4.0 U	10	4.0			
GN24408-CCV3	Perchlorate	52.6	10	4.0	50	105.2	85-115
GN24408-CCB3	Perchlorate	4.0 U	10	4.0			
GN24408-CCV4	Perchlorate	53.4	10	4.0	50	106.8	85-115
GN24408-CCB4	Perchlorate	4.0 U	10	4.0			

^(!) Outside of QC limits

_____



## Accutest Laboratories Instrument Runlog Inorganics Analyses

#### Login Number: T16445

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Parameters: Perchlorate

Time	Sample Description	Dilution PS Factor Recov Comments	
17:09	GN24437-CCV1	1	
17:23	GN24437-CCB1	1	
18:35	T16445-12	5	
18:50	GN24437-CCV2	1	
19:04	GN24437-CCB2	1	

Refer to raw data for calibration curve and standards.

## Instrument QC Summary Inorganics Analyses

#### Login Number: T16445

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN24437-CCV1	Perchlorate	52.5	10	4.0	50	105.0	85-115
GN24437-CCB1	Perchlorate	4.0 U	10	4.0			
GN24437-CCV2	Perchlorate	46.7	10	4.0	50	93.4	85-115
GN24437-CCB2	Perchlorate	4.0 U	10	4.0			

^(!) Outside of QC limits

_____







04/10/07



## Technical Report for

Shaw E & I, Inc.

Longhorn Army Ammunition Plant

PROJECT #117591

Accutest Job Number: T16448

Sampling Date: 02/24/07

Report to:

Shaw E & I, Inc.

diane.meyer@shawgrp.com

ATTN: Diane Meyer

Total number of pages in report: 124





Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ron Martino
Laboratory Manager

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

## **Sections:**

-1-

**Table of Contents** 

Section 1: Sample Summary	4
Section 2: Case Narrative/Conformance Summary	
Section 3: Sample Results	
<b>3.1:</b> T16448-1: 50WW03	10
<b>3.2:</b> T16448-2: 29WW15	14
<b>3.3:</b> T16448-3: 12WW24	19
Section 4: Misc. Forms	20
4.1: Chain of Custody	21
<b>4.2:</b> LRC Form	24
Section 5: GC/MS Volatiles - QC Data Summaries	28
5.1: Method Blank Summary	29
5.2: Blank Spike Summary	32
5.3: Matrix Spike/Matrix Spike Duplicate Summary	
5.4: Instrument Performance Checks (BFB)	38
5.5: Internal Standard Area Summaries	
5.6: Surrogate Recovery Summaries	43
5.7: Initial and Continuing Calibration Summaries	
Section 6: Metals Analysis - QC Data Summaries	51
6.1: Inst QC MA2815: Cr	
6.2: Prep QC MP5804: Cr	68
Section 7: General Chemistry - QC Data Summaries	
7.1: Method Blank and Spike Results Summary	74
7.2: Duplicate Results Summary	75
7.3: Matrix Spike Results Summary	
Section 8: Misc. Forms (Accutest Laboratories Southeast, Inc.)	<b>77</b>
8.1: Chain of Custody	78
Section 9: GC Volatiles - QC Data (Accutest Laboratories Southeast, Inc.)	80
9.1: Method Blank Summary	81
9.2: Blank Spike Summary	82
9.3: Matrix Spike Summary	83
9.4: Duplicate Summary	84
9.5: Initial and Continuing Calibration Summaries	85
Section 10: GC Semi-volatiles - QC Data (Accutest Laboratories Southeast, Inc.)	91
10.1: Method Blank Summary	92
10.2: Blank Spike Summary	94
10.3: Matrix Spike/Matrix Spike Duplicate Summary	96
10.4: Surrogate Recovery Summaries	
10.5: GC Surrogate Retention Time Summaries	98
10.6: Initial and Continuing Calibration Summaries	101
Section 11: General Chemistry - QC Data (Accutest Laboratories Southeast, Inc.)	119
11.1: Method Blank and Spike Results Summary	120
11.2: Duplicate Results Summary	121



N

ယ

45

7

Φ

20





# 00079143

## **Sections:**

# **Table of Contents**

-2-

11.3: Matrix Spike Results Summary	122
11.4: Inst OC GN24408: Perchlorate	123



(L)

4

7

 $\infty$ 

_





### Accutest Laboratories

## **Sample Summary**

Shaw E & I, Inc.

**Job No:** T16448

Longhorn Army Ammunition Plant Project No: PROJECT #117591

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
T16448-1	02/24/07	10:46	02/26/07	AQ	Ground Water	50WW03
T16448-2	02/24/07	10:38	02/26/07	AQ	Ground Water	29WW15
T16448-3	02/24/07	10:00	02/26/07	AQ	Ground Water	12WW24





#### SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Shaw E & I, Inc. Job No T16448

Site: Longhorn Army Ammunition Plant Report Date 3/13/2007 5:05:01 PM

3 Samples were collected on 02/24/2007 and were received at Accutest on 02/26/2007 properly preserved, at 2.3 Deg. C and intact. These Samples received an Accutest job number of T16448. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### Volatiles by GCMS By Method SW846 8260B

Matrix AQ Batch ID: VF2315

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-3MS, T16445-3MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for cis-1,2-Dichloroethylene, Trichloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Matrix AQ Batch ID: VF2318

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-4MS, T16445-4MSD were used as the QC samples indicated.

#### Volatiles by GC By Method RSKSOP-147/175

Matrix AQ Batch ID: F:GXY996

Analysis performed at Accutest Laboratories, Orlando, FL.

#### Metals By Method SW846 6010B

Matrix AQ Batch ID: MP5804

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16414-1DUP, T16414-1MS, T16414-1MSD, T16414-1SDL were used as the QC samples for metals.

#### Wet Chemistry By Method EPA 120.1

Matrix AQ Batch ID: F:R17947

T16448-1 for Specific Conductivity: Analysis performed at Accutest Laboratories, Orlando, FL.

Matrix AQ Batch ID: GN11355

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP were used as the QC samples for Specific Conductivity.



#### Wet Chemistry By Method EPA 150.1/9040

Matrix AQ Batch ID: GN11334

- Sample(s) T16448-1DUP were used as the QC samples for pH.
- The following samples were run outside of holding time for method EPA 150.1/9040: T16448-1

#### Wet Chemistry By Method EPA 310.1

Matrix AQ

Batch ID: GN11375

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Alkalinity, Total as CaCO3.

#### Wet Chemistry By Method EPA 314

Matrix AQ

Batch ID: F:GP9044

Perchlorate Analysis performed at Accutest Laboratories, Orlando, FL.

#### Wet Chemistry By Method EPA 325.3

Matrix AO

Batch ID: GN11343

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP, T16445-5MS were used as the QC samples for Chloride.

#### Wet Chemistry By Method EPA 353.2

Matrix AQ

Batch ID: GN11300

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-18DUP, T16445-18MS were used as the QC samples for Nitrogen, Nitrite.

Matrix AQ

Batch ID: GN11301

- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-18DUP, T16445-18MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

#### Wet Chemistry By Method EPA 375.3

Matrix AQ

Batch ID: GN11356

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16448-1DUP, T16448-1MS were used as the QC samples for Sulfate.

#### Wet Chemistry By Method EPA 376.1

Matrix AQ

Batch ID: GN11313

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-5DUP were used as the QC samples for Sulfide.



#### Wet Chemistry By Method EPA 415.1/9060

Matrix AQ Batch ID: GN11304

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) T16445-18DUP, T16445-18MS were used as the QC samples for Total Organic Carbon.

#### Wet Chemistry By Method SM18 4500NO3E/NO2B

Matrix AQ Batch ID: R15469

Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Accutest Laboratories Gulf Coast (ALGC) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALGC and as stated on the COC. ALGC certifies that the data meets the Data QualityObjectives for precision, accuracy and completeness as specified in the ALGC Quality Manual except as noted above. This report is to be used in its entirety. ALGC is not responsible for any assumptions of data quality if partial data packages are used



### SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Accutest Laboratories Gulf Coast, Inc. Job No: T16448

Site: ITTXHO: Longhorn Army Ammunition Plant Report Date: 3/13/2007 11:35:47

2 Samples were collected on 02/24/2007 and were received at Accutest SE on 02/28/2007 properly preserved, at 1.8 Deg. C and intact. These Samples had an Accutest job number of T16448. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### Volatiles by GC by Method RSKSOP-147/175

Matrix: AQ Batch ID: GXY996

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F47731-7MS, F47769-9DUP were used as the QC samples indicated.

Matrix Spike Recoverys for Ethane, Ethene are outside control limits. Probable cause: due to matrix interference.

#### Extractables by GC by Method SW846 8330A

Matrix: AO Batch ID: OP19677

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F47539-3MS, F47539-3MSD were used as the QC samples indicated.

#### Wet Chemistry by Method EPA 314

Matrix: AQ Batch ID: GP9044

All samples were prepped within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples T16445-5DUP, T16445-5MS were used as the QC samples for Perchlorate.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:	
	Date: March 13, 2007
Ellen Pampel, Inorganic QA (signature on file)	

Tuesday, March 13, 2007



Sample	Results



# **Report of Analysis**

Client Sample ID: 50WW03

 Lab Sample ID:
 T16448-1
 Date Sampled:
 02/24/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 F0079188.D 1 03/07/07 LJ n/a n/a VF2315

Run #2

**Purge Volume** 

Run #1 5.0 ml

Run #2

## **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.23 U	2.0	0.23	ug/l	
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	0.66 U	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	0.52 U	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	0.68 U	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	0.53 U	2.0	0.53	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.83 U	2.0	0.83	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.75 U	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	0.67 U	5.0	0.67	ug/l	
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	0.66 U	2.0	0.66	ug/l	
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	0.63 U	2.0	0.63	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound





Page 2 of 2

Client Sample ID: 50WW03

 Lab Sample ID:
 T16448-1
 Date Sampled:
 02/24/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

## **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 102% 106% 121%		66-1 77-1	39% 39% 48% 50%	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ 

N = Indicates presumptive evidence of a compound







## Accutest Laboratories

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 50WW03

Lab Sample ID: T16448-1 **Date Sampled:** 02/24/07 Matrix: **Date Received:** 02/26/07 AQ - Ground Water Method: RSKSOP-147/175 Percent Solids: n/a

Project: Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025336.D	1	03/08/07	AFL	n/a	n/a	F:GXY996
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	0.56	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 50WW03

Lab Sample ID: T16448-1 **Date Sampled:** 02/24/07 Matrix: **Date Received:** 02/26/07 AQ - Ground Water

Project: Longhorn Army Ammunition Plant

## Percent Solids: n/a

## **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Perchlorate by IC								
Perchlorate ^a	4.0 U	10	4.0	ug/l	1	03/02/07 20:05	AFL	EPA 314
A11 11 14 TE 4 1 G GG2	417	25	0.20	/1	~			
Alkalinity, Total as CaCO3	417	25	0.30	mg/l	5	03/08/07 12:50	EB	EPA 310.1
Carbon Dioxide	416	5.0		mg/l	1	03/12/07	RM	SM18 4500CO2D
Chloride	944	50	0.57	mg/l	50	03/05/07 12:15	EB	EPA 325.3
Nitrogen, Nitrate ^b	< 0.10	0.10	0.0050	mg/l	1	02/26/07 14:00	LN	SM18 4500NO3E/NO2B
Nitrogen, Nitrate + Nitrite	0.010 B	0.050	0.0050	mg/l	1	02/26/07 13:03	LN	EPA 353.2
Nitrogen, Nitrite	0.0030 U	0.050	0.0030	mg/l	1	02/26/07 14:00	LN	EPA 353.2
Specific Conductivity ^a	3340	0.50	0.50	umhos/cm	1	03/06/07	AFL	EPA 120.1
Sulfate	403	100	2.6	mg/l	10	03/06/07 18:00	EB	EPA 375.3
Sulfide	0.0 B	0.20		mg/l	1	03/01/07 12:10	LN	EPA 376.1
Total Organic Carbon	2.0	1.0	0.092	mg/l	1	02/27/07 09:10	LN	EPA 415.1/9060
pН	7.1			su	1	03/02/07 08:10	EB	EPA 150.1/9040

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





# **Report of Analysis**

Report of Analysis

 Client Sample ID:
 29WW15

 Lab Sample ID:
 T16448-2
 Date Sampled:
 02/24/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/07

 Method:
 SW846 8260B
 Percent Solids:
 n/a

**Project:** Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	<b>Analytical Batch</b>
Run #1	F0079189.D	1	03/07/07	LJ	n/a	n/a	VF2315
Run #2	F0079239.D	50	03/08/07	LJ	n/a	n/a	VF2318

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

### **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	2.8 U	50	2.8	ug/l	
71-43-2	Benzene	0.47	2.0	0.23	ug/l	J
75-27-4	Bromodichloromethane	0.33 U	2.0	0.33	ug/l	
75-25-2	Bromoform	0.65 U	2.0	0.65	ug/l	
108-90-7	Chlorobenzene	0.54 U	2.0	0.54	ug/l	
75-00-3	Chloroethane	0.46 U	2.0	0.46	ug/l	
67-66-3	Chloroform	5.3	2.0	0.66	ug/l	
75-15-0	Carbon disulfide	0.62 U	2.0	0.62	ug/l	
56-23-5	Carbon tetrachloride	0.52 U	2.0	0.52	ug/l	
75-34-3	1,1-Dichloroethane	3.4	2.0	0.52	ug/l	
75-35-4	1,1-Dichloroethylene	7.5	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	5520 a	100	27	ug/l	
78-87-5	1,2-Dichloropropane	0.59 U	2.0	0.59	ug/l	
124-48-1	Dibromochloromethane	0.68 U	2.0	0.68	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.8	2.0	0.83	ug/l	J
10061-01-5	cis-1,3-Dichloropropene	0.59 U	2.0	0.59	ug/l	
156-60-5	trans-1,2-Dichloroethylene	15.6	2.0	0.75	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.61 U	2.0	0.61	ug/l	
100-41-4	Ethylbenzene	0.48 U	2.0	0.48	ug/l	
591-78-6	2-Hexanone	1.9 U	10	1.9	ug/l	
108-10-1	4-Methyl-2-pentanone	7.3 U	10	7.3	ug/l	
74-83-9	Methyl bromide	0.47 U	2.0	0.47	ug/l	
74-87-3	Methyl chloride	0.60 U	2.0	0.60	ug/l	
75-09-2	Methylene chloride	3.0	5.0	0.67	ug/l	J
78-93-3	Methyl ethyl ketone	3.0 U	10	3.0	ug/l	
100-42-5	Styrene	0.50 U	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.37 U	2.0	0.37	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.46 U	2.0	0.46	ug/l	
79-00-5	1,1,2-Trichloroethane	1.9	2.0	0.66	ug/l	J
127-18-4	Tetrachloroethylene	0.74 U	2.0	0.74	ug/l	
108-88-3	Toluene	0.54 U	2.0	0.54	ug/l	
79-01-6	Trichloroethylene	344 ^a	100	32	ug/l	

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 2 of 2

Client Sample ID: 29WW15

Lab Sample ID: T16448-2 **Date Sampled:** 02/24/07 Matrix: **Date Received:** 02/26/07 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

## **VOA TCL List**

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.32 U 1.1 U	2.0 6.0	0.32 1.1	ug/l ug/l	
CAS No.	<b>Surrogate Recoveries</b>	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	108% 105% 106%	106% 100% 105%	73-1 66-1 77-1	39%	
460-00-4	4-Bromofluorobenzene	122%	118%	84-1	50%	

(a) Result is from Run# 2

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound











Page 1 of 1

Client Sample ID: 29WW15

Lab Sample ID: T16448-2 **Date Sampled:** 02/24/07 Matrix: **Date Received:** 02/26/07 AQ - Ground Water Method: RSKSOP-147/175 Percent Solids: n/a

Project: Longhorn Army Ammunition Plant

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	XY025337.D	1	03/08/07	AFL	n/a	n/a	F:GXY996
Run #2							

CAS No.	Compound	Result	RL	MDL	Units	Q
74-82-8	Methane	1.27	0.50	0.30	ug/l	
74-84-0	Ethane	0.60 U	1.0	0.60	ug/l	
74-85-1	Ethene	0.80 U	1.0	0.80	ug/l	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 29WW15

Lab Sample ID: T16448-2 **Date Sampled:** 02/24/07 Matrix: AQ - Ground Water **Date Received:** 02/26/07 Method: SW846 8330A SW846 3535A Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 a GG020223.D 1 03/03/07 **AFL** 03/01/07 F:OP19677 F:GGG906

Run #2

**Initial Volume Final Volume** Run #1 600 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	0.10 U	0.33	0.10	ug/l	
121-82-4	RDX	0.13 U	0.33	0.13	ug/l	
99-65-0	1,3-Dinitrobenzene	0.12 U	0.33	0.12	ug/l	
606-20-2	2,6-Dinitrotoluene	0.11 U	0.33	0.11	ug/l	
121-14-2	2,4-Dinitrotoluene	0.13 U	0.33	0.13	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	0.12 U	0.33	0.12	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	0.13 U	0.33	0.13	ug/l	
98-95-3	Nitrobenzene	0.10 U	0.33	0.10	ug/l	
88-72-2	o-Nitrotoluene	0.10 U	0.33	0.10	ug/l	
99-08-1	m-Nitrotoluene	0.13 U	0.33	0.13	ug/l	
99-99-0	p-Nitrotoluene	0.13 U	0.33	0.13	ug/l	
479-45-8	Tetryl	0.13 U	0.33	0.13	ug/l	
99-35-4	1,3,5-Trinitrobenzene	0.16 U	0.33	0.16	ug/l	
118-96-7	2,4,6-Trinitrotoluene	0.13 U	0.33	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
610-39-9	3,4-Dinitrotoluene	95%		70-13	36%	

(a) Analysis performed at Accutest Laboratories, Orlando, FL.

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound



## Accutest Laboratories

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 29WW15

 Lab Sample ID:
 T16448-2
 Date Sampled:
 02/24/07

 Matrix:
 AQ - Ground Water
 Date Received:
 02/26/07

Percent Solids: n/a

**Project:** Longhorn Army Ammunition Plant

## **General Chemistry**

Analyte	Result	RL	MDL	Units	DF	Analyzed	By	Method
Total Organic Carbon	4.0	1.0	0.092	ma/l	1	02/27/07 00:10	IN	EDA 415 1/0060

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

B = Indicates a result > = MDL but < RL



٥.



## Accutest Laboratories

# **Report of Analysis**

Page 1 of 1

Client Sample ID: 12WW24

Lab Sample ID:T16448-3Date Sampled:02/24/07Matrix:AQ - Ground WaterDate Received:02/26/07Percent Solids:n/a

Project: Longhorn Army Ammunition Plant

**Metals Analysis** 

Analyzed By Analyte Result RL**MDL** Units DF Prep Method **Prep Method** SW846 3010A  2 Chromium 2.0 B 10 02/27/07 02/28/07 NS SW846 6010B ¹ 1.8 ug/l 1

(1) Instrument QC Batch: MA2815(2) Prep QC Batch: MP5804

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- LRC Form



Shaw •	Shaw Environmental, Inc.
3010 Briarpark	Dríve, Suite 4N

T16448

Houston, TX 77042 (713) 996-44	00					C	HAIN-OF-C	UST	'QD'	Y							No.	10921
Laboratory Name:	est			Ar	idress	IBI	65 Harwin	חם ב	#1	20		456	<u>-                                    </u>					
Lougham Arm	<del>~</del>					1	WIT, MOTEUR	つつ	03.P	Cont	tact:	113-		- U-	7^>			
Project Name Promounition	Plan	+	Proi	ect I o	ration )		rack, TX		Τ			sis and I					$\overline{}$	
Project No. 117591		Project	Conte	act	JULION I	Proj	act Telephone No.		<del>-</del>		(Indica	te sepa	rate cor	tainers	)		Reg	narks
		Kay	Eve	ret	e	17	13-991-441	i	g	Ιc	ه اه	1	돐	3	$ \Gamma $	- ا	- [	
Point of contact: DIANE Me	Jer	-				ect Mai	nager/Supervisor:	<u>'</u>	igi i	Sale	380	قم ا	<u>ب</u>	122 1		Z Z	213	
Telephone No. 713-996	-14	/ ₂ / ₂				بحدح			Š	بك		\ \cdots	ુ	K-4		<b>∱</b> ₹	113	
Telephone No. 773 776	77	<u>පුප_</u>			کا	RIV	VATEN		o de	w	3	2	قے ا	, ,	3		1 5	
Sample Number	Date	Time	Somp	ga g	Matrix	1.			Number of Containers	Voels	ANIONS	Sulfloer 376	Perchlosafe	KK	DIK N. W. J. J.	3	Chronium	
1 50WW03	T	10:46	<del>                                     </del>	1			ample Description, Loc	ation	-		_	07	للاج	2	Μā	_ ۲	ાંડા	
2 29 Ww 15		7 10:30			SW		<u>50 WW03</u>		13	<u> </u>	X	X	×	X	X	X		
3 12WW 24				X	GW	$\tau -$	29 Wwis		10	<u> </u>				X	X	X	P	Incomplet Suite
4	1240	10:00		x	50	-	2WWZ7		2								L. 11	1 Filtered 1 Unfiltered
	<b>⊢</b> –	<del> </del>		<u> </u>	L_	<u></u>						•					<del>                                     </del>	1 ON HIT ENER
5	<u> </u>				L		-					$\neg$					$\vdash +$	
6		<u> </u>							$\neg \neg$	$\neg \uparrow$		-+		-+		_	$\vdash$	
7							-	$\neg +$		$\dashv$	-+	$\dashv$	-+	-1			$\vdash \downarrow$	
8					$\vdash$	_		$\dashv$	-+	$\dashv$		<b>-</b> ↓					$\perp$	
9					-					_				_				
10					-+				$-\downarrow$	_					.			
Transfers Relinquished By (Signatu	re)	Date	e/Time				<del> </del>			_				T				
J. Profee / MA	Nea	264/20				Prefers	Accepted By (Signatu	re)	Date/Ti	ne S	pecial ins	tructions	Plea	برSe_	holo	1 9	Herr	ed sample
0	200	VI ID I	<u> </u>	4	<del>-/&gt;</del>	(me	200 091					*) T	ひかせん	ev "	$\Lambda$ St $v_{z}$	104.	. 14	じゅいつい
	-			$\dashv$			<u> </u>			<u>_ </u>	Meas	t wa	n p	Hen '	W@	- 713	1991	6-4586
				<del>-  </del>	aborato	ргу		$-\downarrow$		- 1			- 11	Rel	0=			
TAT: Standard Rush [	ue:		Sea		17						ampler's							
								Good Cor	idition_v	<u>_</u>	N	Cold	2.3	ئو				
				W	nite -	Lab (	Copy Canary - Fi	eld Cop	y Pin	k - Fil	ө Сору	,						

T16448: Chain of Custody

Page 1 of 3



PROJECT LIFE OF DULUS - PIPPLOR & 10:14  FILED BY  FILED BY  FILED BY  VARIANCE C. Check applicable items(s):  Insufficient sample sent for proper analysis; received approx.  Sample broad received without proper regiseration, when it has been determed necessary. Temperature a received without proper regiseration, when it has been determed necessary. Temperature a received without proper regiseration, when it has been determed necessary. Temperature a received with samples received with sample(s) is, no request incomplete balling instructions.  Insufficient sample note the same as numbers on apper work.  Incomplete instructions received with sample(s) is, no request for analysis, no chain of custody, incomplete balling instructions.  Incomplete instructions received with sample(s) is, no request for analysis, no chain of custody, incomplete balling instructions.  Incomplete tracerceristics different than those on sampling sheets;  Samples received with introductions of tacking proper preservation.  Physical characteristics different than those on sampling sheets;  Samples on hold because of incomplete paperwork.  Other (specify)  S. I but I cutifued withflut an Experite for the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	(3) # - 50 WW. 103 - 2/24/02 @ 10:46
Insufficient sample sent for proper analysis; received approx.  Sample bottle received without paperwork; paperwork received without samples.  Samples received without paperwork; paperwork received without samples.  Samples received without proper refrigeration, when it has been demand necessary. Temperature at receipt.  Illegible sample number or label missing from bottle.  Numbers on sample not the same as numbers on paper work.  Incomplete instructions received with sample(s) le., no request for analysis, nor chain of custody, incomplete billing instructions, no due date, etc.  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe.  Rush samples on hold because of incomplete paperwork.  Other (specify)  Sk. Hund of Contacted that the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar of the transpar o	LAB NO.
Insufficient sample sent for proper analysis; received approx.  Samples received without paperwork; paperwork received without samples.  Samples received without paperwork; paperwork received without samples.  Samples received without proper retrigeration, when it has been deemed necessary. Temperature at receipt:  Illegible sample number or label missing from bottle.  Numbers on sample not the same as numbers on paper work.  Incomplete instructions received with sample(s) ie., no request for ranalysis, no chain of custody, incomplete billing instructions, no due date, etc.  Temperature at reciept:  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  SX. Timus M. Explosive, fortainer is an explosive for the samples processed for in thormed verbally.  SX. Timus M. Explosive fortainer.  Samples processed as is.  Client informed by memol/letter.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Sample	
Samples received broken and/or cap not linact. Samples received without paperwork received without samples. Samples received without proper refigeration, when it has been deemed necessary. Temperature at receipt.  Illegible sample number or label missing from bottle.  Numbers on sample not the same as numbers on paper work.  Incomplete instructions received with sample(s) le., no request for analysis, no chain of custody, incomplete billing instructions, no due date, etc.  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Bush samples on hold because of incomplete paperwork.  Other (specify)  SK. + timu. by Containers is 08.56. Timu. on (R. is. SK. + timu. by Containers and the containers of incomplete paperwork.  Other (specify)  SK. + timu. by Containers is 08.56. Timu. on (R. is. SK. + timu. by Containers of incomplete paperwork.  SK Timu. by Containers is 08.56. Timu. on (R. is. Samples processed for it collent informed by memol/letter.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.	
Samples received without paperwork; paperwork received without samples.  Samples received without paper refrigeration, when it has been deemed necessary. Temperature at receipt:  Illegible sample number or label missing from bottle.  Numbers on sample not the same as numbers on paper work.  Incomplete Instructions received with sample(s) le., no request for analysis, no chain of custody, incomplete billing instructions, no due date, etc. Temperature at reciept.  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  Sk. 1 w/s phosing free first of facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facural of the facur	Sample bottle received broken and/or cap not intact.
deemed necessary. Temperature at receipt. Illegible sample number or label missing from bottle. Illegible sample number or label missing from bottle. Illegible sample number or label missing from bottle. Numbers on sample not the same as numbers on paper work. Incomplete instructions received with sample(s) ie, no request for analysis, no chain of custody, incomplete billing instructions, no due date, etc.  Samples received in improper container or lacking proper preservation. Physical characteristics different than those on sampling sheets; Describe.  Rush samples on hold because of incomplete paperwork. Other (specify)  Sk. + I way R. All A. A. A. A. A. A. A. A. A. A. A. A. A.	Samples received without paperwork; paperwork received without samples.
Illegible sample number or label missing from bottle.     Numbers on sample not the same as numbers on paper work.     Incomplete instructions received with sample(s) ie., no request for analysis, no chain of custody, incomplete billing instructions,     Incomplete instructions received with sample(s) ie., no request for analysis, no chain of custody, incomplete billing instructions,     Incomplete instructions received with samples preciped in improper container or facking proper preservation.     Physical characteristics different than those on sampling sheets;     Describe:   Rush samples on hold because of incomplete paperwork.     Other (specify)	deemed necessary. Temperature at receipt:
Numbers on sample not the same as numbers on paper work.  Incomplete instructions received with sample(s) ie., no request for analysis, no chain of custody, incomplete billing instructions, no due date, etc.  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  SK. I MULL BY CONTAINES IS OS: 5/6. Time ON CR. IS SK. I MULL BY CONTAINE IS ONLY AND TAILL SAMPLES TO STRUME IS ONLY AND TAILL SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SAMPLES TO SA	Illegible sample number or label missing from bottle.
Incomplete instructions received with sample(s) ie., no request for analysis, no chain of custody, incomplete billing instructions, no due date, etc.  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  SA. + time on fontainers is 08:5/e. Time on ftx is SA. + time on fontainers is 08:5/e. Time on ftx is SA. + time on fontainers is 08:5/e. Time on ftx is SA. + time on fontainers is 04:5/e. Time on ftx is SA. + time on fontainers is 04:5/e. Time on ftx is SA. + time on fontainers is 04:5/e. Time on ftx is SA. + time on ftx is samples processed for it client informed verbally.  Samples processed as is.  Client informed verbally.  Samples processed as is.  Samples processed as is.  Client will resample and resubmit.  Samples received in initial ocore.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.  Samples received.	Numbers on sample not the same as numbers on paper work.
for analysis, no chain of custody, incomplete billing instructions, no due date, etc. Temperature at reciept:  Samples received in improper container or lacking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  SK. I may be an Container is 08:56. Time on Co.  SK. I may be an Container is 08:56. Time on Co.  SK. I may be an Container is 08:56. Time on Co.  SK. I may be an Container in Container in Container in Container in Container in Container in Container of the Co.  Samples processed for it contained by manually in Collect informed by manually in Collect in Co.  Samples processed as is.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample and resubmit.  Samples processed with detection limits accepted Collect will resample will be accepted Collect will resample will be accepted Collect will be accepted Collect will be accepted Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Collect will be accepted to the Col	Incomplete instructions received with sample(s) ie.,no request
no due date, etc. Temperature at reciept: Samples received in improper container or lacking proper preservation. Physical characteristics different than those on sampling sheets; Describe: Rush samples on hold because of incomplete paperwork. Other (specify) SA. + Imal br. Art of hald Forward to Hard. SA TW Explosive. And Explosive. And Explosive. Contacted SA TW Explosive. And Imal to hand a fertion in a coepted or collent informed verbally. Client informed by memoletter. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples proc	for analysis, no chain of custody, incomplete billing instructions,
Samples received in improper container or facking proper preservation.  Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  SX. Time of Contacted SX. Time of Contacted SX. Time of Contacted SX. Time of Contacted SX. Time of Contacted SX. Time of Contacted Samples processed for incomplete paperwork.  SA. Time of Contacted Samples processed for incomplete paperwork.  SA. Time of Contacted Samples processed on resubmit.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed Samples of Contacted.  Samples processed Samples and resubmit.  Samples processed Samples of Contacted.  Samples processed Samples of Contacted.  Samples processed Samples Samples rejected.  Samples processed Samples Samples rejected.  Samples processed Samples Samples rejected.  Samples processed Samples Samples Samples rejected.  Samples processed Samples Samples rejected.  Samples processed Samples Samples Samples rejected.  Samples processed Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Samples Sample	no due date, etc. Temperature at reciept:
Physical characteristics different than those on sampling sheets;  Describe:  Rush samples on hold because of incomplete paperwork.  Other (specify)  SX. I MAY DE CALLY AND FAILY IS ONLY OF FAILY.  SX. I MAY DE CALLY WITH AND TAKEN OF SAMPLE TO CALLY.  SX. I MAY DE CALLY WITH AND TAKEN OF TAKEN OF TAKEN.  SX. I MAY DE CALLY AND TAKEN OF TAKEN OF TAKEN.  SX. I MAY DE CALLY AND TAKEN.  SX. I MAY DE CALLY AND TAKEN.  SX. I MAY DE CALLY AND TAKEN.  SX. I MAY DE CALLY AND TAKEN.  SAMPLES Processed for incomplete paperwork.  Samples processed as is.  Samples processed with detection limits accepted.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed with As Colume.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples	Samples received in improper container or lacking proper preservation.
Rush samples on hold because of incomplete paperwork.  Other (specify)  Sk. + Iml on Containers is 08:5% - Time on Coling Sk. 2 - The Explosive Containers is only half full.  Sk. 2 - The Explosive Containers is only half full.  Sk. 2 - The Explosive Containers is only half full.  Sk. 2 - The Explosive Containers is only half full.  Sk. 2 - The Explosive Containers is only for in the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosive Containers on the Explosio	Physical characteristics different than those on sampling sheets;
Other (specify)  SK. + I'm. on Containers is 08:56. Tim. on Co. is SK. + I'm. on Containers SK. 2 - The Explosive Container is Only half full. SK. 2 - The Explosive Container is Only half full. SK. 2 - The Explosive Container is Only half full. SK. 2 - The Explosive Container is Only half full. SK. 3 - The Explosive Container is Only half full. Samples processed for it client informed verbally. Client informed verbally. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed with Samples processed with Samples processed with Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed as is. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples processed with Samples rejected. Samples	Rush samples on hold because of incomplete paperwork.
SK. +tm. on Containers is orifle. Time on Casts  SX.   may be aut of hild. Forward to House.  SX. 2 - TM Explosive Container is only half full.  SX. 2 - TM Explosive Container is only half full.  SX. 2 - TM Explosive Container is only half full.  SX. 2 - TM Explosive Container is only half full.  SX. 2 - TM Explosive Container is only half full.  Samples processed for it client informed verbally.  Client informed verbally.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples processed with Samples processed with Samples processed as is.  Samples processed as is.  Samples processed with Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples processed with Samples rejected.  Samples	Other (specify)
SK. I MAY DE CUIT OF HOLD FORMED TO HONGER.  SX. J. LUNES TRELIVE WITHOUT AN EXPOSIVE (Ord Tainer).  SX. A - TM EXPLOSIVE (ORD TAINER) IS ONLY HALL.  SX. A - TM EXPLOSIVE (ORD TAINER).  SETTIVE ACTION TAKEN DE LIMITE SETTION TAKEN DE LIMITE SAMPLES PROCESSED FORMED TO THE SAMPLES PROCESSED FOR THE SAMPLES PROCESSED WITH his SAMPLES PROCESSED AND SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED AND SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SAMPLES PROCESSED WITH HIS SA	x. time on Containers is 08:56. Time on Cais
ECTIVE ACTION TAKEN DE Limited SX Vollum.  ECTIVE ACTION TAKEN DE Limited SX Vollum.  SETTIVE ACTION TAKEN DE Limited SX Vollum.  Client informed verbally.  Client informed verbally.  Client informed by memo/letter.  Samples processed as is.  Samples processed with his samples processed with his samples processed with his samples processed with his samples processed as is.  Samples processed with his sample and resubmit.  Samples processed with his sample and resubmit.  Samples processed with his sample and resubmit.  Samples processed with his samples processed with his samples processed with his samples processed with his samples processed with his samples processed with his samples processed with his samples processed with his samples processed as is.  Samples processed for informed by lab.  Samples processed for informed by lab.  Samples processed for informed by lab.  Samples processed with his samples processed for informed by lab.  Samples processed with his samples processed for information only and noted on report to the processed for information only and noted on report to the processed for information only and noted on report to the processed with his samples processed as is.  Samples processed for information only and noted on report to the processed for information only and noted on report to the processed with his samples processed as is.  Samples processed for information only and noted on report to the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for information only and the processed for infor	hay be dut at hald bornard to the
ECTIVE ACTION TAKEN DE limital Sx・Vollumと、	.2-The Explosive Container is only half full.
Client informed verbally.  Client informed by memo/letter.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Samples processed as is.  Client will resample and resubmit.  Client will resample and resubmit.  Sy Time is 1046 As Pen Co. No Exp.  TING  ING  ING  AUS  AUS  AUS  HARAnager:  AUS  AUS  HARANAGER  Client initials Corrected to the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contr	be limited sx. volume.
Client informed verbally.  Client informed by memo/letter.  Samples processed as is.  Samples preserved by lab.  Client will resample and resubmit.  Sy Time is 1046 As Pen Co. No Ex  A-Cimiteo Sx 1/0 lumer  ING  ING  Manager:  Aus  Aus  Aus  Aus  Aus  Aus  Hanager:  Aus  Aus  Aus  Aus  Aus  Aus  Aus  Au	ontacted
Client informed by memo/letter. Samples processed as is. Samples processed as is. Samples preserved by lab. Client will resample and resubmit.  Sy Time is 1046 As Pen Co. No Ey  3- Cimiteo Sx Volumer  ING  E Manager.  The INITIALS CORRECTED?  The Manager.  The Manager.  The Manager.  The Manager.  The Manager.  The Manager.  The Manager.  The Manager.  The Manager.  The Manager.	
Samples processed as is.  Samples preserved by lab.  Client will resample and resubmit.  Sy Time is 1046 As Pen Co. No Export Time is 1046 As Pen Co. No Export Time is 1046 As Pen Co. No Export Time is 1046 As Pen Co. No Export Time in Intral Signal Corrected States in Intral Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signal Signa	
Samples preserved by lab.  Client will resample and resubmit.  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject  Samples reject	
Client will resample and resubmit.  Samples reject  A Time is 1046 As Pen Co. No Explosives  A - Limiteo Sx Lolume.  ING  E Manager.  A US  CORRECTED?  Hanager.  A US  Ents:	
Sy Time is 1046 As Fen Co.e. No Explosives  2- Limiteo Sx Volume.  ING  E Manager.  Australia Corrected?  The Manager.  Australia Corrected?  Enter Initials Corrected?  Enter Initials Corrected?  Enter Initials Corrected?  Enter Initials Corrected?  Enter Initials Corrected?	Client will resample and resubmit.
3- Limiteo Sx Volumes  ING  E Manager:  T Manager:  T Manager:  T Manager:  DATE  INITIALS  A VS  ents:	AS FER Colo. NO Explosives
iNG	Limited Sx
E Manager: 2/26/12 A√S ents:	ONITING
e Manager: 2/26/12 A√5 ents:	SIAITINE TATE
t Manager:	e Manager.
: )	

T16448: Chain of Custody

Page 2 of 3



T16448: Chain of Custody Page 3 of 3



# Appendix A Laboratory Data Package Cover Page

This data	package o	onsists of:		
	This s	ignature page, the laboratory review chec	klist, and the following reportable data:	
	R1	Field chain-of-custody documentation;		
Ţ.	R2	Sample identification cross-reference;		
Ţ.	R3	Test reports (analytical data sheets) for e		
		a) Items consistent with NELAC 5.13	or ISO/IEC 17025 Section 5.10	
		b) dilution factors,		
		c) preparation methods,		
		d) cleanup methods, and		
		e) if required for the project, tentativel	y identified compounds (TICs).	
	R4	Surrogate recovery data including:	•	
		a) Calculated recovery (%R), and		
		b) The laboratory's surrogate QC lim	its.	
	R5	Test reports/summary forms for blank sa		
	R6	Test reports/summary forms for laborate	ry control samples (LCSs) including:	
		a) LCS spiking amounts,		
		b) Calculated %R for each analyte, and	d	
		c) The laboratory's LCS QC limits.		
	R7	Test reports for project matrix spike/mat	rix spike duplicates (MS/MSDs) includir	ng:
		a) Samples associated with the MS/MS	SD clearly identified,	
		b) MS/MSD spiking amounts,		
			alyte measured in the parent and spiked s	samples,
		d) Calculated % Rs and relative percen		
		e) The laboratory's MS/MSD QC limit		
	R8	Laboratory analytical duplicate (if applicate)		
		a) the amount of analyte measured in t	he duplicate,	
		b) the calculated RPD, and		
		c) the laboratory's QC limits for analy		
	R9	List of method quantitation limits (MQL	s) for each analyte for each method and	matrix;
		Other problems or anomalies.		
	The	Exception Report for every "No" or "Not	Reviewed (NR)" item in laboratory review	ew checklist.
Chec	reviewed used, exc to the besaffect the no inform	by the laboratory and is complete and tecept where noted by the laboratory in the at of my knowledge, all problems/anomalic quality of the data, have been identified be lation or data have been knowingly withher blicable: [] This laboratory is an ing to rule. The official signing the cover which these data are used is responsi	thically compliant with the requirements tached exception reports. By me signatures, observed by the laboratory as having by the laboratory in the Laboratory Revieweld that would affect the quality of the dain-house laboratory controlled by the ver page of the rule-required report (f	s of the methods are below, I affirm the potential to w Checklist, and tta.
		g the above release statement is true.  Ron Markino	Lab Director	3/13/2007
Name	e (Printed	Signature	Official Title (printed)	Date



1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

Ap	pen	dix A (cont'd): Laboratory Review Checkl	ist: Reportable Data					
Lab	orato	ry Name: Accutest Laboratories Gulf Coast	RC Date: 3/13/2007					
Proj	ect N	ame: Longhorn L	aboratory Job Number: T16448					
Rev	iewer	Name: Ron Martino P	Prep Batch Number(s):					
#1		Description	Top Buton Frances (6).	Yes	No	NA ³	$NR^4$	ER#5
"	11	Chain-of-custody (C-O-C)		105	11.0	1 2	1 120	DIV.
R1	OI	Did samples meet the laboratory's standard conditions of sa	mnle accentability upon receint?	X	İ			
Kı	OI	Were all departures from standard conditions described in an		X				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the labor		X	ļ	ļ	ļ	
	ļ	Are all laboratory ID numbers cross-referenced to the corres	sponding QC data?	X				
R3	OI	Test reports	-					
		Were all samples prepared and analyzed within holding time		X	ļ	ļ	ļ	i
		Other than those results < MQL, were all other raw values bracketed by calibration standards?						
		Were calculations checked by a peer or supervisor?		X		ļ	ļ	
		Were all analyte identifications checked by a peer or supervi		X		ļ	ļ	
		Were sample quantitation limits reported for all analytes not		X		ļ	ļ	
		Were all results for soil and sediment samples reported on a		-	ļ	X	ļ	İ
		Were % moisture (or solids) reported for all soil and sediment samples?						l I
D.4	_	If required for the project, TICs reported?						
R4	О	Surrogate recovery data						
		Were surrogates added prior to extraction?		X		ļ	ļ	
D.5	0.1	Were surrogate percent recoveries in all samples within the	laboratory QC limits?	X				
R5	OI	Test reports/summary forms for blank samples		77		ļ	Ì	
		Were appropriate type(s) of blanks analyzed?		X				
		Were blanks analyzed at the appropriate frequency?		X			i	
		Were method blanks taken through the entire analytical proc	cess, including preparation and, if	X				
		applicable, cleanup procedures? Were blank concentrations < MQL?		X		ł		
R6	OI	Laboratory control samples (LCS):		Λ				
I		Were all COCs included in the LCS?		X				
		Was each LCS taken through the entire analytical procedure	including prep and cleanup steps?	X	ļ	ł		
		Were LCSs analyzed at the required frequency?	s, me tading prep and eleanup steps:	X		ŀ	ŀ	
		Were LCS (and LCSD, if applicable) %Rs within the labora	tory OC limits?	X		Ì		
		Does the detectability data document the laboratory's capab		X		Ì		
		to calculate the SQLs?	they to detect the coes at the MBE used	21				
		Was the LCSD RPD within QC limits?		Ì	İ	X	Ì	
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) da	ta	Ì		İ		
	ĺ	Were the project/method specified analytes included in the M		X	İ	ĺ		
	ĺ	Were MS/MSD analyzed at the appropriate frequency?		X	İ	ĺ	Ì	
	ĺ	Were MS (and MSD, if applicable) %Rs within the laborato	ry QC limits?	Ì	X	ĺ	Ì	2
		Were MS/MSD RPDs within laboratory QC limits?		X	İ	Ì	Ì	
R8	OI	Analytical duplicate data		Ì				
		Were appropriate analytical duplicates analyzed for each ma	atrix?	X	İ	ĺ	Ì	
		Were analytical duplicates analyzed at the appropriate freque	ency?	X	İ	Ì	Ì	
		Were RPDs or relative standard deviations within the labora		X				
R9	OI							
		Are the MQLs for each method analyte included in the labor	ratory data package?	X				
		Do the MQLs correspond to the concentration of the lowest	non-zero calibration standard?	X				
		Are unadjusted MQLs included in the laboratory data packa	ge?	X				
R10	OI	Other problems/anomalies						
		Are all known problems/anomalies/special conditions noted	in this LRC and ER?	X				
		Were all necessary corrective actions performed for the repo		X				
	2. =	organic analyses; I = inorganic analyses (and general chemistry, w	hen applicable);	1	1	1	1	ı

- 2. = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
   3. NA = Not applicable;
- 4. NR = Not reviewed;
- ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).



		e: Accutest Laboratories Gulf Coast	C Date: 3/13/2007					
Project N	Name: L	Lai	boratory Job Number: T16448					
		I I	ep Batch Number(s):					
$\#^1$	$A^2$	Description		Yes	No	$NA^3$	$NR^4$	ER#
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for each	analyte within QC limits?	X				
	}	Were percent RSDs or correlation coefficient criteria met?		X				
	ļ	Was the number of standards recommended in the method used		X		ļ		ļ
		Were all points generated between the lowest and highest standa	ard used to calculate the curve?	X		ļ	}	ļ
	}	Are ICAL data available for all instruments used?	oto cocomid common atomidand?	X				
S2	OI	Has the initial calibration curve been verified using an appropria Initial and continuing calibration verification (ICCV and CO		Α				
32	OI	Was the CCV analyzed at the method-required frequency?	X					
		Were percent differences for each analyte within the method-rec	uired OC limits?	X				
		Was the ICAL curve verified for each analyte?	funca QC mints.	X		Ì	Ì	Ì
	Ì	Was the absolute value of the analyte concentration in the inorga	anic CCB < MDL?	X		ľ	Ì	
S3	О							
	ĺ	Was the appropriate compound for the method used for tuning?		X				Ĭ
	j	Were ion abundance data within the method-required QC limits	?	$\mathbf{X}$		Ì	Ì	ĺ
S4	O	Internal standards (IS):						
		Were IS area counts and retention times within the method-required QC limits?						
S5	OI	Raw data (NELAC section 1 appendix A glossary, and section						
		Were the raw data (for example, chromatograms, spectral data)	X					
9.6	Were data associated with manual integrations flagged on the raw data?							
S6	О	Dual column confirmation	0.50					
CF		Did dual column confirmation results meet the method-required	QC?			X		
S7	О	Tentatively identified compounds (TICs):				<b>X</b> 7		
S8	I	If TICs were requested, were the mass spectra and TIC data sub. Interference Check Sample (ICS) results:	ject to appropriate checks?			X		
.50	1	Were percent recoveries within method QC limits?			X			
	I	Serial dilutions, post digestion spikes, and method of standar	rd additions			Α		
	1	Were percent differences, recoveries, and the linearity within the				X		
S10	OI	Method detection limit (MDL) studies	e Qe minas specifica in the method.			1.		
		Was a MDL study performed for each reported analyte?		X				
		Is the MDL either adjusted or supported by the analysis of DCS	e?	x			i	<u> </u>
S11	OI	Proficiency test reports:						
	ĺ	Was the laboratory's performance acceptable on the applicable p	proficiency tests or evaluation studies?	X	Ï			
S12	OI	Standards documentation	Ž					
	İ	Are all standards used in the analyses NIST-traceable or obtaine	ed from other appropriate sources?	X	ĺ			İ
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification docume	ented?	X				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5C or ISC		X				
C1.5	0.1	Is documentation of the analyst's competency up-to-date and on		X				
S15	OI	Verification/validation documentation for methods (NELAC		v				
S16	0.1	Are all the methods used to generate the data documented, verif Laboratory standard operating procedures (SOPs):	ied, and validated, where applicable?	X				
	OI	LL aporatory standard operating procedures (SOPs):						

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.



O= organic analyses; I= inorganic analyses (and general chemistry, when applicable). NA=Not applicable.

³ 

NR = Not Reviewed.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Name: Accutest Laboratories Gulf Coast LRC Date: 3/13/2007								
	•							
-	Name: Longhorn	Laboratory Job Number: T16448						
Review ER # ¹	er Name: Ron Martino  DESCRIPTION	Prep Batch Number(s):						
1 2	For reporting purposes, the MQL is defined in the report as the RL. The unadjusted MQL/RL is reported in the method blank. The SQL/MDL is defined in the report as the MDL. All anomalies are discussed in the case narrative.							

 $ER\# = Exception \ Report \ identification \ number \ (an \ Exception \ Report \ should \ be \ completed \ for \ an \ item \ if \ ``NR" \ or \ ``No" \ is \ checked \ on \ the \ LRC)$ 

# GC/MS Volatiles

# QC Data Summaries

## Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries



# **Method Blank Summary**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2315-MB	F0079184.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples: **Method:** SW846 8260B

T16448-1, T16448-2

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	50	2.8	ug/l
71-43-2	Benzene	ND	2.0	0.23	ug/l
75-27-4	Bromodichloromethane	ND	2.0	0.33	ug/l
75-25-2	Bromoform	ND	2.0	0.65	ug/l
108-90-7	Chlorobenzene	ND	2.0	0.54	ug/l
75-00-3	Chloroethane	ND	2.0	0.46	ug/l
67-66-3	Chloroform	ND	2.0	0.66	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.62	ug/l
56-23-5	Carbon tetrachloride	ND	2.0	0.52	ug/l
75-34-3	1,1-Dichloroethane	ND	2.0	0.52	ug/l
75-35-4	1,1-Dichloroethylene	ND	2.0	0.68	ug/l
107-06-2	1,2-Dichloroethane	ND	2.0	0.53	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	0.59	ug/l
124-48-1	Dibromochloromethane	ND	2.0	0.68	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	2.0	0.83	ug/l
10061-01-5	· · · · · · · · · · · · · · · · · · ·	ND	2.0	0.59	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.75	ug/l
10061-02-6	, I I	ND	2.0	0.61	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	1.9	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	7.3	ug/l
74-83-9	Methyl bromide	ND	2.0	0.47	ug/l
74-87-3	Methyl chloride	ND	2.0	0.60	ug/l
75-09-2	Methylene chloride	ND	5.0	0.67	ug/l
78-93-3	Methyl ethyl ketone	ND	10	3.0	ug/l
100-42-5	Styrene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.37	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.46	ug/l
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.66	ug/l
127-18-4	Tetrachloroethylene	ND	2.0	0.74	ug/l
108-88-3	Toluene	ND	2.0	0.54	ug/l
79-01-6	Trichloroethylene	ND	2.0	0.63	ug/l
75-01-4	Vinyl chloride	ND	2.0	0.32	ug/l
1330-20-7	Xylene (total)	ND	6.0	1.1	ug/l



Page 2 of 2

# **Method Blank Summary**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
VF2315-MB	F0079184.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples: **Method:** SW846 8260B

T16448-1, T16448-2

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	103%	73-139%
17060-07-0	1,2-Dichloroethane-D4	98%	66-139%
2037-26-5	Toluene-D8	109%	77-148%
460-00-4	4-Bromofluorobenzene	129%	84-150%





Page 1 of 1

# Method Blank Summary Job Number: T16448

Job Number:

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2318-M	IB F0079225.D	1	03/08/07	LJ	n/a	n/a	VF2318

## The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	Result	RL	MDL	Units Q
107-06-2 79-01-6	1,2-Dichloroethane Trichloroethylene	ND ND	2.0 2.0	0.53 0.63	ug/l ug/l
CAS No.	Surrogate Recoveries		Limi	ts	

1868-53-7	Dibromofluoromethane	103%	73-139%
17060-07-0	1,2-Dichloroethane-D4	97%	66-139%
2037-26-5	Toluene-D8	108%	77-148%
460-00-4	4-Bromofluorobenzene	121%	84-150%



# Blank Spike Summary Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
VF2315-BS	F0079183.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples: **Method:** SW846 8260B

T16448-1, T16448-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	103	82	31-158
71-43-2	Benzene	25	25.1	100	67-118
75-27-4	Bromodichloromethane	25	23.8	95	66-115
75-25-2	Bromoform	25	22.2	89	57-119
108-90-7	Chlorobenzene	25	24.3	97	72-116
75-00-3	Chloroethane	25	26.6	106	61-135
67-66-3	Chloroform	25	25.7	103	66-117
75-15-0	Carbon disulfide	25	21.7	87	39-136
56-23-5	Carbon tetrachloride	25	27.6	110	67-131
75-34-3	1,1-Dichloroethane	25	26.2	105	63-125
75-35-4	1,1-Dichloroethylene	25	25.4	102	52-143
107-06-2	1,2-Dichloroethane	25	24.1	96	61-120
78-87-5	1,2-Dichloropropane	25	25.2	101	64-118
124-48-1	Dibromochloromethane	25	22.4	90	67-117
156-59-2	cis-1,2-Dichloroethylene	25	24.3	97	65-116
10061-01-5	cis-1,3-Dichloropropene	25	25.0	100	67-118
156-60-5	trans-1,2-Dichloroethylene	25	25.2	101	66-128
10061-02-6	trans-1,3-Dichloropropene	25	24.7	99	73-126
100-41-4	Ethylbenzene	25	23.9	96	71-119
591-78-6	2-Hexanone	125	101	81	45-132
108-10-1	4-Methyl-2-pentanone	125	111	89	46-127
74-83-9	Methyl bromide	25	23.0	92	51-126
74-87-3	Methyl chloride	25	23.0	92	47-130
75-09-2	Methylene chloride	25	23.5	94	53-130
78-93-3	Methyl ethyl ketone	125	107	86	47-128
100-42-5	Styrene	25	20.0	80	69-115
71-55-6	1,1,1-Trichloroethane	25	26.2	105	67-128
79-34-5	1,1,2,2-Tetrachloroethane	25	21.4	86	57-121
79-00-5	1,1,2-Trichloroethane	25	22.9	92	62-117
127-18-4	Tetrachloroethylene	25	26.4	106	72-128
108-88-3	Toluene	25	24.3	97	70-121
79-01-6	Trichloroethylene	25	26.1	104	69-120
75-01-4	Vinyl chloride	25	25.2	101	59-145
1330-20-7	Xylene (total)	75	74.2	99	72-120



Page 2 of 2

# Blank Spike Summary Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample VF2315-BS	<b>File ID</b> F0079183.D	<b>DF</b> 1	<b>Analyzed</b> 03/07/07	<b>By</b> LJ	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch VF2315

The QC reported here applies to the following samples:

T16448-1, T16448-2

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	104%	73-139%
17060-07-0	1,2-Dichloroethane-D4	101%	66-139%
2037-26-5	Toluene-D8	102%	77-148%
460-00-4	4-Bromofluorobenzene	99%	84-150%



Page 1 of 1

# Blank Spike Summary Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample File ID DF Analyzed By Prep Date Prep Batch Analytica VF2318-BS F0079224.D 1 03/08/07 LJ n/a n/a VF2318		
----------------------------------------------------------------------------------------------------------------	--	--

The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
107-06-2	1,2-Dichloroethane	25	22.7	91	61-120
79-01-6	Trichloroethylene	25	25.5	102	69-120

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
1868-53-7	Dibromofluoromethane	106%	73-139%
17060-07-0	1,2-Dichloroethane-D4	97%	66-139%
2037-26-5	Toluene-D8	103%	77-148%
460-00-4	4-Bromofluorobenzene	101%	84-150%



Page 1 of 2

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16448

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
T16445-3MS	F0079191.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3MSD	F0079192.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3 a	F0079190.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples:

T16448-1, T16448-2

		T16445 ug/l	i-3 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	P			<b>G</b> -						
67-64-1	Acetone	50 U		125	103	82	98.2	79	5	39-130/26
71-43-2	Benzene	2.0 U		25	23.6	94	24.0	96	2	65-122/15
75-27-4	Bromodichloromethane	2.0 U		25	22.5	90	22.3	89	1	64-119/22
75-25-2	Bromoform	2.0 U		25	20.5	82	20.7	83	1	50-123/28
108-90-7	Chlorobenzene	2.0 U		25	22.8	91	23.3	93	2	72-118/20
75-00-3	Chloroethane	2.0 U		25	24.6	98	23.8	95	3	60-136/25
67-66-3	Chloroform	2.0 U		25	24.9	100	25.4	102	2	65-120/20
75-15-0	Carbon disulfide	2.0 U		25	20.2	81	19.9	80	1	37-140/24
56-23-5	Carbon tetrachloride	2.0 U		25	25.6	102	25.8	103	1	64-135/23
75-34-3	1,1-Dichloroethane	2.0		25	27.3	101	26.7	99	2	65-126/21
75-35-4	1,1-Dichloroethylene	10.9		25	34.9	96	33.5	90	4	55-140/25
107-06-2	1,2-Dichloroethane	2.0		25	24.5	90	24.1	88	2	57-125/25
78-87-5	1,2-Dichloropropane	2.0 U		25	23.2	93	24.2	97	4	63-121/22
124-48-1	Dibromochloromethane	2.0 U		25	21.4	86	22.0	88	3	60-123/23
156-59-2	cis-1,2-Dichloroethylene	699	E	25	685	-56* b	690	-36* b	1	62-120/24
10061-01-5	cis-1,3-Dichloropropene	2.0 U		25	23.5	94	23.8	95	1	61-119/23
156-60-5	trans-1,2-Dichloroethylene	2.1		25	26.1	96	26.0	96	0	64-130/22
10061-02-6	trans-1,3-Dichloropropene	2.0 U		25	24.4	98	24.1	96	1	65-129/23
100-41-4	Ethylbenzene	2.0 U		25	22.8	91	23.5	94	3	70-123/18
591-78-6	2-Hexanone	10 U		125	105	84	101	81	4	41-137/27
108-10-1	4-Methyl-2-pentanone	10 U		125	114	91	110	88	4	41-133/22
74-83-9	Methyl bromide	2.0 U		25	21.6	86	20.8	83	4	47-129/27
74-87-3	Methyl chloride	2.0 U		25	23.2	93	22.1	88	5	45-133/24
75-09-2	Methylene chloride	5.0 U		25	22.8	91	22.5	90	1	49-128/21
78-93-3	Methyl ethyl ketone	10 U		125	108	86	105	84	3	43-125/29
100-42-5	Styrene	2.0 U		25	18.9	76	19.0	76	1	65-120/21
71-55-6	1,1,1-Trichloroethane	2.0 U		25	25.2	101	24.8	99	2	68-131/21
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U		25	20.8	83	21.4	86	3	50-128/22
79-00-5	1,1,2-Trichloroethane	1.7	J	25	23.7	88	24.0	89	1	58-120/22
127-18-4	Tetrachloroethylene	83.1		25	107	96	106	92	1	69-132/21
108-88-3	Toluene	2.0 U		25	22.8	91	23.4	94	3	70-123/18
79-01-6	Trichloroethylene	6520	E	25	6200	-1280*	^b 6140	-1520*	^b 1	70-120/19
75-01-4	Vinyl chloride	3.8		25	28.3	98	27.1	93	4	51-147/24
1330-20-7	Xylene (total)	6.0 U		75	69.8	93	70.7	94	1	71-122/16



Page 2 of 2

**Method:** SW846 8260B

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16448

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
T16445-3MS	F0079191.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3MSD	F0079192.D	1	03/07/07	LJ	n/a	n/a	VF2315
T16445-3 a	F0079190.D	1	03/07/07	LJ	n/a	n/a	VF2315

The QC reported here applies to the following samples:

T16448-1, T16448-2

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	T16445-3	Limits
1868-53-7		106%	107%	106%	73-139%
	1,2-Dichloroethane-D4 Toluene-D8	106% 101%	107% 104%	106% 102%	66-139% 77-148%
460-00-4	4-Bromofluorobenzene	99%	103%	123%	84-150%

⁽a) For QC only.



⁽b) Outside control limits due to high level in sample relative to spike amount.

Page 1 of 1

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T16445-4MS	F0079227.D	1	03/08/07	LJ	n/a	n/a	VF2318
T16445-4MSD	F0079228.D	1	03/08/07	LJ	n/a	n/a	VF2318
T16445-4	F0079226.D	1	03/08/07	LJ	n/a	n/a	VF2318

The QC reported here applies to the following samples:

T16448-2

CAS No. Comp			I	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
,		2.0 U 2.0		23.0 26.3	92 97	22.6 25.9	90 96	2 2	57-125/25 70-120/19
CAS No. Surro	gate Recoveries	MS	MSD	T164	145-4	Limits			
17060-07-0 1,2-D	ichloroethane-D4	106% 104% 103%	105% 102% 105%	102% 98% 106%		73-139% 66-139% 77-148%			
460-00-4 4-Bro	mofluorobenzene 9	99%	99%	1199	6	84-150%			



# **Instrument Performance Check (BFB)**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Sample:
 VF2305-BFB
 Injection Date:
 02/28/07

 Lab File ID:
 F0078963.D
 Injection Time:
 14:36

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance		Pass/Fail
50	15.0 - 40.0% of mass 95	7281	16.0		Pass
75	30.0 - 60.0% of mass 95	18364	40.3		Pass
95	Base peak, 100% relative abundance	45541	100.0		Pass
96	5.0 - 9.0% of mass 95	2793	6.1		Pass
173	Less than 2.0% of mass 174	107	0.23	$(0.27)^{a}$	Pass
174	50.0 - 100.0% of mass 95	39123	85.9		Pass
175	5.0 - 9.0% of mass 174	3023	6.6	(7.7) a	Pass
176	95.0 - 101.0% of mass 174	37355	82.0	(95.5) a	Pass
177	5.0 - 9.0% of mass 176	2802	6.2	$(7.5)^{b}$	Pass

⁽a) Value is % of mass 174

## This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VF2305-IC2305	F0078964.D	02/28/07	15:10	00:34	Initial cal 2
VF2305-IC2305	F0078965.D	02/28/07	15:41	01:05	Initial cal 5
VF2305-IC2305	F0078966.D	02/28/07	16:12	01:36	Initial cal 20
VF2305-ICC2305	F0078967.D	02/28/07	16:44	02:08	Initial cal 40
VF2305-IC2305	F0078968.D	02/28/07	17:16	02:40	Initial cal 70
VF2305-IC2305	F0078969.D	02/28/07	17:46	03:10	Initial cal 100
VF2305-IC2305	F0078970.D	02/28/07	18:18	03:42	Initial cal 200
VF2305-BS	F0078972.D	02/28/07	19:21	04:45	Blank Spike
VF2305-MB	F0078974.D	02/28/07	20:24	05:48	Method Blank
ZZZZZZ	F0078975.D	02/28/07	20:55	06:19	(unrelated sample)
ZZZZZZ	F0078976.D	02/28/07	21:26	06:50	(unrelated sample)
ZZZZZZ	F0078977.D	02/28/07	21:58	07:22	(unrelated sample)
T16395-2	F0078978.D	02/28/07	22:30	07:54	(used for QC only; not part of job T16448)
T16395-2MS	F0078979.D	02/28/07	23:00	08:24	Matrix Spike
T16395-2MSD	F0078980.D	02/28/07	23:32	08:56	Matrix Spike Duplicate
ZZZZZZ	F0078981.D	03/01/07	00:03	09:27	(unrelated sample)
ZZZZZZ	F0078982.D	03/01/07	00:35	09:59	(unrelated sample)
ZZZZZZ	F0078983.D	03/01/07	01:06	10:30	(unrelated sample)
ZZZZZZ	F0078984.D	03/01/07	01:38	11:02	(unrelated sample)
ZZZZZZ	F0078989.D	03/01/07	04:15	13:39	(unrelated sample)
ZZZZZZ	F0078990.D	03/01/07	04:47	14:11	(unrelated sample)
ZZZZZZ	F0078991.D	03/01/07	05:19	14:43	(unrelated sample)
ZZZZZZ	F0078992.D	03/01/07	05:50	15:14	(unrelated sample)



⁽b) Value is % of mass 176

# **Instrument Performance Check (BFB)**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Sample:
 VF2315-BFB
 Injection Date:
 03/07/07

 Lab File ID:
 F0079181.D
 Injection Time:
 12:44

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Raw Abundance	% Relativ Abundan	-	Pass/Fail
50	15.0 - 40.0% of mass 95	7668	19.2		Pass
75	30.0 - 60.0% of mass 95	16756	42.0		Pass
95	Base peak, 100% relative abundance	39853	100.0		Pass
96	5.0 - 9.0% of mass 95	2768	6.9		Pass
173	Less than 2.0% of mass 174	96	0.24	$(0.28)^{a}$	Pass
174	50.0 - 100.0% of mass 95	34109	85.6		Pass
175	5.0 - 9.0% of mass 174	2473	6.2	(7.3) a	Pass
176	95.0 - 101.0% of mass 174	33421	83.9	(98.0) a	Pass
177	5.0 - 9.0% of mass 176	2339	5.9	$(7.0)^{b}$	Pass

⁽a) Value is % of mass 174

## This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
Sumple 1D	THE ID	maryzea	maryzea	Бирьси	Sumple 1D
VF2315-CC2305	F0079182.D	03/07/07	13:19	00:35	Continuing cal 40
VF2315-BS	F0079183.D	03/07/07	13:54	01:10	Blank Spike
VF2315-MB	F0079184.D	03/07/07	14:26	01:42	Method Blank
ZZZZZZ	F0079185.D	03/07/07	14:58	02:14	(unrelated sample)
ZZZZZZ	F0079186.D	03/07/07	15:28	02:44	(unrelated sample)
ZZZZZZ	F0079187.D	03/07/07	15:59	03:15	(unrelated sample)
T16448-1	F0079188.D	03/07/07	16:30	03:46	50WW03
T16448-2	F0079189.D	03/07/07	17:01	04:17	29WW15
T16445-3	F0079190.D	03/07/07	17:32	04:48	(used for QC only; not part of job T16448)
T16445-3MS	F0079191.D	03/07/07	18:04	05:20	Matrix Spike
T16445-3MSD	F0079192.D	03/07/07	18:35	05:51	Matrix Spike Duplicate
ZZZZZZ	F0079194.D	03/07/07	19:38	06:54	(unrelated sample)
ZZZZZZ	F0079196.D	03/07/07	20:41	07:57	(unrelated sample)
ZZZZZZ	F0079197.D	03/07/07	21:12	08:28	(unrelated sample)
ZZZZZZ	F0079198.D	03/07/07	21:44	09:00	(unrelated sample)
ZZZZZZ	F0079199.D	03/07/07	22:15	09:31	(unrelated sample)
ZZZZZZ	F0079202.D	03/07/07	23:49	11:05	(unrelated sample)
ZZZZZZ	F0079203.D	03/08/07	00:20	11:36	(unrelated sample)



⁽b) Value is % of mass 176

# **Instrument Performance Check (BFB)**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Sample:
 VF2318-BFB
 Injection Date:
 03/08/07

 Lab File ID:
 F0079222.D
 Injection Time:
 10:25

**Instrument ID:** GCMSF

m/e	Ion Abundance Criteria	Raw Abundance	% Relat Abunda		Pass/Fail
50	15.0 - 40.0% of mass 95	6198	16.4		Pass
75	30.0 - 60.0% of mass 95	15579	41.3		Pass
95	Base peak, 100% relative abundance	37709	100.0		Pass
96	5.0 - 9.0% of mass 95	2320	6.2		Pass
173	Less than 2.0% of mass 174	83	0.22	$(0.26)^{a}$	Pass
174	50.0 - 100.0% of mass 95	32211	85.4		Pass
175	5.0 - 9.0% of mass 174	2369	6.3	(7.4) a	Pass
176	95.0 - 101.0% of mass 174	31824	84.4	(98.8) a	Pass
177	5.0 - 9.0% of mass 176	2216	5.9	$(7.0)^{b}$	Pass

⁽a) Value is % of mass 174

## This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VF2318-CC2305	F0079223.D	03/08/07	10:59	00:34	Continuing cal 40
VF2318-BS	F0079224.D	03/08/07	11:33	01:08	Blank Spike
VF2318-MB	F0079225.D	03/08/07	12:05	01:40	Method Blank
T16445-4	F0079226.D	03/08/07	12:37	02:12	(used for QC only; not part of job T16448)
T16445-4MS	F0079227.D	03/08/07	13:09	02:44	Matrix Spike
T16445-4MSD	F0079228.D	03/08/07	14:05	03:40	Matrix Spike Duplicate
ZZZZZZ	F0079229.D	03/08/07	14:36	04:11	(unrelated sample)
ZZZZZZ	F0079230.D	03/08/07	15:08	04:43	(unrelated sample)
ZZZZZZ	F0079231.D	03/08/07	15:39	05:14	(unrelated sample)
ZZZZZZ	F0079232.D	03/08/07	16:11	05:46	(unrelated sample)
ZZZZZZ	F0079233.D	03/08/07	16:42	06:17	(unrelated sample)
ZZZZZZ	F0079234.D	03/08/07	17:14	06:49	(unrelated sample)
ZZZZZZ	F0079235.D	03/08/07	17:45	07:20	(unrelated sample)
ZZZZZZ	F0079236.D	03/08/07	18:17	07:52	(unrelated sample)
ZZZZZZ	F0079237.D	03/08/07	18:49	08:24	(unrelated sample)
ZZZZZZ	F0079238.D	03/08/07	19:21	08:56	(unrelated sample)
T16448-2	F0079239.D	03/08/07	19:53	09:28	29WW15
ZZZZZZ	F0079240.D	03/08/07	20:24	09:59	(unrelated sample)
ZZZZZZ	F0079241.D	03/08/07	20:56	10:31	(unrelated sample)
ZZZZZZ	F0079242.D	03/08/07	21:28	11:03	(unrelated sample)
ZZZZZZ	F0079243.D	03/08/07	22:00	11:35	(unrelated sample)



⁽b) Value is % of mass 176

# **Volatile Internal Standard Area Summary**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Check Std:
 VF2315-CC2305
 Injection Date:
 03/07/07

 Lab File ID:
 F0079182.D
 Injection Time:
 13:19

**Instrument ID:** GCMSF **Method:** SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT
Check Std	698014	11.87	549946	15.95	231402	19.21
Upper Limit ^a	1396028	12.37	1099892	16.45	462804	19.71
Lower Limit b	349007	11.37	274973	15.45	115701	18.71
Lab	IS 1		IS 2		IS 3	
Sample ID	AREA	RT	AREA	RT	AREA	RT
VF2315-BS	751267	11.87	582464	15.95	220558	19.22
VF2315-MB	739731	11.88	521309	15.96	135288	19.23
ZZZZZZ	709635	11.88	498169	15.96	130636	19.23
ZZZZZZ	713511	11.89	505249	15.96	133789	19.22
ZZZZZZ	670598	11.89	482656	15.97	127882	19.23
T16448-1	692002	11.89	498481	15.96	134149	19.23
T16448-2	694603	11.89	509623	15.97	139087	19.23
T16445-3	692901	11.89	523917	15.96	140544	19.22
T16445-3MS	703380	11.89	542581	15.97	203275	19.23
T16445-3MSD	721789	11.88	551007	15.96	199926	19.23
ZZZZZZ	701179	11.88	509297	15.96	124874	19.22
ZZZZZZ	672132	11.88	483654	15.95	147428	19.22
ZZZZZZ	655210	11.87	474247	15.95	142235	19.21
ZZZZZZ	658250	11.88	479882	15.95	141112	19.22
ZZZZZZ	645297	11.88	465709	15.95	134763	19.22
ZZZZZZ	633357	11.87	461754	15.95	129759	19.21
ZZZZZZ	630021	11.88	455820	15.95	129210	19.21

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



# **Volatile Internal Standard Area Summary**

Job Number: T16448

Account: ITTXHO Shaw E & I, Inc.

Project: Longhorn Army Ammunition Plant

 Check Std:
 VF2318-CC2305
 Injection Date:
 03/08/07

 Lab File ID:
 F0079223.D
 Injection Time:
 10:59

**Instrument ID:** GCMSF Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT
Check Std	698975	11 87	551152	15 94	223338	19.21
Upper Limit ^a	1397950		1102304		446676	19.71
Lower Limit b	349488		275576		111669	18.71
Lab	IS 1		IS 2		IS 3	
Sample ID	AREA	RT	AREA	RT	AREA	RT
			#00#0 <b>*</b>		• 10100	
VF2318-BS	746410		580582		210100	19.21
VF2318-MB	745444		531800		140552	19.22
T16445-4	739935	11.88	531107	15.96	143733	19.22
T16445-4MS	707673	11.88	540763	15.95	204404	19.22
T16445-4MSD	763469	11.88	578582	15.95	218177	19.22
ZZZZZZ	721619	11.89	534862	15.97	175880	19.23
ZZZZZZ	648782	11.89	490210	15.97	162557	19.23
ZZZZZZ	701074	11.89	520078	15.96	161875	19.23
ZZZZZZ	671762	11.90	510964	15.97	157114	19.24
ZZZZZZ	661266	11.89	484654	15.96	144861	19.24
ZZZZZZ	650121	11.89	473895	15.97	134032	19.23
ZZZZZZ	642529	11.89	461686	15.97	128039	19.23
ZZZZZZ	627515	11.89	448085	15.96	125224	19.23
ZZZZZZ	623811	11.88	456759		122979	19.22
ZZZZZZ	620723				114685	19.22
T16448-2	612552	11.89	445736	15.96	121452	19.23
ZZZZZZ	570298		412673	15.95	110551*	19.22
ZZZZZZ	579619	11.87	421291	15.95	109077*	19.22
ZZZZZZ	599201		424322		107464*	19.21
ZZZZZZ	591981	11.87	425080	15.95	108784*	19.21

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4

- (a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



# **Volatile Surrogate Recovery Summary**

**Job Number:** T16448

**Account:** ITTXHO Shaw E & I, Inc.

**Project:** Longhorn Army Ammunition Plant

Method: SW846 8260B Matrix: AQ

## Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	S1	<b>S2</b>	<b>S3</b>	<b>S4</b>
T16448-1	F0079188.D	106.0	102.0	106.0	121.0
T16448-2	F0079239.D	106.0	100.0	105.0	118.0
T16448-2	F0079189.D	108.0	105.0	106.0	122.0
T16445-3MS	F0079191.D	106.0	106.0	101.0	99.0
T16445-3MSD	F0079192.D	107.0	107.0	104.0	103.0
T16445-4MS	F0079227.D	106.0	104.0	103.0	99.0
T16445-4MSD	F0079228.D	105.0	102.0	105.0	99.0
VF2315-BS	F0079183.D	104.0	101.0	102.0	99.0
VF2315-MB	F0079184.D	103.0	98.0	109.0	129.0
VF2318-BS	F0079224.D	106.0	97.0	103.0	101.0
VF2318-MB	F0079225.D	103.0	97.0	108.0	121.0

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 73-139%

 S2 = 1,2-Dichloroethane-D4
 66-139%

 S3 = Toluene-D8
 77-148%

 S4 = 4-Bromofluorobenzene
 84-150%



## **Initial Calibration Summary**

 Job Number:
 T16448
 Sample:
 VF2305-ICC2305

 Account:
 ITTXHO Shaw E & I, Inc.
 Lab FileID:
 F0078967.D

**Project:** Longhorn Army Ammunition Plant

Response Factor Report GC/MS F

Method : C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator)

Title : SW846 8260B and EPA 624 Last Update : Thu Mar 01 07:31:12 2007 Response via : Initial Calibration

Calibration Files

1 =F0078964.D 2 =F0078965.D 3 =F0078966.D

4 =F0078967.D 5 =F0078968.D 6 =F0078969.D 7 =F0078970.D

1 2 3 4 5 6 7 Avg %RSD -----ISTD-----1) I Fluorobenzene 2) Dichlorodifluorom 0.157 0.162 0.153 0.171 0.181 0.178 0.196 0.171 3)P Chloromethane 0.353 0.368 0.326 0.309 0.319 0.297 0.331 0.329 7.50 4)C Vinyl Chloride 0.279 0.316 0.268 0.280 0.287 0.269 0.300 0.286 6.01 5) Bromomethane 0.275 0.253 0.223 0.215 0.216 0.204 0.190 0.225 12.95 6) Chloroethane 0.203 0.232 0.219 0.222 0.222 0.210 0.211 0.217 4.37 7) Trichlorofluorome 0.137 0.154 0.142 0.159 0.166 0.162 0.164 0.155 7.23 8) Acrolein 0.030 0.030 0.031 0.036 0.036 0.033 0.033 0.033 9)C 1,1-Dichloroethen 0.287 0.299 0.298 0.320 0.322 0.306 0.312 0.306 9.61 4.56 3.74 15) Methylene Chlorid 0.410 0.424 0.407 0.404 0.396 0.378 0.376 0.399 4.34 16) Tert Butyl Alcoho 0.015 0.018 0.018 0.015 0.017 0.018 0.018 0.017 8.14 17) trans-1,2-Dichlor 0.328 0.340 0.340 0.344 0.351 0.337 0.344 0.341 2.11 18) Acrylonitrile 0.086 0.099 0.097 0.091 0.097 0.098 0.097 0.095 4.82 19) Methyl Tert Butyl 0.577 0.603 0.572 0.555 0.578 0.587 0.594 0.581 2.70 0.300 0.281 0.283 0.341 0.346 0.320 0.315 0.312 8.32 20) Hexane 21)P 1,1-Dichloroethan 0.428 0.457 0.436 0.445 0.450 0.430 0.435 0.440 2.44 22) Vinyl acetate 0.513 0.554 0.582 0.564 0.569 0.552 0.517 0.550 4.74 23) Di-isopropyl ethe 0.944 1.012 0.992 0.981 0.988 0.943 0.934 0.971 3.09 24) Ethyl tert-butyl 0.721 0.735 0.733 0.737 0.753 0.739 0.749 0.738 1.43 25) 2,2-Dichloropropa 0.208 0.200 0.197 0.210 0.209 0.202 0.195 0.203 26) cis-1,2-Dichloroe 0.282 0.305 0.302 0.308 0.307 0.302 0.307 0.302 3.03 27) 2-Butanone 0.113 0.118 0.120 0.105 0.111 0.112 0.109 0.113 4.48 28) Bromochloromethan 0.124 0.142 0.145 0.146 0.147 0.149 0.150 0.143 6.13 29)C Chloroform 0.343 0.363 0.358 0.362 0.364 0.353 0.362 0.358 2.09 30) Tetrahydrofuran 0.048 0.035 0.033 0.030 0.031 0.031 0.029 0.034 19.44 ---- Linear regression ---- Coefficient = 0.9988 Response Ratio = 0.00148 + 0.02898 *A31) 1,1,1-Trichloroet 0.196 0.201 0.204 0.213 0.218 0.210 0.215 0.208 32)S Dibromofluorometh 0.211 0.221 0.210 0.217 0.221 0.221 0.226 0.218 33) Cyclohexane 0.390 0.405 0.413 0.479 0.485 0.453 0.447 0.439 34) 1,1-Dichloroprope 0.283 0.279 0.292 0.313 0.321 0.312 0.316 0.302 Carbon Tetrachlor 0.142 0.161 0.164 0.176 0.181 0.177 0.183 0.169 36)S 1,2-Dichloroethan 0.159 0.173 0.166 0.161 0.165 0.162 0.166 0.165 37) Benzene 1.089 1.108 1.092 1.113 1.134 1.098 1.119 1.108 38) 1,2-Dichloroethan 0.181 0.193 0.200 0.205 0.200 0.204 0.201 0.198 4.13 39) tert-amyl methyl 0.712 0.774 0.759 0.736 0.767 0.769 0.782 0.757 40) Trichloroethene 0.212 0.223 0.218 0.229 0.233 0.229 0.236 0.226 41) Methylcyclohexane 0.318 0.332 0.335 0.391 0.401 0.384 0.388 0.364 9.38 42)C 1,2-Dichloropropa 0.320 0.304 0.310 0.316 0.320 0.310 0.318 0.314 1.90 43) Dibromomethane 0.129 0.147 0.169 0.160 0.166 0.165 0.170 0.158



Page 2 of 3

#### **Initial Calibration Summary**

 Job Number:
 T16448
 Sample:
 VF2305-ICC2305

 Account:
 ITTXHO Shaw E & I, Inc.
 Lab FileID:
 F0078967.D

**Project:** Longhorn Army Ammunition Plant

```
0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 17.15
           ---- Linear regression ---- Coefficient = 0.9989
             Response Ratio = -0.00341 + 0.00271 *A
45)
    Bromodichlorometh 0.287 0.300 0.298 0.307 0.311 0.306 0.317 0.304
                                                                       3.19
    2-Nitropropane 0.046 0.042 0.041 0.037 0.038 0.039 0.038 0.040
46)
                                                                       7.95
    2-Chloroethyl vin 0.094 0.104 0.122 0.125 0.136 0.143 0.152 0.125
47)
           ---- Linear regression ---- Coefficient = 0.9983
             Response Ratio = -0.06248 + 0.15260 *A
    4-Methyl-2-pentan 0.229 0.239 0.249 0.234 0.246 0.246 0.237 0.240
48)
                                                                       3.06
    cis-1,3-Dichlorop 0.369 0.397 0.420 0.427 0.443 0.439 0.454 0.421
                                                                       6.95
                             -----ISTD-----
       Chlorobenzene-d5
51)S Toluene-d8
                     1.147 1.122 1.060 1.073 1.083 1.079 1.120 1.098
                                                                       2.89
52)C Toluene
                      1.382 1.408 1.358 1.387 1.384 1.367 1.417 1.386
53) trans-1,3-Dichlor 0.340 0.364 0.391 0.402 0.406 0.409 0.428 0.391
54) 1,1,2-Trichloroet 0.263 0.295 0.289 0.279 0.283 0.284 0.289 0.283
    Tetrachloroethene 0.272 0.280 0.293 0.302 0.309 0.299 0.307 0.294
55)
                                                                       4.70
56)
    2-hexanone
                      0.170 0.180 0.203 0.194 0.206 0.211 0.208 0.196
                                                                       8.04
57) 1,3-Dichloropropa 0.605 0.605 0.602 0.593 0.592 0.591 0.602 0.599
                                                                       1.05
58) Dibromochlorometh 0.254 0.312 0.303 0.296 0.299 0.304 0.315 0.298
                                                                       6.92
59) 1,2-Dibromoethane 0.283 0.310 0.305 0.302 0.314 0.320 0.331 0.309
                                                                       4.87
60) 1-Chlorohexane
                      0.464 0.467 0.465 0.505 0.517 0.509 0.535 0.495
                                                                       5.83
61)P Chlorobenzene 0.877 0.857 0.851 0.870 0.877 0.867 0.897 0.871
                                                                       1.73
62) 1,1,1,2-Tetrachlo 0.264 0.284 0.283 0.282 0.281 0.279 0.288 0.280
63)C Ethylbenzene 1.475 1.458 1.433 1.493 1.499 1.470 1.518 1.478
64) m,p-Xylene
                      0.970 0.990 1.008 1.040 1.057 1.039 1.067 1.025
                                                                       3.51
                     1.021 1.033 1.058 1.084 1.107 1.077 1.111 1.070
65) o-Xylene
                                                                       3.23
                0.796 0.855 0.910 0.960 0.983 0.978 1.013 0.928 0.142 0.077 0.184 0.179 0.195 0.199 0.205 0.169
66) Styrene
67)P Bromoform
            ---- Linear regression ---- Coefficient = 0.9995
             Response Ratio = -0.01246 + 0.20679 *A
       1,4-Dichlorobenzene-d -----ISTD-----ISTD-----
69) Isopropylbenzene 3.394 3.422 2.803 2.838 2.780 2.731 2.618 2.941 11.11
70) Cyclohexanone 0.023 0.030 0.027 0.025 0.026 0.029 0.027 0.027
71)S 4-Bromofluorobenz 1.169 1.004 0.864 0.853 0.853 0.860 0.845 0.921
                                                                      13.32
                  0.997 0.963 0.842 0.837 0.823 0.822 0.788 0.867
                                                                       9.15
72) Bromobenzene
73)P 1,1,2,2-Tetrachlo 1.339 1.320 1.146 1.011 1.011 1.030 0.983 1.120
                                                                      13.59
74) Trans-1,4-Dichlor 0.143 0.182 0.177 0.182 0.188 0.192 0.192 0.179
75) 1,2,3-Trichloropr 0.257 0.296 0.253 0.232 0.230 0.236 0.225 0.247
76) n-Propylbenzene 4.567 4.426 4.010 4.105 4.023 3.954 3.865 4.136
                                                                       6.29
    2-Chlorotoluene 3.164 2.888 2.531 2.500 2.416 2.351 2.285 2.591
                                                                      12.31
    4-Chlorotoluene 2.569 2.376 2.183 2.187 2.133 2.116 2.076 2.234
                                                                       7.90
    1,3,5-Trimethylbe 2.668 2.535 2.320 2.351 2.287 2.250 2.168 2.368
                                                                       7.33
80)
    sec-Butylbenzene 3.329 3.252 3.038 3.232 3.150 3.042 2.937 3.140
                                                                       4.47
    1,3-Dichlorobenze 1.316 1.426 1.364 1.413 1.441 1.419 1.422 1.400
81)
                                                                       3.16
82)
    4-Isopropyltoluen 2.408 2.304 2.224 2.403 2.346 2.277 2.220 2.312
                                                                       3.37
    1,4-Dichlorobenze 1.528 1.430 1.389 1.429 1.420 1.423 1.424 1.435
83)
                                                                       3.04
    tert-Butylbenzene 0.533 0.438 0.430 0.445 0.436 0.429 0.410 0.446
84)
                                                                       8.90
85) n-Butylbenzene 1.465 1.572 1.892 2.173 2.149 2.132 2.214 1.942 15.91
           ---- Linear regression ---- Coefficient = 0.9997
             Response Ratio = -0.08322 + 2.22219 *A
86)
    1,2-Dichlorobenze 1.206 1.332 1.314 1.336 1.345 1.359 1.369 1.323
87)
    1,2,4-Trimethylbe 2.566 2.449 2.311 2.410 2.354 2.310 2.242 2.377
    1,2-Dibromo-3-Chl 0.068 0.106 0.082 0.072 0.077 0.089 0.088 0.083 15.22
           ---- Linear regression ---- Coefficient = 0.9968
```



### **Initial Calibration Summary**

Page 3 of 3

Job Number: T16448 Sample: VF2305-ICC2305 F0078967.D ITTXHO Shaw E & I, Inc. Lab FileID: Account:

Longhorn Army Ammunition Plant **Project:** 

Response Ratio = -0.00467 + 0.08863 *A

89) 1,2,4-Trichlorobe 0.166 0.135 0.302 0.403 0.468 0.530 0.585 0.370 47.33 ---- Linear regression ---- Coefficient = 0.9944

Response Ratio = -0.09820 + 0.59565 *A

90) Hexachlorobutadie 0.058 0.088 0.170 0.207 0.204 0.208 0.202 0.162 38.83 ---- Linear regression ---- Coefficient = 0.9993

Response Ratio = -0.00579 + 0.20548 *A

0.526 0.280 0.475 0.606 0.781 0.975 1.125 0.681 43.48 91) Naphthalene ---- Quadratic regression ---- Coefficient = 0.9974 Response Ratio =  $-0.07686 + 0.74236 *A + 0.10172 *A^2$ 

92) 1,2,3-Trichlorobe 0.167 0.113 0.217 0.276 0.334 0.389 0.421 0.274 41.95 ---- Linear regression ---- Coefficient = 0.9938 Response Ratio = -0.07169 + 0.43007 *A

(#) = Out of Range

VF2305C.M Thu Mar 01 07:44:03 2007



Page 1 of 2

Continuing Calibration Summary Job Number: T16448 Sample: VF2315-CC2305 ITTXHO Shaw E & I, Inc. Lab FileID: F0079182.D Account:

Project: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Vial: 2 Data File : C:\HPCHEM\1\DATA\VF2315~1\F0079182.D Acq On : 7 Mar 2007 1:19 pm Operator: lydiaj Sample : cc2305-40 Misc : ms3885,vf2315,,,,5,1,water Inst : GC/MS F Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator) Method

: SW846 8260B and EPA 624 Title Last Update : Thu Mar 01 07:31:12 2007 Response via : Multiple Level Calibration

Min. RRF : 0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Are	a%	Dev(min)
1 I	Fluorobenzene	1.000	1.000	0.0	86	-0.08
2	Dichlorodifluoromethane	0.171	0.148	13.5	74	-0.04
3 P	Chloromethane	0.329	0.330	-0.3	92	-0.05
4 C	Vinyl Chloride	0.286	0.292	-2.1	90	-0.06
5	Bromomethane	0.225	0.223	0.9	89	-0.07
6	Chloroethane	0.217	0.226	-4.1	88	-0.06
7	Trichlorofluoromethane	0.155	0.162		87	-0.06
8	Acrolein	0.033	0.034	-3.0	81	-0.08
9 C	1,1-Dichloroethene	0.306	0.297	2.9	80	-0.07
10	Freon 113	0.205	0.193	5.9	73	-0.07
11	Acetone	0.056	0.051	8.9	84	
12	Iodomethane	0.434	0.399		78	-0.07
13	Methyl acetate	0.191	0.208		00	-0.07
14	Carbon Disulfide	0.889	0.797	10.3	75	-0.07
15	Methylene Chloride	0.399	0.419	-5.0	89	-0.07
16	Tert Butyl Alcohol	0.017	0.019		03	-0.08
17	trans-1,2-Dichloroethene	0.341	0.339	0.6	84	-0.07
18	Acrylonitrile	0.095	0.092	3.2	86	-0.07
19	Methyl Tert Butyl Ether	0.581	0.574	1.2	89	-0.07
20	Hexane	0.312	0.316	-1.3	79	-0.08
21 P	1,1-Dichloroethane	0.440	0.453	-3.0	87	-0.08
22	Vinyl acetate	0.550	0.609	-10.7	93	-0.08
23	Di-isopropyl ether	0.971	1.066	-9.8	93	-0.07
24 25	Ethyl tert-butyl ether	0.738	0.773	-4.7 $-3.4$	90	-0.07
25 26	2,2-Dichloropropane	0.203 0.302	0.210 0.307	-3.4 -1.7	86 86	-0.07
⊿6 27	cis-1,2-Dichloroethene 2-Butanone	0.302	0.307	4.4	88	-0.08 -0.08
28	Bromochloromethane	0.113	0.108	-2.8	86	-0.08
20 29 C	Chloroform	0.143	0.147	-3.4	88	-0.08
30	Tetrahydrofuran	0.034	0.370	5.9	91	-0.08
31	1,1,1-Trichloroethane	0.208	0.032	-1.0	84	-0.08
32 S	Dibromofluoromethane	0.218	0.210	-4.1	90	-0.08
33	Cyclohexane	0.439	0.451	-2.7	81	-0.08
34	1,1-Dichloropropene	0.302	0.317	-5.0	87	-0.08
35	Carbon Tetrachloride	0.169	0.174	-3.0	85	-0.08
36 S	1,2-Dichloroethane-d4	0.165	0.176	-6.7	94	-0.08
37	Benzene	1.108	1.127	-1.7	87	-0.08
38	1,2-Dichloroethane	0.198	0.213	-7.6	89	-0.08
39	tert-amyl methyl ether	0.757	0.777	-2.6	91	-0.08
40	Trichloroethene	0.226	0.232	-2.7	87	
41	Methylcyclohexane	0.364	0.371	-1.9	81	-0.08
42 C	1,2-Dichloropropane	0.314	0.336	-7.0	91	-0.09
	,				-	



Page 2 of 2

### **Continuing Calibration Summary**

Job Numb Account:	er: T16448 ITTXHO Shaw E & I, Inc.	Sample: Lab FileID:	VF2315-CC2305 F0079182.D	
Project:	Longhorn Army Ammunition Plant			
43	Dibromomethane	0.158		.0 91 -0.09
44	1,4-Dioxane	0.002		.0# 106 -0.09
45	Bromodichloromethane	0.304	0.321 -5	.6 90 -0.08
46	2-Nitropropane	0.040	0.042 -5	.0 98 -0.08
47	2-Chloroethyl vinyl ether	0.125	0.124 0	.8 85 -0.08
48	4-Methyl-2-pentanone	0.240	0.236 1	.7 87 -0.09
49	cis-1,3-Dichloropropene	0.421	0.461 -9	.5 93 -0.08
50 I	Chlorobenzene-d5	1.000		.0 90 -0.08
51 S	Toluene-d8	1.098	1.096 0	.2 92 -0.08
52 C	Toluene	1.386	1.363 1	.7 89 -0.08
53	trans-1,3-Dichloropropene	0.391	0.405 -3	.6 91 -0.07
54	1,1,2-Trichloroethane	0.283	0.289 -2	.1 93 -0.08
55	Tetrachloroethene	0.294	0.299 -1	.7 89 -0.09
56	2-hexanone	0.196		.1 85 -0.08
57	1,3-Dichloropropane	0.599		.2 92 -0.08
58	Dibromochloromethane	0.298		.7 94 -0.08
59	1,2-Dibromoethane	0.309		.3 93 -0.08
60	1-Chlorohexane	0.495		.2 90 -0.09
61 P	Chlorobenzene	0.871		.6 91 -0.09
62	1,1,1,2-Tetrachloroethane	0.280		.1 92 -0.08
63 C	Ethylbenzene	1.478		.3 89 -0.09
64	m,p-Xylene	1.478		.4 90 -0.08
65		1.025		.0 92 -0.09
	o-Xylene			
66 67 P	Styrene Bromoform	0.928 0.169	$ \begin{array}{rrr} 0.964 & -3 \\ 0.198 & -17 \end{array} $	
60 T	1 4 5 1 1 1 1			
68 I	1,4-Dichlorobenzene-d4	1.000		.0 93 -0.09
69	Isopropylbenzene	2.941		.2 90 -0.08
70	Cyclohexanone	0.027		.4# 142 -0.10
71 S	4-Bromofluorobenzene	0.921		.8 92 -0.09
72	Bromobenzene	0.867		.1 93 -0.09
73 P	1,1,2,2-Tetrachloroethane	1.120		.9 98 -0.09
74	Trans-1,4-Dichloro-2-Butene	0.179		.7 90 -0.09
75	1,2,3-Trichloropropane	0.247	0.240 2	.8 96 -0.09
76	n-Propylbenzene	4.136	4.041 2	.3 92 -0.09
77	2-Chlorotoluene	2.591	2.463 4	.9 92 -0.09
78	4-Chlorotoluene	2.234	2.117 5	.2 90 -0.10
79	1,3,5-Trimethylbenzene	2.368	2.281 3	.7 90 -0.09
80	sec-Butylbenzene	3.140	3.101 1	.2 89 -0.09
81	1,3-Dichlorobenzene	1.400		.8 95 -0.09
82	4-Isopropyltoluene	2.312	2.294 0	.8 89 -0.09
83	1,4-Dichlorobenzene	1.435		.3 93 -0.09
84	tert-Butylbenzene	0.446		.8 91 -0.10
85	n-Butylbenzene	1.942		.5 87 -0.10
86	1,2-Dichlorobenzene	1.323		.2 94 -0.09
87	1,2,4-Trimethylbenzene	2.377		.1 92 -0.09
88	1,2-Dibromo-3-Chloropropane	0.083		.5 92 -0.10
89	1,2,4-Trichlorobenzene	0.003		1.3 79 -0.10
90	Hexachlorobutadiene	0.162	0.192 -18	
91 92	Naphthalene 1,2,3-Trichlorobenzene	0.681 0.274		.2 84 -0.12 .9 83 -0.12

Average % D = 5.5

(#) = Out of Range SPCC's out = 0 CCC's out = 0 F0078967.D VF2305C.M Thu Mar 08 11:48:42 2007



Page 1 of 2

Continuing Calibration Summary Job Number: T16448 Sample: VF2318-CC2305 Lab FileID: F0079223.D

ITTXHO Shaw E & I, Inc. Account: Project: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

Vial: 2 Data File : C:\HPCHEM\1\DATA\VF2318~1\F0079223.D Acq On : 8 Mar 2007 10:59 am Operator: lydiaj Sample : cc2305-40 Misc : ms3889,vf2318,,,,5,1,water Inst : GC/MS F Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\VF2305C.M (RTE Integrator) Method

: SW846 8260B and EPA 624 Title Last Update : Thu Mar 01 07:31:12 2007 Response via : Multiple Level Calibration

Min. RRF : 0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Fluorobenzene	1.000	1.000	0.0 86 -0.08
2	Dichlorodifluoromethane	0.171	0.134	21.6# 68 -0.04
3 P	Chloromethane	0.329	0.313	4.9 87 -0.05
4 C	Vinyl Chloride	0.286	0.273	4.5 84 -0.06
5	Bromomethane	0.225	0.222	1.3 89 -0.07
6	Chloroethane	0.217	0.229	-5.5 89 -0.06
7	Trichlorofluoromethane	0.155	0.168	-8.4 91 -0.07
8	Acrolein	0.033	0.033	0.0 81 -0.07
9 C	1,1-Dichloroethene	0.306	0.303	1.0 81 -0.07
10	Freon 113	0.205	0.207	-1.0 79 -0.07
11	Acetone	0.056	0.042	25.0# 70 -0.07
12	Iodomethane	0.434	0.423	2.5 83 -0.07
13	Methyl acetate	0.191	0.176	7.9 84 -0.07
14	Carbon Disulfide	0.889	0.841	5.4 80 -0.08
15	Methylene Chloride	0.399	0.413	-3.5 88 -0.07
16	Tert Butyl Alcohol	0.017	0.017	0.0 92 -0.07
17	trans-1,2-Dichloroethene	0.341	0.350	-2.6 87 -0.07
18	Acrylonitrile	0.095	0.078	17.9 73 -0.07
19	Methyl Tert Butyl Ether	0.581	0.562	3.3 87 -0.07
20	Hexane	0.312	0.315	-1.0 79 -0.08
21 P	1,1-Dichloroethane	0.440	0.464	-5.5 89 -0.07
22	Vinyl acetate	0.550	0.547	0.5 83 -0.07
23	Di-isopropyl ether	0.971	1.060	-9.2 93 -0.07
24 25	Ethyl tert-butyl ether	0.738	0.774	-4.9 90 $-0.07$ $-14.3$ 95 $-0.07$
25 26	2,2-Dichloropropane	0.203 0.302	0.232 0.324	
⊿6 27	cis-1,2-Dichloroethene 2-Butanone	0.302	0.324	-7.3 90 -0.08 20.4# 74 -0.08
28	Bromochloromethane	0.113	0.090	-4.2 88 -0.08
20 29 C	Chloroform	0.143	0.149	-8.1 92 -0.08
30	Tetrahydrofuran	0.034	0.028	17.6 80 -0.08
31	1,1,1-Trichloroethane	0.208	0.020	-7.7 90 -0.08
32 S	Dibromofluoromethane	0.218	0.236	-8.3 93 -0.07
33	Cyclohexane	0.439	0.472	-7.5 85 -0.08
34	1,1-Dichloropropene	0.302	0.328	-8.6 90 -0.08
35	Carbon Tetrachloride	0.169	0.187	-10.7 91 -0.07
36 S	1,2-Dichloroethane-d4	0.165	0.169	-2.4 90 -0.08
37	Benzene	1.108	1.177	-6.2 91 -0.07
38	1,2-Dichloroethane	0.198	0.206	-4.0 86 -0.08
39	tert-amyl methyl ether	0.757	0.767	-1.3 90 -0.08
40	Trichloroethene	0.226	0.248	-9.7 93 -0.08
41	Methylcyclohexane	0.364	0.394	-8.2 87 -0.08
42 C	1,2-Dichloropropane	0.314	0.345	-9.9 94 -0.08
-	,			



Page 2 of 2

### **Continuing Calibration Summary**

Account: Project:	er: T16448 ITTXHO Shaw E & I, Inc. Longhorn Army Ammunition Plant	Sample: Lab File		VF2318-CC2305 F0079223.D			
43	Dibromomethane	0.158	0.163	-3.2	88	-0.08	
44	1,4-Dioxane	0.002	0.002	0.0	89	-0.08	
45	Bromodichloromethane	0.304	0.332	-9.2	93	-0.08	
46	2-Nitropropane	0.040	0.036	10.0	84	-0.08	
47	2-Chloroethyl vinyl ether	0.125	0.110	12.0	76	-0.08	
48	4-Methyl-2-pentanone	0.240	0.206	14.2	76	-0.08	
49	cis-1,3-Dichloropropene	0.421	0.471	-11.9	95	-0.08	
50 I	Chlorobenzene-d5	1.000	1.000	0.0	90	-0.08	
51 S	Toluene-d8	1.098	1.138	-3.6	96	-0.08	
52 C	Toluene	1.386	1.437	-3.7	94	-0.08	
53	trans-1,3-Dichloropropene	0.391	0.405	-3.6	91	-0.07	
54	1,1,2-Trichloroethane	0.283	0.284	-0.4	92	-0.08	
55	Tetrachloroethene	0.294	0.324	-10.2	97	-0.09	
56	2-hexanone	0.196	0.157	19.9	73	-0.08	
57	1,3-Dichloropropane	0.599	0.582	2.8	89	-0.08	
58	Dibromochloromethane	0.298	0.305	-2.3	93	-0.08	
59	1,2-Dibromoethane	0.309	0.301	2.6	90	-0.08	
60	1-Chlorohexane	0.495	0.527	-6.5	94	-0.08	
61 P	Chlorobenzene	0.871	0.923	-6.0	96	-0.09	
62	1,1,1,2-Tetrachloroethane	0.280	0.299	-6.8	96	-0.09	
63 C	Ethylbenzene	1.478	1.578	-6.8	96	-0.09	
64	m,p-Xylene	1.025	1.080	-5.4	94	-0.08	
65 66	o-Xylene	1.070	1.152	-7.7	96 93	-0.08	
67 P	Styrene Bromoform	0.928 0.169	0.989 0.180	-6.6 -6.5	91	-0.08 -0.09	
68 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	90	-0.09	
69	Isopropylbenzene	2.941	3.019	-2.7	95	-0.08	
70	Cyclohexanone	0.027	0.046	-70.4	[‡] 163	-0.10	
71 S	4-Bromofluorobenzene	0.921	0.912	1.0	96	-0.09	
72	Bromobenzene	0.867	0.917	-5.8	98	-0.09	
73 P	1,1,2,2-Tetrachloroethane	1.120	1.007	10.1	89	-0.09	
74	Trans-1,4-Dichloro-2-Butene	0.179	0.160	10.6	79	-0.10	
75	1,2,3-Trichloropropane	0.247	0.233	5.7	90	-0.09	
76	n-Propylbenzene	4.136	4.335	-4.8	95	-0.09	
77	2-Chlorotoluene	2.591	2.658	-2.6	95	-0.09	
78	4-Chlorotoluene	2.234	2.314	-3.6	95	-0.10	
79	1,3,5-Trimethylbenzene	2.368	2.500	-5.6	95	-0.08	
80	sec-Butylbenzene	3.140	3.327	-6.0	92	-0.09	
81	1,3-Dichlorobenzene	1.400	1.523	-8.8	97	-0.09	
82 83	4-Isopropyltoluene	2.312 1.435	2.458	-6.3	92	-0.09 -0.09	
84	1,4-Dichlorobenzene		1.494	-4.1 -2.2	94 92		
85	tert-Butylbenzene n-Butylbenzene	0.446	0.456	-2.2 -6.3	92 85	-0.10	
86	1,2-Dichlorobenzene	1.942 1.323	2.065 1.387	-4.8	93	-0.10 -0.09	
87	1,2,4-Trimethylbenzene	2.377	2.512	-4.0 -5.7	94	-0.09	
88	1,2-Dibromo-3-Chloropropane	0.083	0.069	16.9	85	-0.09	
89	1,2,4-Trichlorobenzene	0.370	0.322	13.0	72	-0.09	
90	Hexachlorobutadiene	0.162	0.201	-24.1		-0.10	
91	Naphthalene	0.681	0.464	31.9		-0.11	
92	1,2,3-Trichlorobenzene	0.274	0.216	21.2		-0.11	

Average % D = 8.2

(#) = Out of Range SPCC's out = 0 CCC's out = 0 F0078967.D VF2305C.M Fri Mar 09 16:10:50 2007



### Metals Analysis

### QC Data Summaries

#### Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- · Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



## Accutest Laboratories Instrument Runlog Inorganics Analyses

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC

Analyst: NS Parameters: Cr Date Analyzed: 02/28/07

Methods: SW846 6010B

Run ID: MA2815

Time	Sample Description	Dilution PS Factor Recov	Comments
10:29	MA2815-STD1	1	STDA
10:36	MA2815-STD2	1	STDC
10:42	MA2815-STD3	1	STDE
10:47	MA2815-STD4	1	STDB
10:53	MA2815-STD5	1	STDD
11:53	MA2815-HSTD1	1	
12:00	MA2815-ICV1	1	
12:06	MA2815-ICB1	1	
12:13	MA2815-CRIB1	1	
12:29	MA2815-ICSA1	1	
12:36	MA2815-ICSAB1	1	
12:44	MA2815-CCV1	1	
12:51	MA2815-CCB1	1	
12:57	MP5805-MB1	1	
13:04	MP5805-LC1	1	
13:11	T16368-10	1	(sample used for QC only; not part of login T16448)
13:17	MP5805-D1	1	
13:24	MP5805-SD1	5	
13:30	MP5805-S1	1	
13:37	MP5805-S2	1	
13:44	ZZZZZZ	1	
13:50	ZZZZZZ	1	
13:57	ZZZZZZ	1	
14:04	MA2815-CCV2	1	
14:10	MA2815-CCB2	1	
14:26	ZZZZZZ	1	
14:33	ZZZZZZ	1	
14:39	ZZZZZZ	1	
	ZZZZZZ		
	ZZZZZZ		
	ZZZZZZ		
	ZZZZZZ		
15:12	ZZZZZZ	1	

52 of 124 **ACCUTEST.** 

#### Accutest Laboratories Instrument Runlog Inorganics Analyses

#### Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC Analyst: NS

Parameters: Cr

Date Analyzed: 02/28/07 Methods: SW846 6010B Run ID: MA2815

15:19	Time	Sample Description	Dilution PS Factor Recov	Comments
15:42 MA2815-CCB3 1 15:42 MA2815-CCB3 2 1 15:56 ZZZZZZ 1 1 16:02 ZZZZZZ 1 1 16:02 ZZZZZZ 1 1 16:02 ZZZZZZ 1 1 16:03 ZZZZZZ 1 1 16:03 MA2815-CCW4 1 1 16:34 MA2815-CCW4 1 1 16:35 MA2815-CCW5 1 1 16:36 MP5797-MB1 1 1 16:37 MP5797-D1 1 1 16:38 MP5797-D1 1 1 17:12 MP5797-SD1 5 17:19 MP5797-SD1 5 17:19 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5797-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-SD 1 17:10 MP5798-MB 1 17:10 MP5798-MB 1 17:10 MP5798-MB 1 17:10 MP	15:19	ZZZZZZ	1	
15:42 MA2815-CCB3 1 15:56 ZZZZZZ 1 15:56 ZZZZZZ 2 16:01 ZZZZZZ 2 16:02 ZZZZZZ 1 16:02 ZZZZZZ 1 16:02 ZZZZZZ 1 16:03 MAZ815-CCW4 1 16:03 MAZ815-CCW4 1 16:04 MP5797-MB1 1 16:05 MP5797-B1 1 16:05 MP5797-B1 1 17:12 MP5797-B1 2 17:14 MP5797-SD1 5 17:19 MP5797-SD1 5 17:19 MP5797-SD 1 17:25 MP5797-SD 1 17:26 MP5797-SD 1 17:27 MP5797-SD 1 17:28 MP5797-SD 1 17:29 MP5797-SD 1 17:20 MP5797-SD 1 17:20 MP5797-SD 1 17:21 MP5797-SD 1 17:22 MP5797-SD 1 17:23 MP5797-SD 1 17:24 MP5797-SD 1 17:25 MP5797-SD 1 17:26 MP5797-SD 1 17:27 MP5797-SD 1 17:28 MP5797-SD 1 17:29 MP5797-SD 1 17:20 MP5797-SD 1 17:20 MP5797-SD 1 17:20 MP5797-SD 1 17:20 MP5797-SD 1 18:20 MP5797-SD 1 18:20 MP5797-SD 1 18:20 MP5798-SD 1 18:21 MA2815-CCW5 1 18:22 MP5798-B1 1 18:22 MP5798-B1 1 18:23 MP5798-B1 1 18:24 MP5798-B1 1 18:25 MP5798-SD 1 18:26 MP5798-SD 1 18:27 MP5798-SD 1 18:28 MP5798-SD 1 18:29 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-SD 1 18:20 MP5798-MP5   1 18:20 MP5798-MP5   1 18:20 MP5798-MP5   1 18:20 MP57	15:26	ZZZZZZ	1	
15:49	15:34	MA2815-CCV3	1	
16:02 ZZZZZZ 1 16:02 ZZZZZZ 1 16:03 ZZZZZZ 1 16:16 ZZZZZZ 1 16:17 ZZZZZZ 1 16:18 ZZZZZZ 1 16:18 MAZ815-CCV4 1 16:18 MAZ815-CCB4 1 16:59 MP5797-B1 1 16:59 MP5797-D1 1 17:12 MP5797-S1 1 17:25 MP5797-S1 1 17:25 MP5797-S2 1 17:39 ZZZZZZ 1 1 17:48 ZZZZZZ 1 1 17:48 ZZZZZZ 1 1 18:17 MAZ815-CCV5 1 18:28 MAZ815-CCV5 1 18:28 MAZ815-CCV5 1 18:28 MAZ815-CCV5 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 1 18:28 MAZ815-CCV6 5 1 MAZ815-CCV6 1 18:28 MAZ815-CCV6 5 1 MAZ815-CCV6 1 18:28 MAZ815-CCV6 5 1 MAZ815-CCV6 1 18:28 MAZ815-CCV6 5 1 MAZ815-CCV6 5 1 MAZ815-CCV6 6 1 MAZ815-CCV6 1 18:28 MAZ815-CCV6 5 1 MAZ815-CCV6 5 1 MAZ815-CCV6 6 1 MAZ815-CCV6 6 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 MAZ815-CCV6 7 1 M	15:42	MA2815-CCB3	1	
16:02 ZZZZZZ 1 16:16 ZZZZZZ 1 16:17 ZZZZZZ 1 16:18 ZZZZZZ 1 16:18 MAZ815-CCV4 1 16:19 MAZ815-CCN4 1 16:29 MF579-MB1 1 16:59 T16390-1 1 17:12 MF5797-SD1 5 17:19 MF5797-SD1 5 17:19 MF5797-SD 1 17:25 MF5797-SD 1 17:25 MF5797-SD 1 17:25 MF5797-SD 1 17:26 MF5797-SD 1 17:27 MF5797-SD 1 17:28 MF5797-SD 1 17:29 ZZZZZ 1 17:39 ZZZZZ 1 18:19 MAZ815-CCN5 1 18:19 MAZ815-CCN5 1 18:19 MAZ815-CCN5 1 18:19 MAZ815-CCN5 1 18:19 MF5798-B1 1 18:18 MF5798-B1 1 18:18 MF5798-B1 1 18:18 MF5798-B1 1 18:18 MF5798-D1 5 19:10 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1 18:19 MF5798-SD 1	15:49	ZZZZZZ	1	
16:09	15:56	ZZZZZZ	1	
16:16	16:02	ZZZZZZ	1	
16:22 ZZZZZ	16:09	ZZZZZZ	1	
16:31 MA2815-CCV4 1 16:39 MA2815-CCV4 1 16:46 MP5797-MB1 1 16:52 MP5797-B1 1 16:59 T16390-1 1 1 (sample used for QC only; not part of login T16448) 17:10 MP5797-D1 1 17:12 MP5797-SD1 5 17:19 MP5797-SD 1 1 17:25 MP5797-S2 1 17:39 ZZZZZ 1 17:45 ZZZZZ 1 17:45 ZZZZZ 1 18:02 MA2815-CCV5 1 18:02 MA2815-CCV5 1 18:17 MA2815-CCV5 1 18:18 MP5798-B1 1 18:18 MP5798-B1 1 18:39 MP5798-B1 1 18:39 MP5798-B1 1 18:39 MP5798-B1 5 19:05 MP5798-SD1 5 19:05 MP5798-SD1 5 19:05 MP5798-SD1 1	16:16	ZZZZZZ	1	
16:39 MA2815-CCB4 1 16:46 MP5797-MB1 1 16:52 MP5797-B1 1 16:59 T16390-1 1 17:12 MP5797-SD1 5 17:19 MP5797-SD1 5 17:25 MP5797-SD 1 17:25 MP5797-SD 1 17:25 MP5797-SD 1 17:45 ZZZZZ 1 17:45 ZZZZZ 1 17:45 ZZZZZ 1 18:02 MA2815-CCV5 1 18:17 MA2815-CCV6 1 18:32 MP5798-B1 1 18:45 T16386-1 1 18:52 MP5798-SD 1 18:52 MP5798-SD 1 18:52 MP5798-SD 1 18:53 MP5798-SD 1 10:54 MP5798-SD 1 10:55 MP5798-SD 1 10:56 MP5798-SD 1 10:57 MP5798-SD 1 10:58 MP5798-SD 1 10:58 MP5798-SD 1 10:59 MP5798-SD 1 10:59 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1 10:50 MP5798-SD 1	16:22	ZZZZZZ	1	
16:46 MPS797-MB1 1 16:52 MPS797-B1 1 16:59 T16390-1 1 (sample used for QC only; not part of login T16448) 17:05 MPS797-D1 1 17:12 MPS797-SD1 5 17:19 MPS797-S1 1 17:25 MPS797-S2 1 17:39 ZZZZZ 1 17:45 ZZZZZ 1 17:45 ZZZZZ 1 18:02 MA2815-CCV5 1 18:17 MA2815-CCV5 1 18:17 MA2815-CCV6 1 18:28 MPS798-MB1 1 18:39 MPS798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:50 MPS798-SD1 5 19:05 MPS798-SD1 5 19:05 MPS798-SD1 5	16:31	MA2815-CCV4	1	
16:52 MP5797-B1 1 16:59 T16390-1 1 (sample used for QC only; not part of login T16448) 17:05 MP5797-D1 1 17:12 MP5797-SD1 5 17:19 MP5797-S1 1 17:25 MP5797-S2 1 17:39 ZZZZZ 1 17:45 ZZZZZ 1 17:45 ZZZZZ 1 17:45 MA2815-CCV5 1 18:02 MA2815-CCV5 1 18:17 MA2815-CCV6 1 18:25 MA2815-CCV6 1 18:25 MA2815-CCV6 1 18:32 MP5798-MB1 1 18:32 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:52 MP5798-D1 1 18:52 MP5798-D1 1 18:52 MP5798-D1 1 18:52 MP5798-D1 1 18:52 MP5798-D1 1	16:39	MA2815-CCB4	1	
16:59 T16390-1 1 (sample used for QC only; not part of login T16448)  17:05 Mp5797-D1 1  17:12 Mp5797-SD1 5  17:19 Mp5797-S2 1  17:25 Mp5797-S2 1  17:39 ZZZZZZ 1  17:45 ZZZZZ 1  17:45 MA2815-CCV5 1  18:02 MA2815-CCV6 1  18:17 MA2815-CCV6 1  18:32 Mp5798-MB1 1  18:39 Mp5798-B1 1  18:45 T16386-1 1 (sample used for QC only; not part of login T16448)  18:50 Mp5798-D1 1  18:50 Mp5798-SD1 5  19:05 Mp5798-S1 1	16:46	MP5797-MB1	1	
17:05 MP5797-D1 1 17:12 MP5797-SD1 5 17:19 MP5797-S1 1 17:25 MP5797-S2 1 17:39 ZZZZZZ 1 17:45 ZZZZZZ 1 17:45 MA2815-CCV5 1 18:02 MA2815-CCV5 1 18:17 MA2815-CCV6 1 18:25 MA2815-CCB5 1 18:32 MP5798-MB1 1 18:33 MP5798-B1 1 18:39 MP5798-B1 1 18:39 MP5798-B1 1 18:50 MP5798-B1 1 18:50 MP5798-D1 5 18:50 MP5798-SD1 5 19:05 MP5798-SD1 5	16:52	MP5797-B1	1	
17:12 MP5797-SD1 5 17:19 MP5797-SD1 1 17:25 MP5797-S2 1 17:39 ZZZZZZ 1 17:45 ZZZZZZ 1 17:54 MA2815-CCV5 1 18:02 MA2815-CCV6 1 18:17 MA2815-CCV6 1 18:32 MP5798-MB1 1 18:33 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:59 MP5798-SD1 5 19:05 MP5798-SD1 5 19:05 MP5798-SD 1	16:59	T16390-1	1	(sample used for QC only; not part of login T16448)
17:19 Mp5797-S1 1 17:25 Mp5797-S2 1 17:39 ZZZZZZ 1 17:45 ZZZZZZ 1 17:54 Ma2815-CCV5 1 18:02 Ma2815-CCV6 1 18:17 Ma2815-CCV6 1 18:32 Mp5798-MB1 1 18:33 Mp5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:59 Mp5798-SD1 5 19:05 Mp5798-S1 1	17:05	MP5797-D1	1	
17:25 Mp5797-S2 1 17:39 ZZZZZZ 1 17:45 ZZZZZZ 1 17:45 MA2815-CCV5 1 18:02 MA2815-CCV5 1 18:17 MA2815-CCV6 1 18:28 Mp5798-MB1 1 18:32 Mp5798-MB1 1 18:39 Mp5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:59 Mp5798-SD1 5 19:05 Mp5798-S1 1	17:12	MP5797-SD1	5	
17:39 ZZZZZZ 1 17:45 ZZZZZZ 1 17:54 MA2815-CCV5 1 18:02 MA2815-CCV6 1 18:17 MA2815-CCV6 1 18:25 MA2815-CCB6 1 18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:59 MP5798-S1 1 19:05 MP5798-S1 1	17:19	MP5797-S1	1	
17:45 ZZZZZZ 1 17:54 MA2815-CCV5 1 18:02 MA2815-CCB5 1 18:17 MA2815-CCV6 1 18:25 MA2815-CCB6 1 18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:59 MP5798-SD1 5 19:05 MP5798-S1 1	17:25	MP5797-S2	1	
17:54 MA2815-CCV5 1 18:02 MA2815-CCB5 1 18:17 MA2815-CCV6 1 18:25 MA2815-CCB6 1 18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:59 MP5798-SD1 5 19:05 MP5798-SD 1 1 19:12 MP5798-S2 1	17:39	ZZZZZZ	1	
18:02 MA2815-CCB5 1 18:17 MA2815-CCV6 1 18:25 MA2815-CCB6 1 18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:52 MP5798-D1 5 19:05 MP5798-S1 1 19:12 MP5798-S2 1	17:45	ZZZZZZ	1	
18:17 MA2815-CCV6 1 18:25 MA2815-CCB6 1 18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:52 MP5798-D1 1 18:59 MP5798-SD1 5 19:05 MP5798-S1 1 19:12 MP5798-S2 1	17:54	MA2815-CCV5	1	
18:25 MA2815-CCB6 1 18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:52 MP5798-D1 1 18:59 MP5798-SD1 5 19:05 MP5798-S1 1 19:12 MP5798-S2 1	18:02	MA2815-CCB5	1	
18:32 MP5798-MB1 1 18:39 MP5798-B1 1 18:45 T16386-1 1 (sample used for QC only; not part of login T16448) 18:52 MP5798-D1 1 18:59 MP5798-SD1 5 19:05 MP5798-S1 1 19:12 MP5798-S2 1	18:17	MA2815-CCV6	1	
18:39 MP5798-B1 1  18:45 T16386-1 1 (sample used for QC only; not part of login T16448)  18:52 MP5798-D1 1  18:59 MP5798-SD1 5  19:05 MP5798-S1 1  19:12 MP5798-S2 1	18:25	MA2815-CCB6	1	
18:45 T16386-1 1 (sample used for QC only; not part of login T16448)  18:52 MP5798-D1 1  18:59 MP5798-SD1 5  19:05 MP5798-S1 1  19:12 MP5798-S2 1	18:32	MP5798-MB1	1	
18:52 MP5798-D1 1 18:59 MP5798-SD1 5 19:05 MP5798-S1 1 19:12 MP5798-S2 1	18:39	MP5798-B1	1	
18:59 MP5798-SD1 5 19:05 MP5798-S1 1 19:12 MP5798-S2 1	18:45	T16386-1	1	(sample used for QC only; not part of login T16448)
19:05 MP5798-S1 1 19:12 MP5798-S2 1	18:52	MP5798-D1	1	
19:12 MP5798-S2 1	18:59	MP5798-SD1	5	
	19:05	MP5798-S1	1	
19:20 MA2815-CCV7 1	19:12	MP5798-S2	1	
	19:20	MA2815-CCV7	1	

## Accutest Laboratories Instrument Runlog Inorganics Analyses

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC

Analyst: NS Parameters: Cr

---->

Date Analyzed: 02/28/07 Methods: SW846 6010B Run ID: MA2815

Time	Sample Description	Dilution Factor	PS Recov	Comments
19:29	MA2815-CCB7	1		
19:35	ZZZZZZ	5		
19:42	ZZZZZZ	5		
19:50	MA2815-CCV8	1		
19:59	MA2815-CCB8	1		
20:05	MP5804-MB1	1		
20:12	MP5804-B1	1		
20:19	T16414-1	1		(sample used for QC only; not part of login T16448)
20:25	MP5804-D1	1		
20:32	MP5804-SD1	5		
20:38	MP5804-S1	1		
20:45	MP5804-S2	1		
	T16448-3	1		
	eportable sample ZZZZZZ	/prep for 1	job T164	48
20.30	22222	_		
21:05	ZZZZZZ	1		
21:13	MA2815-CCV9	1		
	MA2815-CCB9 eportable CCB for	1 r iob T16	110	
	ZZZZZZ	1	440	
	MA2815-CCV10	1		
21:45	MA2815-CCB10	1		

Refer to raw data for calibration curve and standards.

#### INTERNAL STANDARD SUMMARY

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

Run ID: MA2815

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B

Analyst: NS Parameters: Cr

Para	meters: Cr	
Time	Sample Description	Istd#1
10:29	MA2815-STD1	35191 R
10:36	MA2815-STD2	35110
10:42	MA2815-STD3	34622
10:47	MA2815-STD4	35248
10:53	MA2815-STD5	35473
11:53	MA2815-HSTD1	34726
12:00	MA2815-ICV1	35160
12:06	MA2815-ICB1	35577
12:13	MA2815-CRIB1	35176
12:29	MA2815-ICSA1	33297
12:36	MA2815-ICSAB1	32873
12:44	MA2815-CCV1	33774
12:51	MA2815-CCB1	33955
12:57	MP5805-MB1	34090
13:04	MP5805-LC1	38051
13:11	T16368-10	36813
13:17	MP5805-D1	36865
13:24	MP5805-SD1	34542
13:30	MP5805-S1	36557
13:37	MP5805-S2	36279
13:44	ZZZZZZ	36543
13:50	ZZZZZZ	36660
13:57	ZZZZZZ	36149
14:04	MA2815-CCV2	33600
14:10	MA2815-CCB2	33939
14:26	ZZZZZZ	36687
14:33	ZZZZZZ	36158
14:39	ZZZZZZ	36313
14:46	ZZZZZZ	36401
14:52	ZZZZZZ	37023
14:59	ZZZZZZ	36200
15:06	ZZZZZZ	35974
15:12	ZZZZZZ	36687

#### INTERNAL STANDARD SUMMARY

#### Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

Run ID: MA2815

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B

Analyst: NS Parameters: Cr

Para	meters: Cr	
Time	Sample Description	Istd#1
15:19	ZZZZZZ	36421
15:26	ZZZZZZ	33854
15:34	MA2815-CCV3	33805
15:42	MA2815-CCB3	34060
15:49	ZZZZZZ	34845
15:56	ZZZZZZ	35690
16:02	ZZZZZZ	36145
16:09	ZZZZZZ	35959
16:16	ZZZZZZ	35680
16:22	ZZZZZZ	34030
16:31	MA2815-CCV4	33871
16:39	MA2815-CCB4	34086
16:46	MP5797-MB1	34090
16:52	MP5797-B1	33470
16:59	T16390-1	33848
17:05	MP5797-D1	33681
17:12	MP5797-SD1	33959
17:19	MP5797-S1	33487
17:25	MP5797-S2	33229
17:39	ZZZZZZ	42590
17:45	ZZZZZZ	51777 !
17:54	MA2815-CCV5	33659
18:02	MA2815-CCB5	33977
18:17	MA2815-CCV6	33458
18:25	MA2815-CCB6	33868
18:32	MP5798-MB1	33829
18:39	MP5798-B1	33568
18:45	T16386-1	33446
18:52	MP5798-D1	33730
18:59	MP5798-SD1	33887
19:05	MP5798-S1	33609
19:12	MP5798-S2	33372
19:20	MA2815-CCV7	33902

#### INTERNAL STANDARD SUMMARY

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

Run ID: MA2815

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B

Analyst: NS Parameters: Cr

			 _
Time	Sample Description	Istd#1	
19:29	MA2815-CCB7	34221	
19:35	ZZZZZZ	34116	
19:42	ZZZZZZ	33707	
19:50	MA2815-CCV8	33395	
19:59	MA2815-CCB8	33978	
20:05	MP5804-MB1	33772	
20:12	MP5804-B1	33325	
20:19	T16414-1	34128	
20:25	MP5804-D1	34110	
20:32	MP5804-SD1	34179	
20:38	MP5804-S1	33498	
20:45	MP5804-S2	33745	
20:52	T16448-3	33928	
20:58	ZZZZZZ	33803	
21:05	ZZZZZZ	33697	
21:13	MA2815-CCV9	33632	
21:22	MA2815-CCB9	33875	
21:28	ZZZZZZ	33538	
21:37	MA2815-CCV10	33698	
21:45	MA2815-CCB10	33813	
R = Re	ference for IST	D limits. ! = Outside limits.	
LEGEND	:		

 Istd#
 Parameter
 Limits

 Istd#1
 Yttrium
 60-125 %

## BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC
QC Limits: result < RL

Date Analyzed: 02/28/07 Run ID: MA2815 Methods: SW846 6010B Units: ug/l

Time: Sample ID:			12:06 ICB1		12:51 CCB1		14:10 CCB2		15:42 CCB3	
Metal	RL	IDL	raw	final	raw	final	raw	final	raw	final
Aluminum	200	51								
Antimony	5.0	1.8								
Arsenic	5.0	1.4	anr							
Barium	200	.1	anr							
Beryllium	5.0	.06								
Boron	100	1.4								
Cadmium	4.0	.5	anr							
Calcium	5000	8								
Chromium	10	.9	0.52	<10	-0.080	<10	-0.30	<10	-0.25	<10
Cobalt	50	.99								
Copper	25	1.4	anr							
Iron	100	16								
Lead	3.0	. 7	anr							
Magnesium	5000	8								
Manganese	15	. 2	anr							
Molybdenum	10	. 45								
Nickel	40	1	anr							
Potassium	5000	80	anr							
Selenium	5.0	1.7	anr							
Silver	10	.5	anr							
Sodium	5000	160								
Strontium	20	. 5								
Thallium	10	1.5								
Tin	20	1.5								
Titanium	20	.5								
Vanadium	50	. 4	anr							
Zinc	20	.8	anr							

(*) Outside of QC limits (anr) Analyte not requested

58 of 124
ACCUTEST

## BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC QC Limits: result < RL Date Analyzed: 02/28/07 Run ID: MA2815 Methods: SW846 6010B Units: ug/l

20 21100 100				11011			011100 45	7 -		
Time: Sample ID:			16:39 CCB4		18:02 CCB5		18:25 CCB6		19:29 CCB7	
Metal	RL	IDL	raw	final	raw	final	raw	final	raw	final
Aluminum	200	51								
Antimony	5.0	1.8								
Arsenic	5.0	1.4	anr							
Barium	200	.1	anr							
Beryllium	5.0	.06								
Boron	100	1.4								
Cadmium	4.0	.5	anr							
Calcium	5000	8								
Chromium	10	.9	-0.11	<10	-0.79	<10	-0.67	<10	-0.090	<10
Cobalt	50	.99								
Copper	25	1.4	anr							
Iron	100	16								
Lead	3.0	.7	anr							
Magnesium	5000	8								
Manganese	15	. 2	anr							
Molybdenum	10	.45								
Nickel	40	1	anr							
Potassium	5000	80	anr							
Selenium	5.0	1.7	anr							
Silver	10	.5	anr							
Sodium	5000	160								
Strontium	20	.5								
Thallium	10	1.5								
Tin	20	1.5								
Titanium	20	.5								
Vanadium	50	. 4	anr							
Zinc	20	.8	anr							

(*) Outside of QC limits (anr) Analyte not requested



## BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B QC Limits: result < RL Run ID: MA2815 Units: ug/l

Time: Sample ID:			19:59 CCB8		21:22 CCB9	
Metal	RL	IDL	raw	final	raw	final
Aluminum	200	51				
Antimony	5.0	1.8				
Arsenic	5.0	1.4	anr			
Barium	200	.1	anr			
Beryllium	5.0	.06				
Boron	100	1.4				
Cadmium	4.0	. 5	anr			
Calcium	5000	8				
Chromium	10	.9	0.080	<10	-0.42	<10
Cobalt	50	.99				
Copper	25	1.4	anr			
Iron	100	16				
Lead	3.0	.7	anr			
Magnesium	5000	8				
Manganese	15	. 2	anr			
Molybdenum	10	. 45				
Nickel	40	1	anr			
Potassium	5000	80	anr			
Selenium	5.0	1.7	anr			
Silver	10	. 5	anr			
Sodium	5000	160				
Strontium	20	. 5				
Thallium	10	1.5				
Tin	20	1.5				
Titanium	20	. 5				
Vanadium	50	. 4	anr			
Zinc	20	. 8	anr			

(*) Outside of QC limits (anr) Analyte not requested

**■** 60 of 124 **★ ACCUTEST.** 

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC QC Limits: 90 to 110 % Recovery

Date Analyzed: 02/28/07 Run ID: MA2815 Methods: SW846 6010B Units: ug/l

Time: Sample ID: Metal	ICV True	12:00 ICV1 Results	% Rec	CCV True	12:44 CCV1 Results	% Rec	CCV True	14:04 CCV2 Results	% Rec	
Aluminum										
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium										
Boron										
Cadmium	anr									
Calcium										
Chromium	1000	997	99.7	2000	1980	99.0	2000	1980	99.0	
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese	anr									
Molybdenum										
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium	anr									
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

61 of 124 **ACCUTEST.** 

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC QC Limits: 90 to 110 % Recovery

Date Analyzed: 02/28/07 Run ID: MA2815 Methods: SW846 6010B Units: ug/l

Time: Sample ID: Metal	CCV True	15:34 CCV3 Results	% Rec	CCV True	16:31 CCV4 Results	% Rec	CCV True	17:54 CCV5 Results	% Rec	
Aluminum										
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium										
Boron										
Cadmium	anr									
Calcium										
Chromium	2000	1970	98.5	2000	1970	98.5	2000	1980	99.0	
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese	anr									
Molybdenum										
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium	anr									
Zinc	anr									

(*) Outside of QC limits
(anr) Analyte not requested

62 of 124
ACCUTEST.

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC QC Limits: 90 to 110 % Recovery

Date Analyzed: 02/28/07 Run ID: MA2815 Methods: SW846 6010B Units: ug/l

Time: Sample ID: Metal		18:17 CCV6 Results	% Rec	CCV True	19:20 CCV7 Results	% Rec	CCV True	19:50 CCV8 Results	% Rec	
Aluminum										
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium										
Boron										
Cadmium	anr									
Calcium										
Chromium	2000	1980	99.0	2000	1980	99.0	2000	1980	99.0	
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese	anr									
Molybdenum										
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium	anr									
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

63 of 124 **ACCUTEST.** 

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B QC Limits: 90 to 110 % Recovery Run ID: MA2815 Units: ug/1

Time: Sample ID: Metal		21:13 CCV9 Results	% Rec
Aluminum			
Antimony			
Arsenic	anr		
Barium	anr		
Beryllium			
Boron			
Cadmium	anr		
Calcium			
Chromium	2000	1990	99.5
Cobalt			
Copper	anr		
Iron			
Lead	anr		
Magnesium			
Manganese	anr		
Molybdenum			
Nickel	anr		
Potassium	anr		
Selenium	anr		
Silver	anr		
Sodium			
Strontium			
Thallium			
Tin			
Titanium			
Vanadium	anr		
Zinc	anr		

(*) Outside of QC limits (anr) Analyte not requested

64 of 124 ACCUTEST.

#### HIGH STANDARD CHECK SUMMARY

#### Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B QC Limits: 95 to 105 % Recovery Run ID: MA2815 Units: ug/l

Time: Sample ID: Metal	HSTD True	11:53 HSTD1 Results	% Rec
Aluminum			
Antimony			
Arsenic	anr		
Barium	anr		
Beryllium			
Boron			
Cadmium	anr		
Calcium			
Chromium	4000	4000	100.0
Cobalt			
Copper	anr		
Iron			
Lead	anr		
Magnesium			
Manganese	anr		
Molybdenum			
Nickel	anr		
Potassium	anr		
Selenium	anr		
Silver	anr		
Sodium			

(*) Outside of QC limits (anr) Analyte not requested

anr anr

Strontium Thallium Tin Titanium Vanadium



#### INITIAL LOW CALIBRATION CHECK STANDARD SUMMARY

#### Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC Date Analyzed: 02/28/07 Methods: SW846 6010B Run ID: MA2815 QC Limits: 80 to 120 % Recovery Units: ug/l

QC LIMILLS. 60	LU 12U 6	vecoverà		Rull ID: MAZ615	Units: ug/I
Time: Sample ID: Metal	CRIB True	12:13 CRIB1 Results	% Rec		
Aluminum	400				
Antimony	10				
Arsenic	10				
Barium	400				
Beryllium	10				
Boron	200				
Cadmium	8.0				
Calcium	5000				
Chromium	20	20.3	101.5		
Cobalt	100				
Copper	50				
Iron	200				
Lead	6.0				
Magnesium	5000				
Manganese	30				
Molybdenum	10				
Nickel	80				
Potassium	5000				
Selenium	10				
Silver	20				
Sodium	5000				
Strontium	20				
Thallium	20				
Tin	20				
Titanium	20				
Vanadium	100				
Zinc	40				

(*) Outside of QC limits (anr) Analyte not requested



### INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

File ID: IR022807.ASC QC Limits: 80 to 120 % Recovery

Date Analyzed: 02/28/07 Run ID: MA2815 Methods: SW846 6010B Units: ug/l

Time: Sample ID: Metal		ICSAB True	12:29 ICSA1 Results	% Rec	12:36 ICSAB1 Results	% Rec
Aluminum	500000	500000	455000	91.0	455000	91.0
Antimony		1000	0.31		1030	103.0
Arsenic		500	1.3		526	105.2
Barium		500	4.2		555	111.0
Beryllium		500	-0.34		510	102.0
Boron			-41		-40	
Cadmium		1000	-1.2		959	95.9
Calcium	500000	500000	482000	96.4	475000	95.0
Chromium		500	1.3		520	104.0
Cobalt		500	-0.86		504	100.8
Copper		500	1.4		574	114.8
Iron	200000	200000	189000	94.5	186000	93.0
Lead		500	2.7		515	103.0
Magnesium	500000	500000	459000	91.8	456000	91.2
Manganese		500	-7.1		517	103.4
Molybdenum		500	0.36		496	99.2
Nickel		1000	1.7		966	96.6
Potassium			511		492	
Selenium		500	-3.0		505	101.0
Silver		1000	0.16		1100	110.0
Sodium			-340		-350	
Strontium			0.53		0.44	
Thallium		500	-1.3		500	100.0
Tin			-8.9		-9.3	
Titanium			0.020		-0.11	
Vanadium		500	3.8		519	103.8

(*) Outside of QC limits (anr) Analyte not requested

106.0

-3.3 1060

## BLANK RESULTS SUMMARY Part 2 - Method Blanks

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

QC Batch ID: MP5804 Matrix Type: AQUEOUS Methods: SW846 6010B

Units: ug/l

Prep Date:

02/27/07

Prep Date:				02/2//07
Metal	RL	IDL	MB raw	final
Aluminum	200	51		
Antimony	5.0	1.8		
Arsenic	5.0	1.4	anr	
Barium	200	.1	anr	
Beryllium	5.0	.06		
Boron	100	1.4		
Cadmium	4.0	.5	anr	
Calcium	5000	8		
Chromium	10	.9	-0.12	<10
Cobalt	50	.99		
Copper	25	1.4	anr	
Iron	100	16		
Lead	3.0	.7	anr	
Magnesium	5000	8		
Manganese	15	. 2	anr	
Molybdenum	10	.45		
Nickel	40	1	anr	
Potassium	5000	80		
Selenium	5.0	1.7	anr	
Silver	10	.5	anr	
Sodium	5000	160		
Strontium	20	.5		
Thallium	10	1.5		
Tin	20	1.5		
Titanium	20	.5		
Vanadium	50	. 4	anr	
Zinc	20	.8	anr	

Associated samples MP5804: T16448-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

____



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

QC Batch ID: MP5804 Matrix Type: AQUEOUS Methods: SW846 6010B

02/27/07

Units: ug/l

Prep Date: 02/27/07

									, = . ,	
Metal	T16414-1 Original	DUP	RPD	QC Limits	T16414-1 Original	MS	Spikelot MPTW3		Rec	QC Limits
Aluminum										
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium										
Boron										
Cadmium	anr									
Calcium										
Chromium	0.0	0.0	NC	0-20	0.0	397	400	99	9.3	75-125
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese	anr									
Molybdenum										
Nickel	anr									
Potassium										
Selenium	anr									
Silver	anr									
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium	anr									
Zinc	anr									

Associated samples MP5804: T16448-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

____



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

QC Batch ID: MP5804 Matrix Type: AQUEOUS Methods: SW846 6010B

Units: ug/l

Prep Date:

02/27/07

Metal	T16414-1 Original		Spikelot MPTW3	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	anr					
Barium	anr					
Beryllium						
Boron						
Cadmium	anr					
Calcium						
Chromium	0.0	352	400	88.0	12.0	
Cobalt						
Copper	anr					
Iron						
Lead	anr					
Magnesium						
Manganese	anr					
Molybdenum						
Nickel	anr					
Potassium						
Selenium	anr					
Silver	anr					
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium	anr					

Associated samples MP5804: T16448-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested



#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

QC Batch ID: MP5804 Matrix Type: AQUEOUS Methods: SW846 6010B

Units: ug/l

Prep Date:

02/27/07

Metal	BSP Result	Spikelot MPTW3	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Boron				
Cadmium	anr			
Calcium				
Chromium	407	400	101.8	80-120
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese	anr			
Molybdenum				
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP5804: T16448-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### SERIAL DILUTION RESULTS SUMMARY

# Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

QC Batch ID: MP5804 Matrix Type: AQUEOUS Methods: SW846 6010B

Units: ug/l

Prep Date:

02/27/07

Metal	T16414-1 Original	SDL 1:5	RPD	QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Boron				
Cadmium	anr			
Calcium				
Chromium	0.00	0.00	NC	0-10
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese	anr			
Molybdenum				
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Associated samples MP5804: T16448-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

____





**Section 7** 

## General Chemistry

### QC Data Summaries

#### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC



## METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Alkalinity, Total as CaCO3	GN11375	5.0	<5.0	mg/l	2500	2500	100.0	80-120%
Chloride	GN11343	1.0	<1.0	mg/l	xxxxxxx	1020	102.0	92-107%
Nitrogen, Nitrate + Nitrite	GN11301	0.050	<0.050	mg/l	0.500	0.51	102.0	89-112%
Nitrogen, Nitrite	GN11300	0.050	<0.050	mg/l	0.500	0.49	98.0	89-117%
Sulfate	GN11356	10	<10	mg/l	100	95.0	95.0	80-120%
Sulfate	GN11356			mg/l	xxxxxxx		*	80-120%
Sulfide	GN11313	0.20	<0.20	mg/l	1600	1380	85.0	80-120%
Total Organic Carbon	GN11304	1.0	<1.0	mg/l	25.0	26.0	104.0	83-110%

Associated Samples: Batch GN11300: T16448-1 Batch GN11301: T16448-1

Batch GN11304: T16448-1, T16448-2

Batch GN11313: T16448-1 Batch GN11343: T16448-1 Batch GN11376: T16448-1 Batch GN11375: T16448-1 (*) Outside of QC limits



## DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16448
Account: ITTXHO - Shaw E & I, Inc.
Project: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Alkalinity, Total as CaCO3	GN11375	T16445-5	mg/l	457	457	0.0	0-10%
Chloride	GN11343	T16445-5	mg/l	253	258	2.0	0-5%
Nitrogen, Nitrate + Nitrite	GN11301	T16445-18	mg/l	2.7	2.7	0.0	0-10%
Nitrogen, Nitrite	GN11300	T16445-18	mg/l	0.0030 U	<0.050	0.0	0-10%
Sulfate	GN11356	T16448-1	mg/l	403	436	7.8	0-20%
Sulfide	GN11313	T16445-5	mg/l	0.0 B	<0.20	0.0	0-20%
Total Organic Carbon	GN11304	T16445-18	mg/l	6.0	6.0	0.0	0-11%
рH	GN11334	T16448-1	su	7.1	7.1	0.0	0-6.8%
рH	GN11334	T16448-1	su	7.1	7.1	0.0	0-20%

Associated Samples: Batch GN11300: T16448-1 Batch GN11301: T16448-1

Batch GN11304: T16448-1, T16448-2 Batch GN11313: T16448-1

Batch GN11333: T16448-1 Batch GN11334: T16448-1 Batch GN11343: T16448-1 Batch GN11375: T16448-1 (*) Outside of QC limits

#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16448 Account: ITTXHO - Shaw E & I, Inc. Project: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Alkalinity, Total as CaCO3	GN11375	T16445-5	mg/l	457	125	590	106.0	79-122%
Chloride	GN11343	T16445-5	mg/l	253	xxxxxxxx	462	104.0	81-119%
Nitrogen, Nitrate + Nitrite	GN11301	T16445-18	mg/l	2.7	1.00	3.7	100.0	80-119%
Nitrogen, Nitrite	GN11300	T16445-18	mg/l	0.0030 U	0.100	0.094	94.0	75-134%
Sulfate	GN11356	T16448-1	mg/l	403	250	641	96.0	75-125%
Sulfate	GN11356	T16448-1	mg/l	403	xxxxxxxx	:	*	75-125%
Total Organic Carbon	GN11304	T16445-18	mg/l	6.0	10.0	16.0	100.0	74-121%

Associated Samples: Batch GN11300: T16448-1 Batch GN11301: T16448-1

Batch GN11304: T16448-1, T16448-2

Batch GN11343: T16448-1 Batch GN11375: T16448-1 Batch GN11375: T16448-1 (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits





**Section 8** 

### Misc. Forms

### Custody Documents and Other Forms

(Accutest Laboratories Southeast, Inc.)

Includes the following where applicable:

• Chain of Custody



Subcontract Information	T16448		i			ng ir	Hecki	FED-EX	- 1										SUTESTATION OF THE		
SUDCONTROL (INFORMATION   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	Malely Cad		Accutest Job #	,		. #	t Quote	Accute		770	1-4	3-2	<b>x: 7</b> ]	00 fa	71-47	6 - 713-21	TX 770	Houston,	vin, Suite 150 -	0165 Harw	1
Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Substitution   Subs	が投口 Matrix Cod.	and the second	Address and a train	n well is a	in sain	il later	len bis									anavar					
SE-ORLANDO	DW - Drinking W	MAN IN THE PROPERTY.	sted Analyses	Request	3846 (B.))	1750 R2	11/19/2014	55	2. 11	4.00	Mil Orga	L. Table	(5.	ormatic	roject in			psychological distributions in	tract information		- 6
Accident   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   A	GW - Ground W			1 1		ŀ									t.com					LANDO	SE-OR
Address   10165 Harwin Drive, Sulte 150   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016	WW - Wastewa					İ				-										act	ct Cont
10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   10165   Harwin Drive, Suite   150   Houston, TX 77036   Suite   150   Houston, TX 77036   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fax No.   Fa	SO · Soil	1 1			1 1		1								ories	utest Laborate	1				
Number of preserved bottles   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Prov	SL - Studge				1	İ	- 1	5								****	A				055
Number of preserved bottles   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Fax No.   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Provide   Prov	OI - OII LIQ - Other Liqu				1 1			K14						150	ve, Suit	65 Harwin Dri	1				
Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)   Tunatound Time (Businase days)	SOL - Other So	1			1 1	1	1	SF)	_	ZIp			itate					-	State		
Accutest Furthers Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes Order #   Accutest Europes O	SOL - OMer So					İ	I	8						6	TX 770					ORLANDO	
Accutest Sample ID		]	1 1 1		ì	Ì	- 1		١	ix No.	'	70	271.4	n / 713	271-47		o.   P	Fax N			ne No.
Acculest Sample ID   Dale   Time   Matrix   Bot   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   Sol   So	ĺ	1 1		1 1	ll	8			$\dashv$					0,,,0							
Title   Date   Time   Matrix   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date			1 1 1	1 1	1 1	¥	ş						<b>N</b> /								
T16448-1		1 1	1 1 1	1		2	Ž	Ě		ed bot	7 4		- 13			ction			Accutest Sample ID		
T16448-1   2/24/2007   1038   GW   3   2	LAB USE ON		1 1 1	- 1 1		3	Page	3	ğ	3 9	8	¥	£   §		Matrix	Time	Date		Tiodatost delitiple to		
Tunaround Time (Business days)  Tunaround Time (Business days)  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Comments I Remarks  Dels Deliverable Information  Tunaround Time (Business days)  Dels Deliverable Information  Comments I Remarks  Dels Deliverable Information  Tunaround Time (Business days)  Dels Dels Deliverable Information  Comments I Remarks  Dels Dels Dels Dels Dels Dels Dels Dels		1 1						×	1	_	T		2	3						T16448-1	
Turnsround Time (Business days)  Turnsround Time (Business days)  Turnsround Time (Business days)  Turnsround Time (Business days)  Turnsround Time (Business days)  Turnsround Time (Business days)  Turnsround Time (Business days)  Turnsround Time (Business days)  Comments / Ferments  Say Standard By Sample:  Date Time:  Date Deliverable information  Standard By Sample:  Date Time:  Turnsround Time (Business days)  Comments / Ferments  Comments / Ferments  Standard By Sample:  Date Time:  Turnsround Time (Business days)  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments / Ferments  Comments				$\rightarrow$	<del>  -  -</del>						╁	+				1046				-	
XX 10 Day STANDARD Approved By:	Only 1/2 Liter F	1 1		1.1		X		X	1		Ш		2	_ 3	GW	1038	2/24/20			116448-2	
XX 10 Day STANDARD Approved By:		T																			
XX 10 Day STANDARD Approved By:		<del>  </del>	<del>-   -  </del>	$\rightarrow$		$\dashv$	$\dashv$			+	+	-	-			+					
XX 10 Day STANDARD Approved By:											1										
XX 10 Day STANDARD Approved By: Oats: Commercial "A" State Forms  5 Day RUSH DD Format DD Format  4 Day RUSH XXX TRRP 13 Other  2 Day EMERGENCY XXX Reduced Tier!  1 Day EMERGENCY Commercial "A" = Results Only Commercial "A" = Results Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Talinguished by Sampler: Results Date Time: Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applications of Results Applicatio																					
XX 10 Day STANDARD Approved By: Date: Commercial "A" State Forms  5 Day RUSH Commercial "B" EDD Format DD Format  4 Day RUSH XXX TRRP 13 Other  2 Day EMERGENCY XXX Reduced Tier1  1 Day EMERGENCY Commercial "A" = Results Only Commercial "B" = Results Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Alinquished by Samplar: Resolved By: Date Time: Resolved By: Date Time: Resolved By: 1  1 1 2 2 4 9 2		1							_		+-		$\top$								
XX 10 Day STANDARD Approved By: Date: Commercial "A" State Forms  5 Day RUSH Commercial "B" EDD Format DD Format  4 Day RUSH XXX TRRP 13 Other  2 Day EMERGENCY XXX Reduced Tier1  1 Day EMERGENCY Commercial "A" = Results Only Commercial "B" = Results Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Alinquished by Samplar: Resolved By: Date Time: Resolved By: Date Time: Resolved By: 1  1 1 2 2 4 9 2		ļļ			-			-	-		╄	-+	+								
XX 10 Day STANDARD Approved By: Date: Commercial "A" State Forms  5 Day RUSH Commercial "B" EDD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD					1 1	_															
XX 10 Day STANDARD Approved By:			.		I																
XX 10 Day STANDARD Approved By: Date: Commercial "A" State Forms  5 Day RUSH Commercial "B" EDD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD		<del>-  </del>				_					+	_	-+								
XX 10 Day STANDARD Approved By: Date: Commercial "A" State Forms  5 Day RUSH Commercial "B" EDD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD		ļļ				_					_	_	4								
XX 10 Day STANDARD Approved By: Date: Commercial "A" State Forms  5 Day RUSH Commercial "B" EDD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD Format DD	1	1 1			1 1		- 1	- 1		1	Į.		-	- 1	i						
6 Day RUSH   Commercial "B"   EDD Format     4 Day RUSH   XX TRRP 13   Other     3 Day EMERGENCY   XX Reduced Tier!     1 Day EMERGENCY   Commercial "A" = Results Only     Other   Commercial "B" * Results AStandard QC     SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY     Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By: Resolved By	34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ofic in a	ments / Remarks	Comn	The same	Or of	A SA	N. Maria	dest	MALE POR	e or illin	n [	Informa	eliverable	Data (	Shortan Pleasan	17, 1 × (s	- A. Ankal Till			
4 Day RUSH  3 Day EMERGENCY  2 Day EMERGENCY  1 Day EMERGENCY  1 Day EMERGENCY  Commercial "A" = Results Only Commercial "B" = Results & Standard QC  Commercial "B" = Results & Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Results & Standard By: Results & STANGE POSSESSION, INCLUDING COURIER DELIVERY  Results & STANGE POSSESSION, INCLUDING COURIER DELIVERY  The standard By: Results & STANGE POSSESSION, INCLUDING COURIER DELIVERY  The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standard By: The standar								1					_	. [		, <u> </u>	ate:	Approved By:/ D	RD		XX
3 Day EMERGENCY  2 Day EMERGENCY  1 Day EMERGENCY  1 Day EMERGENCY  Commercial "A" = Results Only Commercial "B" = Results & Standard QC  Commercial "B" = Results & Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Date Time: Results & STANDARD POSSESSION, INCLUDING COURIER DELIVERY  Date Time: Results & STANDARD POSSESSION, INCLUDING COURIER DELIVERY  Date Time: 1 1 2 2 4 7 Date Time: Results & STANDARD POSSESSION, INCLUDING COURIER DELIVERY  Latinguished by Sampler:								İ			t			١ [		10					
2 Day EMERGENCY  1 Day EMERGENCY  Commercial "A" * Results Only Commercial "B" * Results Standard QC  Other  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Tailingulahad by Sampler:  Date Time: Results 4 Standard QC  Commercial "A" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial "B" * Results 6 Standard QC  Commercial								- 1				•r	01	Į							
1 Day EMERGENCY  Commercial "A" * Results Only Commercial "B" = Results & Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Facilinquished by Sampler:  Date Time:  Received By: 1 2 2 2															ed Tler1	XX Reduc					
Other  Commercial "B" = Results & Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Alinquished by Sampler:  Results & Standard QC  SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Results & Standard QC  The sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample of the sample																					
SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY  Date Time: Received By:  1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								1								1			ur		
elinquished by Sampler: Date Time: Received By: Relinquished by: Date Time: Received By: 1 2												rd Q0	& Stand	• Results	rcial "B"	Comme				Other	
Talinquished by Sampler: Date Time: Received By: Melinquished by: Date Time: Received By: 1 2	A CHEST SAN TRANSPORT	The Distriction when	DERES LOS		· -	IVERV	ER DE	COLIE	DING	N. INCI I	ESS!	E PO	CHAN	SAMPLE	CH TIME	NTED BELOW FA	ST BE DOCI	APLE CUSTODY MI	QAA.		
	scottones and south	<b>有一种人的一种人的</b>	Received By:					SOURI					3,,,,,,,,			Received By:		22 000 1001 1110	JAN.	hed by Sampler:	telinquie
			2	, 2					1	\	$\perp$	2				1					
Reinfordished by: Reinfordished by: Received By: Received By:		( )	Received By:	120A	53/m	7	$\gamma$	ALA	17	<b>₽</b> y:	Inquisi	F				Received By:	Date Time:			hed by:	Relinquis

T16448: Chain of Custody

Page 1 of 2

**Accutest Laboratories Southeast, Inc.** 



			000.02.0
ACCUTEST LABORATORIES S	SAMPLE RECEIP	T CONFIRMATION	
	LIENT: ALGC		
DATE/TIME RECEIVED: 02-78-07 09:30 #	OF COOLERS RECEIV	ed: $)$ cooler temps: $/\cdot  heta$	•
	CCUTEST COURIER	GREYHOUND DELIVERY	OTHER
	36 1726 39	05	
COOLER INFORMATION  CUSTODY SEAL NOT PRESENT OR NOT INTACT CHAIN OF CUSTODY NOT RECEIVED (COC) ANALYSIS REQUESTED IS UNCLEAR OR MISSING SAMPLE DATES OR TIMES UNCLEAR OR MISSING TEMPERATURE CRITERIA NOT MET  TRIP BLANK INFORMATION TRIP BLANK PROVIDED	SAMPLE L. CORRECT SAMPLE R INSUFFICE TIMES ON ID'S ON CO	INFORMATION  ABELS NOT PRESENT ON ALL BOTO NUMBER OF CONTAINERS USED ECEIVED IMPROPERLY PRESERVE ENT VOLUME FOR ANALYSIS COC DOES NOT MATCH LABEL(S) OF DOES NOT MATCH LABEL(S) OF HAVE HEADSPACE (MACRO BUEB RECEIVED BUT ANALYSIS NOT REC	D LES)
TRIP BLANK NOT PROVIDED		ES RECEIVED FOR ANALYSIS REQ	•
TRIP BLANK NOT ON COC	UNCLEAR	FILTERING INSTRUCTIONS	
TRIP BLANK INTACT	UNCLEAR	COMPOSITING INSTRUCTIONS	
TRIP BLANK NOT INTACT		ONTAINER(S) RECEIVED BROKEN	
RECEIVED WATER TRIP BLANK	— —	JAR NOT RECEIVED	
RECEIVED SOIL TRIP BLANK		D KIT NOT FROZEN WITHIN 48 HO	UR'S
MISC. INFORMATION		CHLORINE PRESENT	
NUMBER OF ENCORES ?	( APPLICAL	BLE TO EPA 600 SERIES OR NORTH	CAROLINA ORGANICS)
NUMBER OF 5035 FIELD KITS ?			
NUMBER OR LAB FILTERED METALS ?			
SUMMARY OF COMMENTS: SAMPLE	# 2 Ca4	B330 ANALYSIS BOTTLE	LE ENED
		Dyse Herrory Doy I CE	Necessor
ONLY \$500ML			
			,
TECHNICIAN SIGNATURE (DATE A)	28.07 technician si	halfor	
TECHNICIAN SIGNATURE/DATE W 1 02	TECHNICIAN SI	GNATURE/DATE // -	>>-≥ <del> S</del> γ <b>&gt;3</b> BD 10/03/06
ı		a media.	

T16448: Chain of Custody

Page 2 of 2



**Section 9** 

### GC Volatiles

### QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

#### Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries
- GC Surrogate Retention Time Summaries
- Initial and Continuing Calibration Summaries



Page 1 of 1

# **Method Blank Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.
Project: ITTXHO: Longhorn Army Ammunition Plant

Sample GXY996-MB	File ID XY025325.D	<b>DF</b> 1	<b>Analyzed</b> 03/08/07	By TD	Prep Date n/a	Prep Batch	Analytical Batch GXY996

The QC reported here applies to the following samples:

T16448-1, T16448-2

CAS No.	Compound	Result	RL	MDL	Units Q
74-82-8	Methane	ND	0.50	0.30	ug/l
74-84-0	Ethane	ND	1.0	0.60	ug/l
74-85-1	Ethene	ND	1.0	0.80	ug/l



Page 1 of 1

# Blank Spike Summary Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample GXY996-BS	<b>File ID DF</b> XY025326.D1	<b>Analyzed</b> 03/08/07	By TD	<b>Prep Date</b> n/a	<b>Prep Batch</b> n/a	Analytical Batch GXY996

The QC reported here applies to the following samples:

T16448-1, T16448-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
74-82-8	Methane	108	137	127	54-149
74-84-0	Ethane	219	273	125	57-143
74-85-1	Ethene	290	353	122	57-143



Page 1 of 1

# **Matrix Spike Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.
Project: ITTXHO: Longhorn Army Ammunition Plant

Sample F47731-7MS F47731-7 ^a	File ID XY025345.I XY025344.I	<b>Analyzed</b> 03/08/07 03/08/07	By TD TD	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GXY996 GXY996

The QC reported here applies to the following samples:

T16448-1, T16448-2

CAS No.	Compound	F47731-7 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
74-82-8	Methane	9.31	108	166	145	54-149
74-84-0	Ethane	ND	219	334	153*	57-143
74-85-1	Ethene	ND	290	435	150*	57-143

(a) Confirmation run.



Page 1 of 1

# **Duplicate Summary Job Number:** T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

<b>Sample</b> F47769-9DUP F47769-9	File ID XY025351.1 XY025350.1	<b>Analyzed</b> 03/08/07 03/08/07	By TD TD	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GXY996 GXY996

The QC reported here applies to the following samples:

T16448-1, T16448-2

CAS No.	Compound	F47769-9 ug/l Q	DUP ug/l Q	RPD	Limits
74-82-8	Methane	ND	ND	nc	24
74-84-0	Ethane	ND	ND	nc	23
74-85-1	Ethene	ND	ND	nc	10



#### **Initial Calibration Summary**

Sample: GXY995-ICC995

Job Number: T16448 Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025305.D

**Project:** ITTXHO: Longhorn Army Ammunition Plant

Response Factor Report VOA5

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Thu Mar 08 08:31:33 2007 Response via : Initial Calibration

Calibration Files

1 = XY025301.D 2 = XY025302.D 3 = XY025304.D 4 = XY025303.D

5 = XY025305.D 6 = XY025306.D 7 = XY025307.D

Compound 1 2 3 4 5 6 7 Avg %RSD

1)c Methane 1.256 2.507 1.576 0.832 1.293 0.961 1.016 1.349 E4 42.09#

---- Linear regr., Force(0,0) ---- Coefficient = 0.9983

Response Ratio = 0.00000 + 10071.12721 *A

2)c Ethylene 2.402 4.239 2.629 1.419 2.516 1.854 1.947 2.429 E4 37.22#

---- Linear regr., Force(0,0) ---- Coefficient = 0.9982

Response Ratio = 0.00000 + 19323.23175 *A

2.241 3.960 2.584 1.355 2.483 1.825 1.918 2.338 E4 3)c Ethane

---- Linear regr., Force(0,0) ---- Coefficient = 0.9981

Response Ratio = 0.00000 + 19028.53933 *A

(#) = Out of Range

RSK147XY.M Thu Mar 08 08:36:38 2007



#### **Initial Calibration Verification**

Sample: GXY995-ICV995

Job Number: T16448 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025308.D Account:

ITTXHO: Longhorn Army Ammunition Plant **Project:** 

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\030707\XY025308.D Vial: 100 Acq On : 7 Mar 2007 2:55 pm Operator: Trangd Sample : ICV995-1000 Misc : gc7128,gxy995,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Thu Mar 08 08:31:33 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound

----- Amount Calc. %Drift -----1 c Methane 2 c Ethylene 1000.000 950.295 5.0 74 -0.06 1.13- 1.73 1000.000 962.910 3.7 74 -0.03 2.85- 3.65 1000.000 991.839 0.8 76 -0.03 3.48- 4.28 3 c Ethane

._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025305.D RSK147XY.M Thu Mar 08 08:35:31 2007



**Continuing Calibration Summary** 

Job Number: T16448 Sample: GXY996-CC995 Lab FileID: XY025323.D

ALGC Accutest Laboratories Gulf Coast, Inc. Account: ITTXHO: Longhorn Army Ammunition Plant Project:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\030807\XY025323.D Vial: 100 Acq On : 8 Mar 2007 8:42 am Operator: Trangd Sample : CC995-1000 Misc : gc7128,gxy996,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Fri Mar 09 08:55:16 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound

----- Amount Calc. %Drift ----- 

 1 c
 Methane
 1000.000
 957.766
 4.2
 75
 0.04
 1.09-1.69

 2 c
 Ethylene
 1000.000
 988.131
 1.2
 76
 0.07
 2.80-3.60

 3 c
 Ethane
 1000.000
 983.846
 1.6
 75
 0.08
 3.43-4.23

 ._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025305.D RSK147XY.M Fri Mar 09 09:33:39 2007

87 of 124 ACCUTEST. T16448 Laboratories

#### **Continuing Calibration Summary**

Job Number: T16448 Sample: GXY996-CC995
Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025334.D

Project: ITTXHO: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Title : Dissolved Gases in Water
Last Update : Fri Mar 09 08:55:16 2007
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Compound Amount Calc. %Drift Area% Dev(min)RT Window

-----

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025303.D RSK147XY.M Fri Mar 09 09:34:49 2007



### **Continuing Calibration Summary**

Job Number: T16448 Sample: GXY996-CC995 **Lab FileID:** XY025346.D

ALGC Accutest Laboratories Gulf Coast, Inc. Account:

ITTXHO: Longhorn Army Ammunition Plant Project:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\030807\XY025346.D Vial: 100 Acq On : 8 Mar 2007 4:17 pm Operator: Trangd Sample : CC995-1000 Misc : gc7142,gxy996,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Fri Mar 09 08:55:16 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound

----- Amount Calc. %Drift -----
 1 c
 Methane
 1000.000 1110.796
 -11.1
 87
 0.00
 1.09- 1.69

 2 c
 Ethylene
 1000.000 1155.448
 -15.5
 89
 0.00
 2.80- 3.60

 3 c
 Ethane
 1000.000 1156.356
 -15.6
 89
 0.00
 3.43- 4.23

._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025305.D RSK147XY.M Fri Mar 09 09:33:39 2007



9.5

### **Continuing Calibration Summary**

Sample: GXY996-ECC995

Job Number: T16448 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: XY025352.D Account:

ITTXHO: Longhorn Army Ammunition Plant Project:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\030807\XY025352.D Vial: 100 Acq On : 8 Mar 2007 5:34 pm Operator: Trangd Sample : ECC995-1000 Misc : gc7142,gxy996,,,,, Inst : VOA5 Multiplr: 1.00

IntFile : EVENTS.E

Method : C:\HPCHEM\2\METHODS\RSK147XY.M (Chemstation Integrator)
Title : Dissolved Gases in Water

Last Update : Fri Mar 09 08:55:16 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 30% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound

----- Amount Calc. %Drift -----
 1 c
 Methane
 1000.000 1104.999 -10.5
 86 0.00 1.09- 1.69

 2 c
 Ethylene
 1000.000 1148.251 -14.8
 88 0.01 2.80- 3.60

 3 c
 Ethane
 1000.000 1151.972 -15.2
 88 0.01 3.43- 4.23

._____

(#) = Out of Range SPCC's out = 0 CCC's out = 0 XY025305.D RSK147XY.M Fri Mar 09 09:33:40 2007





**Section 10** 

# GC Semi-volatiles

# QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

#### Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries
- GC Surrogate Retention Time Summaries
- Initial and Continuing Calibration Summaries



Page 1 of 1

# **Method Blank Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	<b>Prep Batch</b>	<b>Analytical Batch</b>
OP19677-MB	GG020203	.D1	03/02/07	MRE	03/01/07	OP19677	GGG906

The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	Result	RL	MDL	Units Q
2691-41-0	HMX	ND	0.20	0.060	ug/l
121-82-4	RDX	ND	0.20	0.075	ug/l
99-65-0	1,3-Dinitrobenzene	ND	0.20	0.070	ug/l
606-20-2	2,6-Dinitrotoluene	ND	0.20	0.065	ug/l
121-14-2	2,4-Dinitrotoluene	ND	0.20	0.075	ug/l
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.20	0.070	ug/l
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.20	0.080	ug/l
98-95-3	Nitrobenzene	ND	0.20	0.060	ug/l
88-72-2	o-Nitrotoluene	ND	0.20	0.060	ug/l
99-08-1	m-Nitrotoluene	ND	0.20	0.075	ug/l
99-99-0	p-Nitrotoluene	ND	0.20	0.075	ug/l
479-45-8	Tetryl	ND	0.20	0.075	ug/l
99-35-4	1,3,5-Trinitrobenzene	ND	0.20	0.095	ug/l
118-96-7	2,4,6-Trinitrotoluene	ND	0.20	0.080	ug/l

CAS No. Surrogate Recoveries Limits

610-39-9 3,4-Dinitrotoluene 102% 70-136%



Page 1 of 1

# **Method Blank Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP19677-MB	GG020233	.D1	03/05/07	MRE	03/01/07	OP19677	GGG907

The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	Result	RL	MDL	Units Q
2001 41 0	IIMW	ND	0.20	0.000	/1
2691-41-0	HMX	ND	0.20	0.060	ug/l
121-82-4	RDX	ND	0.20	0.075	ug/l
99-65-0	1,3-Dinitrobenzene	ND	0.20	0.070	ug/l
606-20-2	2,6-Dinitrotoluene	ND	0.20	0.065	ug/l
121-14-2	2,4-Dinitrotoluene	ND	0.20	0.075	ug/l
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.20	0.070	ug/l
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.20	0.080	ug/l
98-95-3	Nitrobenzene	ND	0.20	0.060	ug/l
88-72-2	o-Nitrotoluene	ND	0.20	0.060	ug/l
99-08-1	m-Nitrotoluene	ND	0.20	0.075	ug/l
99-99-0	p-Nitrotoluene	ND	0.20	0.075	ug/l
479-45-8	Tetryl	ND	0.20	0.075	ug/l
99-35-4	1,3,5-Trinitrobenzene	ND	0.20	0.095	ug/l
118-96-7	2,4,6-Trinitrotoluene	ND	0.20	0.080	ug/l

CAS No. Surrogate Recoveries Limits

610-39-9 3,4-Dinitrotoluene 80% 70-136%



Page 1 of 1

# Blank Spike Summary Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP19677-BS	GG020202	2.D1	03/02/07	MRE	03/01/07	OP19677	GGG906

The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
2691-41-0	HMX	5	5.3	106	74-152
121-82-4	RDX	5	5.4	108	80-124
99-65-0	1,3-Dinitrobenzene	5	5.3	106	84-123
606-20-2	2,6-Dinitrotoluene	5	5.3	106	84-133
121-14-2	2,4-Dinitrotoluene	5	5.1	102	77-116
35572-78-2	2-amino-4,6-Dinitrotoluene	5	5.2	104	78-117
19406-51-0	4-amino-2,6-Dinitrotoluene	5	5.1	102	84-123
98-95-3	Nitrobenzene	5	5.5	110	76-128
88-72-2	o-Nitrotoluene	5	5.0	100	76-120
99-08-1	m-Nitrotoluene	5	5.2	104	74-124
99-99-0	p-Nitrotoluene	5	5.3	106	81-125
479-45-8	Tetryl	5	4.6	92	62-117
99-35-4	1,3,5-Trinitrobenzene	5	5.3	106	85-127
118-96-7	2,4,6-Trinitrotoluene	5	5.3	106	71-128

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
610-39-9	3,4-Dinitrotoluene	124%	70-136%



Page 1 of 1

# Blank Spike Summary Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc. **Project:** ITTXHO: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP19677-BS	GG020232	2.D1	03/05/07	MRE	03/01/07	OP19677	GGG907

The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
2691-41-0	HMX	5	5.9	118	74-152
121-82-4	RDX	5	5.5	110	80-124
99-65-0	1,3-Dinitrobenzene	5	5.3	106	84-123
606-20-2	2,6-Dinitrotoluene	5	5.1	102	84-133
121-14-2	2,4-Dinitrotoluene	5	5.1	102	77-116
35572-78-2	2-amino-4,6-Dinitrotoluene	5	5.2	104	78-117
19406-51-0	4-amino-2,6-Dinitrotoluene	5	5.1	102	84-123
98-95-3	Nitrobenzene	5	6.4	128	76-128
88-72-2	o-Nitrotoluene	5	5.0	100	76-120
99-08-1	m-Nitrotoluene	5	5.3	106	74-124
99-99-0	p-Nitrotoluene	5	5.3	106	81-125
479-45-8	Tetryl	5	4.6	92	62-117
99-35-4	1,3,5-Trinitrobenzene	5	5.5	110	85-127
118-96-7	2,4,6-Trinitrotoluene	5	5.7	114	71-128

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
610-39-9	3,4-Dinitrotoluene	100%	70-136%



Page 1 of 1

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Sample	File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
OP19677-MS	GG020207.I	<b>)</b> 1	03/02/07	MRE	03/01/07	OP19677	GGG906
OP19677-MSD	GG020208.I	<b>)</b> 1	03/02/07	MRE	03/01/07	OP19677	GGG906
F47539-3	GG020206.I	<b>)</b> 1	03/02/07	MRE	03/01/07	OP19677	GGG906

The QC reported here applies to the following samples:

T16448-2

CAS No.	Compound	F47539-3 ug/l	Ç	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	-									
2691-41-0	HMX	ND		10	11.0	110	11.8	118	7	74-152/21
121-82-4	RDX	ND		10	10.3	103	10.7	107	4	80-124/20
99-65-0	1,3-Dinitrobenzene	ND		10	10.3	103	10.9	109	6	84-123/23
606-20-2	2,6-Dinitrotoluene	ND		10	9.9	99	10.6	106	7	84-133/23
121-14-2	2,4-Dinitrotoluene	ND		10	9.7	97	10.3	103	6	77-116/26
35572-78-2	2-amino-4,6-Dinitrotoluene	ND		10	9.4	94	10.5	105	11	78-117/28
19406-51-0	4-amino-2,6-Dinitrotoluene	ND		10	9.1	91	10.2	102	11	84-123/27
98-95-3	Nitrobenzene	ND		10	10.5	105	11.1	111	6	76-128/28
88-72-2	o-Nitrotoluene	ND		10	9.3	93	10.2	102	9	76-120/30
99-08-1	m-Nitrotoluene	ND		10	9.5	95	10.6	106	11	74-124/32
99-99-0	p-Nitrotoluene	ND		10	9.7	97	10.7	107	10	81-125/34
479-45-8	Tetryl	ND		10	7.4	74	7.9	79	7	62-117/28
99-35-4	1,3,5-Trinitrobenzene	ND		10	9.8	98	10.4	104	6	85-127/21
118-96-7	2,4,6-Trinitrotoluene	ND		10	9.8	98	10.4	104	6	71-128/21

CAS No.	Surrogate Recoveries	MS	MSD	F4/539-3	Limits
610-39-9	3,4-Dinitrotoluene	94%	98%	102%	70-136%



# **Semivolatile Surrogate Recovery Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

Method: SW846 8330A Matrix: AQ

#### Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	<b>S1</b> a
T16448-2	GG020223.D	95.0
OP19677-BS	GG020202.D	124.0
OP19677-BS	GG020232.D	100.0
OP19677-MB	GG020203.D	102.0
OP19677-MB	GG020233.D	80.0
OP19677-MS	GG020207.D	94.0
OP19677-MSD	GG020208.D	98.0
OP19677-BS OP19677-BS OP19677-MB OP19677-MB OP19677-MS	GG020202.D GG020232.D GG020203.D GG020233.D GG020207.D	124.0 100.0 102.0 80.0 94.0

Surrogate Recovery Compounds Limits

**S1** = 3,4-Dinitrotoluene 70-136%

(a) Recovery from GC signal #1



# **GC Surrogate Retention Time Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

 Check Std:
 GGG906-CC825
 Injection Date:
 03/02/07

 Lab File ID:
 GG020201.D
 Injection Time:
 16:17

**Instrument ID:** GCGG **Method:** SW846 8330A

S1 ^a RT

Check Std 13.50

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT
OP19677-BS	GG020202.D	03/02/07	16:45	13.49
OP19677-MB	GG020203.D	03/02/07	17:12	13.50
ZZZZZZ	GG020204.D	03/02/07	17:27	13.50
ZZZZZZ	GG020205.D	03/02/07	17:54	13.50
F47539-3	GG020206.D	03/02/07	18:22	13.49
OP19677-MS	GG020207.D	03/02/07	18:50	13.47
OP19677-MSD	GG020208.D	03/02/07	19:17	13.46
ZZZZZZ	GG020209.D	03/02/07	19:45	13.47
ZZZZZZ	GG020210.D	03/02/07	20:12	13.44
ZZZZZZ	GG020211.D	03/02/07	20:40	13.43

#### Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1



# **GC Surrogate Retention Time Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

 Check Std:
 GGG906-CC825
 Injection Date:
 03/02/07

 Lab File ID:
 GG020212.D
 Injection Time:
 21:07

**Instrument ID:** GCGG **Method:** SW846 8330A

S1 ^a RT

Check Std	13.45

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT
ZZZZZZ	GG020214.D	03/02/07	22:03	13.44
ZZZZZZ	GG020215.D	03/02/07	22:30	13.42
ZZZZZZ	GG020216.D	03/02/07	22:58	13.43
ZZZZZZ	GG020217.D	03/02/07	23:25	13.43
ZZZZZZ	GG020218.D	03/02/07	23:53	13.43
ZZZZZZ	GG020219.D	03/03/07	00:20	13.40
ZZZZZZ	GG020220.D	03/03/07	00:48	13.42
ZZZZZZ	GG020221.D	03/03/07	01:16	13.43
ZZZZZZ	GG020222.D	03/03/07	01:43	13.41
T16448-2	GG020223.D	03/03/07	02:11	13.42

#### Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1



# **GC Surrogate Retention Time Summary**

Job Number: T16448

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

 Check Std:
 GGG907-CC827
 Injection Date:
 03/05/07

 Lab File ID:
 GG020231.D
 Injection Time:
 13:23

**Instrument ID:** GCGG Method: SW846 8330A

S1 ^a S1 ^b RT RT

Check Std 10.72 10.72

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT	S1 ^b RT
OP19677-BS	GG020232.D	03/05/07	13:43	10.72	
OP19677-MB	GG020233.D	03/05/07	14:02	10.72	
ZZZZZZ	GG020234.D	03/05/07	14:22	10.72	
ZZZZZZ	GG020236.D	03/05/07	15:01	10.71	
GGG907-ECC827	GG020238.D	03/05/07	15:40	10.72	10.72

#### Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1

(b) Retention time from GC signal #2



### **Initial Calibration Summary**

Sample: GGG825-ICC825 Lab FileID: GG018282.D

Job Number:T16448Sample:Account:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:

**Project:** ITTXHO: Longhorn Army Ammunition Plant

Response Factor Report G1315B

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330
Last Update : Thu Oct 19 11:32:41 2006
Response via : Initial Calibration

Calibration Files

20 =GG018279.D 100 =GG018280.D 250 =GG018281.D 500 =GG018282.D 750 =GG018283.D 1000=GG018284.D 2000=GG018285.D ICV =GG018286.D

Co	ompound	20	100	250	500	750	1000	2000	ICV	Avg	%RSD	
1)	HMX	2.870	2.789	2.757	2.694	2.719	2.735	2.786		 2.764	E3	2.09
2)	TNX	5.916	6.424	6.486	6.331	6.453	6.468	6.587		6.381	E3	3.43
3)	DNX	4.900	5.156	5.125	4.986	5.037	5.057	5.155		5.059	E3	1.88
4)	MNX	4.909	4.991	4.972	4.807	4.886	4.901	4.995		4.923	E3	1.38
					3.500					3.512		4.27
	1,3,5-Trinit									7.667		1.70
	1,3-Dinitrob									1.057		1.49
	Tetryl				6.004					6.127		1.17
	Nitrobenzene									6.962		1.85
	3,4-Dinitrot									4.661		1.56
	2,4,6-Trinit									7.320		1.42
	4-Amino-2,6-									5.242		1.37
	2-Amino-4,6-									7.177		1.35
	2,6-Dinitrot									5.068		4.37
	2,4-Dinitrot									1.009		6.36
	o-Nitrotolue									4.532		5.53
	p-Nitrotolue m-Nitrotolue									3.800 4.830		4.06 2.26
18)	m-Nitrotolue	4.959	4.808	4.850	4.029	4.803	4.812	4.942		4.830	E3	2.20
Signa	al #2											
1 \	HMX	0 1 5 1	0 1/10	0 100	8.012	9 000	0 000	0 220		8.132	ъЭ	0.91
	TNX				0.969					0.132 $0.981$		1.55
,					7.974					8.000		3.05
					7.696					7.794		1.14
	RDX				5.855					5.748	_	8.08
	1,3,5-Trinit									1.545		2.85
	1,3-Dinitrob									1.267		1.91
	Tetryl				1.092					1.100	E4	2.76
9)	Nitrobenzene									3.264		2.50
	3,4-Dinitrot									6.344	E3	1.89
11)	2,4,6-Trinit	1.070	1.106	1.085	1.048	1.060	1.064	1.089		1.075	E4	1.85
	4-Amino-2,6-									1.425	E4	1.62
13)				1 001	1 1 17 1	1 100	1 104	1 222		1.208	п./	2.20
	2-Amino-4,6-									1.200	上4	2.20
	2-Amino-4,6-2,6-Dinitrot									7.038		6.64
14) 15)	2,6-Dinitrot 2,4-Dinitrot	8.005 1.102	7.244 0.930	6.878 0.906	6.645 0.880	6.758 0.888	6.778 0.892	6.958 0.911		7.038 0.930	E3 E4	6.64 8.36
14) 15) 16)	2,6-Dinitrot 2,4-Dinitrot o-Nitrotolue	8.005 1.102 5.194	7.244 0.930 4.804	6.878 0.906 4.848	6.645 0.880 4.493	6.758 0.888 4.691	6.778 0.892 4.697	6.958 0.911 4.799		7.038 0.930 4.789	E3 E4 E3	6.64 8.36 4.46
14) 15) 16) 17)	2,6-Dinitrot 2,4-Dinitrot	8.005 1.102 5.194 7.934	7.244 0.930 4.804 7.544	6.878 0.906 4.848 7.631	6.645 0.880 4.493 7.143	6.758 0.888 4.691 7.472	6.778 0.892 4.697 7.477	6.958 0.911 4.799 7.640		7.038 0.930	E3 E4 E3 E3	6.64 8.36

(#) = Out of Range ### Number of calibration levels exceeded format ###

8330_EX.M Fri Oct 20 16:25:52 2006



#### **Initial Calibration Verification**

Page 1 of 2
Sample: GGG825-ICV825

Job Number:T16448Sample:GGG825-ICVAccount:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG018286.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\HPCHEM\1\DATA\1018ODS\GG018286.D\dad1B.ch Vial: 10

Signal #2 : G:\HPCHEM\1\DATA\1018ODS\GG018286.D\dad1A.ch

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Oct 19 11:32:41 2006 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Ca	alc.	%Drift	Area%	Dev(m	in)RT Window
1 2	HMX TNX	500.000	531.		-6.2 NA-	0	0.00	3.83- 4.83
3	DNX				NA-			
4	MNX				NA-			
5	RDX	500.000			-1.4	0	0.00	6.10- 7.10
6	1,3,5-Trinitrobenzene	500.000			-6.8	0	0.00	8.41- 9.41
7	1,3-Dinitrobenzene	500.000			-4.8	0	0.00	10.38-11.38
8 9	Tetryl Nitrobenzene	500.000			3.1 -6.2	0 0	0.00	11.18-12.18 11.86-12.86
9 10 S	3,4-Dinitrotoluene	500.000	531.		-6.2 NA-	-		11.80-12.80
10 5	2,4,6-Trinitrotoluene	500.000	507		-1.5	0	0.00	13.56-14.56
12	4-Amino-2,6-Dinitrotol				-3.2	0	0.00	14.25-15.25
13	2-Amino-4,6-Dinitrotol				3.8	0	0.00	15.03-16.03
14	2,6-Dinitrotoluene	500.000			0.7	0	0.00	16.01-17.01
15	2,4-Dinitrotoluene	500.000	502.	401	-0.5	0	0.00	16.52-17.52
16	o-Nitrotoluene	500.000	501.	204	-0.2	0	0.00	19.59-20.59
17	p-Nitrotoluene	500.000			-4.1	0	0.00	20.92-21.92
18	m-Nitrotoluene	500.000	509.	118	-1.8	0	0.00	22.61-23.61
****	Signal #2 ****							
1	HMX	500.000	537.		-7.6			3.83- 4.83
2	TNX				NA-			
3	DNX				NA-			
4	MNX	F00 000	F 0 F		NA-			C 10 7 10
5 6	RDX	500.000			-5.1 -6.8	0 0	0.00	6.10- 7.10 8.41- 9.41
6 7	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	500.000			-6.8 -5.9	0	0.00	10.38-11.38
8	Tetryl	500.000			2.1	0	0.00	11.18-12.18
9	Nitrobenzene	500.000			-6.4	0	0.00	11.86-12.86
10 S	3,4-Dinitrotoluene	300.000	331.	-	NA-	-		11.00 12.00
11	2,4,6-Trinitrotoluene	500.000	505.		-1.2	0	0.00	13.56-14.56
12	4-Amino-2,6-Dinitrotol				-3.2	0	0.00	14.25-15.25
13	2-Amino-4,6-Dinitrotol				3.9	0	0.00	15.03-16.03
14	2,6-Dinitrotoluene	500.000	493.	423	1.3	0	0.00	16.01-17.01
15	2,4-Dinitrotoluene	500.000	499.	987	0.0	0	0.00	16.52-17.52
16	o-Nitrotoluene	500.000			-0.7	0	0.00	19.59-20.59
17	p-Nitrotoluene	500.000			-4.7	0	0.00	20.92-21.92
18	m-Nitrotoluene	500.000	512.	492	-2.5	0	0.00	22.61-23.61



# 00079243

Page 2 of 2

**Initial Calibration Verification** 

Sample: GGG825-ICV825

Job Number: T16448 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG018286.D Account:

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018286.D 8330_EX.M Fri Oct 20 16:26:22 2006



#### **Initial Calibration Verification**

Job Number: T16448

Sample: GGG826-ICV825 ccutest Laboratories Gulf Coast, Inc. Lab FileID: GG018300.D

Account: ALGC Accutest Laboratories Gulf Coast, Inc.

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\HPCHEM\1\DATA\10190DS\GG018300.D\dad1B.ch Vial: 4

Signal #2 : G:\HPCHEM\1\DATA\1019ODS\GG018300.D\dad1A.ch

 Acq On
 : 19-Oct-2006, 13:44:13
 Operator: MIKEE

 Sample
 : ICV825-500
 Inst : G1315B

 Misc
 : OP18222,ggg826,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Oct 19 11:32:41 2006 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	C Ca	alc.				n)RT Wi	
1	HMX				NA				
2	TNX	500.000	514				0.00	4.15-	5.15
3	DNX	500.000	511	166	-2.9 -2.2	0	0.00	4.58-	
4	MNX				-3.6			5.34-	
5	RDX				NA				
6	1,3,5-Trinitrobenzene				NA				
7	1,3-Dinitrobenzene				NA				
8	Tetryl				NA				
9	Nitrobenzene				NA				
10 S	3,4-Dinitrotoluene				NA				
11	2,4,6-Trinitrotoluene				NA				
12	4-Amino-2,6-Dinitrotol	uen			NA				
13	2-Amino-4,6-Dinitrotol	uen			NA				
14	2,6-Dinitrotoluene				NA				
15	2,4-Dinitrotoluene				NA				
16	o-Nitrotoluene				NA				
17	p-Nitrotoluene				NA				
18	m-Nitrotoluene				NA				
****	Signal #2 ****								
1	HMX				NA				
2	TNX	500.000	509	.991	-2.0	0	0.00	4.15-	5.15
3	DNX	500.000	523	. 209	-4.6	0		4.58-	5.58
4	MNX	500.000	527	. 451	-5.5	0	-0.01	5.34-	6.34
5	RDX				NA				
6	1,3,5-Trinitrobenzene				NA				
7	1,3-Dinitrobenzene				NA				
8	Tetryl				NA				
9	Nitrobenzene				NA				
10 S	3,4-Dinitrotoluene				NA				
11	2,4,6-Trinitrotoluene				NA				
12	4-Amino-2,6-Dinitrotol	uen			NA				
13	2-Amino-4,6-Dinitrotol	uen			NA				
14	2,6-Dinitrotoluene				NA				
15	2,4-Dinitrotoluene				NA				
16	o-Nitrotoluene				NA				
17	p-Nitrotoluene				NA				
18	m-Nitrotoluene				NA				



# 00079245

**Initial Calibration Verification** 

Page 2 of 2
Sample: GGG826-ICV825

Job Number:T16448Sample:GGG826-ICVAccount:ALGC Accutest Laboratories Gulf Coast, Inc.Lab FileID:GG018300.D

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018286.D 8330_EX.M Fri Oct 20 16:54:56 2006





### **Initial Calibration Summary**

Page 1 of 1
Sample: GGG827-ICC827

Job Number: T16448 Sample: GGG827-ICC Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG018316.D

Project: ITTXHO: Longhorn Army Ammunition Plant

Response Factor Report G1315B

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330
Last Update : Fri Oct 20 14:03:32 2006
Response via : Initial Calibration

Calibration Files

20 =GG018313.D 100 =GG018314.D 250 =GG018315.D 500 =GG018316.D

750 =GG018317.D 1000=GG018318.D 2000=GG018319.D

	Compound	20	100	250	500	750	1000	2000	) Avg	ę	RSD
1)	TNX	6.022	6.861	7.022	6.686	6.915	6.925	7.121	6.793	E3	5.38
2)	HMX						2.481				7.51
3)	DNX						5.545				3.05
4)	MNX						4.976				3.73
5)	1,3,5-Trinitroben	7.302	7.899	8.123	7.797	7.946	7.847	8.236	7.879	E3	3.78
6)	RDX						3.686				5.39
7)	1,3-Dinitrobenzen										1.56
8)	Nitrobenzene	6.720	7.206	7.440	7.104	7.286	7.290	7.513	7.223	E3	3.61
9)	2,4,6-Trinitrotol										3.39
10)	Tetryl						5.862				7.10
	3,4-Dinitrotoluen										1.46
12)	2,6-Dinitrotoluen										3.38
13)	2,4-Dinitrotoluen										6.68
14)	o-Nitrotoluene						4.666				3.36
15)	p-Nitrotoluene										2.49
16)	4-Amino-2,6-Dinit										3.01
17)							5.119				3.79
18)	2-Amino-4,6-Dinit	7.249	7.503	7.692	7.547	7.548	7.525	7.845	7.558	E3	2.42
Signa	1 #2										
1)	TNX	0.828	1.032	1.066	1.024	1.037	1.032	1.073	1.013	E4	8.25
2)	HMX	8.967	9.716	9.270	8.345	8.192	8.095	8.326	8.702	E3	7.15
3)	DNX	0.786	1.108	1.019	0.937	0.919	0.897	0.935	0.943	E4	10.65
4)	MNX	7.457	8.346	8.580	8.147	8.087	7.895	8.399	8.130	E3	4.58
5)	1,3,5-Trinitroben	1.449	1.617	1.667	1.594	1.616	1.593	1.673	1.601	E4	4.64
6)	RDX	6.077	6.386	6.563	6.283	6.229	6.181	6.460	6.311	E3	2.67
7)	1,3-Dinitrobenzen	1.294	1.326	1.427	1.333	1.365	1.364	1.397	1.358	E4	3.31
8)	Nitrobenzene	3.190	3.096	3.823	3.281	3.391	3.385	3.476	3.378	E3	6.96
9)	2,4,6-Trinitrotol	1.098	1.109	1.152	1.104	1.122	1.113	1.169	1.124	E4	2.37
10)	Tetryl	0.953	1.028	1.114	1.113	1.085	1.059	1.177	1.075	E4	6.67
11)S	3,4-Dinitrotoluen										1.53
12)	2,6-Dinitrotoluen	8.344	7.760	7.758	7.423	7.578	7.556	7.765	7.740	E3	3.83
13)	2,4-Dinitrotoluen	1.104	0.941	0.942	0.911	0.927	0.919	0.952	0.957	E4	6.94
14)	o-Nitrotoluene										5.09
15)	p-Nitrotoluene						1.926				4.82
16)	4-Amino-2,6-Dinit										2.66
17)	m-Nitrotoluene	2.353	2.391	2.516	2.444	2.546	2.567	2.681	2.500	E3	4.52
18)	2-Amino-4,6-Dinit	1.233	1.258	1.276	1.258	1.253	1.255	1.311	1.263	E4	1.92

(#) = Out of Range

8330_RP.M Mon Oct 23 13:34:29 2006



#### **Initial Calibration Verification**

Page 1 of 2
Sample: GGG827-ICV827

GG018320.D

Job Number: T16448 Sample: Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID:

**Project:** ALGC Accutest Laboratories Gulf Coast, Inc. ITTXHO: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

Signal #1 : G:\HPCHEM\1\DATA\1020RP\GG018320.D\dad1B.ch Vial: 10

Signal #2 : G:\HPCHEM\1\DATA\1020RP\GG018320.D\dad1A.ch

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Fri Oct 20 14:03:32 2006 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift	Area%	Dev(mi	in)RT Window
1	TNX	250.000	258.384	-3.4	100	0.00	4.21- 5.21
2	HMX	250.000	260.989	-4.4	104	0.00	4.69- 5.69
3	DNX	250.000	254.013	-1.6	100	0.00	4.83- 5.83
4	MNX	250.000	255.142	-2.1	98	0.00	5.66- 6.66
5	1,3,5-Trinitrobenzene	250.000	264.789	-5.9	103	0.00	6.12- 7.12
6	RDX	250.000	252.023	-0.8	97	0.00	6.51- 7.51
7	1,3-Dinitrobenzene	250.000	257.308	-2.9	101	0.00	7.70- 8.70
8	Nitrobenzene	250.000		-6.4	103	0.00	8.24- 9.24
9	2,4,6-Trinitrotoluene		268.228	-7.3	105	0.00	8.71- 9.71
10	Tetryl	250.000	205.504	17.8#	79	0.00	9.41-10.41
11 S	3,4-Dinitrotoluene			NA-			
12	2,6-Dinitrotoluene	250.000		-1.7	101	0.00	10.49-11.49
13	2,4-Dinitrotoluene	250.000	244.946	2.0	99	0.00	10.95-11.95
14	o-Nitrotoluene	250.000		0.7	99	0.00	11.79-12.79
15	p-Nitrotoluene	250.000		-3.5	103	0.00	12.45-13.45
16	4-Amino-2,6-Dinitrotol			-2.4	100	0.00	12.83-13.83
17	m-Nitrotoluene		252.478	-1.0	99	0.00	13.29-14.29
18	2-Amino-4,6-Dinitrotol	250.000	236.039	5.6	93	0.00	14.31-15.31
****	Signal #2 *****						
1	TNX	250.000	262.147	-4.9	100	0.00	4.22- 5.22
2	HMX	250.000		-10.4	104	0.00	4.69- 5.69
3	DNX		263.149	-5.3	97	0.00	4.83- 5.83
4	MNX	250.000	255.967	-2.4	97	0.00	5.66- 6.66
5	1,3,5-Trinitrobenzene	250.000		-6.2	102	0.00	6.12- 7.12
6	RDX	250.000	248.723	0.5	96	0.00	6.51- 7.51
7	1,3-Dinitrobenzene		276.649	-10.7	105	0.00	7.70- 8.70
8	Nitrobenzene	250.000	301.148	-20.5#	106	0.00	8.24- 9.24
9	2,4,6-Trinitrotoluene	250.000	269.121	-7.6	105	0.00	8.71- 9.71
10	Tetryl	250.000	203.173	18.7#	78	0.00	9.41-10.41
11 S	3,4-Dinitrotoluene			NA-			
12	2,6-Dinitrotoluene	250.000	252.008	-0.8	101	0.00	10.49-11.49
13	2,4-Dinitrotoluene	250.000	241.694	3.3	98	0.00	10.95-11.95
14	o-Nitrotoluene	250.000	241.466	3.4	98	0.00	11.79-12.79
15	p-Nitrotoluene	250.000	250.555	-0.2	102	0.00	12.46-13.46
16	4-Amino-2,6-Dinitrotol	250.000	255.253	-2.1	100	0.00	12.83-13.83
17	m-Nitrotoluene	250.000	250.572	-0.2	100	0.00	13.28-14.28
18	2-Amino-4,6-Dinitrotol			6.0	93	0.00	14.31-15.31

107 of 124 **ACCUTEST.**T16448
Laboratories

# 00079248

Page 2 of 2

**Initial Calibration Verification** 

Job Number: T16448 Sample: GGG827-ICV827

ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG018320.D Account:

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018315.D 8330_RP.M Mon Oct 23 13:35:35 2006



### **Continuing Calibration Summary**

Job Number: T16448 Sample: GGG906-CC825 Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020201.D

**Project:** ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #2 : G:\DATA\03020DS\GG020201.D\dad1A.ch

 Acq On
 : 02-Mar-2007, 16:17:48
 Operator: MIKEE

 Sample
 : CC825-500
 Inst : G1315B

 Misc
 : OP19677,ggg906,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Mar 01 11:02:09 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	t Calc.	%Drift	Area	l% Dev(m	in)RT Window
1 2	HMX TNX		490.559 512.293	1.9 -2.5	101 103	0.00	3.86- 4.86 4.20- 5.20
3	DNX		511.151	-2.2	104	0.00	4.60- 5.60
4	MNX	500.000	508.598	-1.7	104	0.01	5.37- 6.37
5	RDX	500.000	518.998	-3.8	104	0.00	6.15- 7.15
6	1,3,5-Trinitrobenzene	500.000	498.455	0.3	103	0.02	8.43- 9.43
7	1,3-Dinitrobenzene	500.000	498.190	0.4	102	0.02	10.43-11.43
8	Tetryl	500.000	498.475	0.3	102	0.03	11.21-12.21
9	Nitrobenzene	500.000	503.313	-0.7	104	0.03	11.93-12.93
10 S	3,4-Dinitrotoluene	500.000	496.619	0.7	102	0.04	12.95-13.95
11	2,4,6-Trinitrotoluene	500.000	503.597	-0.7	103	0.04	13.60-14.60
12	4-Amino-2,6-Dinitrotol			0.7	102	0.05	14.37-15.37
13	2-Amino-4,6-Dinitrotol	500.000	500.727	-0.1	103	0.05	15.14-16.14
14	2,6-Dinitrotoluene	500.000	510.258	-2.1	107	0.05	16.10-17.10
15	2,4-Dinitrotoluene		480.817	3.8	101	0.05	16.60-17.60
16	o-Nitrotoluene		497.302	0.5	106	0.06	19.73-20.73
17	p-Nitrotoluene		500.449	-0.1	106	0.06	21.06-22.06
18	m-Nitrotoluene	500.000	506.087	-1.2	106	0.07	22.76-23.76
****	Signal #2 ****						
1	HMX	500.000	500.092	-0.0	102	0.00	3.86- 4.86
2	TNX	500.000	509.529	-1.9	103	0.00	4.18- 5.18
3	DNX		520.538	-4.1	104	0.00	4.60- 5.60
4	MNX	500.000	521.239	-4.2	106	0.01	5.37- 6.37
5	RDX	500.000	566.452	-13.3	111	0.00	6.15- 7.15
6	1,3,5-Trinitrobenzene	500.000	505.722	-1.1	103	0.02	8.43- 9.43
7	1,3-Dinitrobenzene		502.475	-0.5	102	0.02	10.43-11.43
8	Tetryl	500.000	507.037	-1.4	102	0.03	11.21-12.21
9	Nitrobenzene		499.803	0.0	103	0.03	11.93-12.93
10 S	3,4-Dinitrotoluene		495.718	0.9	101	0.04	12.95-13.95
11	2,4,6-Trinitrotoluene		500.992	-0.2	103	0.04	13.60-14.60
12	4-Amino-2,6-Dinitrotol	500.000	497.188	0.6	102	0.05	14.37-15.37
13	2-Amino-4,6-Dinitrotol	500.000	499.032	0.2	103	0.05	15.14-16.14
14	2,6-Dinitrotoluene		496.978	0.6	105	0.05	16.10-17.10
15	2,4-Dinitrotoluene		472.110	5.6	100	0.05	16.60-17.60
16	o-Nitrotoluene		489.795	2.0	104	0.05	19.73-20.73
17	p-Nitrotoluene		496.698	0.7	105	0.06	21.06-22.06
18	m-Nitrotoluene	500.000	503.963	-0.8	105	0.07	22.77-23.77

_____



# 00079250

Page 2 of 2

Continuing Calibration Summary Job Number: T16448 Sample: GGG906-CC825 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020201.D

Account: **Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018282.D 8330_EX.M Mon Mar 05 11:42:29 2007



#### Continuing Calibration Summary Job Number: T16448

Job Number: T16448 Sample: GGG906-CC825 Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020212.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #2 : G:\DATA\03020DS\GG020212.D\dad1A.ch

 Acq On
 : 02-Mar-2007, 21:07:57
 Operator: MIKEE

 Sample
 : CC825-1000
 Inst : G1315B

 Misc
 : OP19677,ggg906,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Mar 01 11:02:09 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift Area% Dev(min)RT Window	
1	HMX	1000.000	969.184	3.1 98 0.00 3.86-4.86	6
2	TNX		1012.847	-1.3 100 -0.02 4.20-5.2	
3	DNX		1011.041	-1.1 101 0.00 4.60- 5.6	
4	MNX	1000.000	1001.768	-0.2 101 0.00 5.37-6.3	37
5	RDX	1000.000	1012.522	-1.3 100 -0.01 6.15- 7.1	15
6	1,3,5-Trinitrobenzene	1000.000	982.133	1.8 99 0.00 8.43-9.43	:3
7	1,3-Dinitrobenzene	1000.000		1.8 99 0.00 10.43-11.43	3
8	Tetryl	1000.000		2.1 98 0.00 11.21-12.21	1
9	Nitrobenzene	1000.000		0.5 100 0.00 11.93-12.93	
10 S	3,4-Dinitrotoluene	1000.000		2.9 98 0.00 12.95-13.95	
11	2,4,6-Trinitrotoluene	1000.000		0.8 99 0.00 13.60-14.60	
12	4-Amino-2,6-Dinitrotol	1000.000		2.5 98 0.00 14.37-15.37	
13	2-Amino-4,6-Dinitrotol			1.3 99 0.00 15.14-16.14	
14	2,6-Dinitrotoluene	1000.000		0.4 102 0.00 16.10-17.10	
15	2,4-Dinitrotoluene	1000.000		5.3 98 0.00 16.60-17.60	
16	o-Nitrotoluene	1000.000		3.8 99 -0.01 19.73-20.73	
17	p-Nitrotoluene	1000.000		2.5 99 -0.01 21.06-22.06	
18	m-Nitrotoluene	1000.000	997.451	0.3 100 0.00 22.76-23.76	6
****	Signal #2 ****				
1	HMX	1000.000	984.283	1.6 99 0.00 3.86- 4.86	6
2	TNX		1002.891	-0.3 100 0.00 4.18-5.1	
3	DNX		1012.877	-1.3 101 0.00 4.60- 5.6	60
4	MNX	1000.000	1004.320	-0.4 101 0.00 5.37-6.3	
5	RDX	1000.000	1044.793	-4.5 101 -0.02 6.15- 7.1	15
6	1,3,5-Trinitrobenzene	1000.000	984.579	1.5 99 0.00 8.43-9.43	3
7	1,3-Dinitrobenzene	1000.000	989.010	1.1 99 0.00 10.43-11.43	:3
8	Tetryl	1000.000	997.573	0.2 99 0.00 11.21-12.21	1
9	Nitrobenzene	1000.000		0.8 102 0.00 11.93-12.93	3
10 S	3,4-Dinitrotoluene	1000.000		3.7 98 0.00 12.95-13.95	
11	2,4,6-Trinitrotoluene	1000.000		1.7 99 0.00 13.60-14.60	
12	4-Amino-2,6-Dinitrotol	1000.000		2.5 98 0.00 14.37-15.37	
13	2-Amino-4,6-Dinitrotol			2.2 99 0.00 15.14-16.14	
14	2,6-Dinitrotoluene	1000.000		2.5 101 0.00 16.10-17.10	
15	2,4-Dinitrotoluene	1000.000		6.5 97 0.00 16.60-17.60	
16	o-Nitrotoluene	1000.000		3.8 98 -0.01 19.73-20.73	
17 18	- N:++-1	1000 000	002 212	1 0 00 0 00 21 06 22 06	6
	p-Nitrotoluene m-Nitrotoluene	1000.000	1002.440	1.8 99 0.00 21.06-22.06 -0.2 99 -0.01 22.77-23.5	

-----



# 00079252

Page 2 of 2

Continuing Calibration Summary Job Number: T16448 Sample: GGG906-CC825 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020212.D Account:

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018284.D 8330_EX.M Mon Mar 05 11:42:13 2007





### **Continuing Calibration Summary**

Job Number: T16448 Sample: GGG906-CC825 Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020224.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #2 : G:\DATA\03020DS\GG020224.D\dad1A.ch

 Acq On
 : 03-Mar-2007, 02:38:33
 Operator: MIKEE

 Sample
 : CC825-1000
 Inst : G1315B

 Misc
 : OP19677,ggg906,1000,,,10,,water
 Multiplr: 1.00

IntFile Signal #1: EVENTS.E
IntFile Signal #2: EVENTS2.E

Method : C:\HPCHEM\1\METHODS\8330_EX.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Thu Mar 01 11:02:09 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift Area% Dev(min)RT Window
1 2 3 4 5 6 7 8 9 10 S 11 12	HMX TNX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Tetryl Nitrobenzene 3,4-Dinitrotoluene 2,4,6-Trinitrotoluene 4-Amino-2,6-Dinitrotol 2-Amino-4,6-Dinitrotol	1000.000 1000.000	1010.267 1005.452 1000.098 1025.240 993.055 980.619 974.910 982.824 957.890 980.868 962.421	3.6 97 0.00 3.86-4.86 -1.0 100 -0.02 4.20-5.20 -0.5 101 0.00 4.60-5.60 -0.0 100 0.00 5.37-6.37 -2.5 102 -0.02 6.15-7.15 0.7 100 0.00 8.43-9.43 1.9 99 -0.01 10.43-11.43 2.5 98 -0.02 11.21-12.21 1.7 99 -0.01 12.93-12.93 4.2 96 -0.01 12.95-13.95 1.9 98 -0.01 13.60-14.60 3.8 97 0.00 14.37-15.37 -0.9 101 0.00 15.14-16.14
13 14 15 16 17 18	2,6-Dinitrotoluene 2,4-Dinitrotoluene o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene	1000.000 1000.000 1000.000 1000.000	1335.440 1096.840	-0.9 101 0.00 15.14-16.14 -33.5# 137 0.00 16.10-17.10 -9.7 113 -0.01 16.60-17.60 2.0 101 -0.02 19.73-20.73 -0.2 102 -0.02 21.06-22.06 -1.0 101 -0.02 22.76-23.76
****	Signal #2 ****	1000.000	1009.574	-1.0 101 -0.02 22.70-23.70
1 2 3 4 5 6 7 8 9 10 S 11 12 13 14 15 16 17 18	HMX TNX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Tetryl Nitrobenzene 3,4-Dinitrotoluene 2,4,6-Trinitrotoluene 4-Amino-2,6-Dinitrotol 2-Amino-4,6-Dinitrotol 2,6-Dinitrotoluene 2,4-Dinitrotoluene o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene	1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000	949.976 962.122 1000.037 1048.505 992.257 989.715 995.610 966.310 952.955 974.813 968.590 981.214 1062.649 991.035 973.475	5.9       95       0.00       3.86-4.86         5.0       95       0.00       4.18-5.18         3.8       96       0.00       4.60-5.60         -0.0       101       0.00       5.37-6.37         -4.9       101       -0.02       6.15-7.15         0.8       100       0.00       8.43-9.43         1.0       99-0.01       10.43-11.43         0.4       99-0.02       11.21-12.21         3.4       99-0.01       12.95-13.95         2.5       98-0.01       13.60-14.60         3.1       98-0.01       13.60-14.60         3.1       98-0.00       14.37-15.37         1.9       99-0.00       15.14-16.14         -6.3       110-0.00       16.60-17.60         2.7       99-0.02       19.73-20.73         0.7       100-0.02       21.06-22.06         -0.7       100-0.03       22.77-23.77

_____



# 00079254

Page 2 of 2

Continuing Calibration Summary Job Number: T16448 Sample: GGG906-CC825

ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020224.D Account: **Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018284.D 8330_EX.M Mon Mar 05 11:42:13 2007





#### Continuing Calibration Summary Job Number: T16448

bb Number: T16448 Sample: GGG907-CC827 ccount: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020231.D

Account: ALGC Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Evaluate Continuing Calibration Report

Signal #2 : G:\DATA\0305RP\GG020231.D\dad1A.ch

 Acq On
 : 05-Mar-2007, 13:23:34
 Operator: MIKEE

 Sample
 : CC827-500
 Inst : G1315B

 Misc
 : OP19677,ggg907,1000,,,10,,water
 Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Fri Jan 26 08:35:20 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift	Area	% Dev(m	in)RT Window
1	TNX	500 000	 551.245	-10.2	 112	0.02	4.24- 5.24
2	HMX		527.482	-5.5	113	0.02	4.75- 5.75
3	DNX		526.884	-5.4	111	0.01	4.87- 5.87
4	MNX		525.950	-5.2	106	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene		507.541	-1.5	103	0.00	6.17- 7.17
6	RDX		498.345	0.3	100	0.02	6.56- 7.56
7	1,3-Dinitrobenzene		495.147	1.0	101	0.00	7.78- 8.78
8	Nitrobenzene		509.807	-2.0	104	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene		506.824	-1.4	103	-0.01	8.80- 9.80
10	Tetryl		535.862	-7.2	104	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene		492.695	1.5	101	0.00	10.21-11.21
12	2,6-Dinitrotoluene		489.618	2.1	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene		483.678	3.3	102	-0.02	11.06-12.06
14	o-Nitrotoluene		502.970	-0.6	105	-0.01	11.86-12.86
15	p-Nitrotoluene		503.359	-0.7	105	-0.01	12.53-13.53
16	4-Amino-2,6-Dinitrotol			-0.4	102	-0.03	12.95-13.95
17	m-Nitrotoluene		523.547	-4.7	107	-0.02	13.38-14.38
18	2-Amino-4,6-Dinitrotol			-0.8	101	-0.03	14.45-15.45
****	Signal #2 *****						
1	TNX	500.000	539.038	-7.8	107	0.02	4.24- 5.24
2	HMX		501.388	-0.3	105	0.00	4.75- 5.75
3	DNX	500.000	520.169	-4.0	105	0.01	4.87- 5.87
4	MNX	500.000	520.287	-4.1	104	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene		508.259	-1.7	102	0.00	6.17- 7.17
6	RDX	500.000	496.557	0.7	100	0.02	6.56- 7.56
7	1,3-Dinitrobenzene	500.000	499.335	0.1	102	0.00	7.78- 8.78
8	Nitrobenzene	500.000	521.041	-4.2	107	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene	500.000	510.092	-2.0	104	-0.01	8.80- 9.80
10	Tetryl	500.000	533.664	-6.7	103	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene	500.000	488.383	2.3	99	0.00	10.21-11.21
12	2,6-Dinitrotoluene	500.000	487.517	2.5	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene	500.000	483.800	3.2	102	-0.02	11.06-12.06
14	o-Nitrotoluene	500.000	519.246	-3.8	108	-0.01	11.86-12.86
15	p-Nitrotoluene	500.000	515.868	-3.2	110	0.00	12.54-13.54
16	4-Amino-2,6-Dinitrotol	500.000	499.988	0.0	102	-0.03	12.95-13.95
17	m-Nitrotoluene		538.963	-7.8	110	-0.02	13.37-14.37
18	2-Amino-4,6-Dinitrotol	500.000	499.905	0.0	100	-0.03	14.45-15.45

-----



# 00079256

Page 2 of 2

Continuing Calibration Summary Job Number: T16448 Sample: GGG907-CC827

ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020231.D Account: **Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018316.D 8330_RP.M Tue Mar 06 10:57:51 2007





#### **Continuing Calibration Summary**

**Inbration Summary**Page 1 of 2

Sample: GGG907-ECC827

Job Number: T16448 Sample: GGG907-ECC Account: ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020238.D

Project: ITTXHO: Longhorn Army Ammunition Plant

#### Evaluate Continuing Calibration Report

Signal #1 : G:\DATA\0305RP\GG020238.D\dad1B.ch Vial: 3

Signal #2 : G:\DATA\0305RP\GG020238.D\dad1A.ch

Method : C:\HPCHEM\1\METHODS\8330_RP.M (Chemstation Integrator)

Title : Explosives by 8330

Last Update : Fri Jan 26 08:35:20 2007 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift	Area%	Dev(min	)RT Window
1	TNX	1000.000	1064.078	-6.4	104	0.02	4.24- 5.24
2	HMX		1064.872	-6.5	113	0.00	4.75- 5.75
3	DNX	1000.000	1029.858	-3.0	106	0.00	4.87- 5.87
4	MNX	1000.000	1052.110	-5.2	107	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene	1000.000	1020.840	-2.1	102	0.00	6.17- 7.17
6	RDX	1000.000	1020.894	-2.1	103	0.02	6.56- 7.56
7	1,3-Dinitrobenzene	1000.000	1005.302	-0.5	101	0.00	7.78- 8.78
8	Nitrobenzene		1031.078	-3.1	102	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene	1000.000	1033.117	-3.3	104	-0.01	8.80- 9.80
10	Tetryl	1000.000	1104.790	-10.5	112	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene	1000.000	1016.218	-1.6	103	0.00	10.21-11.21
12	2,6-Dinitrotoluene	1000.000		0.2	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene	1000.000		1.2	103	-0.02	11.06-12.06
14	o-Nitrotoluene		1040.619	-4.1	105	-0.01	11.86-12.86
15	p-Nitrotoluene		1034.751	-3.5	104	-0.01	12.53-13.53
16	4-Amino-2,6-Dinitrotol			-1.8	102		12.95-13.95
17	m-Nitrotoluene	1000.000		-6.4		-0.02	13.38-14.38
18	2-Amino-4,6-Dinitrotol	1000.000	1018.025	-1.8	102	-0.02	14.45-15.45
****	Signal #2 ****						
1	TNX	1000.000	1065.753	-6.6	105	0.02	4.24- 5.24
2	HMX	1000.000		4.0	103	0.00	4.75- 5.75
3	DNX		1023.085	-2.3	108	0.01	4.87- 5.87
4	MNX	1000.000	1036.881	-3.7	107	0.00	5.72- 6.72
5	1,3,5-Trinitrobenzene	1000.000	1018.352	-1.8	102	0.00	6.17- 7.17
6	RDX	1000.000	995.036	0.5	102	0.02	6.56- 7.56
7	1,3-Dinitrobenzene	1000.000	1003.575	-0.4	100	0.00	7.78- 8.78
8	Nitrobenzene	1000.000	1035.575	-3.6	103	0.00	8.29- 9.29
9	2,4,6-Trinitrotoluene	1000.000	1043.825	-4.4	105	-0.01	8.80- 9.80
10	Tetryl	1000.000	1097.433	-9.7	111	0.00	9.52-10.52
11 S	3,4-Dinitrotoluene	1000.000	1002.293	-0.2	102	0.00	10.21-11.21
12	2,6-Dinitrotoluene	1000.000		0.8	102	-0.02	10.59-11.59
13	2,4-Dinitrotoluene	1000.000	990.702	0.9	103	-0.02	11.06-12.06
14	o-Nitrotoluene	1000.000	1071.751	-7.2	108	-0.01	11.86-12.86
15	p-Nitrotoluene	1000.000		-7.4	108	0.00	12.54-13.54
16	4-Amino-2,6-Dinitrotol			-0.7	101	-0.02	12.95-13.95
17	m-Nitrotoluene		1093.803	-9.4	107	-0.02	13.37-14.37
18	2-Amino-4,6-Dinitrotol	1000.000	1006.963	-0.7	101	-0.02	14.45-15.45

-----



### 00079258

Page 2 of 2

Continuing Calibration Summary Job Number: T16448

Sample: GGG907-ECC827 ALGC Accutest Laboratories Gulf Coast, Inc. Lab FileID: GG020238.D Account:

**Project:** ITTXHO: Longhorn Army Ammunition Plant

(#) = Out of Range SPCC's out = 0 CCC's out = 0

GG018318.D 8330_RP.M Tue Mar 06 10:58:20 2007







**Section 11** 

### General Chemistry

### QC Data Summaries

(Accutest Laboratories Southeast, Inc.)

#### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC



#### 

Login Number: T16448
Account: ALGC - Accutest Laboratories Gulf Coast, Inc.
Project: ITTXHO: Longhorn Army Ammunition Plant

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Perchlorate	GP9044/GN24408	10	<10	ug/l	50	50.1	100.2	85-115%

Associated Samples: Batch GP9044: T16448-1 (*) Outside of QC limits



### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16448
Account: ALGC - Accutest Laboratories Gulf Coast, Inc.
Project: ITTXHO: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Perchlorate	GP9044/GN24408	T16445-5	ug/l	27.8	29.4	5.6	0-15%

Associated Samples: Batch GP9044: T16448-1 (*) Outside of QC limits



#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: T16448 Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Perchlorate	GP9044/GN24408	T16445-5	ug/l	27.8	50	79.8	104.0	80-120%

Associated Samples: Batch GP9044: T16448-1

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits



### Accutest Laboratories Instrument Runlog Inorganics Analyses

#### Login Number: T16448

Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Parameters: Perchlorate

	umeters. Perchio.		
Time		Dilution PS Factor Recov	Comments
14:05	GN24408-CCV1	1	
14:20	GN24408-CCB1	1	
14:34	GP9044-MB1	1	
14:49	GP9044-B1	1	
15:31	GN24408-CRI1	1	
15:46	GN24408-IPC1	1	
16:00	ZZZZZZ	1	
16:15	ZZZZZZ	1	
16:29	ZZZZZZ	1	
16:43	ZZZZZZ	1	
16:58	T16445-5	1	(sample used for QC only; not part of login T16448)
17:12	T16445-6	1	(sample used for QC only; not part of login T16448)
17:27	GN24408-CCV2	1	
17:41	GN24408-CCB2	1	
17:55	ZZZZZZ	1	
18:10	ZZZZZZ	1	
18:24	ZZZZZZ	1	
18:39	ZZZZZZ	1	
18:53	ZZZZZZ	1	
19:22	ZZZZZZ	1	
19:36	ZZZZZZ	1	
19:51	ZZZZZZ	1	
20:05	T16448-1	1	
20:19	GN24408-CCV3	1	
20:34	GN24408-CCB3	1	
20:48	GP9044-D1	1	
21:03	GP9044-S1	1	
21:17	GP9044-D2	1	
21:32	GP9044-S2	1	
21:46	GN24408-CCV4	1	
22:00	GN24408-CCB4	1	

Refer to raw data for calibration curve and standards.



### Instrument QC Summary Inorganics Analyses

## Login Number: T16448 Account: ALGC - Accutest Laboratories Gulf Coast, Inc. Project: ITTXHO: Longhorn Army Ammunition Plant

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN24408-CCV1	Perchlorate	52.1	10	4.0	50	104.2	85-115
GN24408-CCB1	Perchlorate	4.0 U	10	4.0			
GN24408-CRI1	Perchlorate	4.0 U	10	4.0	3	86.6	75-125
GN24408-IPC1	Perchlorate	23.2	10	4.0	25	92.8	80-120
GN24408-CCV2	Perchlorate	50.4	10	4.0	50	100.8	85-115
GN24408-CCB2	Perchlorate	4.0 U	10	4.0			
GN24408-CCV3	Perchlorate	52.6	10	4.0	50	105.2	85-115
GN24408-CCB3	Perchlorate	4.0 U	10	4.0			
GN24408-CCV4	Perchlorate	53.4	10	4.0	50	106.8	85-115
GN24408-CCB4	Perchlorate	4.0 U	10	4.0			

^(!) Outside of QC limits

_____





## Sample Collection Log

Page 1 of 2

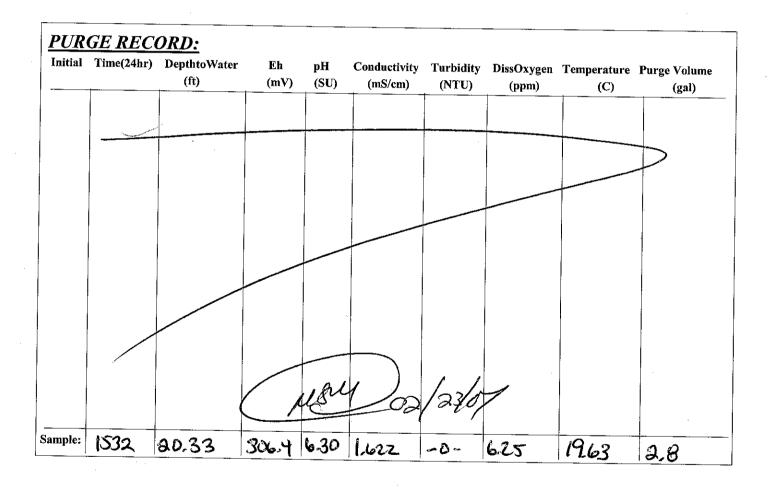
117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

		RF.	A / COC Number: 109	119/10920
Sample Name: Sampling Method: Sample Type: Sampling Equip:	50WW02-FEB ⁻ Z-00 ⁻ 7 50WW02-GW-50WW02- SP	-REG ple Purpose: REG		MNA_EVENT_FEB07 2\23\07 [9.21 20.33
C Partners: (TB) <b>ユ・ユスーツ</b> フ	(ER)	(FB)	Sample Team:	JOE RELCOUNT MIKEMAN
Analytical Suite  VOC-FUEL  ANIONS  PERC  GASES  ALKALINITY  TOC_415  DHC  SJGGES  Groundwater Inf	Containers Fit Frtn Qty Size Units N A 3 40 mL N B 1 1000 mL N C 1 500 mL N D 3 40 mL N E 1 1000 mL N F 3 1000 mL N G 1 L N G 1 L	Type VOA VIAL HDPE HDPE VOA Vial HDPE	ERPIM	S Values: Sacode: Control#:
Comments:Sketch Locat	Ferrus Iran 0.0 Septimity 0.8			



# Sample Collection Log


Page 2 of 2

117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

Location Code: 50WW02

Sample Number: 50WW02-FEB 2007



Logged BY / Date: Jalus 2/23/07

Reviewed BY / Date:



Sheet <u>1</u> of <u>3</u>

	Jnit/Site ID:				Sampling location ID: <u>多 いんしつ</u> Sample ID: <i>50いんしつスードさん 2eo7</i>								
Project Na	<u>سوک :</u> #	Show He	40 117	1591		Sample ID: 500002-FEB 2007 Collection Time/Date:62-2307/							
Weather: <u>S</u>	any =	45°-7	e* 6-										
Pump Installation													
<u></u>	. H _ £!		. 1	-	เมอเส				last - 6	13.11			
					Installation date/beginning time: <u>১ ১২ ০৭ ৫ ওে৭৮</u> Installation date/completion time: <u>২ ১২ ০৭</u>								
	ading (well l			000	·								
	meter (inche				Screen Interval (ft. BTOC): 12 to 2>								
9	Depth (ft. B1				Pump intake depth (ft BTOC): 211								
	installation)					Post-installation DTW/time: 1914 @ 1349							
	pump primi			<u> </u>		Max. sustainable pump rate (mL/min): 100  Appearance of product: None							
	ict (circle): _					Appearance	e of produc	t: <b>NONE</b>	, 1/	<u> </u>			
	water remo		oriming (mL	): 100 <u>0</u>		Discharge	tube diame	ter (3/8" or	1/4"): <u> </u>				
	tube length					Inlet reduc	er used (Y/	N):		,			
	Controlle		n							,			
Initial air pr	essure = H	(ft.) X 0.43	= <u>/ 8</u>	_psi					,				
		Initial	2	3	4	5	6	7	8	Final			
Pressure (psi	)	18	18							78			
Refill Setting LO LO									4	10			
Discharge Se	tting	3,4	4,4						1	4-4			
Flow rate (ml.	/min)	80	100						,	100			
					urgin	a							
Purge date Initial (pre- Calculated <b>Pneumati</b> d	mpling crew beginning to purging) DT tubing + pu c Controller ressure = H	time: 22 23 W (ft. BTO) imp volume r <b>Tuning:</b>	67 6 13 C): 19,14 :	350		Final (post	-purging) D	n time: <b>2 33</b> TW (ft. BTC volumes pui	C): <u> 20, 3</u>	3			
			•				r		1	r			
		Initial	2	3	4	5	6	7	8	Final			
Pressure (psi	)	18	18				<del></del>	<del> </del>		18			
Refill Setting		10	10						<del></del>	10			
Discharge Se		3.4 80	44						- V	4.4			
Flow rate (mL	/min)	טסן	100				<u> </u>	<u> </u>	<u> </u>	60/			
			Water	Quality Pa	ramete	er Measure	ments						
Time	DTW	Purge Rate	Cumulative	Temp.	EI	ectrical	рН	Eh	DO	Turbidity			
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Cor	ductivity	•	(mv)	(mg/L)	(NTU)			
.,,,			Purged (L)		(uM	lhos/cm)							
1402	19,42	80	<u>-0-</u>	30.41	1.6	3 (	6.69	234.7	7.57	27.4			
1412	19.55	100	1.3	18,88	161	١	نهدين	272-0	7-46	8.8			
1417	19/64	100	1.8	18,97	1.40		6.44	282.3	7.51	6.8			
1422	1422 1970 100 23 1893				1.007		6.45	293.1	7.48	6,0			
1427 19.78 100 2.8 18.85				8 فعار (		6,44	300.3	7.42	5,3				
1432	19,83	100	3,3	18.67		9	6.43	310,4	7.37	5.6			
1437	1990	100	4,8	(8.60	ها ۱۰		6-41	302,6	7-30	3.7			
1442	19.95	190	5,3	1854	الوز	3	のソイの	337.6	7.17	2.7			
		· · · · · · · · · · · · · · · · · · ·		<u> </u>		. 16				<del> </del>			



Sheet 2 of 2

	Water Quality Parameter Measurements (continued)												
Time	DTW	Purge Rate	Cumulative	Temp.	El	ectrical	pН	Eh	DO	Turbidity			
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Cor	ductivity		(mv)	(mg/L)	(NTU)			
			Purged (L)		(uN	lhos/cm)							
1447	1997	ivo	5.8	18:22	في ا	٥٦	6.38	329.4	7.02	5.1			
1452	20.02	100	6.3	857	عارا	0 (	6.33	<i>33</i> %.6	6,93	5-0			
1533 -			₽? )	mp of	P ~								
									<b></b>				
							/_	1					
							2/2	2/0-	HUB				
			:				0100	3/0/	0				
				Sa	amplii	ng							
Sampling b	eginning tin	ne:145	(3			Sampling of	ompletion t	ime:/5 <u>=</u>	32_				
, ,			•	Quality Pa	ramete	er Measure							
Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	pH	Eh	DO	Turbidity			
1,,,,,,,	(ft. BTOC)	(mL/min)	Volume	(degree C)		ductivity	μı	(mv)	(mg/L)	(NTU)			
	(1.0.2.700)	(	Purged (L)	(409.000)		lhos/cm)		γ,	\	(,,,,,			
1532	20,33	100	· · · · · · · · · · · · · · · ·	19.63		Z	6-30	306.4	6.25	-0-			
					174								
								0/1	2/- 1	. 0			
:								10.	1107 1	45			
				Canada	lafa.	4.							
0 1:15	En.W.			Sampie	intoi	mation			la- @ 1	وعل			
,	50WW		1/						107@1	427			
	ample colle	, , –	<del>- //</del>	•		Culit campl	ample ID:_ e ID:	<del>~~</del>					
	e collected					Split sampi	e iD:	<u>/Y</u>					
COC NO(S)	. 10 11 1	110120							<u> </u>				
Requested	l Analysis	Method	Co	ontainers		Requested	Analysis	Method	Conta	niners			
Vocs	<del></del>	8260B	3701	5-5		Sulfie	les	376.2	1-500 m	L Hope			
Goses		i75	318	2' A		つとる		300,0		4 Hope			
Toc							2	)	2 ILA				
Perchlorate 314-0 1-500 mL HOPE													
Alkali		310.l		mh Ho?									
	: Ferro												
	1 611100		0/0	_						j			
	<*. 1	inity	10 07										
	_>G/I	MINITY		7									
<b>.</b>						<del></del>		<del></del>					

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter



# Sample Collection Log

Page 1 of 2

117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

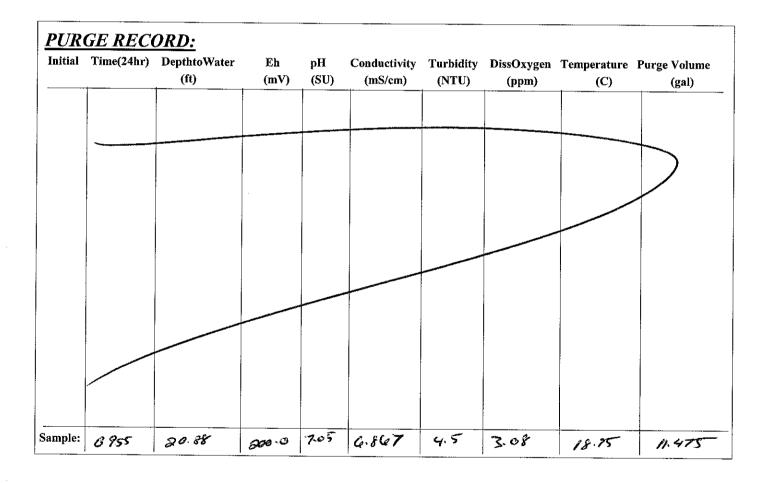
	RFA/	COC Number: _/09	20/16821
•	50WW03- FES 2007 50WW03-GW-50WW03REG	Task:	MNA_EVENT_FEB07  © 2 24 - 07  © 8 5 6
Sample Type:		End Depth:	- 00-
Sampling Equip: Partners: (TB) 63-24-07	(ER) 2/A (FB) ~/A	Sample Matrix: Sample Team:	
Analytical Suite	Containers Flt Frtn Qty Size Units Type	ERPIMS	S Values: Sacode:
VOC-FULL ANIONS PERC GASES ALKALINITY TOC_415 DHC SICIOLES Groundwater Inf Measured W	Tell Depth: 72.96 Depth To Water: 2		Control#:
Comments: Sketch Location	Ferrous Iron O. O. R. Mg/L Salinity 3.78 ion:		

Logged BY / Date: Matter for my T

Reviewed BY / Date:



## Sample Collection Log


Page 2 of 2

117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

Location Code: 50WW03

Sample Number: 50WW03- FEB 2007



Logged BY / Date: 102-2401

Reviewed BY / Date:



Sheet 1 of 2

Total well	ameter (inch Death (ft. B	roc) 22	198			Pump intal	ke denth (ft	OC): <u>\{3</u> '	to 2		
Total well	Depth (ft. B	гос): <u>2</u>	<u> </u>	<u> </u>		Pump intal	ke depth (ft	BTOC):	<u>'-1'                                   </u>	<del></del>	
	-installation)			(B) (B) YY	•			/time: <u> <b>∂0 -</b></u>		29	
Final (after pump priming) DTW/time: <u>み</u> る。 Max. sustainable pump rate (mL/min): Free product (circle):LNAPL / DNAPL Appearance of product:											
Volume of water removed during priming (mL): 1000 Discharge tube diameter (3/8" or 1/4"): 1/4"											
Discharge tube length (ft.): 30 \ Inlet reducer used (Y/N): \ \frac{V}{} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \											
			_ ,8	:							
ınıtıaı air p	ressure = H	(π.) Χ 0.43	= //5	_ psi				_		·	
		Initial	2	3	4	5	6	7	8	Final	
Pressure (ps	***	18					ļ			18	
Refill Setting		10		سند ا					$\rightarrow$	10	
Discharge Se	<del>                                     </del>										
Flow rate (m	L/min)	133							<u> </u>	135	
Puraina/sa	Purging Purging/sampling crew: 3 Acoust   M. Mart Huez   PID/FID reading (well head/background): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Purge date Initial (pre- Calculated Pneumati	e/beginning -purging) DT I tubing + pu	time: <u>) a</u> W (ft. BTO) imp volume: r <b>Tuning:</b>	N	g, 200-00-C	१५/१८-२५ १३-२५०१	i iiiai (post	-եու ձանի բ	in (ir Dic	(C)		
Purge date Initial (pre- Calculated Pneumati	e/beginning -purging) DT I tubing + pu c Controlle	time: <u>) a</u> W (ft. BTO) imp volume: r <b>Tuning:</b>	N	IA	१५ हिर-रथ १३-रथवा ४	i iiiai (post	-եու ձանի բ	in (ir Dic	(C)		
Purge date Initial (pre- Calculated Pneumati Initial air p	e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= 18	IA _psi	7,5-0.107	No. of tubin	ng + pump	volumes pui	rged: /2.4	75	
Purge date Initial (pre- Calculated Pneumati	e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time: 312 W (ft. BTOO Imp volume r Tuning: (ft.) X 0.43	= 18	IA _psi	7,5-0.107	No. of tubin	ng + pump	volumes pui	rged: /2.4	Final	
Purge date Initial (pre- Calculated Pneumati Initial air p	e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time: New Medical States (ft.) X 0.43	= 18	IA _psi	7,5-0.107	No. of tubin	ng + pump	volumes pui	rged: /2.4	Final	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting	e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time: New Medical States (ft.) X 0.43	= 18	IA _psi	7,5-0.107	No. of tubin	ng + pump	volumes pui	rged: /2.4	Final	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	e/beginning -purging) DT I tubing + pu c Controlle ressure = H	time: New Medical States (ft.) X 0.43	= 18	psi 3	4	No. of tubin	ng + pump	volumes pui	rged: /2.4	Final 18 /0 5	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)	time: New Year New Year Tuning:  (ft.) X 0.43  Initial  IS  IO  5  /3.5	= 18 2 Water	psi 3 Quality Pa	4 ramete	No. of tubin	6 ments	volumes pui	ged: /2.4	Final [8 /0 5 135	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)	time: 3 2 W (ft. BTOO omp volume or Tuning: (ft.) X 0.43 Initial IX IO 5 /3.5	= 18 2 Water Cumulative	psi 3 Quality Pa	4 ramete	No. of tubin	ng + pump	7 Eh	8 BDO	Final (8 /0 5 /35 Turbidity	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)	time: New Year New Year Tuning:  (ft.) X 0.43  Initial  IS  IO  5  /3.5	Water Cumulative Volume	psi 3 Quality Pa	4 ramete El	No. of tubin	6 ments	volumes pui	ged: /2.4	Final [8 /0 5 135	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Flow rate (mi	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)  DTW (ft. BTOC)	time: New Medical States that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that the states that	= 18 2 Water Cumulative	Quality Pa Temp. (degree C)	ramete El Con (uM	No. of tubin  5  er Measure ectrical eductivity lhos/cm)	6 ments	7 Eh	8 BDO	Final  [8]  [6]  5  135  Turbidity  (NTU)	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)	time: 3 2 W (ft. BTOO omp volume or Tuning: (ft.) X 0.43 Initial IX IO 5 /3.5	Water Cumulative Volume Purged (L)	psi 3 Quality Pa	4 ramete El Con (uM	No. of tubing 5  Per Measure ectrical aductivity (lhos/cm)	6 ments pH	7 Eh (mv)	8  DO (mg/L)	Final  [8]  [6]  [7]  [7]  [7]  [8]  [7]  [8]  [8]  [8	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Flow rate (m) Time	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)  DTW (ft. BTOC)	time: New Year W (ft. BTOO Imp volume or Tuning: (ft.) X 0.43  Initial IS IO S IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT IN IT	Water Cumulative Volume Purged (L)	Quality Pa Temp. (degree C)	4 ramete El Con (uM	No. of tubin  5  er Measure ectrical eductivity lhos/cm)	6 ments pH	volumes pui	ged: /2·4	Final  [8]  [6]  [7]  [7]  [7]  [8]  [7]  [8]  [8]  [8	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Flow rate (m) Time	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i)  etting L/min)  DTW (ft. BTOC)	time: New Year New Year Purge Rate (mL/min)	Water Cumulative Volume Purged (L)  /.33  2.0  2.7	Quality Pa Temp. (degree C)  /8.08	4 ramete El Con (uM	No. of tubin  5  er Measure ectrical eductivity elhos/cm)	ments pH  G-93 G-94	eh (mv)	po (mg/L)  3. 90  5. 8 7	Final    18	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Flow rate (m) Time	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i) etting L/min)  DTW (ft. BTOC)  20.05  20.70	time: 12 2 2 2 2 W (ft. BTOO imp volume in Tuning: (ft.) X 0.43 Initial is 10 5 735 Purge Rate (mL/min)	Water Cumulative Volume Purged (L)  / 33  2 02	Quality Pa Temp. (degree C)  /8.08 /8./3	ramete El Con (uM Cr 8	No. of tubin  5  er Measure ectrical eductivity elhos/cm)  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 ments pH  6.93 6.94	7 Eh (mv) 290. / 287-2	BO (mg/L) 3.90 5.87 3.85	Final  18  10  5  135  Turbidity  (NTU)  28.7  27.1  24.3	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Flow rate (m) Time  ### ### ############################	e/beginning -purging) DT I tubing + pu c Controlle ressure = H  i)  etting L/min)  DTW (ft. BTOC)  20.05  20.70  20.78	time: New Medium Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Produ	Water Cumulative Volume Purged (L)  /.33  2.0  2.7	Quality Pa Temp. (degree C)  /8.08 /8./5 /8./9	ramete Con (uM Cr. 8 Cr. 9	No. of tubin  5  er Measure ectrical eductivity elhos/cm)  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 ments pH  G.93 G.94 G.94 G.94	Eh (mv)  290. / 287-2 285-7	BO (mg/L)  3. 90  5. 87  3. 46	Final 18 10 5 135 Turbidity (NTU) 28.7 27.1 26.3 34.7	
Purge date Initial (pre- Calculated Pneumati Initial air p Pressure (ps Refill Setting Discharge Se Flow rate (m) Time  6836  6840  6855	e/beginning -purging) DT I tubing + pu c Controlle ressure = H i)  etting L/min)  DTW (ft. BTOC)  20.03  20.78  20.78	time: New Medium Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Produ	Water Cumulative Volume Purged (L)  /.33  2.0  2.7	Quality Pa Temp. (degree C)  /8.08 /8./5 /8./9	ramete Con (uM Cr. 8 Cr. 9	No. of tubin  5  er Measure ectrical eductivity elhos/cm)  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 ments pH  G.93 G.94 G.94 G.94	Eh (mv)  290. / 287-2 285-7	BO (mg/L)  3. 90  5. 87  3. 46	Final 18 10 5 135 Turbidity (NTU) 28.7 27.1 26.3 34.7	



Sheet 2 of 2

		V	Vater Quali	ty Paramet	er Meas	urements	(continued	I)			
Time	DTW	Purge Rate	Cumulative	Temp.	Ele	ctrical	pН	Eh	DO	Turbidity	
	(ft. BTOC) (mL/r		Volume	(degree C)	Con	ductivity		(mv)	(mg/L)	(NTU)	
			Purged (L)		(uM	nos/cm)					
J											
<del></del>											
*****											
		·									
		····									
							(	ples		~	
									02-24	-0/	
	***			S	amplin	a					
Cananiin a b	a administration of Alice	GS	35Q	•	_	_	completion t	ime: (5°	rSO		
Sampling b	egnamig ui	ne				, ,	•	<u></u>			
				Quality Pa	7				1		
Time	DTW	Purge Rate	Cumulative	Temp.	1	ectrical	рН	Eh	DO	Turbidity	
	(ft. BTOC)	(mL/min)	Volume	(degree C)	i	ductivity		(mv)	(mg/L)	(NTU)	
		/35	Purged (L)	40.0-		hos/cm)			2 6	0, 5	
0955	20.88	11475	11.475	18-95	G.80	<i>e</i> 7	7.05	<i>2</i> ∞ °	3.08	4.5	
,											
							1/0	40.00			
							113)	02-24.	67		
				Sample	e Infor	mation			/		
Sample ID:	50000	03-PEB2	ריסט				llection date	/time: <i>ひる</i> つ	14-07/		
							sample ID:_		•		
Split sampl	e collected	cted (Y/N):_ (Y/N):	N			Split sampl	le ID:	N			
COC No(s)	: 10920	1093				•					
		T	T						8407		
Requested		Method		ontainers			d Analysis	Method	17 .	ainers	
Vocs-1	<del>2011</del>	8260B	3 /10			<u>Sulke</u>		3987	T .	il hdre	
Guses		175	3 40			BNIO		300		nh HDPE	
TOC											
Perchlo	Perchlorate 314.0 1. 500 ML HOPE										
Alkau	Tiv	310-1	61000	wr Hob	હ			Two-	24 el		
Comment	: To-n-	us Iron	* 6.00	MG/Z							
	MAILO	02 1105PC	2.78								
	Salin	1343 1943	3.70								
									<u>:</u>		



QC

# Sample Collection Log

Page 1 of 2

117591 - Longhorn Army Ammunition Plant

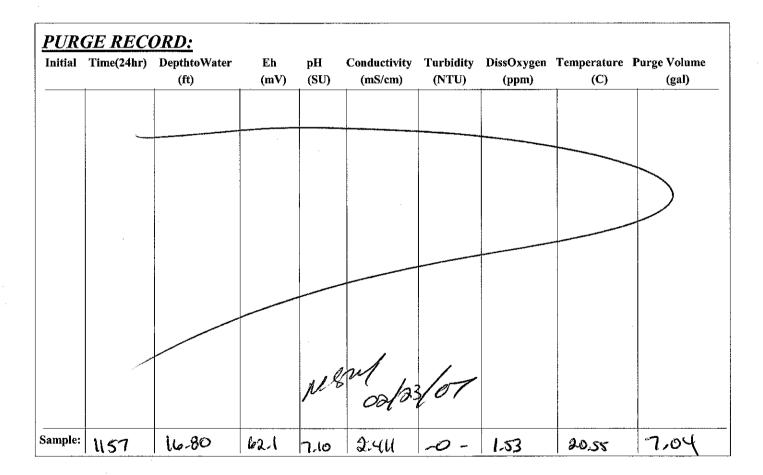
Manager: Praveen Srivastav

	RFA / C	OC Number: _/0	918/10919
Sample Name: Sampling Method: Sample Type: Sampling Equip:	50WW05 50WW05- FEB 2007-MS/MSD 50WW05-GW-50WW05REG SP		MNA_EVENT_FEB07 @2.23.07 @2.23.07 // 104/Ce // 1054 // 1080
Partners: TB) 2-23-57	(ER) (FB)	Sample Team:	m. Mestinof 5. below
Analytical Suite	Containers Flt Frtn Qty Size Units Type		S Values: Sacode:
VOC-FULL ANIONS PERC GASES ALKALINITY TOC 415 DHC SURI des Groundwater Inf	N A 3 40 mL VOAVIAL  N B 1 500 mL HDPE  N C 1 500 mL HDPE  N D 23 2040 mL VOAVIAL  N E 1 1000 mL HDPE  N F 23 1000 mL HDPE  N G 23 1 L Amb. Glass		Control#:
Comments:  MS Sketch Locati	Ferrors Iron B.4 Mg/L Salinity 1.20 MASD taken from this low ion:	earlian	·

Logged BY / Date: Majorine / cologo Reviewed BY / Date:



## Sample Collection Log


Page 2 of 2

117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

Location Code: 50WW05

Sample Number: 50WW05- FEB 2007



Logged BY / Date: Jeffer / co/22/07

Reviewed BY / Date:



Sheet 1 of 2

Operable	Unit/Site ID	. /	~^		Sampling location ID: SOCCIOS							
					<del></del>	Sample ID: 50005-FEB2007						
Project iva	ame/#: <u></u> P/C ==	Sucra Sto	<del>/</del>		<del>.</del>							
vveatner:_	17C -	60-65 2				Collection	Time/Date	<u> </u>	7/109	Ce		
				Pum	o Insta	allation		<del></del>		·		
Pump inst	tallation crev	N. M. Mary	inor Soc	•	•	Installation date/beginning time: 0>23-07 /0940						
	eading (well				_	Installation date/completion time:07-23-7 /0943						
	ameter (inch				-							
	Depth (ft. B			Sec.	gjen melekti, eneg e	Screen Interval (ft. BTOC): 14, 96 to 24, 90						
	-installation			0930		Pump intake depth (ft BTOC): 49-95 21-90						
"	r pump prim	•		7	-	Post-installation DTW/time: 16,48 / 0944  Max. sustainable pump rate (mL/min): 120						
	uct (circle):		-	70430	_							
	water remo			. \	•			ot: <u>Aerr</u>		<del>,</del>		
	tube length			1. 1000		Inlet reduc	nube diame	eter (3/8" or	1/4 ): 19	<del></del>		
	_			•	_	met reduc	er used X	W <i>DO</i> _				
	c Controlle											
Initial air pressure = H (ft.) X 0.43 = <u>So</u> psi												
		Initial	2	3	4	5	6	7	8	Final		
Pressure (ps	i)	20								20		
Refill Setting		10						<u> </u>		10		
Discharge Se		5								5		
Flow rate (ml	L/min)	220	<u> </u>		<u> </u>	<u> </u>		<u> </u>		220		
				Ī	urgin	a	<del></del>		***************************************	/		
Purging/sa	ampling crev	V. M. Motin	al 5. Kep	lear	•		ading (well	head/backg	round): 🔨	100		
	e/beginning							time: 2\23				
	purging) D7							TW (ft. BTC				
	tubing + pu			۱A	-			volumes pui				
	c Controlle	• .						· • · · · · · · · · · · · · · · · · · ·	3 <u></u>			
	ressure = H	~	= 20	psi								
	· · · · · · · · · · · · · · · · · · ·	T			<del></del>	<del></del>	r		<del></del>			
		Initial	2	3	4	5	6	7	8	Final		
Pressure (psi	<u>)                                    </u>	20								20		
Refill Setting		5								10		
Discharge Se										5		
Flow rate (ml	/min)	220	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ĺ	<u> </u>		220		
			Water	Quality Pa	iramete	r Measure	ments			•		
Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	pH	Eh	ĐO	Turbidity		
	(ft. BTOC)	(mL/min)	Volume	(degree C)		ductivity	ļ	(mv)	(mg/L)	(NTU)		
	(mL/min) volume (degree C)						ŀ	(,,,,,	(****g;***)	(1410)		
0950	10-10	22-0	-0-	18.56	2.5	hos/em)	4.82	275.1	1.42	32.9		
1080	16.78	220	3,3	18-66			4.85		1.10	14.7		
	1005 14.82 220 4.4 18.65				2-408		6.8Ce	200 0		15.4		
1010	16.82	230	5.5		2.4		6.87	130.0	1.07	14.2		
1015	14.83	230	6.6	18.65				94.4	1.03			
	14.83	230		18.54 18.01	2.4		6.80	· · · · · · · · · · · · · · · · · · ·	0.98	136		
1020	14.82	230	7.7				4.88	74.7	0.96	13.7		
103G	16.82		8.8	18.64	2.41		Ce-88	67.2	0:94	18-3		
د کیں۔	14.00	200	9.9	18.63	2.41	2	المارية المارية	62.1	0-65	15.8		



Sheet <u>2</u> of <u>2</u>

Time	(ft. BTOC)	Purge Rat	e Cumulative	Temp.	I . Flectrics	. 1	m.	50	
	(IL BIOC)				1 3 9	Hq h	Eh	DO	Turbidity
		(mL/min)	Volume	(degree C)	ナッド Electrica Conductiv	ity + 1	(mv)	(mg/L)	(NTU)
	11.05	-	Purged (L)	110%	(uMhos/cr	n) ±0.1	±10	110%	±10%
640	16.82	220	11-0	18.65	2.400	Cet 31	53.0	0.87	124
co 1 M	16.82	390	12.1	18.65	2.409	C. 8CQ		6.87	11.0
reces	16.82	220	12.2	18.65	240Ce	6.80	450	0.85	89
104(0	1 200	usto	1	est in a state of the second of the second					
и	·								
		<u> </u>							
· · · · · ·									
		<del>                                     </del>							
					WH-				
					02-23				
					Mal-ds		<del> </del>	<del> </del>	· · · · · · · · · · · · · · · · · · ·
		<del> </del>						-	
ımplina b	aginning tin	ne:	110	<b>S</b> a	mpling				
inbing bi	ະດີແນກເດີ ເນ	ne		<del></del> -		ing completion	time:	73	
				Quality Par	ameter Meas	surements			
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	Не	Eh	DO	Turbidity
1	(ft. BTOC)	(mL/min)		(degree C)	Conductivity		(mv)	(mg/L)	(NTU)
57	16.80	20.0	Purged (L)		(uMhos/cm)				
	10.80	220	28.6	30.22	2-411	7.10	le2_1	1.53	-o-
	7	>					1		
	—— <del> </del>					NEW	<del>\</del>		
							135-67		
				Sample	Informatio	n			*
nple ID:_	<u>50 aa</u>	105 -F	EB 2007		Sample	collection dat	e/time: حجت	25-07	-
olicate sai	mple collec	ted (Y/N): /	Vo		Duplica	te sample ID:_	WH		
r sample	collected (i	YES) NO	~ ~ ~			mple ID: <i>إنارية</i>			
C 140(5)	10718	/ 109	7/4		MS/WSA	0- yes		<del>-</del>	
uested /	Analysis	Method	Con	tainers "	/ss a Paguas	ted Analysis		<u> </u>	nore
X- EUI			3 Votis	10010 703	6 SIR		Method 374-2	Contai	11013
955CS			s votes	<del></del>	le Auren		300 0	1-500mCH	
0			SUDA'S		a DHC		300.0	1-1000MC	
-chlora-	te :		1- 300m					2-16:44-1	Just en 4
calinit	1	310.1		C HOPE			(ver)		
nments:					مل				
unents;	Fen	ous I/	-on - O	-14					
				• •					1
	0	/	-1.26					-FEB <b>2007</b> -	Į,

Abbreviations: BTOC - Below top of casing; DTW - Depth to water; H - head above pump intake; mL - milliliter; L - Liter

Stay



QC.

# Sample Collection Log

Page 1 of 2

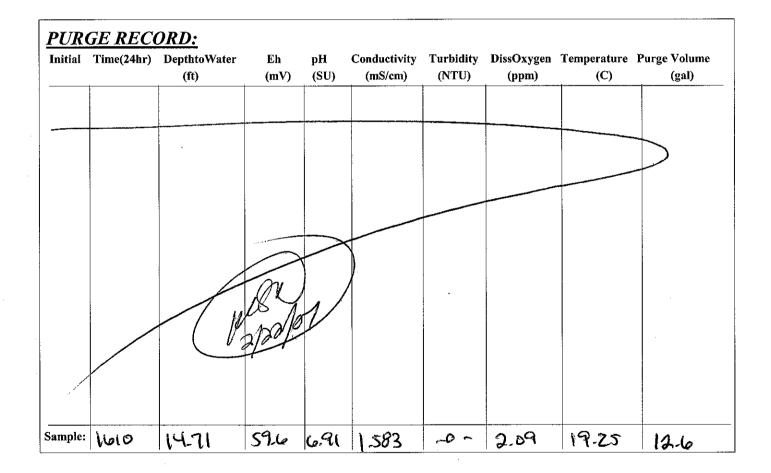
117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

		RF	A / COC Number: <u>/Ø</u>	728/10929
Location Code:	50WW06	_	Task:	MNA EVENT FEB07
Sample Number:	50WW06-FEB250~7	CEB 2007	Collection Date:	, – –
Sample Name:	50WW06-GW-50WW00	6- ^{çel} -REG	Collection Time:	_
Sampling Method:	SP		Start Depth:	4
Sample Type:		nple Purpose: <b>REG</b>	_	121-1
^	QED BLADDER		End Depth:	MI 20 ELECTION (MI)
Sampung Equip.	CCD DIRPOPER	TUMP	Sample Matrix:	WATER
TB) 2-32-07	(ER) &/A	(FB) 2/14	Sample Team:	JOE BELCOUNT, MIKE MATH
Analytical Suite	Containers Flt Frtn Qty Size Unit	s Type	ERPIM	S Values: Sacode:
VOC-FULL	N A 3 40 mL	VOA VIAL	Lot	t Control#:
ANIONS	N B 1 100 mL	HDPE		
PERC	N C 1 500 mL	HDPE		
GASES	N D 3 40 mL	VOA Vial		••
ALKALINITY	N E 1 <b>50</b> 00 mL	HDPE		
TOC_415	NF3 🍇 mL	HDPE		
DHC	N G 1 1 L	Amb. Glass		
Su isides	N H 1 500 ML	- Hope		
Groundwater Inf	ormation:			
Measured W	ell Depth: <u>58,44</u>	Depth To Water:	14,4	
Comments:	Ferrous In	on 6.44 mg/	4	
-	Salinity	3,0,		
			N. Charles	
Sketch Locati	ion:			
Shown Books				
		ar.	•	



## Sample Collection Log


Page 2 of 2

117591 - Longhorn Army Ammunition Plant

Manager: Praveen Srivastav

Location Code: 50WW06

Sample Number: 50WW06- FEB 2007



Logged BY / Date: J. 2/20107

Reviewed BY / Date:



Sheet 1 of 2

Operable	Unit/Site II	· DREA	50	<del></del>		Complia	e te elektricije in						
				117591	<del></del>	Sampling	j location il	50 LL	<u> </u>				
Weather	lame/#: <u> </u>	Sume	3 84- E	COF	<b>-</b> .			262-22-07	,				
	- 1 - 1 - 1						ii iiiie/Dak	CCCCE	//530	ع الم			
		,	<u> </u>			allation	,						
Pump ins	tallation cre	W. M. Mar	tirec 3	Sekout	<u>6</u>	Installatio	on date/beg	inning time:	02-22-1	1349			
PID/FID r	eading (wei	l head/back	(ground): <u>G</u>	0/0.0	_	Installation date/completion time: @= 2007 /353							
	ameter (inc			<u></u>	g i magazini	Screen Interval (ft. BTOC): 48 to 58							
	Depth (ft. E				<u> </u>	Pump intake depth (ft BTOC): 53							
	e-installation				=	Post-installation DTW/time: 14-10 / 1354							
	er pump prin				_	Max. sus	tainable pur	np rate (mL	/min): 12	20			
	luct (circle):				-			ict: non					
	f water reme			L): 1000				eter (3/8" or	1/4"):1/4	<u> </u>			
	tube length		<u>e</u>		_	Inlet redu	cer used (Y	/N): <i>A</i> /_					
1	ic Controlle	. –											
Initial air p	oressure = F	H (ft.) X 0.43	<u> کاکـ</u> = ا	_ psi	•								
		Initial	2	3	4	5	6	7	8	Final			
Pressure (ps	si)	38	38							38			
Refill Setting		10	10		<u> </u>		_			10			
Discharge So		5	1.5		<u> </u>				/	5			
Flow rate (m	Umin)	100	120		1.		<u> </u>			120			
	· · · · · · · · · · · · · · · · · · ·			1	urgir	ng	• • • • • • • • • • • • • • • • • • • •						
	ampling crev			belcost	<del>.</del> .	PID/FID re	eading (well	head/backg	around): o	0/00			
Purge date	e/beginning	time:@-22	200/ 14	100				n time: <u><i>ಡಿ</i> 2</u> -		611			
	-purging) Dī			1359				TW (ft. BTC		1521			
	i tubing + թւ		: <u> </u>	NA	_			volumes pu		<i>ع</i> اد			
	c Controlle									,			
nitial air pi	ressure = H	(ft.) X 0.43	= 38	_ psi									
		Initial	2	3	4	5	6	7	8	Final			
Pressure (psi	i)	38	38							38			
Refill Setting		10	10						N.	10			
Discharge Se		5	5						*	5			
low rate (mL	_/min)	100	120							120			
			Water	Quality Pa	iramete	er Measure	mente			,			
Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	рН	Eh	DO	Turbidity			
:	(ft. BTOC)	(mL/min)	Volume	(degree C)		ductivity	"	(mv)	(mg/L)	(NTU)			
			Purged (L)		•	lhos/cm)	ŀ	()	\g/	(1110)			
1405	14.51	120	-0-	20.47	0 8		7.21	246.7	326	27.4			
1415	14.69	120	1,8	1953	0,9		1,05	248.7	2,46	25.3			
420	14.72	120	2,4	19.36	1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.05	245.8	2.29	25.7			
1452	14,70	120	3,0	19.21	1,02		7-05	2433	2.26	17.0			
430	14-73	120	3.4	1917	1.05		7.02	239.0	P1-6	8.11			
1435	1473	120	4.2	19.10	1-07		7-04	229.8	2-09	149			
1440	14-73	120	4.8	19-19		2	6.98	<i>2</i> 22-6	2.09	9.3			
1445	14-73	120	5,4	19-16	1-16		6.92		1.97				
<u> </u>	17-13	iau	PxC	17-16	1-16	,U	6.92	9081	1.47	ارف			

1.2



Sheet 2 of 2

	Water Quality Parameter Measurements (continued)											
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	рН	Eh	DO	Turbidity			
	(ft. BTOC)	(mL/min)	Volume	(degree C)	± 3 Ejectrical Conductivity		(mv)	(mg/L)	(NTU)			
			Purged (L)	110%	(uMhos/cm)	±0.1	110	±10%	+10%			
1450	1473	120	6,0	19.09	1,195	6,90	1824	1-89	4.2_			
1455	14-73	120	6-60	18.92	1,229	6-87	1521	1-80	2.9			
1500	1472	120	7-2	18,97	1-246	6.87	138.4	1-72	3/1			
1505	1472	120	7-8	19.07	+262	6.80	1236	1-66	[.9			
1510	1472	120	8,4	19.02	1,296	6.87	112-1	1.59	ම,ර			
1515	1471	120	9.0	19.01	1318	C-84	86.0	1.52	e-2			
1580	1471	120	9-6	18.92	1-356	683	71.9	147	٣٥			
1525	14.72	120	10.2	18.92	1379	6.79	669	1,42	2.2			
1230	14,72	120	10,8	1894	1,401	679	57.4	1.36	0.5			
1535	1471	120	11,4	18.98	1-415	6-80	Sail	1.3(	~0~			
							2/19	1	e 2			
							NOO	W7 0.	9			
	,			Sa	ampling		_					
Sampling b	eginning tin	ne: $\int S^2$	<u>ما 3</u>		Sampling c	ompletion t	ime:_ <i>ÎLe:</i>	06				
		ν	Water	Quality Pa	rameter Measure	ments						
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	Hq	Eh	DO	Turbidity			
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity		(mv)	(mg/L)	(NTU)			
			Purged (L)	` . '	(uMhos/cm)		(,		( )			
1610	14.71	120	4.2	19.25	1-583	6.91	59.6	2-09	-0-			
<u> </u>							9/	/ .				
							212	21071				
							ι					
				Sample	Information			,				
Sample.ID:	50 Wu	مرسيح بدرورا	R Omo-		Sample cell	lootion data	/time: <u>/</u> 53	12/2/2	alam			
	ample collec				Duplicate s	ection date ample ID:	/ume. <u>//</u> 35	1012	210 1			
	e collected (				Split sample							
	1092		0929	>	Opin ouripi	· , · · · · //	#7					
							7		··			
Requested		Method		ntainers	Requested		Method	Conta				
VCC-FO	<u> </u>	8260B	3 VOAS		Sulfia	ي ا	374.2	1- 308	HODE			
<u>Crasses</u>			3 VOAS		Anions		300,0		C HDAS			
TOC		415-1	300As	n (-	OHC				Austrs			
Perchlo		314.0		MODE								
Allealin	Alkalinity 310.1 1-1000 FIDE											
Comments: Ferras Tran A 10 45/												
	Solinity 3-01											
	Solinity 3.01											
	•	· .										

### WELL COMPLETION FORM (Stickup or Above Grade Completion Well)

field representative: <b>Auen Willings</b> drilling contractor: <b>Jen</b>	TYPE OF FILTER PACK: SILICA SAUD GRADIATION: 30/40 AMOUNT OF FILTER PACK USED: 7-50 to base
DRILLING TECHNIQUE: Holow Stem AUGER SIZE AND TYPE:	TYPE OF BENTONITE: BENDAME CHES
BOREHOLE IDENTIFICATION: 50W07 BOREHOLE DIAMETER: 8" WELL IDENTIFICATION: 50W07	TYPE OF CUMENT.
WELL CONSTRUCTION START DATE: 211108 WELL CONSTRUCTION COMPLETE DATE: 211108	
SCREEN MATERIAL: SH 46 PKC SCREEN DIAMETER: 411 STRATUM-SCREENED INTERVAL (FT):	TYPE OF WELL CAP:
CASING MATERIAL: SCH. NO TYC CASING DIAMETER: UN	COMMENTS:
SPECIAL CONDITIONS (describe and draw)  SCREEN LENGTH	CASING LENGTH ABOVE GROUND SURFACE  DIMENTION OF CONCRETE PAD  GROUND SURFACE (REFERENCE POINT)  LEGEND  GROUT  BENTONITE SEAL  FILTER PACK  DEPTH TO TOP OF BENTONITE SEAL  DEPTH TO TOP OF FILTER PACK  DEPTH TO TOP OF SCREEN
SAND CELLAR LENGTH	DEPTH TO BASE OF WELL BOREHOLE DEPTH 79' bgs
INSTALLED BY: OSCAR GARCIA (JON) INSTAIL DISCREPANCIES: None	NOT TO SCALE  LATION OBSERVED BY: AUEN WILFORE (SHAM)

HOLE NO. 50 WWG7. DIVISION INSTALLATION SHEET ! DRILLING LOG FEDERAL LHAAP OF 2 SHEETS 1. PROJECT 10. SIZE AND TYPE OF BIT LHAAR 11. DATUM FOR ELEVATION SHOWN (TEM or MSL) (Coordinates or Station) 2. LOCATION 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY CME 75 EDI 4. HOLE NO. (As shown on drowing little and file number) DISTURBED 13. OVERBURDEN SAMPLES UNDISTURBED FOWWOR 5. NAME OF DRILLER 14. TOTAL NUMBER CORE BOXES Oscar Garcia 15. ELEVATION GROUND WATER MR STARTED B/11/08 6. DIRECTION OF HOLE COMPLETED 16. DATE HOLE VERTICAL DINCUNED DEG. FROM VERT 17. ELEVATION TOP OF HOLE NR MA 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING HIM 8. DEPTH DRILLED INTO ROCK AL 9. TOTAL DEPTH OF HOLE 29 WILLMORE HLLEN INSPECTOR ELEWATION-DEPTH CLASSIFICATION OF MATERIALS % CORE RECOV-BOX OR SAMPLE REMARKS DIG (Description) (Driting time, water loss, depth of weathering, etc., if segnificant) ERY NO. CLAY, SOFT, LOW PLASTICITY, Sandy, moid Used 41 split spoon to no odor, gravish brown w/ orange - rid mothly sample (210) - becomes dry hard 10:45 - Began dilling Well sete 291 by wy Sand, clayer, dense, well-sorted, gray Iron staining , dry to moid no odor SL 100% -2' long Du split spoon from 8' bss 40 10' bgs CLAY, SILTY, STIFF TO HARD, NO PLASTICAL, ID-DRY, MOTTENY, GRAY, NO ODOR. CL SPND, clayer, dense, well-sorted, gray Iron staining, slightly moist to moist, 100 he oder

PROJECT	1	100 · 1		STALLATION			SHEET 2
<b>EFEAUDH</b>	DEPTH	LEGEND		ERIALS RECOVERY	BOX OR SAMPLE	(Drilling time, tweethering, e	OF SHEETS  MARKS water lose, depth of ic., if significant)
•		e		e	1	with the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of t	e., y significant)
ELEVATION		cc	CLASSIFICATION OF MATI (Description)  CLAY, SAMOY, STIFF TO HARRY  NOW STAINING, dry, no oder  BRODISH ORANGE MATICING (IRON  MOIST, NO OBOR  TESS IROM STAINING	3, MO PLAST. 1001-	•	(Drilling time, weathering, e	vater loss, depth of ic., if significant)
	25						
	باسباد		•	100,1	·, ·		
	1111111	CL 70	MY, SANDY, DENSE, HARD, K	IRAY, DAMP			

#### WELL DEVELOPMENT RECORD

WELLPIEZOMETER ID 50Wwo?F

PROJECT NAME: LHANF	)	PRO	JECT NO.	:N	7591			D/	VTE:	2/18/0	18	
LOCATION: Karnack, T	ý.	DAT	TE INSTAI	LLED;	2,	11/08	}					
TOTAL DEPTH (PTOC) 3	1.58	CAS	NG DIAN	ieter	4	''	·· <del>········</del> ···			1974 1971	· ·	
METHODS OF DEVELOPME  Swabbing  Equipment decontaminated prior to Describe  151  160  METHODS OF DEVELOPMENT  Swabbing	Baili developm	ent	Pum	ping	[] r	rescribe _ Yes	<u>Air</u>	1,64				·
EQUIPMENT NUMBERS: pH Meer YSI 650 HDS 3 G FIF CASING VOLUME INFORMA		cr <u>V\$(</u>	<u>656 r</u> 36919	νĎ	Turbidity	Meter _	151 650 3691	m05 9	Thermomo	ter <u>VS1</u>	150 369	19 19
Casing ID (inch)	1.0	1,5	2.0	2.2	3.0	4.0	4,3	5.0	6.0	7,0	8.0	ļ
Unit Casing Volume (A) (gal/ft)	0.04	0.09	0.16	0.2	0.37	0.65	0.75	1.0	1.5	2.0	2.6	J
PURGING INFORMATION:  Measured Well Depth (B)  Measured Water Level Depth (C)  Length of Static Water Colume (D)	~19		_ft.		,		~		40	ELEV.	ATION	
Casing Water Volume (E) $+\frac{\partial \cdot \mathcal{L}}{(A)}$ Cotal Parge Volume $=\frac{40}{(A)}$			<u>6.4</u> в Ś хСЧ	i ≃32	≷ gallo,	s	2 21		TIC ATION	<u></u>	MEA'	
										· • • • • • • • • • • • • • • • • • • •	LEVE	.L

Date	Time	Water Level (FTOC)	Volume Removed (gal)	рН	EC	Temperature F or C	Turbidity/ Sand (ppm)	Comments
3/19/06	15:05	MR	18	8.03	1.469	18.17	48.4	grayish
7/16/6	15:15	NR	25	8.28		17.86	17.3	Clear
7/1/02	15:20	MR	32	8.83	1586	1776	105	clear
² /(\$)\$5	15:28	MR		l l	1.64		7.1	clear
, . ,								

FIGURE 5

First 2 hours not recorded





Sheet 1 of 2

	Unit/Site II				Sampling location ID: ຽວພພວາ								
	lame/#: ⁽					Sample I	in: 501	NW07 -08	1908				
Weather:	: Prly do	1 50 So	٤						02-19-0	8			
			***	Division		- 11 - 43							
D	4 - B - C	Λ.,	N 13 10	Pum	ıp ınst	allation							
	tallation cre			7		Installation date/beginning time: 2-19-06 10-42							
PID/FID r	eading (we	ll head/bacl	kground):	0.6		Installation date/completion time: এনান জ । । এবর							
Casing di	ameter (inc I Depth (ft. E	hes):	니.		Screen Interval (ft. BTOC): 22 to 32								
Total well	l Depth (ft. E	3TOC):	31.58		•	Pump int	ake depth (t	ft BTOC): _	Car 37				
	e-installation	,			<del></del>	Post-insta	allation DTV	۷/time: <u>23</u>	1.09				
1	er pump prir				_	Max. sus	tainable pur	np rate (mL	/min): <u></u> \00				
	luct (circle):					Appearar	nce of produ	ict: No	Λ				
	f water rem			L): NIR		Discharge	e tube diam	eter (3/8" or	1/4"): 1/4				
	tube lengtl		~24			Inlet redu	cer used (Y	/N): <i>N</i>					
	ic Controlle	_											
Initial air p	oressure = F	H (ft.) X 0.43	3 == 1/4 bc	psi									
	· · · · · · · · · · · · · · · · · · ·	Initial	2	3 1	4	5	~ 6	7	8	Final			
Pressure (ps	si)				II)			<del>                                     </del>	<del> </del> -	1 11101			
Refill Setting					11/1				***************************************	<del> </del>			
Discharge S	etting		<u> </u>	1	11 M		21,91	16	<del>                                     </del>	<del>                                     </del>			
Flow rate (m	Ľ/min)					<del> </del>	14-11-1	70	<del> </del>				
					Purgir	~							
Initial (pre- Calculated Pneumati	ampling creve/beginning -purging) D  tubing + pu c Controlle ressure = H	TW (ft. BTO ump volume r <mark>Tuning:</mark>	: <u>23.09</u> ::1	NA	- -	Final (post	t-purging) D		[역 - 0句 DC): _ 없3 - 0 rged: _ Mf				
	······································	Initial	2	3	T		<del></del>	T	1				
Pressure (ps	i)	25 -	<u> </u>	3	4	5	6	7	8	Final			
Refill Setting	<u> </u>	10		<del> </del>			ļ			85 (a			
Discharge Se	ettina	5								10 5			
Flow rate (ml	·	100	<del> </del>					<u> </u>					
100 1000 (111		I	<u> </u>	<u> </u>	l		<u> </u>	i	<u> </u>	100			
····	1	Υ		Quality Pa	ramete	r Measure	ments						
Time	DTW	Purge Rate	Cumulative	Temp.		ectrical	рН	Eh	DO	Turbidity			
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Con	ductivity		(mv)	(mg/L)	(NTU)			
			Purged (L)			hos/cm)							
10:55	23.06	100	0.5	31.03		97	7.00	71.3	4.17	6.1			
11:00	23.06	100	1.0	21.0B	13	J 9	7.01	72.9	18.4	LЦ			
11:06	23.06	109	1.5	31.03	17	10)	7.01	73.6	4.99	3.3			
11.10	110 23.06 100 3.0 21.01					18	F0.F	73.4	4.30	3.0			
··													
-	<del>/   </del>	<del></del>	<del>/   </del>	I					- 1				
	A	<u>A</u>				71.19							

00079286 007 Sheet 2 of 2



## **GROUNDWATER SAMPLING FORM**

	<del></del>	<del></del>	Water Qual	lity Parame	ter Measurem	ents (continu	ed)		
Time	DTW	Purge Rat	1	Temp.	生3円。 Conductivit	рН	Eh	DO	Turbidity
	(ft. BTOC	(mUmin)	Volume	(degree C)	Conductivit	y   1	(mv)	(mg/L)	(NTU)
			Purged (L)	110%	(uMhos/cm	;  ±0.1	±10	土10%	+10%
<u> </u>									
				TN T					
				1 16					<del> </del>
		1	1						<del> </del>
				M					<del> </del>
		1				67			
				2	01191	<del>/ V </del>	<del> </del>	1	<del> </del>
					<del></del>		<del></del>		
					<u> </u>		<del> </del>	<del>                                     </del>	<del> </del>
					<del></del>			<del> </del>	<del> </del>
					*			<del> </del>	<del> </del>
7					***************************************			<u> </u>	
			<u> </u>	C.				1	1
C 1: 1		1,		38	ımpling				
Sampling	peginning tir	ne: 117.15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Samplir	ng completion	time: <u>    ⋅ ∂</u>	0	~~~
	·		Water	Quality Pa	rameter Meas	urements			
Time	DTW	Purge Rate	Cumulative	Temp.	Electrical	ρΗ	Eh	DO	Turbidity
	(ft. BTOC)	(mL/min)	Volume	(degree C)	Conductivity	]	(mv)	(mg/L)	(NTU)
			Purged (L)		(uMhos/cm)				
11.30	23.66	100	3.5	21.02	1.7.17	7.03	.73.2	4.20	3-4
									***************************************
	····			Cample	lufo vocatio				
Samola ID:	50Wyo	1 AO IGAS	2	Sample	Information	1	· •	. 66 1.	
Dunlicata e	ample colle	100 (V/N)	<u> </u>		Sample	collection date e sample ID:_ nple ID:	e/time: ♥ 1°	1-00 11	:20
Salit camal	e collected (	NND- 'V/ND-	101		Duplicat	e sample IU:_	101 h		
COC Mo(e)	Necreal (	771NJ }_	<u>  //</u>		Split sar	npie IU:	1		
			~				·		
Requested	Analysis	Method	Cor	ntainers	Reques	ted Analysis	Method	Conta	inare
Voca		8260		L Vog J		ica / maryono	memou	Oonta	111612
		12000	3 40 14	<u> </u>	14.0				
.,,.,.,									
······································	<del></del>								
····									
\		<del></del>							
Comments	St.	ailess -	steel o	ased M	ladder p	Luca Amil			
	Ĺ	\		,	Learned, by	and olea			
	8	o. Dol	ging ar	id sam	Pline				
		1	<i>y</i> ,		1117				

## Appendix C

Basis of Estimate for LHAAP-50 Remediation

# Alternative 2, Excavation, MNA, LUCs Present Value

COMPANY NAME: SHAW E&I PROJECT LOCATION: KARNACK, TEXAS

KARNACK, TEXAS DATE: December 2009

	Year	FY	Capit	tal Costs		O & M	Costs	P	resent Value (NPV	V)	
MNA   Excavation   MNA   LTM   Total   2.8%			•								O & M
2         2008         47,416         47,416         Total Capital and O&M \$           3         2009         24,064         24,064         Total Capital and O&M \$           4         2010         24,064         24,064         24,064           5         2011         66,589         66,589         6           6         2011         15,302         15,302         15,302           7         2012         15,302         15,302         15,302           8         2013         15,302         15,302         15,302           9         2014         15,302         15,302         15,302           10         2015         57,827         57,827         77,827           11         2016         0         0         0           12         2017         0         0         0           13         2018         0         0         0           14         2019         0         0         0           15         2020         57,827         57,827         0           16         2021         0         0         0           18         2023         0         0         0			MNA	Excavation	MNA	LTM	Total	2.8%			
3   2009   24,064   24,064   Total Capital and O&M \$	1	2007	81,755	133,362	47,416		47,416	NPV	\$ 215,117	\$	423,631
4         2010         24,064         24,064           5         2011         66,589         66,589           6         2011         15,302         15,302           7         2012         15,302         15,302           8         2013         15,302         15,302           9         2014         15,302         15,302           10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           17         2022         0         0           18         2023         0         0           20         2024         0         0           21         2026         0         0           22         2027         0         0           23         2028         0         0           24         2029         0         0	2	2008			47,416		47,416				
5         2011         66,589         66,589           6         2011         15,302         15,302           7         2012         15,302         15,302           8         2013         15,302         15,302           9         2014         15,302         15,302           10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           18         2023         0         0           19         2024         0         0           20         2025         57,827         57,827           21         2026         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827           26         2031         0	3	2009				24,064	24,064	Total (	Capital and O&M	\$	638,748
6         2011         15,302         15,302           7         2012         15,302         15,302           8         2013         15,302         15,302           9         2014         15,302         15,302           10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           17         2022         0         0           18         2023         0         0           19         2024         0         0           20         2025         57,827         57,827           21         2026         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827           26         2031         0         0 <td>4</td> <td>2010</td> <td></td> <td></td> <td></td> <td>24,064</td> <td>24,064</td> <td></td> <td></td> <td></td> <td></td>	4	2010				24,064	24,064				
7         2012         15,302         15,302           8         2013         15,302         15,302           9         2014         15,302         15,302           10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           17         2022         0         0           18         2023         0         0           19         2024         0         0           20         2025         57,827         57,827           21         2026         0         0           22         2027         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827           26         2031         57,827         57,827 <td>5</td> <td>2011</td> <td></td> <td></td> <td></td> <td>66,589</td> <td>66,589</td> <td></td> <td></td> <td></td> <td></td>	5	2011				66,589	66,589				
8         2013         15,302         15,302           9         2014         15,302         15,302           10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           17         2022         0         0           18         2023         0         0           19         2024         0         0           20         2025         57,827         57,827           21         2026         0         0           22         2027         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827         0           26         2031         0         0         0	6	2011				15,302	15,302				
9         2014         15,302         15,302           10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           17         2022         0         0           18         2023         0         0           19         2024         0         0           20         2025         57,827         57,827           21         2026         0         0           22         2027         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827         57,827           26         2031         0         0	7	2012				15,302	15,302				
10         2015         57,827         57,827           11         2016         0         0           12         2017         0         0           13         2018         0         0           14         2019         0         0           15         2020         57,827         57,827           16         2021         0         0           17         2022         0         0           18         2023         0         0           19         2024         0         0           20         2025         57,827         57,827           21         2026         0         0           22         2027         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827           26         2031         0         0	8	2013				15,302	15,302				
11       2016       0       0         12       2017       0       0         13       2018       0       0         14       2019       0       0         15       2020       57,827       57,827         16       2021       0       0         17       2022       0       0         18       2023       0       0         19       2024       0       0         20       2025       57,827       57,827         21       2026       0       0         22       2027       0       0         23       2028       0       0         24       2029       0       0         25       2030       57,827       57,827         26       2031       0       0	9	2014				15,302	15,302				
12       2017       0       0         13       2018       0       0         14       2019       0       0         15       2020       57,827       57,827         16       2021       0       0         17       2022       0       0         18       2023       0       0         19       2024       0       0         20       2025       57,827       57,827         21       2026       0       0         22       2027       0       0         23       2028       0       0         24       2029       0       0         25       2030       57,827       57,827         26       2031       0       0	10	2015				57,827	57,827				
13       2018       0         14       2019       0         15       2020       57,827         16       2021       0         17       2022       0         18       2023       0         19       2024       0         20       2025       57,827         21       2026       0         22       2027       0         23       2028       0         24       2029       0         25       2030       57,827       57,827         26       2031       0       0	11	2016					0				
14       2019       0         15       2020       57,827         16       2021       0         17       2022       0         18       2023       0         19       2024       0         20       2025       57,827         21       2026       0         22       2027       0         23       2028       0         24       2029       0         25       2030       57,827       57,827         26       2031       0	12	2017					0				
15         2020         57,827         57,827           16         2021         0           17         2022         0           18         2023         0           19         2024         0           20         2025         57,827           21         2026         0           22         2027         0           23         2028         0           24         2029         0           25         2030         57,827           26         2031         0	13	2018					0				
16       2021       0       0         17       2022       0       0         18       2023       0       0         19       2024       0       0         20       2025       57,827       57,827         21       2026       0       0         22       2027       0       0         23       2028       0       0         24       2029       0       0         25       2030       57,827       57,827         26       2031       0       0	14	2019					0				
17     2022       18     2023       19     2024       20     2025       21     2026       22     2027       23     2028       24     2029       25     2030       26     2031	15	2020				57,827	57,827				
18     2023       19     2024       20     2025       21     2026       22     2027       23     2028       24     2029       25     2030       26     2031	16	2021					0				
19     2024       20     2025       21     2026       22     2027       23     2028       24     2029       25     2030       26     2031	17	2022					0				
20     2025     57,827     57,827       21     2026     0       22     2027     0       23     2028     0       24     2029     0       25     2030     57,827       26     2031     0	18	2023					0				
21     2026       22     2027       23     2028       24     2029       25     2030       26     2031	19	2024					0				
21     2026       22     2027       23     2028       24     2029       25     2030       26     2031	20	2025				57,827	57,827				
22         2027         0         0           23         2028         0         0           24         2029         0         0           25         2030         57,827         57,827           26         2031         0         0	21	2026					0				
24     2029       25     2030       26     2031	22						0				
25         2030         57,827         57,827           26         2031         0	23	2028					0				
26 2031 0	24	2029					0				
	25	2030				57,827	57,827				
	26	2031					0				
							0				
28 2033 0	28	2033					0				
29 2034 0	29	2034					0				
30 2035 57,827 57,827	30	2035				57,827	57,827				
215,117 94,832 465,055 559,887	H			215 117	94 832	465.055	559 887				
213,117 77,032 703,033 337,007	H			213,117	77,032	703,033	337,007				

Note:

Discount rate of 2.8% is based on the Office of Management and Budget Circular No. A-94, January 2008.

133,362

Final Feasibility Study, LHAAP-50, Former Sump Water Tank, Group 4

Appendix C

#### **Alternative 2, Excavation Activities**

COMPANY NAME: SHAW E&I
PROJECT LOCATION: KARNACK.

Year 1 total Capitol costs

KARNACK, TEXAS DATE: December 2009 SUBCONTRACT Item LABOR MATERIAL **EQUIPMENT** NO DESCRIPTION OTY UNIT UNIT MH TOTAL MH CRAFT | \$/MH \$ VALUE \$/UNIT VALUE \$/UNIT \$ VALUE \$/UNIT \$ VALUE TOTAL (\$) Year 1 Capital costs Develop Work Plans/Design 300 300 81.60 24,480 500 500 24,980 ea eng Waste Characterization 570 50 620 8 chem 71.20 ea 2 32 400 3,000 Waste Characterization ea 16 tech 34.30 1,098 800 200 400 1,500 5,298 3 Mobilization/Demobilization 2 16 32 89.90 2,877 327 654 500 1,000 4,500 9,000 13,531 pr/tech/l ea 4 Clear and Grub 1,500 1,500 1,500 ea Soil Excavation Activities 3 dy 20 60 spr/tech/h 89.90 5,394 652 1.956 500 1.500 700 2,100 10,950 6 Transport and Disposal 13 load 100 1,300 600 7,800 9,100 Confirmation Sampling (VOCs, perchlorate) 7 ea 50 350 500 3,500 3,850 8 Site Restoration 195 100 19,500 10 1,950 21,450 cy 9 Closeout Report 200 200 81.60 16,320 500 500 16,820 ea Capital Costs Subtotal 50,738 25,610 2,900 28,850 108,098 Taxes @ 6.5 % 1,665 1,665 Subtotal 109,763 23,599 Indirects @ 21.5%

### Alternative 2, MNA/LUCs

COMPANY NAME: PROJECT LOCATION:

SHAW E&I KARNACK, TEXAS **DATE:** December 2009

				PROJECT	LOCATION:		KAKNA	CK, TEXAS							
Item						ABOR			MATE			PMENT		ONTRACT	
NO	DESCRIPTION					CRAFT	\$/MH	\$ VALUE	\$/UNIT	VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
	Assumes mon	itoring	of 3 ex	isting and 2 n	ew wells										
	Year 1														
	Capital costs												15.000	1.5.000	15,000
1	Allowance for Legal Fees, Administration Controls, and Documentation	1	lot										15,000	15,000	15,000
2	Establish initial database, licenses, work plans	1	ea	300	300	eng	81.60	21,000	5,000	5,000			5000	5,000	31,000
3	Geoprobe install additional monitoring wells	2	ea	40	80	geol	71.20	5,696	1,500	3,000	36	72	6000	12,000	20,768
	Capital Costs Subtotal	_				8		26,696	-,	8,000		72		32,000	66,768
								20,090				12		32,000	*
	Taxes @ 6.5 %									520					520
	Subtotal														67,288
	Indirects @ 21.5%														14,467
	Year 1 total Capital costs														\$ 81,755
	Years 1 and 2 Monitoring (under O&M costs)			1.0	<b>5</b> .00		24.20	2<240	110	<b>5.2</b> 00	2.6	1.720			22.240
1 2	Collect and prepare samples quarterly (GW) Sample analysis (VOCs, perchlorate, MNA)	48 48	ea ea	16	768	tech	34.30	26,340	110	5,280	36	1,728	700	33,600	33,348 33,600
3	Annual report	2	ea	64	128	eng	81.60	10,440	150	300			700	33,000	10,740
]	1	2	ca	04	120	clig	01.00		130			1 720		22.600	*
	Subtotal							36,780		5,580		1,728		33,600	77,688
	Taxes @ 6.5 %									363					363
	Subtotal														78,051
	Indirects @ 21.5%														16,781
	Years 1 and 2 Total Cost														94,832
	Annual Cost														\$ 47,416
	Years 3 and 4 LTM				201		24.20		440			0.44			
1	Collect and prepare samples semiannually	24	ea	16	384	tech	34.30	13,171	110	2,640	36	864	500	12 000	16,675
2 3	Sample analysis (VOCs and perchlorate) Annual report	24 2	ea ea	64	128	ona	81.60	10,445	150	300			500	12,000	12,000 10,745
3		2	еа	04	120	eng	81.00	,	130			0.54		44.000	
	Subtotal							23,616		2,940		864		12,000	39,420
	Taxes @ 6.5 %									191					191
	Subtotal														39,611
	Indirects @ 21.5%														8,516
	Years 3 and 4 Total Cost														48,127
	Annual Cost														\$ 24,064
															, , , , , , , , , , , , , , , , , , , ,

### Alternative 2, MNA/LUCs

COMPANY NAME: PROJECT LOCATION:

SHAW E&I KARNACK, TEXAS **DATE:** December 2009

				I KOJECI .	LOCATION:		KAKNA	CK, TEXAS							
Item						ABOR				ERIAL		PMENT		NTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	TOTAL MH	CRAFT	\$/MH	\$ VALUE	\$/UNIT	VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
1	Year 5 LTM Collect and prepare samples semiannually	10		16	192	tash	34.30	6,586	110	1,320	36	432			0 220
1 2	Sample analysis (VOCs and perchlorate)	12 12	ea ea	10	192	tech	34.30	0,380	110	1,320	30	432	500	6,000	8,338 6,000
3	Annual report	1	ea	64	64	eng	81.60	5,222	150	150			500	0,000	5,372
4	Five Year report/inspection	1	ea			Č		, 					35,000	35,000	35,000
	Subtotal							11,808		1,470		432		41,000	54,710
	Taxes @ 6.5 %									96					96
	Subtotal														54,806
	Indirects @ 21.5%														11,783
	Year 5 Total Cost														\$ 66,589
	Years 6 through 9 LTM														
1	Collect and prepare samples Annually	24	ea	16	384	tech	34.30	13,171	110	2,640	36	864			16,675
2	Sample analysis (VOCs and perchlorate)	24	ea										500	12,000	12,000
3	Annual report	4	ea	64	256	eng	81.60	20,890	150	600					21,490
	Subtotal							34,061		3,240		864		12,000	50,165
	Taxes @ 6.5 %									211					211
	Subtotal														50,375
	Indirects @ 21.5%														10,831
	Years 6 through 9 Total Cost														61,206
	Annual Cost														\$ 15,302
	Year 10 LTM														
1	Collect and prepare samples Annually	6	ea	16	96	tech	34.30	3,293	110	660	36	216			4,169
2	Sample analysis (VOCs and perchlorate)	6	ea										500	3,000	3,000
3	Annual report	1	ea	64	64	eng	81.60	5,222	150	150					5,372
4	Five Year report/inspection	1	ea				-						35,000	35,000	35,000
	Subtotal							8,515		810		216		38,000	47,541
	Taxes @ 6.5 %									53					53
	Subtotal														47,594
	Indirects @ 21.5%														10,233
	Year 10 Total Cost														\$ 57,827

### Alternative 2, MNA/LUCs

COMPANY NAME: PROJECT LOCATION:

SHAW E&I KARNACK, TEXAS **DATE:** December 2009

				FROJECT				CK, IEAAS							
Item					L	ABOR			MAT	ERIAL	EQUI	PMENT	SUBCO	NTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	TOTAL MH	CRAFT	\$/MH	\$ VALUE	\$/UNIT	<b>VALUE</b>	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
	Years 15, 20, 25, and 30 LTM Cost for one event														
1	Collect and prepare samples once every 5 yrs	6	ea	16	96	tech	34.30	3,293	110	660	36	216			4,169
2	Sample analysis (VOCs and perchlorate)	6	ea										500	3,000	3,000
3	Event report	1	ea	64	64	eng	81.60	5,222	150	150					5,372
4	Five Year report/inspection	1	ea				_						35,000	35,000	35,000
	Subtotal							8,515		810		216		103,000	47,541
	Taxes @ 6.5 %									53					53
	Subtotal														47,594
	Indirects @ 21.5%														10,233
	Total for 1 Event Years 15, 20, 25, and 30 Total Cost													;	57,827 231,306

#### Alternative 3, Excavation, In Situ Bioremediation, LUCs Present Value

COMPANY NAME: PROJECT LOCATION:

SHAW E&I

KARNACK, TEXAS

DATE: DECEMBER 2009

Year	FY		Capital Costs			O & M	Costs	P	resent Value (NPV)	
			Work Plans and							
		Bioremediation	New Wells	Excavation	Monitoring	Bioremed	Total	Discount Rate	Capital	O & M
1	2008	182,569	85,983	133,362	41,584		41,584	2.8%		
2	2009				41,584	102,368	143,952	NPV	401,914	511,706
3	2010				24,064		24,064			
4	2011				24,064		24,064			
5	2012				66,589		66,589	Total (	Capital and O&M	\$913,620
6	2013				15,302		15,302			
7	2014				15,302		15,302			
8	2015				15,302		15,302			
9	2016				15,302		15,302			
10	2017				57,827		57,827			
11	2018						0			
12	2019						0			
13	2020						0			
14	2021						0			
15	2022				57,827		57,827			
16	2023						0			
17	2024						0			
18	2025						0			
19	2026						0			
20	2027				57,827		57,827			
21	2028						0			
22	2029						0			
23	2030						0			
24	2031						0			
25	2032				57,827		57,827			
26	2033						0			
27	2034						0			
28	2035						0			
29	2036						0			
30	2037				57,827		57,827			
				401,914	548,223	102,368	650,591			

#### Note

Discount rate of 2.8% is based on the Office of Management and Budget Circular No. A-94, January 2008.

### **Alternative 3, Excavation Activities**

COMPANY NAME:

SHAW E&I

PROJECT LOCATION: KARNACK, TEXAS

DATE:

DECEMBER 2009

1															
Item					I	LABOR			MATI	ERIAL	EQUI	PMENT	SUBCC	ONTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	TOTAL ME	I CRAFT	\$/MH	\$ VALUE	\$/UNIT	<b>VALUE</b>	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
	Year 1 - Excavation Capital Costs														
1	Develop Work Plans/Design	1	ea	300	300	eng	81.60	24,480	500	500					24,980
2	Waste Characterization	1	ea	8	8	chem	71.20	570	50	50					620
		2	ea	16	32	tech	34.30	1,098	400	800	200	400	1,500	3,000	5,298
3	Mobilization/Demobilization	2	ea	16	32	spr/tech/hs	89.90	2,877	327	654	500	1,000	4,500	9,000	13,531
4	Clear and Grub	1	ea										1,500	1,500	1,500
5	Soil Excavation Activities	3	dy	20	60	spr/tech/hs	89.90	5,394	652	1,956	500	1,500	700	2,100	10,950
6	Transport and Disposal	13	load						100	1,300			600	7,800	9,100
7	Confirmation Sampling	7	ea						50	350			500	3,500	3,850
8	Site Restoration	195	cy						100	19,500			10	1,950	21,450
9	Closeout Report	1	ea	200	200	eng	81.60	16,320	500	500					16,820
	Capital Costs Subtotal							50,738		25,610		2,900		28,850	108,098
	Taxes @ 6.5 %									1,665					1,665
	Subtotal														109,763
	Indirects @ 21.5%														23,599
	Year 1 total Capitol Excavation Costs													9	133,362

Final Feasibility Study, LHAAP-50, Former Sump Water Tank, Group 4 Shaw Environmental, Inc Appendix C

#### Alternative 3, In Situ Bioaugmentation

**COMPANY NAME:** 

3

5

14

37

2

5

3

3

2

1

2

2

SHAW E&I

PROJECT LOCATION: KARNACK, TEXAS

DATE: **DECEMBER 2009** LABOR MATERIAL **EQUIPMENT** SUBCONTRACT UNIT UNIT MH TOTAL MH CRAFT \$/MH \$ VALUE \$/UNIT \$ VALUE \$/UNIT \$ VALUE \$/UNIT \$ VALUE TOTAL (\$) 240 240 81.60 19,584 200 200 19,784 ea eng 160 160 91.50 14,640 200 200 14,840 ea eng/geol ea 120 120 81.60 9,792 200 200 9,992 eng 50 50 91.50 4,575 hr eng/geol 4,575 3150 9,450 9,450 wells 159 400 days 795 80.00 1,195 40 ea 40 eng 81.60 3.264 1.200 1.200 1.000 1.000 5,464 hr 80 80 h/s 55.70 4,456 50 50 160 160 4,666 60 60 2,825 2,825 hr geol 71.20 4,272 7,097 10 140 day 80 1,120 1,260 day 109 4,033 4,033 2400 4,800 4,800 ea 3.150 15,750 15,750 ea 3,000 ea 3,000 3,000 250 drum 750 750 12 36 34.30 1,235 60 180 36 108 1,523 ea tech 1,500 3,000 3,000 ea 40 40 65.70 2,628 30,360 30,360 1500 1,500 34,488 ea eng tech ea 16 32 tech 34.30 1,098 122 244 36 72 1,414 500 1,000 1,000 ea

Subtotal	65,543	33,569	7,185	41,783	148,080
Taxes @ 6.5 %		2,182			2,182
Subtotal					150,262
Indirects @ 21.5%					32,306
Year 1 Total Capital Costs				\$	182,569

Item

NO

1 Work plans, safety plans

UIC Permit and Design

Treatability/Pilot Study

Mob / Demob

Field Super/Geolog

Driller Mob/Demob

Well drill waste disposal

13 Sample analysis (waste char)

Bioaugmentation materials

Field H&S

Vehicles

Per Diem

Well survey

Per Diem and Travel Costs

Treatability/Pilot Sample Collection

Driller for Treatability/Pilot Sampling

Install injection wells, 30' dpt, 2" dia.

12 Collect & prepare well waste drum samples

Collect and prepare samples (2 times)

16 Sample analysis (VOCs and perchlorate)

DESCRIPTION

Field Work in Year 1 - Capital Costs

### Alternative 3, Bioaugmentation Operations and Maintenance

**COMPANY NAME:** 

SHAW E&I

PROJECT LOCATION:

KARNACK, TEXAS

DATE:

DECEMBER 2009

				PROJECT	LOCATION:		KAKNA	CK, TEXAS				DATE:	U	ECEMBER 20	JU9
Item					]	LABOR			MAT	ERIAL	EQUI	PMENT	SUBCO	NTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	TOTAL MH	CRAFT	\$/MH	\$ VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (
	Bioremediation O&M Annual costs Year 2														
1	Update safety, training ,waste, and	1	ea	80	80	eng	81.60	6,528	80	80					6,6
2	health , plans, etc. H&S	1	hr	80	80	h/s	55.70	4,456	50	50	160	160			4,6
3	Field Engineer	1	hr	60	60	eng/geol	91.50	5,490			2,825	2,825			8,3
4	Inject additional nutrients into each well	1	ea	40	40	eng tech	65.70	2,628	30,360	30,360	1500	1,500			34,4
5	Abandon wells	5	ea	5	25	eng tech	65.70	1,643	80	400	80	400	1600	8,000	10,4
6	Mob / Demob	2	ea	24	48	spr/tech/hs	89.90	4,315	1,200	2,400	1,000	2,000	2400	4,800	13,5
7	Vehicles	14	day						10	140	80	1,120			1,2
8	Per Diem	24	day				-		109	2,616					2,6
	Subtotal							25,060		36,046		8,005		12,800	81,9
	Taxes @ 6.5 %									2,343					2,3
	Subtotal														84,2
	Indirects @ 21.5%														18,1
	Year 2 Total O&M Cost														\$ 102,3

#### Alternative 3, Monitoring/LUCs

COMPANY NAME:

SHAW E&I

PROJECT LOCATION:

KARNACK, TEXAS

DATE:

DECEMBER 2009

				TROUECT	LOCATION:		1111111111	CK, TEXAS				DATE:		ECEMBER 200	
Item						ABOR				ERIAL		PMENT		NTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	I TOTAL MH	CRAFT	\$/MH	\$ VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
				]	Monitoring of 3	existing	wells and	2 new wells							
	Year 1 - Startup, New Wells, MNA														
1	Allowance for Legal Fees, Administration	1	lot										15,000	15,000	15,000
2	Establish initial database, licenses, coordinate	1	ea	300	300	eng	81.60	24,480	5,000	5,000			5,000	5,000	34,480
	well characterization & other well info,														
_	develop work plans, etc	2		40	80		71.00	5.000	1.500	2.000	26	70	6000	12 000	20.769
3	Geoprobe install additional monitoring wells	2	ea	40	80	geol	71.20	5,696	1,500	3,000	36	72	6000	12,000	20,768
	Subtotal							30,176		8,000		72		32,000	70,248
	Taxes @ 6.5 %									520					520
	Subtotal														70,768
	Indirects @ 21.5%														15,215
	Year 1 Total Capital Costs														\$ 85,983
	Years 1 and 2 Monitoring O&M costs														
1	Collect and prepare samples quarterly (GW)	48	ea	16	768	tech	34.30	26,340	110	5,280	36	1,728			33,348
2	Sample analysis (VOCs, perchlorate, MNA)	48	ea										500	24,000	24,000
3	Annual report	2	ea	64	128	eng	81.60	10,440	150	300					10,740
	Subtotal							36,780		5,580		1,728		24,000	68,088
	Taxes @ 6.5 %									363					363
	Subtotal														68,451
	Indirects @ 21.5%														14,717
	Years 1 and 2 Total Cost														83,168
	Annual Cost														\$ 41,584
	Years 3 and 4 Monitoring														
1	Collect and prepare samples semiannually	24	ea	16	384	tech	34.30	13,171	110	2,640	36	864			16,675
2	Sample analysis (VOCs, perchlorate)	24	ea										500	12,000	12,000
3	Annual report	2	ea	64	128	eng	81.60	10,445	150	300					10,745
	Subtotal							23,616		2,940		864		12,000	39,420
	Taxes @ 6.5 %									191					191
	Subtotal														39,611
	Indirects @ 21.5%														8,516
	Years 3 and 4 Total Cost														48,127
	Annual Cost														\$ 24,064

#### Alternative 3, Monitoring/LUCs

COMPANY NAME: SHAW E&I
PROJECT LOCATION: KARNACK, TEXAS

					LOCATION:		KARNA	CK, TEXAS				DATE:	DE	CEMBER 200	9
Item					L	ABOR			MAT	ERIAL	EQUI	PMENT	SUBCO	NTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	TOTAL MH	CRAFT	\$/MH	\$ VALUE	\$/UNIT	\$ VALUE		\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
	Year 5 Monitoring														
1	Collect and prepare samples semiannually	12	ea	16	192	tech	34.30	6,586	110	1,320	36	432			8,338
2	Sample analysis (Suite 2)	12	ea	10	1,2	teen	31.50	0,500	110	1,520	50	132	500	6,000	6,000
3	Annual report	1	ea	64	64	eng	81.60	5,222	150	150				.,	5,372
4	Five-Year Inspection and Review	1	ea			_							35,000	35,000	35,000
	Subtotal							11,808		1,470		432		41,000	54,710
	Taxes @ 6.5 %									96					96
	Subtotal														54,806
	Indirects @ 21.5%														11,783
	Year 5 Total Cost														\$ 66,589
l															
l	Years 6 through 9 Monitoring														
1	Collect and prepare samples Annually	24	ea	16	384	tech	34.30	13,171	110	2,640	36	864			16,675
2	Sample analysis (Suite 2)	24	ea										500	12,000	12,000
3	Annual report	4	ea	64	256	eng	81.60	20,890	150	600					21,490
	Subtotal							34,061		3,240		864		12,000	50,165
	Taxes @ 6.5 %									211					211
	Subtotal														50,375
	Indirects @ 21.5%														10,831
	Years 6 through 9 Total Cost														61,206
	Annual Cost														\$ 15,302
l															
1	Year 10 Monitoring Collect and prepare samples Annually			16	96	tech	34.30	3,293	110	660	36	216			4,169
1 2	Sample analysis (Suite 2)	6 6	ea ea	10	96	tecn	34.30	3,293	110	000	30	216	500	3,000	3,000
3	Annual report	1	ea	64	64	eng	81.60	5,222	150	150			300	3,000	5,372
4	Five-Year Inspection and Review	1	ea	-	-			-,					35,000	35,000	35,000
	Subtotal						•	8,515		810		216		38,000	47,541
	Taxes @ 6.5 %									53					53
	Subtotal														47,594
	Indirects @ 21.5%														10,233
	Year 10 Total Cost														\$ 57,827
															,021

#### Alternative 3, Monitoring/LUCs

COMPANY NAME: SHAW E&I

PROJECT LOCATION: KARNACK, TEXAS DATE: DECEMBER 2009

Item	ı				L	ABOR			MAT	ERIAL	EQUII	PMENT	SUBCO	NTRACT	
NO	DESCRIPTION	QTY	UNIT	UNIT MH	TOTAL MH	CRAFT	\$/MH	\$ VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	\$/UNIT	\$ VALUE	TOTAL (\$)
1 2 3	Years 15, 20, 25, and 30 Monitoring Collect and prepare samples every 5 years Sample analysis (Suite 2) Event report	24 24 4	ea ea ea	16 64	384 256	tech	34.30 81.60	13,171 20,890	110 150	2,640 600	36	864	500	12,000	16,675 12,000 21,490
4	Five-Year Inspection and Review	4	ea				-						35,000	140,000	140,000
	Subtotal							34,061		3,240		864		12,000	190,165
	Taxes @ 6.5 %									211					211
	Subtotal														190,375
	Indirects @ 21.5%														40,931
	Years 15, 20, 25, and 30 Total Cost Event Cost													\$	231,306 57,827