LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

ADMINISTRATIVE RECORD

Volume 2 of 19

2010

Bate Stamp Numbers 00083382 – 00084358

Prepared for

Department of the Army Longhorn Army Ammunition Plant

1976 - 2010

VOLUME 2 of 19

2010

A. Title: Report (Continued) - Final Completion Report Non-Time-Critical Removal

Action at the Former Pistol Range, Longhorn Army Ammunition Plan,

Karnack, Texas

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: January 12, 2010
Bate Stamp: 00083382 - 00083891

B. Title: Report - Final Proposed Plan for LHAAP-46, Plant 2 Area, Group 4,

Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: January 12, 2010
Bate Stamp: 00083892 - 00083913

C. Title: Report - Final Proposed Plan for LHAAP-35A(58), Shops Area, Group 4,

Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: January 19, 2010
Bate Stamp: 00083914 - 00083935

D. Title: Report - Final Proposed Plan for LHAAP-50, Former Sump Water Tank,

Group 4, Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: January 19, 2010
Bate Stamp: 00083936 - 00083958

E. Title: Public Notice - Proof of Publication Shreveport Times Newspaper Notice

for Proposed Plans for Sites LHAAP-46, 49, 50, 35A(58) and the Pistol

Range, Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: January 17 and 24, 2010 Bate Stamp: 00083959 - 00083964

VOLUME 2 of 19

2010

F. Title: Public Notice - Proof of Publication Marshall News Messenger Notice

for Proposed Plans for Sites LHAAP-46, 49, 50, 35A(58) and the Pistol

Range, Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: January 17 and 24, 2010 Bate Stamp: 00083965 – 00083972

G. Title: Meeting Minutes - Longhorn AAP Monthly Manager's Meeting

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: January 26, 2010
Bate Stamp: 00083973 – 00083983

H. Title: Memorandum – Results of Additional Sampling at Site LHAAP-02 (Former

Vacuum Truck Overnight Parking), Longhorn Army Ammunition Plant,

Karnack, Texas

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: All Stakeholders
Date: February 16, 2010
Bate Stamp: 00083984 - 00084236

I. Title: Public Notice - Proof of Publication Shreveport Times Newspaper Notice

for Proposed Plans for Sites LHAAP-46, 49, 50, 35A(58) and the Pistol

Range, Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: February 22 and 28, 2010 Bate Stamp: 00084237 - 00084239

J. Title: Public Notice - Proof of Publication Marshall News Messenger Newspaper

Notice for Proposed Plans for Sites LHAAP-46, 49, 50, 35A(58) and the

Pistol Range, Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: February 21 and 28, 2010 Bate Stamp: 00084240 – 00084242

VOLUME 2 of 19

2010

K. Title: Public Notice - Media Release for March 9, 2010 Public Meeting,

Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: February 22, 2010 Bate Stamp: 00084243 - 00084248

L. Title: Meeting Minutes - Longhorn AAP Monthly Manager's Meeting

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: LHAAP Stakeholders
Date: February 25, 2010
Bate Stamp: 00084249 - 00084257

M. Title: Public Tour - Roster of Participants for Longhorn Army Ammunition Plant

Tour, Karnack, Texas

Author(s): LHAAP Stakeholders

Recipient: Public

Date: March 9, 2010 Bate Stamp: 00084258

N. Title: Meeting Minutes - Longhorn AAP Monthly Manager's Meeting

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: LHAAP Stakeholders

Date: March 9, 2010

Bate Stamp: 00084259 - 00084267

O. Title: Meeting Minutes - LHAAP Restoration Advisory Board (RAB) Meeting

Author(s): Shaw Environmental, Inc., Houston, Texas

Recipient: LHAAP Stakeholders

Date: March 9, 2010

Bate Stamp: 00084268 - 00084276

VOLUME 2 of 19

2010

P. Title: Public Meeting - Public Meeting Agenda and Roster of Attendees for

March 9, 2010 Public Meeting, Longhorn Army Ammunition Plant,

Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: March 9, 2010

Bate Stamp: 00084277 - 00084278

Q. Title: Public Meeting - Transcript for March 9, 2010 Public Meeting,

Longhorn Army Ammunition Plant, Karnack, Texas

Author(s): U.S. Army Recipient: Public

Date: March 9, 2010

Bate Stamp: 00084279 - 00084358

1.0 Introduction

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:
 - a) LCS spiking amount,
 - b) Calculated %R for each analyte, and
 - c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren Beery	Metals Supervisor	August 18, 2009
Name (Printed)	Signature	Official Title (printed)	DATE
RG-366/TRRP-13 December 2002			A1

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080179
Project Name: 798-LONGHORN
Method: 7471
Prep Batch Number(s): WG309804
Reviewer Name: MAREN M. BEERY
LRC Date: August 18, 2009

Chain-Of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" test="" th="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><th>✓</th><th></th><th></th></mql,>	✓		
receipt? Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>√</td><td></td><td></td></mql,>	√		
standards? ✓ Were calculations checked by a peer or supervisor? ✓ Were all analyte identifications checked by a peer or supervisor? ✓ Were sample quantitation limits reported for all analytes not detected? ✓ Were all results for soil and sediment samples reported on a dry weight basis? ✓ Were % moisture (or solids) reported for all soil and sediment samples? ✓ If required for the project, TICs reported? ✓ Surrogate recovery data ✓ Were surrogates added prior to extraction? ✓ Were surrogate percent recoveries in all samples within the laboratory QC limits? ✓ Test reports/summary forms for blank samples ✓ Were appropriate type(s) of blanks analyzed? ✓ Were blanks analyzed at the appropriate frequency? ✓ Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? ✓ Were blank concentrations <rl?< td=""> ✓ Laboratory control samples (LCS):</rl?<>	√		
Were all analyte identifications checked by a peer or supervisor? Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>✓</td><td></td><td></td></rl?>	✓		
Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>\checkmark</td><td></td><td></td></rl?>	\checkmark		
Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Laboratory control samples (LCS):			
Were all COCs included in the LCS? ✓			
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? √			
Were LCSs analyzed at the required frequency? ✓			
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? ✓			
Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?			
Was the LCSD RPD within QC limits?	√		
Matrix spike (MS) and matrix spike duplicate (MSD) data	•		
Were the project/method specified analytes included in the MS and MSD?	√		
Were MS/MSD analyzed at the appropriate frequency?		+	
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	\checkmark	+	ļ

Description	Yes	No	NA(1)	3000	368
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	√				
curve?					
Are ICAL data available for all instruments used?	√				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	√				
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB < RL?	√				
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):			•		
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025			•		
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation			•		
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):			•		
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:			•		
Were percent recoveries within method QC limits?			-		
Serial dilutions, post digestion spikes, and method of standard additions			•		
Were percent differences, recoveries, and the linearity within the QC limits specified in the	-				
method?	•				
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	 				
Is the MDL either adjusted or supported by the analysis of DCSs?	∨				
Proficiency test reports:	-				
Was the laboratory's performance acceptable on the applicable proficiency tests or	 				
evaluation studies?	'				

Description	Yes	No	NA(1))	368 8
Standards documentation				7002	-
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	✓				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
L09080179
798-LONGHORN
7471
WG309804
Reviewer Name:
MAREN M. BEERY
LRC Date:
August 18, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren Beery	Metals Supervisor	August 18, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080179
Project Name: 798-LONGHORN
Method: 6010
Prep Batch Number(s): WG309777
Reviewer Name: MAREN M. BEERY
LRC Date: August 18, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	✓				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	✓				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	V				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations < RL?	V				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	√				
Were LCSs analyzed at the required frequency?	1		-		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	∨ ✓				
Does the detectability data document the laboratory's capability to detect the COCs at the	∨				
MDL used to calculate the SQLs?	*				
Was the LCSD RPD within QC limits?			/		
Matrix spike (MS) and matrix spike duplicate (MSD) data			_		
Were the project/method specified analytes included in the MS and MSD?			V		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1) 000	8339
Were MS/MSD RPDs within laboratory QC limits?			√	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			√	
Were analytical duplicates analyzed at the appropriate frequency?			√	
Were RPDs or relative standard deviations within the laboratory QC limits?			√ ·	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	√			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√			
Are unadjusted MQLs included in the laboratory data package?	√			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√			
Were all necessary corrective actions performed for the reported data?	\			
Was applicable and available technology used to lower the SQL minimize the matrix	1			
interference affects on the sample results?				
ICAL				
Were response factors and/or relative response factors for each analyte within QC limits?			√	
Were percent RSDs or correlation coefficient criteria met?	/		-	
Was the number of standards recommended in the method used for all analytes?	\ \ \ \			
Were all points generated between the lowest and highest standard used to calculate the	· ✓			
curve?	'			
Are ICAL data available for all instruments used?	\			
Has the initial calibration curve been verified using an appropriate second source standard?	\ \ \ \			
Initial and continuing calibration verification (ICV and CCV) and continuing	,			
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?	\			
Were percent differences for each analyte within the method-required QC limits?	V			
Was the ICAL curve verified for each analyte?	✓			
Was the absolute value of the analyte concentration in the inorganic CCB <rl?< td=""><td>✓</td><td></td><td></td><td></td></rl?<>	✓			
Mass spectral tuning:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Was the appropriate compound for the method used for tuning?			/	
Were ion abundance data within the method-required QC limits?			V	
Internal standards (IS):			V	
Were IS area counts and retention times within the method-required QC limits?			/	
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025			,	
section 4.12.2)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	/			
Were data associated with manual integrations flagged on the raw data?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		./	
Dual column confirmation			· ·	
Did dual column confirmation results meet the method-required QC?			/	
Tentatively identified compounds (TICs):			V	
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			/	
Interference Check Sample (ICS) results:			V	
Were percent recoveries within method QC limits?	\			
Serial dilutions, post digestion spikes, and method of standard additions	-			
Were percent differences, recoveries, and the linearity within the QC limits specified in the	\			
method?	"			
Method detection limit (MDL) studies				
Was a MDL study performed for each reported analyte?	1			
Is the MDL either adjusted or supported by the analysis of DCSs?	∨ ✓			
Proficiency test reports:	-			
Was the laboratory's performance acceptable on the applicable proficiency tests or	1			
evaluation studies?	"			
evaluation studies:				

				2000	2201
Description	Yes	No	NA(1)	JWUZ	TROP I
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
L09080179

798-LONGHORN

6010

WG309777

Reviewer Name:
MAREN M. BEERY

LRC Date:
August 18, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

A1

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

RG-366/TRRP-13 December 2002

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Inmalpsson	Conventional Lab Supervisor	August 18, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080179

Project Name: 798-LONGHORN

Method: PH

Prep Batch Number(s): WG309734

Reviewer Name: DEANNA I. HESSON
LRC Date: August 18, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration="" other="" raw="" standards?<="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
Were calculations checked by a peer or supervisor?	/				
Were all analyte identifications checked by a peer or supervisor?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1		
Were sample quantitation limits reported for all analytes not detected?			V ✓		
Were all results for soil and sediment samples reported on a dry weight basis?			V ✓		
Were % moisture (or solids) reported for all soil and sediment samples?			√		
If required for the project, TICs reported?			V		
Surrogate recovery data			V		
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			V		
Test reports/summary forms for blank samples			V		
Were appropriate type(s) of blanks analyzed?			√		
Were blanks analyzed at the appropriate frequency?					
			√ √		
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?			✓		
Were blank concentrations <mql?< td=""><td></td><td></td><td>√</td><td></td><td></td></mql?<>			√		
			V		
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	√				
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratorys capability to detect the COCs at the			√		
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			· √		

Description	Yes	No	NA(1)	3008	339
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?	1				
Were analytical duplicates analyzed at the appropriate frequency?	√				
Were RPDs or relative standard deviations within the laboratory QC limits?	√				
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?			√		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?			√		
Are unadjusted MQLs included in the laboratory data package?			√		
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	1				
Was applicable and available technology used to lower the SQL minimize the matrix	,		√		
interference affects on the sample results?			,		
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?			√		
Was the number of standards recommended in the method used for all analytes?			√		
Were all points generated between the lowest and highest standard used to calculate the			√		
curve?					
Are ICAL data available for all instruments used?	\				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	\				
Were percent differences for each analyte within the method-required QC limits?			√		
Was the ICAL curve verified for each analyte?	\				
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>√</td><td></td><td></td></mdl?<>			√		
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions			-		
Were percent differences, recoveries, and the linearity within the QC limits specified in the			√		
method?					
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?			√		
Is the MDL either adjusted or supported by the analysis of DCSs?			<u> </u>		
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or			√		
evaluation studies?					

Description	Yes	No	NA(1)	3000	339
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
L09080179
798-LONGHORN
PH
WG309734
Reviewer Name:
DEANNA I. HESSON
August 18, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Immalfesson	Conventional Lab Supervisor	August 18, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):

Microbac Laboratories Inc.
L09080179
798-LONGHORN
FLASHPOINT
WG309849

Reviewer Name: DEANNA I. HESSON
LRC Date: August 18, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?			√		
Were sample quantitation limits reported for all analytes not detected?			√		
Were all results for soil and sediment samples reported on a dry weight basis?			√		
Were % moisture (or solids) reported for all soil and sediment samples?			√		
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td></td><td></td><td>√</td><td></td><td></td></mql?<>			√		
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratorys capability to detect the COCs at the			√		
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?	√				
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	3000	334(
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?	√				
Were analytical duplicates analyzed at the appropriate frequency?	√				
Were RPDs or relative standard deviations within the laboratory QC limits?	√				
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?			√		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?			√		
Are unadjusted MQLs included in the laboratory data package?			√		
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix			√		
interference affects on the sample results?					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?			√		
Was the number of standards recommended in the method used for all analytes?			√		
Were all points generated between the lowest and highest standard used to calculate the			√		
curve?					
Are ICAL data available for all instruments used?			✓		
Has the initial calibration curve been verified using an appropriate second source standard?			√		
Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?			√		
Were percent differences for each analyte within the method-required QC limits?			√		
Was the ICAL curve verified for each analyte?			√		
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>√</td><td></td><td></td></mdl?<>			√		
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			✓		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			√		
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?			✓		
Is the MDL either adjusted or supported by the analysis of DCSs?			√		
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or			√		
evaluation studies?					

				2000	2404
Description	Yes	No	NA(1)	JWUZ	DATO!
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
Laboratory Log Number:
L09080179
P798-LONGHORN
FLASHPOINT
WG309849
REVIEWER Name:
DEANNA I. HESSON
LRC Date:
August 18, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Immalfesson	Conventional Lab Supervisor	August 18, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080179

Project Name: 798-LONGHORN

Method: REACTIVITY

Prep Batch Number(s): WG309684, WG309685

Reviewer Name: DEANNA I. HESSON
LRC Date: August 18, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration="" other="" raw="" standards?<="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	V ✓				
Were sample quantitation limits reported for all analytes not detected?	-				
Were all results for soil and sediment samples reported on a dry weight basis?	-		1		
Were % moisture (or solids) reported for all soil and sediment samples?			√		
If required for the project, TICs reported?			V		
Surrogate recovery data			•		
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			· /		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?			√		
Were blanks analyzed at the appropriate frequency?			· ✓		
Were method blanks taken through the entire analytical process, including preparation and,			· /		
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td></td><td></td><td>√</td><td></td><td></td></mql?<>			√		
Laboratory control samples (LCS):			-		
Were all COCs included in the LCS?	\				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	√				
Were LCSs analyzed at the required frequency?	/				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	<u> </u>		√		
Does the detectability data document the laboratorys capability to detect the COCs at the	√		· √		
MDL used to calculate the SQLs?	•				
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data			-		
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√ ·		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			· √		

Description	Yes	No	NA(1)	8000	340
Were MS/MSD RPDs within laboratory QC limits?		<u> </u>	√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?	√				
Were analytical duplicates analyzed at the appropriate frequency?	√				
Were RPDs or relative standard deviations within the laboratory QC limits?	√				
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?			V		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?			· √		
Are unadjusted MQLs included in the laboratory data package?			· √		
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	<i>-</i>				
Was applicable and available technology used to lower the SQL minimize the matrix	· ·		1		
interference affects on the sample results?			•		
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?			√		
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	√				
curve?					
Are ICAL data available for all instruments used?	✓				
Has the initial calibration curve been verified using an appropriate second source standard?	✓				
Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	\				
Were percent differences for each analyte within the method-required QC limits?			√		
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td>· ·</td><td></td><td>√</td><td></td><td></td></mdl?<>	· ·		√		
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			<i>-</i>		
Internal standards (IS):			_		
Were IS area counts and retention times within the method-required QC limits?			1		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025			_ •		
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?	·		√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			V		
Tentatively identified compounds (TICs):			,		
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			1		
Interference Check Sample (ICS) results:			•		
Were percent recoveries within method QC limits?			1		
Serial dilutions, post digestion spikes, and method of standard additions			, ,		
Were percent differences, recoveries, and the linearity within the QC limits specified in the			/		
method?					
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?			√		
Is the MDL either adjusted or supported by the analysis of DCSs?			√		
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or			√		
evaluation studies?					

				2000	22.400
Description	Yes	No	NA(1)	UWUC	DAM C
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080179
Project Name: 798-LONGHORN
Method: REACTIVITY
Prep Batch Number(s): WG309684, WG309685
Reviewer Name: DEANNA I. HESSON
LRC Date: August 18, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

2.1 Metals Data

2.1.1 Metals I C P Data

2.1.1.1 Summary Data

LABORATORY REPORT

00083411

L09080179

08/19/09 09:24

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRR0628GR	L09080179-01	6010B	1	08-AUG-09
PRR0959GR	L09080179-02	6010B	1	08-AUG-09
PRR0766GR	L09080179-03	6010B	1	08-AUG-09
PRR01022GR	L09080179-04	6010B	1	08-AUG-09
PRR01111GR	L09080179-05	6010B	1	08-AUG-09
PRR01113GR	L09080179-06	6010B	1	08-AUG-09
PRR0542GR	L09080179-07	6010B	1	08-AUG-09
PRR0674GR	L09080179-08	6010B	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1468635
Report generated: 08/19/2009 09:24

Microbac

1 OF 1

Micropac Laboratories inc.

00083412

Report Date : August 19, 2009

Report Number: L09080179

Sample Number: L09080179-01 PrePrep Method:1311 InstrumentPE-ICP2 Client ID: PRR0628GR Prep Method: 3015 Prep Date: 08/17/2009 07:19 Matrix: Leachate Analytical Method: 6010B Cal Date: 08/17/2009 10:04 Analyst: PDM Workgroup Number: WG309827 Run Date 08/17/2009 13:08 Collect Date: 08/07/2009 13:15 Dilution:1 File ID: P2.081709.130849 Sample Tag: 01 Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		U	1	.1	D004	5
Barium, TCLP	7440-39-3	1.06		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		U	.1	.025	D006	1
Chromium, TCLP	7440-47-3		U	.2	.025	D007	5
Lead, TCLP	7439-92-1	0.485	J	1	.1	D008	5
Selenium, TCLP	7782-49-2		U	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

1 of 8

Microbac

J The analyte was positively identified, but the quantitation was below the RL

00083413

Report Date : August 19, 2009

Report Number: L09080179

Sample Number: L09080179-02 PrePrep Method:1311 InstrumentPE-ICP2 Client ID: PRR0959GR Prep Method: 3015 Prep Date: 08/17/2009 07:19 Matrix: Leachate Analytical Method: 6010B Cal Date: 08/17/2009 10:04 Analyst: PDM Workgroup Number: WG309827 Run Date 08/17/2009 13:15 Collect Date: 08/07/2009 13:20 Dilution:1 File ID: P2.081709.131527 Sample Tag: 01 Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		U	1	.1	D004	5
Barium, TCLP	7440-39-3	0.900		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		U	.1	.025	D006	1
Chromium, TCLP	7440-47-3		U	.2	.025	D007	5
Lead, TCLP	7439-92-1	0.541	J	1	.1	D008	5
Selenium, TCLP	7782-49-2		U	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

of 8

The analyte was positively identified, but the quantitation was below the RL

00083414

Report Date : August 19, 2009

Report Number: L09080179

Sample Number: L09080179-03

Client ID: PRR0766GR

Workgroup Number: WG309827

Sample Tag: 01

Matrix: Leachate

Collect Date: 08/07/2009 13:25

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		Ū	1	.1	D004	5
Barium, TCLP	7440-39-3	1.12		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		Ū	.1	.025	D006	1
Chromium, TCLP	7440-47-3		Ū	.2	.025	D007	5
Lead, TCLP	7439-92-1	0.488	J	1	.1	D008	5
Selenium, TCLP	7782-49-2		Ū	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

3 of 8

J The analyte was positively identified, but the quantitation was below the RL

00083415

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-04 PrePrep Method:1311 InstrumentPE-ICP2 Client ID: PRR01022GR Prep Method: 3015 Prep Date: 08/17/2009 07:19 Matrix: Leachate Analytical Method: 6010B Cal Date: 08/17/2009 10:04 Analyst: PDM Workgroup Number: WG309827 Run Date 08/17/2009 13:55 Collect Date: 08/07/2009 13:30 Dilution:1 File ID: **P2.081709.135530** Sample Tag: 01 Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		Ū	1	.1	D004	5
Barium, TCLP	7440-39-3	1.19		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		Ū	.1	.025	D006	1
Chromium, TCLP	7440-47-3		Ū	.2	.025	D007	5
Lead, TCLP	7439-92-1	1.45		1	.1	D008	5
Selenium, TCLP	7782-49-2		Ū	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

4 of 8

00083416

Report Number: L09080179

Sample Number: **L09080179-05**

Matrix:**Leachate**

Client ID: PRR01111GR

Report Date : August 19, 2009

PrePrep Method: 1311 InstrumentPE-ICP2 Prep Method: 3015

Prep Date: 08/17/2009 07:19 Analytical Method: 6010B Cal Date: 08/17/2009 10:04 Analyst: PDM Run Date 08/17/2009 14:02 Dilution:1 File ID: P2.081709.140213

Workgroup Number: wg309827

Collect Date: 08/07/2009 13:35

Sample Tag: 01 Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		U	1	.1	D004	5
Barium, TCLP	7440-39-3	1.26		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		U	.1	.025	D006	1
Chromium, TCLP	7440-47-3		U	.2	.025	D007	5
Lead, TCLP	7439-92-1	17.4		1	.1	D008	5
Selenium, TCLP	7782-49-2		U	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

5 of 8

00083417

Report Number: L09080179

Report Date : August 19, 2009

PrePrep Method: 1311 InstrumentPE-ICP2

Sample Number:L09080179-06 Prep Date: 08/17/2009 07:19 Client ID: PRR01113GR Prep Method: 3015 Analytical Method: 6010B Matrix:**Leachate** Cal Date: 08/17/2009 10:04 Workgroup Number: Wg309827

Collect Date: 08/07/2009 13:40

Sample Tag: 01 Analyst: PDM Run Date 08/17/2009 14:08 Dilution:1 File ID: P2.081709.140855 Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		Ū	1	.1	D004	5
Barium, TCLP	7440-39-3	1.25		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		Ū	.1	.025	D006	1
Chromium, TCLP	7440-47-3		Ū	.2	.025	D007	5
Lead, TCLP	7439-92-1	38.0		1()	.1	D008	5
Selenium, TCLP	7782-49-2		Ū	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

of 8

00083418

Report Number: L09080179

Sample Number: L09080179-07

Workgroup Number: WG309827

Client ID: PRR0542GR

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method: 1311 InstrumentPE-ICP2
Prep Method: 3015 Prep Date: 08/17/2009 07:19

Collect Date: 08/07/2009 13:50
Sample Tag: 01

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		U	1	.1	D004	5
Barium, TCLP	7440-39-3	1.05		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		U	.1	.025	D006	1
Chromium, TCLP	7440-47-3		U	.2	.025	D007	5
Lead, TCLP	7439-92-1	0.482	J	1	.1	D008	5
Selenium, TCLP	7782-49-2		U	.8	.4	D010	1
Silver, TCLP	7440-22-4		U	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

7 of 8

J The analyte was positively identified, but the quantitation was below the RL

Report Date : August 19, 2009

Report Number: L09080179

00083419

Sample Number: **L09080179-08**

Client ID: PRR0674GR Matrix:**Leachate**

Workgroup Number: wg309827

Collect Date: 08/07/2009 13:55

Sample Tag: 01

PrePrep Method:1311 Prep Method: 3015

Analytical Method: 6010B Analyst: PDM Dilution:1

Units:mg/L

InstrumentPE-ICP2

Prep Date: 08/17/2009 07:19 Cal Date: 08/17/2009 10:04 Run Date 08/17/2009 14:22 File ID: P2.081709.142219

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Arsenic, TCLP	7440-38-2		U	1	.1	D004	5
Barium, TCLP	7440-39-3	1.03		.1	.025	D005	100
Cadmium, TCLP	7440-43-9		Ū	.1	.025	D006	1
Chromium, TCLP	7440-47-3		Ū	.2	.025	D007	5
Lead, TCLP	7439-92-1	23.5		1	.1	D008	5
Selenium, TCLP	7782-49-2		U	.8	.4	D010	1
Silver, TCLP	7440-22-4		Ū	.1	.05	D011	5

U Not detected at or above adjusted sample detection limit

of 8

2.1.1.2 QC Summary Data

Example 6010 Calculations Perkin Elmer Optima 4300 DV

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Example 6010 Calculations Thermo Scientific IRIS Advantage

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Example 6010 Calculations Thermo Scientific iCAP 6500

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and four standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Document Control No.: 10237 Page 44 of 100

TCLP Non-Volatile

nalyst(s): \(\lambda\) \(\lambda\)

Analys	st/Date	Apalyst/Date			
Ruc	8-14-09	Nuc 8	1509		
Time	Temp	Time	Temp		
On	On °C	Off	Off°C		
1400	23	715	23		

							Size Re	duction		
Jug#	Sample # 8-0/45.01	Tests	Method	Fluid #	Matrix*	%Solid	Yes	No	Int. Wt. (g)	Fluid Vol. (mL)
D	08-0145.01	ME	1311	F1-159	33	100		/	100.06	2000
	02								100.01	1
D	03								100.05	
D	04								100.05	
1)	05								100.00	
1)	06								100.04	
D	08-179-01								100.06	
1)	07								100.01	
<u>D</u>	03,	SPK							100.03	
D	04								100.03	
D	05								100.02	
1)	06								100.07	
<u>D</u>	07								100.04	
D,	08				1	上			100.00	
N/A	FBLK	سل	سل		NA	NIA		I	2000	
				1						
					-					
					4					
										- 1
		Λ.								
		1609				,				,
		Duc 8-14-09						+		
		Du Co								
		NO								
			*							

*Matrix Code = (S-solid) (SS-sand, soil or sludge) (P-paint) (O-organic) (W-water or waste) Agitator speed is 30 ± 2 rpm unless otherwise noted.

Comments:			
Peer Review By:	·	Supervisor Review:	

Microbac Laboratories Inc. Microwave Digestion Log

Workgroup: WG309777

Spike Analyst: VC

Analyst:<u>VC</u>

Run Date: 08/17/2009 07:19

Method: 3015

SOP: ME407 Revison 10

Spike Solution: STD34340

Spike Witness: REK

HNO3 Lot #: COA13945

Digest tubes Lot #: COA14013

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG309777-02	BLANK	17	5 mL	50 mL	203.295 g	203.279 g		
2	WG309732-01	FBLK	17	5 mL	50 mL	203.961 g	203.939 g		
3	WG309777-03	LCS	17	5 mL	50 mL	210.778 g	210.762 g	5 mL	
4	L09080145-01	SAMP	17	5 mL	50 mL	210.566 g	210.56 g		08/18/09
5	L09080145-02	SAMP	17	5 mL	50 mL	210.771 g	210.752 g		08/18/09
6	L09080145-03	SAMP	17	5 mL	50 mL	209.95 g	209.923 g		08/18/09
7	L09080145-04	SAMP	17	5 mL	50 mL	211.656 g	211.636 g		08/18/09
8	L09080145-05	SAMP	17	5 mL	50 mL	211.004 g	210.996 g		08/18/09
9	L09080145-06	SAMP	17	5 mL	50 mL	209.847 g	209.828 g		08/18/09
10	L09080179-01	SAMP	17	5 mL	50 mL	211.384 g	211.359 g		08/18/09
11	L09080179-02	SAMP	17	5 mL	50 mL	210.578 g	210.564 g		08/18/09
12	WG309777-01	REF	17	5 mL	50 mL	210.734 g	210.72 g		
13	L09080179-03	SAMP	17	5 mL	50 mL	210.734 g	210.72 g		08/18/09
14	L09080179-04	SAMP	17	5 mL	50 mL	208.236 g	208.226 g		08/18/09
15	L09080179-05	SAMP	17	5 mL	50 mL	209.114 g	209.097 g		08/18/09
16	L09080179-06	SAMP	17	5 mL	50 mL	209.537 g	209.528 g		08/18/09
17	L09080179-07	SAMP	17	5 mL	50 mL	212.193 g	212.177 g		08/18/09
18	L09080179-08	SAMP	17	5 mL	50 mL	210.148 g	210.132 g		08/18/09
19	WG309777-04	MS	17	5 mL	50 mL	211.357 g	211.335 g	5 mL	
20	WG309777-05	MSD	17	5 mL	50 mL	211.886 g	211.872 g	5 mL	

Analyst: July Colley

Reviewer:

 ${\tt MW_DIG}$ - <code>Modified 07/02/2008</code>

PDF ID: 1466334
Report generated: 08/17/2009 08:33

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 081709HR.CSV

 Analyst1:
 PDM
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 10

Maintenance Log ID: 29811

 Calibration Std:
 STD34504
 ICV/CCV Std:
 STD34469
 Post Spike:
 STD34340

 ICSA:
 STD34193
 ICSAB:
 STD34508
 Int. Std:
 STD34683

Workgroups: 309827,309847,309846

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	P2.081709.093742	WG309865-01	Calibration Point		1		08/17/09 09:37
2	P2.081709.094421	WG309865-02	Calibration Point		1		08/17/09 09:44
3	P2.081709.095100	WG309865-03	Calibration Point		1		08/17/09 09:51
4	P2.081709.095739	WG309865-04	Calibration Point		1		08/17/09 09:57
5	P2.081709.100415	WG309865-05	Calibration Point		1		08/17/09 10:04
6	P2.081709.101007	WG309865-06	ICV 2nd Vendor		1		08/17/09 10:10
7	P2.081709.101607	WG309865-07	Initial Calibration Verification		1		08/17/09 10:16
8	P2.081709.102245	WG309865-08	Initial Calib Blank		1		08/17/09 10:22
9	P2.081709.102928	WG309865-09	Interference Check		1		08/17/09 10:29
10	P2.081709.103508	WG309865-10	Interference Check		1		08/17/09 10:35
11	P2.081709.104049	WG309865-11	CCV		1		08/17/09 10:40
12	P2.081709.104727	WG309865-12	ССВ		1		08/17/09 10:47
13	P2.081709.112842	WG309865-13	CCV		1		08/17/09 11:28
14	P2.081709.113519	WG309865-14	ССВ		1		08/17/09 11:35
15	P2.081709.114155	WG309777-02	Method/Prep Blank	5/50	1		08/17/09 11:41
16	P2.081709.114833	WG309777-03	Laboratory Control S	5/50	1		08/17/09 11:48
17	P2.081709.115508	WG309732-01	Fluid Blank		1		08/17/09 11:55
18	P2.081709.120151	L09080145-01	PRR0758GR	5/50	1		08/17/09 12:01
19	P2.081709.120840	WG309827-01	Post Digestion Spike		1	L09080145-01	08/17/09 12:08
20	P2.081709.121514	WG309827-02	Serial Dilution		5	L09080145-01	08/17/09 12:15
21	P2.081709.122159	L09080145-02	PRR0859GR	5/50	1		08/17/09 12:21
22	P2.081709.122836	L09080145-03	PRR0731GR	5/50	1		08/17/09 12:28
23	P2.081709.123518	L09080145-04	PRR0906GR	5/50	1		08/17/09 12:35
24	P2.081709.124203	L09080145-05	PRR01096GR	5/50	1		08/17/09 12:42
25	P2.081709.124847	WG309865-15	CCV		1		08/17/09 12:48
26	P2.081709.125526	WG309865-16	ССВ		1		08/17/09 12:55
27	P2.081709.130205	L09080145-06	PRR0701GR	5/50	1		08/17/09 13:02
28	P2.081709.130849	L09080179-01	PRR0628GR	5/50	1		08/17/09 13:08
29	P2.081709.131527	L09080179-02	PRR0959GR	5/50	1		08/17/09 13:15
30	P2.081709.132214	WG309777-01	Reference Sample		1	L09080179-03	08/17/09 13:22
31	P2.081709.132856	WG309777-04	Matrix Spike	5/50	1	L09080179-03	08/17/09 13:28
32	P2.081709.133531	WG309777-05	Matrix Spike Duplica	5/50	1	L09080179-03	08/17/09 13:35
33	P2.081709.134213	WG309865-17	CCV		1		08/17/09 13:42
34	P2.081709.134851	WG309865-18	ССВ		1		08/17/09 13:48
35	P2.081709.135530	L09080179-04	PRR01022GR	5/50	1		08/17/09 13:55
36	P2.081709.140213	L09080179-05	PRR01111GR	5/50	1		08/17/09 14:02
37	P2.081709.140855	L09080179-06	PRR01113GR	5/50	1		08/17/09 14:08

Page: 1 Approved: August 18, 2009

Maren Blery

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 081709HR.CSV

 Analyst1:
 PDM
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev: 10

Maintenance Log ID: 29811

 Calibration Std:
 STD34504
 ICV/CCV Std:
 STD34469
 Post Spike:
 STD34340

 ICSA:
 STD34193
 ICSAB:
 STD34508
 Int. Std:
 STD34683

Workgroups: 309827,309847,309846

Comments: 309827,309847,309846

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	P2.081709.141533	L09080179-07	PRR0542GR	5/50	1		08/17/09 14:15
39	P2.081709.142219	L09080179-08	PRR0674GR	5/50	1		08/17/09 14:22
40	P2.081709.142903	WG309865-19	CCV		1		08/17/09 14:29
41	P2.081709.143542	WG309865-20	ССВ		1		08/17/09 14:35
42	P2.081709.144116	WG309796-02	Method/Prep Blank	50/50	1		08/17/09 14:41
43	P2.081709.144753	WG309796-03	Laboratory Control S	50/50	1		08/17/09 14:47
44	P2.081709.145437	WG309796-04	Filter Blank		1		08/17/09 14:54
45	P2.081709.150219	L09080216-02	C-004		1		08/17/09 15:02
46	P2.081709.150901	WG309847-01	Post Digestion Spike		1	L09080216-02	08/17/09 15:09
47	P2.081709.151606	WG309847-02	Serial Dilution		5	L09080216-02	08/17/09 15:16
48	P2.081709.152244	L09080145-05	PRR01096GR	5/50	2		08/17/09 15:22
49	P2.081709.152922	+.25	+.25		1		08/17/09 15:29
50	P2.081709.153603	+.375	+.375		1		08/17/09 15:36
51	P2.081709.154237	+.5	+.5		1		08/17/09 15:42
52	P2.081709.154919	WG309865-21	CCV		1		08/17/09 15:49
53	P2.081709.155505	WG309865-22	ССВ		1		08/17/09 15:55
54	P2.081709.160144	L09080287-01	EFFLUENT/001/COMP	50/50	1		08/17/09 16:01
55	P2.081709.160827	L09080294-01	001/COMP.	50/50	1		08/17/09 16:08
56	P2.081709.161513	L09080297-01	OUTLET 001	50/50	1		08/17/09 16:15
57	P2.081709.162052	L09080297-02	OUTLET 002	50/50	1		08/17/09 16:20
58	P2.081709.162645	L09080297-03	OUTLET 003	50/50	1		08/17/09 16:26
59	P2.081709.163326	WG309796-01	Reference Sample		1	L09080319-01	08/17/09 16:33
60	P2.081709.164010	WG309796-05	Matrix Spike	50/50	1	L09080319-01	08/17/09 16:40
61	P2.081709.164651	WG309796-06	Matrix Spike Duplica	50/50	1	L09080319-01	08/17/09 16:46
62	P2.081709.165333	L09080330-01	OUTFALL 001/COMP	50/50	1		08/17/09 16:53
63	P2.081709.170012	WG309865-23	CCV		1		08/17/09 17:00
64	P2.081709.170702	WG309865-24	ССВ		1		08/17/09 17:07
65	P2.081709.171341	WG309801-01	Method/Prep Blank	50/50	1		08/17/09 17:13
66	P2.081709.172019	WG309801-02	Laboratory Control S	50/50	1		08/17/09 17:20
67	P2.081709.172706	WG309801-03	Laboratory Control S	50/50	1		08/17/09 17:27
68	P2.081709.173349	L09080274-01	1184-W0001	50/50	1		08/17/09 17:33
69	P2.081709.174027	WG309846-01	Post Digestion Spike		1	L09080274-01	08/17/09 17:40
70	P2.081709.174712	WG309801-02	Laboratory Control S		5		08/17/09 17:47
71	P2.081709.175355	L09080274-02	1184-W0002	50/50	1		08/17/09 17:53
72	P2.081709.180032	L09080274-03	1227-W0001	50/50	1		08/17/09 18:00
73	P2.081709.180721	L09080274-04	1230-W0001	50/50	1		08/17/09 18:07
74	P2.081709.181408	L09080274-05	1264-W0001	50/50	1		08/17/09 18:14

Page: 2 Approved: August 18, 2009

Maren Beery

Instrument Run Log

 Instrument:
 PE-ICP2
 Dataset:
 081709HR.CSV

 Analyst1:
 PDM
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600E
 Rev:
 10

 Maintenance Log ID:
 29811
 Rev:
 10
 10

 Calibration Std:
 STD34504
 ICV/CCV Std:
 STD34469
 Post Spike:
 STD34340

 ICSA:
 STD34193
 ICSAB:
 STD34508
 Int. Std:
 STD34683

Workgroups: 309827,309847,309846

Comments: 309827,309847,30984

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	P2.081709.182049	WG309865-25	CCV		1		08/17/09 18:20
76	P2.081709.182746	WG309865-26	ССВ		1		08/17/09 18:27
77	P2.081709.183429	L09080274-06	1320-W0001	50/50	1		08/17/09 18:34
78	P2.081709.184106	L09080274-07	1352-W0001	50/50	1		08/17/09 18:41
79	P2.081709.184747	L09080274-08	1354-W0001	50/50	1		08/17/09 18:47
80	P2.081709.185435	L09080274-09	1380-W0001	50/50	1		08/17/09 18:54
81	P2.081709.190113	L09080274-10	1400-W0001	50/50	1		08/17/09 19:01
82	P2.081709.190759	L09080274-11	1422-W0001	50/50	1		08/17/09 19:07
83	P2.081709.191546	L09080282-01	13416-W0001	50/50	1		08/17/09 19:15
84	P2.081709.192224	L09080328-13	AV-NCB-EB-1-081309	50/50	1		08/17/09 19:22
85	P2.081709.192911	WG309865-27	CCV		1		08/17/09 19:29
86	P2.081709.193552	WG309865-28	ССВ		1		08/17/09 19:35

Comments

Seq.	Rerun	Dil.	Reason	Analytes				
6								
	ICV was immediately reanalyzed due to noncompliance of multiple analytes.							

Page: 3 Approved: August 18, 2009

Maren Beery

Microbac Laboratories Inc. Data Checklist

Date: 17-AUG-2009

Analyst: PDM

Analyst: NA

Method: 6010B

Instrument: PE-ICP2

Curve Workgroup: WG309865

Runlog ID: 29647

Analytical Workgroups: WG309827,WG309847,WG309846

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	X
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	0145,0179,0216,0287,0319,0330,0274
	0282,0328,
Client Forms	X
Level X	
Level 3	0145,0179
Level 4	0274,0282,0328
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	PDM
Secondary Reviewer	MMB
Comments	

Primary Reviewer: 18-AUG-2009

Secondary Reviewer: 18-AUG-2009

Pierce Monis Maren Beery

CHECKLIST1 - Modified 03/05/2008

Generated: AUG-18-2009 15:17:54

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00083430

AAB#: WG309827

Analytical Method: 6010B

Login Number:L09080179

Client ID	ID	Date Collected	TCLP Date	Time Held	Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	. ~
PRR0628GR	01	08/07/09	08/14/09	7			08/17/09	9.8	180		08/17/09	3	180	
PRR0959GR	02	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	
PRR0766GR	03	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	
PRR01022GR	04	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	
PRR01111GR	05	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	
PRR01113GR	06	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	
PRR0542GR	07	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	
PRR0674GR	08	08/07/09	08/14/09	7			08/17/09	9.7	180		08/17/09	3	180	

^{* =} SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID:1466908 Report generated 08/17/2009 14:55

Microbac ®

Page 52

METHOD BLANK SUMMARY

Login Number: L09080179

Blank File ID: P2.081709.114155

Prep Date: 08/17/09 07:19

Analyzed Date: 08/17/09 11:41

Work Group: WG309827

Blank Sample ID: WG309777-02

Instrument ID: PE-ICP2

Method: 6010B

Analyst:PDM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG309777-03	P2.081709.114833	08/17/09 11:48	01
PRR0628GR	L09080179-01	P2.081709.130849	08/17/09 13:08	01
PRR0959GR	L09080179-02	P2.081709.131527	08/17/09 13:15	01
PRR0766GR	L09080179-03	P2.081709.132214	08/17/09 13:22	01
PRR01022GR	L09080179-04	P2.081709.135530	08/17/09 13:55	01
PRR01111GR	L09080179-05	P2.081709.140213	08/17/09 14:02	01
PRR01113GR	L09080179-06	P2.081709.140855	08/17/09 14:08	01
PRR0542GR	L09080179-07	P2.081709.141533	08/17/09 14:15	01
PRR0674GR	L09080179-08	P2.081709.142219	08/17/09 14:22	01

Report Name: BLANK_SUMMARY
PDF File ID: 1466909
Report generated 08/17/2009 14:55

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Arsenic, TCLP	0.100	1.00	0.100	1	Ū
Barium, TCLP	0.0250	0.100	0.0250	1	Ū
Cadmium, TCLP	0.0250	0.100	0.0250	1	υ
Chromium, TCLP	0.0250	0.200	0.0250	1	Ū
Lead, TCLP	0.100	1.00	0.100	1	υ
Selenium, TCLP	0.400	0.800	0.400	1	Ū
Silver, TCLP	0.0500	0.100	0.0500	1	Ū

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* | Analyte concentration | > RL

Report Name:BLANK PDF ID: 1466910 17-AUG-2009 14:55

 Login Number: L09080179
 Run Date: 08/17/2009
 Sample ID: WG309777-03

 Instrument ID: PE-ICP2
 Run Time: 11:48
 Prep Method: 3015

File ID: P2.081709.114833 Analyst: PDM Method: 6010B

Workgroup (AAB#): WG309827 Matrix: Leachate Units: mg/L

QC Key:STD Lot#:STD34340 Cal ID:PE-ICP-17-AUG-09

Analytes	Expected	Found	% Rec	LCS	Limit	s	Q
Arsenic, TCLP	2.00	1.90	95.0	85	- 1	L15	
Barium, TCLP	5.00	5.06	101	85	- 1	L15	
Cadmium, TCLP	0.250	0.233	93.2	85	- 1	L15	
Chromium, TCLP	2.50	2.53	101	85	- 1	L15	
Lead, TCLP	2.50	2.40	96.1	85	- 1	L15	
Selenium, TCLP	2.00	1.83	91.3	85	- 1	L15	
Silver, TCLP	2.00	1.98	99.0	85	- 1	L15	

LCS - Modified 03/06/2008 PDF File ID:1466911 Report generated: 08/17/2009 14:55

Microbac ®

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum:L09080179
 Cal ID: PE-ICP2
 Worknum: WG309827

 Instrument ID:PE-ICP2
 Contract #:DACA56-94-D-0020
 Method:6010B

 Parent ID:WG309777-01
 File ID:P2.081709.132214
 Dil:1
 Matrix:WATER

 Sample ID:WG309777-05
 MSD
 File ID:P2.081709.133531
 Dil:1
 Units:mg/L

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Arsenic, TCLP	ND	2.00	2.00	99.8	2.00	1.99	99.4	0.387	80 - 120	20	
Barium, TCLP	1.12	5.00	6.30	104	5.00	6.13	100	2.78	80 - 120	20	
Cadmium, TCLP	ND	0.250	0.246	98.2	0.250	0.239	95.8	2.55	80 - 120	20	
Chromium, TCLP	ND	2.50	2.59	104	2.50	2.51	101	2.96	80 - 120	20	
Lead, TCLP	0.488	2.50	2.92	97.2	2.50	2.85	94.6	2.22	80 - 120	20	
Selenium, TCLP	ND	2.00	2.04	102	2.00	1.94	97.2	4.92	80 - 120	20	
Silver, TCLP	ND	2.00	2.09	104	2.00	2.03	101	3.12	80 - 120	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac ®

WG_MS_MSD_DRYWT - Modified 03/07/2008 PDF File ID:1466912 Report generated 08/17/2009 14:55

[#] FAILS RPD LIMIT

Serial Dilution Report

 Login: L09080179
 Worknum: WG309827

 Instrument: PE-ICP2
 Method: 6010B

Serial Dil: WG309827-02 File ID: P2.081709.121514 Dil: 5 Units: mg/L

Sample: L09080145-01 File ID: P2.081709.120151 Dil: 1

Analyte	Sample	Qual Serial Dil		Qual	% Diff	Q
Arsenic	ND U ND		ND	U		
Barium	.113	Х	.1095	Х	3.10	
Cadmium	ND U ND		ND	U		
Chromium	ND	U	ND	U		
Lead	.378	Х	.393	F	3.97	
Selenium	ND	U	ND	U		
Silver	ND	U	ND	U		

U = Result is below MDL.

 ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.

X = Result is greater than or equal to RL and less than 50 times the MDL.

E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 50 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 1466906 08/17/2009 14:55

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L09080179
 Worknum:
 WG309827

Instrument ID: PE-ICP2 Method: 6010B

 Post Spike ID: WG309827-01
 File ID:P2.081709.120840
 Dil:1
 Units: mg/L

 Sample ID: L09080145-01
 File ID:P2.081709.120151
 Dil:1
 Matrix: Leachate

Analyte	Post Spike Result	C	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ARSENIC	0.202		0	U	. 2	101.1	75 - 125	
BARIUM	0.623		0.113		.5	104.4	75 - 125	
CADMIUM	0.0246		0	U	.025	98.3	75 - 125	
CHROMIUM	0.260		0	U	. 25	103.9	75 - 125	
LEAD	0.587		0.378		.25	98.9	75 - 125	
SELENIUM	0.206		0	U	. 2	103.1	75 - 125	
SILVER	0.208		0	U	. 2	103.9	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): Login: **L09080179** WG309827 Instrument ID: PE-ICP2
Initial Calibration Date: 17-AUG-2009 10:04 Analytical Method: 6010B ICAL Worknum: WG309865

	WG309	865-01	WG3098	365-02	WG309	865-03	WG309	865-04	WG309	865-05]	
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ARSENIC	0	1.19	NA	NA	.008	5.51	.4	279	.8	568	.999964	
BARIUM	0	-124	.01	1080	.02	2210	1	102000	2	202000	.999991	
CADMIUM	0	0.444	.0005	27.1	.001	51.2	.05	2410	.1	4880	.999976	
CHROMIUM	0	35.1	.005	287	.01	563	.5	25200	1	49800	.999983	
LEAD	0	44.7	.005	21.3	.01	44.9	.5	2220	1	4470	.999998	
SELENIUM	0	-2.07	NA	NA	.008	3.69	.4	137	.8	276	.999992	
SILVER	0	86.2	.004	646	.008	1310	.4	55900	.8	111000	.999988	

INT = Instrument intensity

R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 1466915
Report generated: 17-AUG-2009 14:56

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L09080179
 Run Date:
 08/17/2009
 Sample ID:
 WG309865-08

 Instrument ID:
 PE-ICP2
 Run Time:
 10:22
 Method:
 6010B

 File ID:
 P2.081709.102245
 Analyst:
 PDM
 Units:
 mg/L

Workgroup (AAB#):WG309827 Cal ID:PE-ICP2 - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
ARSENIC	.01	.1	.01	Ŭ
BARIUM	.0025	.01	.0025	υ
CADMIUM	.0025	.01	.0025	υ
CHROMIUM	.0025	.02	.0025	υ
LEAD	.01	.1	.01	υ
SELENIUM	.04	.08	.04	υ
SILVER	.005	.01	.005	υ

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309865-12

Instrument ID: PE-ICP2 Run Time: 10:47 Method: 6010B

File ID: P2.081709.104727 Analyst: PDM Units: mg/L

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00250	0.0100	0.00250	υ
Cadmium	0.00250	0.0100	0.00250	υ
Chromium	0.00250	0.0200	0.00250	υ
Lead	0.0100	0.100	0.0100	υ
Selenium	0.0400	0.0800	0.0400	υ
Silver	0.00500	0.0100	0.00500	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466920 Report generated 08/17/2009 14:56

Microbac ®

 Login Number:
 L09080179
 Run Date:
 08/17/2009
 Sample ID:
 WG309865-14

 Instrument ID:
 PE-ICP2
 Run Time:
 11:35
 Method:
 6010B

 File ID:
 P2.081709.113519
 Analyst:
 PDM
 Units:
 mg/L

Workgroup (AAB#): WG309827 Cal ID: PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00250	0.0100	0.00250	υ
Cadmium	0.00250	0.0100	0.00250	Ū
Chromium	0.00250	0.0200	0.00250	υ
Lead	0.0100	0.100	0.0100	Ū
Selenium	0.0400	0.0800	0.0400	υ
Silver	0.00500	0.0100	0.00500	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309865-16

Instrument ID: PE-ICP2 Run Time: 12:55 Method: 6010B

File ID: P2.081709.125526 Analyst: PDM Units: mg/L

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00250	0.0100	0.00250	υ
Cadmium	0.00250	0.0100	0.00250	υ
Chromium	0.00250	0.0200	0.00250	υ
Lead	0.0100	0.100	0.0100	υ
Selenium	0.0400	0.0800	0.0400	υ
Silver	0.00500	0.0100	0.00500	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

 Login Number:
 L09080179
 Run Date:
 08/17/2009
 Sample ID:
 WG309865-18

 Instrument ID:
 PE-ICP2
 Run Time:
 13:48
 Method:
 6010B

 File ID:
 PP2.081709.134851
 Analyst:
 PDM
 Units:
 mg/L

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00250	0.0100	0.00250	υ
Cadmium	0.00250	0.0100	0.00250	υ
Chromium	0.00250	0.0200	0.00250	υ
Lead	0.0100	0.100	0.0100	υ
Selenium	0.0400	0.0800	0.0400	υ
Silver	0.00500	0.0100	0.00500	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466920 Report generated 08/17/2009 14:56

Microbac ®

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309865-20

Instrument ID: PE-ICP2 Run Time: 14:35 Method: 6010B

File ID: P2.081709.143542 Analyst: PDM Units: mg/L

Workgroup (AAB#): WG309827 Cal ID: PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00250	0.0100	0.00250	υ
Cadmium	0.00250	0.0100	0.00250	υ
Chromium	0.00250	0.0200	0.00250	υ
Lead	0.0100	0.100	0.0100	υ
Selenium	0.0400	0.0800	0.0400	υ
Silver	0.00500	0.0100	0.00500	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466920 Report generated 08/17/2009 14:56

Microbac ®

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309865-07

Instrument ID: PE-ICP2 Run Time: 10:16 Method: 6010B

File ID: P2.081709.101607 Analyst: PDM Units: mg/L Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Arsenic	.4	0.387	96.8	90 - 110	
Barium	1	1.00	100	90 - 110	
Cadmium	.05	0.0482	96.4	90 - 110	
Chromium	.5	0.504	101	90 - 110	
Lead	• 5	0.487	97.4	90 - 110	
Selenium	.4	0.402	100	90 - 110	
Silver	.4	0.403	101	90 - 110	

^{*} Exceeds LIMITS Limit

Login Number:L09080179 Run Date:08/17/2009 Sample ID:WG309865-11

Instrument ID:PE-ICP2 Run Time:10:40 Method:6010B

File ID:P2.081709.104049 Analyst:PDM QC Key:STD

Workgroup (AAB#): WG309827 Cal ID: PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	0.400	0.405	mg/L	101	90 - 110	
Barium	1.00	1.05	mg/L	105	90 - 110	
Cadmium	0.0500	0.0505	mg/L	101	90 - 110	
Chromium	0.500	0.529	mg/L	106	90 - 110	
Lead	0.500	0.507	mg/L	101	90 - 110	
Selenium	0.400	0.419	mg/L	105	90 - 110	
Silver	0.400	0.429	mg/L	107	90 - 110	

^{*} Exceeds LIMITS Criteria

 Login Number: L09080179
 Run Date: 08/17/2009
 Sample ID: WG309865-13

 Instrument ID: PE-ICP2
 Run Time: 11:28
 Method: 6010B

 File ID: P2.081709.112842
 Analyst: PDM
 QC Key: STD

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	0.400	0.406	mg/L	102	90 - 110	
Barium	1.00	1.02	mg/L	102	90 - 110	
Cadmium	0.0500	0.0498	mg/L	99.7	90 - 110	
Chromium	0.500	0.516	mg/L	103	90 - 110	
Lead	0.500	0.500	mg/L	99.9	90 - 110	
Selenium	0.400	0.407	mg/L	102	90 - 110	
Silver	0.400	0.419	mg/L	105	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309865-15

Instrument ID: PE-ICP2 Run Time: 12:48 Method: 6010B

File ID: P2.081709.124847 Analyst: PDM QC Key: STD

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09
Matrix:LEACHATE

Analyte	:	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic		0.400	0.396	mg/L	99.0	90 - 110	
Barium		1.00	1.03	mg/L	103	90 - 110	
Cadmium		0.0500	0.0490	mg/L	98.1	90 - 110	
Chromium		0.500	0.519	mg/L	104	90 - 110	
Lead		0.500	0.499	mg/L	99.7	90 - 110	
Selenium		0.400	0.408	mg/L	102	90 - 110	
Silver		0.400	0.413	mg/L	103	90 - 110	

^{*} Exceeds LIMITS Criteria

 Login Number:
 L09080179
 Run Date:
 08/17/2009
 Sample ID:
 WG309865-17

 Instrument ID:
 PE-ICP2
 Run Time:
 13:42
 Method:
 6010B

 File ID:
 PP2.081709.134213
 Analyst:
 PDM
 QC Key:
 STD

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	0.400	0.401	mg/L	100	90 - 110	
Barium	1.00	1.01	mg/L	101	90 - 110	
Cadmium	0.0500	0.0492	mg/L	98.4	90 - 110	
Chromium	0.500	0.510	mg/L	102	90 - 110	
Lead	0.500	0.492	mg/L	98.5	90 - 110	
Selenium	0.400	0.403	mg/L	101	90 - 110	
Silver	0.400	0.413	mg/L	103	90 - 110	

^{*} Exceeds LIMITS Criteria

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

 Login Number: L09080179
 Run Date: 08/17/2009
 Sample ID: WG309865-19

 Instrument ID: PE-ICP2
 Run Time: 14:29
 Method: 6010B

 File ID: P2.081709.142903
 Analyst: PDM
 QC Key: STD

Workgroup (AAB#):WG309827 Cal ID:PE-ICP - 17-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	0.400	0.409	mg/L	102	90 - 110	
Barium	1.00	1.05	mg/L	105	90 - 110	
Cadmium	0.0500	0.0501	mg/L	100	90 - 110	
Chromium	0.500	0.532	mg/L	106	90 - 110	
Lead	0.500	0.502	mg/L	100	90 - 110	
Selenium	0.400	0.412	mg/L	103	90 - 110	
Silver	0.400	0.429	mg/L	107	90 - 110	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID:1466919 Report generated 08/17/2009 14:56

Login number: L09080179 Workgroup (AAB#): WG309827

Instrument ID: PE-ICP2

 Sol. A: WG309865-09
 File ID: P2.081709.102928

 Sol. AB: WG309865-10
 File ID: P2.081709.103508

Method:6010B
Units:mg/L
Matrix:Leachate

		Sol. A		Sol. AB			
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Arsenic	NS	-0.000950	NS	NS	0.241	NS	
Barium	NS	-0.0000900	NS	0.250	0.245	98.0	
Cadmium	NS	-0.0000100	NS	0.500	0.422	84.4	
Chromium	NS	-0.00111	NS	0.250	0.242	96.8	
Lead	NS	-0.000380	NS	0.500	0.460	92.0	
Selenium	NS	-0.000500	NS	NS	0.230	NS	
Silver	NS	-0.00185	NS	0.500	0.505	101	

NS = Not spiked

* = Recovery of spiked element is outside acceptance limit of 80% - 120% of true value.

= Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).

 Login Number:
 L09080179
 Date:
 02/02/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

Analyte	Wave Length	AG	AL	AS	В	ва
ALUMINUM	396.15	0	0	0.206	0	0
ANTIMONY	206.84	0	0	-0.740	0	0
ARSENIC	188.98	0	-0.00216	0	0	0
BARIUM	233.53	0	0	0	0	0
BERYLLIUM	234.86	0	0	0	0	0
BORON	249.68	0	0	0	0	0
CADMIUM	228.80	0	0	0	0	0
CALCIUM	227.55	0	-0.370	0.0414	0	0
CHROMIUM	267.72	0	0	0	0	0
COBALT	228.62	0	0	0	0	-1.07
COPPER	327.39	0	0	0	0	0
IRON	239.56	0	0	0	0	0
LEAD	220.35	0	-0.107	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	0	0	0	0
MANGANESE	257.61	-0.185	0	-0.231	-0.0949	-0.230
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.49	0	0	0	0	0
SELENIUM	196.03	0	0.207	0	0	0
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0	0	0	0	0
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0	0	0.200	0	0.0400
ZINC	206.20	0	0.0753	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1466914 Report generated: 08/17/2009 14:56

 Login Number:
 L09080179
 Date:
 02/02/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

Analyte	Wave Length	BE	CA	CD	CO	CR
ALUMINUM	396.15	0	0.274	0	0	0
ANTIMONY	206.84	0	0	0	0	19.8
ARSENIC	188.98	0	-0.00673	-0.0875	0	-2.91
BARIUM	233.53	0	0	0	0	0
BERYLLIUM	234.86	0	0	0	0	-0.0105
BORON	249.68	0	0	50.1	3.51	1.50
CADMIUM	228.80	0	0	0	-5.41	0
CALCIUM	227.55	0	0	0	126	-21.8
CHROMIUM	267.72	0	0	0	0	0
COBALT	228.62	0	0	0	0	0.156
COPPER	327.39	0	0	0	0.380	-0.0467
IRON	239.56	0	0.0227	0	1.91	0.331
LEAD	220.35	0	-0.0247	0	0.666	-0.0700
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	0.638	0	0	0
MANGANESE	257.61	-1.04	0.0280	-0.755	-0.0418	-0.110
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0.623	0
POTASSIUM	766.49	0	0	0	0	0
SELENIUM	196.03	0	0.0190	0	-0.633	0
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0	0	0	0	0
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	0	-0.0100	0	0.953	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	-0.0233	0	0	0.297
VANADIUM	290.88	0	-0.00100	0	0	0
ZINC	206.20	0	-0.0333	15.3	0	-7.08

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1466914 Report generated: 08/17/2009 14:56

 Login Number:
 L09080179
 Date:
 02/02/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

_	Wave					
Analyte	Length	CU	FE	K	LI	MG
ALUMINUM	396.15	0	0.108	0	0	0
ANTIMONY	206.84	0	0	0	0	0
ARSENIC	188.98	0	0.00251	0	0	0
BARIUM	233.53	0	0.0520	0	0	0
BERYLLIUM	234.86	0	0.152	0	0	0
BORON	249.68	0	-4.02	0	0	0
CADMIUM	228.80	0	-0.00274	0	0	0
CALCIUM	227.55	-2.44	-4.01	0	0	0.104
CHROMIUM	267.72	0	-0.0239	0	0	0
COBALT	228.62	0	0.00949	0	0	0
COPPER	327.39	0	-0.0851	0	0.154	0.0143
IRON	239.56	0	0	0	0	0.0276
LEAD	220.35	0.551	0.103	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	0.174	0	0	0
MANGANESE	257.61	-0.0457	-0.156	-0.0181	-0.794	0.0147
MOLYBDENUM	202.03	0	-0.0494	0	0	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.49	0	-0.0451	0	0	0
SELENIUM	196.03	0	-1.01	0	0	-0.0113
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0.0717	-0.00209	0	0	0
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0.138	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0	0.0715	0	0	-0.0400
ZINC	206.20	-0.200	-0.0563	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1466914 Report generated: 08/17/2009 14:56

 Login Number:
 L09080179
 Date:
 02/02/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

Analyte	Wave Length	MN	MO	NA	NI	РВ
ALUMINUM	396.15	0	32.9	0	0	0
ANTIMONY	206.84	0	-17.4	0	0	0
ARSENIC	188.98	0	3.66	0	0	0
BARIUM	233.53	0	-0.548	0	0	0
BERYLLIUM	234.86	-0.131	-0.529	0	-0.00974	0
BORON	249.68	0	-2.08	0	0	0
CADMIUM	228.80	0	0.0112	0	-0.0299	0
CALCIUM	227.55	0	-18.6	0	-1090	0
CHROMIUM	267.72	0.434	-0.00100	0	0	0
COBALT	228.62	0	-0.835	0	0.129	0
COPPER	327.39	0.136	-0.0774	0	0.150	0.257
IRON	239.56	0.480	0	0	0	0.407
LEAD	220.35	0.0756	-2.50	0	-0.174	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	-5.58	0	0	0.0252
MANGANESE	257.61	0	-0.0482	-0.00916	-0.0340	-0.0413
MOLYBDENUM	202.03	-0.209	0	0	0.120	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.49	0	0	1.00	0	0
SELENIUM	196.03	0.451	0.199	0	0.0799	0
SILICON	251.61	0	12.9	0	0	0
SILVER	328.07	0.130	0.0781	0	0	0
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	-0.00100	1.20	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0	0.578	0	0	0
ZINC	206.20	0	0.180	0	-0.200	-0.100

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1466914 Report generated: 08/17/2009 14:56

 Login Number:
 L09080179
 Date:
 02/02/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

Analyte	Wave Length	SB	SE	sı	SN	SR
ALUMINUM	396.15	0		0	0	0
ANTIMONY	206.84	0	0	0	-10.6	0
ARSENIC	188.98	0	0	0	0	0
BARIUM	233.53	0	0	0	0	0
BERYLLIUM	234.86	0	0	0	0	0
BORON	249.68	0	0	0	0	0
CADMIUM	228.80	0	0	0	0	0
CALCIUM	227.55	0	0	2.79	0	0
CHROMIUM	267.72	0	0	0	0	0
COBALT	228.62	0	0	0	0	0
COPPER	327.39	0	0.148	0	0	0
IRON	239.56	0	0	0	0	0
LEAD	220.35	-0.0100	0	0	0	0
LITHIUM	670.78	0	0	0	0	0
MAGNESIUM	279.08	0	-0.0924	0	0	0
MANGANESE	257.61	-0.0505	-0.0281	-0.185	-0.0445	-0.625
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	-0.0500	-0.0100	0	0	0
POTASSIUM	766.49	0	0	0	0	0
SELENIUM	196.03	0	0	0	0	0
SILICON	251.61	0	0	0	0	0
SILVER	328.07	0	0	0	0	0.200
SODIUM	589.59	0	0	0	0	0
STRONTIUM	407.77	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.93	0	0	0	0	0
TITANIUM	334.94	0	0	0	0	0
VANADIUM	290.88	0	0	0	0	0
ZINC	206.20	-0.300	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1466914 Report generated: 08/17/2009 14:56

 Login Number:
 L09080179
 Date:
 02/02/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

Analyte	Wave Length	TI	TL	v	ZN
ALUMINUM	396.15	0	0	0	0
ANTIMONY	206.84	0	0	-3.59	0
ARSENIC	188.98	0	0	0.0930	0
BARIUM	233.53	0	0	-1.83	0
BERYLLIUM	234.86	0	0	0	0
BORON	249.68	0	0	0	0
CADMIUM	228.80	0	0	0.0940	0
CALCIUM	227.55	0	0	19.1	0
CHROMIUM	267.72	0	0	-0.567	-0.0400
COBALT	228.62	2.21	0	0	0
COPPER	327.39	-1.05	0	-0.603	0
IRON	239.56	0	0	0	-0.0613
LEAD	220.35	-0.441	0	-0.150	0
LITHIUM	670.78	0	0	0	0
MAGNESIUM	279.08	0	0	-0.0280	0
MANGANESE	257.61	-0.00931	-0.0414	-0.0601	-0.0553
MOLYBDENUM	202.03	0	0	-0.288	0
NICKEL	231.60	0	0.617	0	0
POTASSIUM	766.49	0	0	0	0
SELENIUM	196.03	-0.220	0	0.823	0
SILICON	251.61	0	0	0	0
SILVER	328.07	0	0	-5.47	0
SODIUM	589.59	0	0	0	0
STRONTIUM	407.77	0	0	0	0
THALLIUM	190.80	-4.00	0	0	0
TIN	189.93	0	0	0	0
TITANIUM	334.94	0	0	0	0
VANADIUM	290.88	0	0	0	0
ZINC	206.20	0	0	-0.100	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1466914 Report generated: 08/17/2009 14:56

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L09080179
 Date:
 06/30/2009

 Insturment ID:
 PE-ICP2
 Method:
 6010B

	Integration Time	Concentration
Analyte	(Sec.)	(mg/L)
Aluminum	10.00	450.0
Antimony	10.00	45.0
Arsenic	10.00	9.0
Barium	10.00	9.0
Beryllium	10.00	4.5
Boron	10.00	45.0
Cadmium	10.00	9.0
Calcium	10.00	450.0
Chromium	10.00	45.0
Cobalt	10.00	45.0
Copper	10.00	45.0
Iron	10.00	450.0
Lead	10.00	90.0
Lithium	10.00	0.8
Magnesium	10.00	450.0
Manganese	10.00	27.0
Molybdenum	10.00	45.0
Nickel	10.00	45.0
Potassium	10.00	90.0
Selenium	10.00	45.0
Silicon	10.00	36.0
Silver	10.00	4.5
Sodium	10.00	180.0
Strontium	10.00	4.5
Thallium	10.00	45.0
Tin	10.00	45.0
Titanium	10.00	45.0
Vanadium	10.00	45.0
Zinc	10.00	45.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

LINEAR_RANGE - Modified 03/06/2008
PDF File ID:1466913
Report generated: 08/17/2009 14:55

2.1.2 Metals CVAA Data (Mercury)

2.1.2.1 Summary Data

L09080179

08/19/09 09:25

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRR0628GR	L09080179-01	7470A	1	08-AUG-09
PRR0959GR	L09080179-02	7470A	1	08-AUG-09
PRR0766GR	L09080179-03	7470A	1	08-AUG-09
PRR01022GR	L09080179-04	7470A	1	08-AUG-09
PRR01111GR	L09080179-05	7470A	1	08-AUG-09
PRR01113GR	L09080179-06	7470A	1	08-AUG-09
PRR0542GR	L09080179-07	7470A	1	08-AUG-09
PRR0674GR	L09080179-08	7470A	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1468636
Report generated: 08/19/2009 09:25

00083461

Report Number: L09080179

Sample Number: L09080179-01

Client ID: PRR0628GR

Workgroup Number: WG309836

Sample Tag: 01

Matrix: Leachate

Collect Date: 08/07/2009 13:15

Report Date : August 19, 2009

PrePrep Method:1311

Prep Method: 7470A
Analytical Method: 7470A

Analyst:SLP
Dilution:1
Units:mg/L

Instrument**HYDRA**

Prep Date: 08/17/2009 09:02
Cal Date:
Run Date08/17/2009 13:09
File ID: HY. 081709.130903

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		U	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

1 of 8

00083462

Report Number: L09080179

Sample Number: L09080179-02

Client ID: PRR0959GR

Workgroup Number: WG309836

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method:1311 InstrumentHYDRA

Prep Method:7470A Prep Date:08/17/2009 09:02
Analytical Method:7470A Cal Date:08/17/2009 12:25
Analyst:SLP Run Date08/17/2009 13:11
Dilution:1 File ID:HY.081709.131106

Collect Date: 08/07/2009 13:20
Sample Tag: 01
Units: mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		Ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

2 of 8

00083463

Report Number: L09080179

Sample Number: L09080179-03

Workgroup Number: WG309836

Client ID: PRR0766GR

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method:1311 InstrumentHYDRA

Prep Method: 7470A Prep Date: 08/17/2009 09:02
Analytical Method: 7470A Cal Date: 08/17/2009 12:25
Analyst: SLP Run Date 08/17/2009 13:12

Collect Date: 08/07/2009 13:25
Sample Tag: 01
Units:mg/L

Simple Tag: 01

Simple Tag: 01

Dilution: 1

Units: mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		Ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

3 of 8

00083464

Report Number: L09080179

Sample Number: L09080179-04

Workgroup Number: WG309836

Client ID: PRR01022GR

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method:1311 InstrumentHYDRA

Prep Method:7470A Prep Date:08/17/2009 09:02
Analytical Method:7470A Cal Date:08/17/2009 12:35
Analyst:SLP Run Date08/17/2009 13:18

Collect Date: 08/07/2009 13:30
Sample Tag: 01

Units: mg/L

Dilution: 1

Units: mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		Ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

4 of 8

Micropac Laboratories inc.

00083465

Report Number: L09080179

Sample Number: L09080179-05

Sample Tag: 01

Client ID: PRR01111GR

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method:1311 Instrument HYDRA

Prep Method: 7470A
Analytical Method: 7470A Prep Date: 08/17/2009 09:02 Cal Date: 08/17/2009 12:35 Analyst: SLP

Workgroup Number: WG309836 Run Date 08/17/2009 13:20 Collect Date: 08/07/2009 13:35 File ID: HY.081709.132002 Dilution:1 Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

5 of 8

00083466

Report Number: L09080179

Sample Number: L09080179-06

Workgroup Number: WG309836

Client ID: PRR01113GR

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method:1311 InstrumentHYDRA

Prep Method:7470A Prep Date:08/17/2009 09:02
Analytical Method:7470A Cal Date:08/17/2009 12:35
Analyst:SLP Run Date08/17/2009 13:22
Dilution:1 File ID:HY.081709.132200

| Collect Date: 08/07/2009 13:40 | Dilution: 1 |
| Sample Tag: 01 | Units: mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		Ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

6 of 8

00083467

Report Number: L09080179

Sample Number: L09080179-07

Client ID: PRR0542GR

Workgroup Number: WG309836

Sample Tag: 01

Matrix: Leachate

Collect Date: 08/07/2009 13:50

Report Date : August 19, 2009

PrePrep Method:1311 InstrumentHYDRA

Prep Method:7470A Prep Date:08/17/2009 09:02
Analytical Method:7470A Cal Date:08/17/2009 12:35
Analyst:SLP Run Date 08/17/2009 13:23
Dilution:1 File ID:HY.081709.132356

Units:mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		Ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

_

Microbac

of

8

00083468

Report Number: L09080179

Sample Number: L09080179-08

Client ID: PRR0674GR

Matrix: Leachate

Report Date : August 19, 2009

PrePrep Method:1311 InstrumentHYDRA

Prep Method: 7470A Prep Date: 08/17/2009 09:02
Analytical Method: 7470A Cal Date: 08/17/2009 12:35
Analyst: SLP Run Date 08/17/2009 13:25

 Workgroup Number: WG309836
 Analyst: SLP
 Run Date 08/17/2009 13:25

 Collect Date: 08/07/2009 13:55
 Dilution: 1
 File ID: HY.081709.132538

 Sample Tag: 01
 Units: mg/L

Analyte	CAS.Number	Result	Qual	PQL	SDL	EPA HW#	Reg. Limit
Mercury	7439-97-6		Ū	.002	.001	D009	.2

U Not detected at or above adjusted sample detection limit

8 of 8

2.1.2.2 QC Summary Data

Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and five standards.

2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to Volume (mL)	40
Vi = Aliquot Volume (mL)	40
D = Manual dilution factor, if required (10X = 10)	1
Cx = Concentration of element in ppb (ug/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Ws} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to volume (mL)	40
Ws = Aliquot weight (g)	0.6
D = Manual dilution factor	1
Cx = Concentration of element in ug/kg	6.67

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

1 Cx = Concentration calculated as received (wet basis)	6.67
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	8.33

8.33 ug/kg = 0.00833 mg/kg

Document Control No.: 10237 Page 44 of 100

TCLP Non-Volatile

nalyst(s): \(\lambda \tau \)

Analys	st/Date	Apalyst/Date			
Ruc	8-14-09	Nuc 8	1509		
Time	Temp	Time	Temp		
On	On °C	Off	Off°C		
1400	23	715	23		

				•			Size Re		·	
ug#	Sample # 8-0/45.01	Tests	Method	Fluid#	Matrix*	%Solid	Yes	No	Int. Wt. (g)	Fluid Vol. (mL)
\widehat{h}	08-0143.01	ME	1311	F1-759	33	100		/	100.06	2000
£	07								100.01	
D_	03								100.05	
D	04								100.05	
<u>D</u>	05								100.00	
1)	06								100.04	
D	08-179-01								100.06	
Ω	02								100.01	
<u>D</u>	03,	SPK							100.03	
<u>D</u>	04								100.03	
\supset	05								100.02	
\mathbb{D}	06								100.07	
D	01								100.04	
D,	08				1	1			100.00	
a//A	FBLK				NA	KILA		1	2000	
,,,,,				1	7472	17077		_	0000	
										
				 						
				 						
						<u> </u>				
										<u> </u>
		1.1.0	 							<u> </u>
	 	01407					1			
		1 A. C. 8-11-		-						
		KW -		-	<u> </u>					
	 		 	<u> </u>						
						ļ			:	
			<u> </u>	-						
	1									

*Matrix Code = (S-solid) (SS-sand, soil or sludge) (P-paint) (O-organic) (W-water or waste) Agitator speed is 30 ± 2 rpm unless otherwise noted.

Comments:			
Peer Review By:	·	Supervisor Review:	

Microbac Laboratories Inc. Metals Digest Log

Workgroup: WG309804

Analyst:REK

Spike Analyst: REK

Method: 7470A

Run Date: 08/17/2009 09:02

Hotblock Start Temp: 92.9 @ 07:45 Hotblock End Temp: 94.1 @ 09:45 SOP: ME404 Revison 12

Spike Solution: STD34685

Spike Witness: VC

H2SO4 Lot #: COA13254

HNO3 Lot #: COA13945

Digest tubes Lot #: COA14013

KMnO4 1:1 Lot #: RGT13913

K2S2O8 1:1 Lot #: RGT14066 Mercury Water ICV Lot #: STD34687

HG H2O STDS 10PPM Lot #: STD34693

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Spike Amount	Due Date
1	WG309804-02	BLANK	1	40 mL	40 mL		
2	WG309732-01	FBLK	17	4 mL	40 mL		
3	WG309804-03	LCS	1	40 mL	40 mL	4 mL	
4	L09080145-01	SAMP	17	4 mL	40 mL		08/18/09
5	L09080145-02	SAMP	17	4 mL	40 mL		08/18/09
6	L09080145-03	SAMP	17	4 mL	40 mL		08/18/09
7	L09080145-04	SAMP	17	4 mL	40 mL		08/18/09
8	L09080145-05	SAMP	17	4 mL	40 mL		08/18/09
9	L09080145-06	SAMP	17	4 mL	40 mL		08/18/09
10	L09080179-01	SAMP	17	4 mL	40 mL		08/18/09
11	L09080179-02	SAMP	17	4 mL	40 mL		08/18/09
12	WG309804-01	REF	17	4 mL	40 mL		
13	L09080179-03	SAMP	17	4 mL	40 mL		08/18/09
14	L09080179-04	SAMP	17	4 mL	40 mL		08/18/09
15	L09080179-05	SAMP	17	4 mL	40 mL		08/18/09
16	L09080179-06	SAMP	17	4 mL	40 mL		08/18/09
17	L09080179-07	SAMP	17	4 mL	40 mL		08/18/09
18	L09080179-08	SAMP	17	4 mL	40 mL		08/18/09
19	L09080328-13	SAMP	1	40 mL	40 mL		08/25/09
20	WG309804-04	MS	1	4 mL	40 mL	4 mL	
21	WG309804-05	MSD	1	4 mL	40 mL	4 mL	

Analyst:

Reviewer: Eun Pottm

BLOCK_DIG - Modified 07/22/2008 PDF ID: 1466532
Report generated: 08/17/2009 10:13

Microbac Laboratories Inc.

Instrument Run Log

Instrument:	HYDRA	Dataset:	081709A.PRN	
Analyst1:	SLP	Analyst2:	N/A	-
Method:	7470A	SOP:	ME404	Rev: <u>11</u>
Maintenance Log ID:	29808			

Workgroups: 309836

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	HY.081709.122554	WG309856-01	Calibration Point		1		08/17/09 12:25
2	HY.081709.122737	WG309856-02	Calibration Point		1		08/17/09 12:27
3	HY.081709.122925	WG309856-03	Calibration Point		1		08/17/09 12:29
4	HY.081709.123120	WG309856-04	Calibration Point		1		08/17/09 12:31
5	HY.081709.123312	WG309856-05	Calibration Point		1		08/17/09 12:33
6	HY.081709.123525	WG309856-06	Calibration Point		1		08/17/09 12:35
7	HY.081709.123909	WG309856-07	Initial Calibration Verification		1		08/17/09 12:39
8	HY.081709.124114	WG309856-08	Initial Calib Blank		1		08/17/09 12:41
9	HY.081709.124307	WG309856-09	CCV		1		08/17/09 12:43
10	HY.081709.124450	WG309856-10	ССВ		1		08/17/09 12:44
11	HY.081709.124643	WG309804-02	Method/Prep Blank	40/40	1		08/17/09 12:46
12	HY.081709.124838	WG309804-03	Laboratory Control S	40/40	1		08/17/09 12:48
13	HY.081709.125029	WG309732-01	Fluid Blank		1		08/17/09 12:50
14	HY.081709.125221	L09080145-01	PRR0758GR	4/40	1		08/17/09 12:52
15	HY.081709.125416	WG309836-01	Post Digestion Spike		1	L09080145-01	08/17/09 12:54
16	HY.081709.125617	L09080145-02	PRR0859GR	4/40	1		08/17/09 12:56
17	HY.081709.125835	L09080145-03	PRR0731GR	4/40	1		08/17/09 12:58
18	HY.081709.130030	L09080145-04	PRR0906GR	4/40	1		08/17/09 13:00
19	HY.081709.130213	L09080145-05	PRR01096GR	4/40	1		08/17/09 13:02
20	HY.081709.130357	L09080145-06	PRR0701GR	4/40	1		08/17/09 13:03
21	HY.081709.130539	WG309856-11	CCV		1		08/17/09 13:05
22	HY.081709.130721	WG309856-12	CCB		1		08/17/09 13:07
23	HY.081709.130903	L09080179-01	PRR0628GR	4/40	1		08/17/09 13:09
24	HY.081709.131106	L09080179-02	PRR0959GR	4/40	1		08/17/09 13:11
25	HY.081709.131248	L09080179-03	PRR0766GR	4/40	1	WG309804-01	08/17/09 13:12
26	HY.081709.131449	WG309804-04	Matrix Spike	4/40	1	L09080179-03	08/17/09 13:14
27	HY.081709.131634	WG309804-05	Matrix Spike Duplica	4/40	1	L09080179-03	08/17/09 13:16
28	HY.081709.131817	L09080179-04	PRR01022GR	4/40	1		08/17/09 13:18
29	HY.081709.132002	L09080179-05	PRR01111GR	4/40	1		08/17/09 13:20
30	HY.081709.132200	L09080179-06	PRR01113GR	4/40	1		08/17/09 13:22
31	HY.081709.132356	L09080179-07	PRR0542GR	4/40	1		08/17/09 13:23
32	HY.081709.132538	L09080179-08	PRR0674GR	4/40	1		08/17/09 13:25
33	HY.081709.132723	WG309856-13	CCV		1		08/17/09 13:27
34	HY.081709.132911	WG309856-14	ССВ		1		08/17/09 13:29
35	HY.081709.133103	L09080328-13	AV-NCB-EB-1-081309	40/40	1		08/17/09 13:31
36	HY.081709.133300	WG309836-02	Post Digestion Spike		1	L09080328-13	08/17/09 13:33
37	HY.081709.133442	WG309856-15	CCV		1		08/17/09 13:34

Page: 1 Approved: August 18, 2009

Maren Blery

Microbac ®

Run Log 000083474

Microbac Laboratories Inc.

Instrument Run Log

 Instrument:
 HYDRA
 Dataset:
 081709A.PRN

 Analyst1:
 SLP
 Analyst2:
 N/A

 Method:
 7470A
 SOP:
 ME404
 Rev: 11

Maintenance Log ID: 29808

Calibration Std: STD34693 ICV/CCV Std: STD34687 Post Spike: STD34693

Workgroups: 309836

Comments:

Coa							
Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	HY.081709.133627	WG309856-16	ССВ		1		08/17/09 13:36

Page: 2 Approved: August 18, 2009

Maren Beery

Microbac Laboratories Inc. Data Checklist

Date:	17-AUG-2009
Analyst:	SLP
Analyst:	<u>NA</u>
Method:	7470A
Instrument:	HYRDA
Curve Workgroup:	309856
Runlog ID:	29644
Analytical Workgroups:	309836

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	0145, 0179, 0328
Client Forms	X
Level X	
Level 3	0145, 0179
Level 4	0328
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	SLP
Secondary Reviewer	MMB
Comments	

Primary Reviewer: 17-AUG-2009

Secondary Reviewer: 18-AUG-2009

Sheri L. Hakord Maren Beery

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-18-2009 09:19:43

Microbac Laboratories Inc.

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00083476

AAB#: WG309836

Analytical Method: 7470A

Login Number: L09080179

	ID	Date	TCLP	Time	Max	Q	Extract	Time	Max	Q	Run	Time	Max	Q
Client ID		Collected	Date	Held	Hold		Date	Held	Hold		Date	Held	Hold	
PRR0628GR	01	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR0959GR	02	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR0766GR	03	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR01022GR	04	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR01111GR	05	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR01113GR	06	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR0542GR	07	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	
PRR0674GR	08	08/07/09	08/14/09	7			08/17/09	9.8	28		08/17/09	3	28	

^{* =} SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID:1466812 Report generated 08/17/2009 13:55

METHOD BLANK SUMMARY

Login Number: L09080179

Blank File ID: HY.081709.124643

Prep Date: 08/17/09 09:02

Analyzed Date: 08/17/09 12:46

Work Group: WG309836

Blank Sample ID: WG309804-02

Instrument ID: HYDRA

Method: 7470A

Analyst:SLP

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG309804-03	HY.081709.124838	08/17/09 12:48	01
PRR0628GR	L09080179-01	HY.081709.130903	08/17/09 13:09	01
PRR0959GR	L09080179-02	HY.081709.131106	08/17/09 13:11	01
PRR0766GR	L09080179-03	HY.081709.131248	08/17/09 13:12	01
PRR01022GR	L09080179-04	HY.081709.131817	08/17/09 13:18	01
PRR01111GR	L09080179-05	HY.081709.132002	08/17/09 13:20	01
PRR01113GR	L09080179-06	HY.081709.132200	08/17/09 13:22	01
PRR0542GR	L09080179-07	HY.081709.132356	08/17/09 13:23	01
PRR0674GR	L09080179-08	HY.081709.132538	08/17/09 13:25	01

Report Name: BLANK_SUMMARY
PDF File ID: 1466813
Report generated 08/17/2009 13:56

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Mercury	0.000100	0.000200	0.000100	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* | Analyte concentration | > RL

Report Name:BLANK PDF ID: 1466814 17-AUG-2009 13:56

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

00083479

Mercury	0.00400	0.00418	105	85	-	115	

LCS - Modified 03/06/2008 PDF File ID:1466815 Report generated: 08/17/2009 13:56

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L09080179
 Cal ID: HYDRA
 HYDRA –
 Worknum: WG309836

 Instrument ID: HYDRA
 Contract #: DACA56-94-D-0020
 Method: 7470A

 Parent ID: WG309804-01
 File ID: HY.081709.131248
 Dil: 1
 Matrix: WATER

 Sample ID: WG309804-04
 MS
 File ID: HY.081709.131634
 Dil: 1
 Units: mg/L

 Sample ID: WG309804-05
 MSD
 File ID: HY.081709.131634
 Dil: 1
 Dil: 1

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Mercury	ND	0.0400	0.0421	105	0.0400	0.0433	108	2.81	85 - 115	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac ®

[#] FAILS RPD LIMIT

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L09080179

 Worknum:
 WG309836

Instrument ID: HYDRA Method: 7470A

 Post Spike ID: WG309836-01
 File ID:HY.081709.125416
 Dil:1
 Units: ug/L

 Sample ID: L09080145-01
 File ID:HY.081709.125221
 Dil:1
 Matrix: Leachate

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
MERCURY	1.08		0	U	1	108.0	85 - 115	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

00083482

Login Number: L09080179 Analytical Method: 7470A ICAL Worknum: WG309856 Workgroup (AAB#): WG309836

Instrument ID: HYDRA

Initial Calibration Date: 08/17/2009 12:35

	WG309856-01		WG309856-02		WG309856-03		WG309856-04		WG309856-05		WG309856-06	
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT
Mercury	0	213	0.200	942	1.00	4411	2.00	8569	5.00	21366	10.0	43441

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1466817 Report generated 08/17/2009 13:56

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

Login Number: L09080179 Analytical Method: 7470A ICAL Worknum: WG309856

Workgroup (AAB#): WG309836 Instrument ID: HYDRA Initial Calibration Date: 08/17/2009 12:35

Analyte	R	Q
Mercury	1.000	

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1466817 Report generated 08/17/2009 13:56

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L09080179
 Run Date: 08/17/2009
 Sample ID: WG309856-08

 Instrument ID: HYDRA
 Run Time: 12:41
 Method: 7470A

 File ID: HY.081709.124114
 Analyst: SLP
 Units: ug/L

Workgroup (AAB#):WG309836 Cal ID:HYDRA - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
MERCURY	.1	.2	.1	υ

ICB - Modified 07/14/2009 PDF File ID:1466819 Report generated 08/17/2009 13:56

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309856-10

Instrument ID: HYDRA Run Time: 12:44 Method: 7470A

File ID: HY.081709.124450 Analyst: SLP Units: ug/L

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix: LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466821 Report generated 08/17/2009 13:56

 Login Number:
 L09080179
 Run Date:
 08/17/2009
 Sample ID:
 WG309856-12

 Instrument ID:
 HYDRA
 Run Time:
 13:07
 Method:
 7470A

 File ID:
 HY.081709.130721
 Analyst:
 Units:
 ug/L

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.200	0.100	Ū

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466821 Report generated 08/17/2009 13:56

 Login Number:
 L09080179
 Run Date:
 08/17/2009
 Sample ID:
 WG309856-14

 Instrument ID:
 HYDRA
 Run Time:
 13:29
 Method:
 7470A

 File ID:
 HY.081709.132911
 Analyst:
 SLP
 Units:
 Units:

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466821 Report generated 08/17/2009 13:56

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309856-16

Instrument ID: HYDRA Run Time: 13:36 Method: 7470A

File ID: HY.081709.133627 Analyst: SLP Units: ug/L

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1466821 Report generated 08/17/2009 13:56

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309856-07

Instrument ID: HYDRA Run Time: 12:39 Method: 7470A

File ID: HY.081709.123909 Analyst: SLP Units: ug/L

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Mercury	2	2.11	106	90 - 110	

^{*} Exceeds LIMITS Limit

00083490

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309856-09

Instrument ID: HYDRA Run Time: 12:43 Method: 7470A

File ID: HY.081709.124307 Analyst: SLP QC Key: STD

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix: LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00206	mg/L	103	80 - 120	

^{*} Exceeds LIMITS Criteria

00083491

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309856-11

Instrument ID: HYDRA Run Time: 13:05 Method: 7470A

File ID: HY.081709.130539 Analyst: SLP QC Key: STD

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix: LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00201	mg/L	101	80 - 120	

^{*} Exceeds LIMITS Criteria

00083492

Login Number: L09080179 Run Date: 08/17/2009 Sample ID: WG309856-13

Instrument ID: HYDRA Run Time: 13:27 Method: 7470A

File ID: HY.081709.132723 Analyst: SLP QC Key: STD

Workgroup (AAB#): WG309836 Cal ID: HYDRA - 17-AUG-09

Matrix: LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00191	mg/L	95.5	80 - 120	

^{*} Exceeds LIMITS Criteria

00083493

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00193	mg/L	96.5	80 - 120	

^{*} Exceeds LIMITS Criteria

2.2 General Chemistry Data

2.2.1 Reactivity Data

2.2.1.1 Summary Data

L09080179

08/19/09 09:25

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRR0628GR	L09080179-01	SW7.34	1	08-AUG-09
PRR0959GR	L09080179-02	SW7.34	1	08-AUG-09
PRR0766GR	L09080179-03	SW7.34	1	08-AUG-09
PRR01022GR	L09080179-04	SW7.34	1	08-AUG-09
PRR01111GR	L09080179-05	SW7.34	1	08-AUG-09
PRR01113GR	L09080179-06	SW7.34	1	08-AUG-09
PRR0542GR	L09080179-07	SW7.34	1	08-AUG-09
PRR0674GR	L09080179-08	SW7.34	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1468637
Report generated: 08/19/2009 09:25

Microbac

1 OF 1

00083498

Report Date : August 19, 2009

Report Number: L09080179

Sample Number:L09080179-01 Client ID: PRR0628GR

Matrix: Soil
Workgroup Number: WG309685
Collect Date: 08/07/2009 13:15

PrePrep Method:NONE Instrument: BURET Prep Method: SW7.34 Prep Date: 08/14/2009 08:32 Analytical Method: SW7.34 Cal Date: Run Date: 08/14/2009 08:32 File ID: ET. 0908140832-10 Analyst: DLP

Dilution: 1 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		U	100	50.0

U Not detected at or above adjusted sample detection limit

of 8

00083499

Report Date : August 19, 2009

Report Number: L09080179

Sample Number: L09080179-02
Client ID: PRR0959GR

Matrix:Soil
Workgroup Number:WG309685
Collect Date: 08/07/2009 13:20

 PrePrep Method: NONE
 Instrument: BURET

 Prep Method: SW7.34
 Prep Date: 08/14/2009 08:32

 Analytical Method: SW7.34
 Cal Date: Run Date: 08/14/2009 08:32

 Analyst: DLP
 Run Date: 08/14/2009 08:32

 Dilution: 1
 File ID: ET.0908140832-11

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		U	100	50.0

U Not detected at or above adjusted sample detection limit

2 of 8

00083500

Report Date : August 19, 2009

Report Number: L09080179

Sample Number:L09080179-03 PrePrep Method:NONE Instrument: BURET

Client ID: PRR0766GR Prep Method: SW7.34 Prep Date: 08/14/2009 08:32 Matrix: Soil Analytical Method: SW7.34 Cal Date: Workgroup Number: WG309685
Collect Date: 08/07/2009 13:25 Run Date: 08/14/2009 08:32 File ID: ET. 0908140832-12 Analyst: DLP Dilution: 1

Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		U	100	50.0

U Not detected at or above adjusted sample detection limit

of 8

Report Date : August 19, 2009

00083501 Report Number: L09080179

Sample Number:L09080179-04 PrePrep Method:NONE Instrument: BURET

Client ID: PRR01022GR Prep Method: SW7.34 Prep Date: 08/14/2009 08:32 Matrix: Soil
Workgroup Number: WG309685
Collect Date: 08/07/2009 13:30 Analytical Method: SW7.34 Cal Date: Run Date: 08/14/2009 08:32 File ID: ET. 0908140832-13 Analyst: DLP Dilution: 1

Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		Ū	100	50.0

U Not detected at or above adjusted sample detection limit

of 8

00083502

Report Date : August 19, 2009

Report Number: L09080179

Sample Number:L09080179-05 PrePrep Method:NONE Instrument: BURET

Client ID: PRR01111GR Prep Method: SW7.34 Prep Date: 08/14/2009 08:32 Matrix: Soil
Workgroup Number: WG309685
Collect Date: 08/07/2009 13:35 Analytical Method: SW7.34 Cal Date: Run Date: 08/14/2009 08:32 File ID: ET. 0908140832-14 Analyst: DLP

Dilution: 1 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		U	100	50.0

U Not detected at or above adjusted sample detection limit

5 of 8

00083503

Report Date : August 19, 2009

Report Number: L09080179

Sample Number:L09080179-06
Client ID:PRR01113GR

Matrix:Soil
Workgroup Number:WG309685
Collect Date: 08/07/2009 13:40

 PrePrep Method: NONE
 Instrument: BURET

 Prep Method: SW7.34
 Prep Date: 08/14/2009 08:32

 Analytical Method: SW7.34
 Cal Date: Run Date: 08/14/2009 08:32

 Analyst: DLP
 Run Date: 08/14/2009 08:32

 Dilution: 1
 File ID: ET.0908140832-15

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		U	100	50.0

U Not detected at or above adjusted sample detection limit

6 of 8

00083504

Report Date : August 19, 2009

Report Number: L09080179

Sample Number: L09080179-07 PrePrep Method: NONE Instrument: BURET

 Client ID: PRR0542GR
 Prep Method: SW7.34
 Prep Date: 08/14/2009 08:32

 Matrix: Soil
 Analytical Method: SW7.34
 Cal Date:

 Workgroup Number: WG309685
 Analyst: DLP
 Run Date: 08/14/2009 08:32

 Collect Date: 08/07/2009 13:50
 Dilution: 1
 File ID: ET.0908140832-16

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		U	100	50.0

U Not detected at or above adjusted sample detection limit

of 8

Report Number: L09080179

Report Date : August 19, 2009

00083505

Sample Number:L09080179-08 PrePrep Method:NONE Instrument:BURET

 Client ID: PRR0674GR
 Prep Method: SW7.34
 Prep Date: 08/14/2009 08:32

 Matrix: Soil
 Analytical Method: SW7.34
 Cal Date:

 Workgroup Number: WG309685
 Analyst: DLP
 Run Date: 08/14/2009 08:32

 Collect Date: 08/07/2009 13:55
 Dilution: 1
 File ID: ET.0908140832-17

Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Sulfide	18496-25-8		Ū	100	50.0

U Not detected at or above adjusted sample detection limit

3 of 8

2.2.1.2 QC Summary Data

Example Calculations - Reactive Sulfide

$$A = \frac{((B * C) - (D * E) * 16000}{F * G} = sulfide (mg / L)$$

$$\frac{A * I}{J} = reactive \ sulfide (mg / Kg)$$

Example Calculation:

B (mL of lodine): 15 C (N of Iodine): 0.02514 D (mL of titrant): 9.4

E (N of titrant): 0.02489

16000 factor (1mL of 0.025N iodine reacts with 0.4mg sulfide): 16000 F (mL of scrubber solution used for titrating for sulfide): 100 G (dilution of sample (include 50/250 scrubber dilution)): 0.20

I (volume of NaOH placed in scrubber): 50

> J (grams of sample used): 10

> > A= 114.5072

mg/Kg reactive sulfide= 572.536

Microbac Laboratories Inc. Data Checklist

Date:	14-AUG-2009
Analyst:	DLP
Analyst:	NA
	REACTS
Instrument:	BURET
Curve Workgroup:	NA
Runlog ID:	
Analytical Workgroups:	WG309685

Calibration/Linearity	08-14-09
Second Source Check	
ICV/CCV (std)	
ICB/CCB	
Blank	X
LCS/LCS Dup	X
MS/MSD	
Duplicate	X
Upload Results	X
Client Forms	
QC Violation Sheet	
Case Narratives	
Signed Raw Data	X
STD/LCS on benchsheet	X
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	
Primary Reviewer	DLP
Secondary Reviewer	DIH
Comments	

Primary Reviewer: 17-AUG-2009 Deutte Page Danna/pson

Secondary Reviewer: 18-AUG-2009

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-18-2009 14:41:49

2.2.1.3 Raw Data

WORKGROUP: WG309685

REACTIVE SULFIDE

EPA ch. 7 SOP K7	332 Revision	#: 8				
Other LCS SL 3469 non-reacted LCS	δρ Da	ily Dilution:	<u>s(797)</u> =	Instrument:	buret	
Iodine standardization (0.0 mL Nt Nt Nt Normality I: Stock standardization (in c MI 1) or NI 1)	titrant: <u>0. 02</u> ml	10 0, 10 3 20,7			N titrant: 0.0267 mL = stock conc (mg/L)	70 9
SAMPLE	Grams Reacted	Volume Titrated	mL Iodine	N Iodine	mIO, 723N/ Sodium Thiosulfate	
BLANK	X	200	15	0.0257	15.0	
Non-reacted LCS (mg/L)	X	200	15		20-5.3	
Reacted (mg/L)	10.0	100	15	1 9	48-18-04 1/10	
08-145-01	10.025	100	_5_		5,0	
-62	10.622		4		5.0	
63_	10.025				\sim	
04	10.045				5.0	
- 05	10.039				8.0	
08-179-01	10.035				5.0	
	10.038				5.0 5.0	
	10,011					
- 64	10.014				5,0 5,0	
- 09	10.022				5,0	
66	10,014				5. v	
	10.0 W				5. v	
-08	10.031				5, v	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		3.0	
DUP:08-179-07	10.007	100	6	0.0257	S. O	
Analyst: Deutley		,			9/0732	

DCN#80428

Microbac Laboratories Inc. TITRAMETRIC REPORT

Workgroup (AAB#):WG309685

Analyst:DLP

Product: SW7.34

Run Date:08/14/2009 08:32

Analyte:Reactivity, Sulfide

SAMPLE NUMBER	Sample	Volume	Vol I	Nor I	Vol T	Nor T	Dil	NaOH	Scrub.	Anal.	Reported	Units
WG309685-01	250	200.0	15	.0257	15	.0257	1	50	250	0	0	mg/kg
WG309685-02	250	200.0	15	.0257	5.3	.0257	1	50	250	19.94	19.94	mg/kg
WG309685-03	10	100.0	15	.0257	11	.0257	1	50	250	411.2	411.2	mg/kg
L09080145-01	10.025	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080145-02	10.022	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080145-03	10.025	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080145-04	10.045	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080145-05	10.039	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080145-06	10.035	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-01	10.038	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-02	10.011	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-03	10.055	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-04	10.014	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-05	10.022	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-06	10.014	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
L09080179-07	10.011	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
WG309685-04	10.011	100.0	5	.0257	5	.0257	1	50	250	0	0	mg/kg
L09080179-08	10.031	100.0	5	.0257	5	.0257	1	50	250	ND	ND	mg/kg
WG309685-05	10.007	100.0	5	.0257	5	.0257	1	50	250	0	0	mg/kg

REACTS_REPORT - Modified 03/06/2008

Report generated 08/17/2009 14:10

Microbac [®]

2.2.2 PH Data

2.2.2.1 Summary Data

L09080179

08/19/09 09:25

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRR0628GR	L09080179-01	9045D	1	08-AUG-09
PRR0959GR	L09080179-02	9045D	1	08-AUG-09
PRR0766GR	L09080179-03	9045D	1	08-AUG-09
PRR01022GR	L09080179-04	9045D	1	08-AUG-09
PRR01111GR	L09080179-05	9045D	1	08-AUG-09
PRR01113GR	L09080179-06	9045D	1	08-AUG-09
PRR0542GR	L09080179-07	9045D	1	08-AUG-09
PRR0674GR	L09080179-08	9045D	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1468638
Report generated: 08/19/2009 09:25 1 OF 1

00083515

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-01
Client ID: PRR0628GR PrePrep Method:NONE Instrument: ORION-4STA

Prep Date: 08/14/2009 13:15
Cal Date: Prep Method: 9045D Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:15 Analytical Method: 9045D Analyst:DIH Run Date: 08/14/2009 13:15 File ID: 0S09081708542801 Dilution: 1

Units: UNITS

Analyte	CAS. Number	Result	Qual	PQL	SDL
Corrosivity pH	10-29-7	5.54			

8 of

00083516

Report Number: L09080179

Report Date : August 19, 2009

PrePrep Method:NONE Instrument: ORION-4STA

Sample Number: L09080179-02
Client ID: PRR0959GR Prep Method: 9045D Prep Date: 08/14/2009 13:15 Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:20 Analytical Method: 9045D Cal Date: Analyst: DIH Run Date: 08/14/2009 13:15 File ID: 0809081708544701

Dilution: 1 Units: UNITS

Result Analyte CAS. Number Qual PQL SDL Corrosivity pH 10-29-7 5.75

> 8 of

00083517

Report Number: L09080179

Sample Number: L09080179-03
Client ID: PRR0766GR

Report Date : August 19, 2009

PrePrep Method:NONE Instrument: ORION-4STA

Prep Method: 9045D Prep Date: 08/14/2009 13:15 Analytical Method: 9045D Cal Date: Analyst: DIH

Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:25 Run Date: 08/14/2009 13:15 File ID: 0809081708550601 Dilution: 1 Units: UNITS

Result Analyte CAS. Number Qual PQL SDL Corrosivity pH 10-29-7 5.53

> of 8

00083518

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-04
Client ID: PRR01022GR PrePrep Method:NONE Instrument: ORION-4STA

Prep Date: 08/14/2009 13:15
Cal Date: Prep Method: 9045D Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:30 Analytical Method: 9045D Analyst:DIH Run Date: 08/14/2009 13:15 File ID: 0S09081708552501 Dilution: 1

Units: UNITS

Analyte	CAS. Number	Result	Qual	PQL	SDL
Corrosivity pH	10-29-7	5.44			

8 of

00083519

Report Number: L09080179

Sample Number: L09080179-05
Client ID: PRR01111GR

Report Date : August 19, 2009

PrePrep Method:NONE Instrument: ORION-4STA

Prep Method: 9045D Prep Date: 08/14/2009 13:15 Analytical Method: 9045D Cal Date: Analyst: DIH Run Date: 08/14/2009 13:15 File ID: 0809081708554401

Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:35 Dilution: 1 Units: UNITS

Result Analyte CAS. Number Qual PQL SDL Corrosivity pH 10-29-7 5.58

> 5 of 8

00083520

Report Number: L09080179

Report Date : August 19, 2009

PrePrep Method:NONE Instrument: ORION-4STA

Sample Number: L09080179-06
Client ID: PRR01113GR Prep Method: 9045D Prep Date: 08/14/2009 13:15 Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:40 Analytical Method: 9045D Cal Date: Analyst:DIH Run Date: 08/14/2009 13:15 File ID: 0S09081708560301

Dilution: 1 Units: UNITS

Analyte	CAS. Number	Result	Qual	PQL	SDL
Corrosivity pH	10-29-7	5.61			

8 of

Micropac Laboratories inc.

00083521

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-07
Client ID: PRR0542GR PrePrep Method:NONE Instrument: ORION-4STA

Prep Date: 08/14/2009 13:15
Cal Date: Prep Method: 9045D Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:50 Analytical Method: 9045D Analyst:DIH Run Date: 08/14/2009 13:15 File ID: 0S09081708562401 Dilution: 1

Units: UNITS

Analyte CAS. Number Result Qual P	L SDL	
	ם עם ו	1
Corrosivity pH 10-29-7 5.55		

of 8

Micropac Laboratories inc.

00083522

Report Number: L09080179

Sample Number: L09080179-08
Client ID: PRR0674GR

Report Date : August 19, 2009

PrePrep Method:NONE Instrument: ORION-4STA

Prep Method: 9045D Prep Date: 08/14/2009 13:15 Analytical Method: 9045D Cal Date: Analyst: DIH Run Date: 08/14/2009 13:15 File ID: 0809081708564301

Matrix: Soil
Workgroup Number: WG309734
Collect Date: 08/07/2009 13:55 Dilution: 1 Units: UNITS

Result Analyte CAS. Number Qual PQL SDL Corrosivity pH 10-29-7 5.67

> of 8

2.2.2.2 QC Summary Data

Microbac Laboratories Inc. Data Checklist

Date:	14-AUG-2009
Analyst:	DIH
Analyst:	<u>NA</u>
Method:	PH
Instrument:	ORION 4 STAR
Curve Workgroup:	NA
Runlog ID:	
analytical Workgroups:	

Calibration/Linearity	8/14/2009
Second Source Check	
ICV/CCV (std)	
ICB/CCB	
Blank	
LCS/LCS Dup	X
MS/MSD	
Duplicate	X
Upload Results	X
Client Forms	
QC Violation Sheet	
Case Narratives	X
Signed Raw Data	X
STD/LCS on benchsheet	X
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	DIH
Secondary Reviewer	
Comments	

Primary Reviewer: 17-AUG-2009

Imma/psson

Secondary Reviewer:

CHECKLIST1 - Modified 03/05/2008

Generated: AUG-17-2009 15:13:34

2.2.2.3 Raw Data

WORKGROUP: WG309734

рΗ

Sample	Calibration Buffers	Water Misc. Liquid	50% Slurry Of Solid	50% Water Org. Liq. Mix	
LCS 6 5 ld 34448	4,7,10	6.03			SW846 9040C/9045D
08-145-01	1, 1, 1		5,54		SM 4500-H(+)-B
02			5,48		EPA 150.1
03			5.57		
04			5.54		SOP K1501 Rev
05			5.80		
06			6,44		
08-179-01			5,54		
C2			5,75		
03			5,53		
04			5.44		
05			5,58		
06			5.61		
07			5,55		Circle Instrument
08			5.67		Orion 4-Star
					Orion 710A #1
					Orion 710A #2
					Sargent - Welch
08-145	03				
	M - 14/69		5.62	,	
LCS 9 33444		9.00			

DCN#80438

2.2.3 Method Flashpoint

2.2.3.1 Summary Data

L09080179

08/19/09 09:25

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRR0628GR	L09080179-01	1010	1	08-AUG-09
PRR0959GR	L09080179-02	1010	1	08-AUG-09
PRR0766GR	L09080179-03	1010	1	08-AUG-09
PRR01022GR	L09080179-04	1010	1	08-AUG-09
PRR01111GR	L09080179-05	1010	1	08-AUG-09
PRR01113GR	L09080179-06	1010	1	08-AUG-09
PRR0542GR	L09080179-07	1010	1	08-AUG-09
PRR0674GR	L09080179-08	1010	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1468639
Report generated: 08/19/2009 09:25

Microbac

1 OF 1

00083530

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-01 PrePrep Method: NONE Instrument: PRECISION Prep Method: 1010 Prep Date: 08/17/2009

 Client ID: PRR0628GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:15
 Dilution: 1
 File ID: PR09081808551301

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		68.0	>		

> Result is greater than the associated numerical value.

of 8

00083531

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-02 PrePrep Method: NONE Instrument: PRECISION

 Client ID: PRR0959GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:20
 Dilution: 1
 File ID: PR09081808554901

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		75.0	>		

> Result is greater than the associated numerical value.

2 of 8

00083532

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-03 PrePrep Method: NONE Instrument: PRECISION

 Client ID: PRR0766GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:25
 Dilution: 1
 File ID: PR09081808560901

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		75.0	>		

> Result is greater than the associated numerical value.

Microbac

Page 154

of

8

00083533

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-04 PrePrep Method:NONE Instrument:PRECISION

 Client ID: PRR01022GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:30
 Dilution: 1
 File ID: PR09081808564901

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		75.0	>		

> Result is greater than the associated numerical value.

4 of 8

00083534

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-05 PrePrep Method:NONE Instrument:PRECISION

 Client ID: PRR01111GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:35
 Dilution: 1
 File ID: PR09081808570801

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		68.0	>		

> Result is greater than the associated numerical value.

Microbac

Page 156

of

8

Micropac Laboratories inc.

00083535

Report Date : August 19, 2009

Report Number: L09080179

Sample Number:L09080179-06 PrePrep Method:NONE Instrument: PRECISION

Client ID: PRR01113GR Prep Method: 1010 Prep Date: 08/17/2009 10:30 Matrix: Soil
Workgroup Number: WG309849
Collect Date: 08/07/2009 13:40 Analytical Method: 1010 Cal Date: Analyst: JBK
Dilution: 1 Run Date: 08/17/2009 10:30 File ID: PR09081808572401

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		68.0	>		

> Result is greater than the associated numerical value.

Microbac

Page 157

of

8

00083536

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-07 PrePrep Method:NONE Instrument:PRECISION

 Client ID: PRR0542GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:50
 Dilution: 1
 File ID: PR09081808574601

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		72.0	>		

> Result is greater than the associated numerical value.

of 8

00083537

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-08 PrePrep Method:NONE Instrument:PRECISION

 Client ID: PRR0674GR
 Prep Method: 1010
 Prep Date: 08/17/2009 10:30

 Matrix: Soil
 Analytical Method: 1010
 Cal Date:

 Workgroup Number: WG309849
 Analyst: JBK
 Run Date: 08/17/2009 10:30

 Collect Date: 08/07/2009 13:55
 Dilution: 1
 File ID: PR09081808580301

Units: Degrees C

Analyte	CAS. Number	Result	Qual	PQL	SDL
Ignitability		72.0	>		

> Result is greater than the associated numerical value.

Microbac

Page 159

8

of

2.2.3.2 QC Summary Data

Example Flashpoint Calculations

1.0 Calculating the flashpoint of a sample.

$$Flashpoint = C + 0.033(760 - P)$$

Where:

C = Observed flashpoint (Celcius)

P = Ambient barometric pressure(mmHg) corrected for temperature and gravity.

Flashpoint = Flashpoint of the sample.

2.2.3.3 Raw Data

2.2.4 Reactive Cyanide Data

2.2.4.1 Summary Data

L09080179

08/19/09 09:25

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRR0628GR	L09080179-01	SW7.33	1	08-AUG-09
PRR0959GR	L09080179-02	SW7.33	1	08-AUG-09
PRR0766GR	L09080179-03	SW7.33	1	08-AUG-09
PRR01022GR	L09080179-04	SW7.33	1	08-AUG-09
PRR01111GR	L09080179-05	SW7.33	1	08-AUG-09
PRR01113GR	L09080179-06	SW7.33	1	08-AUG-09
PRR0542GR	L09080179-07	SW7.33	1	08-AUG-09
PRR0674GR	L09080179-08	SW7.33	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1468640
Report generated: 08/19/2009 09:25

Microbac

1 OF 1

00083544

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-01 PrePrep Method: NONE Instrument: UV-120-1V

 Client ID: PRR0628GR
 Prep Method: SW7.33
 Prep Date: 08/14/2009 08:30

 Matrix: Soil
 Analytical Method: SW7.33
 Cal Date:

 Workgroup Number: WG309684
 Analyst: DLP
 Run Date: 08/14/2009 08:30

 Collect Date: 08/07/2009 13:15
 Dilution: 1
 File ID: 1V.0908140830-09

Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		Ū	49.8	24.9

U Not detected at or above adjusted sample detection limit

1 of 8

00083545

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-02 PrePrep Method: NONE Instrument: UV-120-1V

 Client ID:PRR0959GR
 Prep Method:SW7.33
 Prep Date: 08/14/2009 08:30

 Matrix:Soil
 Analytical Method:SW7.33
 Cal Date:

 Workgroup Number:WG309684
 Analyst:DLP
 Run Date: 08/14/2009 08:30

 Collect Date: 08/07/2009 13:20
 Dilution:1
 File ID: 1V.0908140830-10

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		Ū	49.9	25.0

U Not detected at or above adjusted sample detection limit

2 of 8

00083546

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-03 PrePrep Method:NONE Instrument:UV-120-1V

 Client ID:PRR0766GR
 Prep Method:SW7.33
 Prep Date: 08/14/2009 08:30

 Matrix:Soil
 Analytical Method:SW7.33
 Cal Date:

 Workgroup Number:WG309684
 Analyst:DLP
 Run Date: 08/14/2009 08:30

 Collect Date: 08/07/2009 13:25
 Dilution:1
 File ID: 1V.0908140830-11

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		Ū	49.7	24.9

U Not detected at or above adjusted sample detection limit

3 of 8

00083547

Report Number: L09080179

Report Date : August 19, 2009

Sample Number: L09080179-04 PrePrep Method: NONE Instrument: UV-120-1V

 Client ID:PRR01022GR
 Prep Method:SW7.33
 Prep Date: 08/14/2009 08:30

 Matrix:Soil
 Analytical Method:SW7.33
 Cal Date:

 Workgroup Number:WG309684
 Analyst:DLP
 Run Date: 08/14/2009 08:30

 Collect Date: 08/07/2009 13:30
 Dilution:1
 File ID: 1V.0908140830-12

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		U	49.9	25.0

U Not detected at or above adjusted sample detection limit

4 of 8

Micropac Laboratories inc.

00083548

Report Number: L09080179

Sample Number: L09080179-05

Matrix: Soil

Client ID: PRR01111GR

Workgroup Number: WG309684
Collect Date: 08/07/2009 13:35

Report Date : August 19, 2009

PrePrep Method:NONE Instrument: UV-120-1V

Prep Method: SW7.33 Prep Date: 08/14/2009 08:30 Analytical Method: SW7.33 Cal Date: Run Date: 08/14/2009 08:30 File ID: 1V.0908140830-13 Analyst: DLP

Dilution: 1 Units:mg/kg

CAS. Number 57-12-5 Qual Analyte Result PQL SDL Reactivity, Cyanide υ 49.9 24.9

U Not detected at or above adjusted sample detection limit

5 of 8

00083549

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-06 PrePrep Method:NONE Instrument:UV-120-1V

 Client ID:PRR01113GR
 Prep Method:SW7.33
 Prep Date: 08/14/2009 08:30

 Matrix:Soil
 Analytical Method:SW7.33
 Cal Date:

 Workgroup Number:WG309684
 Analyst:DLP
 Run Date: 08/14/2009 08:30

 Collect Date: 08/07/2009 13:40
 Dilution:1
 File ID:1v.0908140830-14

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		Ū	49.9	25.0

U Not detected at or above adjusted sample detection limit

6 of 8

Micropac Laboratories inc.

00083550

Report Date : August 19, 2009

Report Number: L09080179

Sample Number:L09080179-07

Client ID: PRR0542GR

Matrix: Soil
Workgroup Number: WG309684
Collect Date: 08/07/2009 13:50

PrePrep Method:NONE Instrument: UV-120-1V Prep Method: SW7.33 Prep Date: 08/14/2009 08:30 Analytical Method: SW7.33 Cal Date: Run Date: 08/14/2009 08:30 File ID: 1V.0908140830-15 Analyst: DLP

Dilution: 1 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		U	49.9	25.0

U Not detected at or above adjusted sample detection limit

Microbac

of

8

00083551

Report Number: L09080179

Report Date : August 19, 2009

Sample Number:L09080179-08 PrePrep Method:NONE Instrument:UV-120-1V

 Client ID:PRR0674GR
 Prep Method:SW7.33
 Prep Date: 08/14/2009 08:30

 Matrix:Soil
 Analytical Method:SW7.33
 Cal Date:

 Workgroup Number:WG309684
 Analyst:DLP
 Run Date: 08/14/2009 08:30

 Collect Date: 08/07/2009 13:55
 Dilution:1
 File ID: 1V.0908140830-16

Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		U	49.8	24.9

U Not detected at or above adjusted sample detection limit

8 of 8

2.2.4.2 QC Summary Data

Microbac Laboratories Inc. Data Checklist

Date:	14-AUG-2009
Analyst:	DLP
Analyst:	NA
Method:	REACTC
Instrument:	<u>UV-120-1V</u>
Curve Workgroup:	NA
Runlog ID:	
Analytical Workgroups:	WG309684

Calibration/Linearity	07-16-09
Second Source Check	
ICV/CCV (std)	X
ICB/CCB	
Blank	
LCS/LCS Dup	X
MS/MSD	
Duplicate	X
Upload Results	X
Client Forms	
QC Violation Sheet	
Case Narratives	
Signed Raw Data	X
STD/LCS on benchsheet	X
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	
Primary Reviewer	DLP
Secondary Reviewer	DIH
Comments	

Primary Reviewer: 17-AUG-2009

Secondary Reviewer: 18-AUG-2009 Deutte Page Dannalpsson

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-18-2009 14:42:44

2.2.4.3 Raw Data

WG 307248

Curves

Parameter: REACT - CN
Spectrophotometer: UU-170-10
Calibration (Curve) standard stock: 5+6 33348
Concentration: 968 ng/L
Recipe for preparation of curve standards found in: SOP: 47332 Revision: Page:
Second Source Stock: Std 33349 (concentration: 1020mg/L
Daily Preparation: $\frac{5(1026)/250 = 20.4}{(3420.4)/(007)} = 20.4$ $concentration = 5(2.04)/25 = 0.204$

Calibration Standards (mg/L)	Volume	Cell Size	Wavelength	Absorbance
Ø, 00	5 D	Cell Size	578	0.000
0.01936				0.027
0.01936				0 053
0.0968				0.138
0.1936				0.284
0.2904				0.414
0.3872				0.557
249 0.204		J		0.298
	-		•	
Amalyati	/_		D 4 /T' - 7	/14/09 @109
Analyst:	77		Date/Time:/	rujor 6701

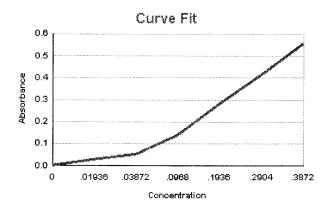
DCN#80111

Microbac Laboratories Inc. INITIAL CALIBRATION

Workgroup: WG307248
Analytical Method: 846
Instrument ID: UV-120-1V

Analyst:<u>JBK</u>
Initial Calibration Date:07/16/2009

Analyte: CYANIDE


Number of Points: 7

Slope: 1.43990

Y-Intercept: -0.000635703

Coef. Of Correlation (R²): 0.999810 Coef. Of Correlation (R): 0.999905

Concentration X	Absorbance Y	X ²	X * Y	Y-Fitted (mX ² +B)
0.00	0.00	0.00	0.00	-0.000635703
0.0194	0.0270	0.000375	0.000523	0.0272407
0.0387	0.0530	0.00150	0.00205	0.0551171
0.0968	0.138	0.00937	0.0134	0.138746
0.194	0.284	0.0375	0.0550	0.278128
0.290	0.414	0.0843	0.120	0.417511
0.387	0.557	0.150	0.216	0.556893

WG_ICAL_CAL_WET - Modified 03/06/2008
Report generated 07/16/2009 11:18

Microbac Laboratories Inc. ALTERNATE SOURCE REPORT

Workgroup #: WG307248

Instrument ID: UV-120-1V

File ID: 1V.0907161040-08

Run Date: 07/16/2009

CCV ID: WG307248-08

Run Time: 10:40

Units: mg/kg

Analyst: JBK

Analyte: CYANIDE Cal ID: UV-120 -

Analyte	Expected	Found	RF	%D	Q
Reactivity, Cyanide	.204	0.207	1.46	1.5	

* Exceeds %D Limit

CCC Calibrtion Check Compounds SPCC System Performance Check Compounds

WET_WG_SSCV - Modified 03/06/2008 Report generated 07/16/2009 11:19

Microbac

WORKGROUP: WG309684

Reactive Cyanide

LCS: 5th 34091	1020)	
CCV: 57 & 34090 (968)	SOP: <u>K7332</u> Revision # \(\)

Daily Dilution: 5(968)/250=19.36 Curve ID: 307248 7-16-09 10(19.36)/10=1.936 Spec: 1000 5(1.936)/137=0.1936

	DZ 0.173 5			A
Sample	Grams Reacted	Dilution	Cell Size	Aborbance @ 578nm
ccv: 0.1936	NA		1cm	0.276
LCS:	10.00			0.339
08-145-01	10.025			0.000
, 0	10.022			0.000
03	10.025			0.000
64	10.045			0.000
05	10.039			6.000
06	10.035			0,000
08-179-61	10.038			0.000
02	10.011			0.000
03	10.055			0.000
-04	10. 8544 DWS-1	4-09		0,000
-05	10.022			0.000
- 06	10.014			0.000
-07	10,011			0.000
_ 08			_	0.000
DUP: 08-179-07	10.007		1cm	0.000

Analyst: Ourtles	1/	2	Date/Time:	08-14-09/08	-30
Analyst:	jar	pie	Date/Time.	00	-

DCN#80427

Microbac Laboratories Inc. SAMPLE REPORT

Workgroup: WG309684
Analyte: CYANIDE

Analyst: DLP

Date: 08/14/2009

Sample ID	I Vol	F Vol	Response	Scru	ibber	Slope	Y Intercept	Dil	Anal. Conc.	Rep. Conc.	Units
WG309684-01	10	50	0.339	50	250	1.440	-0.0006357	5	1.1794	29.484	mg/kg
L09080145-01	10.025	50	0	50	250	1.440	-0.0006357	1	0.011010	ND	mg/kg
L09080145-02	10.022	50	0	50	250	1.440	-0.0006357	1	0.011013	ND	mg/kg
L09080145-03	10.025	50	0	50	250	1.440	-0.0006357	1	0.011010	ND	mg/kg
L09080145-04	10.045	50	0	50	250	1.440	-0.0006357	1	0.010988	ND	mg/kg
L09080145-05	10.039	50	0	50	250	1.440	-0.0006357	1	0.010994	ND	mg/kg
L09080145-06	10.035	50	0	50	250	1.440	-0.0006357	1	0.010999	ND	mg/kg
L09080179-01	10.038	50	0	50	250	1.440	-0.0006357	1	0.010996	ND	mg/kg
L09080179-02	10.011	50	0	50	250	1.440	-0.0006357	1	0.011025	ND	mg/kg
L09080179-03	10.055	50	0	50	250	1.440	-0.0006357	1	0.010977	ND	mg/kg
L09080179-04	10.014	50	0	50	250	1.440	-0.0006357	1	0.011022	ND	mg/kg
L09080179-05	10.022	50	0	50	250	1.440	-0.0006357	1	0.011013	ND	mg/kg
L09080179-06	10.014	50	0	50	250	1.440	-0.0006357	1	0.011022	ND	mg/kg
L09080179-07	10.011	50	0	50	250	1.440	-0.0006357	1	0.011025	ND	mg/kg
WG309684-02	10.011	50	0	50	250	1.440	-0.0006357	1	0.011025	0.055065	mg/kg
L09080179-08	10.031	50	0	50	250	1.440	-0.0006357	1	0.011003	ND	mg/kg
WG309684-03	10.007	50	0	50	250	1.440	-0.0006357	1	0.011030	0.055109	mg/kg

UV_REACTC - Modified 03/06/2008
Report generated 08/17/2009 14:05

Microbac Laboratories Inc. CONTINUING CALIBRATION REPORT

Workgroup #: WG309857

File ID: 1V.0908140830-01

CCV ID: WG309857-01

Units: mg/kg Analyte:CYANIDE Cal ID:UV-120 -

Instrument ID: UV-120-1V

Run Date: 08/14/2009

Run Time: 08:30 Analyst: DLP

Analyte	Expected	Found	RF	%D	Q
Reactivity, Cyanide	.194	0.192	1.43	1.0	
A CONTRACTOR OF THE CONTRACTOR					1

* Exceeds %D Limit

CCC Calibrtion Check Compounds SPCC System Performance Check Compounds

WET_WG_CCV - Modified 03/06/2008

Report generated 08/17/2009 13:58

Microbac

3.0 Attachments

Microbac Laboratories Inc. Analyst Listing August 19, 2009

ADC - ANTHONY D. CANTER ALB - ANNIE L. BROWN BRG - BRENDA R. GREGORY CAH - CHARLES A. HALL CLW - CHARISSA L. WINTERS DDE - DEBRA D. ELLIOTT DGB - DOUGLAS G. BUTCHER	AJF - AMANDA J. FICKIESEN AML - ANTHONY M. LONG CAA - CASSIE A. AUGENSTEIN CEB - CHAD E. BARNES CPD - CHAD P. DAVIS DEL - DON E. LIGHTFRITZ DIH - DEANNA I. HESSON	AJM - ANTHONY J. MOSSBURG BLG - BRENDA L. GREENWALT CAF - CHERYL A. FLOWERS CLC - CHRYS L. CRAWFORD CSH - CHRIS S. HILL DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER
DLP - DOROTHY L. PAYNE ECL - ERIC C. LAWSON FJB - FRANCES J. BOLDEN JBK - JEREMY B. KINNEY JWR - JOHN W. RICHARDS KEB - KATHRYN E. BARNES LKN - LINDA K. NEDEFF MDC - MICHAEL D. COCHRAN MRT - MICHELLE R. TAYLOR PDM - PIERCE D. MORRIS REK - ROBERT E. KYER SDH - SHANA D. HINYARD TIP - TAE I. PARRISH VC - VICKI COLLIER	DLR - DIANNA L. RAUCH EDA - ERIN D. AGEE HAV - HEMA VILASAGAR JDH - JUSTIN D. HESSON JWS - JACK W. SHEAVES KHR - KIM H. RHODES LSB - LESLIE S. BUCINA MES - MARY E. SCHILLING MSW - MATT S. WILSON RAH - ROY A. HALSTEAD RLK - ROBIN L. KLINGER SLM - STEPHANIE L. MOSSBURG TMB - TIFFANY M. BAILEY WTD - WADE T. DELONG	DR - DEANNA ROBERTS ERP - ERIN R. PORTER HJR - HOLLY J. REED JKT - JANE K. THOMPSON JYH - JI Y. HU KRA - KATHY R. ALBERTSON MDA - MIKE D. ALBERTSON MMB - MAREN M. BEERY NPM - NATHANIEL P. MILLER RB - ROBERT BUCHANAN RWC - RODNEY W. CAMPBELL SLP - SHERI L. PFALZGRAF TMM - TAMMY M. MORRIS

Microbac Laboratories Inc. List of Valid Qualifiers August 19, 2009

STD_ND=U Qualkey:

Qualifier Description

> U Not detected at or above adjusted sample detection limit

- ***Special Notes for Organic Analytes

 1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.
- 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- N-nitrosodiphenylamine cannot be separated from diphenylamine.
 3-Methylphenol and 4-Methylphenol are unresolvable compounds.
- 5. m-Xylene and p-Xylene are unresolvable compounds.
- 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

COC NO. (DATE-01)

Laboratory Name: Microbac

Shaw Environmental & Infrastructure, Inc.

3010 Briarpark Drive, Suite 400

Houston, TX 77042 (713) 996-4400

Address: 158 Starlite Drive, Marietta OH 45750

Contact : Stephanie Mossburg

Phone: 1-800-373-4071

111												
PM: Praveen Svrivastav (713.996.4588) Project Contact: Jennifer Hoang Project Name: Pistol Range Project #: 117591-0009R340	(713.996 or Hoang nge (340	5.4588)	TAT: Phone No: 713-996-4408 Site: Confirmation Sampling	13-996-4 lation Sa	408 ampling	(097	(0200				**RCI Reactivity Cyanide-SW7.33	
				III GCU	<	28)				Reactivity Suinde-SW7.34	
Sampler Print:	Sampler Sign:	. Sign:			sien) sე	SJAT				Corrosivity pH-9045D ignitability-1010	
ALLEN WILLMORE (713) 247-9292	M.	M	5		# of Contain	OV 910T		**RCI			Comments	
Sample Number	Grab	Date	Time	Matrix								T
Prdsoa	×	30/2/6	S);b/	Soil	~	×	×	٠			24.400R TAT! (Ribolfs B-542, B-959, B-113, 8-76)	8. 3.
PRISO3	×	60/4/6	14:30	Soil	M	×		×			a4-4002 TAT! (Rolloffs B-1111 8-1028 R-128 9-124	1
PRROGIBGR	×	b0/t/8	(3:15	Soil	3	><	بر				Horn	
PRIO 159 G.R.	×	8/4/04	13:30	Soil	es	>-	×	×				Ţ
PRRO 766GR	×	69/4/8	13:38	Soil	m	×					100	Τ
PRRO1022CR	×	50/ <i>t/</i> 8	13:30	Soil	\sim	>	×	٠,			V-03-1	Τ
PRROIIII GR	×	6/1/8	(3:35	Soil	т	حر		<u>بر</u>			7.21	T
PRRO 1113 GR	×	80/4/s	oh: U	Soil	c	 	*	<u>-</u> پ			(C)	
100 0 11 00 CB	,	19,00		100	1							T
Pero 542 Gr	×	4/04	13:50	Soil	3	<u></u>	- J				House	Τ
PRRO 674 GR	×	8/2/09	13:55	Soil	~	· ~		×			Horn	T
•	×			Soil								Γ
	×			Soil								
	×			Soil								Γ
	×			Soil								
Relinquished By:	\	Received By:	By:		<u>.,</u>	Special	Instruc	ions (24.	Special Instructions SH-Hour TAT!	r i	3 for PRDSO2 { PRDSO3 ONLY!	
Date/Time $8/7/09$	7:30	Date/Time						J.of	HOLD PENDING ANAMONSIS	ANIMONSIS		
Relinquished By:	<u> </u>	eceived f	Received for Laboratory By:	By:		₹	Microbac OVD	0VD		221000001000	0	
Date/Time		Date/Time				§ & ₩ &	DON LI	Received: W8/W8/ZWW9 10:36 By: DON LIGHTFRITZ	10:36			
							on C	Don e Sightfutty	tut]

COOLER INSPECTION

Received: 08/08/2009 10:36 Delivery Method: UPS Opened By: Don Lightfritz Comments:

Login(s): L09080178 L09080179

Cooler(s)

Cooler #	Temp Gun	Temp	Tracking #	COC#	Comments
0013142	Н	3.0	1Z66V7254491566525	date-01	

1	Yes	Were shipping coolers sealed?
2	Yes	Were custody seals intact?
3	Yes	Were cooler temperatures in range of 0-6?
4	Yes	Was ice present?
5	Yes	Were COC's received/information complete/signed and dated?
6	Yes	Were sample containers and labels intact and match COC?
7	Yes	Were the correct containers and volumes received?
8	NA	Were correct perservatives used? (water only)
9	NA	Were pH ranges acceptable? (voa's excluded)
10	NA	Were VOA samples free of headspace (<6mm)?
11	Yes	Were samples received within EPA hold times?

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09080179-01 604490

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish					
1	LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK						
2	ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT					
Comme	Comments: Products cancelled.										
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK					

Comments:Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	
Bott1	e: 3			•	•	

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

 Samplenum
 Container ID
 Products

 L09080179-01
 605965
 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT		
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK	
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC	
Bottle: 2							

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-01 605966 REACTC REACTS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

Samplenum Container ID Products

L09080179-02 604491

Bottle: 1

			То	Date/Time	Accept	Relinquish
1 LO	OGIN	COOLER	W1	10-AUG-2009 10:47	RLK	
2 A1	NALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT

Comments: Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

 Samplenum
 Container ID
 Products

 L09080179-02
 605967
 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-02 605968 REACTC REACTS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

Samplenum Container ID Products

L09080179-03 604492

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK	
2	ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT

Comments: Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

 Samplenum
 Container ID
 Products

 L09080179-03
 605969
 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-03 605970 REACTC REACTS

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

Samplenum Container ID Products

L09080179-04 604493

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK	
2	ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT

Comments: Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

 Samplenum
 Container ID
 Products

 L09080179-04
 605971
 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-04 605972 REACTC REACTS

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09080179-05 604494

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish				
1	LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK					
2	ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT				
Comme	Comments:Products cancelled.									
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK				

Comments:Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080179-05</u> 605973 TC-EX

Bottle: 1

	-					
Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-05 605974 REACTC REACTS

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09080179-06 604495

Bottle: 1

Purpose	From	То	Date/Time	Accept	Relinquish			
LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK				
ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT			
Comments:Products cancelled.								
STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK			
	LOGIN ANALYZ ents:Products c	LOGIN COOLER ANALYZ W1 ents:Products cancell	LOGIN COOLER W1 ANALYZ W1 WET ents:Products cancelled.	LOGIN COOLER W1 10-AUG-2009 10:47 ANALYZ W1 WET 14-AUG-2009 08:21 ents:Products cancelled.	LOGIN COOLER W1 10-AUG-2009 10:47 RLK ANALYZ W1 WET 14-AUG-2009 08:21 DLP ents:Products cancelled.			

Comments: Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

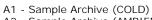
Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080179-06</u> 605975 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK

Bottle: 2


Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-06 605976 REACTC REACTS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

Samplenum Container ID Products

L09080179-07 604496

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK	
2	ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT

Comments: Products cancelled.

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

 Samplenum
 Container
 ID
 Products

 L09080179-07
 605977
 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC

Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-07 605978 REACTC REACTS

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080179

Account: 2773 **Project:** 2773.025

Samples: 8

Due Date: 18-AUG-2009

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09080179-08 604497

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:47	RLK	
2	ANALYZ	W1	WET	14-AUG-2009 08:21	DLP	JKT
Comme	ents:Products o	ancell	ed.		•	
3	STORE	WET	A1	19-AUG-2009 08:20	JKT	JBK

Comments: Products cancelled.

Bottle: 2

Seq	. Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

Bottle: 3

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		10-AUG-2009 10:47	RLK	

 Samplenum
 Container
 ID
 Products

 L09080179-08
 605979
 TC-EX

Bottle: 1

DOCCI	C 1					
Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	PREP	W1	TCL	14-AUG-2009 08:49	RWC	RLK
3	ANALYZ	W1	A1	14-AUG-2009 11:55	RLK	RWC


Bottle: 2

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER		14-AUG-2009 08:35	JKT	

Samplenum Container ID Products

L09080179-08 605980 REACTC REACTS

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	14-AUG-2009 08:35	JKT	
2	ANALYZ	W1	WET	14-AUG-2009 09:26	DLP	RLK

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

158 Starlite Drive, Marietta, OH 45750 • T:740-373-4071 • F:740-373-4835 • http://www.microbac.com

Laboratory Report Number: L09080192

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories.

Review and compilation of your report was completed by Microbac's Sales and Service Team. If you have questions, comments or require further assistance regarding this report, please contact your team member noted in the reviewed box below at 800-373-4071. Team member e-mail addresses also appear here for your convenience.

Kathy Albertson Stephanie Mossburg Tony Long Amanda Fickiesen Annie Brown Team Chemist/Data Specialist Team Chemist/Data Specialist Team Chemist/Data Specialist Client Services Specialist Client Services Specialist

kalbertson@microbac.com smossburg@microbac.com tlong@microbac.com afickiesen@microbac.com abrown@microbac.com

This report was reviewed on August 13, 2009.

Stephanie Mossburg

Stephanie Mossburg - Team Chemist/Data Specialist

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories.

This report was certified on August 13, 2009.

State of origin: Texas

10 & Vande berg

Accrediting authority: Texas Commission on Environmental Quality ID:T104704252-07-TX

QAPP: Microbac OVD

This report contains a total of 217 pages.

David Vandenberg - Managing Director

Look closer. Go further. Do more.

Microbac Laboratories, Inc.
Ohio Valley Division
158 Starlite Drive

Marietta, OH 45750

Phone: 800.373.4071 Fax: 740.373.4835

Your data is now available online via our Web Access Portal!

Access and print reports, check the status of your projects, and review electronic data forms online from anywhere with internet access!

View a demo by visiting www.microbac.com and entering the Ohio Valley location Click on "Online Data Access"

User ID: jdoe@abc.com Password: demo

Contact your Microbac service representative to set up a FREE account today!

LOOK CLOSER, GO FURTHER, DO MORE

Microbac REPORT L09080192 PREPARED FOR Shaw E I, Inc. WORK ID:

1.0 Introduction	
2.1 Volatiles Data	31
2.1.1 Volatiles GCMS Data (8260)	32
2.1.1.1 Summary Data	
2.1.1.2 QC Summary Data	
2.2 Semivolatiles Data	
2.2.1 Semivolatiles GC/MS Data (8270)	
2.2.1.1 Summary Data	
2.2.1.2 QC Summary Data	
2.3 Metals Data	
2.3.1 Metals I C P Data	
2.3.1.1 Summary Data	
2.3.1.2 QC Summary Data	
2.3.2 Metals CVAA Data (Mercury)	171
2.3.2.1 Summary Data	
2.3.2.2 QC Summary Data	
2.4 General Chemistry Data	
2.4.1 Percent Solids Data	
2.4.1.1 Raw Data	200
3.0 Attachments	

1.0 Introduction

Microbac Laboratories Inc. REPORT NARRATIVE

Microbac Login No: L09080192

CHAIN OF CUSTODY: The chain of custody number was 080909-01

SHIPMENT CONDITIONS: The chain of custody forms were received sealed in a cooler. The cooler temperature

was 6 degrees C.

SAMPLE MANAGEMENT: All samples received were intact.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Microbac Laboratories Inc., both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Approved: 12-AUG-09
Sityphanic Mossburg

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren !	Bley	Metals Supervisor	August 12, 2009
Name (Printed)	Signature		Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080192
Project Name: 798-LONGHORN
Method: 7471
Prep Batch Number(s): WG309445
Reviewer Name: MAREN M. BEERY
LRC Date: August 12, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	√				
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration="" other="" raw="" standards?<="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	√				
Were blank concentrations <rl?< td=""><td>√</td><td></td><td></td><td></td><td></td></rl?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	√				
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratory's capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			✓		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			✓		
Were MS/MSD analyzed at the appropriate frequency?			✓		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1) QQQ	8358
Were MS/MSD RPDs within laboratory QC limits?			√	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			√	
Were analytical duplicates analyzed at the appropriate frequency?			√	
Were RPDs or relative standard deviations within the laboratory QC limits?			√	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	√			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√			
Are unadjusted MQLs included in the laboratory data package?	\			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	1			
Were all necessary corrective actions performed for the reported data?	√			
Was applicable and available technology used to lower the SQL minimize the matrix	<i>\</i>			
interference affects on the sample results?	ľ			
ICAL				
Were response factors and/or relative response factors for each analyte within QC limits?			√	
Were percent RSDs or correlation coefficient criteria met?	√		,	
Was the number of standards recommended in the method used for all analytes?	· /			
Were all points generated between the lowest and highest standard used to calculate the	· ✓			
curve?	,			
Are ICAL data available for all instruments used?	-			
Has the initial calibration curve been verified using an appropriate second source standard?	√			
Initial and continuing calibration verification (ICV and CCV) and continuing	V			
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?	1			
Were percent differences for each analyte within the method-required QC limits?	∨ ✓			
Was the ICAL curve verified for each analyte?	√			
Was the absolute value of the analyte concentration in the inorganic CCB <rl?< td=""><td>V ✓</td><td></td><td></td><td></td></rl?<>	V ✓			
Mass spectral tuning:	'			
Was the appropriate compound for the method used for tuning?			/	
Were ion abundance data within the method-required QC limits?			V	
Internal standards (IS):			V	
· ·				
Were IS area counts and retention times within the method-required QC limits? Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025			√	
section 4.12.2)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√			
Were data associated with manual integrations flagged on the raw data?	V			
<u> </u>			V	
Dual column confirmation				
Did dual column confirmation results meet the method-required QC? Tentatively identified compounds (TICs):			√	
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√	
Interference Check Sample (ICS) results:				
Were percent recoveries within method QC limits?			√	
Serial dilutions, post digestion spikes, and method of standard additions				
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	✓			
Method detection limit (MDL) studies	/			
Was a MDL study performed for each reported analyte?	√			
Is the MDL either adjusted or supported by the analysis of DCSs?	√			
Proficiency test reports:				
Was the laboratory's performance acceptable on the applicable proficiency tests or	✓			
evaluation studies?				

				$\mathbf{A} \mathbf{A} \mathbf{C}$	$\mathbf{O} \mathbf{F} \mathbf{O}$
Description	Yes	No	NA(1)	SOUL	BOO
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
L09080192
798-LONGHORN
7471
WG309445
Reviewer Name:
MAREN M. BEERY
August 12, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Immalfesson	Conventional Lab Supervisor	August 12, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080192

Project Name: 798-LONGHORN
Method: Prep Batch Number(s): WG309447

Reviewer Name: DEANNA I. HESSON
LRC Date: August 12, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	√				
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration="" other="" raw="" standards?<="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?			√		
Were sample quantitation limits reported for all analytes not detected?			✓		
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?			√		
Were blanks analyzed at the appropriate frequency?			√		
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?			√		
Were blank concentrations <mql?< td=""><td></td><td></td><td>√</td><td></td><td></td></mql?<>			√		
Laboratory control samples (LCS):					
Were all COCs included in the LCS?			√		
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?			√		
Were LCSs analyzed at the required frequency?			√		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?			√		
Does the detectability data document the laboratorys capability to detect the COCs at the			√		
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			✓		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	3000	3358
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?	√				
Were analytical duplicates analyzed at the appropriate frequency?	√				
Were RPDs or relative standard deviations within the laboratory QC limits?	√				
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?			√		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?			√		
Are unadjusted MQLs included in the laboratory data package?			√		
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix			√		
interference affects on the sample results?					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?			√		
Was the number of standards recommended in the method used for all analytes?			√		
Were all points generated between the lowest and highest standard used to calculate the			· ✓		
curve?					
Are ICAL data available for all instruments used?			√		
Has the initial calibration curve been verified using an appropriate second source standard?			√		
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?			√		
Were percent differences for each analyte within the method-required QC limits?			√		
Was the ICAL curve verified for each analyte?			√		
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>√</td><td></td><td></td></mdl?<>			√		
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the			√		
method?					
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?			√		
Is the MDL either adjusted or supported by the analysis of DCSs?			√		
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or			√		
evaluation studies?					

Description	Yes	No	NA(1)	3000	358
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate			✓		
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?			√		
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: PCTSOLIDS

Prep Batch Number(s): WG309447

Reviewer Name: DEANNA I. HESSON

LRC Date: August 12, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MICHAEL D. COCHRAN	Michal Continue	Semivolatiles Lab Supervisor	August 13, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: 8270

Prep Batch Number(s): WG309434

Reviewer Name: MICHAEL D. COCHRAN

LRC Date: August 13, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	✓				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?	√				
Were surrogate percent recoveries in all samples within the laboratory QC limits?	√				
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td>√</td><td></td><td></td><td></td><td></td></mql?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		✓			1
Does the detectability data document the laboratory's capability to detect the COCs at the	✓				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?	√				
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	3000	3359
Were MS/MSD RPDs within laboratory QC limits?			√		

Checklist ID: 40861

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: 8270

Prep Batch Number(s): WG309434

Reviewer Name: MICHAEL D. COCHRAN

LRC Date: August 13, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?			√		
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?	√				
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	√				
curve?					
Are ICAL data available for all instruments used?	√				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?		√			2
Was the ICAL curve verified for each analyte?	√				3
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?					
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?	√				
Were ion abundance data within the method-required QC limits?	√				
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?	√				
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?	✓				

Checklist ID: 40861

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: 8270

Prep Batch Number(s): WG309434

Reviewer Name: MICHAEL D. COCHRAN

LRC Date: August 13, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the			√		
method?					
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	✓				
Is the MDL either adjusted or supported by the analysis of DCSs?	√				
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or	√				
evaluation studies?					
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	√				
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where applicable?	√				
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: 8270

Prep Batch Number(s): WG309434

Reviewer Name: MICHAEL D. COCHRAN

LRC Date: August 13, 2009

EXCEPTIONS REPORT

ER# - Description

- 1. The LCS/LCS DUP yielded recoveries above the upper acceptance limit for benzoic acid.
- 2. The CCV yielded a $\%\mbox{D}$ beyond the acceptance limit for 2,4-dinitrophenol.
- 3. 2. The ICV yielded a %D beyond the acceptance limit for pentachlorophenol.

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- √R1 Field chain-of-custody documentation;
- √R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- √R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- √R5 Test reports/summary forms for blank samples;
- √R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amount,
 - b) Calculated %R for each analyte, and
 - c) The laboratory"s LCS QC limits.
- √R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %R and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- √R8 Laboratory analytical duplicate (if applicable) revocery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for anlytical duplicates.
- √R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;
- $\sqrt{R10}$ Other problems or anomalies.
- √The exception Report for every "No" or "Not Reviewed (NR)" item IN laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

MIKE D. ALBERTSON	Vien CE	Volatiles Lab Supervisor	August 12, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: 8260B Prep Batch Number(s): 309410

Reviewer Name: MIKE D. ALBERTSON

LRC Date: August 12, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?	√				
Were surrogate percent recoveries in all samples within the laboratory QC limits?	√				
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td>√</td><td></td><td></td><td></td><td></td></mql?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				1
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		√		1	1
Does the detectability data document the laboratorys capability to detect the COCs at the	✓				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?	√			1	
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√	1	
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			✓		

Description	Yes	No	NA(1)	3000	3359
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			\		
Were analytical duplicates analyzed at the appropriate frequency?			/	<u> </u>	
Were RPDs or relative standard deviations within the laboratory QC limits?			\		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	\			+	
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	1			+	
Are unadjusted MQLs included in the laboratory data package?	· /				
Other problems/anomalies				+	
Are all known problems/anomalies/special conditions noted in this LRC and ER?	1			+	
Were all necessary corrective actions performed for the reported data?	· /				
Was applicable and available technology used to lower the SQL minimize the matrix	\ \ \ \				
interference affects on the sample results?	'				
ICAL				+	
Were response factors and/or relative response factors for each analyte within QC limits?	\				
Were percent RSDs or correlation coefficient criteria met?	V ✓			+	
Was the number of standards recommended in the method used for all analytes?	V /			+	
Were all points generated between the lowest and highest standard used to calculate the	V /				
curve?	\ \ \				
Are ICAL data available for all instruments used?	1			-	
Has the initial calibration curve been verified using an appropriate second source standard?	\ \ \ \ \				
Initial and continuing calibration verification (ICV and CCV) and continuing	V			-	
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√			+	
Were percent differences for each analyte within the method-required QC limits?	V			-	2
Was the ICAL curve verified for each analyte?		√		-	2
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			√		
Mass spectral tuning:				-	
Was the appropriate compound for the method used for tuning?	√			-	
Were ion abundance data within the method-required QC limits?	√				
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?	√				
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?	√				
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			√		
Method detection limit (MDL) studies				1	
Was a MDL study performed for each reported analyte?	1	1			
Is the MDL either adjusted or supported by the analysis of DCSs?	· /			†	
Proficiency test reports:				+	
Was the laboratory's performance acceptable on the applicable proficiency tests or	1			+	
evaluation studies?					

				$\alpha \alpha \alpha \alpha$	250
Description	Yes	No	NA(1)	UWUC	DEAD
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	✓				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

EXCEPTIONS REPORT

ER# - Description

#1: Dichlorodifluoromethane exceeded the upper advisory limit in the LCS/LCSD analyzed 08/11/09 on HPMS-9.

#2: Dichlorodifluoromethane exceeded the upper control limit and vinyl acetate was below the lower control limit in the alternate source analyzed 07/21/09 on HPMS-9. Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

R1 Field chain-of-custody documentation;

R2 sample identification cross-reference;

R3 Test reports (analytical data sheets) for each enviornmental sample that includes:

- a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
- b) dilution factors,
- c) preparation methods,
- d) Cleanup methods, and
- e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

- a) Calculated recovery (%R) for each analyte, and
- b) The laboratory's surrogate QC limits.

R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren Beeg	Metals Supervisor	August 13, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080192
Project Name: 798-LONGHORN
Method: 6010
Prep Batch Number(s): WG309438
Reviewer Name: MAREN M. BEERY
LRC Date: August 13, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations < RL?		√			ER1
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratory's capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	3000	3360
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?					
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			<i>-</i>		
Method quantitation limits (MQLs):			·		
Are the MQLs for each method analyte included in the laboratory data package?	/				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	→				
Are unadjusted MQLs included in the laboratory data package?	→				
Other problems/anomalies	_				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	/				
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	∨ ✓				ER2
interference affects on the sample results?	*				LIXZ
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			/		
Were percent RSDs or correlation coefficient criteria met?	√		'		
Was the number of standards recommended in the method used for all analytes?					
Were all points generated between the lowest and highest standard used to calculate the	√				
were all points generated between the lowest and nignest standard used to calculate the curve?	√				
Are ICAL data available for all instruments used?					
	√				
Has the initial calibration curve been verified using an appropriate second source standard?	√				
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	√				
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB < RL?	√				
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			✓		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	✓				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?	√				
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the	√				
method?					
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	√				
Is the MDL either adjusted or supported by the analysis of DCSs?	√				
Proficiency test reports:					
Was the laboratory's performance acceptable on the applicable proficiency tests or	/				
or applicable profesions of	1 1	I	1	1	1

Description	Yes	No	NA(1)	3000	360
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09080192

Project Name: 798-LONGHORN

Method: 6010

Prep Batch Number(s): WG309438

Reviewer Name: MAREN M. BEERY

LRC Date: August 13, 2009

EXCEPTIONS REPORT

ER#1 -The method blank associated with this analytical batch yielded a result for iron which exceeded the reporting detection limit. However, the reported sample results exceeded that of the method blank by greater than a factor of ten. The iron results were reported with a 'B' qualifier to indicate the association with a noncompliant method blank.

ER#2 - Client sample 04 yielded a result for cadmium that was noncompliant on the negative side upon initial analysis. The sample was reanalyzed at a dilution for cadmium.

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

2.1 Volatiles Data

2.1.1 Volatiles GCMS Data (8260)

2.1.1.1 Summary Data

LABORATORY REPORT

L09080192

08/13/09 14:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
SITE 1-TP-BF	L09080192-01	8260B	1	11-AUG-09
SITE 1-TP-TS	L09080192-02	8260B	1	11-AUG-09
SITE 2-BLM-TS	L09080192-03	8260B	1	11-AUG-09
SITE 2-BLM-BF	L09080192-04	8260B	1	11-AUG-09
SITE 3-ML-BF/TS	L09080192-05	8260B	1	11-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1465215
Report generated: 08/13/2009 14:09

Microbac

1 OF 1

Report Number: L09080192

Report Date : August 13, 2009

00083608

Sample Number:L09080192-01 PrePrep Method:NONE

Client ID: SITE 1-TP-BF

Matrix: Soil Workgroup Number: WG309410 Collect Date: 08/09/2009 10:45 Sample Tag: 01

Instrument: HPMS9

Prep Method: 5030C/5035A

Prep Date: 08/11/2009 11:17
Cal Date: 07/21/2009 17:04 Analytical Method: 8260B Analyst: TMB Run Date: 08/11/2009 15:07 Dilution: 1

File ID: 9M71369
Percent Solid: 77.4 Units:ug/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Acetone	67-64-1		U	12.8	6.42
Benzene	71-43-2		U	6.42	0.642
Bromobenzene	108-86-1		U	6.42	0.642
Bromochloromethane	74-97-5		U	6.42	0.642
Bromodichloromethane	75-27-4		U	6.42	0.642
Bromoform	75-25-2		U	6.42	0.642
Bromomethane	74-83-9		U	12.8	1.28
2-Butanone	78-93-3		U	12.8	3.21
n-Butylbenzene	104-51-8		U	6.42	0.642
sec-Butylbenzene	135-98-8		U	6.42	0.642
tert-Butylbenzene	98-06-6		U	6.42	0.642
Carbon disulfide	75-15-0		Ū	6.42	0.642
Carbon tetrachloride	56-23-5		Ū	6.42	0.642
Chlorobenzene	108-90-7		U	6.42	0.642
Chlorodibromomethane	124-48-1		U	6.42	0.642
Chloroethane	75-00-3		U	12.8	1.28
2-Chloroethyl vinyl ether	110-75-8	+	U	12.8	2.57
Chloroform	67-66-3	+	U	6.42	0.642
Chloromethane	74-87-3	+	U	12.8	2.57
2-Chlorotoluene	95-49-8	+	U	6.42	0.642
4-Chlorotoluene	106-43-4	+	U	6.42	0.642
1,2-Dibromo-3-chloropropane	96-12-8	+	U	6.42	2.57
1,2-Dibromoethane	106-93-4		U	6.42	0.642
Dibromomethane	74-95-3	+	U	6.42	0.642
1,2-Dichlorobenzene	95-50-1		U	6.42	0.642
1,3-Dichlorobenzene	541-73-1		U	6.42	0.642
• • • • • • • • • • • • • • • • • • • •					
1,4-Dichlorobenzene	106-46-7		U	6.42	0.642
Dichlorodifluoromethane	75-71-8		U	12.8	1.28
1,1-Dichloroethane	75-34-3		U	6.42	1.28
1,2-Dichloroethane	107-06-2		U	6.42	0.642
1,1-Dichloroethene	75-35-4		U	6.42	0.642
cis-1,2-Dichloroethene	156-59-2		U	6.42	0.642
trans-1,2-Dichloroethene	156-60-5		U	6.42	0.642
1,2-Dichloropropane	78-87-5		U	6.42	0.642
1,3-Dichloropropane	142-28-9		U	6.42	0.642
2,2-Dichloropropane	594-20-7		U	6.42	0.642
cis-1,3-Dichloropropene	10061-01-5		U	6.42	0.642
trans-1,3-Dichloropropene	10061-02-6		U	6.42	0.642
1,1-Dichloropropene	563-58-6		U	6.42	0.642
Ethylbenzene	100-41-4		U	6.42	0.642
2-Hexanone	591-78-6		U	12.8	3.21
Hexachlorobutadiene	87-68-3		U	6.42	0.642
Isopropylbenzene	98-82-8		U	6.42	0.642
p-Isopropyltoluene	99-87-6		U	6.42	0.642
4-Methyl-2-pentanone	108-10-1		U	12.8	3.21
Methylene chloride	75-09-2		U	6.42	1.28
Naphthalene	91-20-3		U	12.8	0.642
n-Propylbenzene	103-65-1		U	6.42	0.642
Styrene	100-42-5		U	6.42	0.642
1,1,1,2-Tetrachloroethane	630-20-6		U	6.42	0.642
1,1,2,2-Tetrachloroethane	79-34-5		Ū	6.42	0.642
Tetrachloroethene	127-18-4		U	6.42	0.642
Toluene	108-88-3	1	Ū	6.42	0.642
1,2,3-Trichlorobenzene	87-61-6	1	Ū	6.42	0.642
1,2,4-Trichlorobenzene	120-82-1	+	U	6.42	0.642
1,1,1-Trichloroethane	71-55-6	+	U	6.42	0.642
1,1,2-Trichloroethane	79-00-5	+	U	6.42	0.642
Trichloroethene	79-01-6	+	U	6.42	0.642
Trichlorofluoromethane	75-69-4	+	U	12.8	1.28

10 of

00083609

Report Date : August 13, 2009

Report Number: L09080192

Sample Number: L09080192-01

Matrix: Soil

Workgroup Number: WG309410

Toluene-d8

4-Bromofluorobenzene

Client ID: **SITE 1-TP-BF**

PrePrep Method:NONE Instrument: HPMS9

Prep Method: 5030C/5035A Prep Date: 08/11/2009 11:17 Analytical Method: 8260B Cal Date: 07/21/2009 17:04 Analyst: TMB Run Date: 08/11/2009 15:07

117

121

Collect Date: 08/09/2009 10:45 Dilution: 1 File ID: 9M71369 Percent Solid:77.4 Sample Tag: 01 Units: ug/kg

81

74

Analyte	CAS. Numbe	CAS. Number Result Q		Qual		PQL	SDL		
1,2,3-Trichloropropane	96-18-4			U		6.42	1.28		
1,2,4-Trimethylbenzene	95-63-6	95-63-6		U		6.42	0.642		
1,3,5-Trimethylbenzene	108-67-8	108-67-8		U		6.42	0.642		
Vinyl acetate	108-05-4							12.8	1.28
Vinyl chloride	75-01-4	75-01-4		U		12.8	1.28		
o-Xylene	95-47-6			U		6.42	0.642		
m-,p-Xylene	136777-61-	-2		U		6.42	0.642		
Surrogate	% Recovery	Lower	Upp	er	Qual				
Dibromofluoromethane	105	80	12	0		1			
1.2-Dichloroethane-d4	102	80	12	0		1			

103

100

of 10

U Not detected at or above adjusted sample detection limit

Report Number: L09080192

Report Date : August 13, 2009

00083610

Sample Number:L09080192-02

Client ID: SITE 1-TP-TS Matrix: Soil

Workgroup Number: WG309410 Collect Date: 08/09/2009 10:50 Sample Tag: 01

PrePrep Method:NONE

Prep Method: 5030C/5035A

Analytical Method: 8260B Analyst: TMB

Dilution: 1 Units:ug/kg Instrument: HPMS9

Prep Date: 08/11/2009 11:19
Cal Date: 07/21/2009 17:04 Run Date: 08/11/2009 15:37

File ID: 9M71370
Percent Solid: 79.5

Analyte	CAS. Number	Result	Qual	PQL	SDL
Acetone	67-64-1		U	12.5	6.24
Benzene	71-43-2		U	6.24	0.624
Bromobenzene	108-86-1		U	6.24	0.624
Bromochloromethane	74-97-5		U	6.24	0.624
Bromodichloromethane	75-27-4		U	6.24	0.624
Bromoform	75-25-2		U	6.24	0.624
Bromomethane	74-83-9		U	12.5	1.25
2-Butanone	78-93-3		U	12.5	3.12
n-Butylbenzene	104-51-8		U	6.24	0.624
sec-Butylbenzene	135-98-8		U	6.24	0.624
tert-Butylbenzene	98-06-6		U	6.24	0.624
Carbon disulfide	75-15-0		U	6.24	0.624
Carbon tetrachloride	56-23-5		U	6.24	0.624
Chlorobenzene	108-90-7		U	6.24	0.624
Chlorodibromomethane	124-48-1		U	6.24	0.624
Chloroethane	75-00-3		U	12.5	1.25
2-Chloroethyl vinyl ether	110-75-8		U	12.5	2.50
Chloroform	67-66-3		U	6.24	0.624
Chloromethane	74-87-3		U	12.5	2.50
2-Chlorotoluene	95-49-8		U	6.24	0.624
4-Chlorotoluene	106-43-4		U	6.24	0.624
1,2-Dibromo-3-chloropropane	96-12-8		U	6.24	2.50
1,2-Dibromoethane	106-93-4		U	6.24	0.624
Dibromomethane	74-95-3		U	6.24	0.624
1,2-Dichlorobenzene	95-50-1		U	6.24	0.624
1,3-Dichlorobenzene	541-73-1		U	6.24	0.624
1,4-Dichlorobenzene	106-46-7		U	6.24	0.624
Dichlorodifluoromethane	75-71-8		U	12.5	1.25
1,1-Dichloroethane	75-34-3		υ	6.24	1.25
1,2-Dichloroethane	107-06-2		U	6.24	0.624
1,1-Dichloroethene	75-35-4		U	6.24	0.624
cis-1,2-Dichloroethene	156-59-2		U	6.24	0.624
trans-1,2-Dichloroethene	156-60-5		U	6.24	0.624
1,2-Dichloropropane	78-87-5		U	6.24	0.624
1,3-Dichloropropane	142-28-9		U	6.24	0.624
2,2-Dichloropropane	594-20-7		U	6.24	0.624
cis-1,3-Dichloropropene	10061-01-5		U	6.24	0.624
trans-1,3-Dichloropropene	10061-02-6		U	6.24	0.624
1,1-Dichloropropene	563-58-6		U	6.24	0.624
Ethylbenzene	100-41-4		U	6.24	0.624
2-Hexanone	591-78-6		U	12.5	3.12
Hexachlorobutadiene	87-68-3		U	6.24	0.624
Isopropylbenzene	98-82-8		U	6.24	0.624
p-Isopropyltoluene	99-87-6		U	6.24	0.624
4-Methyl-2-pentanone	108-10-1		U	12.5	3.12
Methylene chloride	75-09-2		U	6.24	1.25
Naphthalene	91-20-3		U	12.5	0.624
n-Propylbenzene	103-65-1		U	6.24	0.624
Styrene	100-42-5		υ	6.24	0.624
1,1,1,2-Tetrachloroethane	630-20-6		U	6.24	0.624
1,1,2,2-Tetrachloroethane	79-34-5		U	6.24	0.624
Tetrachloroethene	127-18-4		U	6.24	0.624
Toluene	108-88-3		U	6.24	0.624
1,2,3-Trichlorobenzene	87-61-6		υ	6.24	0.624
1,2,4-Trichlorobenzene	120-82-1		U	6.24	0.624
1,1,1-Trichloroethane	71-55-6		U	6.24	0.624
1,1,2-Trichloroethane	79-00-5		U	6.24	0.624
Trichloroethene	79-01-6		U	6.24	0.624
Trichlorofluoromethane	75-69-4		U	12.5	1.25

10 of

Report Number: L09080192

Toluene-d8

4-Bromofluorobenzene

Report Date : August 13, 2009

00083611

Sample Number:L09080192-02 PrePrep Method:NONE

Client ID:SITE 1-TP-TS Prep Method: 5030C/5035A Analytical Method: 8260B

Workgroup Number: WG309410
Collect Date: 08/09/2009 10:50
Sample Tag: 01

Mailyst: TMB
Dilution: 1
Units: ug/kg

Instrument: HPMS9

Prep Date: 08/11/2009 11:19
Cal Date: 07/21/2009 17:04
Run Date: 08/11/2009 15:37

File ID: 9M71370
Percent Solid: 79.5

Analyte	CAS. Numb	er	Result	Qua	l	PQL	SDL
1,2,3-Trichloropropane	96-18-4			υ		6.24	1.25
1,2,4-Trimethylbenzene	95-63-6			υ		6.24	0.624
1,3,5-Trimethylbenzene	108-67-8	3		υ		6.24	0.624
Vinyl acetate	108-05-4	108-05-4		υ		12.5	1.25
Vinyl chloride	75-01-4			U		12.5	1.25
o-Xylene	95-47-6			U		6.24	0.624
m-,p-Xylene	136777-61	-2		υ		6.24	0.624
Surrogate	% Recovery	Lower		Upper	Qual		
Dibromofluoromethane	108	80		120		7	
1,2-Dichloroethane-d4	107	80		120		7	

81

74

117

121

106

109

4 of 10

U Not detected at or above adjusted sample detection limit

Report Number: L09080192

Report Date : August 13, 2009

00083612

Sample Number: L09080192-03 PrePrep Method: NONE

Client ID: SITE 2-BLM-TS Prep Method: 5030C/5
Matrix: Soil Analytical Method: 8260B

Workgroup Number: WG309410
Collect Date: 08/09/2009 11:20
Sample Tag: 01

PrePrep Method: NONE Instrument: HPMS9

Dilution: 1 File ID: 9M71371
Units: ug/kg Percent Solid: 78.2

Analyte	CAS. Number	Result	Qual	PQL	SDL
Acetone	67-64-1		U	12.3	6.13
Benzene	71-43-2		U	6.13	0.613
Bromobenzene	108-86-1		U	6.13	0.613
Bromochloromethane	74-97-5		U	6.13	0.613
Bromodichloromethane	75-27-4		U	6.13	0.613
Bromoform	75-25-2		U	6.13	0.613
Bromomethane	74-83-9		U	12.3	1.23
2-Butanone	78-93-3		U	12.3	3.06
n-Butylbenzene	104-51-8		Ū	6.13	0.613
sec-Butylbenzene	135-98-8		Ū	6.13	0.613
tert-Butylbenzene	98-06-6		Ū	6.13	0.613
Carbon disulfide	75-15-0		Ū	6.13	0.613
Carbon tetrachloride	56-23-5		U	6.13	0.613
Chlorobenzene	108-90-7		U	6.13	0.613
Chlorodibromomethane	124-48-1		U	6.13	0.613
Chloroethane	75-00-3		U	12.3	1.23
2-Chloroethyl vinyl ether	110-75-8		U	12.3	2.45
Chloroform	67-66-3	+	U	6.13	0.613
Chloromethane	74-87-3		U	12.3	2.45
2-Chlorotoluene	95-49-8	+	U	6.13	0.613
4-Chlorotoluene	106-43-4		Ū	6.13	0.613
1,2-Dibromo-3-chloropropane	96-12-8	+	U	6.13	2.45
1,2-Dibromoethane	106-93-4		U	6.13	0.613
Dibromomethane	74-95-3		U	6.13	0.613
1,2-Dichlorobenzene	95-50-1		U	6.13	0.613
1,3-Dichlorobenzene	541-73-1	+	U	6.13	0.613
1,4-Dichlorobenzene	106-46-7	-	U	6.13	0.613
Dichlorodifluoromethane	75-71-8		U	12.3	1.23
1,1-Dichloroethane	75-34-3		U	6.13	1.23
1,2-Dichloroethane	107-06-2		U	6.13	0.613
1,1-Dichloroethene	75-35-4		U	6.13	0.613
cis-1,2-Dichloroethene	156-59-2		U	6.13	0.613
trans-1,2-Dichloroethene	156-59-2	-	U	6.13	0.613
1,2-Dichloropropane	78-87-5		U	6.13	0.613
1,3-Dichloropropane	142-28-9		U	6.13	0.613
2,2-Dichloropropane	594-20-7		U	6.13	0.613
cis-1,3-Dichloropropene	10061-01-5		U	6.13	0.613
trans-1,3-Dichloropropene	10061-01-3		U	6.13	0.613
1,1-Dichloropropene	563-58-6		U	6.13	0.613
	100-41-4		U	6.13	0.613
Ethylbenzene 2-Hexanone	591-78-6		U	12.3	3.06
Hexachlorobutadiene	87-68-3		U	6.13	0.613
	98-82-8		U	6.13	0.613
Isopropylbenzene					
p-Isopropyltoluene	99-87-6	+	U	6.13	0.613
4-Methyl-2-pentanone	108-10-1	1	U	12.3	3.06
Methylene chloride	75-09-2		U	6.13	1.23
Naphthalene	91-20-3	1	U	12.3	0.613
n-Propylbenzene	103-65-1	1	U	6.13	0.613
Styrene	100-42-5	+	U	6.13	0.613
1,1,1,2-Tetrachloroethane	630-20-6	+	U	6.13	0.613
1,1,2,2-Tetrachloroethane	79-34-5	+	U	6.13	0.613
Tetrachloroethene	127-18-4	1	U	6.13	0.613
Toluene	108-88-3		U	6.13	0.613
1,2,3-Trichlorobenzene	87-61-6		U	6.13	0.613
1,2,4-Trichlorobenzene	120-82-1	1	U	6.13	0.613
1,1,1-Trichloroethane	71-55-6	1	U	6.13	0.613
1,1,2-Trichloroethane	79-00-5		υ	6.13	0.613
Trichloroethene	79-01-6		U	6.13	0.613
Trichlorofluoromethane	75-69-4		U	12.3	1.23

5 of 10

00083613

Report Number: L09080192

Toluene-d8

4-Bromofluorobenzene

Report Date : August 13, 2009

Sample Number: L09080192-03 PrePrep Method: NONE

Client ID:SITE 2-BLM-TS Prep Method:5030C/5035A
Matrix:Soil Analytical Method:8260B

Workgroup Number: WG309410 Analyst: TMB

Collect Date: 08/09/2009 11:20
Sample Tag: 01 Units: ug/kg

Instrument: HPMS9

Prep Date: 08/11/2009 11:21

Cal Date: 07/21/2009 17:04

Run Date: 08/11/2009 16:07

File ID: 9M71371
Percent Solid: 78.2

Analyte	CAS. Numbe	er	Result	Qual		PQL	SDL
1,2,3-Trichloropropane	96-18-4			U		6.13	1.23
1,2,4-Trimethylbenzene	95-63-6			Ū		6.13	0.613
1,3,5-Trimethylbenzene	108-67-8			Ū		6.13	0.613
Vinyl acetate	108-05-4	108-05-4				12.3	1.23
Vinyl chloride	75-01-4			U		12.3	1.23
o-Xylene	95-47-6			Ū		6.13	0.613
m-,p-Xylene	136777-61-	-2		U		6.13	0.613
Surrogate	% Recovery	Lower	Uppe	er	Qual		
Dibromofluoromethane	107	80	80 120			1	
1,2-Dichloroethane-d4	105	80	120)		1	

81

74

117

121

107

112

6 of 10

U Not detected at or above adjusted sample detection limit

Report Number: L09080192

Report Date : August 13, 2009

00083614

Sample Number: $\underline{\textbf{L09080192-04}}$ PrePrep Method:NONE

Client ID: SITE 2-BLM-BF Matrix: Soil

Workgroup Number: WG309410 Collect Date: 08/09/2009 11:25 Sample Tag: 01

Instrument: HPMS9 Prep Method: 5030C/5035A

Prep Date: 08/11/2009 11:24
Cal Date: 07/21/2009 17:04 Analytical Method: 8260B Analyst: TMB Run Date: 08/11/2009 16:37

File ID: 9M71372
Percent Solid: 78.3 Dilution: 1 Units:ug/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Acetone	67-64-1		U	12.7	6.35
Benzene	71-43-2		U	6.35	0.635
Bromobenzene	108-86-1		υ	6.35	0.635
Bromochloromethane	74-97-5		υ	6.35	0.635
Bromodichloromethane	75-27-4		υ	6.35	0.635
Bromoform	75-25-2		υ	6.35	0.635
Bromomethane	74-83-9		U	12.7	1.27
2-Butanone	78-93-3		U	12.7	3.17
n-Butylbenzene	104-51-8		U	6.35	0.635
sec-Butylbenzene	135-98-8		U	6.35	0.635
tert-Butylbenzene	98-06-6		U	6.35	0.635
Carbon disulfide	75-15-0		U	6.35	0.635
Carbon tetrachloride	56-23-5		U	6.35	0.635
Chlorobenzene	108-90-7		U	6.35	0.635
Chlorodibromomethane	124-48-1		U	6.35	0.635
Chloroethane	75-00-3		υ	12.7	1.27
2-Chloroethyl vinyl ether	110-75-8		υ	12.7	2.54
Chloroform	67-66-3		υ	6.35	0.635
Chloromethane	74-87-3		Ū	12.7	2.54
2-Chlorotoluene	95-49-8		Ū	6.35	0.635
4-Chlorotoluene	106-43-4		U	6.35	0.635
1,2-Dibromo-3-chloropropane	96-12-8		U	6.35	2.54
1,2-Dibromoethane	106-93-4		U	6.35	0.635
Dibromomethane	74-95-3		U	6.35	0.635
1,2-Dichlorobenzene	95-50-1		U	6.35	0.635
1,3-Dichlorobenzene	541-73-1		U	6.35	0.635
1,4-Dichlorobenzene	106-46-7		Ū	6.35	0.635
Dichlorodifluoromethane	75-71-8		U	12.7	1.27
1,1-Dichloroethane	75-34-3		U	6.35	1.27
1,2-Dichloroethane	107-06-2		U	6.35	0.635
1,1-Dichloroethene	75-35-4		U	6.35	0.635
cis-1,2-Dichloroethene	156-59-2		U	6.35	0.635
trans-1,2-Dichloroethene	156-60-5		U	6.35	0.635
1,2-Dichloropropane	78-87-5		Ū	6.35	0.635
1,3-Dichloropropane	142-28-9		U	6.35	0.635
2,2-Dichloropropane	594-20-7		U	6.35	0.635
cis-1,3-Dichloropropene	10061-01-5		U	6.35	0.635
trans-1,3-Dichloropropene	10061-02-6		U	6.35	0.635
1,1-Dichloropropene	563-58-6		U	6.35	0.635
Ethylbenzene	100-41-4	+	U	6.35	0.635
2-Hexanone	591-78-6		Ū	12.7	3.17
Hexachlorobutadiene	87-68-3		Ū	6.35	0.635
Isopropylbenzene	98-82-8		U	6.35	0.635
p-Isopropyltoluene	99-87-6	+	U	6.35	0.635
4-Methyl-2-pentanone	108-10-1		U	12.7	3.17
Methylene chloride	75-09-2	+	U	6.35	1.27
Naphthalene	91-20-3	+	U	12.7	0.635
n-Propylbenzene	103-65-1		U	6.35	0.635
Styrene	100-42-5		U	6.35	0.635
1,1,1,2-Tetrachloroethane	630-20-6		U	6.35	0.635
1,1,2,2-Tetrachloroethane	79-34-5		U	6.35	0.635
Tetrachloroethene	127-18-4		U	6.35	0.635
Toluene	108-88-3		U	6.35	0.635
1,2,3-Trichlorobenzene	87-61-6		U	6.35	0.635
1,2,4-Trichlorobenzene	120-82-1		U	6.35	0.635
1,1,1-Trichloroethane	71-55-6		U	6.35	0.635
1,1,2-Trichloroethane	71-55-6		Ū	6.35	0.635
Trichloroethene	79-00-5		U	6.35	0.635
Trichlorofluoromethane	79-01-6		Ü	12.7	1.27
Trichiorofiluoromethane	/5-69-4		U	12./	1.2/

10 of

Dilution: $\overline{1}$

Units: ug/kg

81

74

117

121

Report Number: L09080192

Toluene-d8

4-Bromofluorobenzene

Report Date : August 13, 2009

00083615

Sample Number: L09080192-04 PrePrep Method: NONE

Client ID:SITE 2-BLM-BF Prep Method:5030C/5035A
Matrix:Soil Analytical Method:8260B
Workgroup Number:WG309410 Analyst:TMB

Collect Date: 08/09/2009 11:25
Sample Tag: 01

Instrument: HPMS9

Prep Date: 08/11/2009 11:24
Cal Date: 07/21/2009 17:04
Run Date: 08/11/2009 16:37

File ID: 9M71372
Percent Solid: 78.3

Analyte	CAS. Numb	er	Result	Qual		PQL	SDL
1,2,3-Trichloropropane	96-18-4			Ū		6.35	1.27
1,2,4-Trimethylbenzene	95-63-6			Ū		6.35	0.635
1,3,5-Trimethylbenzene	108-67-8	В		Ū		6.35	0.635
Vinyl acetate	108-05-4	108-05-4				12.7	1.27
Vinyl chloride	75-01-4			U		12.7	1.27
o-Xylene	95-47-6			U		6.35	0.635
m-,p-Xylene	136777-61	2		Ū		6.35	0.635
Surrogate	% Recovery	Lower	Up	per	Qual		
Dibromofluoromethane	100	100 80		20		1	
1,2-Dichloroethane-d4	101	80	1	20		1	

101

106

8 of 10

U Not detected at or above adjusted sample detection limit

00083616

Report Number: L09080192

Client ID: SITE 3-ML-BF/TS

Sample Number: $\underline{\textbf{L09080192-05}}$

Matrix: Soil

Report Date : August 13, 2009

PrePrep Method:NONE Instrument:HPMS9

 Workgroup Number: WG309410
 Analyst: TMB
 Run Date: 08/11/2009 17:08

 Collect Date: 08/09/2009 12:00
 Dilution: 1
 File ID: 9M71373

 Sample Tag: 01
 Units: ug/kg
 Percent Solid: 88.2

Analyte	CAS. Number	Result	Qual	PQL	SDL
Acetone	67-64-1		U	11.1	5.55
Benzene	71-43-2		U	5.55	0.555
Bromobenzene	108-86-1		U	5.55	0.555
Bromochloromethane	74-97-5		U	5.55	0.555
Bromodichloromethane	75-27-4		U	5.55	0.555
Bromoform	75-25-2		U	5.55	0.555
Bromomethane	74-83-9		U	11.1	1.11
2-Butanone	78-93-3		U	11.1	2.77
n-Butylbenzene	104-51-8		U	5.55	0.555
sec-Butylbenzene	135-98-8		U	5.55	0.555
tert-Butylbenzene	98-06-6		U	5.55	0.555
Carbon disulfide	75-15-0		Ū	5.55	0.555
Carbon tetrachloride	56-23-5		Ū	5.55	0.555
Chlorobenzene	108-90-7		U	5.55	0.555
Chlorodibromomethane	124-48-1		U	5.55	0.555
Chloroethane	75-00-3		U	11.1	1.11
2-Chloroethyl vinyl ether	110-75-8		U	11.1	2.22
Chloroform	67-66-3		U	5.55	0.555
Chloromethane	74-87-3		U	11.1	2.22
2-Chlorotoluene	95-49-8		U	5.55	0.555
4-Chlorotoluene	106-43-4	+	U	5.55	0.555
1,2-Dibromo-3-chloropropane	96-12-8		U	5.55	2.22
1,2-Dibromoethane	106-93-4		U	5.55	0.555
Dibromomethane	74-95-3		U	5.55	0.555
1,2-Dichlorobenzene	95-50-1		U	5.55	0.555
1,3-Dichlorobenzene	541-73-1		Ū	5.55	0.555
1,4-Dichlorobenzene	106-46-7		U	5.55	0.555
Dichlorodifluoromethane	75-71-8		Ū	11.1	1.11
1,1-Dichloroethane	75-34-3	+	U	5.55	1.11
1,2-Dichloroethane	107-06-2		U	5.55	0.555
1,1-Dichloroethene	75-35-4		U	5.55	0.555
cis-1,2-Dichloroethene	156-59-2		U	5.55	0.555
trans-1,2-Dichloroethene	156-59-2	-	U	5.55	0.555
1,2-Dichloropropane	78-87-5		U	5.55	0.555
1,3-Dichloropropane	142-28-9		U	5.55	0.555
2,2-Dichloropropane	594-20-7		U	5.55	0.555
cis-1,3-Dichloropropene	10061-01-5		U	5.55	0.555
trans-1,3-Dichloropropene	10061-01-5		U	5.55	0.555
1,1-Dichloropropene	563-58-6		U	5.55	0.555
Ethylbenzene	100-41-4		U	5.55	0.555
2-Hexanone	591-78-6		U	11.1	
Hexachlorobutadiene	87-68-3		U	5.55	2.77 0.555
	98-82-8	-	U	5.55	0.555
Isopropylbenzene					
p-Isopropyltoluene	99-87-6		U	5.55	0.555
4-Methyl-2-pentanone	108-10-1		U	11.1	2.77
Methylene chloride	75-09-2	-	U	5.55	1.11
Naphthalene	91-20-3		U	11.1	0.555
n-Propylbenzene	103-65-1		U	5.55	0.555
Styrene	100-42-5	1	U	5.55	0.555
1,1,1,2-Tetrachloroethane	630-20-6	1	U	5.55	0.555
1,1,2,2-Tetrachloroethane	79-34-5		U	5.55	0.555
Tetrachloroethene	127-18-4		U	5.55	0.555
Toluene	108-88-3		U	5.55	0.555
1,2,3-Trichlorobenzene	87-61-6	1	U	5.55	0.555
1,2,4-Trichlorobenzene	120-82-1	1	U	5.55	0.555
1,1,1-Trichloroethane	71-55-6		U	5.55	0.555
1,1,2-Trichloroethane	79-00-5		U	5.55	0.555
Trichloroethene	79-01-6		U	5.55	0.555
Trichlorofluoromethane	75-69-4		U	11.1	1.11

9 of 10

Report Number: L09080192

Toluene-d8

4-Bromofluorobenzene

Report Date : August 13, 2009

00083617

Sample Number: L09080192-05 PrePrep Method: NONE Ins

Client ID: SITE 3-ML-BF/TS Prep Method: 5030C/5035A

Matrix: Soil Analytical Method: 8260B

Workgroup Number: WG309410 Analyst: TMB

Collect Date: 08/09/2009 12:00 Dilution: 1

 Instrument: HPMS9

Prep Date: 08/11/2009 11:26
Cal Date: 07/21/2009 17:04
Run Date: 08/11/2009 17:08

File ID: 9M71373
Percent Solid:88.2

Analyte	CAS. Numb	er	Res	ult	Qual		PQL	SDL
1,2,3-Trichloropropane	96-18-4	96-18-4			Ū		5.55	1.11
1,2,4-Trimethylbenzene	95-63-6				Ū		5.55	0.555
1,3,5-Trimethylbenzene	108-67-8	3			Ū		5.55	0.555
Vinyl acetate	108-05-4	108-05-4		Ū		11.1	1.11	
Vinyl chloride	75-01-4	:			Ū		11.1	1.11
o-Xylene	95-47-6				Ū		5.55	0.555
m-,p-Xylene	136777-61	-2			Ū		5.55	0.555
Surrogate	% Recovery	Lowe	r	Uppe	r	Qual		
Dibromofluoromethane	108	80		120	1			
1,2-Dichloroethane-d4	110	80		120)		1	

81

74

117

121

106

107

10 of 10

U Not detected at or above adjusted sample detection limit

2.1.1.2 QC Summary Data

Example 8260 Calculations

1.0 Calculating the Response Factor (RF) from the initial calibration (ICAL) data:

RF = [(Ax) (Cis)] / [(Ais) (Cx)]

where:		<u>Example</u>
wilere.	Ax = Area of the characteristic ion for the compound being measured:	3399156
	Cis = Concentration of the specific internal standard (ug/mL)	25
	Ais = Area of the characteristic ion of the specific internal standard	846471
	Cx = Concentration of the compound in the standard being measured (ug/mL)	100
	RF = Calculated Response Factor	1.0039

2.0 Calculating the concentration (C) of a compound in water using the average RF: *

Cx = [(Ax) (Cis) (Vn)(D)] / [(Ais) (RF) (Vs)]

whore	Example
where: $Ax = Area of the characteristic ion for the compound being measured$	3122498
Cis = Concentration of the specific internal standard (ug/L)	25
D = Dilution factor for sample as a multiplier ($10x = 10$)	1
Ais = Area of the characteristic ion of the specific internal standard	611048
RF = Average RF from the ICAL	1.004
Vs = Purge volume of sample (mL)	10
Vn = Nominal purge volume of sample (mL) (10.0 mL)	10
Cx = Concentration of the compound in the sample being measured (ug/L)	127.2428

3.0 Calculating the concentration (${\bf C}$) of a compound in soil using the average RF: *

Cx = [(Ax)(Cis)(Wn)(D)]/[(Ais)(RF)(Ws)]

where:	Example
Ax = Area of the characteristic ion for the compound being measured	3122498
Cis = Concentration of the specific internal standard (ug/L)	25
D = Dilution factor for sample as a multiplier $(10x = 10)$	1
Ais = Area of the characteristic ion of the specific internal standard	611048
RF = Average RF from the ICAL	1.004
Ws = Weight of sample purged (g)	5
Wn = Nominal purge weight (g) (5.0 g)	5
Cx = Concentration of the compound in the sample being measured (ug/L)	127.2428
Dry weight correction:	
Percent solids (PCT_S)	50
$Cd = (Cx) (100)/PCT_S$	254.4856

^{*} Concentrations appearing on the instrument quantitation reports are on-column results and do not take into account initial volume, final volume, and the dilution factor.

4.0 Concentration from Linear Regression

Step 1: Retrieve Curve Data From Plot, y = mx + b

y = response ratio = response of analyte / response of IS = Ax/Ais

x = amount ratio = concentration analyte/concentration internal standard = Cx / Cis

m = slope from curve = 0.213

b = intercept from curve = -0.00642

Step 2: Calculate y from Quantitation Report

y = 86550/593147 = 0.1459

Step 3: Solve for x

x = (y - b)/m = [(0.1459 - (-0.00642)]/0.213 = 0.7152

Step 4: Solve for analyte concentration Cx

Cx = Cis(x) = (25.0)(0.7152) = 17.88

Example Spreadsheet Calculation:

Slope from curve, m:
Intercept from curve, b:
Area of analyte, Ax:
Area of Internal Standard , Ais:
Concentration of IS, Cis
Response Ratio:
Amount Ratio:
0.213
-0.00642
86550
593147
25.00
0.145917
0.715195

Concentration: 17.87988

Units of Internal Standard: ug/L

5.0 Concentration from Quadratic Regression

Step 1 - Retrieve Curve Data from Plot, y = Ax^2 + Bx + C

Where:

 $Ax^2 + Bx + (C - y) = 0$

A, B, C = constants from the ICAL quadratic regression

y = Response ratio = Area of analyte/Area of internal standard (IS)

x = Amount ratio = Concentration of analyte/concentration of IS

Step 2: Calculate y from Quantitation Report

y = Ax/Ais

Step 3: Solve for x using the quadratic formula

 $Ax^2 + Bx + C - y = 0$

$$x = \frac{b \pm \sqrt{(b^2 - 4a(c - y))}}{2a}$$
 (Two possible solutions)

Step 4: Solve for analyte concentration Cx

Cx = (Cis)(Amount ratio)

Example Spreadsheet Calculation:

Value of A from plot:
Value of B from plot:
Value of C from plot:
Value of C from plot:
-0.0276
Area of unknown from quantitation report:
Area of IS from quantiation report:
784848

Response ratio, y: 0.374367

C - y: **-0.40197** Root 1 - Computed amount ratio , X1: **80.44567**

Root 2 - Computed amount ratio , X2: **0.794396** use this solution

Concentration of IS, Cis: 25.00
Concentration of analyte, Cx: 19.86 ug/L

Microbac Laboratories Inc. VOA Preparation/Preservation/Extraction Log

Batch #:WG309439 Analyst:FJB

Method: 5030C/5035A Run Date: 08/11/2009 12:06

Purge and trap methanol COA14043

Sand Lot #: COA14045

SAMPLE #	Fraction	Collected	Preserved	PCT-S	Tare Wt	Total Wt	Sample Wt	Water	MeOH	Vt	Comments
L09080132-01	A	08/05/09 15:00	08/11/09 12:06	100			1.01		10	10	
L09080192-01	A	08/09/09 10:45	08/11/09 11:17				5.03	5		5	
L09080192-02	A	08/09/09 10:50	08/11/09 11:19				5.04	5		5	
L09080192-03	A	08/09/09 11:20	08/11/09 11:21				5.22	5		5	
L09080192-04	A	08/09/09 11:25	08/11/09 11:24				5.03	5		5	
L09080192-05	A	08/09/09 12:00	08/11/09 11:26				5.11	5		5	

Comments: 1 = improperly sealed cap

3 = effervesced

5 = preserved by freezing

2 = preserved out of hold

4 = preserved with NaHSO4

6 = preserved in field

Analyst: Trance March

VOA_EXT - Modified 05/22/2008 PDF ID: 1463087

PDF ID: 1463087 Report generated: 08/11/2009 15:57

Instrument Run Log

 Instrument:
 HPMS9
 Dataset:
 072109

 Analyst1:
 TMB
 Analyst2:
 NA

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 13

 Method:
 5030C/5035A
 SOP:
 PAT01
 Rev:
 12

Maintenance Log ID: 29518

Internal Standard: STD34089 Surrogate Standard: STD33925

CCV: <u>STD33088</u> LCS: <u>STD33082</u> MS/MSD: <u>NA</u>

Column 1 ID: <u>RTX502.2</u> Column 2 ID: <u>NA</u>

Workgroups: WG307576

Comments:

Seq.	File ID	Sample Information	pН	Mat	Dil	Reference	Date/Time
1	9M70932	RINSE	NA	7	1		07/21/09 08:46
2	9M70933	RINSE	NA	7	1		07/21/09 09:17
3	9M70934	WG307576-01 50ng BFB STD 8260	NA	7	1	STD33918	07/21/09 09:43
4	9M70935	WG307576-01 50ng BFB STD 8260	NA	7	1	STD33918	07/21/09 09:58
5	9M70936	WG307576-02 0.5ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 10:24
6	9M70937	WG307576-03 1ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 10:55
7	9M70938	WG307576-04 2ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 11:25
8	9M70939	WG307576-05 5ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 11:56
9	9M70940	WG307576-06 20ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 12:27
10	9M70941	WG307576-07 50ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 12:58
11	9M70942	WG307576-08 100ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 13:29
12	9M70943	WG307576-09 200ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 14:00
13	9M70944	WG307576-10 300ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 14:31
14	9M70945	RINSE	NA	7	1	STD34088	07/21/09 15:01
15	9M70946	WG307576-04 2ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 15:32
16	9M70947	WG307576-05 5ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 16:03
17	9M70948	WG307576-04 2ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 16:33
18	9M70949	WG307576-05 5ug/Kg STD 8260	NA	7	1	STD34088	07/21/09 17:04
19	9M70950	RINSE	NA	7	1		07/21/09 17:35
20	9M70951	RINSE	NA	7	1		07/21/09 18:06
21	9M70952	WG307576-11 20ug/Kg LCS STD 8260	NA	7	1	STD34082	07/21/09 18:37
22	9M70953	RINSE	NA	7	1		07/21/09 19:07

Comments

Seq.	Rerun Dil.	Reason	Analytes
3	X		
File ID:	9M70934		
	Tune failed. DNR	R.	
7	X		
File ID:	9M70938		
	Replaced the trap	and this point had low responces. DNR.	
8	Χ		
File ID:	9M70939		
	Replaced the trap	and this point had low responces. DNR.	

Approved: July 22, 2009

Page: 1

Run Log 100083623

Microbac Laboratories Inc.

Instrument Run Log

Instrument:	HPMS9	Dataset: 072109	
Analyst1:	TMB A	nalyst2: NA	
Method:	8260B	SOP: MSV01	Rev: <u>13</u>
Method:	5030C/5035A	SOP: PAT01	Rev: <u>12</u>
Maintenance Log ID:	29518		
Internal Standard: STD340	89 Surrogate Sta	andard: STD33925	
CCV: STD330	88	LCS: STD33082	MS/MSD: NA
V	Column 1 ID: <u>RTX502.2</u> Vorkgroups: <u>WG307576</u>	Column 2 ID: NA	
Comments:			
		Comments	
q. Rerun Dil.	Reason		Analytes

Seq.	Rerun	Dil.	Reason	Analytes
15	Х			
File ID:	9M7094	6		
	Archon a	added the	ss. DNR.	
16	X			
File ID:	9M7094	7		
	Archon a	added the	ss. DNR.	

Approved: July 22, 2009

Page: 2

Instrument Run Log

 Instrument:
 HPMS9
 Dataset:
 081109

 Analyst1:
 TMB
 Analyst2:
 NA

 Method:
 8260B
 SOP:
 MSV01
 Rev:
 13

 Method:
 5030C/5035A
 SOP:
 PAT01
 Rev:
 12

Maintenance Log ID: 29756

Internal Standard: STD34089 Surrogate Standard: STD34431

 CCV:
 STD34357
 LCS:
 STD34517
 MS/MSD:
 NA

Column 1 ID: <u>RTX502.2</u> Column 2 ID: <u>NA</u>

Workgroups: <u>WG309410; WG309425</u>

Comments:

Seq.	File ID	Sample Information	рН	Mat	Dil	Reference	Date/Time
1	9M71357	RINSE	NA	10	1		08/11/09 09:11
2	9M71358	WG309407-01 50ng BFB STD 8260	NA	7	1	STD34563	08/11/09 09:39
3	9M71359	WG309407-02 50ug/Kg CCV STD 8260	NA	7	1	STD34357	08/11/09 10:04
4	9M71360	WG309425-01 EXT BLK 100X 8260 5g/10m	NA	10	50		08/11/09 10:35
5	9M71361	WG309410-01 VBLK0810 BLANK 8260	NA	7	1		08/11/09 11:06
6	9M71362	WG309410-02 20ug/Kg LCS 8260	NA	7	1	STD34517	08/11/09 11:36
7	9M71363	WG309410-03 20ug/Kg LCSDUP 8260	NA	7	1	STD34517	08/11/09 12:06
8	9M71364	WG309425-02 EXT LCS 100X 8260 5g/10m	NA	10	50		08/11/09 12:37
9	9M71365	WG309425-03 EXT LCSDUP 100X 8260 5g/	NA	10	50		08/11/09 13:07
10	9M71366	L09080091-21 B 250X M1 8260 154g	NA	10	250		08/11/09 13:37
11	9M71367	L09080091-24 B 500X M1 8260 168.54g	NA	10	500		08/11/09 14:07
12	9M71368	L09080089-01 B 1000X M1 8260 151.45g	NA	10	1000		08/11/09 14:37
13	9M71369	L09080192-01 8260 5.03g	NA	7	1		08/11/09 15:07
14	9M71370	L09080192-02 8260 5.04g	NA	7	1		08/11/09 15:37
15	9M71371	L09080192-03 8260 5.22g	NA	7	1		08/11/09 16:07
16	9M71372	L09080192-04 8260 5.03g	NA	7	1		08/11/09 16:37
17	9M71373	L09080192-05 8260 5.11g	NA	7	1		08/11/09 17:08
18	9M71374	L09080091-48 A 50X 8260 143.01g	NA	10	50		08/11/09 17:38
19	9M71375	L09080089-09 A 50X 8260 151.33g	NA	10	50		08/11/09 18:08
20	9M71376	L09080089-10 A 50X 8260 153.87g	NA	10	50		08/11/09 18:39
21	9M71377	L09080089-11 A 50X 8260 171.52g	NA	10	50		08/11/09 19:10
22	9M71378	L09080089-12 A 50X 8260 144.99g	NA	10	50		08/11/09 19:41
23	9M71379	L09080089-13 A 50X 8260 173.05g	NA	10	50		08/11/09 20:11
24	9M71380	L09080089-14 A 50X 8260 174.61g	NA	10	50		08/11/09 20:42
25	9M71381	L09080089-15 A 50X 8260 154.82g	NA	10	50		08/11/09 21:12
26	9M71382	L09080132-01 10000X 8260 154.82g	NA	11	5000		08/11/09 21:43
27	9M71383	RINSE	NA	7	1		08/11/09 22:13
28	9M71384	RINSE	NA	7	1		08/11/09 22:43
29	9M71385	RINSE	NA	7	1		08/11/09 23:14
30	9M71386	RINSE	NA	7	1		08/11/09 23:44
31	9M71387	RINSE	NA	7	1		08/12/09 00:15
32	9M71388	RINSE	NA	7	1		08/12/09 00:46

Approved: August 12, 2009

Nien Coto

Page: 1

Instrument Run Log

Instrument: Analyst1: Method: Method:	TMB 8260B	Analyst2	: 081109 : NA : MSV01 : PAT01	Rev: <u>13</u> Rev: <u>12</u>	
Maintenance Log ID:			07704404		
Internal Standard: STD3408	39	Surrogate Standard:	STD34431	_	
CCV: STD3435	57	LCS:	STD34517	MS/MSD: NA	
V	Column 1 ID: R	RTX502.2 09410; WG309425	Column 2 ID: NA		
Comments:					

Comments

Seq.	Rerun	Dil.	Reason	Analytes
	X			-
19	Α	2000	Over Calibration Range	TCE
File ID:	9M7137	5		
20	Χ	500	Over Calibration Range	CIS12DCE, TCE
File ID:	9M71376	6		
21	X	100	Carry-over contamination	
File ID:	9M7137		,	
	ONR.			
22	Χ	1000	Over Calibration Range	CIS12DCE, TCE
File ID:	9M71378	3		
23	Х	1000	Over Calibration Range	CIS12DCE, TCE
File ID:	9M71379	9		
24	Х	1000	Over Calibration Range	CIS12DCE, TCE
File ID:	9M71380)		
26	X	1000	Missed Tune	·
File ID:	9M71382	2		
	ONR.			

Approved: August 12, 2009

Page: 2

Microbac Laboratories Inc. Data Checklist

Date:	21-JUL-2009
Analyst:	TMB
Analyst:	<u>NA</u>
Method:	8260
Instrument:	HPMS9
Curve Workgroup:	NA
Runlog ID:	29206
Analytical Workgroups:	WG307576

System Performance Check	NA NA
BFB	X
Initial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	X
Second Source standard % Difference	X
Continuing Calibration /Check Standards	X
Project/Client Specific Requirements	X
Special Standards	X
Blanks	X
TCL's	X
Surrogates	X
LCS (Laboratory Control Sample)	X
	X
Recoveries Surrogates	XX
MS/MSD/Duplicates	NA NA
Samples	X
TCL Hits	X
Spectra of TCL Hits	X
Surrogates	X
Internal Standards Criteria	X
Library Searches	NA NA
Calculations & Correct Factors	X
Dilutions Run	NA NA
Reruns	X
Manual Integrations	NA NA
Case Narrative	X
Results Reporting/Data Qualifiers	X
KOBRA Workgroup Data	X
Check for Completeness	X
Primary Reviewer	TMB
Secondary Reviewer	MDA MDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Check the reasonableness of the results	X

Primary Reviewer: 22-JUL-2009

Secondary Reviewer: 22-JUL-2009

Nien C

CHECKLIST1 - Modified 03/05/2008

Generated: JUL-22-2009 15:45:28

Microbac Laboratories Inc. Data Checklist

Date: 11-AUG-2009

Analyst: TMB

Analyst: NA

Method: 8260

Instrument: HPMS9

Curve Workgroup: NA

Runlog ID: 29578

Analytical Workgroups: WG309410; WG309425

System Performance Check	NA
BFB	X
Initial Calibration	X
Average RF	X
Linear Reg or Higher Order Curve	X
Second Source standard % Difference	X
Continuing Calibration /Check Standards	X
Project/Client Specific Requirements	X
Special Standards	NA NA
Blanks	X
TCL's	X
Surrogates	X
LCS (Laboratory Control Sample)	X
Recoveries	X
Surrogates	X
MS/MSD/Duplicates	NA NA
Samples	X
TCL Hits	X
Spectra of TCL Hits	X
Surrogates	X
Internal Standards Criteria	X
Library Searches	NA
Calculations & Correct Factors	X
Dilutions Run	X
Reruns	X
Manual Integrations	NA
Case Narrative	X
Results Reporting/Data Qualifiers	X
KOBRA Workgroup Data	X
Check for Completeness	X
Primary Reviewer	TMB
Secondary Reviewer	MDA
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Check the reasonableness of the results	X

Primary Reviewer: 12-AUG-2009

Secondary Reviewer: 12-AUG-2009

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-12-2009 09:59:19

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00083628

AAB#: WG309410

Analytical Method: 8260B

Login Number: L09080192

Client ID	ID	Date Collected	TCLP Date	Time Held	Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	. ~
SITE 1-TP-BF	01	08/09/09							14		08/11/09	2.2	14	
SITE 1-TP-TS	02	08/09/09							14		08/11/09	2.2	14	
SITE 2-BLM-TS	03	08/09/09							14		08/11/09	2.2	14	
SITE 2-BLM-BF	04	08/09/09							14		08/11/09	2.2	14	
CTTE 3_MTBE/TC	0.5	08/09/09							14		08/11/09	2 2	14	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID:1463982 Report generated 08/12/2009 11:06

Page 55

Microbac Laboratories Inc. SURROGATE STANDARDS

Login Number: L09080192 Method: 8260

Instrument Id: HPMS9 _____ CAL ID: HPMS9-21-JUL-09

Workgroup (AAB#):WG309410 Matrix:Soil

Sample Number	Dilution	Tag	1	2	3	4
L09080192-01	1.00	01	102	105	100	103
L09080192-02	1.00	01	107	108	109	106
L09080192-03	1.00	01	105	107	112	107
L09080192-04	1.00	01	101	100	106	101
L09080192-05	1.00	01	110	108	107	106
WG309410-01	1.00	01	101	99.8	97.8	97.0
WG309410-02	1.00	01	110	109	104	107
WG309410-03	1.00	01	107	106	104	106

 Surrogates
 Surrogate Limits

 1 - 1,2-Dichloroethane-d4
 80 - 120

 2 - Dibromofluoromethane
 80 - 120

 3 - 4-Bromofluorobenzene
 74 - 121

 4 - Toluene-d8
 81 - 117

Underline = Result out of surrogate limits

DL = surrogate diluted out
ND = surrogate not detected

SURROGATES - Modified 03/06/2008 PDF File ID: 1463990 Report generated: 08/12/2009 11:07

METHOD BLANK SUMMARY

Login Number: L09080192 Work Group: WG309410 Blank File ID: 9M71361 Blank Sample ID: WG309410-01 Prep Date: 08/11/09 11:06 Analyzed Date: 08/11/09 11:06

Instrument ID: HPMS9 Method: 8260B

Analyst: TMB

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG309410-02	9M71362	08/11/09 11:36	01
LCS2	WG309410-03	9M71363	08/11/09 12:06	01
SITE 1-TP-BF	L09080192-01	9м71369	08/11/09 15:07	01
SITE 1-TP-TS	L09080192-02	9M71370	08/11/09 15:37	01
SITE 2-BLM-TS	L09080192-03	9M71371	08/11/09 16:07	01
SITE 2-BLM-BF	L09080192-04	9M71372	08/11/09 16:37	01
SITE 3-ML-BF/TS	L09080192-05	9M71373	08/11/09 17:08	01

Report Name: BLANK_SUMMARY PDF File ID: 1463983
Report generated 08/12/2009 11:06

Microbac Laboratories Inc. METHOD BLANK REPORT

 Login Number: L09080192
 Prep Date: 08/11/09 11:06
 Sample ID: WG309410-01

 Instrument ID: HPMS9
 Run Date: 08/11/09 11:06
 Prep Method: 5030C/5035A

 File ID: 9M71361
 Analyst: TMB
 Method: 8260B

 Workgroup (AAB#): WG309410
 Matrix: Soil
 Units: ug/kg

Contract #:DACA56-94-D-0020 Cal ID: HPMS9-21-JUL-09

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Acetone	5.00	10.0	5.00	1	U
Benzene	0.500	5.00	0.500	1	U
Bromobenzene	0.500	5.00	0.500	1	υ
Bromochloromethane	0.500	5.00	0.500	1	υ
Bromodichloromethane	0.500	5.00	0.500	1	U
Bromoform	0.500	5.00	0.500	1	U
Bromomethane	1.00	10.0	1.00	1	U
2-Butanone	2.50	10.0	2.50	1	U
n-Butylbenzene	0.500	5.00	0.500	1	U
sec-Butylbenzene	0.500	5.00	0.500	1	U
tert-Butylbenzene	0.500	5.00	0.500	1	U
Carbon disulfide	0.500	5.00	0.500	1	U
Carbon tetrachloride	0.500	5.00	0.500	1	υ
Chlorobenzene	0.500	5.00	0.500	1	Ū
Chlorodibromomethane	0.500	5.00	0.500	1	υ
Chloroethane	1.00	10.0	1.00	1	U
2-Chloroethyl vinyl ether	2.00	10.0	2.00	1	U
Chloroform	0.500	5.00	0.500	1	U
Chloromethane	2.00	10.0	2.00	1	U
2-Chlorotoluene	0.500	5.00	0.500	1	U
4-Chlorotoluene	0.500	5.00	0.500	1	U
1,2-Dibromo-3-chloropropane	2.00	5.00	2.00	1	U
1,2-Dibromoethane	0.500	5.00	0.500	1	U
Dibromomethane	0.500	5.00	0.500	1	U
1,2-Dichlorobenzene	0.500	5.00	0.500	1	U
1,3-Dichlorobenzene	0.500	5.00	0.500	1	U
1,4-Dichlorobenzene	0.500	5.00	0.500	1	U
Dichlorodifluoromethane	1.00	10.0	1.00	1	U
1,1-Dichloroethane	1.00	5.00	1.00	1	U
1,2-Dichloroethane	0.500	5.00	0.500	1	U
1,1-Dichloroethene	0.500	5.00	0.500	1	U
cis-1,2-Dichloroethene	0.500	5.00	0.500	1	υ
trans-1,2-Dichloroethene	0.500	5.00	0.500	1	U
1,2-Dichloropropane	0.500	5.00	0.500	1	υ
1,3-Dichloropropane	0.500	5.00	0.500	1	U
2,2-Dichloropropane	0.500	5.00	0.500	1	υ
cis-1,3-Dichloropropene	0.500	5.00	0.500	1	U
trans-1,3-Dichloropropene	0.500	5.00	0.500	1	υ
1,1-Dichloropropene	0.500	5.00	0.500	1	υ
Ethylbenzene	0.500	5.00	0.500	1	U
=	2.50	10.0	2.50	1	Ū
2-Hexanone	2.50	1 -0.0		_	

Report Name:BLANK
PDF ID: 1463984
12-AUG-2009 11:06

Microbac Laboratories Inc. METHOD BLANK REPORT

 Login Number: L09080192
 Prep Date: 08/11/09 11:06
 Sample ID: WG309410-01

 Instrument ID: HPMS9
 Run Date: 08/11/09 11:06
 Prep Method: 5030C/5035A

 File ID: 9M71361
 Analyst: TMB
 Method: 8260B

 Workgroup (AAB#): WG309410
 Matrix: Soil
 Units: ug/kg

Contract #:DACA56-94-D-0020 Cal ID: HPMS9-21-JUL-09

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Isopropylbenzene	0.500	5.00	0.500	1	Ū
p-Isopropyltoluene	0.500	5.00	0.500	1	U
4-Methyl-2-pentanone	2.50	10.0	2.50	1	U
Methylene chloride	1.00	5.00	1.00	1	U
Naphthalene	0.500	10.0	0.500	1	U
n-Propylbenzene	0.500	5.00	0.500	1	U
Styrene	0.500	5.00	0.500	1	U
1,1,1,2-Tetrachloroethane	0.500	5.00	0.500	1	U
1,1,2,2-Tetrachloroethane	0.500	5.00	0.500	1	U
Tetrachloroethene	0.500	5.00	0.500	1	U
Toluene	0.500	5.00	0.500	1	U
1,2,3-Trichlorobenzene	0.500	5.00	0.500	1	U
1,2,4-Trichlorobenzene	0.500	5.00	0.500	1	U
1,1,1-Trichloroethane	0.500	5.00	0.500	1	U
1,1,2-Trichloroethane	0.500	5.00	0.500	1	U
Trichloroethene	0.500	5.00	0.500	1	U
Trichlorofluoromethane	1.00	10.0	1.00	1	U
1,2,3-Trichloropropane	1.00	5.00	1.00	1	U
1,2,4-Trimethylbenzene	0.500	5.00	0.500	1	υ
1,3,5-Trimethylbenzene	0.500	5.00	0.500	1	U
Vinyl acetate	1.00	10.0	1.00	1	U
Vinyl chloride	1.00	10.0	1.00	1	υ
o-Xylene	0.500	5.00	0.500	1	υ
m-,p-Xylene	0.500	5.00	0.500	1	U

Surrogates	% Recovery	Surro	gate 1	Limits	Qualifier
Dibromofluoromethane	99.8	80	-	120	PASS
1,2-Dichloroethane-d4	101	80	-	120	PASS
Toluene-d8	97.0	81	-	117	PASS
4-Bromofluorobenzene	97.8	74	-	121	PASS

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK PDF ID: 1463984 12-AUG-2009 11:06

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

Login	Number: L0908019	92		Analyst: TMB		Prep Method: 5030C/5035A
Instru	ment ID: HPMS9			Matrix:Soil		Method: 8260B
Workgroup	(AAB#):WG309410)				Units:ug/kg
	QC Key:STD			Lot #:		
Sample	ID:WG309410-02	LCS	File	ID:9M71362	Run	Date: 08/11/2009 11:36
Sample	ID:WG309410-03	LCS2	_File	ID: 9M71363	Run	Date: 08/11/2009 12:06

		LCS			LCS2			%Rec	RPD	T
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
Acetone	20.0	21.7	109	20.0	20.1	101	7.76	20 - 160	30	T
Benzene	20.0	22.1	110	20.0	21.3	106	3.69	70 - 130	30	T
Bromobenzene	20.0	20.8	104	20.0	20.7	103	0.711	72 - 131	30	1
Bromochloromethane	20.0	20.2	101	20.0	20.5	103	1.62	70 - 130	30	
Bromodichloromethane	20.0	22.2	111	20.0	21.3	107	3.93	72 - 137	30	1
Bromoform	20.0	19.8	98.9	20.0	18.8	93.9	5.17	49 - 136	30	
Bromomethane	20.0	24.1	121	20.0	22.9	114	5.31	37 - 143	30	T
2-Butanone	20.0	19.2	96.0	20.0	18.6	93.2	2.96	37 - 180	30	T
n-Butylbenzene	20.0	19.4	97.0	20.0	18.8	94.0	3.13	70 - 136	30	T
sec-Butylbenzene	20.0	21.5	107	20.0	20.8	104	3.22	71 - 132	30	T
tert-Butylbenzene	20.0	21.6	108	20.0	20.5	102	5.03	72 - 130	30	+
Carbon disulfide	20.0	18.4	92.2	20.0	18.4	92.1	0.0707	39 - 139	30	T
Carbon tetrachloride	20.0	24.1	121	20.0	22.7	113	6.27	59 - 136	30	T
Chlorobenzene	20.0	20.1	100	20.0	19.5	97.6	2.84	70 - 130	30	T
Chlorodibromomethane	20.0	21.3	106	20.0	19.9	99.7	6.54	59 - 136	30	T
Chloroethane	20.0	24.0	120	20.0	23.6	118	1.65	52 - 135	30	<u> </u>
2-Chloroethyl vinyl ether	20.0	17.0	85.0	20.0	17.2	85.9	1.01	35 - 154	30	\vdash
Chloroform	20.0	22.1	111	20.0	21.7	109	1.93	74 - 129	30	+
Chloromethane	20.0	24.3	121	20.0	23.8	119	2.17	30 - 131	30	+
2-Chlorotoluene	20.0	21.5	107	20.0	20.6	103	4.16	63 - 147	30	
4-Chlorotoluene	20.0	20.3	102	20.0	20.2	101	0.531	70 - 138	30	+
1,2-Dibromo-3-chloropropane	20.0	17.9	89.3	20.0	15.7	78.4	13.1	40 - 135	30	+
1,2-Dibromoethane	20.0	18.4	92.2	20.0	18.2	91.0	1.28	69 - 130	30	\vdash
Dibromomethane	20.0	21.4	107	20.0	20.9	105	1.94	69 - 130	30	1
1,2-Dichlorobenzene	20.0	19.4	97.0	20.0	19.2	95.9	1.15	70 - 130	30	\vdash
1,3-Dichlorobenzene	20.0	19.8	98.9	20.0	19.3	96.6	2.45	70 - 130	30	1
1,4-Dichlorobenzene	20.0	19.1	95.6	20.0	18.7	93.7	2.03	70 - 130	30	\top
 Dichlorodifluoromethane	20.0	36.4	182	20.0	34.9	175	4.24	25 - 130	30	*
1,1-Dichloroethane	20.0	21.5	108	20.0	21.1	105	2.03	75 - 125	30	\vdash
1,2-Dichloroethane	20.0	21.9	109	20.0	20.6	103	5.84	63 - 133	30	\vdash
1,1-Dichloroethene	20.0	20.9	105	20.0	20.5	103	1.98	65 - 135	30	\vdash
cis-1,2-Dichloroethene	20.0	20.9	105	20.0	20.7	104	0.956	70 - 130	30	\vdash
trans-1,2-Dichloroethene	20.0	22.2	111	20.0	21.9	110	1.35	72 - 127	30	\vdash
1,2-Dichloropropane	20.0	20.9	104	20.0	20.6	103	1.03	72 - 130	30	+
1,3-Dichloropropane	20.0	19.7	98.6	20.0	19.0	94.8	3.92	65 - 128	30	+
2,2-Dichloropropane	20.0	22.3	111	20.0	21.7	108	2.87	66 - 135	30	+
cis-1,3-Dichloropropene	20.0	20.8	104	20.0	20.1	100	3.74	70 - 142	30	+
trans-1,3-Dichloropropene	20.0	17.9	89.4	20.0	17.6	88.0	1.57	65 - 139	30	+
1,1-Dichloropropene	20.0	21.4	107	20.0	20.8	104	3.09	57 - 138	30	+
Ethylbenzene	20.0	20.0	100	20.0	19.3	96.5	3.75	70 - 130	30	\vdash

LCS_LCS2 - Modified 03/06/2008 PDF File ID: 1463903 Report generated: 08/12/2009 11:06

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

Login	Number: L0908019	92		Analyst: TMB		Prep Method: 5030C/5035A
Instru	ment ID: HPMS9			Matrix:Soil		Method: 8260B
Workgroup	(AAB#):WG309410)				Units:ug/kg
	QC Key:STD			Lot #:		
Sample	ID:WG309410-02	LCS	File	ID: 9M71362	Run	Date: 08/11/2009 11:36
Sample	ID:WG309410-03	LCS2	File	ID: 9M71363	Run	Date: 08/11/2009 12:06

_		LCS			LCS2			%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
2-Hexanone	20.0	17.0	85.2	20.0	17.3	86.7	1.78	45 - 145	30	T
Hexachlorobutadiene	20.0	18.2	90.9	20.0	18.8	93.9	3.22	65 - 135	30	
Isopropylbenzene	20.0	17.1	85.6	20.0	16.9	84.6	1.15	68 - 129	30	
p-Isopropyltoluene	20.0	18.5	92.3	20.0	18.2	90.9	1.43	72 - 128	30	
4-Methyl-2-pentanone	20.0	17.8	89.0	20.0	17.6	88.2	0.921	47 - 146	30	
Methylene chloride	20.0	20.4	102	20.0	20.5	103	0.809	74 - 128	30	
Naphthalene	20.0	15.0	74.9	20.0	16.4	82.1	9.15	50 - 146	30	
n-Propylbenzene	20.0	21.5	107	20.0	21.0	105	2.22	72 - 136	30	
Styrene	20.0	18.3	91.7	20.0	18.0	90.1	1.73	74 - 130	30	
1,1,1,2-Tetrachloroethane	20.0	21.1	105	20.0	20.6	103	2.30	71 - 137	30	
1,1,2,2-Tetrachloroethane	20.0	19.3	96.5	20.0	18.7	93.4	3.23	55 - 130	30	
Tetrachloroethene	20.0	20.3	102	20.0	20.1	101	0.913	72 - 130	30	
Toluene	20.0	22.0	110	20.0	21.2	106	3.69	77 - 126	30	
1,2,3-Trichlorobenzene	20.0	16.8	83.8	20.0	17.3	86.6	3.24	60 - 135	30	
1,2,4-Trichlorobenzene	20.0	15.8	79.2	20.0	16.5	82.4	3.95	65 - 130	30	
1,1,1-Trichloroethane	20.0	23.3	116	20.0	22.3	111	4.34	70 - 135	30	
1,1,2-Trichloroethane	20.0	19.8	98.9	20.0	19.7	98.4	0.533	60 - 125	30	
Trichloroethene	20.0	21.4	107	20.0	20.4	102	4.69	72 - 126	30	
Trichlorofluoromethane	20.0	23.4	117	20.0	22.2	111	5.51	48 - 154	30	
1,2,3-Trichloropropane	20.0	19.9	99.3	20.0	19.9	99.3	0.0733	65 - 130	30	
1,2,4-Trimethylbenzene	20.0	21.1	106	20.0	20.9	104	1.00	75 - 132	30	
1,3,5-Trimethylbenzene	20.0	19.7	98.4	20.0	19.4	96.8	1.64	74 - 133	30	
Vinyl acetate	20.0	13.6	68.1	20.0	13.6	68.1	0.0459	10 - 150	30	\vdash
Vinyl chloride	20.0	24.7	124	20.0	23.9	120	3.15	45 - 140	30	
o-Xylene	20.0	18.5	92.7	20.0	18.5	92.7	0.0611	70 - 130	30	Т
m-,p-Xylene	40.0	39.0	97.4	40.0	38.3	95.7	1.78	70 - 130	30	

Surogates	LCS	LCS2	Surro	Surrogate Limits		Qualifier
	% Recovery	% Recovery	Bulloguee Elmies		24411101	
1,2-Dichloroethane-d4	110	107	80	-	120	PASS
Dibromofluoromethane	109	106	80	-	120	PASS
4-Bromofluorobenzene	104	104	74	-	121	PASS
Toluene-d8	107	106	81	-	117	PASS

* FAILS %REC LIMIT

FAILS RPD LIMIT

LCS_LCS2 - Modified 03/06/2008 PDF File ID: 1463903 Report generated: 08/12/2009 11:06

BFB

Login Number: L09080192

Instrument: HPMS9

Workgroup: WG307576

Analyst: TMB

Tune ID: WG307576-01

Run Date: 07/21/2009

Run Time: 09:58
File ID: 9M70935

Cal ID: <u>HPMS9-21-JUL-09</u>

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50.0	95.0	15.0	40.0	20.2	2676	PASS
75.0	95.0	30.0	60.0	51.1	6786	PASS
95.0	95.0	100	100	100	13268	PASS
96.0	95.0	5.00	9.00	8.28	1099	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	78.4	10396	PASS
175	174	5.00	9.00	7.48	778	PASS
176	174	95.0	101	98.0	10193	PASS
177	176	5.00	9.00	6.00	612	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG307576-02	STD-S	01	07/21/2009 10:24	
WG307576-03	STD-S	01	07/21/2009 10:55	П
WG307576-06	STD-S	01	07/21/2009 12:27	
WG307576-07	STD-CCV-S	01	07/21/2009 12:58	
WG307576-08	STD-S	01	07/21/2009 13:29	
WG307576-09	STD-S	01	07/21/2009 14:00	
WG307576-10	STD-S	01	07/21/2009 14:31	
WG307576-04	STD-S	01	07/21/2009 16:33	
WG307576-05	STD-S	01	07/21/2009 17:04	
WG307576-11	sscv-s	01	07/21/2009 18:37	

^{*} Sample past 12 hour tune limit

BFB

Login Number: L09080192

Instrument: HPMS9
Analyst: TMB

Workgroup: WG309407

Tune ID: WG309407-01

Run Date: 08/11/2009

Run Time: 09:39
File ID: 9M71358

Cal ID: <u>HPMS9-21-JUL-09</u>

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50.0	95.0	15.0	40.0	21.0	5259	PASS
75.0	95.0	30.0	60.0	49.4	12387	PASS
95.0	95.0	100	100	100	25077	PASS
96.0	95.0	5.00	9.00	7.32	1836	PASS
173	174	0	2.00	0	0	PASS
174	95.0	50.0	100	79.8	20000	PASS
175	174	5.00	9.00	8.13	1625	PASS
176	174	95.0	101	99.0	19795	PASS
177	176	5.00	9.00	6.70	1326	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG309407-02	ccv-s	01	08/11/2009 10:04	
WG309410-01	BLANK	01	08/11/2009 11:06	
WG309410-02	LCS	01	08/11/2009 11:36	
WG309410-03	LCS2	01	08/11/2009 12:06	
L09080192-01	SITE 1-TP-BF	01	08/11/2009 15:07	
L09080192-02	SITE 1-TP-TS	01	08/11/2009 15:37	
L09080192-03	SITE 2-BLM-TS	01	08/11/2009 16:07	
L09080192-04	SITE 2-BLM-BF	01	08/11/2009 16:37	
L09080192-05	SITE 3-ML-BF/TS	01	08/11/2009 17:08	

^{*} Sample past 12 hour tune limit

Login Number:L09080192
Analytical Method:8260B
ICAL Workgroup:WG307576

Instrument ID: HPMS9 Initial Calibration Date: 21-JUL-09 17:04 Column ID: F

Analyte		AVG RF	% RSD	LINEAR (R ²	QUAD(R ²)
1,1-Dichloroethene	CCC	0.4879	6.65		
1,2-Dichloropropane	CCC	0.2381	4.54		
Chloroform	CCC	0.5271	4.64		
Ethylbenzene	CCC	0.5329	18.4	1.00000	
Toluene	CCC	1.463	12.0		
Vinyl Chloride	ccc	0.1506	12.1		
1,1,2,2-Tetrachloroethane	SPCC	0.5939	6.47		
1,1-Dichloroethane	SPCC	0.5328	3.09		
Bromoform	SPCC	0.1856	9.99		
Chlorobenzene	SPCC	1.075	3.25		
Chloromethane	SPCC	0.2650	4.29		
1,1,1,2-Tetrachloroethane		0.3640	6.04		
1,1,1-Trichloroethane		0.5090	8.15		
1,1,2-Trichloroethane		0.2546	2.66		
1,1-Dichloropropene		0.4085	11.5		
1,2,3-Trichlorobenzene		0.7563	7.06		
1,2,3-Trichloropropane		0.1992	5.99		
1,2,4-Trichlorobenzene		0.8623	10.4		
1,2,4-Trimethylbenzene		2.972	9.46		
1,2-Dibromo-3-Chloropropane		0.1028	13.4		
1,2-Dibromoethane		0.2606	5.27		
1,2-Dichlorobenzene		1.460	2.55		
1,2-Dichloroethane		0.3707	5.81		
1,3,5-Trimethylbenzene		2.860	15.2		1.00000
1,3-Dichlorobenzene		1.720	3.20		
1,3-Dichloropropane		0.4272	4.55		
1,4-Dichlorobenzene		1.741	5.31		
2,2-Dichloropropane		0.4657	9.73		
2-Butanone		0.07815	5.91		
2-Chloroethyl Vinyl Ether		0.08868	20.4		0.99900
2-Chlorotoluene		2.944	6.23		
2-Hexanone		0.1344	8.51		
4-Chlorotoluene		2.388	5.19		
4-Methyl-2-Pentanone		0.05630	12.1		
Acetone		0.06087	18.7		0.99900
Benzene		1.090	8.37		
Bromobenzene		0.9133	2.45		
Bromochloromethane		0.1336	6.20		
Bromodichloromethane		0.3449	6.62		
Bromomethane		0.1381	11.6		
Carbon Disulfide		0.9563	4.57		
Carbon Tetrachloride		0.4695	8.98		
Chloroethane		0.1404	7.06		
Dibromochloromethane		0.3199	10.3		

INT_CAL - Modified 03/06/2008

PDF File ID: 1463985

Report generated 08/12/2009 11:07

Login Number:L09080192
Analytical Method:8260B
ICAL Workgroup:WG307576

Instrument ID: HPMS9
Initial Calibration Date: 21-JUL-09 17:04
Column ID: F

Analyte	AVG RF	% RSD	LINEAR (R2	QUAD(R2)
Dichlorodifluoromethane	0.3425	7.56		
Hexachlorobutadiene	0.5219	3.50		
Isopropylbenzene	1.708	15.7		1.00000
Methylene Chloride	0.2936	19.2		1.00000
Naphthalene	1.421	20.1	0.99900	
Styrene	1.019	16.2		1.00000
Tetrachloroethene	0.3612	5.70		
Trichloroethene	0.3216	6.93		
Trichlorofluoromethane	0.6042	6.39		
Vinyl Acetate	0.3953	13.4		
cis-1,2-Dichloroethene	0.3030	5.50		
cis-1,3-Dichloropropene	0.3547	13.3		
m-,p-Xylene	0.6476	16.7		1.00000
n-Butylbenzene	2.645	16.2	1.00000	
n-Propylbenzene	4.054	12.6		
o-Xylene	0.5456	28.0	1.00000	
p-Isopropyltoluene	3.165	16.1	0.99900	
sec-Butylbenzene	3.878	13.3		
tert-Butylbenzene	0.6553	12.0		
trans-1,2-Dichloroethene	0.2977	5.31		
trans-1,3-Dichloropropene	0.4668	11.2		

R = Correlation coefficient; 0.995 minimum

If the %RSD is greater than the limit specified by the method or project QAP, then linear or quadratic equations will be used.

 R^2 = Coefficient of determination; 0.99 minimum

Login Number: L09080192
Analytical Method: 8260B

Instrument ID: HPMS9

Initial Calibration Date: 21-JUL-09 17:04

Column ID:F

		WG307576-0	2		WG307576-0	3		WG307576-04	
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	NA	NA	NA	NA	NA	NA	2.00	15930.0000	0.4534
1,2-Dichloropropane	NA	NA	NA	NA	NA	NA	2.00	7835.00000	0.2230
Chloroform	NA	NA	NA	NA	NA	NA	2.00	17953.0000	0.5110
Ethylbenzene	0.500	2122.00000	0.3629	1.00	5470.00000	0.4580	2.00	13072.0000	0.5007
Toluene	0.500	7051.00000	1.206	1.00	14562.0000	1.219	2.00	36863.0000	1.412
Vinyl Chloride	NA	NA	NA	NA	NA	NA	2.00	5676.00000	0.1616
1,1,2,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	2.00	7511.00000	0.6340
1,1-Dichloroethane	NA	NA	NA	NA	NA	NA	2.00	18400.0000	0.5237
Bromoform	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	NA	NA	NA	NA	NA	NA	2.00	28857.0000	1.105
Chloromethane	NA	NA	NA	NA	NA	NA	2.00	9428.00000	0.2684
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	2.00	8807.00000	0.3373
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	2.00	16403.0000	0.4669
1,1,2-Trichloroethane	NA	NA	NA	NA	NA	NA	2.00	6622.00000	0.2536
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA	2.00	11725.0000	0.3337
1,2,3-Trichlorobenzene	NA	NA	NA	NA	NA	NA	2.00	8182.00000	0.6906
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA	2.00	2435.00000	0.2055
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA	NA	2.00	9218.00000	0.7781
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	2.00	29471.0000	2.488
1,2-Dibromo-3-Chloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	NA	NA	NA	NA	NA	NA	2.00	6638.00000	0.2542
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	2.00	17402.0000	1.469
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	2.00	13284.0000	0.3781
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA	2.00	25033.0000	2.113
1,3-Dichlorobenzene	NA	NA	NA	NA	NA	NA	2.00	20915.0000	1.765
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA	2.00	10704.0000	0.4100
1,4-Dichlorobenzene	NA	NA	NA	NA	NA	NA	2.00	22284.0000	1.881
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	2.00	14646.0000	0.4169
2-Butanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chloroethyl Vinyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	2.00	31213.0000	2.635
2-Hexanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorotoluene	NA	NA	NA	NA	NA	NA	2.00	26458.0000	2.233
4-Methyl-2-Pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	0.500	7079.00000	0.8804	1.00	17539.0000	1.073	2.00	39872.0000	1.135
Bromobenzene	NA	NA	NA	NA	NA	NA	2.00	10665.0000	0.9002
Bromochloromethane	NA	NA	NA	NA	NA	NA	2.00	4163.00000	0.1185
Bromodichloromethane	NA	NA	NA	NA	NA	NA	2.00	10963.0000	0.3120
Bromomethane	NA	NA	NA	NA	NA	NA	2.00	4106.00000	0.1169
Carbon Disulfide	NA	NA	NA	NA	NA	NA	2.00	33013.0000	0.9397
Carbon Tetrachloride	NA	NA	NA	NA	NA	NA	2.00	14481.0000	0.4122

INT_CAL - Modified 03/06/2008

PDF File ID: 1463985

Report generated 08/12/2009 11:07

Microbac ®

Login Number: L09080192
Analytical Method: 8260B

Instrument ID: HPMS9 Initial Calibration Date: 21-JUL-09 17:04 Column ID: F

		WG307576-0	5		WG307576-0	6		WG307576-0	7
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,1-Dichloroethene	5.00	38920.0000	0.4406	20.0	169232.000	0.5078	50.0	447858.000	0.5153
1,2-Dichloropropane	5.00	20014.0000	0.2266	20.0	80191.0000	0.2406	50.0	217010.000	0.2497
Chloroform	5.00	43670.0000	0.4944	20.0	185407.000	0.5564	50.0	479416.000	0.5516
Ethylbenzene	5.00	36464.0000	0.5567	20.0	150705.000	0.6095	50.0	408583.000	0.6281
Toluene	5.00	94304.0000	1.440	20.0	399876.000	1.617	50.0	1061783.00	1.632
Vinyl Chloride	5.00	14359.0000	0.1625	20.0	55531.0000	0.1666	50.0	133665.000	0.1538
1,1,2,2-Tetrachloroethane	5.00	18194.0000	0.6001	20.0	71161.0000	0.6172	50.0	189616.000	0.6094
1,1-Dichloroethane	5.00	45390.0000	0.5138	20.0	184821.000	0.5546	50.0	476449.000	0.5481
Bromoform	5.00	10251.0000	0.1565	20.0	46790.0000	0.1892	50.0	131538.000	0.2022
Chlorobenzene	5.00	69816.0000	1.066	20.0	273020.000	1.104	50.0	713457.000	1.097
Chloromethane	5.00	22776.0000	0.2578	20.0	93066.0000	0.2793	50.0	238382.000	0.2743
1,1,1,2-Tetrachloroethane	5.00	22133.0000	0.3379	20.0	94060.0000	0.3804	50.0	250618.000	0.3853
1,1,1-Trichloroethane	5.00	39948.0000	0.4522	20.0	185095.000	0.5554	50.0	471603.000	0.5426
1,1,2-Trichloroethane	5.00	16244.0000	0.2480	20.0	63749.0000	0.2578	50.0	170705.000	0.2624
1,1-Dichloropropene	5.00	32352.0000	0.3662	20.0	146247.000	0.4389	50.0	385229.000	0.4432
1,2,3-Trichlorobenzene	5.00	21826.0000	0.7198	20.0	82933.0000	0.7193	50.0	243089.000	0.7813
1,2,3-Trichloropropane	5.00	5929.00000	0.1955	20.0	23951.0000	0.2077	50.0	65793.0000	0.2115
1,2,4-Trichlorobenzene	5.00	23573.0000	0.7775	20.0	91641.0000	0.7948	50.0	280780.000	0.9024
1,2,4-Trimethylbenzene	5.00	84474.0000	2.786	20.0	368534.000	3.196	50.0	970527.000	3.119
1,2-Dibromo-3-Chloropropane	5.00	2427.00000	0.08000	20.0	11464.0000	0.09940	50.0	34895.0000	0.1122
1,2-Dibromoethane	5.00	15496.0000	0.2366	20.0	65176.0000	0.2636	50.0	176177.000	0.2708
1,2-Dichlorobenzene	5.00	43283.0000	1.428	20.0	172285.000	1.494	50.0	465972.000	1.498
1,2-Dichloroethane	5.00	31856.0000	0.3606	20.0	131989.000	0.3961	50.0	336384.000	0.3870
1,3,5-Trimethylbenzene	5.00	77368.0000	2.552	20.0	363140.000	3.150	50.0	967267.000	3.109
1,3-Dichlorobenzene	5.00	50630.0000	1.670	20.0	205514.000	1.783	50.0	539110.000	1.733
1,3-Dichloropropane	5.00	26119.0000	0.3987	20.0	107642.000	0.4354	50.0	290501.000	0.4466
1,4-Dichlorobenzene	5.00	53906.0000	1.778	20.0	204392.000	1.773	50.0	534139.000	1.717
2,2-Dichloropropane	5.00	35260.0000	0.3992	20.0	161920.000	0.4859	50.0	433752.000	0.4990
2-Butanone	5.00	7433.00000	0.08410	20.0	25573.0000	0.07670	50.0	69214.0000	0.07960
2-Chloroethyl Vinyl Ether	5.00	5474.00000	0.06200	20.0	23372.0000	0.07010	50.0	81830.0000	0.09410
2-Chlorotoluene	5.00	88943.0000	2.933	20.0	365071.000	3.166	50.0	950121.000	3.054
2-Hexanone	5.00	7733.00000	0.1181	20.0	31418.0000	0.1271	50.0	94012.0000	0.1445
4-Chlorotoluene	5.00	68136.0000	2.247	20.0	288492.000	2.502	50.0	769573.000	2.473
4-Methyl-2-Pentanone	5.00	4087.00000	0.04630	20.0	16914.0000	0.05080	50.0	53653.0000	0.06170
Acetone	5.00	7275.00000	0.08240	20.0	20885.0000	0.06270	50.0	51518.0000	0.05930
Benzene	5.00	97337.0000	1.102	20.0	386358.000	1.159	50.0	1012312.00	1.165
Bromobenzene	5.00	27462.0000	0.9057	20.0	108866.000	0.9442	50.0	288930.000	0.9286
Bromochloromethane	5.00	11905.0000	0.1348	20.0	45814.0000	0.1375	50.0	123404.000	0.1420
Bromodichloromethane	5.00	28387.0000	0.3213	20.0	119263.000	0.3579	50.0	319558.000	0.3676
Bromomethane	5.00	10438.0000	0.1182	20.0	49140.0000	0.1475	50.0	131250.000	0.1510
Carbon Disulfide	5.00	77880.0000	0.8816	20.0	324189.000	0.9728	50.0	873544.000	1.005
Carbon Tetrachloride	5.00	37322.0000	0.4225	20.0	171634.000	0.5150	50.0	430955.000	0.4958
			1	l	1	Ì	l	1	

INT_CAL - Modified 03/06/2008

PDF File ID: 1463985

Report generated 08/12/2009 11:07

Microbac ®

Login Number: L09080192
Analytical Method: 8260B

Instrument ID: HPMS9 Initial Calibration Date: 21-JUL-09 17:04 Column ID: F

CONC CONC			WG307576-0	8		WG307576-0	9		WG307576-1	0
1.7-Dichloropropane	Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Chloroform	1,1-Dichloroethene	100	955181.000	0.5122	200	1850439.00	0.4980	NA	NA	NA
Sthyleenzene	1,2-Dichloropropane	100	459400.000	0.2463	200	899718.000	0.2421	NA	NA	NA
Toluene	Chloroform	100	996532.000	0.5343	200	1912711.00	0.5147	NA	NA	NA
Viny1 Chloride	Ethylbenzene	100	846142.000	0.6147	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	Toluene	100	2218478.00	1.612	200	4172496.00	1.568	NA	NA	NA
1.1-pichloroethame	Vinyl Chloride	100	261522.000	0.1402	200	441433.000	0.1188	NA	NA	NA
Romoform	1,1,2,2-Tetrachloroethane	100	370514.000	0.5769	200	642306.000	0.5257	NA	NA	NA
Chlorobensene	1,1-Dichloroethane	100	1001882.00	0.5372	200	1929767.00	0.5193	NA	NA	NA
Chloromethane	Bromoform	100	275245.000	0.1999	200	478863.000	0.1800	NA	NA	NA
1,1,2-Tetrachloroethane	Chlorobenzene	100	1465433.00	1.065	200	2699613.00	1.015	NA	NA	NA
1,1,1-Trichloroethane	Chloromethane	100	488375.000	0.2619	200	922112.000	0.2481	NA	NA	NA
1,1,2=Trichloroethane	1,1,1,2-Tetrachloroethane	100	524772.000	0.3812	200	963399.000	0.3621	NA	NA	NA
1.1-Dichloropropene	1,1,1-Trichloroethane	100	982209.000	0.5267	200	1895064.00	0.5100	NA	NA	NA
1,2,3-Trichlorobenzene	1,1,2-Trichloroethane	100	357878.000	0.2600	200	653207.000	0.2455	NA	NA	NA
100	1,1-Dichloropropene	100	823651.000	0.4416	200	1587542.00	0.4272	NA	NA	NA
1.2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	100	526743.000	0.8202	200	985635.000	0.8067	NA	NA	NA
1,2,4-Trimethylbenzene	1,2,3-Trichloropropane	100	126026.000	0.1962	200	218181.000	0.1786	NA	NA	NA
1,2-Dibromo-3-Chloropropane 100	1,2,4-Trichlorobenzene	100	622270.000	0.9689	200	1163338.00	0.9521	NA	NA	NA
1.2-Dibromoethane	1,2,4-Trimethylbenzene	100	2049348.00	3.191	200	3726555.00	3.050	NA	NA	NA
1.2-Dichlorobenzene	1,2-Dibromo-3-Chloropropane	100	72256.0000	0.1125	200	134153.000	0.1098	NA	NA	NA
1,2-Dichloroethane	1,2-Dibromoethane	100	378213.000	0.2747	200	701933.000	0.2638	NA	NA	NA
1,3,5-Trimethylbenzene 100 2044778.00 3.184 200 3727444.00 3.051 NA NA NA NA 1,3-Dichlorobenzene 100 1108982.00 1.727 200 2003690.00 1.640 NA NA NA NA NA 1,3-Dichloropropane 100 613243.000 0.4455 200 1135426.00 0.4267 NA NA NA NA NA 1,4-Dichlorobenzene 100 1087098.00 1.693 200 1964192.00 1.608 NA NA NA NA NA 2,2-Dichloropropane 100 933391.000 0.5005 200 1830694.00 0.4926 NA NA NA NA NA 2,2-Dichloropropane 100 150156.000 0.08050 200 261410.000 0.07030 300 446185.000 0.07770 2-Chloroethyl Vinyl Ether 100 192125.000 0.1030 200 368791.000 0.09920 300 595325.000 0.1037 2-Chlorotoluene 100 1933005.00 3.010 200 3498145.00 2.863 NA NA NA NA 2-Hexanone 100 201886.000 0.1467 200 342674.000 0.1288 300 571366.000 0.1414 4-Chlorotoluene 100 18248.000 0.06340 200 289909.000 2.373 NA NA NA NA NA 4-Methyl-2-Pentanone 100 118248.000 0.06340 200 204690.000 0.05510 300 347278.000 0.05190 360000 0.05190 360000 0.05190 360000 0.05190 3600000 360000 360000 360000 360000 360000 360000 3600000 360000 360000 360000 360000 360000 360000 3600000 360000 360000 3600000 360000 360000 360000 360000 360000 360000 360000 360000 360000 360000 3600000 360000 360000 360000 360000 360000 360000 3600000 360000 360000 3600000 360000 360000 360000 360000 360000 360000 360000 3600000 3600000 3600000 360000 3600000 3600000 3600000 36000000 3600000000 360000000000	1,2-Dichlorobenzene	100	942598.000	1.468	200	1715654.00	1.404	NA	NA	NA
1.3-Dichlorobenzene	1,2-Dichloroethane	100	684462.000	0.3670	200	1246662.00	0.3355	NA	NA	NA
13-Dichloropropane 100 613243.000 0.4455 200 1135426.00 0.4267 NA NA NA NA 1,4-Dichlorobenzene 100 1087098.00 1.693 200 1964192.00 1.608 NA NA NA NA NA 2,2-Dichloropropane 100 933391.000 0.5005 200 1830694.00 0.4926 NA NA NA NA NA NA 2-Butanone 100 150156.000 0.08050 200 261410.000 0.07030 300 446185.000 0.07770 2-Chloroethyl Vinyl Ether 100 192125.000 0.1030 200 368791.000 0.09920 300 595325.000 0.1037 2-Chlorotoluene 100 1933005.00 3.010 200 3498145.00 2.863 NA NA NA NA NA NA 2-Hexanone 100 201886.000 0.1467 200 342674.000 0.1288 300 571366.000 0.1414 4-Chlorotoluene 100 1605775.00 2.500 200 2899090.00 2.373 NA NA NA NA NA 4-Methyl-2-Pentanone 100 16412.000 0.06340 200 204690.000 0.05510 300 347278.000 0.06505 Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 200507.000 1.126 200 4007096.00 1.078 NA NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA NA Bromochloromethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Romomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Romomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Romomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA NA Romomethane 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA NA NA NA NA N	1,3,5-Trimethylbenzene	100	2044778.00	3.184	200	3727444.00	3.051	NA	NA	NA
1.4-Dichlorobenzene	1,3-Dichlorobenzene	100	1108982.00	1.727	200	2003690.00	1.640	NA	NA	NA
2,2-Dichloropropane 100 933391.000 0.5005 200 1830694.00 0.4926 NA NA NA NA	1,3-Dichloropropane	100	613243.000	0.4455	200	1135426.00	0.4267	NA	NA	NA
2-Butanone 100 150156.000 0.08050 200 261410.000 0.07030 300 446185.000 0.07770 2-Chloroethyl Vinyl Ether 100 192125.000 0.1030 200 368791.000 0.09920 300 595325.000 0.1037 2-Chlorotoluene 100 1933005.00 3.010 200 3498145.00 2.863 NA NA NA NA NA 2-Hexanone 100 201886.000 0.1467 200 342674.000 0.1288 300 571366.000 0.1414 4-Chlorotoluene 100 1605775.00 2.500 200 2899090.00 2.373 NA NA NA NA NA 4-Methyl-2-Pentanone 100 18248.000 0.06340 200 204690.000 0.05510 300 347278.000 0.06050 Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA NA Bromochloromethane 100 257501.000 0.9199 200 1076506.00 0.8811 NA NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA NA NA Bromodichloromethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA NA	1,4-Dichlorobenzene	100	1087098.00	1.693	200	1964192.00	1.608	NA	NA	NA
2-Chloroethyl Vinyl Ether 100 192125.000 0.1030 200 368791.000 0.09920 300 595325.000 0.1037 2-Chlorotoluene 100 1933005.00 3.010 200 3498145.00 2.863 NA NA NA NA 2-Hexanone 100 201886.000 0.1467 200 342674.000 0.1288 300 571366.000 0.1414 4-Chlorotoluene 100 1605775.00 2.500 200 2899090.00 2.373 NA NA NA NA 4-Methyl-2-Pentanone 100 118248.000 0.06340 200 204690.000 0.05510 300 347278.000 0.06050 Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromochloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	2,2-Dichloropropane	100	933391.000	0.5005	200	1830694.00	0.4926	NA	NA	NA
2-Chlorotoluene 100 1933005.00 3.010 200 3498145.00 2.863 NA NA NA NA NA ACCARDON Disulfide 100 1933005.00 3.010 200 3498145.00 2.863 NA	2-Butanone	100	150156.000	0.08050	200	261410.000	0.07030	300	446185.000	0.07770
2-Hexanone 100 201886.000 0.1467 200 342674.000 0.1288 300 571366.000 0.1414 4-Chlorotoluene 100 1605775.00 2.500 200 2899090.00 2.373 NA NA NA NA 4-Methyl-2-Pentanone 100 118248.000 0.06340 200 204690.000 0.05510 300 347278.000 0.06050 Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA NA Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	2-Chloroethyl Vinyl Ether	100	192125.000	0.1030	200	368791.000	0.09920	300	595325.000	0.1037
4-Chlorotoluene 100 1605775.00 2.500 200 2899090.00 2.373 NA NA NA 4-Methyl-2-Pentanone 100 118248.000 0.06340 200 204690.000 0.05510 300 347278.000 0.06050 Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromomethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA<	2-Chlorotoluene	100	1933005.00	3.010	200	3498145.00	2.863	NA	NA	NA
4-Methyl-2-Pentanone 100 118248.000 0.06340 200 204690.000 0.05510 300 347278.000 0.06050 Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA NA Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA NA Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA NA	2-Hexanone	100	201886.000	0.1467	200	342674.000	0.1288	300	571366.000	0.1414
Acetone 100 106412.000 0.05710 200 192507.000 0.05180 300 298130.000 0.05190 Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	4-Chlorotoluene	100	1605775.00	2.500	200	2899090.00	2.373	NA	NA	NA
Benzene 100 2100507.00 1.126 200 4007096.00 1.078 NA NA NA Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	4-Methyl-2-Pentanone	100	118248.000	0.06340	200	204690.000	0.05510	300	347278.000	0.06050
Bromobenzene 100 590759.000 0.9199 200 1076506.00 0.8811 NA NA NA Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	Acetone	100	106412.000	0.05710	200	192507.000	0.05180	300	298130.000	0.05190
Bromochloromethane 100 257501.000 0.1381 200 486108.000 0.1308 NA NA NA Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	Benzene	100	2100507.00	1.126	200	4007096.00	1.078	NA	NA	NA
Bromodichloromethane 100 673497.000 0.3611 200 1298225.00 0.3494 NA NA NA Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	Bromobenzene	100	590759.000	0.9199	200	1076506.00	0.8811	NA	NA	NA
Bromomethane 100 274854.000 0.1474 200 547644.000 0.1474 NA NA NA Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	Bromochloromethane	100	257501.000	0.1381	200	486108.000	0.1308	NA	NA	NA
Carbon Disulfide 100 1842308.00 0.9878 200 3532407.00 0.9506 NA NA NA	Bromodichloromethane	100	673497.000	0.3611	200	1298225.00	0.3494	NA	NA	NA
	Bromomethane	100	274854.000	0.1474	200	547644.000	0.1474	NA	NA	NA
Carbon Tetrachloride 100 919312.000 0.4929 200 1777829.00 0.4784 NA NA NA	Carbon Disulfide	100	1842308.00	0.9878	200	3532407.00	0.9506	NA	NA	NA
	Carbon Tetrachloride	100	919312.000	0.4929	200	1777829.00	0.4784	NA	NA	NA

Microbac Laboratories Inc. INITIAL CALIBRATION DATA

00083642

Login Number: L09080192
Analytical Method: 8260B

Instrument ID: HPMS9

Initial Calibration Date: 21-JUL-09 17:04

Column ID:F

		WG307576-0	2		WG307576-0	3		WG307576-0	4
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Chloroethane	NA	NA	NA	NA	NA	NA	2.00	4358.00000	0.1240
Dibromochloromethane	NA	NA	NA	NA	NA	NA	2.00	7139.00000	0.2734
Dibromomethane	NA	NA	NA	NA	NA	NA	2.00	4958.00000	0.1411
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	2.00	10983.0000	0.3126
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	2.00	5851.00000	0.4939
Isopropylbenzene	NA	NA	NA	NA	NA	NA	2.00	33115.0000	1.268
Methylene Chloride	NA	NA	NA	NA	NA	NA	2.00	14122.0000	0.4020
Naphthalene	NA	NA	NA	NA	NA	NA	2.00	12530.0000	1.058
Styrene	NA	NA	NA	NA	NA	NA	2.00	19582.0000	0.7500
Tetrachloroethene	NA	NA	NA	NA	NA	NA	2.00	8637.00000	0.3308
Trichloroethene	NA	NA	NA	NA	NA	NA	2.00	10449.0000	0.2974
Trichlorofluoromethane	NA	NA	NA	NA	NA	NA	2.00	19507.0000	0.5552
Vinyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	2.00	9749.00000	0.2775
cis-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	2.00	10490.0000	0.2986
m-,p-Xylene	1.00	5418.00000	0.4633	2.00	12231.0000	0.5121	4.00	32716.0000	0.6265
n-Butylbenzene	NA	NA	NA	NA	NA	NA	2.00	22913.0000	1.934
n-Propylbenzene	NA	NA	NA	NA	NA	NA	2.00	38174.0000	3.222
o-Xylene	0.500	1845.00000	0.3155	1.00	4228.00000	0.3540	2.00	12450.0000	0.4769
p-Isopropyltoluene	NA	NA	NA	NA	NA	NA	2.00	26994.0000	2.279
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	2.00	35430.0000	2.991
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	2.00	5973.00000	0.5042
trans-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	2.00	9892.00000	0.2816
trans-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	2.00	10503.0000	0.4023

Microbac Laboratories Inc. INITIAL CALIBRATION DATA

00083643

Login Number: L09080192
Analytical Method: 8260B

Instrument ID: <u>HPMS9</u>
Initial Calibration Date: <u>21-JUL-09 17:04</u>

 					 	 _
٥,	lun		тт	٠. ٠		
-c		ш		J.F		

		WG307576-0	5		WG307576-0	6		WG307576-0	7
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Chloroethane	5.00	12107.0000	0.1371	20.0	50895.0000	0.1527	50.0	126863.000	0.1460
Dibromochloromethane	5.00	18665.0000	0.2849	20.0	80382.0000	0.3251	50.0	226237.000	0.3478
Dibromomethane	5.00	12116.0000	0.1372	20.0	49586.0000	0.1488	50.0	132352.000	0.1523
Dichlorodifluoromethane	5.00	29381.0000	0.3326	20.0	127729.000	0.3833	50.0	312373.000	0.3594
Hexachlorobutadiene	5.00	15388.0000	0.5075	20.0	61599.0000	0.5343	50.0	161679.000	0.5196
Isopropylbenzene	5.00	97336.0000	1.486	20.0	461108.000	1.865	50.0	1244723.00	1.914
Methylene Chloride	5.00	26968.0000	0.3053	20.0	91449.0000	0.2744	50.0	233480.000	0.2686
Naphthalene	5.00	35114.0000	1.158	20.0	151435.000	1.313	50.0	488641.000	1.571
Styrene	5.00	57954.0000	0.8847	20.0	266787.000	1.079	50.0	756692.000	1.163
Tetrachloroethene	5.00	22330.0000	0.3409	20.0	94544.0000	0.3824	50.0	243392.000	0.3742
Trichloroethene	5.00	25592.0000	0.2897	20.0	110188.000	0.3307	50.0	295172.000	0.3396
Trichlorofluoromethane	5.00	50733.0000	0.5743	20.0	218390.000	0.6553	50.0	554391.000	0.6378
Vinyl Acetate	5.00	27158.0000	0.3074	20.0	124810.000	0.3745	50.0	327706.000	0.3770
cis-1,2-Dichloroethene	5.00	25352.0000	0.2870	20.0	104249.000	0.3128	50.0	276671.000	0.3183
cis-1,3-Dichloropropene	5.00	26143.0000	0.2959	20.0	118172.000	0.3546	50.0	341774.000	0.3932
m-,p-Xylene	10.0	86981.0000	0.6639	40.0	371724.000	0.7517	100	970003.000	0.7456
n-Butylbenzene	5.00	69748.0000	2.300	20.0	332937.000	2.888	50.0	885031.000	2.845
n-Propylbenzene	5.00	110056.000	3.630	20.0	512926.000	4.449	50.0	1351830.00	4.345
o-Xylene	5.00	33969.0000	0.5186	20.0	162441.000	0.6570	50.0	448923.000	0.6902
p-Isopropyltoluene	5.00	85411.0000	2.817	20.0	398275.000	3.454	50.0	1068157.00	3.433
sec-Butylbenzene	5.00	106570.000	3.515	20.0	485067.000	4.207	50.0	1287932.00	4.140
tert-Butylbenzene	5.00	19247.0000	0.6348	20.0	81394.0000	0.7060	50.0	213475.000	0.6861
trans-1,2-Dichloroethene	5.00	24236.0000	0.2744	20.0	103983.000	0.3120	50.0	268148.000	0.3085
trans-1,3-Dichloropropene	5.00	26147.0000	0.3992	20.0	119902.000	0.4849	50.0	332547.000	0.5112

Microbac Laboratories Inc. INITIAL CALIBRATION DATA

00083644

Login Number: L09080192
Analytical Method: 8260B

Instrument ID: <u>HPMS9</u>
Initial Calibration Date: <u>21-JUL-09 17:04</u>

Column ID:F

		WG307576-0	8		WG307576-0	9		WG307576-1	0
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Chloroethane	100	270495.000	0.1450	200	511416.000	0.1376	NA	NA	NA
Dibromochloromethane	100	484131.000	0.3517	200	895138.000	0.3364	NA	NA	NA
Dibromomethane	100	280202.000	0.1502	200	525159.000	0.1413	NA	NA	NA
Dichlorodifluoromethane	100	643368.000	0.3450	200	1197457.00	0.3222	NA	NA	NA
Hexachlorobutadiene	100	344851.000	0.5370	200	658682.000	0.5391	NA	NA	NA
Isopropylbenzene	100	2628226.00	1.909	200	4797485.00	1.803	NA	NA	NA
Methylene Chloride	100	489285.000	0.2624	200	925816.000	0.2491	NA	NA	NA
Naphthalene	100	1112667.00	1.733	200	2068953.00	1.693	NA	NA	NA
Styrene	100	1580531.00	1.148	200	2897317.00	1.089	NA	NA	NA
Tetrachloroethene	100	513859.000	0.3733	200	973182.000	0.3657	NA	NA	NA
Trichloroethene	100	636273.000	0.3412	200	1230402.00	0.3311	NA	NA	NA
Trichlorofluoromethane	100	1147459.00	0.6153	200	2181829.00	0.5871	NA	NA	NA
Vinyl Acetate	100	835870.000	0.4482	200	1601978.00	0.4311	300	2490804.00	0.4338
cis-1,2-Dichloroethene	100	585764.000	0.3141	200	1145372.00	0.3082	NA	NA	NA
cis-1,3-Dichloropropene	100	747374.000	0.4007	200	1432021.00	0.3854	NA	NA	NA
m-,p-Xylene	200	2008317.00	0.7294	400	3661090.00	0.6880	NA	NA	NA
n-Butylbenzene	100	1926311.00	2.999	200	3548169.00	2.904	NA	NA	NA
n-Propylbenzene	100	2854393.00	4.445	200	5174234.00	4.235	NA	NA	NA
o-Xylene	100	945832.000	0.6871	200	1771225.00	0.6657	NA	NA	NA
p-Isopropyltoluene	100	2296688.00	3.576	200	4190800.00	3.430	NA	NA	NA
sec-Butylbenzene	100	2757358.00	4.294	200	5038873.00	4.124	NA	NA	NA
tert-Butylbenzene	100	455203.000	0.7088	200	845184.000	0.6917	NA	NA	NA
trans-1,2-Dichloroethene	100	574009.000	0.3078	200	1122656.00	0.3021	NA	NA	NA
trans-1,3-Dichloropropene	100	706514.000	0.5132	200	1303268.00	0.4898	NA	NA	NA

Microbac Laboratories Inc. ALTERNATE SOURCE CALIBRATION REPORT

 Login Number: L09080192
 Run Date: 07/21/2009
 Sample ID: WG307576-11

 Instrument ID: HPMS9
 Run Time: 18:37
 Method: 8260B

 File ID: 9M70952
 Analyst: TMB
 QC Key: STD

Analyte		Expected	Found	Units	RF	%D	UCL	Q
Chloroform	CCC	20.0	20.8	ug/kg	0.547	3.80	30	
1,1-Dichloroethene	CCC	20.0	18.8	ug/kg	0.458	6.00	30	
1,2-Dichloropropane	CCC	20.0	20.2	ug/kg	0.241	1.20	30	
Ethylbenzene	CCC	20.0	20.8	ug/kg	0.636	4.00	30	
Toluene	CCC	20.0	22.0	ug/kg	1.61	10.1	30	
Vinyl Chloride	CCC	20.0	20.2	ug/kg	0.152	1.20	30	
Bromoform	SPCC	20.0	19.6	ug/kg	0.182	2.20	30	
Chlorobenzene	SPCC	20.0	20.5	ug/kg	1.10	2.70	30	
Chloromethane	SPCC	20.0	19.4	ug/kg	0.257	3.10	30	
1,1-Dichloroethane	SPCC	20.0	19.8	ug/kg	0.527	1.20	30	
1,1,2,2-Tetrachloroethane	SPCC	20.0	19.8	ug/kg	0.588	1.10	30	
Acetone		20.0	21.5	ug/kg	0.0689	7.70	30	
Benzene		20.0	20.7	ug/kg	1.13	3.70	30	
Bromobenzene		20.0	21.4	ug/kg	0.979	7.20	30	
Bromochloromethane		20.0	19.5	ug/kg	0.131	2.30	30	
Bromodichloromethane		20.0	21.0	ug/kg	0.362	4.80	30	
Bromomethane		20.0	20.1	ug/kg	0.138	0.300	30	
2-Butanone		20.0	20.2	ug/kg	0.0788	0.800	30	
n-Butylbenzene		20.0	20.1	ug/kg	2.88	0.600	30	
sec-Butylbenzene		20.0	22.3	ug/kg	4.32	11.4	30	
tert-Butylbenzene		20.0	22.1	ug/kg	0.725	10.7	30	
Carbon Disulfide		20.0	18.3	ug/kg	0.874	8.60	30	
Carbon Tetrachloride		20.0	20.0	ug/kg	0.470	0.100	30	
Dibromochloromethane		20.0	20.3	ug/kg	0.324	1.40	30	
Chloroethane		20.0	19.9	ug/kg	0.140	0.600	30	
2-Chloroethyl Vinyl Ether		20.0	18.4	ug/kg	0.0772	7.90	30	
2-Chlorotoluene		20.0	22.0	ug/kg	3.24	10.0	30	
4-Chlorotoluene		20.0	21.3	ug/kg	2.54	6.40	30	
1,2-Dibromo-3-Chloropropane		20.0	18.7	ug/kg	0.0963	6.30	30	
1,2-Dibromoethane		20.0	19.6	ug/kg	0.256	1.90	30	
Dibromomethane		20.0	20.8	ug/kg	0.151	4.00	30	
1,2-Dichlorobenzene		20.0	20.9	ug/kg	1.53	4.50	30	
1,3-Dichlorobenzene		20.0	20.7	ug/kg	1.78	3.50	30	
1,4-Dichlorobenzene		20.0	20.0	ug/kg	1.74	0.100	30	
Dichlorodifluoromethane		20.0	27.3	ug/kg	0.467	36.3	30	*
1,2-Dichloroethane		20.0	19.9	ug/kg	0.368	0.600	30	
cis-1,2-Dichloroethene		20.0	19.9	ug/kg	0.302	0.500	30	
trans-1,2-Dichloroethene		20.0	22.2	ug/kg	0.330	10.9	30	
1,3-Dichloropropane		20.0	20.2	ug/kg	0.432	1.10	30	
2,2-Dichloropropane		20.0	18.5	ug/kg	0.432	7.30	30	
cis-1,3-Dichloropropene		20.0	20.2	ug/kg	0.358	0.900	30	
trans-1,3-Dichloropropene		20.0	17.8	ug/kg	0.416	11.0	30	

ALT - Modified 09/06/2007

Version 1.5 PDF File ID: 1463986 Report generated 08/12/2009 11:07

Microbac Laboratories Inc. ALTERNATE SOURCE CALIBRATION REPORT

 Login Number: L09080192
 Run Date: 07/21/2009
 Sample ID: WG307576-11

 Instrument ID: HPMS9
 Run Time: 18:37
 Method: 8260B

 File ID: 9M70952
 Analyst: TMB
 QC Key: STD

ICal Workgroup: WG307576 Cal ID: HPMS9 - 21-JUL-09

Analyte	Expected	Found	Units	RF	%D	UCL	Q
1,1-Dichloropropene	20.0	19.9	ug/kg	0.406	0.500	30	
2-Hexanone	20.0	19.0	ug/kg	0.128	4.80	30	
Hexachlorobutadiene	20.0	20.2	ug/kg	0.528	1.10	30	
Isopropylbenzene	20.0	18.1	ug/kg	1.70	9.70	30	
p-Isopropyltoluene	20.0	19.7	ug/kg	3.39	1.70	30	
4-Methyl-2-Pentanone	20.0	17.9	ug/kg	0.0503	10.6	30	
Methylene Chloride	20.0	18.8	ug/kg	0.262	6.10	30	
Naphthalene	20.0	17.8	ug/kg	1.33	10.9	30	
n-Propylbenzene	20.0	22.0	ug/kg	4.47	10.2	30	
Styrene	20.0	19.6	ug/kg	1.11	2.00	30	
1,1,1,2-Tetrachloroethane	20.0	21.1	ug/kg	0.384	5.60	30	
Tetrachloroethene	20.0	20.5	ug/kg	0.369	2.30	30	
1,2,3-Trichlorobenzene	20.0	19.4	ug/kg	0.734	2.90	30	
1,2,4-Trichlorobenzene	20.0	18.3	ug/kg	0.790	8.40	30	
1,1,1-Trichloroethane	20.0	20.3	ug/kg	0.517	1.50	30	
1,1,2-Trichloroethane	20.0	20.4	ug/kg	0.260	2.00	30	
Trichloroethene	20.0	20.5	ug/kg	0.330	2.50	30	
Trichlorofluoromethane	20.0	19.5	ug/kg	0.589	2.60	30	
1,2,3-Trichloropropane	20.0	20.3	ug/kg	0.202	1.40	30	
1,2,4-Trimethylbenzene	20.0	22.0	ug/kg	3.27	10.1	30	
1,3,5-Trimethylbenzene	20.0	20.5	ug/kg	3.20	2.70	30	
Vinyl Acetate	20.0	7.20	ug/kg	0.142	64.0	40	*
o-Xylene	20.0	20.0	ug/kg	0.668	0	30	
m-,p-Xylene	40.0	40.2	ug/kg	0.754	0.400	30	

^{*} Exceeds %D Limit

CCC Calibration Check Compounds SPCC System Performance Check Compounds

ALT - Modified 09/06/2007 Version 1.5 PDF File ID: 1463986 Report generated 08/12/2009 11:07

Microbac ®

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309407-02

 Instrument ID: HPMS9
 Run Time: 10:04
 Method: 8260B

 File ID: 9M71359
 Analyst: TMB
 QC Key: STD

Workgroup (AAB#):WG309410 Cal ID: HPMS9 - 21-JUL-09

Matrix:SOIL

Analyte		Expected	Found	UNITS	RF	%D	UCL	Q
Chloroform	CCC	50.0	49.5	ug/kg	0.522	0.977	20	
1,1-Dichloroethene	CCC	50.0	48.6	ug/kg	0.475	2.74	20	
1,2-Dichloropropane	CCC	50.0	48.0	ug/kg	0.229	3.98	20	
Ethylbenzene	CCC	50.0	46.4	ug/kg	0.571	7.29	20	
Toluene	CCC	50.0	50.1	ug/kg	1.47	0.198	20	
Vinyl Chloride	CCC	50.0	47.9	ug/kg	0.144	4.16	20	
Bromoform	SPCC	50.0	50.8	ug/kg	0.189	1.65	40	
Chlorobenzene	SPCC	50.0	45.9	ug/kg	0.988	8.15	40	
Chloromethane	SPCC	50.0	46.5	ug/kg	0.246	7.01	40	
1,1-Dichloroethane	SPCC	50.0	48.1	ug/kg	0.513	3.78	40	
1,1,2,2-Tetrachloroethane	SPCC	50.0	47.6	ug/kg	0.565	4.85	40	
Acetone		50.0	46.7	ug/kg	0.0543	6.56	40	
Benzene		50.0	49.4	ug/kg	1.08	1.16	40	
Bromobenzene		50.0	47.7	ug/kg	0.871	4.65	40	
Bromochloromethane		50.0	48.0	ug/kg	0.128	4.02	40	
Bromodichloromethane		50.0	51.1	ug/kg	0.353	2.21	40	
Bromomethane		50.0	50.9	ug/kg	0.141	1.82	40	
2-Butanone		50.0	46.9	ug/kg	0.0733	6.28	40	
n-Butylbenzene		50.0	46.8	ug/kg	2.72	6.31	40	
sec-Butylbenzene		50.0	50.6	ug/kg	3.92	1.14	40	
tert-Butylbenzene		50.0	49.4	ug/kg	0.647	1.28	40	
Carbon Disulfide		50.0	47.8	ug/kg	0.914	4.44	40	
Carbon Tetrachloride		50.0	54.6	ug/kg	0.513	9.28	40	
Dibromochloromethane		50.0	50.0	ug/kg	0.320	0.00220	40	
Chloroethane		50.0	50.4	ug/kg	0.142	0.856	40	
2-Chloroethyl Vinyl Ether		50.0	46.4	ug/kg	0.0871	7.27	40	
2-Chlorotoluene		50.0	46.1	ug/kg	2.71	7.84	40	
4-Chlorotoluene		50.0	51.8	ug/kg	2.47	3.55	40	
1,2-Dibromo-3-Chloropropane		50.0	47.7	ug/kg	0.0980	4.65	40	
1,2-Dibromoethane		50.0	45.6	ug/kg	0.238	8.70	40	
Dibromomethane		50.0	49.4	ug/kg	0.144	1.11	40	
1,2-Dichlorobenzene		50.0	46.9	ug/kg	1.37	6.11	40	
1,3-Dichlorobenzene		50.0	46.5	ug/kg	1.60	7.04	40	
1,4-Dichlorobenzene		50.0	45.4	ug/kg	1.58	9.20	40	
Dichlorodifluoromethane		50.0	48.6	ug/kg	0.333	2.74	40	
1,2-Dichloroethane		50.0	50.2	ug/kg	0.372	0.310	40	
cis-1,2-Dichloroethene		50.0	48.4	ug/kg	0.293	3.21	40	
trans-1,2-Dichloroethene		50.0	47.6	ug/kg	0.283	4.87	40	
1,3-Dichloropropane		50.0	46.9	ug/kg	0.401	6.17	40	
2,2-Dichloropropane		50.0	53.0	ug/kg	0.494	6.00	40	
cis-1,3-Dichloropropene		50.0	51.7	ug/kg	0.367	3.31	40	
trans-1,3-Dichloropropene		50.0	51.3	ug/kg	0.479	2.58	40	

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309407-02

 Instrument ID: HPMS9
 Run Time: 10:04
 Method: 8260B

 File ID: 9M71359
 Analyst: TMB
 QC Key: STD

Workgroup (AAB#):WG309410 Cal ID: HPMS9 - 21-JUL-09

Matrix:SOIL

Analyte	Expected	Found	UNITS	RF	%D	UCL	Q
1,1-Dichloropropene	50.0	50.7	ug/kg	0.414	1.44	40	
2-Hexanone	50.0	49.8	ug/kg	0.134	0.457	40	
Hexachlorobutadiene	50.0	45.8	ug/kg	0.478	8.47	40	
Isopropylbenzene	50.0	45.5	ug/kg	1.76	9.06	40	
p-Isopropyltoluene	50.0	46.7	ug/kg	3.23	6.54	40	
4-Methyl-2-Pentanone	50.0	52.1	ug/kg	0.0587	4.28	40	
Methylene Chloride	50.0	44.4	ug/kg	0.240	11.2	40	
Naphthalene	50.0	41.1	ug/kg	1.34	17.8	40	
n-Propylbenzene	50.0	50.6	ug/kg	4.10	1.20	40	
Styrene	50.0	44.4	ug/kg	1.03	11.2	40	
1,1,1,2-Tetrachloroethane	50.0	49.8	ug/kg	0.363	0.364	40	
Tetrachloroethene	50.0	48.4	ug/kg	0.350	3.18	40	
1,2,3-Trichlorobenzene	50.0	43.7	ug/kg	0.661	12.6	40	
1,2,4-Trichlorobenzene	50.0	44.8	ug/kg	0.772	10.4	40	
1,1,1-Trichloroethane	50.0	52.9	ug/kg	0.538	5.74	40	
1,1,2-Trichloroethane	50.0	46.2	ug/kg	0.235	7.60	40	
Trichloroethene	50.0	49.7	ug/kg	0.320	0.595	40	
Trichlorofluoromethane	50.0	51.2	ug/kg	0.619	2.45	40	
1,2,3-Trichloropropane	50.0	48.2	ug/kg	0.192	3.64	40	
1,2,4-Trimethylbenzene	50.0	49.6	ug/kg	2.95	0.853	40	
1,3,5-Trimethylbenzene	50.0	46.4	ug/kg	2.95	7.24	40	
Vinyl Acetate	50.0	41.5	ug/kg	0.328	17.1	40	
o-Xylene	50.0	46.1	ug/kg	0.618	7.74	40	
m-,p-Xylene	100	89.9	ug/kg	0.673	10.1	40	
1,2-Dichloroethene	100	96.0	ug/kg	0.288	4.04	40	
Xylenes	150	136	ug/kg	0.645	9.30	40	

^{*} Exceeds %D Criteria

CCC Calibration Check Compounds
SPCC System Performance Check Compounds

Login Number: L09080192 Instrument ID: HPMS9

Workgroup (AAB#): WG309410

CCV Number: WG309407-02

CAL ID: HPMS9-21-JUL-09

Matrix: SOLID

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG309407-02	NA	NA	302371	652045	846379
Upper Limit	NA	NA	604742	1304090	1692758
Lower Limit	NA	NA	151186	326023	423190
L09080192-01	1.00	01	225718	514110	671931
L09080192-02	1.00	01	191793	485386	649839
L09080192-03	1.00	01	166380	460945	632507
L09080192-04	1.00	01	166780	475914	665304
L09080192-05	1.00	01	181700	449168	601349
WG309410-01	1.00	01	262572	599255	783781
WG309410-02	1.00	01	261137	574660	747452
WG309410-03	1.00	01	267718	590892	766659

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5 IS-3 - Fluorobenzene

<u>Underline</u> = Response outside limits

Microbac Laboratories Inc. INTERNAL STANDARD RETENTION TIME SUMMARY (COMPARED TO CCV)

Login Number: L09080192
Instrument ID: HPMS9
Workgroup (AAB#): WG309410

CCV Number: WG309407-02

CAL ID: HPMS9-21-JUL-09

Matrix: SOLID

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3
WG309407-02	NA	NA	15.08	12.12	8.27
Upper Limit	NA	NA	15.58	12.62	8.77
Lower Limit	NA	NA	14.58	11.62	7.77
L09080192-01	1.00	01	15.08	12.11	8.28
L09080192-02	1.00	01	15.08	12.11	8.28
L09080192-03	1.00	01	15.08	12.12	8.27
L09080192-04	1.00	01	15.08	12.12	8.27
L09080192-05	1.00	01	15.08	12.12	8.28
WG309410-01	1.00	01	15.08	12.12	8.27
WG309410-02	1.00	01	15.08	12.12	8.27
WG309410-03	1.00	01	15.08	12.11	8.28

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Chlorobenzene-d5
IS-3 - Fluorobenzene

Underline = Response outside limits

INTERNAL_STD_RT - Modified 03/06/2008
 PDF File ID: 1463991
Report generated 08/12/2009 11:07

2.2 Semivolatiles Data

2.2.1 Semivolatiles GC/MS Data (8270)

2.2.1.1 Summary Data

LABORATORY REPORT

L09080192

08/13/09 14:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
SITE 1-TP-BF	L09080192-01	8270C	1	11-AUG-09
SITE 1-TP-TS	L09080192-02	8270C	1	11-AUG-09
SITE 2-BLM-TS	L09080192-03	8270C	1	11-AUG-09
SITE 2-BLM-BF	L09080192-04	8270C	1	11-AUG-09
SITE 3-ML-BF/TS	L09080192-05	8270C	1	11-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1465216
Report generated: 08/13/2009 14:09

Microbac

1 OF 1

Report Number: L09080192

Report Date : August 13, 2009

00083655

Sample Number: L09080192-01 PrePrep Method: NONE Instrument: HPMS4

Client ID: SITE 1-TP-BF Prep Method: 3545

Matrix: soil Analytical Method: 8270C
Workgroup Number: WG309468 Analyst: CAA
Collect Date: 08/09/2009 10:45
Sample Tag: 01 Units: ug/kg

Prep Date: 08/11/2009 10:59
Cal Date: 05/26/2009 18:05
Run Date: 08/11/2009 19:13

Lution:1 File ID: 4M47713
Units:ug/kg Percent Solid:77.4

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,2,4-Trichlorobenzene	120-82-1		U	248	124
1,2-Dichlorobenzene	95-50-1		U	248	124
1,3-Dichlorobenzene	541-73-1		U	248	124
1,4-Dichlorobenzene	106-46-7		U	248	124
2,4,5-Trichlorophenol	95-95-4		U	248	124
2,4,6-Trichlorophenol	88-06-2		U	248	124
2,4-Dichlorophenol	120-83-2		U	248	124
2,4-Dimethylphenol	105-67-9		U	248	124
2,4-Dinitrophenol	51-28-5		U	1240	496
2,4-Dinitrotoluene	121-14-2		U	248	124
2,6-Dinitrotoluene	606-20-2		U	248	124
2-Chloronaphthalene	91-58-7		U	248	124
2-Chlorophenol	95-57-8		U	248	124
2-Methylnaphthalene	91-57-6		U	248	124
2-Methylphenol	95-48-7		U	248	124
2-Nitroaniline	88-74-4		U	1240	496
2-Nitrophenol	88-75-5		U	248	124
3,3'-Dichlorobenzidine	91-94-1		U	496	248
3-,4-Methylphenol	106-44-5		U	248	124
3-Nitroaniline	99-09-2		U	1240	496
4,6-Dinitro-2-methylphenol	534-52-1		Ū	1240	496
4-Bromophenyl-phenylether	101-55-3		Ū	248	124
4-Chloro-3-methylphenol	59-50-7		U	248	124
4-Chloroaniline	106-47-8		Ū	248	124
4-Chlorophenyl-phenyl ether	7005-72-3		U	248	124
4-Nitroaniline	100-01-6		U	1240	496
4-Nitrophenol	100-01-6		Ū	1240	496
	83-32-9		U	248	124
Acenaphthene			U	248	124
Acenaphthylene	208-96-8				
Anthracene	120-12-7		U	248	124
Benzo(a)anthracene	56-55-3		U	248	124
Benzo(a)pyrene	50-32-8		U	248	124
Benzo(b)fluoranthene	205-99-2		U	248	124
Benzo(g,h,i)Perylene	191-24-2		U	248	124
Benzo(k)fluoranthene	207-08-9		U	248	124
Benzoic acid	65-85-0		U	7520	496
Benzyl alcohol	100-51-6		U	248	124
Bis(2-Chloroethoxy)Methane	111-91-1		U	248	124
Bis(2-Chloroethyl)ether	111-44-4		Ū	248	124
bis(2-Chloroisopropyl)ether	108-60-1		Ū	248	124
bis(2-Ethylhexyl)phthalate	117-81-7		U	248	124
Butylbenzylphthalate	85-68-7		U	248	124
Chrysene	218-01-9		U	248	124
Di-N-Butylphthalate	84-74-2		U	248	124
Di-n-octylphthalate	117-84-0		U	248	124
Dibenzo(a,h)Anthracene	53-70-3		U	248	124
Dibenzofuran	132-64-9		U	248	124
Diethylphthalate	84-66-2		U	248	124
Dimethylphthalate	131-11-3		U	248	124
Fluoranthene	206-44-0		U	248	124
Fluorene	86-73-7		U	248	124
Hexachlorobenzene	118-74-1		U	248	124
Hexachlorobutadiene	87-68-3		U	248	124
Hexachlorocyclopentadiene	77-47-4		U	248	124
Hexachloroethane	67-72-1		U	248	124
Indeno(1,2,3-cd)pyrene	193-39-5		U	248	124
Isophorone	78-59-1		U	248	124
N-Nitrosodiphenylamine	86-30-6		U	248	124
N-Nitrosodipropylamine	621-64-7	1	U	248	124

1 of 10

Report Number: L09080192

p-Terphenyl-d14

Phenol-d5

Report Date : August 13, 2009

00083656

Sample Number:L09080192-01 PrePrep Method:NONE Instrument: HPMS4 Prep Date: 08/11/2009 10:59

Client ID: SITE 1-TP-BF Prep Method: 3545 Matrix: Soil Analytical Method: 8270C Workgroup Number: WG309468 Analyst: CAA Collect Date: 08/09/2009 10:45 Dilution: 1 Sample Tag: 01

Run Date: 08/11/2009 19:13 File ID: 4M47713
Percent Solid: 77.4 Units: ug/kg

Cal Date: 05/26/2009 18:05

Analyte	CAS. Numb	er	Re	esult	Qual		PQL	SDL
Naphthalene	91-20-3	91-20-3			Ū		248	124
Nitrobenzene	98-95-3	98-95-3			Ū		248	124
Pentachlorophenol	87-86-5	87-86-5			Ū		1240	496
Phenanthrene	85-01-8	85-01-8 t		Ū		248	124	
Phenol	108-95-2	108-95-2		Ū		248	124	
Pyrene	129-00-0)			U		248	124
Surrogate	% Recovery	Lowe	er	Uppe	r	Qual		
2,4,6-Tribromophenol	68.2	19		122				
2-Fluorobiphenyl	61.5	30		115				
2-Fluorophenol	57.5	25		121				
Nitrobenzene-d5	63.9	23		120				
p-Terphenyl-d14	67.7	18		137				

58.5

24

113

of 10

U Not detected at or above adjusted sample detection limit

Report Number: L09080192

Report Date : August 13, 2009

00083657

Sample Number: L09080192-02 PrePrep Method: NONE Instrument: HPMS4

Client ID: SITE 1-TP-TS Prep Method: 3545

Matrix:Soil Analytical Method: 8270C
Workgroup Number:WG309468 Analyst:CAA
Collect Date:08/09/2009 10:50 Dilution:1
Sample Tag:01 Units:ug/kg

Prep Date: 08/11/2009 10:59
Cal Date: 05/26/2009 18:05
Run Date: 08/11/2009 19:48
File IN: 48/274

File ID: 4M47714
Percent Solid: 79.5

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,2,4-Trichlorobenzene	120-82-1		Ū	239	120
1,2-Dichlorobenzene	95-50-1		U	239	120
1,3-Dichlorobenzene	541-73-1		U	239	120
1,4-Dichlorobenzene	106-46-7		U	239	120
2,4,5-Trichlorophenol	95-95-4		U	239	120
2,4,6-Trichlorophenol	88-06-2		U	239	120
2,4-Dichlorophenol	120-83-2		U	239	120
2,4-Dimethylphenol	105-67-9		U	239	120
2,4-Dinitrophenol	51-28-5		U	1200	478
2,4-Dinitrotoluene	121-14-2		Ū	239	120
2,6-Dinitrotoluene	606-20-2		U	239	120
2-Chloronaphthalene	91-58-7		Ū	239	120
2-Chlorophenol	95-57-8		U	239	120
2-Methylnaphthalene	91-57-6		U	239	120
2-Methylphenol	95-48-7		U	239	120
	88-74-4		U	1200	478
2-Nitroaniline					
2-Nitrophenol	88-75-5	1	U	239	120
3,3'-Dichlorobenzidine	91-94-1		U	478	239
3-,4-Methylphenol	106-44-5		U	239	120
3-Nitroaniline	99-09-2		U	1200	478
4,6-Dinitro-2-methylphenol	534-52-1		U	1200	478
4-Bromophenyl-phenylether	101-55-3		U	239	120
4-Chloro-3-methylphenol	59-50-7		U	239	120
4-Chloroaniline	106-47-8		U	239	120
4-Chlorophenyl-phenyl ether	7005-72-3		U	239	120
4-Nitroaniline	100-01-6		U	1200	478
4-Nitrophenol	100-02-7		U	1200	478
Acenaphthene	83-32-9		U	239	120
Acenaphthylene	208-96-8		U	239	120
Anthracene	120-12-7		U	239	120
Benzo(a)anthracene	56-55-3		U	239	120
Benzo(a)pyrene	50-32-8		U	239	120
Benzo(b)fluoranthene	205-99-2		U	239	120
Benzo(g,h,i)Perylene	191-24-2		U	239	120
Benzo(k)fluoranthene	207-08-9		U	239	120
Benzoic acid	65-85-0		U	7250	478
Benzyl alcohol	100-51-6		U	239	120
Bis(2-Chloroethoxy)Methane	111-91-1		U	239	120
Bis(2-Chloroethyl)ether	111-44-4		Ū	239	120
bis(2-Chloroisopropyl)ether	108-60-1		U	239	120
bis(2-Ethylhexyl)phthalate	117-81-7		U	239	120
Butylbenzylphthalate	85-68-7		U	239	120
Chrysene	218-01-9		U	239	120
Di-N-Butylphthalate	84-74-2	128	J	239	120
	117-84-0	120	U	239	120
Dibenzo(a,h)Anthracene	53-70-3		U	239	120
			U	239	120
Dibenzofuran	132-64-9	1			120
Diethylphthalate	84-66-2	1	U	239	
Dimethylphthalate	131-11-3		U	239	120
Fluoranthene	206-44-0		U	239	120
Fluorene	86-73-7		U	239	120
Hexachlorobenzene	118-74-1		U	239	120
Hexachlorobutadiene	87-68-3		U	239	120
Hexachlorocyclopentadiene	77-47-4		U	239	120
Hexachloroethane	67-72-1		U	239	120
Indeno(1,2,3-cd)pyrene	193-39-5		U	239	120
Isophorone	78-59-1		U	239	120
N-Nitrosodiphenylamine	86-30-6		U	239	120
N-Nitrosodipropylamine	621-64-7		U	239	120

3 of 10

Report Date : August 13, 2009

Report Number: L09080192

Sample Tag: 01

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

00083658

Sample Number: L09080192-02 PrePrep Method:NONE Instrument: HPMS4 Prep Method: 3545 Client ID: SITE 1-TP-TS Matrix: Soil Analytical Method: 8270C Workgroup Number: WG309468 Analyst: CAA

Collect Date: 08/09/2009 10:50 Dilution: $\overline{1}$ Units: ug/kg

Prep Date: 08/11/2009 10:59 Cal Date: 05/26/2009 18:05 Run Date: 08/11/2009 19:48 File ID: 4M47714
Percent Solid: 79.5

Analyte	CAS. Numb	er	Re	esult	Qual		PQL	SDL		
Naphthalene	91-20-3	91-20-3		91-20-3					239	120
Nitrobenzene	98-95-3	98-95-3			Ū	239		120		
Pentachlorophenol	87-86-5	·5		U	1	L200	478			
Phenanthrene	85-01-8			U		239	120			
Phenol	108-95-2	2		U		239	120			
Pyrene	129-00-0	0			U		239	120		
Surrogate	% Recovery	Lowe	er	Uppe	r	Qual		•		
2,4,6-Tribromophenol	102	19		122						
2-Fluorobiphenyl	59.6	30		115						
2-Fluorophenol	58.2	25		121						

69.8

70.0

59.8

23

18

24

120

137

113

of 10

U Not detected at or above adjusted sample detection limit

 $[{] t J}$ The analyte was positively identified, but the quantitation was below the RL

Report Number: L09080192

Report Date : August 13, 2009

00083659

Sample Number: L09080192-03 PrePrep Method: NONE Instrument: HPMS4

Client ID: SITE 2-BLM-TS Prep Method: 3545

Matrix: Soil
Workgroup Number: WG309468
Collect Date: 08/09/2009 11:20
Sample Tag: 01

Prep Method: 3545
Analytical Method: 8270C

Prep Method: 8270C

Prep Date: 08/11/2009 10:59
Cal Date: 05/26/2009 18:05

Analyst: CAA Run Date: 08/11/2009 20:23

Dilution: 1 File ID: 4M47715

Units: ug/kg Percent Solid: 78.2

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,2,4-Trichlorobenzene	120-82-1		U	223	112
1,2-Dichlorobenzene	95-50-1		U	223	112
1,3-Dichlorobenzene	541-73-1		U	223	112
1,4-Dichlorobenzene	106-46-7		U	223	112
2,4,5-Trichlorophenol	95-95-4		U	223	112
2,4,6-Trichlorophenol	88-06-2		U	223	112
2,4-Dichlorophenol	120-83-2		U	223	112
2,4-Dimethylphenol	105-67-9		U	223	112
2,4-Dinitrophenol	51-28-5		U	1120	447
2,4-Dinitrotoluene	121-14-2		U	223	112
2,6-Dinitrotoluene	606-20-2		U	223	112
2-Chloronaphthalene	91-58-7		U	223	112
2-Chlorophenol	95-57-8		Ū	223	112
2-Methylnaphthalene	91-57-6		U	223	112
2-Methylphenol	95-48-7		U	223	112
2-Nitroaniline	88-74-4		U	1120	447
2-Nitrophenol	88-75-5		U	223	112
3,3'-Dichlorobenzidine	91-94-1		U	447	223
3-,4-Methylphenol	106-44-5		Ū	223	112
3-Nitroaniline	99-09-2		U	1120	447
4,6-Dinitro-2-methylphenol	534-52-1		Ū	1120	447
4-Bromophenyl-phenylether	101-55-3		U	223	112
4-Chloro-3-methylphenol	59-50-7		U	223	112
4-Chloroaniline	106-47-8		U	223	112
4-Chlorophenyl-phenyl ether	7005-72-3		U	223	112
4-Nitroaniline	100-01-6		U	1120	447
4-Nitrophenol	100-01-0		Ū	1120	447
Acenaphthene	83-32-9		Ū	223	112
Acenaphthylene	208-96-8		Ū	223	112
Anthracene	120-12-7		Ū	223	112
Benzo(a)anthracene	56-55-3		Ū	223	112
Benzo(a)pyrene	50-33-8		U	223	112
Benzo(b)fluoranthene	205-99-2		U	223	112
Benzo(g,h,i)Perylene	191-24-2		U	223	112
Benzo(k)fluoranthene	207-08-9		U	223	112
Benzoic acid	65-85-0		U	6770	447
Benzyl alcohol	100-51-6		U	223	112
Bis(2-Chloroethoxy)Methane	111-91-1		U	223	112
Bis(2-Chloroethyl)ether	111-41-4		U	223	112
bis(2-Chloroisopropyl)ether	108-60-1		U	223	112
bis(2-Ethylhexyl)phthalate	117-81-7		Ū	223	112
Butylbenzylphthalate	85-68-7		U	223	112
Chrysene	218-01-9		Ū	223	112
Di-N-Butylphthalate	84-74-2		U	223	112
	117-84-0		U	223	112
Di-n-octylphthalate					
Dibenzo(a,h)Anthracene	53-70-3		U	223	112
Dibenzofuran	132-64-9		U	223	112
Diethylphthalate	84-66-2		U	223	112
Dimethylphthalate	131-11-3		U	223	112
Fluoranthene	206-44-0		U	223	112
Fluorene	86-73-7		U	223	112
Hexachlorobenzene	118-74-1		U	223	112
Hexachlorobutadiene	87-68-3		U	223	112
Hexachlorocyclopentadiene	77-47-4		U	223	112
Hexachloroethane	67-72-1		U	223	112
Indeno(1,2,3-cd)pyrene	193-39-5		U	223	112
Isophorone	78-59-1		U	223	112
N-Nitrosodiphenylamine	86-30-6		U	223	112
N-Nitrosodipropylamine	621-64-7	1	Ū	223	112

5 of 10

Report Number: L09080192

Phenol-d5

Report Date : August 13, 2009

00083660

 Sample Number: L09080192-03
 PrePrep Method:NONE
 Instrument: HPMS4

 Client ID: SITE 2-BLM-TS
 Prep Method: 3545
 Prep Date: 08/11/2009 10:59

 Matrix: Soil
 Analytical Method: 8270C
 Cal Date: 05/26/2009 18:05

Matrix:Soil Analytical Method:8270C

Workgroup Number:WG309468 Analyst:CAA

Collect Date:08/09/2009 11:20 Dilution:1

Sample Tag:01 Units:ug/kg

 nalyst:CAA
 Run Date: 08/11/2009 20:23

 lution:1
 File ID: 4M47715

 Units:ug/kg
 Percent Solid: 78.2

Analyte	CAS. Numb	er	R	esult	Qual		PQL	SDL		
Naphthalene	91-20-3	91-20-3			Ū		223	112		
Nitrobenzene	98-95-3	98-95-3		98-95-3			Ū		223	112
Pentachlorophenol	87-86-5	87-86-5 U		Ū		1120	447			
Phenanthrene	85-01-8	3		Ū		223	112			
Phenol	108-95-	2		Ū		223	112			
Pyrene	129-00-0	0		Ū		223	112			
Surrogate	% Recovery	Lowe	wer Upper		r	Qual		•		
2,4,6-Tribromophenol	65.5	19		122			1			
2-Fluorobiphenyl	46.6	30		115]			
2-Fluorophenol	48.8	25		121]			
Nitrobenzene-d5	58.4	23		120]			
p-Terphenyl-d14	63.6	18		137]			

24

113

51.4

6 of 10

U Not detected at or above adjusted sample detection limit

Report Number: L09080192

Report Date : August 13, 2009

00083661

Sample Number: L09080192-04 PrePrep Method: NONE Instrument: HPMS4

Client ID: SITE 2-BLM-BF Prep Method: 3545

Matrix: soil
Workgroup Number: wG309468
Collect Date: 08/09/2009 11:25
Sample Tag: 01

PrePrep Method:NONE Instrument:HPMS4
Prep Method:3545 Prep Date:08/11/2009 10:59
Analytical Method:8270C Cal Date:05/26/2009 18:05

Analyst: CAA Run Date: 08/11/2009 20:58

Dilution: 1 File ID: 4M47716

Units: ug/kg Percent Solid: 78.3

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,2,4-Trichlorobenzene	120-82-1		U	236	118
1,2-Dichlorobenzene	95-50-1		U	236	118
1,3-Dichlorobenzene	541-73-1		U	236	118
1,4-Dichlorobenzene	106-46-7		U	236	118
2,4,5-Trichlorophenol	95-95-4		U	236	118
2,4,6-Trichlorophenol	88-06-2		U	236	118
2,4-Dichlorophenol	120-83-2		U	236	118
2,4-Dimethylphenol	105-67-9		U	236	118
2,4-Dinitrophenol	51-28-5		U	1180	471
2,4-Dinitrotoluene	121-14-2		U	236	118
2,6-Dinitrotoluene	606-20-2		U	236	118
2-Chloronaphthalene	91-58-7		U	236	118
2-Chlorophenol	95-57-8		U	236	118
2-Methylnaphthalene	91-57-6		U	236	118
2-Methylphenol	95-48-7		U	236	118
2-Nitroaniline	88-74-4		U	1180	471
2-Nitrophenol	88-75-5		U	236	118
3,3'-Dichlorobenzidine	91-94-1		Ū	471	236
3-,4-Methylphenol	106-44-5		U	236	118
3-Nitroaniline	99-09-2		Ū	1180	471
4,6-Dinitro-2-methylphenol	534-52-1		U	1180	471
4-Bromophenyl-phenylether	101-55-3		U	236	118
4-Chloro-3-methylphenol	59-50-7		U	236	118
4-Chloroaniline	106-47-8		U	236	118
4-Chlorophenyl-phenyl ether	7005-72-3		U	236	118
4-Nitroaniline	100-01-6		U	1180	471
4-Nitrophenol	100-02-7		U	1180	471
Acenaphthene	83-32-9		U	236	118
Acenaphthylene	208-96-8		U	236	118
Anthracene	120-12-7		U	236	118
Benzo(a)anthracene	56-55-3		U	236	118
Benzo(a)pyrene	50-32-8		U	236	118
Benzo(b)fluoranthene	205-99-2		U	236	118
Benzo(g,h,i)Perylene	191-24-2		U	236	118
Benzo(k)fluoranthene	207-08-9		U	236	118
Benzoic acid	65-85-0	1400	J	7140	471
Benzyl alcohol	100-51-6		U	236	118
Bis(2-Chloroethoxy)Methane	111-91-1		U	236	118
Bis(2-Chloroethyl)ether	111-44-4		U	236	118
bis(2-Chloroisopropyl)ether	108-60-1		U	236	118
bis(2-Ethylhexyl)phthalate	117-81-7		U	236	118
Butylbenzylphthalate	85-68-7		U	236	118
Chrysene	218-01-9		U	236	118
Di-N-Butylphthalate	84-74-2		U	236	118
Di-n-octylphthalate	117-84-0		U	236	118
Dibenzo(a,h)Anthracene	53-70-3		U	236	118
Dibenzofuran	132-64-9		U	236	118
Diethylphthalate	84-66-2	1	U	236	118
	04-00-2				1
Dimethylphthalate	131-11-3		U	236	118
Dimethylphthalate Fluoranthene			U U	236 236	118
	131-11-3				
Fluoranthene	131-11-3 206-44-0		U	236	118
Fluoranthene Fluorene	131-11-3 206-44-0 86-73-7		U	236 236	118 118
Fluoranthene Fluorene Hexachlorobenzene	131-11-3 206-44-0 86-73-7 118-74-1		U U U	236 236 236	118 118 118
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	131-11-3 206-44-0 86-73-7 118-74-1 87-68-3		U U U	236 236 236 236	118 118 118 118
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	131-11-3 206-44-0 86-73-7 118-74-1 87-68-3 77-47-4		U U U U U U U U U U U U U U U U U U U	236 236 236 236 236	118 118 118 118 118
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	131-11-3 206-44-0 86-73-7 118-74-1 87-68-3 77-47-4 67-72-1		U U U U U U U U U U U U U U U U U U U	236 236 236 236 236 236 236	118 118 118 118 118 118
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene	131-11-3 206-44-0 86-73-7 118-74-1 87-68-3 77-47-4 67-72-1 193-39-5		U U U U U U U U U U U U U U U U U U U	236 236 236 236 236 236 236 236	118 118 118 118 118 118 118 118

7 of 10

Report Number: L09080192

Report Date : August 13, 2009

00083662

Sample Number: L09080192-04 PrePrep Method:NONE Instrument: HPMS4 Prep Date: 08/11/2009 10:59

Client ID: SITE 2-BLM-BF Prep Method: 3545 Matrix: Soil Analytical Method: 8270C Cal Date: 05/26/2009 18:05 Workgroup Number: WG309468 Analyst: CAA Run Date: 08/11/2009 20:58 Collect Date: 08/09/2009 11:25 Dilution: $\overline{1}$

File ID: 4M47716
Percent Solid: 78.3 Sample Tag: 01 Units: ug/kg

Analyte	CAS. Numb	CAS. Number Result		Qual		PQL	SDL
Naphthalene	91-20-3	91-20-3		U		236	118
Nitrobenzene	98-95-3	98-95-3		U	236		118
Pentachlorophenol	87-86-5				1180		471
Phenanthrene	85-01-8					236	118
Phenol	108-95-2	2			236		118
Pyrene	129-00-0)		U		236	118
Surrogate	% Recovery	Lower	Upp	er	Qual		•
2,4,6-Tribromophenol	76.9	19	12	122			
2-Fluorobiphenyl	57.1	30	11	115			
2-Fluorophenol	41.3	25	12	121			
Nitrobenzene-d5	53.3	23	12	0			
p-Terphenyl-d14	66.5	18	13	7			
Phenol-d5	49.0	24	11	3		1	

of 10

U Not detected at or above adjusted sample detection limit

 $[{] t J}$ The analyte was positively identified, but the quantitation was below the RL

Report Number: L09080192

Report Date : August 13, 2009

00083663

Sample Number: L09080192-05 PrePrep Method: NONE Instrument: HPMS4

Client ID: SITE 3-ML-BF/TS Prep Method: 3545

Matrix: Soil Analytical Method: 8270C
Workgroup Number: W309468 Analyst: CAA
Collect Date: 08/09/2009 12:00
Sample Tag: 01 Units: ug/kg

Prep Date: 08/11/2009 10:59
Cal Date: 05/26/2009 18:05
Run Date: 08/11/2009 21:32

Lution: 1 File ID: 4M47717
Units: ug/kg Percent Solid: 88.2

Analyte	CAS. Number	Result	Qual	PQL	SDL
1,2,4-Trichlorobenzene	120-82-1		U	213	107
1,2-Dichlorobenzene	95-50-1		U	213	107
1,3-Dichlorobenzene	541-73-1		U	213	107
1,4-Dichlorobenzene	106-46-7		U	213	107
2,4,5-Trichlorophenol	95-95-4		U	213	107
2,4,6-Trichlorophenol	88-06-2		U	213	107
2,4-Dichlorophenol	120-83-2		U	213	107
2,4-Dimethylphenol	105-67-9		U	213	107
2,4-Dinitrophenol	51-28-5		U	1070	427
2,4-Dinitrotoluene	121-14-2		U	213	107
2,6-Dinitrotoluene	606-20-2		U	213	107
2-Chloronaphthalene	91-58-7		U	213	107
2-Chlorophenol	95-57-8		U	213	107
2-Methylnaphthalene	91-57-6		U	213	107
2-Methylphenol	95-48-7		U	213	107
2-Nitroaniline	88-74-4		U	1070	427
2-Nitrophenol	88-75-5		U	213	107
3,3'-Dichlorobenzidine	91-94-1		Ū	427	213
3-,4-Methylphenol	106-44-5		U	213	107
3-Nitroaniline	99-09-2		U	1070	427
4,6-Dinitro-2-methylphenol	534-52-1		U	1070	427
4-Bromophenyl-phenylether	101-55-3		U	213	107
			U	213	107
4-Chloro-3-methylphenol	59-50-7			213	107
4-Chloroaniline	106-47-8		U		
4-Chlorophenyl-phenyl ether	7005-72-3		U	213	107
4-Nitroaniline	100-01-6		U	1070	427
4-Nitrophenol	100-02-7		U	1070	427
Acenaphthene	83-32-9		U	213	107
Acenaphthylene	208-96-8		U	213	107
Anthracene	120-12-7		U	213	107
Benzo(a)anthracene	56-55-3		U	213	107
Benzo(a)pyrene	50-32-8		U	213	107
Benzo(b)fluoranthene	205-99-2		U	213	107
Benzo(g,h,i)Perylene	191-24-2		U	213	107
Benzo(k)fluoranthene	207-08-9		U	213	107
Benzoic acid	65-85-0		U	6470	427
Benzyl alcohol	100-51-6		U	213	107
Bis(2-Chloroethoxy)Methane	111-91-1		U	213	107
Bis(2-Chloroethyl)ether	111-44-4		U	213	107
bis(2-Chloroisopropyl)ether	108-60-1		U	213	107
bis(2-Ethylhexyl)phthalate	117-81-7		U	213	107
Butylbenzylphthalate	85-68-7		U	213	107
Chrysene	218-01-9		U	213	107
Di-N-Butylphthalate	84-74-2		υ	213	107
Di-n-octylphthalate	117-84-0		U	213	107
Dibenzo(a,h)Anthracene	53-70-3		U	213	107
Dibenzofuran	132-64-9		U	213	107
Diethylphthalate	84-66-2		U	213	107
Dimethylphthalate	131-11-3		U	213	107
Fluoranthene	206-44-0		U	213	107
Fluorene	86-73-7		υ	213	107
Hexachlorobenzene	118-74-1		υ	213	107
Hexachlorobutadiene	87-68-3		U	213	107
Hexachlorocyclopentadiene	77-47-4		U	213	107
Hexachloroethane	67-72-1		U	213	107
Indeno(1,2,3-cd)pyrene	193-39-5		Ū	213	107
Isophorone	78-59-1		Ū	213	107
N-Nitrosodiphenylamine	86-30-6		U	213	107
occupation, tumino	00 50 0	1	1 -	220	

9 of 10

00083664

Report Number: L09080192

Sample Number:L09080192-05

Matrix: Soil

p-Terphenyl-d14 Phenol-d5

Client ID: SITE 3-ML-BF/TS

Report Date : August 13, 2009

PrePrep Method:NONE Instrument: HPMS4

Prep Method: 3545 Prep Date: 08/11/2009 10:59 Analytical Method: 8270C Cal Date: 05/26/2009 18:05

113

Workgroup Number: WG309468 Analyst: CAA Run Date: 08/11/2009 21:32 File ID: 4M47717
Percent Solid: 88.2 Collect Date: 08/09/2009 12:00 Dilution: 1 Sample Tag: 01 Units: ug/kg

Analyte	CAS. Numb	CAS. Number Resul		esult	Qual		PQL	SDL
Naphthalene	91-20-3	91-20-3		Ū	213		107	
Nitrobenzene	98-95-3	98-95-3			Ū		213	107
Pentachlorophenol	87-86-5	5			Ū	1070		427
Phenanthrene	85-01-8	3			U		213	107
Phenol	108-95-	2			U		213	107
Pyrene	129-00-	0			U	213		107
Surrogate	% Recovery	Lowe	er	Uppe	r	Qual		,
2,4,6-Tribromophenol	104	19		122			1	
2-Fluorobiphenyl	59.7	30		115			1	
2-Fluorophenol	55.6	25		121			1	
Nitrobenzene-d5	63.4	23		120			1	
p-Terphenyl-d14	89.7	18		137			1	

56.9

24

10 of 10

U Not detected at or above adjusted sample detection limit

2.2.1.2 QC Summary Data

Example 8270 Calculations

1.0 Calculating the Response Factor (RF) from the initial calibration (ICAL) data:

RF = [(Ax) (Cis)] / [(Ais) (Cx)]

	RF = Calculated Response Factor	1.65935
	Cx = Concentration of the compound in the standard being measured (ug/mL)	50
	Ais = Area of the characteristic ion of the specific internal standard	608044
	Cis = Concentration of the specific internal standard (ug/mL)	40
	Ax = Area of the characteristic ion for the compound being measured:	1261197
where:		
		<u>Example</u>

2.0 Calculating the concentration (C) of a compound in water using the data from the prep log and quantitation report: *

Cx = [(Ax)(Cis)(Vf)(D)]/[(Ais)(RF)(Vi)]

		Example
where:		
	Ax = Area of the characteristic ion for the compound being measured	367250
	Cis = Concentration of the specific internal standard (ug/mL)	40
	Vf = Final volume of sample extract from prep log (mL)	1
	D = Dilution factor for sample as a multiplier ($10x = 10$)	1
	Ais = Area of the characteristic ion of the specific internal standard	511641
	RF = Average RF from the ICAL	1.65935
	Vi = Initial volume of sample extracted from prep log (mL)	1021
	Cx = Concentration of the compound in the sample being measured (ug/mL)	0.016947
	Cx = Concentration of the compound in the sample being measured (ug/L)	16.947

3.0 Calculating the concentration (C) of a compound in soil using the data from the prep log and quantitation report: *

Cx = [(Ax)(Cis)(Vf)(D)]/[(Ais)(RF)(Wi)]

	- 1(/(// // // // // //	Example
where:		
	Ax = Area of the characteristic ion for the compound being measured	367250
	Cis = Concentration of the specific internal standard (ug/mL)	40
	Vf = Final volume of sample extract from prep log (mL)	1
	D = Dilution factor for sample as a multiplier (10x = 10)	1
	Ais = Area of the characteristic ion of the specific internal standard	511641
	RF = Average RF from the ICAL	1.65935
	Wi = Initial weight of sample extracted (g) from prep log	30
	Cx = Concentration of the compound in the sample being measured (ug/g)	0.576763
	Cx = Concentration of the compound in the sample being measured (ug/kg)	576.7627
Dry weig	ht correction:	
	Percent solids (PCT_S)	50

Percent solids (PCT_S) 50
Cd = (Cx) (100)/PCT_S 1153.525 ug/kg

4.0 Concentration from Linear Regression

Step 1: Retrieve Curve Data From Plot, y = mx + b

y = response ratio = response of analyte / response of IS = Ax/Ais

x = amount ratio = concentration analyte/concentration internal standard = Cx / Cis

m = slope from curve plot

b = intercept from curve plot

Step 2: Calculate y from Quantitation Report

y = 16790/784838 = 0.02139

^{*} Concentrations appearing on the instrument quantitation reports are on-column results and do not take into account initial volume, final volume, and the dilution factor.

Step 3: Solve for x

x = (y - b)/m = [(0.02139 - (-0.0435)]/0.0783 = 0.829]

Step 4: Solve for analyte concentration Cx

Cx = Cis(x) = (25.0)(0.829) = 20.72 ug/L

Example Spreadsheet Calculation:

Slope from curve, m: 0.0783 Intercept from curve, b: -0.0435 Area of analyte, Ax: 16790

Area of Internal Standard , Ais: 784484 Concentration of IS, Cis 25.00 ug/L Response Ratio (y): 0.021403

Amount Ratio: 0.828897

Concentration (Cx): 20.72241 ug/L

5.0 Concentration from Quadratic Regression

Step 1 - Retrieve Curve Data from Plot, y = Ax^2 + Bx + C

Where:

 $Ax^2 + Bx + (C - y) = 0$

A, B, C = constants from the ICAL quadratic regression

y = Response ratio = Area of analyte/Area of internal standard (IS)

x = Amount ratio = Concentration of analyte/concentration of IS

Step 2: Calculate y from Quantitation Report

y = Ax/Ais

Step 3: Solve for x using the quadratic formula

 $Ax^2 + Bx + C - y = 0$

$$x = \frac{b \pm \sqrt{(b^2 - 4a(c - y))}}{2a}$$
 (Two possible solutions)

Step 4: Solve for analyte concentration Cx

Cx = (Cis)(Amount ratio)

Example Spreadsheet Calculation:

Value of A from plot: **0.0259**Value of B from plot: **0.0596**

Value of C from plot: -0.0165

Area of analyte from quantitation report: 203233
Area of IS from quantitation report: 1425653

Response ratio, y: 0.142554

C - y: -0.15905 Root 1 - Computed amount ratio , X1: -3.88278

Root 2 - Computed amount ratio , X2: 1.581623 use this solution

Concentration of IS, Cis: 40.00
Concentration of analyte, Cx: 63.26 ug/L

Microbac Laboratories Inc. Sample Extract Log

Workgroup: WG309434

Methylene Chloride Lot #: COA14020

Analyst:CAF

Purified Lab Sand Lot #: COA13873

Spike Analyst: CAF

Diatomaceous Earth Lot #: COA13977

STD33345

STD33345

1 mL

1 mL

Colored

Colored

Method: 3545

Sodium Sulfate, Anhydrous, Granular (Lot #: COA13907

Run Date: 08/11/2009 10:59

1% Acetic Acid Lot #:RGT13669

Surr Solution: STD33058

SOP: ASE01 Revison 7

LCS

LCS2

Spike Witness: CPD

	SAMPLE #	Type	Reference	Prod	Init Amnt	Surr Amnt	Spike Amnt	Spike Sol	Final Vol	Color
1	L09080192-01	SAMP		8270	17.18 g	.5 mL			1 mL	Transparent
2	L09080192-02	SAMP		8270	17.36 g	.5 mL			1 mL	Colored
3	L09080192-03	SAMP		8270	18.9 g	.5 mL			1 mL	Colored
4	L09080192-04	SAMP		8270	17.88 g	.5 mL			1 mL	Colored
5	L09080192-05	SAMP		8270	17.54 g	.5 mL			1 mL	Colored
6	L09080205-01	SAMP		8270	18.21 g	.5 mL			1 mL	Colored
7	L09080205-04	SAMP		8270	20.64 g	.5 mL			1 mL	Colored
8	L09080205-06	SAMP		8270	17.54 g	.5 mL			1 mL	Opaque
9	L09080205-08	SAMP		8270	19.24 g	.5 mL			1 mL	Colored
10	WG309434-01	BLANK		8270	20 g	.5 mL			1 mL	Transparent

20 g

20 g

.5 mL

.5 mL

8270

8270

L09080192-01 WET

11

12

WG309434-02

WG309434-03

L09080192-02 WET

L09080192-03 WET

L09080192-04 WET

L09080192-05 SAND

Analyst: Chery A. Flowers

Reviewer: My Habit

.5 mL

.5 mL

EXTRACT - Modified 10/22/2008 PDF ID: 1463690 Report generated: 08/11/2009 16:07

Microbac Laboratories Inc. Instrument Run Log

	Instrument	: HPMS4		Dataset:	052609		
	Analyst1	: MDC		Analyst2:	NA		
	Method	l: <u>8270C</u>		SOP:	MSS01	Rev: <u>14</u>	
	Method	l: <u>625</u>		SOP:	MSS02	Rev: <u>8</u>	
Maint Workgroups:	enance Log ID	: <u>28854</u> Column 1 ID:	RXI-5MS		Column 2 ID: NA		
nternal STD:	STD20900		Surrogate STD:	NA	Ca	libration STD	
	C	course of the ca				r a few compounds during th	ne

Seq.	File ID	Sample Information	Mat	Dil	Reference	Date/Time
1	4M46920	WG301596-01 50ppm DFTPP	1	1	STD31842	05/26/09 07:43
2	4M46921	WG301596-02 50ppm MEGAMIX STD	1	1	STD31920	05/26/09 08:02
3	4M46922	WG301596-03 3ppm MEGAMIX STD	1	1	STD31920	05/26/09 08:45
4	4M46923	WG301596-04 10ppm MEGAMIX STD	1	1	STD31920	05/26/09 09:21
5	4M46924	WG301596-05 15ppm MEGAMIX STD	1	1	STD31920	05/26/09 09:57
6	4M46925	WG301596-06 25ppm MEGAMIX STD	1	1	STD31920	05/26/09 10:32
7	4M46926	WG301596-07 80ppm MEGAMIX STD	1	1	STD31920	05/26/09 11:07
8	4M46927	WG301596-08 100ppm MEGAMIX STD	1	1	STD31920	05/26/09 11:43
9	4M46928	WG301596-09 120ppm MEGAMIX STD	1	1	STD31920	05/26/09 12:18
10	4M46929	WG301596-02 50ppm MEGAMIX STD	1	1	STD31920	05/26/09 12:54
11	4M46930	WG301596-01 50ppm DFTPP	1	1	STD31842	05/26/09 13:39
12	4M46931	WG301596-02 50ppm MEGAMIX STD	1	1	STD31920	05/26/09 13:58
13	4M46932	WG301596-03 3ppm MEGAMIX STD	1	1	STD31920	05/26/09 14:34
14	4M46933	WG301596-04 10ppm MEGAMIX STD	1	1	STD31920	05/26/09 15:09
15	4M46934	WG301596-05 15ppm MEGAMIX STD	1	1	STD31920	05/26/09 15:44
16	4M46935	WG301596-06 25ppm MEGAMIX STD	1	1	STD31920	05/26/09 16:19
17	4M46936	WG301596-07 80ppm MEGAMIX STD	1	1	STD31920	05/26/09 16:54
18	4M46937	WG301596-08 100ppm MEGAMIX STD	1	1	STD31920	05/26/09 17:30
19	4M46938	WG301596-09 120ppm MEGAMIX STD	1	1	STD31920	05/26/09 18:05
20	4M46939	WG301596-10 50ppm Alt source STD	1	1	STD31858	05/26/09 18:41
21	4M46940	WG301596-11 50ppm A9 Alt source STD	1	1	STD30677	05/26/09 19:16
22	4M46941	WG301596-12 50ppm dioxane source STD	1	1	STD30264	05/26/09 19:51
23	4M46942	WG303199-01 50ppm TCL std	1	1	STD30935	05/26/09 20:27
24	4M46943	WG303199-02 3ppm TCL std	1	1	STD30935	05/26/09 21:03
25	4M46944	WG303199-03 10ppm TCL std	1	1	STD30935	05/26/09 21:38
26	4M46945	WG303199-04 25ppm TCL std	1	1	STD30935	05/26/09 22:14
27	4M46946	WG303199-05 80ppm TCL std	1	1	STD30935	05/26/09 22:49
28	4M46947	WG303199-06 100ppm TCL std	1	1	STD30935	05/26/09 23:24
29	4M46948	WG303199-07 50ppm TCL alt source std	1	1	STD30966	05/27/09 00:00
30	4M46949	WG302712-01 BLK 5/20	10	1	SOIL	05/27/09 00:36
31	4M46950	L09050419-03 10X	10	10	SOIL	05/27/09 01:12
32	4M46951	L09050419-05 10X	10	10	SOIL	05/27/09 01:48
	1					

Comments

Seq. Rerun Dil. Reason Analytes

Page: 1 Approved: 27-MAY-09

En- C. Tum

Run L 000083670

Microbac Laboratories Inc. Instrument Run Log

		Instrument:	HPMS4		Dataset:	052609		
		Analyst1:	MDC		Analyst2:	NA		
		Method:	8270C		SOP:	MSS01	Rev: <u>14</u>	
		Method:	625		SOP:	MSS02	Rev: <u>8</u>	
	Mair	ntenance Log ID:	28854					
Work	groups:		Column 1 ID:	RXI-5MS		Column 2 ID:	NA	
ntern	al STD:	STD20900		Surrogate STD:	NA			
	ai O i D.	31020300		ourrogate or D.	INA		-	
	ai OTD.	<u>31D20900</u>		Surrogate STD.	Comme	nts	-	
Seq.	Rerun	<u>31B20900</u>	Re	eason		ents	Analytes	
			Re	Ü		ents	Analytes	
Seq.	Rerun			Ü		ents	Analytes	
Seq.	Rerun	Dil.		Ü		ents	Analytes	
Seq. 20	Rerun Pentach	Dil.		Ü		ents	Analytes	
Seq. 20	Rerun Pentach	Dil.		Ü		ents	Analytes	
Seq. 20 21 31	Rerun Pentach #39, 78,	Dil.	6D.	eason		ents	Analytes	

Page: 2 Approved: 27-MAY-09

27-MAY-09

Microbac Laboratories Inc. Instrument Run Log

	Instrument:	HPMS4		Dataset:	081109			
	Analyst1:	CAA		Analyst2:	NA			
	Method:	8270C		SOP:	MSS01		Rev: <u>14</u>	
	Method:	625		SOP:	MSS02		Rev: <u>8</u>	
Main	tenance Log ID:	29755						
	(Column 1 ID: RXI-5	ims		Column 2 ID: N	NA		
Workgroups:	WG309094, WG	309444, WG30944	0, WG309468					
Internal STD:	COA13928	Surro	gate STD:	NA		Calibration	STD	
	Comments:							

Seq.	File ID	Sample Information	Mat	Dil	Reference	Date/Time
1	4M47699	WG309400-01 50ppm DFTPP	1	1	STD31842	08/11/09 09:02
2	4M47700	WG309400-02 50ppm MEGAMIX STD	1	1	STD34003	08/11/09 09:20
3	4M47701	L09080061-19 200X	1	200		08/11/09 09:55
4	4M47702	WG309450-01 50ppm DFTPP	1	1	STD31842	08/11/09 13:08
5	4M47703	WG309450-02 50ppm MEGAMIX STD	1	1	STD34003	08/11/09 13:26
6	4M47704	WG309385-01 BLK 8/11	10	1	SOIL	08/11/09 14:01
7	4M47705	WG309385-02 LCS 8/11	10	1	SOIL	08/11/09 14:36
8	4M47706	WG309385-03 LCS DUP 8/11	10	1	SOIL	08/11/09 15:11
9	4M47707	WG309386-01 BLK 8/11	11	1		08/11/09 15:45
10	4M47708	WG309386-02 LCS 8/11	11	1		08/11/09 16:20
11	4M47709	WG309386-03 LCS DUP 8/11	11	1		08/11/09 16:55
12	4M47710	WG309434-01 BLK 8/11	7	1	SOIL	08/11/09 17:29
13	4M47711	WG309434-02 LCS 8/11	7	1	SOIL	08/11/09 18:04
14	4M47712	WG309434-03 LCS DUP 8/11	7	1	SOIL	08/11/09 18:39
15	4M47713	L09080192-01	7	1	SOIL	08/11/09 19:13
16	4M47714	L09080192-02	7	1	SOIL	08/11/09 19:48
17	4M47715	L09080192-03	7	1	SOIL	08/11/09 20:23
18	4M47716	L09080192-04	7	1	SOIL	08/11/09 20:58
19	4M47717	L09080192-05	7	1	SOIL	08/11/09 21:32
20	4M47718	L09080205-01	7	1	SOIL	08/11/09 22:07
21	4M47719	L09080205-04	7	1	SOIL	08/11/09 22:42
22	4M47720	L09080205-08	7	1	SOIL	08/11/09 23:16
23	4M47721	L09080205-06 20X	7	20	SOIL	08/11/09 23:51
24	4M47722	L09080149-05 20X	10	20	SOIL	08/12/09 00:25
25	4M47723	L09080149-03 20X	10	20	SOIL	08/12/09 01:00
26	4M47724	L09080132-01 20X	11	20		08/12/09 01:34

Comments

Seq.	Rerun	Dil.	Reason	Analytes				
23								
	L09080	205-06 20	X - Analyzed at a dilution due to extract's da	rk apperance and viscosity.				
24								
	L09080	149-05 20	X - Analyzed at a dilution due to extract's vis	cosity and elevated final volume.				
25								
	L09080149-03 20X - Analyzed at a dilution due to extract's viscosity and elevated final volume.							

Page: 1 Approved: 12-AUG-09

Michal Cahar

 $\overline{ ext{Microbac}}^{ ext{ iny Gaussian}}$

Run L 000083672

Microbac Laboratories Inc. Instrument Run Log

	Instrument:	HPMS4	Dataset:	081109			
	Analyst1:	CAA	Analyst2:	NA			
	Method:	8270C	SOP:	MSS01		Rev: <u>14</u>	
	Method:	625	SOP:	MSS02		Rev: 8	
Mainte	enance Log ID:	29755					
	(Column 1 ID: RXI-5MS		Column 2 ID:	NA		
Workgroups: _V	VG309094, WG	309444, WG309440, WG309468	3				
Internal STD:	COA13928	Surrogate STD:	NA				

Comments

Seq.	Rerun	Dil.	Reason	Analytes
26	Х	20	Missed Tune	
	L09080	132-01 20	X - Analyzed at a dilution due to extract's app	perance and viscosity.

Page: 2 Approved: 12-AUG-09

Michel Confin

Microbac Laboratories Inc. Data Checklist

Date: 26-MAY-2009

Analyst: MDC

Analyst: NA

Method: 8270

Instrument: HPMS4

Curve Workgroup: NA

Runlog ID: 28254

Analytical Workgroups: ICAL, L09050419

ANALYTICAL	
System Performance Check	X
DFTPP (MS)	X
Endrin/DDT breakdown (8081/MS)	X
Pentachlorophenol/benzidine tailing (MS)	X
Eluent check (IC)/system pressure (HPLC)	NA
Window standard (FID)	NA
Initial Calibration	X
Average RF	X
Linear regression or higher order curve	X
Alternate source standard (ICV) % Difference	X
Continuing Calibration (CCV)	NA NA
% D/% Drift	NA NA
Minimum response factors (MS)	NA NA
Continuing calibration blank (CCB) (IC)	NA NA
Special standards	NA NA
Blanks	X
TCL hits	X
Surrogate recoveries	X
LCS/LCSD (Laboratory Control Sample)	NA NA
Recoveries	NA NA
Surrogate recoveries	NA NA
MS/MSD/Sample duplicates	NA NA
Recoveries	NA NA
%RPD	NA NA
Samples	X
TCL hits	X
Mass spectra (MS/HPLC)/2nd column confirmations (ECD/FID/HPLC)	X
Surrogate recoveries	X
Internal standard areas (MS)	X
Library searches (MS)	NA NA
Calculations & correct factors	X
Compounds above calibration range	NA NA
Reruns	NA NA
Manual integrations	X
Project/client specific requirements	X
roject/client specific requirements	
REPORTING	
Upload batch form	X
KOBRA workgroup data/forms/bench sheets	X
Case narratives	NA NA
Check for completeness	X
Primary Reviewer	MDC
i fiffidi y Neviewei	IVIDC
SUPERVISORY/SECONDARY REVIEW	
Check for compliance with method and project specific requirements	X
Check the completeness/accuracy of reported information	X
Data qualifiers	X
Secondary Reviewer	FCL
Decondary reviewer	LUL

Primary Reviewer: 27-MAY-2009

Secondary Reviewer: 27-MAY-2009

CHECKLIST1 - Modified 03/05/2008

Generated: MAY-27-2009 13:00:03

Microbac ®

Microbac Laboratories Inc. Data Checklist

Date: 11-AUG-2009 Analyst: CAA Analyst: NA Method: 8270 Instrument: HPMS4 Curve Workgroup: NA Runlog ID: 29577

Analytical Workgroups: <u>L09080061</u>, <u>L09080192</u>, <u>L09080205</u>, <u>L09080149</u>

ANALYTICAL	
System Performance Check	X
DFTPP (MS)	X
Endrin/DDT breakdown (8081/MS)	X
Pentachlorophenol/benzidine tailing (MS)	X
Eluent check (IC)/system pressure (HPLC)	NA
Window standard (FID)	NA
Initial Calibration	NA
Average RF	NA
Linear regression or higher order curve	NA
Alternate source standard (ICV) % Difference	NA
Continuing Calibration (CCV)	X
% D/% Drift	X
Minimum response factors (MS)	X
Continuing calibration blank (CCB) (IC)	NA
Special standards	NA
Blanks	X
TCL hits	X
Surrogate recoveries	X
LCS/LCSD (Laboratory Control Sample)	X
Recoveries	X
Surrogate recoveries	X
MS/MSD/Sample duplicates	NA
Recoveries	NA
%RPD	NA
Samples	X
TCL hits	X
Mass spectra (MS/HPLC)/2nd column confirmations (ECD/FID/HPLC)	X
Surrogate recoveries	X
Internal standard areas (MS)	X
Library searches (MS)	NA NA
Calculations & correct factors	X
Compounds above calibration range	NA NA
Reruns	X
Manual integrations	X
Project/client specific requirements	X
DEPORTING	
REPORTING	V.
Upload batch form	X
KOBRA workgroup data/forms/bench sheets	X
Case narratives	NA NA
Check for completeness Primary Payloyer	X CAA
Primary Reviewer	CAA
SUPERVISORY/SECONDARY REVIEW	
Check for compliance with method and project specific requirements	X
Check the completeness/accuracy of reported information	X
Data qualifiers	X
Secondary Reviewer	MDC

Primary Reviewer:
12-AUG-2009

Cassis & Sugartin

Secondary Reviewer:
12-AUG-2009

Michael Carlos

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-12-2009 11:12:36

Microbac Laboratories Inc.

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00083675

Analytical Method: 8270C

Login Number: L09080192

AAB#: WG309468

Client ID	ID	Date Collected	TCLP Date	Time Held	Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	Q
SITE 1-TP-BF	01	08/09/09					08/11/09	2	14		08/11/09	.3	14	
SITE 1-TP-BF	01	08/09/09					08/11/09	2	14		08/11/09	.3	40	
SITE 1-TP-TS	02	08/09/09					08/11/09	2	14		08/11/09	.4	40	
SITE 1-TP-TS	02	08/09/09					08/11/09	2	14		08/11/09	. 4	14	
SITE 2-BLM-TS	03	08/09/09					08/11/09	2	14		08/11/09	. 4	40	
SITE 2-BLM-TS	03	08/09/09					08/11/09	2	14		08/11/09	. 4	14	
SITE 2-BLM-BF	04	08/09/09					08/11/09	2	14		08/11/09	. 4	14	
SITE 2-BLM-BF	04	08/09/09					08/11/09	2	14		08/11/09	. 4	40	
SITE 3-ML-BF/TS	05	08/09/09					08/11/09	2	14		08/11/09	. 4	14	
SITE 3-ML-BF/TS	05	08/09/09					08/11/09	2	14		08/11/09	. 4	40	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 1464092
Report generated 08/12/2009 13:05

Microbac

Page 102

Microbac Laboratories Inc. SURROGATE STANDARDS

Login Number: L09080192 Method: 8270

Instrument Id: HPMS4 ____ CAL ID: ___ HPMS4 - 26-MAY-09

Workgroup (AAB#):WG309468 Matrix:Soil

Sample Number	Dilution	Tag	1	2	3	4	5	6
L09080192-01	1.00	01	68.2	61.5	57.5	63.9	67.7	58.5
L09080192-02	1.00	01	102	59.6	58.2	69.8	70.0	59.8
L09080192-03	1.00	01	65.5	46.6	48.8	58.4	63.6	51.4
L09080192-04	1.00	01	76.9	57.1	41.3	53.3	66.5	49.0
L09080192-05	1.00	01	104	59.7	55.6	63.4	89.7	56.9
WG309434-01	1.00	01	72.1	59.4	55.4	65.0	86.9	56.3
WG309434-02	1.00	01	89.4	56.7	57.0	66.0	83.0	57.8
WG309434-03	1.00	01	103	68.3	65.6	74.0	92.1	68.1

	Surrogates	Surrog	gate	Limits
1	- 2,4,6-Tribromophenol	19	-	122
2	- 2-Fluorobiphenyl	30	-	115
3	- 2-Fluorophenol	25	-	121
4	- Nitrobenzene-d5	23	-	120
5	- p-Terphenyl-d14	18	-	137
6	- Phenol-d5	24	-	113

Underline = Result out of surrogate limits

DL = surrogate diluted out
ND = surrogate not detected

SURROGATES - Modified 03/06/2008 PDF File ID: 1463827 Report generated: 08/12/2009 13:07

METHOD BLANK SUMMARY

Login Number:L09080192

Blank File ID:4M47710

Prep Date:08/11/09 10:59

Analyzed Date:08/11/09 17:29

Work Group: WG309468

Blank Sample ID: WG309434-01

Instrument ID: HPMS4

Method: 8270C

Analyst:CAA

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG309434-02	4M47711	08/11/09 18:04	01
LCS2	WG309434-03	4M47712	08/11/09 18:39	01
SITE 1-TP-BF	L09080192-01	4M47713	08/11/09 19:13	01
SITE 1-TP-TS	L09080192-02	4M47714	08/11/09 19:48	01
SITE 2-BLM-TS	L09080192-03	4M47715	08/11/09 20:23	01
SITE 2-BLM-BF	L09080192-04	4M47716	08/11/09 20:58	01
SITE 3-ML-BF/TS	L09080192-05	4M47717	08/11/09 21:32	01

Report Name: BLANK_SUMMARY PDF File ID:1464093
Report generated 08/12/2009 13:05

Microbac Laboratories Inc. METHOD BLANK REPORT

 Login Number: L09080192
 Prep Date: 08/11/09 10:59
 Sample ID: WG309434-01

 Instrument ID: HPMS4
 Run Date: 08/11/09 17:29
 Prep Method: 3545

 File ID: 4M47710
 Analyst: CAA
 Method: 8270C

 Workgroup (AAB#): WG309468
 Matrix: Soil
 Units: ug/kg

Contract #:DACA56-94-D-0020 Cal ID: HPMS4-26-MAY-09

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
1,2,4-Trichlorobenzene	82.5	165	82.5	1	Ū
1,2-Dichlorobenzene	82.5	165	82.5	1	υ
1,3-Dichlorobenzene	82.5	165	82.5	1	Ū
1,4-Dichlorobenzene	82.5	165	82.5	1	υ
2,4,5-Trichlorophenol	82.5	165	82.5	1	Ū
2,4,6-Trichlorophenol	82.5	165	82.5	1	υ
2,4-Dichlorophenol	82.5	165	82.5	1	Ū
2,4-Dimethylphenol	82.5	165	82.5	1	Ū
2,4-Dinitrophenol	330	825	330	1	U
2,4-Dinitrotoluene	82.5	165	82.5	1	υ
2,6-Dinitrotoluene	82.5	165	82.5	1	U
2-Chloronaphthalene	82.5	165	82.5	1	Ū
2-Chlorophenol	82.5	165	82.5	1	υ
2-Methylnaphthalene	82.5	165	82.5	1	υ
2-Methylphenol	82.5	165	82.5	1	Ū
2-Nitroaniline	330	825	330	1	υ
2-Nitrophenol	82.5	165	82.5	1	υ
3,3'-Dichlorobenzidine	165	330	165	1	υ
3-,4-Methylphenol	82.5	165	82.5	1	υ
3-Nitroaniline	330	825	330	1	υ
4,6-Dinitro-2-methylphenol	330	825	330	1	υ
4-Bromophenyl-phenylether	82.5	165	82.5	1	υ
4-Chloro-3-methylphenol	82.5	165	82.5	1	U
4-Chloroaniline	82.5	165	82.5	1	υ
4-Chlorophenyl-phenyl ether	82.5	165	82.5	1	U
4-Nitroaniline	330	825	330	1	U
4-Nitrophenol	330	825	330	1	U
Acenaphthene	82.5	165	82.5	1	υ
Acenaphthylene	82.5	165	82.5	1	υ
Anthracene	82.5	165	82.5	1	υ
Benzo(a)anthracene	82.5	165	82.5	1	υ
Benzo(a)pyrene	82.5	165	82.5	1	υ
Benzo(b)fluoranthene	82.5	165	82.5	1	υ
Benzo(g,h,i)Perylene	82.5	165	82.5	1	υ
Benzo(k)fluoranthene	82.5	165	82.5	1	υ
Benzoic acid	330	5000	330	1	υ
Benzyl alcohol	82.5	165	82.5	1	U
Bis(2-Chloroethoxy)Methane	82.5	165	82.5	1	U
Bis(2-Chloroethyl)ether	82.5	165	82.5	1	υ
bis(2-Chloroisopropyl)ether	82.5	165	82.5	1	U
bis(2-Ethylhexyl)phthalate	82.5	165	82.5	1	υ
Butylbenzylphthalate	82.5	165	82.5	1	Ū

Report Name:BLANK
PDF ID: 1463825
12-AUG-2009 13:05

Microbac Laboratories Inc. METHOD BLANK REPORT

 Login Number: L09080192
 Prep Date: 08/11/09 10:59
 Sample ID: WG309434-01

 Instrument ID: HPMS4
 Run Date: 08/11/09 17:29
 Prep Method: 3545

 File ID: 4M47710
 Analyst: CAA
 Method: 8270C

 Workgroup (AAB#): WG309468
 Matrix: Soil
 Units: ug/kg

Contract #:DACA56-94-D-0020 Cal ID: HPMS4-26-MAY-09

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Chrysene	82.5	165	82.5	1	U
Di-N-Butylphthalate	82.5	165	82.5	1	U
Di-n-octylphthalate	82.5	165	82.5	1	Ū
Dibenzo(a,h)Anthracene	82.5	165	82.5	1	U
Dibenzofuran	82.5	165	82.5	1	U
Diethylphthalate	82.5	165	82.5	1	Ū
Dimethylphthalate	82.5	165	82.5	1	U
Fluoranthene	82.5	165	82.5	1	Ū
Fluorene	82.5	165	82.5	1	U
Hexachlorobenzene	82.5	165	82.5	1	U
Hexachlorobutadiene	82.5	165	82.5	1	Ū
Hexachlorocyclopentadiene	82.5	165	82.5	1	U
Hexachloroethane	82.5	165	82.5	1	U
Indeno(1,2,3-cd)pyrene	82.5	165	82.5	1	Ū
Isophorone	82.5	165	82.5	1	U
N-Nitrosodiphenylamine	82.5	165	82.5	1	U
N-Nitrosodipropylamine	82.5	165	82.5	1	Ū
Naphthalene	82.5	165	82.5	1	U
Nitrobenzene	82.5	165	82.5	1	Ū
Pentachlorophenol	330	825	330	1	Ū
Phenanthrene	82.5	165	82.5	1	Ū
Phenol	82.5	165	82.5	1	Ū
Pyrene	82.5	165	82.5	1	Ū

Surrogates	% Recovery	Surro	gate I	imits	Qualifier
2,4,6-Tribromophenol	72.1	19	-	122	PASS
2-Fluorobiphenyl	59.4	30	-	115	PASS
2-Fluorophenol	55.4	25	-	121	PASS
Nitrobenzene-d5	65.0	23	-	120	PASS
p-Terphenyl-d14	86.9	18	-	137	PASS
Phenol-d5	56.3	24	-	113	PASS

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK
PDF ID: 1463825
12-AUG-2009 13:05

Login Number:L09080192 Analyst:CAA Prep Method: 3545

Instrument ID:HPMS4 Matrix:Soil Method: 8270C

Workgroup (AAB#):WG309468 Units:ug/kg

QC Key:STD Lot #:STD33345

Sample ID:WG309434-02 LCS File ID:4M47711 Run Date:08/11/2009 18:04
Sample ID:WG309434-03 LCS2 File ID:4M47712 Run Date:08/11/2009 18:39

_		LCS			LCS2	LCS2		-		%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q		
1,2,4-Trichlorobenzene	2500	1380	55.2	2500	1580	63.4	13.8	35 - 100	40			
1,2-Dichlorobenzene	2500	1330	53.1	2500	1580	63.4	17.7	35 - 95	40			
1,3-Dichlorobenzene	2500	1310	52.5	2500	1540	61.8	16.4	35 - 100	40			
1,4-Dichlorobenzene	2500	1290	51.6	2500	1570	62.6	19.3	35 - 105	40			
2,4,5-Trichlorophenol	2500	1640	65.4	2500	1940	77.5	16.9	40 - 110	40			
2,4,6-Trichlorophenol	2500	1460	58.2	2500	1760	70.5	19.1	40 - 110	40			
2,4-Dichlorophenol	2500	1550	62.0	2500	1750	70.1	12.3	35 - 110	40			
2,4-Dimethylphenol	2500	1420	57.0	2500	1640	65.7	14.3	30 - 105	40	Ħ		
2,4-Dinitrophenol	2500	2610	104	2500	2830	113	8.06	40 - 130	40			
2,4-Dinitrotoluene	2500	2110	84.5	2500	2500	99.9	16.7	50 - 130	40	\Box		
2,6-Dinitrotoluene	2500	1590	63.7	2500	2010	80.6	23.4	50 - 125	40	T		
2-Chloronaphthalene	2500	1220	49.0	2500	1490	59.5	19.4	40 - 105	40	П		
2-Chlorophenol	2500	1350	53.9	2500	1620	64.9	18.5	35 - 105	40	П		
2-Methylnaphthalene	2500	1560	62.3	2500	1760	70.5	12.4	35 - 115	40	\Box		
2-Methylphenol	2500	1350	54.0	2500	1610	64.3	17.3	35 - 100	40	П		
2-Nitroaniline	2500	1760	70.3	2500	2170	86.7	20.9	45 - 120	40	\Box		
2-Nitrophenol	2500	1540	61.5	2500	1720	68.8	11.2	35 - 100	40	\vdash		
3,3'-Dichlorobenzidine	2500	2160	86.3	2500	2350	94.1	8.61	40 - 140	40	Н		
3-,4-Methylphenol	2500	1630	65.1	2500	1890	75.6	15.0	35 - 105	40	\vdash		
3-Nitroaniline	2500	1880	75.2	2500	2380	95.1	23.4	50 - 130	40	\vdash		
4,6-Dinitro-2-methylphenol	2500	2710	108	2500	2920	117	7.46	45 - 130	40	\vdash		
4-Bromophenyl-phenylether	2500	1740	69.6	2500	2090	83.8	18.4	40 - 115	40	†		
4-Chloro-3-methylphenol	2500	1680	67.4	2500	1940	77.6	14.1	40 - 100	40	\vdash		
4-Chloroaniline	2500	1280	51.0	2500	1560	62.5	20.2	35 - 100	40			
4-Chlorophenyl-phenyl ether	2500	1520	60.8	2500	1890	75.7	21.8	40 - 110	40	\vdash		
4-Nitroaniline	2500	2270	90.6	2500	2580	103	13.0	35 - 140	40	\Box		
4-Nitrophenol	2500	2680	107	2500	2900	116	8.03	45 - 140	40	\Box		
Acenaphthene	2500	1500	60.0	2500	1800	72.1	18.3	40 - 110	40	Ħ		
Acenaphthylene	2500	1550	61.9	2500	1930	77.2	22.0	40 - 110	40	\Box		
Anthracene	2500	1990	79.4	2500	2280	91.1	13.7	55 - 130	40	\Box		
Benzo(a)anthracene	2500	2000	80.1	2500	2170	86.7	7.88	50 - 130	40	П		
Benzo(a)pyrene	2500	2270	90.6	2500	2480	99.1	8.91	50 - 130	40	\Box		
Benzo(b)fluoranthene	2500	2190	87.5	2500	2440	97.7	11.0	45 - 125	40	Н		
Benzo(g,h,i)Perylene	2500	2290	91.6	2500	2450	98.1	6.78	40 - 140	40	H		
Benzo(k)fluoranthene	2500	2300	92.0	2500	2490	99.7	7.96	45 - 135	40	Н		
Benzoic acid	2500	4130	165	2500	4450	178	7.45	20 - 110	40	*		
Benzyl alcohol	2500	1320	52.8	2500	1540	61.7	15.6	30 - 100	40	Н		
Bis(2-Chloroethoxy)Methane	2500	1250	50.0	2500	1470	58.7	16.0	30 - 100	40	Н		
Bis(2-Chloroethyl)ether	2500	1380	55.2	2500	1660	66.2	18.3	30 - 100	40	\forall		
bis(2-Chloroisopropyl)ether	2500	1290	51.7	2500	1530	61.0	16.5	20 - 115	40	\forall		

LCS_LCS2 - Modified 03/06/2008 PDF File ID:1463826 Report generated: 08/12/2009 13:05

Microbac Laboratories Inc.
LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L09080192
 Analyst: CAA
 Prep Method: 3545

 Instrument ID: HPMS4
 Matrix: Soil
 Method: 8270C

 Workgroup (AAB#): WG309468
 Units: ug/kg

QC Key:STD Lot #:STD33345

 Sample ID:WG309434-02
 LCS
 File ID:4M47711
 Run Date:08/11/2009
 18:04

 Sample ID:WG309434-03
 LCS2
 File ID:4M47712
 Run Date:08/11/2009
 18:39

		LCS			LCS2	12		%Rec	RPD	
Analytes	Known	Found	% REC	Known	Found	% REC	%RPD	Limits	Lmt	Q
bis(2-Ethylhexyl)phthalate	2500	2460	98.2	2500	2730	109	10.5	50 - 150	40	
Butylbenzylphthalate	2500	2570	103	2500	2880	115	11.7	50 - 150	40	
Chrysene	2500	2100	84.1	2500	2320	92.8	9.80	55 - 140	40	
Di-N-Butylphthalate	2500	2570	103	2500	2770	111	7.21	55 - 140	40	
Di-n-octylphthalate	2500	2860	114	2500	3270	131	13.2	40 - 145	40	
Dibenzo(a,h)Anthracene	2500	2300	92.1	2500	2430	97.0	5.23	40 - 140	40	
Dibenzofuran	2500	1610	64.6	2500	2030	81.1	22.7	35 - 110	40	
Diethylphthalate	2500	2100	84.1	2500	2590	103	20.6	50 - 130	40	
Dimethylphthalate	2500	1710	68.4	2500	2150	86.2	23.0	45 - 115	40	
Fluoranthene	2500	2290	91.5	2500	2490	99.5	8.45	55 - 140	40	
Fluorene	2500	1510	60.3	2500	1850	74.1	20.6	45 - 115	40	
Hexachlorobenzene	2500	1870	74.7	2500	2180	87.2	15.5	45 - 120	40	
Hexachlorobutadiene	2500	1600	63.9	2500	1830	73.4	13.9	30 - 100	40	
Hexachlorocyclopentadiene	2500	851	34.1	2500	814	32.6	4.46	30 - 110	40	
Hexachloroethane	2500	1440	57.4	2500	1690	67.4	16.0	30 - 100	40	
Indeno(1,2,3-cd)pyrene	2500	2270	90.9	2500	2410	96.3	5.71	50 - 135	40	
Isophorone	2500	1470	58.8	2500	1670	66.8	12.8	35 - 100	40	
N-Nitrosodiphenylamine	2500	1690	67.6	2500	1960	78.5	15.0	50 - 130	40	
N-Nitrosodipropylamine	2500	1620	65.0	2500	1920	76.6	16.5	35 - 110	40	
Naphthalene	2500	1380	55.4	2500	1630	65.1	16.2	35 - 100	40	
Nitrobenzene	2500	1540	61.6	2500	1740	69.5	12.0	35 - 100	40	
Pentachlorophenol	2500	2830	113	2500	3030	121	6.95	50 - 150	40	
Phenanthrene	2500	1940	77.5	2500	2220	88.7	13.4	50 - 130	40	
Phenol	2500	1380	55.3	2500	1630	65.2	16.5	35 - 100	40	
Pyrene	2500	2010	80.2	2500	2280	91.0	12.6	35 - 140	40	

	LCS	LCS2	_			0 1'5'	
Surogates	% Recovery	% Recovery	Surrog	gate	Limits	Qualifier	
2,4,6-Tribromophenol	89.4	103	19	-	122	PASS	
2-Fluorobiphenyl	56.7	68.3	30	-	115	PASS	
2-Fluorophenol	57.0	65.6	25	-	121	PASS	
Nitrobenzene-d5	66.0	74.0	23	-	120	PASS	
p-Terphenyl-d14	83.0	92.1	18	-	137	PASS	
Phenol-d5	57.8	68.1	24	-	113	PASS	

* FAILS %REC LIMIT

FAILS RPD LIMIT

LCS_LCS2 - Modified 03/06/2008 PDF File ID:1463826 Report generated: 08/12/2009 13:05

Cal ID: <u>HPMS4-26-MAY-09</u>

DFTPP

 Login Number: L09080192
 Tune ID: WG301596-01

 Instrument: HPMS4
 Run Date: 05/26/2009

 Analyst: MDC
 Run Time: 13:39

 Workgroup: WG301596
 File ID: 4M46930

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
51.0	198	30.0	60.0	44.8	261827	PASS
68.0	69.0	0	2.00	0	0	PASS
69.0	198	0	100	46.9	274102	PASS
70.0	69.0	0	2.00	0.440	1207	PASS
127	198	40.0	60.0	52.7	307669	PASS
197	198	0	1.00	0.205	1195	PASS
198	198	100	100	100	583936	PASS
199	198	5.00	9.00	7.49	43738	PASS
275	198	10.0	30.0	22.5	131240	PASS
365	198	1.00	100	2.72	15891	PASS
441	443	0.0100	100	83.3	73706	PASS
442	198	40.0	100	74.7	436416	PASS
443	442	17.0	23.0	20.3	88440	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG301596-02	STD-CCV	01	05/26/2009 13:58	
WG301596-03	STD	01	05/26/2009 14:34	
WG301596-04	STD	01	05/26/2009 15:09	
WG301596-05	STD	01	05/26/2009 15:44	
WG301596-06	STD	01	05/26/2009 16:19	
WG301596-07	STD	01	05/26/2009 16:54	
WG301596-08	STD	01	05/26/2009 17:30	
WG301596-09	STD	01	05/26/2009 18:05	
WG301596-10	sscv	01	05/26/2009 18:41	
WG301596-11	sscv	01	05/26/2009 19:16	
WG301596-12	SSCV	01	05/26/2009 19:51	

^{*} Sample past 12 hour tune limit

TUNE - Modified 03/06/2008 PDF File ID:1464096 Report generated 08/12/2009 13:06

DFTPP

 Login Number: L09080192
 Tune ID: WG309450-01

 Instrument: HPMS4
 Run Date: 08/11/2009

 Analyst: CAA
 Run Time: 13:08

 Workgroup: WG309450
 File ID: 4M47702

Cal ID: <u>HPMS4-26-MAY-09</u>

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
51.0	198	30.0	60.0	54.3	101978	PASS
68.0	69.0	0	2.00	0	0	PASS
69.0	198	0	100	50.2	94242	PASS
70.0	69.0	0	2.00	0.316	298	PASS
127	198	40.0	60.0	58.3	109498	PASS
197	198	0	1.00	0.608	1142	PASS
198	198	100	100	100	187733	PASS
199	198	5.00	9.00	6.92	12989	PASS
275	198	10.0	30.0	24.0	45056	PASS
365	198	1.00	100	4.01	7520	PASS
441	443	0.0100	100	98.3	23760	PASS
442	198	40.0	100	69.0	129541	PASS
443	442	17.0	23.0	18.7	24167	PASS

This check relates to the following samples:

Lab ID	Client ID	Tag	Date Analyzed	Q
WG309450-02	CCV	01	08/11/2009 13:26	
WG309434-01	BLANK	01	08/11/2009 17:29	
WG309434-02	LCS	01	08/11/2009 18:04	
WG309434-03	LCS2	01	08/11/2009 18:39	
L09080192-01	SITE 1-TP-BF	01	08/11/2009 19:13	
L09080192-02	SITE 1-TP-TS	01	08/11/2009 19:48	
L09080192-03	SITE 2-BLM-TS	01	08/11/2009 20:23	
L09080192-04	SITE 2-BLM-BF	01	08/11/2009 20:58	
L09080192-05	SITE 3-ML-BF/TS	01	08/11/2009 21:32	

^{*} Sample past 12 hour tune limit

TUNE - Modified 03/06/2008 PDF File ID:1464096 Report generated 08/12/2009 13:06

Login Number:L09080192
Analytical Method:8270C
ICAL Workgroup:WG301596

Instrument ID: HPMS4

Initial Calibration Date: 26-MAY-09 18:05

Column ID: F

Analyte		AVG RF	% RSD	LINEAR (R ²	QUAD(R ²)
1,4-Dichlorobenzene	CCC	1.658	7.44		
2,4,6-Trichlorophenol	CCC	0.3977	4.51		
2,4-Dichlorophenol	CCC	0.2909	5.32		
2-Nitrophenol	CCC	0.2097	5.23		
4-Chloro-3-Methylphenol	CCC	0.3150	4.99		
Acenaphthene	CCC	1.301	13.1		
Benzo[a]pyrene	CCC	1.268	6.63		
Di-n-Octyl Phthalate	CCC	1.513	10.9		
Fluoranthene	CCC	1.311	10.2		
Hexachlorobutadiene	CCC	0.1766	6.93		
Pentachlorophenol	CCC	0.09363	24.4	0.99500	
Phenol	CCC	1.897	5.56		
2,4-Dinitrophenol	SPCC	0.1082	39.3	0.99500	
4-Nitrophenol	SPCC	0.2531	10.7		
Hexachlorocyclopentadiene	SPCC	0.1496	30.8	0.99500	
n-Nitrosodipropylamine	SPCC	0.9646	11.4		
1,2,4-Trichlorobenzene		0.3486	9.43		
1,2-Dichlorobenzene		1.484	8.26		
1,3-Dichlorobenzene		1.643	6.56		
2,4,5-Trichlorophenol		0.3870	4.84		
2,4-Dimethylphenol		0.3767	6.50		
2,4-Dinitrotoluene		0.4314	6.57		
2,6-Dinitrotoluene		0.3471	6.36		
2-Chloronaphthalene		1.419	12.7		
2-Chlorophenol		1.497	4.17		
2-Methylnaphthalene		0.7144	10.3		
2-Methylphenol		1.107	6.59		
2-Nitroaniline		0.4072	4.67		
3,3'-Dichlorobenzidine		0.4000	7.65		
3-Nitroaniline		0.3538	10.1		
4,6-Dinitro-2-Methylphenol		0.1133	15.5	0.99800	
4-Bromophenyl Phenyl Ether		0.2414	8.14		
4-Chloroaniline		0.4443	4.84		
4-Chlorophenyl Phenyl Ether		0.7223	12.2		
4-Nitroaniline		0.3642	3.27		
Acenaphthylene		2.024	15.7	0.99600	
Anthracene		1.327	13.1		
Benzo[a]anthracene		1.288	8.55		
Benzo[b]fluoranthene		1.333	4.09		
Benzo[ghi]perylene		1.109	3.58		
Benzo[k]fluoranthene		1.209	9.85		
Benzoic Acid		0.05453	68.6		0.99100
Benzyl Alcohol		1.004	3.03		
Butyl Benzyl Phthalate		0.6429	10.2		
Chrysene		1.197	9.40		

INT_CAL - Modified 03/06/2008

PDF File ID: 1464094

Report generated 08/12/2009 13:05

Login Number: L09080192
Analytical Method: 8270C
ICAL Workgroup: WG301596

Instrument ID: HPMS4
Initial Calibration Date: 26-MAY-09 18:05
Column ID: F

Analyte	AVG RF	% RSD	LINEAR (R ²	QUAD(R ²)
Di-n-Butyl Phthalate	1.410	12.6		
Dibenz[ah]anthracene	1.100	3.66		
Dibenzofuran	1.705	16.0	0.99600	
Diethylphthalate	1.406	12.0		
Dimethylphthalate	1.396	11.2		
Fluorene	1.466	14.7		
Hexachlorobenzene	0.2425	8.14		
Hexachloroethane	0.5955	4.20		
Indeno[1,2,3-cd]pyrene	1.301	3.83		
Isophorone	0.7895	9.61		
Naphthalene	1.159	14.0		
Nitrobenzene	0.4106	7.83		
Phenanthrene	1.314	13.2		
Pyrene	1.456	11.4		
bis(2-Chloroethoxy)methane	0.5767	15.3	0.99500	
bis(2-Chloroethyl)ether	1.139	5.70		
bis(2-Chloroisopropyl)ether	2.145	8.04		
bis(2-Ethylhexyl)phthalate	0.8907	9.48		

R = Correlation coefficient; 0.995 minimum

If the RSD is greater than the limit specified by the method or project QAP, then linear or quadratic equations will be used.

INT_CAL - Modified 03/06/2008

PDF File ID: 1464094

Report generated 08/12/2009 13:05

 R^2 = Coefficient of determination; 0.99 minimum

Login Number: L09080192
Analytical Method: 8270C

Instrument ID: HPMS4 Initial Calibration Date: 26-MAY-09 18:05

Column ID:F	
-------------	--

		WG301596-0	2		WG301596-03		WG301596-04		4
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,4-Dichlorobenzene	50.0	632614.000	1.556	3.00	35548.0000	1.923	10.0	115714.000	1.659
2,4,6-Trichlorophenol	50.0	317357.000	0.3874	3.00	15358.0000	0.4349	10.0	54107.0000	0.3959
2,4-Dichlorophenol	50.0	431298.000	0.2803	3.00	22018.0000	0.3209	10.0	76179.0000	0.2911
2-Nitrophenol	50.0	312344.000	0.2030	3.00	14628.0000	0.2132	10.0	55698.0000	0.2128
4-Chloro-3-Methylphenol	50.0	478290.000	0.3108	3.00	23629.0000	0.3444	10.0	82944.0000	0.3169
Acenaphthene	50.0	996420.000	1.216	3.00	56774.0000	1.608	10.0	189612.000	1.387
Benzo[a]pyrene	50.0	1630404.00	1.230	3.00	80589.0000	1.450	10.0	277757.000	1.255
Di-n-Octyl Phthalate	50.0	1899758.00	1.433	3.00	100707.000	1.812	10.0	350205.000	1.582
Fluoranthene	50.0	1744586.00	1.218	3.00	96435.0000	1.552	10.0	328905.000	1.357
Hexachlorobutadiene	50.0	261362.000	0.1699	3.00	13745.0000	0.2003	10.0	47369.0000	0.1810
Pentachlorophenol	50.0	145192.000	0.1014	NA	NA	NA	NA	NA	NA
Phenol	50.0	735377.000	1.809	3.00	39105.0000	2.115	10.0	134721.000	1.931
2,4-Dinitrophenol	50.0	93541.0000	0.1142	NA	NA	NA	NA	NA	NA
4-Nitrophenol	50.0	210873.000	0.2574	NA	NA	NA	10.0	30924.0000	0.2263
Hexachlorocyclopentadiene	50.0	156761.000	0.1913	3.00	1977.00000	0.05600	10.0	15753.0000	0.1153
n-Nitrosodipropylamine	50.0	368528.000	0.9064	3.00	21147.0000	1.144	10.0	72700.0000	1.042
1,2,4-Trichlorobenzene	50.0	514553.000	0.3344	3.00	28276.0000	0.4122	10.0	94553.0000	0.3613
1,2-Dichlorobenzene	50.0	559610.000	1.376	3.00	31881.0000	1.725	10.0	107141.000	1.536
1,3-Dichlorobenzene	50.0	626977.000	1.542	3.00	34696.0000	1.877	10.0	116021.000	1.663
2,4,5-Trichlorophenol	50.0	305220.000	0.3726	3.00	14600.0000	0.4134	10.0	53513.0000	0.3915
2,4-Dimethylphenol	50.0	561966.000	0.3652	3.00	28776.0000	0.4194	10.0	100468.000	0.3839
2,4-Dinitrotoluene	50.0	344473.000	0.4205	3.00	16862.0000	0.4774	10.0	61050.0000	0.4467
2,6-Dinitrotoluene	50.0	273334.000	0.3336	3.00	13838.0000	0.3918	10.0	48444.0000	0.3545
2-Chloronaphthalene	50.0	1095479.00	1.337	3.00	62361.0000	1.766	10.0	205049.000	1.500
2-Chlorophenol	50.0	583660.000	1.436	3.00	29741.0000	1.609	10.0	103685.000	1.486
2-Methylnaphthalene	50.0	1045252.00	0.6793	3.00	57360.0000	0.8361	10.0	198609.000	0.7589
2-Methylphenol	50.0	425558.000	1.047	3.00	23061.0000	1.248	10.0	79222.0000	1.136
2-Nitroaniline	50.0	324297.000	0.3958	3.00	15787.0000	0.4470	10.0	54613.0000	0.3996
3,3'-Dichlorobenzidine	50.0	528925.000	0.3905	3.00	27450.0000	0.4717	10.0	89232.0000	0.3875
3-Nitroaniline	50.0	301445.000	0.3680	3.00	13873.0000	0.3928	10.0	44205.0000	0.3234
4,6-Dinitro-2-Methylphenol	50.0	163183.000	0.1140	NA	NA	NA	NA	NA	NA
4-Bromophenyl Phenyl Ether	50.0	324160.000	0.2264	3.00	17216.0000	0.2770	10.0	59220.0000	0.2444
4-Chloroaniline	50.0	697953.000	0.4536	3.00	33811.0000	0.4928	10.0	114384.000	0.4370
4-Chlorophenyl Phenyl Ether	50.0	549741.000	0.6710	3.00	30927.0000	0.8757	10.0	104712.000	0.7662
4-Nitroaniline	50.0	293782.000	0.3586	NA	NA	NA	10.0	50564.0000	0.3700
Acenaphthylene	50.0	1537324.00	1.877	3.00	90207.0000	2.554	10.0	303220.000	2.219
Anthracene	50.0	1763050.00	1.231	3.00	101208.000	1.629	10.0	343838.000	1.419
Benzo[a]anthracene	50.0	1664442.00	1.229	3.00	88186.0000	1.515	10.0	300857.000	1.307
Benzo[b]fluoranthene	50.0	1681192.00	1.268	3.00	77798.0000	1.400	10.0	294241.000	1.329
Benzo[ghi]perylene	50.0	1447020.00	1.091	3.00	66302.0000	1.193	10.0	241654.000	1.092
		1			1				
Benzo[k]fluoranthene	50.0	1486685.00	1.121	3.00	77798.0000	1.400	10.0	267715.000	1.209

Microbac Laboratories Inc. INITIAL CALIBRATION DATA

00083687

Login Number: L09080192
Analytical Method: 8270C

Instrument ID: <u>HPMS4</u> Initial Calibration Date: <u>26-MAY-09 18:05</u>

Column ID: F

WG301596-02			WG301596-03			WG301596-04		
CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
50.0	400734.000	0.9857	3.00	18757.0000	1.015	10.0	67945.0000	0.9740
50.0	831238.000	0.6137	3.00	43793.0000	0.7525	10.0	155272.000	0.6743
50.0	1544722.00	1.141	3.00	83463.0000	1.434	10.0	276993.000	1.203
50.0	1892486.00	1.322	3.00	105966.000	1.705	10.0	364980.000	1.506
50.0	1433825.00	1.081	3.00	65390.0000	1.177	10.0	235992.000	1.066
50.0	1289853.00	1.574	3.00	76662.0000	2.171	10.0	255969.000	1.873
50.0	1086320.00	1.326	3.00	60278.0000	1.707	10.0	206640.000	1.512
50.0	1075206.00	1.312	3.00	59711.0000	1.691	10.0	201560.000	1.475
50.0	1104761.00	1.349	3.00	65523.0000	1.855	10.0	215943.000	1.580
50.0	326614.000	0.2281	3.00	17692.0000	0.2847	10.0	59421.0000	0.2452
50.0	233834.000	0.5751	3.00	11930.0000	0.6454	10.0	40961.0000	0.5872
50.0	1688044.00	1.273	3.00	77825.0000	1.400	10.0	283981.000	1.283
50.0	1164295.00	0.7567	3.00	63250.0000	0.9219	10.0	214901.000	0.8211
50.0	1673752.00	1.088	3.00	98939.0000	1.442	10.0	328255.000	1.254
50.0	607149.000	0.3946	3.00	32636.0000	0.4757	10.0	108922.000	0.4162
50.0	1753306.00	1.224	3.00	101242.000	1.629	10.0	336041.000	1.387
50.0	1855478.00	1.370	3.00	101716.000	1.748	10.0	352726.000	1.532
50.0	828680.000	0.5386	3.00	49425.0000	0.7204	10.0	165103.000	0.6308
50.0	443906.000	1.092	3.00	23296.0000	1.260	10.0	82099.0000	1.177
50.0	808870.000	1.990	3.00	46034.0000	2.490	10.0	153938.000	2.207
50.0	1151114.00	0.8499	3.00	60586.0000	1.041	10.0	212394.000	0.9223
	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	CONC RESP 50.0 400734.000 50.0 831238.000 50.0 1544722.00 50.0 1892486.00 50.0 1433825.00 50.0 1289853.00 50.0 1086320.00 50.0 1075206.00 50.0 1104761.00 50.0 326614.000 50.0 233834.000 50.0 1688044.00 50.0 1673752.00 50.0 607149.000 50.0 1753306.00 50.0 1855478.00 50.0 828680.000 50.0 808870.000	CONC RESP RF 50.0 400734.000 0.9857 50.0 831238.000 0.6137 50.0 1544722.00 1.141 50.0 1892486.00 1.322 50.0 1433825.00 1.081 50.0 1289853.00 1.574 50.0 1086320.00 1.326 50.0 1075206.00 1.312 50.0 1104761.00 1.349 50.0 326614.000 0.2281 50.0 233834.000 0.5751 50.0 1688044.00 1.273 50.0 1673752.00 1.088 50.0 607149.000 0.3946 50.0 1753306.00 1.224 50.0 1855478.00 1.370 50.0 828680.000 0.5386 50.0 443906.000 1.990	CONC RESP RF CONC 50.0 400734.000 0.9857 3.00 50.0 831238.000 0.6137 3.00 50.0 1544722.00 1.141 3.00 50.0 1892486.00 1.322 3.00 50.0 1433825.00 1.081 3.00 50.0 1289853.00 1.574 3.00 50.0 1086320.00 1.326 3.00 50.0 1075206.00 1.312 3.00 50.0 104761.00 1.349 3.00 50.0 326614.000 0.2281 3.00 50.0 233834.000 0.5751 3.00 50.0 1688044.00 1.273 3.00 50.0 1673752.00 1.088 3.00 50.0 607149.000 0.3946 3.00 50.0 1855478.00 1.370 3.00 50.0 828680.000 0.5386 3.00 50.0 808870.000 1.992 3.00 </td <td>CONC RESP RF CONC RESP 50.0 400734.000 0.9857 3.00 18757.0000 50.0 831238.000 0.6137 3.00 43793.0000 50.0 1544722.00 1.141 3.00 83463.0000 50.0 1892486.00 1.322 3.00 105966.000 50.0 1433825.00 1.081 3.00 65390.000 50.0 1289853.00 1.574 3.00 76662.0000 50.0 1086320.00 1.326 3.00 60278.0000 50.0 1075206.00 1.312 3.00 59711.0000 50.0 1104761.00 1.349 3.00 65523.0000 50.0 326614.000 0.2281 3.00 17692.0000 50.0 233834.000 0.5751 3.00 11930.0000 50.0 1688044.00 1.273 3.00 77825.0000 50.0 1673752.00 1.088 3.00 98939.0000 50.0 1753306.00 <</td> <td>CONC RESP RF CONC RESP RF 50.0 400734.000 0.9857 3.00 18757.0000 1.015 50.0 831238.000 0.6137 3.00 43793.0000 0.7525 50.0 1544722.00 1.141 3.00 83463.0000 1.434 50.0 1892486.00 1.322 3.00 105966.000 1.705 50.0 1433825.00 1.081 3.00 65390.0000 1.177 50.0 1289853.00 1.574 3.00 76662.0000 2.171 50.0 1086320.00 1.326 3.00 60278.0000 1.707 50.0 1075206.00 1.312 3.00 59711.0000 1.691 50.0 1104761.00 1.349 3.00 65523.0000 1.855 50.0 326614.000 0.2281 3.00 17692.0000 0.2847 50.0 1688044.00 1.273 3.00 1930.0000 0.6454 50.0 1673752.00 1.088<</td> <td>CONC RESP RF CONC RESP RF CONC 50.0 400734.000 0.9857 3.00 18757.0000 1.015 10.0 50.0 831238.000 0.6137 3.00 43793.0000 0.7525 10.0 50.0 1544722.00 1.141 3.00 83463.0000 1.434 10.0 50.0 1892486.00 1.322 3.00 105966.000 1.705 10.0 50.0 1433825.00 1.081 3.00 65390.0000 1.177 10.0 50.0 1289853.00 1.574 3.00 76662.0000 2.171 10.0 50.0 1086320.00 1.326 3.00 60278.0000 1.707 10.0 50.0 1075206.00 1.312 3.00 59711.0000 1.691 10.0 50.0 1104761.00 1.349 3.00 65523.0000 1.855 10.0 50.0 233834.000 0.5751 3.00 11930.0000 0.6454 10.0</td> <td>CONC RESP RF CONC RESP RF CONC RESP 50.0 400734.000 0.9857 3.00 18757.0000 1.015 10.0 67945.0000 50.0 831238.000 0.6137 3.00 43793.0000 0.7525 10.0 155272.000 50.0 1544722.00 1.141 3.00 83463.0000 1.434 10.0 276993.000 50.0 1892486.00 1.322 3.00 105966.000 1.705 10.0 364980.000 50.0 1433825.00 1.081 3.00 65390.000 1.177 10.0 235992.000 50.0 1289853.00 1.574 3.00 76662.0000 2.171 10.0 255969.000 50.0 1086320.00 1.326 3.00 60278.0000 1.707 10.0 206640.000 50.0 1075206.00 1.312 3.00 59711.0000 1.691 10.0 201560.000 50.0 1104761.00 1.349 3.00 65523.0000</td>	CONC RESP RF CONC RESP 50.0 400734.000 0.9857 3.00 18757.0000 50.0 831238.000 0.6137 3.00 43793.0000 50.0 1544722.00 1.141 3.00 83463.0000 50.0 1892486.00 1.322 3.00 105966.000 50.0 1433825.00 1.081 3.00 65390.000 50.0 1289853.00 1.574 3.00 76662.0000 50.0 1086320.00 1.326 3.00 60278.0000 50.0 1075206.00 1.312 3.00 59711.0000 50.0 1104761.00 1.349 3.00 65523.0000 50.0 326614.000 0.2281 3.00 17692.0000 50.0 233834.000 0.5751 3.00 11930.0000 50.0 1688044.00 1.273 3.00 77825.0000 50.0 1673752.00 1.088 3.00 98939.0000 50.0 1753306.00 <	CONC RESP RF CONC RESP RF 50.0 400734.000 0.9857 3.00 18757.0000 1.015 50.0 831238.000 0.6137 3.00 43793.0000 0.7525 50.0 1544722.00 1.141 3.00 83463.0000 1.434 50.0 1892486.00 1.322 3.00 105966.000 1.705 50.0 1433825.00 1.081 3.00 65390.0000 1.177 50.0 1289853.00 1.574 3.00 76662.0000 2.171 50.0 1086320.00 1.326 3.00 60278.0000 1.707 50.0 1075206.00 1.312 3.00 59711.0000 1.691 50.0 1104761.00 1.349 3.00 65523.0000 1.855 50.0 326614.000 0.2281 3.00 17692.0000 0.2847 50.0 1688044.00 1.273 3.00 1930.0000 0.6454 50.0 1673752.00 1.088<	CONC RESP RF CONC RESP RF CONC 50.0 400734.000 0.9857 3.00 18757.0000 1.015 10.0 50.0 831238.000 0.6137 3.00 43793.0000 0.7525 10.0 50.0 1544722.00 1.141 3.00 83463.0000 1.434 10.0 50.0 1892486.00 1.322 3.00 105966.000 1.705 10.0 50.0 1433825.00 1.081 3.00 65390.0000 1.177 10.0 50.0 1289853.00 1.574 3.00 76662.0000 2.171 10.0 50.0 1086320.00 1.326 3.00 60278.0000 1.707 10.0 50.0 1075206.00 1.312 3.00 59711.0000 1.691 10.0 50.0 1104761.00 1.349 3.00 65523.0000 1.855 10.0 50.0 233834.000 0.5751 3.00 11930.0000 0.6454 10.0	CONC RESP RF CONC RESP RF CONC RESP 50.0 400734.000 0.9857 3.00 18757.0000 1.015 10.0 67945.0000 50.0 831238.000 0.6137 3.00 43793.0000 0.7525 10.0 155272.000 50.0 1544722.00 1.141 3.00 83463.0000 1.434 10.0 276993.000 50.0 1892486.00 1.322 3.00 105966.000 1.705 10.0 364980.000 50.0 1433825.00 1.081 3.00 65390.000 1.177 10.0 235992.000 50.0 1289853.00 1.574 3.00 76662.0000 2.171 10.0 255969.000 50.0 1086320.00 1.326 3.00 60278.0000 1.707 10.0 206640.000 50.0 1075206.00 1.312 3.00 59711.0000 1.691 10.0 201560.000 50.0 1104761.00 1.349 3.00 65523.0000

Login Number: L09080192
Analytical Method: 8270C

Instrument ID: HPMS4 Initial Calibration Date: 26-MAY-09 18:05

Column ID: F

		WG301596-0	5		WG301596-0	6	WG301596-07		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
1,4-Dichlorobenzene	15.0	144534.000	1.741	25.0	237644.000	1.609	80.0	711919.000	1.545
2,4,6-Trichlorophenol	15.0	66588.0000	0.4069	25.0	115596.000	0.4003	80.0	353039.000	0.3743
2,4-Dichlorophenol	15.0	94389.0000	0.3053	25.0	156211.000	0.2833	80.0	486532.000	0.2717
2-Nitrophenol	15.0	72272.0000	0.2337	25.0	114269.000	0.2073	80.0	354537.000	0.1980
4-Chloro-3-Methylphenol	15.0	101897.000	0.3295	25.0	173445.000	0.3146	80.0	530596.000	0.2963
Acenaphthene	15.0	234307.000	1.432	25.0	386056.000	1.337	80.0	1106929.00	1.174
Benzo[a]pyrene	15.0	346706.000	1.330	25.0	586561.000	1.255	80.0	1822627.00	1.193
Di-n-Octyl Phthalate	15.0	426424.000	1.635	25.0	727176.000	1.556	80.0	2146857.00	1.405
Fluoranthene	15.0	409664.000	1.437	25.0	682714.000	1.341	80.0	1979179.00	1.203
Hexachlorobutadiene	15.0	57812.0000	0.1870	25.0	96024.0000	0.1742	80.0	294696.000	0.1645
Pentachlorophenol	15.0	16339.0000	0.05730	25.0	38217.0000	0.07510	80.0	163393.000	0.09930
Phenol	15.0	162695.000	1.960	25.0	273128.000	1.849	80.0	823141.000	1.786
2,4-Dinitrophenol	15.0	6949.00000	0.04250	25.0	20746.0000	0.07180	80.0	118971.000	0.1261
4-Nitrophenol	15.0	39960.0000	0.2442	25.0	62562.0000	0.2166	80.0	239932.000	0.2544
Hexachlorocyclopentadiene	15.0	21853.0000	0.1335	25.0	47263.0000	0.1637	80.0	178067.000	0.1888
n-Nitrosodipropylamine	15.0	87721.0000	1.057	25.0	146206.000	0.9897	80.0	408000.000	0.8853
1,2,4-Trichlorobenzene	15.0	114998.000	0.3719	25.0	193410.000	0.3508	80.0	576988.000	0.3222
1,2-Dichlorobenzene	15.0	130694.000	1.574	25.0	217135.000	1.470	80.0	626862.000	1.360
1,3-Dichlorobenzene	15.0	141006.000	1.698	25.0	239379.000	1.621	80.0	715243.000	1.552
2,4,5-Trichlorophenol	15.0	67767.0000	0.4141	25.0	112311.000	0.3889	80.0	348465.000	0.3694
2,4-Dimethylphenol	15.0	122455.000	0.3960	25.0	214184.000	0.3885	80.0	627068.000	0.3501
2,4-Dinitrotoluene	15.0	74506.0000	0.4553	25.0	127252.000	0.4406	80.0	384871.000	0.4080
2,6-Dinitrotoluene	15.0	59385.0000	0.3629	25.0	99124.0000	0.3432	80.0	307769.000	0.3263
2-Chloronaphthalene	15.0	250888.000	1.533	25.0	417558.000	1.446	80.0	1204350.00	1.277
2-Chlorophenol	15.0	128883.000	1.552	25.0	215414.000	1.458	80.0	653951.000	1.419
2-Methylnaphthalene	15.0	241745.000	0.7818	25.0	400252.000	0.7260	80.0	1170990.00	0.6538
2-Methylphenol	15.0	96870.0000	1.167	25.0	159105.000	1.077	80.0	470862.000	1.022
2-Nitroaniline	15.0	69269.0000	0.4233	25.0	116349.000	0.4029	80.0	365631.000	0.3876
3,3'-Dichlorobenzidine	15.0	105754.000	0.3888	25.0	181375.000	0.3758	80.0	594993.000	0.3791
3-Nitroaniline	15.0	50536.0000	0.3088	25.0	88348.0000	0.3059	80.0	340858.000	0.3614
4,6-Dinitro-2-Methylphenol	15.0	24429.0000	0.08570	25.0	51039.0000	0.1002	80.0	197808.000	0.1202
4-Bromophenyl Phenyl Ether	15.0	74503.0000	0.2614	25.0	124659.000	0.2449	80.0	361970.000	0.2199
4-Chloroaniline	15.0	138230.000	0.4470	25.0	237603.000	0.4310	80.0	765028.000	0.4272
4-Chlorophenyl Phenyl Ether	15.0	130652.000	0.7984	25.0	213998.000	0.7410	80.0	619698.000	0.6570
4-Nitroaniline	15.0	62367.0000	0.3811	25.0	107512.000	0.3723	80.0	324667.000	0.3442
Acenaphthylene	15.0	372577.000	2.277	25.0	610595.000	2.114	80.0	1686168.00	1.788
Anthracene	15.0	418664.000	1.469	25.0	698594.000	1.372	80.0	1981646.00	1.204
Benzo[a]anthracene	15.0	370215.000	1.361	25.0	624746.000	1.295	80.0	1865789.00	1.189
Benzo[b]fluoranthene	15.0	371439.000	1.425	25.0	616382.000	1.319	80.0	2022286.00	1.324
Benzo[ghi]perylene	15.0	295446.000	1.133	25.0	510088.000	1.091	80.0	1619968.00	1.060
Benzo[k]fluoranthene	15.0	345583.000	1.325	25.0	553704.000	1.185	80.0	1680956.00	1.100
	1	1			1	, ,		1	

INT_CAL - Modified 03/06/2008

PDF File ID: 1464094

Report generated 08/12/2009 13:05

Microbac ®

Login Number: L09080192
Analytical Method: 8270C

Instrument ID: HPMS4

Initial Calibration Date: 26-MAY-09 18:05

Column ID: F

		WG301596-0	8	WG301596-09			
Analyte	CONC	RESP	RF	CONC	RESP	RF	
1,4-Dichlorobenzene	100	1080973.00	1.619	120	1222100.00	1.611	
2,4,6-Trichlorophenol	100	548565.000	0.3952	120	621778.000	0.3869	
2,4-Dichlorophenol	100	756300.000	0.2876	120	865776.000	0.2867	
2-Nitrophenol	100	543051.000	0.2065	120	613704.000	0.2032	
4-Chloro-3-Methylphenol	100	808149.000	0.3073	120	906618.000	0.3002	
Acenaphthene	100	1595648.00	1.149	120	1776666.00	1.106	
Benzo[a]pyrene	100	2799052.00	1.224	120	3214081.00	1.212	
Di-n-Octyl Phthalate	100	3117731.00	1.363	120	3500570.00	1.320	
Fluoranthene	100	2875266.00	1.200	120	3214386.00	1.183	
Hexachlorobutadiene	100	448751.000	0.1706	120	499524.000	0.1654	
Pentachlorophenol	100	270852.000	0.1130	120	314422.000	0.1157	
Phenol	100	1248012.00	1.869	120	1406398.00	1.853	
2,4-Dinitrophenol	100	204820.000	0.1475	120	235949.000	0.1468	
4-Nitrophenol	100	394064.000	0.2839	120	464310.000	0.2889	
Hexachlorocyclopentadiene	100	244738.000	0.1763	120	276085.000	0.1718	
n-Nitrosodipropylamine	100	572322.000	0.8573	120	634050.000	0.8356	
1,2,4-Trichlorobenzene	100	846718.000	0.3219	120	947865.000	0.3139	
1,2-Dichlorobenzene	100	947340.000	1.419	120	1071394.00	1.412	
1,3-Dichlorobenzene	100	1070566.00	1.604	120	1207348.00	1.591	
2,4,5-Trichlorophenol	100	528020.000	0.3804	120	588172.000	0.3660	
2,4-Dimethylphenol	100	944747.000	0.3592	120	1059617.00	0.3509	
2,4-Dinitrotoluene	100	568274.000	0.4093	120	631997.000	0.3933	
2,6-Dinitrotoluene	100	467404.000	0.3367	120	526878.000	0.3279	
2-Chloronaphthalene	100	1758946.00	1.267	120	1972845.00	1.228	
2-Chlorophenol	100	1002747.00	1.502	120	1147344.00	1.512	
2-Methylnaphthalene	100	1702031.00	0.6472	120	1908361.00	0.6319	
2-Methylphenol	100	717610.000	1.075	120	825753.000	1.088	
2-Nitroaniline	100	559076.000	0.4027	120	640602.000	0.3986	
3,3'-Dichlorobenzidine	100	939925.000	0.4050	120	1076366.00	0.4018	
3-Nitroaniline	100	537937.000	0.3875	120	615165.000	0.3828	
4,6-Dinitro-2-Methylphenol	100	313637.000	0.1309	120	350573.000	0.1290	
4-Bromophenyl Phenyl Ether	100	544939.000	0.2274	120	624504.000	0.2297	
4-Chloroaniline	100	1142326.00	0.4343	120	1302928.00	0.4314	
4-Chlorophenyl Phenyl Ether	100	897975.000	0.6468	120	1000062.00	0.6223	
4-Nitroaniline	100	506955.000	0.3652	120	575714.000	0.3583	
Acenaphthylene	100	2390972.00	1.722	120	2633395.00	1.639	
Anthracene	100	2780400.00	1.160	120	3083025.00	1.134	
Benzo[a]anthracene	100	2824273.00	1.217	120	3194654.00	1.192	
Benzo[b]fluoranthene	100	3022785.00	1.322	120	3383903.00	1.276	
Benzo[ghi]perylene	100	2540286.00	1.111	120	2918841.00	1.101	
Benzo[k]fluoranthene	100	2406050.00	1.052	120	3384114.00	1.276	
Benzoic Acid	100	256609.000	0.09760	120	312091.000	0.1033	

INT_CAL - Modified 03/06/2008

PDF File ID: 1464094

Report generated 08/12/2009 13:05

Microbac Laboratories Inc. INITIAL CALIBRATION DATA

00083690

Login Number: L09080192
Analytical Method: 8270C

Instrument ID: <u>HPMS4</u>
Initial Calibration Date: <u>26-MAY-09 18:05</u>

Column ID:F

	WG301596-05			WG301596-06			WG301596-07		
Analyte	CONC	RESP	RF	CONC	RESP	RF	CONC	RESP	RF
Benzyl Alcohol	15.0	84544.0000	1.018	25.0	143076.000	0.9685	80.0	453610.000	0.9843
Butyl Benzyl Phthalate	15.0	191123.000	0.7027	25.0	319517.000	0.6621	80.0	928369.000	0.5915
Chrysene	15.0	345878.000	1.272	25.0	577202.000	1.196	80.0	1742997.00	1.111
Di-n-Butyl Phthalate	15.0	446312.000	1.566	25.0	747010.000	1.467	80.0	2093109.00	1.272
Dibenz[ah]anthracene	15.0	295505.000	1.133	25.0	509105.000	1.089	80.0	1601066.00	1.048
Dibenzofuran	15.0	311555.000	1.904	25.0	513551.000	1.778	80.0	1429816.00	1.516
Diethylphthalate	15.0	249909.000	1.527	25.0	412959.000	1.430	80.0	1209780.00	1.283
Dimethylphthalate	15.0	245373.000	1.500	25.0	410852.000	1.423	80.0	1194445.00	1.266
Fluorene	15.0	266429.000	1.628	25.0	436765.000	1.512	80.0	1222616.00	1.296
Hexachlorobenzene	15.0	72616.0000	0.2547	25.0	121940.000	0.2395	80.0	368348.000	0.2238
Hexachloroethane	15.0	50625.0000	0.6097	25.0	85134.0000	0.5763	80.0	261745.000	0.5680
Indeno[1,2,3-cd]pyrene	15.0	350452.000	1.344	25.0	601207.000	1.286	80.0	1889098.00	1.236
Isophorone	15.0	266604.000	0.8622	25.0	440532.000	0.7990	80.0	1291564.00	0.7212
Naphthalene	15.0	394945.000	1.277	25.0	659049.000	1.195	80.0	1863610.00	1.041
Nitrobenzene	15.0	134519.000	0.4350	25.0	226437.000	0.4107	80.0	682116.000	0.3809
Phenanthrene	15.0	414744.000	1.455	25.0	684799.000	1.345	80.0	1943923.00	1.181
Pyrene	15.0	433945.000	1.596	25.0	721641.000	1.495	80.0	2071272.00	1.320
bis(2-Chloroethoxy)methane	15.0	201460.000	0.6515	25.0	329414.000	0.5975	80.0	924290.000	0.5161
bis(2-Chloroethyl)ether	15.0	98800.0000	1.190	25.0	167652.000	1.135	80.0	493935.000	1.072
bis(2-Chloroisopropyl)ether	15.0	188495.000	2.270	25.0	314933.000	2.132	80.0	923402.000	2.004
bis(2-Ethylhexyl)phthalate	15.0	262965.000	0.9669	25.0	437670.000	0.9069	80.0	1290967.00	0.8225

Microbac Laboratories Inc.
INITIAL CALIBRATION DATA

00083691

Login Number: L09080192
Analytical Method: 8270C

Instrument ID: HPMS4

Initial Calibration Date: 26-MAY-09 18:05

Column ID:F

		WG301596-0	WG301596-09			
Analyte	CONC	RESP	RF	CONC	RESP	RF
Benzyl Alcohol	100	697693.000	1.045	120	792431.000	1.044
Butyl Benzyl Phthalate	100	1353477.00	0.5832	120	1509786.00	0.5635
Chrysene	100	2613581.00	1.126	120	2926413.00	1.092
Di-n-Butyl Phthalate	100	2968117.00	1.239	120	3274729.00	1.205
Dibenz[ah]anthracene	100	2525722.00	1.104	120	2916227.00	1.100
Dibenzofuran	100	2012770.00	1.450	120	2206282.00	1.373
Diethylphthalate	100	1742710.00	1.255	120	1942614.00	1.209
Dimethylphthalate	100	1759330.00	1.267	120	1987513.00	1.237
Fluorene	100	1779390.00	1.282	120	1973838.00	1.228
Hexachlorobenzene	100	554904.000	0.2316	120	631356.000	0.2323
Hexachloroethane	100	402762.000	0.6033	120	454576.000	0.5990
Indeno[1,2,3-cd]pyrene	100	2971637.00	1.299	120	3420588.00	1.290
Isophorone	100	1906397.00	0.7249	120	2141103.00	0.7090
Naphthalene	100	2619032.00	0.9958	120	2944002.00	0.9748
Nitrobenzene	100	1022694.00	0.3889	120	1156670.00	0.3830
Phenanthrene	100	2770515.00	1.156	120	3074214.00	1.131
Pyrene	100	3042850.00	1.311	120	3413455.00	1.274
bis(2-Chloroethoxy)methane	100	1298134.00	0.4936	120	1403261.00	0.4647
bis(2-Chloroethyl)ether	100	735828.000	1.102	120	824820.000	1.087
bis(2-Chloroisopropyl)ether	100	1367288.00	2.048	120	1532312.00	2.019
bis(2-Ethylhexyl)phthalate	100	1903060.00	0.8200	120	2133024.00	0.7962

Microbac Laboratories Inc. ALTERNATE SOURCE CALIBRATION REPORT

 Login Number: L09080192
 Run Date: 05/26/2009
 Sample ID: WG301596-10

 Instrument ID: HPMS4
 Run Time: 18:41
 Method: 8270C

 File ID: 4M46939
 Analyst: MDC
 QC Key: STD

ICal Workgroup: WG301596 Cal ID: HPMS4 - 26-MAY-09

Analyte		Expected	Found	Units	RF	%D	UCL	Q
1,4-Dichlorobenzene	CCC	50000	47900	ug/L	1.59	4.20	30	
2,4,6-Trichlorophenol	CCC	50000	50200	ug/L	0.399	0.400	30	
2,4-Dichlorophenol	CCC	50000	50900	ug/L	0.296	1.70	30	
2-Nitrophenol	CCC	50000	53400	ug/L	0.224	6.70	30	
4-Chloro-3-Methylphenol	CCC	50000	51500	ug/L	0.325	3.00	30	
Acenaphthene	CCC	50000	46400	ug/L	1.21	7.20	30	
Benzo[a]pyrene	CCC	50000	50000	ug/L	1.27	0.100	30	
Di-n-Octyl Phthalate	CCC	50000	46500	ug/L	1.41	7.10	30	
Fluoranthene	CCC	50000	50200	ug/L	1.32	0.300	30	
Hexachlorobutadiene	CCC	50000	53800	ug/L	0.190	7.70	30	
n-Nitrosodiphenylamine	CCC	50000	45900	ug/L	0.663	8.30	30	
Pentachlorophenol	CCC	50000	67300	ug/L	0.142	34.6	30	*
Phenol	CCC	50000	50900	ug/L	1.93	1.70	30	
2,4-Dinitrophenol	SPCC	50000	59400	ug/L	0.150	18.9	30	
4-Nitrophenol	SPCC	50000	50800	ug/L	0.257	1.50	30	
Hexachlorocyclopentadiene	SPCC	50000	64000	ug/L	0.225	28.0	30	
n-Nitrosodipropylamine	SPCC	50000	53500	ug/L	1.03	7.10	30	
1,2,4-Trichlorobenzene		50000	49700	ug/L	0.347	0.600	30	
1,2-Dichlorobenzene		50000	48600	ug/L	1.44	2.80	30	
1,3-Dichlorobenzene		50000	49400	ug/L	1.62	1.30	30	
2,4,5-Trichlorophenol		50000	55500	ug/L	0.430	11.0	30	
2,4-Dimethylphenol		50000	49300	ug/L	0.372	1.30	30	
2,4-Dinitrotoluene		50000	50300	ug/L	0.434	0.500	30	
2,6-Dinitrotoluene		50000	50400	ug/L	0.350	0.800	30	
2-Chloronaphthalene		50000	41600	ug/L	1.18	16.7	30	
2-Chlorophenol		50000	49800	ug/L	1.49	0.400	30	
2-Methylnaphthalene		50000	52000	ug/L	0.743	4.00	30	
2-Methylphenol		50000	48100	ug/L	1.07	3.80	30	
2-Nitroaniline		50000	54700	ug/L	0.445	9.30	30	
3-,4-Methylphenol		50000	49700	ug/L	1.47	0.600	30	
3-Nitroaniline		50000	48000	ug/L	0.339	4.10	30	
4,6-Dinitro-2-Methylphenol		50000	56100	ug/L	0.135	12.3	30	
4-Bromophenyl Phenyl Ether		50000	42400	ug/L	0.205	15.2	30	
4-Chloroaniline		50000	52500	ug/L	0.467	5.00	30	
4-Chlorophenyl Phenyl Ether		50000	45100	ug/L	0.651	9.80	30	
4-Nitroaniline		50000	40700	ug/L	0.297	18.6	30	
Acenaphthylene		50000	52100	ug/L	1.86	4.10	30	
Anthracene		50000	48000	ug/L	1.27	3.90	30	
Benzo[a]anthracene		50000	49500	ug/L	1.27	1.10	30	
Benzo[b]fluoranthene		50000	48600	ug/L	1.29	2.90	30	
Benzo[ghi]perylene		50000	51800	ug/L	1.15	3.60	30	
Benzo[k]fluoranthene		50000	47900	ug/L	1.16	4.20	30	

ALT - Modified 09/06/2007

Version 1.5 PDF File ID:1464095 Report generated 08/12/2009 13:06

Microbac Laboratories Inc. ALTERNATE SOURCE CALIBRATION REPORT

 Login Number: L09080192
 Run Date: 05/26/2009
 Sample ID: WG301596-10

 Instrument ID: HPMS4
 Run Time: 18:41
 Method: 8270C

 File ID: 4M46939
 Analyst: MDC
 QC Key: STD

ICal Workgroup: WG301596 Cal ID: HPMS4 - 26-MAY-09

Expected	Found	Units	RF	%D	UCL	Q
50000	53200	ug/L	1.07	6.30	30	
50000	43800	ug/L	0.455	12.5	30	
50000	49400	ug/L	1.13	1.10	30	
50000	47400	ug/L	2.04	5.10	30	
50000	47000	ug/L	0.838	5.90	30	
50000	50500	ug/L	0.649	1.00	30	
50000	49900	ug/L	1.20	0.100	30	
50000	43500	ug/L	1.23	12.9	30	
50000	51000	ug/L	1.12	2.00	30	
50000	52500	ug/L	1.58	5.00	30	
50000	44100	ug/L	1.24	11.8	30	
50000	45400	ug/L	1.27	9.10	30	
50000	48400	ug/L	1.42	3.20	30	
50000	51300	ug/L	0.249	2.60	30	
50000	49400	ug/L	0.589	1.10	30	
50000	49800	ug/L	1.30	0.500	30	
50000	48000	ug/L	0.758	4.00	30	
50000	47600	ug/L	1.10	4.90	30	
50000	50900	ug/L	0.418	1.70	30	
50000	47200	ug/L	1.24	5.60	30	
50000	47900	ug/L	1.40	4.10	30	
	50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000	50000 53200 50000 43800 50000 49400 50000 47400 50000 47000 50000 50500 50000 49900 50000 43500 50000 51000 50000 52500 50000 44100 50000 48400 50000 49400 50000 49800 50000 47600 50000 50900 50000 47200	50000 53200 ug/L 50000 43800 ug/L 50000 49400 ug/L 50000 47400 ug/L 50000 47000 ug/L 50000 50500 ug/L 50000 49900 ug/L 50000 43500 ug/L 50000 52500 ug/L 50000 42400 ug/L 50000 48400 ug/L 50000 49400 ug/L 50000 49800 ug/L 50000 47600 ug/L 50000 47600 ug/L 50000 47200 ug/L	50000 53200 ug/L 1.07 50000 43800 ug/L 0.455 50000 49400 ug/L 1.13 50000 47400 ug/L 2.04 50000 47000 ug/L 0.838 50000 50500 ug/L 0.649 50000 49900 ug/L 1.20 50000 43500 ug/L 1.23 50000 51000 ug/L 1.58 50000 52500 ug/L 1.24 50000 44100 ug/L 1.27 50000 48400 ug/L 1.42 50000 51300 ug/L 0.249 50000 49400 ug/L 0.589 50000 48000 ug/L 1.30 50000 47600 ug/L 0.418 50000 47200 ug/L 0.418	50000 53200 ug/L 1.07 6.30 50000 43800 ug/L 0.455 12.5 50000 49400 ug/L 1.13 1.10 50000 47400 ug/L 2.04 5.10 50000 47000 ug/L 0.838 5.90 50000 50500 ug/L 0.649 1.00 50000 49900 ug/L 1.20 0.100 50000 43500 ug/L 1.23 12.9 50000 51000 ug/L 1.12 2.00 50000 52500 ug/L 1.58 5.00 50000 44100 ug/L 1.24 11.8 50000 48400 ug/L 1.42 3.20 50000 51300 ug/L 0.249 2.60 50000 49400 ug/L 0.589 1.10 50000 48000 ug/L 0.758 4.00 50000 47600 ug/L<	50000 53200 ug/L 1.07 6.30 30 50000 43800 ug/L 0.455 12.5 30 50000 49400 ug/L 1.13 1.10 30 50000 47400 ug/L 2.04 5.10 30 50000 47000 ug/L 0.838 5.90 30 50000 50500 ug/L 0.649 1.00 30 50000 49900 ug/L 1.20 0.100 30 50000 43500 ug/L 1.23 12.9 30 50000 51000 ug/L 1.58 5.00 30 50000 52500 ug/L 1.58 5.00 30 50000 44100 ug/L 1.24 11.8 30 50000 48400 ug/L 1.42 3.20 30 50000 49400 ug/L 0.589 1.10 30 50000 49800 ug/L

* Exceeds %D Limit

CCC Calibration Check Compounds SPCC System Performance Check Compounds

ALT - Modified 09/06/2007 Version 1.5 PDF File ID:1464095 Report generated 08/12/2009 13:06

Microbac Laboratories Inc. ALTERNATE SOURCE CALIBRATION REPORT

Login Number: L09080192	Run Date: 05/26/2009	Sample ID: WG301596-11
Instrument ID:HPMS4	Run Time: 19:16	Method: 8270C
File ID:4M46940	Analyst:MDC	QC Key: STD
ICal Workgroup:WG301596	Cal ID: <u>HPMS4 - 26-MAY-09</u>	

Analyte	Expected	Found	Units	RF	%D	UCL	Q
3,3'-Dichlorobenzidine	50000	53600	ug/L	0.429	7.20	30	
Benzoic Acid	50000	90900	ug/L	0.152	81.9	30	*

* Exceeds %D Limit

CCC Calibration Check Compounds
SPCC System Performance Check Compounds

ALT - Modified 09/06/2007 Version 1.5 PDF File ID:1464095 Report generated 08/12/2009 13:06

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309450-02

 Instrument ID: HPMS4
 Run Time: 13:26
 Method: 8270C

 File ID: 4M47703
 Analyst: CAA
 QC Key: STD

Workgroup (AAB#): WG309468 Cal ID: HPMS4 - 26-MAY-09

Matrix:SOIL

1,4-Dichlorobenzene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Nitrophenol	CCC	50000 50000	48900 49800	ug/L	1.62	2.28	20
2,4-Dichlorophenol	CCC	50000	40000				1 1
· -			49800	ug/L	0.397	0.302	20
2-Nitrophenol	222	50000	49800	ug/L	0.290	0.345	20
	CCC	50000	49300	ug/L	0.207	1.44	40
4-Chloro-3-Methylphenol	CCC	50000	54400	ug/L	0.343	8.74	20
Acenaphthene	CCC	50000	51600	ug/L	1.34	3.21	20
Benzo[a]pyrene	CCC	50000	48700	ug/L	1.24	2.60	20
Di-n-Octyl Phthalate	CCC	50000	55600	ug/L	1.68	11.1	20
Fluoranthene	CCC	50000	47600	ug/L	1.25	4.72	20
Hexachlorobutadiene	CCC	50000	57400	ug/L	0.203	14.8	20
n-Nitrosodiphenylamine	CCC	50000	48600	ug/L	0.702	2.88	20
Pentachlorophenol	CCC	50000	50400	ug/L	0.100	0.736	20
Phenol	CCC	50000	47500	ug/L	1.80	5.05	20
2,4-Dinitrophenol	SPCC	50000	60800	ug/L	0.155	21.6	20 *
4-Nitrophenol	SPCC	50000	61100	ug/L	0.309	22.3	40
Hexachlorocyclopentadiene	SPCC	50000	38700	ug/L	0.134	22.6	40
n-Nitrosodipropylamine	SPCC	50000	56300	ug/L	1.09	12.6	40
1,2,4-Trichlorobenzene		50000	49400	ug/L	0.345	1.11	40
1,2-Dichlorobenzene		50000	48400	ug/L	1.44	3.19	40
1,3-Dichlorobenzene		50000	48100	ug/L	1.58	3.76	40
2,4,5-Trichlorophenol		50000	51500	ug/L	0.398	2.93	40
2,4-Dimethylphenol		50000	47000	ug/L	0.354	6.01	40
2,4-Dinitrotoluene		50000	52900	ug/L	0.457	5.90	40
2,6-Dinitrotoluene		50000	49500	ug/L	0.344	0.953	40
2-Chloronaphthalene		50000	48300	ug/L	1.37	3.46	40
2-Chlorophenol		50000	48700	ug/L	1.46	2.69	40
2-Methylnaphthalene		50000	49000	ug/L	0.699	2.10	40
2-Methylphenol		50000	49300	ug/L	1.09	1.43	40
2-Nitroaniline		50000	55400	ug/L	0.451	10.8	40
3,3'-Dichlorobenzidine		50000	45000	ug/L	0.360	10.1	40
3-,4-Methylphenol		50000	46700	ug/L	1.39	6.62	40
3-Nitroaniline		50000	52000	ug/L	0.368	4.05	40
4,6-Dinitro-2-Methylphenol		50000	55700	ug/L	0.134	11.4	40
4-Bromophenyl Phenyl Ether		50000	50200	ug/L	0.242	0.352	40
4-Chloroaniline		50000	48900	ug/L	0.434	2.30	40
4-Chlorophenyl Phenyl Ether		50000	51800	ug/L	0.749	3.62	40
4-Nitroaniline		50000	54000	ug/L	0.394	8.10	40
Acenaphthylene		50000	55900	ug/L	1.99	11.9	40
Anthracene		50000	48000	ug/L	1.28	3.93	40
Benzo[a]anthracene		50000	42500	ug/L	1.10	15.0	40
Benzo[b]fluoranthene		50000	52200	ug/L	1.39	4.39	40
Benzo[ghi]perylene		50000	48100	ug/L	1.07	3.86	40

CCV - Modified 03/05/2008 PDF File ID:1464097 Report generated 08/12/2009 13:06

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

 Login Number: L09080192
 Run Date: 08/11/2009
 Sample ID: WG309450-02

 Instrument ID: HPMS4
 Run Time: 13:26
 Method: 8270C

 File ID: 4M47703
 Analyst: CAA
 QC Key: STD

Workgroup (AAB#):WG309468 Cal ID: HPMS4 - 26-MAY-09

Matrix: SOIL

Analyte	Expected	Found	UNITS	RF	%D	UCL	Q
Benzo[k]fluoranthene	50000	47900	ug/L	1.16	4.16	40	
Benzoic Acid	50000	63800	ug/L	0.0806	27.6	40	
Benzyl Alcohol	50000	47700	ug/L	0.959	4.51	40	
bis(2-Chloroethoxy)methane	50000	59300	ug/L	0.599	18.6	40	
bis(2-Chloroethyl)ether	50000	48100	ug/L	1.10	3.83	40	
bis(2-Chloroisopropyl)ether	50000	43800	ug/L	1.88	12.4	40	
bis(2-Ethylhexyl)phthalate	50000	46800	ug/L	0.833	6.43	40	
Butyl Benzyl Phthalate	50000	48600	ug/L	0.625	2.83	40	
Chrysene	50000	43300	ug/L	1.04	13.5	40	
Di-n-Butyl Phthalate	50000	50400	ug/L	1.42	0.839	40	
Dibenz[ah]anthracene	50000	49300	ug/L	1.08	1.42	40	
Dibenzofuran	50000	57600	ug/L	1.72	15.1	40	
Diethylphthalate	50000	54600	ug/L	1.54	9.29	40	
Dimethylphthalate	50000	50000	ug/L	1.40	0.0902	40	
Fluorene	50000	51100	ug/L	1.50	2.19	40	
Hexachlorobenzene	50000	50800	ug/L	0.246	1.53	40	
Hexachloroethane	50000	54400	ug/L	0.648	8.76	40	
Indeno[1,2,3-cd]pyrene	50000	48900	ug/L	1.27	2.25	40	
Isophorone	50000	50300	ug/L	0.794	0.612	40	
Naphthalene	50000	47700	ug/L	1.10	4.69	40	
Nitrobenzene	50000	53400	ug/L	0.438	6.77	40	
Phenanthrene	50000	48700	ug/L	1.28	2.57	40	
Pyrene	50000	43300	ug/L	1.26	13.3	20	
					1	1	

^{*} Exceeds %D Criteria

CCC Calibration Check Compounds
SPCC System Performance Check Compounds

CCV - Modified 03/05/2008 PDF File ID:1464097 Report generated 08/12/2009 13:06

Microbac Laboratories Inc. INTERNAL STANDARD AREA SUMMARY (COMPARED TO CCV)

Login Number: L09080192 CCV Number: WG309450-02

Instrument ID: HPMS4 - 26-MAY-09

Workgroup (AAB#):WG309468 Matrix:SOLID

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3	IS-4	IS-5	IS-6
WG309450-02	NA	NA	254022	519290	987709	958809	828621	955320
Upper Limit	NA	NA	508044	1038580	1975418	1917618	1657242	1910640
Lower Limit	NA	NA	127011	259645	493855	479405	414311	477660
L09080192-01	1.00	01	170321	331493	609845	645733	502674	595154
L09080192-02	1.00	01	230092	444242	836450	854935	718425	799313
L09080192-03	1.00	01	229408	441704	828416	864031	704686	793136
L09080192-04	1.00	01	231170	429357	823633	860540	706505	788713
L09080192-05	1.00	01	168962	323884	590344	630027	505568	578136
WG309434-01	1.00	01	243610	464963	863154	900752	725500	835377
WG309434-02	1.00	01	229452	474189	892869	850837	761497	828780
WG309434-03	1.00	01	164999	334062	615434	632022	516598	601537

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Acenaphthene-d10

IS-3 - Chrysene-d12

IS-4 - Naphthalene-D8

IS-5 - Perylene-d12

IS-6 - Phenanthrene-d10

Underline = Response outside limits

INTERNAL_STD - Modified 03/06/2008 PDF File ID: 1464098 Report generated 08/12/2009 13:07

Microbac Laboratories Inc. INTERNAL STANDARD RETENTION TIME SUMMARY (COMPARED TO CCV)

 Login Number: L09080192
 CCV Number: WG309450-02

 Instrument ID: HPMS4
 CAL ID: HPMS4-26-MAY-09

 Workgroup (AAB#): WG309468
 Matrix: SOLID

Sample Number	Dilution	Tag	IS-1	IS-2	IS-3	IS-4	IS-5	IS-6
WG309450-02	NA	NA	7.63	10.73	16.86	8.92	19.94	12.37
Upper Limit	NA	NA	8.13	11.23	17.36	9.42	20.44	12.87
Lower Limit	NA	NA	7.13	10.23	16.36	8.42	19.44	11.87
L09080192-01	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36
L09080192-02	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36
L09080192-03	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36
L09080192-04	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36
L09080192-05	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36
WG309434-01	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36
WG309434-02	1.00	01	7.63	10.73	16.87	8.92	19.94	12.36
WG309434-03	1.00	01	7.63	10.73	16.86	8.92	19.94	12.36

IS-1 - 1,4-Dichlorobenzene-d4

IS-2 - Acenaphthene-d10

IS-3 - Chrysene-d12

IS-4 - Naphthalene-D8

IS-5 - Perylene-d12

IS-6 - Phenanthrene-d10

Underline = Response outside limits

INTERNAL_STD_RT - Modified 03/06/2008
 PDF File ID: 1464099
Report generated 08/12/2009 13:07

2.3 Metals Data

2.3.1 Metals I C P Data

2.3.1.1 Summary Data

L09080192

08/13/09 14:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: 389869/ 390836(GWTP)

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
SITE 1-TP-BF	L09080192-01	6010B	1	11-AUG-09
SITE 1-TP-TS	L09080192-02	6010B	1	11-AUG-09
SITE 2-BLM-TS	L09080192-03	6010B	1	11-AUG-09
SITE 2-BLM-BF	L09080192-04	6010B	2	11-AUG-09
SITE 2-BLM-BF	L09080192-04	6010B	1	11-AUG-09
SITE 3-ML-BF/TS	L09080192-05	6010B	1	11-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1465217
Report generated: 08/13/2009 14:09 1 OF 1

Report Date : August 13, 2009

00083703 Report Number: L09080192

Sample Number: L09080192-01 PrePrep Method:NONE Instrument:ICP-THERMO2 Prep Date: 08/11/2009 11:17
Cal Date: 08/11/2009 11:15 Client ID: SITE 1-TP-BF Prep Method: 3051 Matrix: Soil Analytical Method: 6010B Workgroup Number: WG309454
Collect Date: 08/09/2009 10:45 Run Date: 08/11/2009 14:40
File ID: T2.081109.144052
Percent Solid: 77.4 Analyst: EDA Dilution: 1 Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Total	7429-90-5	2890		18.9	9.44
Antimony, Total	7440-36-0		U	9.44	0.472
Arsenic, Total	7440-38-2	2.08	J	4.72	0.472
Barium, Total	7440-39-3	7.15		0.472	0.0944
Beryllium, Total	7440-41-7	0.0467	J	0.472	0.0113
Cadmium, Total	7440-43-9		υ	0.472	0.0472
Calcium, Total	7440-70-2	6.69	J	9.44	4.72
Chromium, Total	7440-47-3	14.5		0.944	0.113
Cobalt, Total	7440-48-4	0.311	J	0.944	0.113
Copper, Total	7440-50-8	2.56		0.944	0.472
Iron, Total	7439-89-6	10600	В	2.83	0.944
Lead, Total	7439-92-1	6.17		4.72	0.472
Magnesium, Total	7439-95-4	49.3		23.6	11.3
Manganese, Total	7439-96-5	18.3		0.472	0.0944
Nickel, Total	7440-02-0	0.933	J	1.89	0.472
Potassium, Total	7440-09-7	108		47.2	23.6
Selenium, Total	7782-49-2		υ	4.72	0.472
Silver, Total	7440-22-4	0.259	J	1.89	0.236
Sodium, Total	7440-23-5		U	23.6	4.72
Thallium, Total	7440-28-0		U	23.6	0.378
Vanadium, Total	7440-62-2	19.8		0.472	0.236
Zinc, Total	7440-66-6	3.03		0.944	0.472

J The analyte was positively identified, but the quantitation was below the RL U Not detected at or above adjusted sample detection limit

of 6

B Analyte present in method blank

00083704

Report Date : August 13, 2009

Report Number: L09080192

Sample Number: L09080192-02 PrePrep Method:NONE Instrument:ICP-THERMO2 Prep Date: 08/11/2009 11:17
Cal Date: 08/11/2009 11:15 Client ID: SITE 1-TP-TS Prep Method: 3051 Matrix: Soil Analytical Method: 6010B Workgroup Number: WG309454
Collect Date: 08/09/2009 10:50 Run Date: 08/11/2009 15:06 File ID: T2.081109.150624 Percent Solid: 79.5 Analyst: EDA Dilution: 1 Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Total	7429-90-5	685		18.2	9.08
Antimony, Total	7440-36-0		U	9.08	0.454
Arsenic, Total	7440-38-2		U	4.54	0.454
Barium, Total	7440-39-3	14.7		0.454	0.0908
Beryllium, Total	7440-41-7	0.0558	J	0.454	0.0109
Cadmium, Total	7440-43-9		U	0.454	0.0454
Calcium, Total	7440-70-2	97.7		9.08	4.54
Chromium, Total	7440-47-3	1.57		0.908	0.109
Cobalt, Total	7440-48-4	0.592	J	0.908	0.109
Copper, Total	7440-50-8	1.33		0.908	0.454
Iron, Total	7439-89-6	1370	В	2.72	0.908
Lead, Total	7439-92-1	2.21	J	4.54	0.454
Magnesium, Total	7439-95-4	35.9		22.7	10.9
Manganese, Total	7439-96-5	128		0.454	0.0908
Nickel, Total	7440-02-0	0.827	J	1.82	0.454
Potassium, Total	7440-09-7	56.8		45.4	22.7
Selenium, Total	7782-49-2	0.582	J	4.54	0.454
Silver, Total	7440-22-4		U	1.82	0.227
Sodium, Total	7440-23-5	4.63	J	22.7	4.54
Thallium, Total	7440-28-0		U	22.7	0.363
Vanadium, Total	7440-62-2	2.49		0.454	0.227
Zinc, Total	7440-66-6	3.45		0.908	0.454

of 6

U Not detected at or above adjusted sample detection limit J The analyte was positively identified, but the quantitation was below the RL $\,$

B Analyte present in method blank

Report Date : August 13, 2009

Report Number: L09080192

Sample Number:L09080192-03 PrePrep Method:NONE Instrument:ICP-THERMO2 Prep Date: 08/11/2009 11:17
Cal Date: 08/11/2009 11:15 Client ID: SITE 2-BLM-TS Prep Method: 3051 Matrix: Soil Analytical Method: 6010B Workgroup Number: WG309454
Collect Date: 08/09/2009 11:20 Run Date: 08/11/2009 15:12
File ID: T2.081109.151247
Percent Solid: 78.2 Analyst: EDA Dilution: 1 Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Total	7429-90-5	5880		18.3	9.14
Antimony, Total	7440-36-0		U	9.14	0.457
Arsenic, Total	7440-38-2	5.03		4.57	0.457
Barium, Total	7440-39-3	90.2		0.457	0.0914
Beryllium, Total	7440-41-7	0.595		0.457	0.0110
Cadmium, Total	7440-43-9		U	0.457	0.0457
Calcium, Total	7440-70-2	337		9.14	4.57
Chromium, Total	7440-47-3	24.8		0.914	0.110
Cobalt, Total	7440-48-4	20.8		0.914	0.110
Copper, Total	7440-50-8	4.80		0.914	0.457
Iron, Total	7439-89-6	16900	В	2.74	0.914
Lead, Total	7439-92-1	15.2		4.57	0.457
Magnesium, Total	7439-95-4	389		22.9	11.0
Manganese, Total	7439-96-5	794		0.457	0.0914
Nickel, Total	7440-02-0	6.16		1.83	0.457
Potassium, Total	7440-09-7	329		45.7	22.9
Selenium, Total	7782-49-2	0.891	J	4.57	0.457
Silver, Total	7440-22-4		Ū	1.83	0.229
Sodium, Total	7440-23-5	22.7	J	22.9	4.57
Thallium, Total	7440-28-0	0.628	J	22.9	0.366
Vanadium, Total	7440-62-2	31.2		0.457	0.229
Zinc, Total	7440-66-6	16.3		0.914	0.457

of 6

Microbac

00083705

U Not detected at or above adjusted sample detection limit J The analyte was positively identified, but the quantitation was below the RL $\,$

B Analyte present in method blank

00083706

Prep Date: 08/11/2009 11:17
Cal Date: 08/11/2009 11:15

Report Date : August 13, 2009

Report Number: L09080192

Client ID: SITE 2-BLM-BF

Sample Number: L09080192-04

Workgroup Number: WG309454
Collect Date: 08/09/2009 11:25

Matrix: Soil

Sample Tag: DL01

PrePrep Method:NONE Instrument:ICP-THERMO2 Prep Method: 3051 Analytical Method: 6010B

Run Date: 08/11/2009 15:57
File ID: T2.081109.155722
Percent Solid: 78.3 Analyst: EDA Dilution: 2 Units:mg/kg

Analyte CAS. Number Result Qual PQL SDL Cadmium, Total 7440-43-9 U 0.859 0.0859

U Not detected at or above adjusted sample detection limit

6 of

00083707

Report Date : August 13, 2009

Report Number: L09080192

Sample Number: L09080192-04 PrePrep Method:NONE Instrument: ICP-THERMO2 Client ID: SITE 2-BLM-BF Prep Method: 3051 Prep Date: 08/11/2009 11:17 Matrix: Soil Analytical Method: 6010B Cal Date: 08/11/2009 11:15 Run Date:08/11/2009 15:19
Run Date:08/11/2009 15:19
File ID:T2.081109.151905
Percent Solid:78.3 Workgroup Number: WG309454
Collect Date: 08/09/2009 11:25 Analyst: EDA Dilution: 1 Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Total	7429-90-5	11100		17.2	8.59
Antimony, Total	7440-36-0		Ū	8.59	0.429
Arsenic, Total	7440-38-2	7.33		4.29	0.429
Barium, Total	7440-39-3	68.8		0.429	0.0859
Beryllium, Total	7440-41-7	0.789		0.429	0.0103
Calcium, Total	7440-70-2	238		8.59	4.29
Chromium, Total	7440-47-3	25.4		0.859	0.103
Cobalt, Total	7440-48-4	24.4		0.859	0.103
Copper, Total	7440-50-8	6.31		0.859	0.429
Iron, Total	7439-89-6	26000	В	2.58	0.859
Lead, Total	7439-92-1	15.5		4.29	0.429
Magnesium, Total	7439-95-4	453		21.5	10.3
Manganese, Total	7439-96-5	396		0.429	0.0859
Nickel, Total	7440-02-0	8.72		1.72	0.429
Potassium, Total	7440-09-7	446		42.9	21.5
Selenium, Total	7782-49-2	1.25	J	4.29	0.429
Silver, Total	7440-22-4	0.218	J	1.72	0.215
Sodium, Total	7440-23-5	17.5	J	21.5	4.29
Thallium, Total	7440-28-0	1.09	J	21.5	0.343
Vanadium, Total	7440-62-2	47.7		0.429	0.215
Zinc, Total	7440-66-6	15.4		0.859	0.429

The analyte was positively identified, but the quantitation was below the \mathtt{RL}

of 6

U Not detected at or above adjusted sample detection limit
B Analyte present in method blank

00083708

Report Date : August 13, 2009

Report Number: L09080192

Sample Number: L09080192-05 PrePrep Method:NONE Instrument:ICP-THERMO2 Prep Date: 08/11/2009 11:17
Cal Date: 08/11/2009 11:15 Client ID: SITE 3-ML-BF/TS Prep Method: 3051 Matrix: Soil Analytical Method: 6010B Run Date: 08/11/2009 15:38 File ID: T2.081109.153819 Percent Solid:88.2 Workgroup Number: WG309454
Collect Date: 08/09/2009 12:00 Analyst: EDA Dilution: 1 Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Aluminum, Total	7429-90-5	6340		16.8	8.39
Antimony, Total	7440-36-0		U	8.39	0.419
Arsenic, Total	7440-38-2	3.52	J	4.19	0.419
Barium, Total	7440-39-3	51.7		0.419	0.0839
Beryllium, Total	7440-41-7	0.442		0.419	0.0101
Cadmium, Total	7440-43-9		U	0.419	0.0419
Calcium, Total	7440-70-2	144		8.39	4.19
Chromium, Total	7440-47-3	13.6		0.839	0.101
Cobalt, Total	7440-48-4	7.72		0.839	0.101
Copper, Total	7440-50-8	18.5		0.839	0.419
Iron, Total	7439-89-6	22800	В	2.52	0.839
Lead, Total	7439-92-1	10.7		4.19	0.419
Magnesium, Total	7439-95-4	2080		21.0	10.1
Manganese, Total	7439-96-5	138		0.419	0.0839
Nickel, Total	7440-02-0	16.2		1.68	0.419
Potassium, Total	7440-09-7	377		41.9	21.0
Selenium, Total	7782-49-2	0.910	J	4.19	0.419
Silver, Total	7440-22-4		U	1.68	0.210
Sodium, Total	7440-23-5	49.4		21.0	4.19
Thallium, Total	7440-28-0		Ū	21.0	0.336
Vanadium, Total	7440-62-2	24.3		0.419	0.210
Zinc, Total	7440-66-6	50.4		0.839	0.419

of 6

U Not detected at or above adjusted sample detection limit J The analyte was positively identified, but the quantitation was below the RL $\,$

B Analyte present in method blank

2.3.1.2 QC Summary Data

Example 6010 Calculations Perkin Elmer Optima 4300 DV

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Example 6010 Calculations Thermo Scientific IRIS Advantage

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Example 6010 Calculations Thermo Scientific iCAP 6500

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and four standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Microbac Laboratories Inc. Microwave Digestion Log

Workgroup: WG309438

Analyst: ERP

Spike Analyst: ERP

Run Date: 08/11/2009 11:17

Method: 3051

SOP: ME406 Revison 11

Spike Solution: STD34341

Spike Witness: <u>VC</u>

HNO3 Lot #: COA13945

HCL Lot #: COA14028

Digest tubes Lot #: COA14013

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG309438-02	BLANK	7	1 g	50 mL	181.067 g	180.986 g		
2	WG309438-03	LCS	7	1 g	50 mL	183.169 g	183.129 g	5 mL	
3	L09080192-01	SAMP	7	1.368 g	50 mL	176.396 g	176.268 g		08/12/09
4	L09080192-02	SAMP	7	1.386 g	50 mL	176.318 g	175.869 g		08/12/09
5	L09080192-03	SAMP	7	1.399 g	50 mL	180.173 g	178.924 g		08/12/09
6	L09080192-04	SAMP	7	1.487 g	50 mL	179.876 g	179.546 g		08/12/09
7	WG309438-01	REF	7	1.352 g	50 mL	175.126 g	175.046 g		
8	L09080192-05	SAMP	7	1.352 g	50 mL	175.126 g	175.046 g		08/12/09
9	WG309438-04	MS	7	1.351 g	50 mL	183.682 g	183.641 g	5 mL	
10	WG309438-05	MSD	7	1.351 g	50 mL	172.531 g	172.52 g	5 mL	

Analyst: End Poten

Reviewer: Bunda Sugary

MW_DIG - Modified 07/02/2008

PDF ID: 1463120 Report generated: 08/11/2009 12:46

Instrument Run Log

 Instrument:
 ICP-THERMO2
 Dataset:
 081109T2.1

 Analyst1:
 EDA
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600G
 Rev: 0

 Maintenance Log ID:
 29749
 N/A
 N/A</

 Calibration Std:
 STD34537
 ICV/CCV Std:
 STD34590
 Post Spike:
 STD27612

 ICSA:
 STD34482
 ICSAB:
 STD34386
 Int. Std:
 STD34589

Workgroups: 309437, 309454, 309458, 309459

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	T2.081109.104955	WG309455-01	Calibration Point		1		08/11/09 10:49
2	T2.081109.105620	WG309455-02	Calibration Point		1		08/11/09 10:56
3	T2.081109.110249	WG309455-03	Calibration Point		1		08/11/09 11:02
4	T2.081109.110917	WG309455-04	Calibration Point		1		08/11/09 11:09
5	T2.081109.111532	WG309455-05	Calibration Point		1		08/11/09 11:15
6	T2.081109.112145	WG309455-06	Initial Calibration Verification		1		08/11/09 11:21
7	T2.081109.112803	WG309455-07	Initial Calib Blank		1		08/11/09 11:28
8	T2.081109.113431	WG309455-08	Interference Check		1		08/11/09 11:34
9	T2.081109.114104	WG309455-09	Interference Check		1		08/11/09 11:41
10	T2.081109.114733	WG309455-10	CCV		1		08/11/09 11:47
11	T2.081109.115349	WG309455-11	ССВ		1		08/11/09 11:53
12	T2.081109.120017	WG309401-02	Method/Prep Blank	1/50	1		08/11/09 12:00
13	T2.081109.120644	WG309401-03	Laboratory Control S	1/50	1		08/11/09 12:06
14	T2.081109.121312	L09080186-01	12603-C0003	1.352/50	5		08/11/09 12:13
15	T2.081109.121931	WG309437-01	Post Digestion Spike		5	L09080186-01	08/11/09 12:19
16	T2.081109.122544	WG309437-02	Serial Dilution		25	L09080186-01	08/11/09 12:25
17	T2.081109.123208	WG309437-02	Serial Dilution		125	L09080186-01	08/11/09 12:32
18	T2.081109.123834	L09080186-02	12603-C0004	1.371/50	5		08/11/09 12:38
19	T2.081109.124455	L09080186-03	12603-C0005	1.339/50	5		08/11/09 12:44
20	T2.081109.125116	L09080186-04	12603-C0006	1.316/50	5		08/11/09 12:51
21	T2.081109.125737	L09080186-05	12603-C0007	1.345/50	5		08/11/09 12:57
22	T2.081109.130358	WG309455-12	CCV		1		08/11/09 13:03
23	T2.081109.131015	WG309455-13	ССВ		1		08/11/09 13:10
24	T2.081109.131643	L09080186-06	12603-C0008	1.327/50	5		08/11/09 13:16
25	T2.081109.132300	L09080186-07	12627-C0005	1.325/50	5		08/11/09 13:23
26	T2.081109.132918	L09080186-08	13333-C0013	1.454/50	5		08/11/09 13:29
27	T2.081109.133536	WG309401-01	Reference Sample		5	L09080186-09	08/11/09 13:35
28	T2.081109.134155	WG309401-04	Matrix Spike	1.311/50	5	L09080186-09	08/11/09 13:41
29	T2.081109.134817	WG309401-05	Matrix Spike Duplica	1.311/50	5	L09080186-09	08/11/09 13:48
30	T2.081109.135436	WG309455-14	CCV		1		08/11/09 13:54
31	T2.081109.140052	WG309455-15	ССВ		1		08/11/09 14:00
32	T2.081109.141523	WG309455-16	CCV		1		08/11/09 14:15
33	T2.081109.142136	WG309455-17	ССВ		1		08/11/09 14:21
34	T2.081109.142806	WG309438-02	Method/Prep Blank	1/50	1		08/11/09 14:28
35	T2.081109.143433	WG309438-03	Laboratory Control S	1/50	1		08/11/09 14:34
36	T2.081109.144052	L09080192-01	SITE 1-TP-BF	1.368/50	1		08/11/09 14:40
37	T2.081109.144715	WG309454-01	Post Digestion Spike		1	L09080192-01	08/11/09 14:47

Page: 1 Approved: August 12, 2009

Kim H. Rhoder

Instrument Run Log

 Instrument:
 ICP-THERMO2
 Dataset:
 081109T2.1

 Analyst1:
 EDA
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600G
 Rev:
 0

Maintenance Log ID: 29749

 Calibration Std:
 STD34537
 ICV/CCV Std:
 STD34590
 Post Spike:
 STD27612

 ICSA:
 STD34482
 ICSAB:
 STD34386
 Int. Std:
 STD34589

Workgroups: 309437, 309454, 309458, 309459

Comments: 309437, 309454, 309458, 3

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	T2.081109.145331	WG309454-02	Serial Dilution		5	L09080192-01	08/11/09 14:53
39	T2.081109.145957	WG309454-02	Serial Dilution		25	L09080192-01	08/11/09 14:59
40	T2.081109.150624	L09080192-02	SITE 1-TP-TS	1.386/50	1		08/11/09 15:06
41	T2.081109.151247	L09080192-03	SITE 2-BLM-TS	1.399/50	1		08/11/09 15:12
42	T2.081109.151905	L09080192-04	SITE 2-BLM-BF	1.487/50	1		08/11/09 15:19
43	T2.081109.152533	WG309455-18	CCV		1		08/11/09 15:25
44	T2.081109.153150	WG309455-19	CCB		1		08/11/09 15:31
45	T2.081109.153819	WG309438-01	Reference Sample		1	L09080192-05	08/11/09 15:38
46	T2.081109.154437	WG309438-04	Matrix Spike	1.351/50	1	L09080192-05	08/11/09 15:44
47	T2.081109.155100	WG309438-05	Matrix Spike Duplica	1.351/50	1	L09080192-05	08/11/09 15:51
48	T2.081109.155722	L09080192-04	SITE 2-BLM-BF	1.487/50	2		08/11/09 15:57
49	T2.081109.160345	WG309455-20	CCV		1		08/11/09 16:03
50	T2.081109.161001	WG309455-21	ССВ		1		08/11/09 16:10
51	T2.081109.161630	WG309446-02	Method/Prep Blank	1/50	1		08/11/09 16:16
52	T2.081109.162258	WG309446-03	Laboratory Control S	1/50	1		08/11/09 16:22
53	T2.081109.162926	L09080196-01	70060-C0001	1.339/50	2		08/11/09 16:29
54	T2.081109.163555	WG309458-01	Post Digestion Spike		2	L09080196-01	08/11/09 16:35
55	T2.081109.164216	WG309458-02	Serial Dilution		10	L09080196-01	08/11/09 16:42
56	T2.081109.164840	WG309458-02	Serial Dilution		50	L09080196-01	08/11/09 16:48
57	T2.081109.165503	L09080196-02	70060-C0002	1.366/50	2		08/11/09 16:55
58	T2.081109.170126	L09080196-03	70060-C0003	1.493/50	2		08/11/09 17:01
59	T2.081109.170755	L09080196-04	70060-C0004	1.36/50	2		08/11/09 17:07
60	T2.081109.171413	L09080196-05	70060-C0005	1.448/50	2		08/11/09 17:14
61	T2.081109.172054	WG309455-22	CCV		1		08/11/09 17:20
62	T2.081109.172710	WG309455-23	ССВ		1		08/11/09 17:27
63	T2.081109.173340	L09080196-06	70060-C0006	1.394/50	2		08/11/09 17:33
64	T2.081109.174008	L09080196-07	70060-C0007	1.355/50	2		08/11/09 17:40
65	T2.081109.174628	L09080196-08	70060-C0008	1.361/50	2		08/11/09 17:46
66	T2.081109.175248	WG309446-01	Reference Sample		2	L09080196-09	08/11/09 17:52
67	T2.081109.175907	WG309446-04	Matrix Spike	1.326/50	2	L09080196-09	08/11/09 17:59
68	T2.081109.180524	WG309446-05	Matrix Spike Duplica	1.326/50	2	L09080196-09	08/11/09 18:05
69	T2.081109.181141	L09080196-12	70060-C0010	1.366/50	2		08/11/09 18:11
70	T2.081109.181800	L09080196-13	70060-C0011	1.333/50	2		08/11/09 18:18
71	T2.081109.182418	L09080196-14	70060-C0012	1.371/50	2		08/11/09 18:24
72	T2.081109.183037	L09080197-01	16225-C0001	1.401/50	2		08/11/09 18:30
73	T2.081109.183700	WG309455-24	CCV		1		08/11/09 18:37
74	T2.081109.184316	WG309455-25	ССВ		1		08/11/09 18:43

Page: 2 Approved: August 12, 2009

Him H. Rhoden

Instrument Run Log

 Instrument:
 ICP-THERMO2
 Dataset:
 081109T2.1

 Analyst1:
 EDA
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600G
 Rev: 0

Maintenance Log ID: 29749

 Calibration Std:
 STD34537
 ICV/CCV Std:
 STD34590
 Post Spike:
 STD27612

 ICSA:
 STD34482
 ICSAB:
 STD34386
 Int. Std:
 STD34589

Workgroups: 309437, 309454, 309458, 309459

Comments: 309437, 309454, 309458, 309459

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	T2.081109.184945	L09080197-02	16225-C0002	1.431/50	2		08/11/09 18:49
76	T2.081109.185605	L09080197-03	16225-C0003	1.35/50	2		08/11/09 18:56
77	T2.081109.190227	L09080197-04	16225-C0004	1.364/50	2		08/11/09 19:02
78	T2.081109.190848	L09080197-05	16225-C0005	1.345/50	2		08/11/09 19:08
79	T2.081109.191510	L09080197-06	16225-C0006	1.33/50	2		08/11/09 19:15
80	T2.081109.192129	L09080197-07	16225-C0007	1.367/50	2		08/11/09 19:21
81	T2.081109.192751	L09080197-08	16225-C0008	1.339/50	2		08/11/09 19:27
82	T2.081109.193412	WG309455-26	CCV		1		08/11/09 19:34
83	T2.081109.194028	WG309455-27	ССВ		1		08/11/09 19:40
84	T2.081109.194657	WG309449-02	Method/Prep Blank	1/50	1		08/11/09 19:46
85	T2.081109.195326	WG309449-03	Laboratory Control S	1/50	1		08/11/09 19:53
86	T2.081109.195954	L09080197-09	16225-C0009	1.374/50	2		08/11/09 19:59
87	T2.081109.200614	L09080197-10	16225-C0010	1.378/50	2		08/11/09 20:06
88	T2.081109.201234	L09080197-11	16225-C0011	1.395/50	2		08/11/09 20:12
89	T2.081109.201856	L09080197-12	16225-C0012	1.396/50	2		08/11/09 20:18
90	T2.081109.202517	L09080197-13	16225-C0013	1.355/50	2		08/11/09 20:25
91	T2.081109.203138	L09080197-14	16225-C0014	1.418/50	2		08/11/09 20:31
92	T2.081109.203817	L09080197-15	16225-C0015	1.461/50	2		08/11/09 20:38
93	T2.081109.204439	WG309455-28	CCV		1		08/11/09 20:44
94	T2.081109.205057	WG309455-29	ССВ		1		08/11/09 20:50
95	T2.081109.205727	L09080199-01	14511-C0001	1.302/50	2		08/11/09 20:57
96	T2.081109.210351	WG309459-01	Post Digestion Spike		2	L09080199-01	08/11/09 21:03
97	T2.081109.211004	WG309459-02	Serial Dilution		10	L09080199-01	08/11/09 21:10
98	T2.081109.211633	WG309459-02	Serial Dilution		50	L09080199-01	08/11/09 21:16
99	T2.081109.212258	L09080199-02	14511-C0002	1.362/50	2		08/11/09 21:22
100	T2.081109.212917	L09080199-03	14511-C0003	1.322/50	2		08/11/09 21:29
101	T2.081109.213536	L09080199-04	14511-C0004	1.458/50	2		08/11/09 21:35
102	T2.081109.214157	L09080199-05	14511-C0005	1.346/50	2		08/11/09 21:41
103	T2.081109.214816	L09080199-06	14511-C0006	1.341/50	2		08/11/09 21:48
104	T2.081109.215439	L09080199-07	14511-C0007	1.352/50	2		08/11/09 21:54
105	T2.081109.220100	WG309455-30	CCV		1		08/11/09 22:01
106	T2.081109.220717	WG309455-31	ССВ		1		08/11/09 22:07
107	T2.081109.221348	L09080199-08	14512-C0001	1.486/50	2		08/11/09 22:13
108	T2.081109.222009	L09080199-09	14512-C0002	1.445/50	2		08/11/09 22:20
109	T2.081109.222630	WG309449-01	Reference Sample		2	L09080199-10	08/11/09 22:26
110	T2.081109.223250	WG309449-04	Matrix Spike	1.332/50	2	L09080199-10	08/11/09 22:32
111	T2.081109.223910	WG309449-05	Matrix Spike Duplica	1.332/50	2	L09080199-10	08/11/09 22:39

Page: 3 Approved: August 12, 2009

Him H. Rhoder

Microbac ®

Instrument Run Log

 Instrument:
 ICP-THERMO2
 Dataset:
 081109T2.1

 Analyst1:
 EDA
 Analyst2:
 N/A

 Method:
 6010B
 SOP:
 ME600G
 Rev: 0

 Maintenance Log ID:
 29749
 N/A
 N/A</

 Calibration Std:
 STD34537
 ICV/CCV Std:
 STD34590
 Post Spike:
 STD27612

 ICSA:
 STD34482
 ICSAB:
 STD34386
 Int. Std:
 STD34589

Workgroups: 309437, 309454, 309458, 309459

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
112	T2.081109.224528	L09080199-13	14512-C0004	1.328/50	2		08/11/09 22:45
113	T2.081109.225149	L09080199-14	14512-C0005	1.318/50	2		08/11/09 22:51
114	T2.081109.225808	L09080199-15	14512-C0006	1.308/50	2		08/11/09 22:58
115	T2.081109.230428	WG309455-32	CCV		1		08/11/09 23:04
116	T2.081109.231048	WG309455-33	CCB		1		08/11/09 23:10

Page: 4 Approved: August 12, 2009

Kym H. Rhoder

Microbac Laboratories Inc. Data Checklist

Date:	11-AUG-2009
Analyst:	EDA
Analyst:	NA
Method:	<u>6010B</u>
Instrument:	ICP-THERMO2
Curve Workgroup:	309455
Runlog ID:	29568

Analytical Workgroups: 309437, 309454, 309458, 309459

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	X
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	
Case Narrative	186, 192, 196, 197, 199
Client Forms	X
Level X	
Level 3	
Level 4	186, 196, 197, 199
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	EDA
Secondary Reviewer	KHR
Comments	

Primary Reviewer:

Secondary Reviewer: 12-AUG-2009 Eliw D. Yu Him H. Rhoder

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-12-2009 11:03:18

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00083719

AAB#: WG309454

Analytical Method: 6010B

Login Number:L09080192

	ID	Date	TCLP	Time	Max	Q	Extract	Time	Max	0	Run	Time	Max	0
Client ID	15	Collected	_	Held	Hold		Date	Held	Hold	~	Date	Held	Hold	×
SITE 1-TP-BF	01	08/09/09					08/11/09	2	180		08/11/09	2.2	180	
SITE 1-TP-TS	02	08/09/09					08/11/09	2	180		08/11/09	2.2	180	
SITE 2-BLM-TS	03	08/09/09					08/11/09	2	180		08/11/09	2.2	180	
SITE 2-BLM-BF	04	08/09/09					08/11/09	2	180		08/11/09	2.2	180	
SITE 2-BLM-BF	04	08/09/09					08/11/09	2	180		08/11/09	2.2	180	
SITE 3-ML-BF/TS	0.5	08/09/09					08/11/09	2	180		08/11/09	2.2	180	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID:1463766 Report generated 08/13/2009 13:22

METHOD BLANK SUMMARY

Login Number: L09080192

Blank File ID: T2.081109.142806

Prep Date: 08/11/09 11:17

Analyzed Date: 08/11/09 14:28

Work Group: WG309454

Blank Sample ID: WG309438-02

Instrument ID: ICP-THERMO2

Method: 6010B

Analyst:EDA

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG309438-03	T2.081109.143433	08/11/09 14:34	01
SITE 1-TP-BF	L09080192-01	T2.081109.144052	08/11/09 14:40	01
SITE 1-TP-TS	L09080192-02	T2.081109.150624	08/11/09 15:06	01
SITE 2-BLM-TS	L09080192-03	T2.081109.151247	08/11/09 15:12	01
SITE 2-BLM-BF	L09080192-04	T2.081109.151905	08/11/09 15:19	01
SITE 3-ML-BF/TS	L09080192-05	T2.081109.153819	08/11/09 15:38	01
SITE 2-BLM-BF	L09080192-04	T2.081109.155722	08/11/09 15:57	DL01

Report Name: BLANK_SUMMARY
PDF File ID:1463767
Report generated 08/13/2009 13:22

Microbac Laboratories Inc. METHOD BLANK REPORT

Contract #:DACA56-94-D-0020 Cal ID:ICP-TH-11-AUG-09

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Aluminum, Total	10.0	20.0	10.0	1	U
Antimony, Total	0.500	10.0	0.500	1	U
Arsenic, Total	0.500	5.00	-0.583	1	υ
Barium, Total	0.100	0.500	0.100	1	υ
Beryllium, Total	0.0120	0.500	0.0120	1	U
Cadmium, Total	0.0500	0.500	0.0500	1	U
Calcium, Total	5.00	10.0	5.00	1	U
Chromium, Total	0.120	1.00	0.120	1	U
Cobalt, Total	0.120	1.00	0.120	1	U
Copper, Total	0.500	1.00	0.500	1	U
Iron, Total	1.00	3.00	6.02	1	*
Lead, Total	0.500	5.00	0.500	1	U
Magnesium, Total	12.0	25.0	12.0	1	υ
Manganese, Total	0.100	0.500	0.100	1	U
Nickel, Total	0.500	2.00	0.500	1	υ
Potassium, Total	25.0	50.0	25.0	1	U
Selenium, Total	0.500	5.00	0.524	1	J
Silver, Total	0.250	2.00	0.250	1	U
Sodium, Total	5.00	25.0	5.00	1	U
Thallium, Total	0.400	25.0	0.400	1	υ
Vanadium, Total	0.250	0.500	0.250	1	Ū
Zinc, Total	0.500	1.00	0.500	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK PDF ID: 1463768 13-AUG-2009 13:22

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L09080192
 Run Date: 08/11/2009
 Sample ID: WG309438-03

 Instrument ID: ICP-THERMO2
 Run Time: 14:34
 Prep Method: 3051

 File ID: T2.081109.143433
 Analyst: EDA
 Method: 6010B

Workgroup (AAB#):WG309454 Matrix:Soil Units:mg/kg

QC Key:STD Lot#:STD34341 Cal ID:ICP-TH-11-AUG-09

Analytes	Expected	Found	% Rec	LCS	Q	
Aluminum, Total	250	234	93.7	80	- 12	20
Antimony, Total	30.0	28.7	95.8	80	- 12	20
Arsenic, Total	10.0	9.03	90.3	80	- 12	20
Barium, Total	25.0	25.7	103	80	- 12	20
Beryllium, Total	1.25	1.14	91.2	80	- 12	20
Cadmium, Total	1.25	1.20	95.8	80	- 12	20
Calcium, Total	250	254	102	80	- 12	20
Chromium, Total	12.5	12.7	102	80	- 12	20
Cobalt, Total	5.00	4.99	99.9	80	- 12	20
Copper, Total	12.5	12.5	99.6	80	- 12	20
Iron, Total	100	103	103	80	- 12	20
Lead, Total	12.5	11.8	94.7	80	- 12	20
Magnesium, Total	250	235	94.1	80	- 12	20
Manganese, Total	12.5	12.2	97.5	80	- 12	20
Nickel, Total	12.5	12.3	98.8	80	- 12	20
Potassium, Total	1250	1240	99.3	80	- 12	20
Selenium, Total	10.0	9.57	95.7	80	- 12	20
Silver, Total	10.0	9.58	95.8	80	- 12	20
Sodium, Total	1250	1250	100	80	- 12	20
Thallium, Total	12.5	12.1	97.0	80	- 12	20
Vanadium, Total	25.0	25.5	102	80	- 12	20
Zinc, Total	25.0	22.4	89.7	80	- 12	20

LCS - Modified 03/06/2008 PDF File ID:1463769 Report generated: 08/13/2009 13:22

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L09080192
 Cal ID: ICP-THERMO Worknum: WG309454

 Instrument ID: ICP-THERMO
 Contract #: DACA56-94-D-0020
 Method: 6010B

 Parent ID: WG309438-01
 File ID: T2.081109.153819
 Dil:1
 Matrix: SOLID

 Sample ID: WG309438-04
 MS
 File ID: T2.081109.154437
 Dil:1
 Units: mg/kg

 Sample ID: WG309438-05
 MSD
 File ID: T2.081109.155100
 Dil:1
 Percent Solid: 88.2

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Aluminum, Total	6340	210	10700	2070	210	14300	3800	29.1	80 - 120	20	*#
Antimony, Total	ND	25.2	22.4	89.1	25.2	22.3	88.4	0.787	80 - 120	20	
Arsenic, Total	3.52	8.40	12.1	103	8.40	13.1	114	7.71	80 - 120	20	
Barium, Total	51.7	21.0	87.2	169	21.0	86.1	164	1.33	80 - 120	20	*
Beryllium, Total	0.442	1.05	1.44	95.0	1.05	1.36	87.1	5.98	80 - 120	20	
Cadmium, Total	ND	1.05	0.571	54.4	1.05	0.590	56.2	3.25	80 - 120	20	*
Calcium, Total	144	210	366	106	210	365	105	0.226	80 - 120	20	
Chromium, Total	13.6	10.5	28.1	138	10.5	30.7	163	8.74	80 - 120	20	*
Cobalt, Total	7.72	4.20	12.2	107	4.20	11.9	99.1	2.91	80 - 120	20	
Copper, Total	18.5	10.5	31.9	128	10.5	32.1	130	0.567	80 - 120	20	*
Iron, Total	22800	84.0	26500	4450	84.0	26000	3890	1.77	80 - 120	20	*
Lead, Total	10.7	10.5	21.4	101	10.5	21.7	105	1.83	80 - 120	20	
Magnesium, Total	2080	210	2550	225	210	2840	362	10.7	80 - 120	20	*
Manganese, Total	138	10.5	155	163	10.5	137	-12.6	12.6	80 - 120	20	*
Nickel, Total	16.2	10.5	27.7	109	10.5	28.7	119	3.72	80 - 120	20	
Potassium, Total	377	1050	1570	114	1050	1670	123	5.71	80 - 120	20	*
Selenium, Total	0.910	8.40	8.33	88.4	8.40	8.33	88.4	0.0403	80 - 120	20	
Silver, Total	ND	8.40	7.84	93.4	8.40	9.19	109	15.8	80 - 120	20	
Sodium, Total	49.4	1050	1080	98.0	1050	1070	97.5	0.461	80 - 120	20	
Thallium, Total	ND	10.5	9.72	92.6	10.5	10.7	102	9.21	80 - 120	20	
Vanadium, Total	24.3	21.0	49.2	119	21.0	55.3	148	11.7	80 - 120	20	*
Zinc, Total	50.4	21.0	75.7	121	21.0	81.6	148	7.41	80 - 120	20	*

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

WG_MS_MSD_DRYWT - Modified 03/07/2008 PDF File ID:1463770 Report generated 08/13/2009 13:22

[#] FAILS RPD LIMIT

Serial Dilution Report

 Login: L09080192
 Worknum: WG309454

 Instrument: ICP-THERMO2
 Method: 6010B

Serial Dil: WG309454-02 File ID: T2.081109.145331 Dil: 5 Units: mg/L

Sample: L09080192-01 File ID: T2.081109.144052 Dil: 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Aluminum	61.3		66		7.67	
Antimony	ND	U	ND	U		
Arsenic	.044	F	.0575	F	30.70	
Barium	.152		.157		3.29	
Beryllium	.00099	F	ND	U		
Cadmium	ND	U	ND	U		
Calcium	.142	F	ND	U		
Chromium	.306		.3205		4.74	
Cobalt	.00659	F	ND	U		
Copper	.0542	Х	.055	F	1.48	
Iron	225		237.5		5.56	
Lead	.131	Х	.1505	F	14.90	
Magnesium	1.04	X	ND	U		
Manganese	.388		.4095		5.54	
Nickel	.0198	F	ND	U		
Potassium	2.28	X	ND	U		
Selenium	ND	U	ND	U		
Silver	.00549	F	ND	U		
Sodium	ND	U	ND	U		
Thallium	ND	U	ND	U		
Vanadium	.419		.434		3.58	
Zinc	.0642	X	.0745	F	16.00	

- U = Result is below MDL.
- ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 50 times the MDL.
- E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 50 $\,$ times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 1463764 08/13/2009 13:22

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L09080192
 Worknum:
 WG309454

Instrument ID: ICP-THERMO2
Method: 6010B

 Post Spike ID:
 WG309454-01
 File ID:
 ID:<

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ALUMINUM	61.2		61.3		5	120.2	75 - 125	
ANTIMONY	0.578		0	U	.6	96.3	75 - 125	
ARSENIC	0.235		0.0440	F	. 2	97.6	75 - 125	
BARIUM	0.624		0.152		.5	97.5	75 - 125	
BERYLLIUM	0.0228		0.000990	F	.025	87.6	75 - 125	
CADMIUM	0.0201		0	U	.025	80.4	75 - 125	
CALCIUM	4.87		0.142	F	5	94.9	75 - 125	
CHROMIUM	0.517		0.306		.25	96.5	75 - 125	
COBALT	0.106		0.00659	F	.1	100.5	75 - 125	
COPPER	0.294		0.0542		.25	98.3	75 - 125	
IRON	208		225		2	271.1	75 - 125	N
LEAD	0.348		0.131		.25	92.0	75 - 125	
MAGNESIUM	5.48		1.04		5	90.8	75 - 125	
MANGANESE	0.584		0.388		.25	93.7	75 - 125	
NICKEL	0.262		0.0198	F	.25	97.5	75 - 125	
POTASSIUM	25.5		2.28		25	93.9	75 - 125	
SELENIUM	0.200		0	U	. 2	100.2	75 - 125	
SILVER	0.187		0.00549	F	. 2	91.2	75 - 125	
SODIUM	23.7		0	U	25	94.8	75 - 125	
THALLIUM	0.245	F	0	U	. 25	98.0	75 - 125	
VANADIUM	0.857		0.419		.5	95.9	75 - 125	
ZINC	0.508		0.0642		.5	90.0	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): WG309454
Instrument ID: ICP-THERMO2
Initial Calibration Date: 11-AUG-2009 11:15 Login: L09080192 Analytical Method: 6010B ICAL Worknum: WG309455

	WG309	9455-01	WG309	455-02	WG309	455-03	WG309	455-04	WG309	455-05]	
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ALUMINUM	0	0.0101	.1	0.0132	.2	0.0163	5	0.322	10	0.641	.999981	
ANTIMONY	0	0.0000400	.012	0.000220	.024	0.000400	.6	0.0183	1.2	0.0366	.999998	
ARSENIC	0	-0.0000400	NA	NA	.008	0.0000400	.2	0.00313	.4	0.00630	.999892	
BARIUM	0	0.00194	.01	0.00926	.02	0.0167	.5	0.703	1	1.40	.999987	
BERYLLIUM	0	-0.000620	.0005	0.000170	.001	0.000990	.025	0.0798	.05	0.160	.999999	
CADMIUM	0	0.0000100	.0005	0.000120	.001	0.000230	.025	0.0120	.05	0.0240	.999961	
CALCIUM	0	-0.000420	.1	0.000620	.2	0.00157	5	0.0973	10	0.194	.999992	
CHROMIUM	0	0.0000400	.005	0.000480	.01	0.000850	.25	0.0408	.5	0.0808	.99998	
COBALT	0	-0.0000500	.002	0.000280	.004	0.000650	.1	0.0330	.2	0.0655	.999974	
COPPER	0	0.000170	-1	0.000420	.01	0.000700	.25	0.0273	.5	0.0530	.999923	
IRON	0	0	.04	0.000220	.08	0.000480	2	0.0231	4	0.0458	.999982	
LEAD	0	-0.0000600	.005	0.0000600	.01	0.000100	.25	0.00751	.5	0.0149	.999563	
MAGNESIUM	0	0.0000400	.1	0.000160	.2	0.000270	5	0.0125	10	0.0251	.999979	
MANGANESE	0	0.000130	.005	0.000460	.01	0.000930	.25	0.0402	.5	0.0800	.999947	
NICKEL	0	-0.000150	.005	0.0000600	.01	0.000280	.25	0.0191	.5	0.0376	.999884	
POTASSIUM	0	0.000610	.5	0.00391	1	0.00773	25	0.355	50	0.716	.999983	
SELENIUM	0	-0.0000100	NA	NA	.008	0.0000700	.2	0.00251	.4	0.00504	.999151	
SILVER	0	-0.000140	20	0.000580	.008	0.00134	.2	0.0743	.4	0.148	.999991	
SODIUM	0	-0.00128	.5	0.0160	1	0.0336	25	1.69	50	3.41	.999994	
THALLIUM	0	-0.0000600	NA	NA	.01	0.0000500	.25	0.00493	.5	0.00963	.999862	
VANADIUM	0	0.000140	.01	0.00203	.02	0.00410	.5	0.191	1	0.378	.999985	
ZINC	0	0.000450	.01	0.00154	.02	0.00253	.5	0.0988	1	0.197	.999971	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

INT_CAL_ICP - Modified 03/06/2008 PDF File ID: 1463773

Report generated: 13-AUG-2009 13:23

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L09080192
 Run Date:
 08/11/2009
 Sample ID:
 WG309455-07

 Instrument ID:
 ICP-THERMO2
 Run Time:
 11:28
 Method:
 6010B

 File ID:
 T2.081109.112803
 Analyst:
 Units:
 mg/L

Workgroup (AAB#):WG309454 Cal ID:ICP-THER - 11-AUG-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
ALUMINUM	.2	.4	.2	Ū
ANTIMONY	.01	.2	.01	Ū
ARSENIC	.01	.1	.01	U
BARIUM	.002	.01	.002	υ
BERYLLIUM	.00024	.01	.00024	Ū
CADMIUM	.001	.01	.001	Ū
CALCIUM	.1	.2	.1	Ū
CHROMIUM	.0024	.02	.0024	U
COBALT	.0024	.02	.0024	Ū
COPPER	.01	.02	.01	Ū
IRON	.02	.06	.02	Ū
LEAD	.01	.1	.01	U
MAGNESIUM	.24	.5	.24	Ū
MANGANESE	.002	.01	.002	U
NICKEL	.01	.04	.01	Ū
POTASSIUM	.5	1	.5	U
SELENIUM	.01	.1	.01	U
SILVER	.005	.04	.005	Ū
SODIUM	.1	.5	.1	Ū
THALLIUM	.008	.5	.008	Ū
VANADIUM	.005	.01	.005	Ū
ZINC	.01	.02	.01	υ

 Login Number: L09080192
 Run Date: 08/11/2009
 Sample ID: WG309455-11

 Instrument ID: ICP-THERMO2
 Run Time: 11:53
 Method: 6010B

 File ID: T2.081109.115349
 Analyst: EDA
 Units: mg/L

Workgroup (AAB#): WG309454 Cal ID: ICP-TH - 11-AUG-09

Analytes MDL RDL Concentration Qualifier Aluminum 0.200 0.400 0.200 U 0.200 0.0100 Antimony 0.0100 U Arsenic 0.0100 0.100 0.0100 U Barium 0.00200 0.0100 0.00200 U Beryllium 0.000240 0.0100 0.000240 υ Cadmium 0.00100 0.0100 0.00100 U Calcium 0.200 0.100 0.100 U Chromium 0.00240 0.0200 0.00240 U Cobalt 0.00240 0.0200 0.00240 U Copper 0.0100 0.0200 0.0100 U Iron 0.0200 0.0600 0.0200 U Lead 0.0100 0.100 0.0100 TT Magnesium 0.240 0.500 0.240 U Manganese 0.00200 0.0100 0.00200 U Nickel 0.0100 0.0400 0.0100 U Potassium 0.500 1.00 0.500 U Selenium 0.0100 0.100 0.0100 U Silver 0.00500 0.0400 0.00500 U Sodium 0.100 0.500 0.100 U Thallium 0.500 0.00800 TT 0.00800 Vanadium 0.00500 0.0100 0.00500 U Zinc 0.0100 0.0200 0.0100 U

Matrix:SOIL

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309455-15 Instrument ID: ICP-THERMO2 Run Time: 14:00
Analyst: EDA Method: 6010B

Units:mg/L

Workgroup (AAB#): WG309454 Cal ID: ICP-TH - 11-AUG-09 Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.200	0.400	0.200	Ū
Antimony	0.0100	0.200	0.0100	Ū
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00200	0.0100	0.00200	Ū
Beryllium	0.000240	0.0100	0.000240	υ
Cadmium	0.00100	0.0100	0.00100	υ
Calcium	0.100	0.200	0.100	υ
Chromium	0.00240	0.0200	0.00240	U
Cobalt	0.00240	0.0200	0.00240	υ
Copper	0.0100	0.0200	0.0100	υ
Iron	0.0200	0.0600	0.0200	υ
Lead	0.0100	0.100	0.0100	υ
Magnesium	0.240	0.500	0.240	υ
Manganese	0.00200	0.0100	0.00200	υ
Nickel	0.0100	0.0400	0.0100	υ
Potassium	0.500	1.00	0.500	υ
Selenium	0.0100	0.100	0.0100	υ
Silver	0.00500	0.0400	0.00500	υ
Sodium	0.100	0.500	0.100	υ
Thallium	0.00800	0.500	0.00800	υ
Vanadium	0.00500	0.0100	0.00500	υ
Zinc	0.0100	0.0200	0.0100	Ū

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

 Login Number: L09080192
 Run Date: 08/11/2009
 Sample ID: WG309455-35

 Instrument ID: ICP-THERMO2
 Run Time: 15:31
 Method: 6010B

 rument ID:
 ICP-THERMO2
 Run Time:
 15:31
 Method:
 6010B

 File ID:
 T1:
 T2.081109.153150
 Analyst:
 EDA
 Units:
 mg/L

Workgroup (AAB#):WG309454 Cal ID:ICP-TH - 11-AUG-09

Analytes MDL RDL Concentration Qualifier Aluminum 0.200 0.400 0.200 U 0.200 0.0100 Antimony 0.0100 U Arsenic 0.0100 0.100 0.0100 U Barium 0.00200 0.0100 0.00200 U Beryllium 0.000240 0.0100 0.000240 υ Cadmium 0.00100 0.0100 0.00100 U Calcium 0.200 0.100 0.100 U Chromium 0.00240 0.0200 0.00240 U Cobalt 0.00240 0.0200 0.00240 U Copper 0.0100 0.0200 0.0100 U Iron 0.0200 0.0600 0.0200 U Lead 0.0100 0.100 0.0100 TT Magnesium 0.240 0.500 0.240 U Manganese 0.00200 0.0100 0.00200 U Nickel 0.0100 0.0400 0.0100 U Potassium 0.500 1.00 0.500 U Selenium 0.0100 0.100 0.0100 U Silver 0.00500 0.0400 0.00500 U

0.100

0.00800

0.00500

0.0100

0.500

0.500

0.0100

0.0200

0.100

0.00800

0.00500

0.0100

U

TT

U

U

Matrix:SOIL

Sodium

Thallium

Vanadium

Zinc

CCB - Modified 03/05/2008 PDF File ID:1463778 Report generated 08/13/2009 13:23

Microbac ®

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number: L09080192
 Run Date: 08/11/2009
 Sample ID: WG309455-37

 Instrument ID: ICP-THERMO2
 Run Time: 16:10
 Method: 6010B

 File ID: T2.081109.161001
 Analyst: EDA
 Units: mg/L

Matrix:SOIL Cal ID:ICP-IH - II-AUG-US

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.200	0.400	0.200	υ
Antimony	0.0100	0.200	0.0100	υ
Arsenic	0.0100	0.100	0.0100	υ
Barium	0.00200	0.0100	0.00200	υ
Beryllium	0.000240	0.0100	0.000240	υ
Cadmium	0.00100	0.0100	0.00100	υ
Calcium	0.100	0.200	0.100	υ
Chromium	0.00240	0.0200	0.00240	υ
Cobalt	0.00240	0.0200	0.00240	υ
Copper	0.0100	0.0200	0.0100	υ
Iron	0.0200	0.0600	0.0200	υ
Lead	0.0100	0.100	0.0100	υ
Magnesium	0.240	0.500	0.240	υ
Manganese	0.00200	0.0100	0.00200	υ
Nickel	0.0100	0.0400	0.0100	υ
Potassium	0.500	1.00	0.500	υ
Selenium	0.0100	0.100	0.0100	υ
Silver	0.00500	0.0400	0.00500	υ
Sodium	0.100	0.500	0.100	υ
Thallium	0.00800	0.500	0.00800	υ
Vanadium	0.00500	0.0100	0.00500	υ
Zinc	0.0100	0.0200	0.0100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number:
 L09080192
 Run Date:
 08/11/2009
 Sample ID:
 WG309455-06

 Instrument ID:
 ICP-THERMO2
 Run Time:
 11:21
 Method:
 6010B

 File ID:
 Time:
 Time:
 Time:
 Units:
 Method:

Workgroup (AAB#):WG309454 Cal ID:ICP-TH - 11-AUG-09

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Aluminum	10	10.1	101	90 - 110	
Antimony	1.2	1.21	100	90 - 110	
Arsenic	.4	0.397	99.2	90 - 110	
Barium	1	1.00	100	90 - 110	
Beryllium	.05	0.0512	102	90 - 110	
Cadmium	.05	0.0502	100	90 - 110	
Calcium	10	10.2	102	90 - 110	
Chromium	.5	0.507	101	90 - 110	
Cobalt	.2	0.202	101	90 - 110	
Copper	.5	0.506	101	90 - 110	
Iron	4	4.01	100	90 - 110	
Lead	.5	0.525	105	90 - 110	
Magnesium	10	9.97	99.7	90 - 110	
Manganese	.5	0.520	104	90 - 110	
Nickel	.5	0.523	105	90 - 110	
Potassium	50	50.4	101	90 - 110	
Selenium	.4	0.399	99.7	90 - 110	
Silver	.4	0.404	101	90 - 110	
Sodium	50	49.9	99.8	90 - 110	
Thallium	.5	0.513	103	90 - 110	
Vanadium	1	1.03	103	90 - 110	
Zinc	1	1.02	102	90 - 110	

^{*} Exceeds LIMITS Limit

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309455-10

Instrument ID: ICP-THERMO2 Run Time: 11:47 Method: 6010B

File ID: 12.081109.114733 Analyst: EDA QC Key: STD

Workgroup (AAB#): WG309454 Cal ID: ICP-TH - 11-AUG-09 Matrix:SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.1	mg/L	101	90 - 110	
Antimony	1.20	1.21	mg/L	101	90 - 110	
Arsenic	0.400	0.402	mg/L	101	90 - 110	
Barium	1.00	1.01	mg/L	101	90 - 110	
Beryllium	0.0500	0.0502	mg/L	100	90 - 110	
Cadmium	0.0500	0.0503	mg/L	101	90 - 110	
Calcium	10.0	10.3	mg/L	103	90 - 110	
Chromium	0.500	0.504	mg/L	101	90 - 110	
Cobalt	0.200	0.201	mg/L	101	90 - 110	
Copper	0.500	0.510	mg/L	102	90 - 110	
Iron	4.00	4.05	mg/L	101	90 - 110	
Lead	0.500	0.521	mg/L	104	90 - 110	
Magnesium	10.0	9.98	mg/L	99.8	90 - 110	
Manganese	0.500	0.514	mg/L	103	90 - 110	
Nickel	0.500	0.520	mg/L	104	90 - 110	
Potassium	50.0	50.9	mg/L	102	90 - 110	
Selenium	0.400	0.406	mg/L	101	90 - 110	
Silver	0.400	0.406	mg/L	102	90 - 110	
Sodium	50.0	50.5	mg/L	101	90 - 110	
Thallium	0.500	0.516	mg/L	103	90 - 110	
Vanadium	1.00	1.01	mg/L	101	90 - 110	
Zinc	1.00	1.01	mg/L	101	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309455-14

Instrument ID: ICP-THERMO2 Run Time: 13:54 Method: 6010B

File ID: 12.081109.135436 Analyst: EDA QC Key: STD

Workgroup (AAB#):WG309454 Cal ID:ICP-TH - 11-AUG-09

Matrix:SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.96	mg/L	99.6	90 - 110	
Antimony	1.20	1.21	mg/L	101	90 - 110	
Arsenic	0.400	0.402	mg/L	101	90 - 110	
Barium	1.00	1.02	mg/L	102	90 - 110	
Beryllium	0.0500	0.0487	mg/L	97.3	90 - 110	
Cadmium	0.0500	0.0496	mg/L	99.2	90 - 110	
Calcium	10.0	10.5	mg/L	105	90 - 110	
Chromium	0.500	0.498	mg/L	99.6	90 - 110	
Cobalt	0.200	0.201	mg/L	101	90 - 110	
Copper	0.500	0.523	mg/L	105	90 - 110	
Iron	4.00	4.05	mg/L	101	90 - 110	
Lead	0.500	0.513	mg/L	103	90 - 110	
Magnesium	10.0	9.88	mg/L	98.8	90 - 110	
Manganese	0.500	0.506	mg/L	101	90 - 110	
Nickel	0.500	0.513	mg/L	103	90 - 110	
Potassium	50.0	51.6	mg/L	103	90 - 110	
Selenium	0.400	0.409	mg/L	102	90 - 110	
Silver	0.400	0.405	mg/L	101	90 - 110	
Sodium	50.0	51.2	mg/L	102	90 - 110	
Thallium	0.500	0.513	mg/L	103	90 - 110	
Vanadium	1.00	0.983	mg/L	98.3	90 - 110	
Zinc	1.00	0.977	mg/L	97.7	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309455-34

Instrument ID: ICP-THERMO2 Run Time: 15:25 Method: 6010B

File ID: T2.081109.152533 Analyst: EDA QC Key: STD

Workgroup (AAB#): WG309454 Cal ID: ICP-TH - 11-AUG-09

Matrix:SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.92	mg/L	99.2	90 - 110	
Antimony	1.20	1.21	mg/L	100	90 - 110	
Arsenic	0.400	0.407	mg/L	102	90 - 110	
Barium	1.00	1.02	mg/L	102	90 - 110	
Beryllium	0.0500	0.0483	mg/L	96.7	90 - 110	
Cadmium	0.0500	0.0499	mg/L	99.8	90 - 110	
Calcium	10.0	10.4	mg/L	104	90 - 110	
Chromium	0.500	0.502	mg/L	100	90 - 110	
Cobalt	0.200	0.202	mg/L	101	90 - 110	
Copper	0.500	0.524	mg/L	105	90 - 110	
Iron	4.00	4.13	mg/L	103	90 - 110	
Lead	0.500	0.508	mg/L	102	90 - 110	
Magnesium	10.0	9.96	mg/L	99.6	90 - 110	
Manganese	0.500	0.508	mg/L	102	90 - 110	
Nickel	0.500	0.512	mg/L	102	90 - 110	
Potassium	50.0	51.8	mg/L	104	90 - 110	
Selenium	0.400	0.409	mg/L	102	90 - 110	
Silver	0.400	0.407	mg/L	102	90 - 110	
Sodium	50.0	51.4	mg/L	103	90 - 110	
Thallium	0.500	0.511	mg/L	102	90 - 110	\top
Vanadium	1.00	0.977	mg/L	97.7	90 - 110	\top
Zinc	1.00	0.971	mg/L	97.1	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L09080192 Run Date: 08/11/2009 Sample ID: WG309455-36

Instrument ID: ICP-THERMO2 Run Time: 16:03 Method: 6010B

File ID: T2.081109.160345 Analyst: EDA QC Key: STD

Workgroup (AAB#): WG309454 Cal ID: ICP-TH - 11-AUG-09

Matrix:SOIL

Analyte		Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum		10.0	9.82	mg/L	98.2	90 - 110	
Antimony		1.20	1.20	mg/L	99.8	90 - 110	
Arsenic		0.400	0.399	mg/L	99.7	90 - 110	
Barium		1.00	1.02	mg/L	102	90 - 110	
Beryllium		0.0500	0.0477	mg/L	95.4	90 - 110	
Cadmium		0.0500	0.0489	mg/L	97.8	90 - 110	
Calcium		10.0	10.5	mg/L	105	90 - 110	
Chromium		0.500	0.495	mg/L	99.0	90 - 110	
Cobalt		0.200	0.201	mg/L	100	90 - 110	
Copper		0.500	0.520	mg/L	104	90 - 110	
Iron		4.00	4.08	mg/L	102	90 - 110	
Lead		0.500	0.503	mg/L	101	90 - 110	
Magnesium		10.0	9.89	mg/L	98.9	90 - 110	
Manganese		0.500	0.501	mg/L	100	90 - 110	
Nickel		0.500	0.509	mg/L	102	90 - 110	
Potassium		50.0	51.9	mg/L	104	90 - 110	
Selenium		0.400	0.412	mg/L	103	90 - 110	
Silver		0.400	0.402	mg/L	100	90 - 110	
Sodium		50.0	51.4	mg/L	103	90 - 110	
Thallium		0.500	0.506	mg/L	101	90 - 110	
Vanadium		1.00	0.964	mg/L	96.4	90 - 110	
Zinc		1.00	0.960	mg/L	96.0	90 - 110	

^{*} Exceeds LIMITS Criteria

Login number: L09080192 Workgroup (AAB#): WG309454

Instrument ID: ICP-THERMO2

 Sol. A: WG309455-08
 File ID: T2.081109.113431

 Sol. AB: WG309455-09
 File ID: T2.081109.114104

Method: 6010B Units:mg/L

Matrix:Soil

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	256	102	250	257	103	
Antimony	NS	-0.00466	NS	NS	0.507	NS	
Arsenic	NS	-0.000130	NS	NS	0.254	NS	
Barium	NS	0.000340	NS	0.250	0.254	102	
Beryllium	NS	0.0000200	NS	0.250	0.240	96.0	
Cadmium	NS	-0.000150	NS	0.500	0.499	99.8	
Calcium	250	259	104	250	260	104	
Chromium	NS	0.00232	NS	0.250	0.238	95.2	
Cobalt	NS	0.00104	NS	0.250	0.240	96.0	
Copper	NS	0.00250	NS	0.250	0.252	101	
Iron	100	99.4	99.4	100	98.9	98.9	
Lead	NS	0.0106	NS	0.500	0.497	99.4	
Magnesium	250	261	104	250	259	104	
Manganese	NS	-0.000830	NS	0.250	0.243	97.2	
Nickel	NS	-0.000360	NS	0.500	0.475	95.0	
Potassium	NS	-0.0365	NS	NS	5.19	NS	
Selenium	NS	-0.00232	NS	NS	0.249	NS	
Silver	NS	-0.000330	NS	0.500	0.487	97.4	
Sodium	NS	-0.00234	NS	NS	5.13	NS	
Thallium	NS	-0.00428	NS	NS	0.454	NS	
Vanadium	NS	0.00577	NS	0.250	0.245	98.0	
Zinc	NS	-0.00743	NS	0.500	0.456	91.2	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project
 reporting limit (RL).

ICS - Modified 03/06/2008 PDF File ID:1463776 Report generated 08/13/2009 13:23

 Login Number: L09080192
 Date: 02/02/2009

 Insturment ID: LCP-THERMO2
 Method: 6010B

Analyte	Wave Length	AL	AS	В	ВА	BE
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0.0000210	0	0	0	0
ARSENIC	189.00	0	0	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.00	0	0	0	0	0
BORON	249.70	0	0	0	0	0
CADMIUM	228.80	0	0.00250	0	0	0
CALCIUM	422.70	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0	0	0	0	0
IRON	261.20	0	0	0	0	0
LEAD	220.30	0.000249	0	0	0	0
LITHIUM	670.80	0	0	0	0	0
MAGNESIUM	279.10	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	-0.0000300	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.80	0	0	0	0	0
THALLIUM	190.80	-0.0000120	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.30	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	0
ZINC	206.20	0.0000420	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1463772 Report generated: 08/13/2009 13:23

 Login Number: L09080192
 Date: 02/02/2009

 Insturment ID: LCP-THERMO2
 Method: 6010B

Analyte	Wave Length	CA	CO	CR	CU	FE
ALUMINUM	308.20	CA 0	-0.000820	_	0	F.E.
ANTIMONY	206.80	0	-0.000820		0	0.0000560
ARSENIC	189.00	0	0		0	-0.0000380
BARIUM	455.40	0	0		0	-0.0000120
BERYLLIUM	313.00	0	0	9	0	0
		0	ŭ	9	0	0 000610
BORON	249.70		0.00343	0		-0.000619
CADMIUM	228.80	0	0		0	0.0000220
CALCIUM	422.70	0	0		0	0
CHROMIUM	267.70	0	0		0	0.0000220
COBALT	228.60	0	0	0.000100	0	0
COPPER	224.70	0	0.0000770	0	0	0.000480
IRON	261.20	0	0	0	0	0
LEAD	220.30	0	-0.0000930	-0.000172	0.000809	0
LITHIUM	670.80	0	0	0	0	0
MAGNESIUM	279.10	0	0	0	0	0
MANGANESE	257.60	0	0	-0.0000920	0	0
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0.000100	0	0	0.0000320
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.80	0.0000140	0	0	0	0
THALLIUM	190.80	0	0.00397	0.000276	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.30	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	-0.0000300
ZINC	206.20	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1463772 Report generated: 08/13/2009 13:23

 Login Number: L09080192
 Date: 02/02/2009

 Insturment ID: LCP-THERMO2
 Method: 6010B

_	Wave					
Analyte	Length	LI	MG	MN	MO	NA
ALUMINUM	308.20	0	0	0	0.0153	0
ANTIMONY	206.80	0	0	0	0.000670	0
ARSENIC	189.00	0	0	0	0.00109	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.00	0	0	0	0	0
BORON	249.70	0	0	0	-0.00169	0
CADMIUM	228.80	0	0	0	0.0000220	0
CALCIUM	422.70	0	0	0	0	0
CHROMIUM	267.70	0	0	0.000160	0	0
COBALT	228.60	0	0	0	-0.000983	0
COPPER	224.70	0	0	0	0.00274	0
IRON	261.20	0	0	0	0	0
LEAD	220.30	0	0	0	-0.00183	0
LITHIUM	670.80	0	0	0	0	0
MAGNESIUM	279.10	0	0	-0.00190	-0.0110	0
MANGANESE	257.60	0	0.0000190	0	0	0
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0.000156	0
SILICON	212.40	0	0	0	0.0187	0
SILVER	328.00	0	0	0	-0.0000440	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.80	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.30	0	0	0	-0.000153	0
VANADIUM	292.40	0	0	0	-0.00778	0
ZINC	206.20	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1463772 Report generated: 08/13/2009 13:23

 Login Number: L09080192
 Date: 02/02/2009

 Insturment ID: LCP-THERMO2
 Method: 6010B

Analyte	Wave Length	NI	SB	SN	SR	TI
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0	0	-0.00840	0	-0.000990
ARSENIC	189.00	0	0	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.00	0	0	0	0	0
BORON	249.70	0	0	0	0	0
CADMIUM	228.80	-0.000128	0	0	0	0
CALCIUM	422.70	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0.0000550
COBALT	228.60	0.000175	0	0	0	0.00188
COPPER	224.70	-0.0120	0	0	0	0.000269
IRON	261.20	0	0	0	0	0
LEAD	220.30	0.000110	0	0	0	0
LITHIUM	670.80	0	0	0	0	0
MAGNESIUM	279.10	0	0	0	0	-0.00290
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.03	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	-0.00620
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.80	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	-0.00170
TIN	189.90	0	0	0	0	-0.00220
TITANIUM	337.30	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	0.000824
ZINC	206.20	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1463772 Report generated: 08/13/2009 13:23

Login Number: L09080192 Date: 02/02/2009

Insturment ID: ICP-THERMO2 Method: 6010B

Analyte	Wave Length	v	ZN
ALUMINUM	308.20	0.00300	0
ANTIMONY	206.80	-0.00438	0
ARSENIC	189.00	0.000107	0
BARIUM	455.40	0	0
BERYLLIUM	313.00	0	0
BORON	249.70	0	0
CADMIUM	228.80	0.000102	0
CALCIUM	422.70	0	0
CHROMIUM	267.70	0	0
COBALT	228.60	0.0000200	0
COPPER	224.70	0	0
IRON	261.20	0	0
LEAD	220.30	-0.000126	0
LITHIUM	670.80	0	0
MAGNESIUM	279.10	0	0
MANGANESE	257.60	0	0
MOLYBDENUM	202.03	-0.000110	0
NICKEL	231.60	0	0
POTASSIUM	766.40	0	0
SELENIUM	196.00	0	0
SILICON	212.40	0	0
SILVER	328.00	-0.00617	0
SODIUM	589.50	0	0
STRONTIUM	407.80	0	0
THALLIUM	190.80	-0.0282	0
TIN	189.90	0	0
TITANIUM	337.30	0	0
VANADIUM	292.40	0	0
ZINC	206.20	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID:1463772 Report generated: 08/13/2009 13:23

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L09080192
 Date:
 06/11/2009

 Insturment ID:
 ICP-THERMO2
 Method:
 6010B

	Integration Time	Concentration
Analyte	(Sec.)	(mg/L)
Aluminum	10.00	900.0
Antimony	10.00	90.0
Arsenic	10.00	90.0
Barium	10.00	90.0
Beryllium	15.00	9.0
Boron	10.00	90.0
Cadmium	10.00	18.0
Calcium	10.00	900.0
Chromium	10.00	90.0
Cobalt	10.00	90.0
Copper	10.00	180.0
Iron	5.00	900.0
Lead	10.00	180.0
Lithium	10.00	90.0
Magnesium	15.00	900.0
Manganese	15.00	180.0
Molybdenum	10.00	18.0
Nickel	10.00	90.0
Potassium	10.00	315.0
Selenium	10.00	81.0
Silicon	10.00	90.0
Silver	5.00	9.0
Sodium	10.00	315.0
Strontium	10.00	4.5
Thallium	10.00	9.0
Tin	10.00	90.0
Titanium	15.00	90.0
Vanadium	10.00	90.0
Zinc	10.00	45.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

LINEAR_RANGE - Modified 03/06/2008 PDF File ID:1463771 Report generated: 08/13/2009 13:23

2.3.2 Metals CVAA Data (Mercury)

2.3.2.1 Summary Data

L09080192

08/13/09 14:10

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
SITE 1-TP-BF	L09080192-01	7471A	1	11-AUG-09
SITE 1-TP-TS	L09080192-02	7471A	1	11-AUG-09
SITE 2-BLM-TS	L09080192-03	7471A	1	11-AUG-09
SITE 2-BLM-BF	L09080192-04	7471A	1	11-AUG-09
SITE 3-ML-BF/TS	L09080192-05	7471A	1	11-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1465218
Report generated: 08/13/2009 14:10

Microbac

1 OF 1

00083747

Report Number: L09080192

Report Date : August 13, 2009

Sample Number: L09080192-01 PrePrep Method:NONE Instrument: HYDRA

Prep Method: 7471A
Analytical Method: 7471A Client ID: SITE 1-TP-BF Prep Date: 08/11/2009 12:18 Matrix: Soil Cal Date: Run Date: 08/12/2009 11:43
File ID: HY. 081209.114351
Percent Solid: 77.4 Workgroup Number: WG309524 Collect Date: 08/09/2009 10:45 Analyst: PDM Dilution: 1

Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6		Ū	0.318	0.0127

U Not detected at or above adjusted sample detection limit

5 of

MICIODAC LADOLACOLLES INC.

00083748

Report Number: L09080192

Report Date : August 13, 2009

Sample Number: L09080192-02 PrePrep Method: NONE Instrument: HYDRA

| Workgroup Number: WG309524 | Collect Date: 08/09/2009 10:50 | Collect Date: 08/09/2009 | Colle

 Analyte
 CAS. Number
 Result
 Qual
 PQL
 SDL

 Mercury, Total
 7439-97-6
 U
 0.304
 0.0122

U Not detected at or above adjusted sample detection limit

2 of 5

00083749

Report Number: L09080192

Report Date : August 13, 2009

Sample Number:L09080192-03 PrePrep Method:NONE

Instrument: HYDRA
Prep Date: 08/11/2009 12:21
Cal Date: 08/12/2009 11:26 Prep Method: 7471A
Analytical Method: 7471A Client ID: SITE 2-BLM-TS Matrix: Soil Run Date: 08/12/2009 11:49
File ID: HY. 081209.114932
Percent Solid: 78.2 Workgroup Number: WG309524
Collect Date: 08/09/2009 11:20 Analyst: PDM Dilution: 1

Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6		U	0.317	0.0127

U Not detected at or above adjusted sample detection limit

5 of

00083750

Report Date : August 13, 2009

Report Number: L09080192

Sample Number: L09080192-04 PrePrep Method:NONE

Instrument: HYDRA
Prep Date: 08/11/2009 12:22
Cal Date: 08/12/2009 11:27 Prep Method: 7471A
Analytical Method: 7471A Client ID: SITE 2-BLM-BF Matrix: Soil Run Date: 08/12/2009 11:51
File ID: HY. 081209.115116
Percent Solid: 78.3 Workgroup Number: WG309524 Collect Date: 08/09/2009 11:25 Analyst: PDM Dilution: 1

Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6		Ū	0.312	0.0125

U Not detected at or above adjusted sample detection limit

5 of

00083751

Report Number: L09080192

Report Date : August 13, 2009

Sample Number: L09080192-05 PrePrep Method:NONE

Instrument: HYDRA
Prep Date: 08/11/2009 12:23
Cal Date: 08/12/2009 11:29 Prep Method: 7471A
Analytical Method: 7471A Client ID: SITE 3-ML-BF/TS Matrix: Soil Run Date: 08/12/2009 11:53
File ID: HY. 081209.115319
Percent Solid: 88.2 Workgroup Number: WG309524
Collect Date: 08/09/2009 12:00 Analyst: PDM Dilution: 1

Sample Tag: 01 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6	0.0394	J	0.278	0.0111

 $\ensuremath{\mathtt{J}}$ The analyte was positively identified, but the quantitation was below the RL

Microbac

Page 178

5

of

5

2.3.2.2 QC Summary Data

Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and five standards.

2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to Volume (mL)	40
Vi = Aliquot Volume (mL)	40
D = Manual dilution factor, if required (10X = 10)	1
Cx = Concentration of element in ppb (ug/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Ws} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to volume (mL)	40
Ws = Aliquot weight (g)	0.6
D = Manual dilution factor	1
Cx = Concentration of element in ug/kg	6.67

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

1 Cx = Concentration calculated as received (wet basis)	6.67
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	8.33

8.33 ug/kg = 0.00833 mg/kg

Microbac Laboratories Inc. Metals Digest Log

Workgroup: WG309445

Analyst:BRG

Spike Analyst: BRG

Method: 7471A

Run Date: 08/11/2009 12:23

Hotblock Start Temp: 95.2 @ 12:50

Hotblock End Temp: 92.7 @ 13:20

SOP: ME405 Revison 9

Spike Solution: STD34566

Spike Witness: VC

KMnO4 1:1 Lot #: RGT13913

HNO3 Lot #: COA13945

HCL Lot #: COA14028

Digest tubes Lot #: COA14013

HG SOIL STD 10PPM Lot #: STD34573

HG SOILS ICV Lot #: STD34574

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Spike Amount	Due Date
1	WG309445-02	BLANK	7	.6 g	40 mL		
2	WG309445-03	LCS	7	.6 g	40 mL	4 mL	
3	L09080192-01	SAMP	7	.609 g	40 mL		08/12/09
4	L09080192-02	SAMP	7	.62 g	40 mL		08/12/09
5	L09080192-03	SAMP	7	.605 g	40 mL		08/12/09
6	L09080192-04	SAMP	7	.614 g	40 mL		08/12/09
7	WG309445-01	REF	7	.613 g	40 mL		
8	L09080192-05	SAMP	7	.613 g	40 mL		08/12/09
9	WG309445-04	MS	7	.613 g	40 mL	4 mL	
10	WG309445-05	MSD	7	.613 g	40 mL	4 mL	

Analyst: Blenda Slegory

Reviewer: Eun Poten

BLOCK_DIG - Modified 07/22/2008 PDF ID: 1463208
Report generated: 08/11/2009 13:25

Instrument Run Log

Instrument:	HYDRA	Data	set: <u>081209A.PRN</u>			
Analyst1:	PDM	Analy	rst2: N/A			
Method:	7471A	S	OP: <u>ME405</u>	R	ev: 9	
Maintenance Log ID:	29766					
Calibration Std: STE	034573	ICV/CCV Std:	STD34574	Post Spike:	STD34573	
ICSA: N/A		ICSAB:	N/A	Int. Std:		
	Workgroups:					

Comments: 309526,309524

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	HY.081209.112214	WG309542-01	Calibration Point		1		08/12/09 11:22
2	HY.081209.112408	WG309542-02	Calibration Point		1		08/12/09 11:24
3	HY.081209.112602	WG309542-03	Calibration Point		1		08/12/09 11:26
4	HY.081209.112749	WG309542-04	Calibration Point		1		08/12/09 11:27
5	HY.081209.112938	WG309542-05	Calibration Point		1		08/12/09 11:29
6	HY.081209.113130	WG309542-06	Calibration Point		1		08/12/09 11:31
7	HY.081209.113315	WG309542-07	Initial Calibration Verification		1		08/12/09 11:33
8	HY.081209.113456	WG309542-08	Initial Calib Blank		1		08/12/09 11:34
9	HY.081209.113659	WG309542-09	CCV		1		08/12/09 11:36
10	HY.081209.113844	WG309542-10	ССВ		1		08/12/09 11:38
11	HY.081209.114026	WG309445-02	Method/Prep Blank	.6/40	1		08/12/09 11:40
12	HY.081209.114207	WG309445-03	Laboratory Control S	.6/40	1		08/12/09 11:42
13	HY.081209.114351	L09080192-01	SITE 1-TP-BF	.609/40	1		08/12/09 11:43
14	HY.081209.114556	L09080192-02	SITE 1-TP-TS	.62/40	1		08/12/09 11:45
15	HY.081209.114741	WG309524-01	Post Digestion Spike		1	L09080192-02	08/12/09 11:47
16	HY.081209.114932	L09080192-03	SITE 2-BLM-TS	.605/40	1		08/12/09 11:49
17	HY.081209.115116	L09080192-04	SITE 2-BLM-BF	.614/40	1		08/12/09 11:51
18	HY.081209.115319	L09080192-05	SITE 3-ML-BF/TS	.613/40	1	WG309445-01	08/12/09 11:53
19	HY.081209.115513	WG309445-04	Matrix Spike	.613/40	1	L09080192-05	08/12/09 11:55
20	HY.081209.115727	WG309445-05	Matrix Spike Duplica	.613/40	1	L09080192-05	08/12/09 11:57
21	HY.081209.115910	WG309542-11	CCV		1		08/12/09 11:59
22	HY.081209.120055	WG309542-12	ССВ		1		08/12/09 12:00
23	HY.081209.120258	WG309424-01	Method/Prep Blank	.25/40	1		08/12/09 12:02
24	HY.081209.120440	WG309424-02	Laboratory Control S	.25/40	1		08/12/09 12:04
25	HY.081209.120703	WG309424-03	Laboratory Control S	.25/40	1		08/12/09 12:07
26	HY.081209.120858	L09080065-01	POLYOL T/T T12 24375	.255/40	1		08/12/09 12:08
27	HY.081209.121051	WG309526-01	Post Digestion Spike		1	L09080065-01	08/12/09 12:10
28	HY.081209.121233	L09080132-01	FRAC TANK 01	.259/40	1		08/12/09 12:12
29	HY.081209.121416	WG309526-02	Post Digestion Spike		1	L09080132-01	08/12/09 12:14
30	HY.081209.121558	WG309542-13	CCV		1		08/12/09 12:15
31	HY.081209.121751	WG309542-14	ССВ		1		08/12/09 12:17

Page: 1 Approved: August 12, 2009

Maren Beery

Microbac Laboratories Inc. Data Checklist

Date: 12-AUG-2009 Analyst: PDM Analyst: NA Method: 7471A Instrument: HYDRA Curve Workgroup: 309542 Runlog ID: 29587

Analytical Workgroups: 309524,309526

<u>Calibration/Linearity</u>	X
<u>ICV/CCV</u>	X
ICB/CCB	X
ICSA/ICSAB	
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	0192,0065,0132
Client Forms	X
Level X	
Level 3	0192
Level 4	
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	PDM
Secondary Reviewer	MMB
Comments	

Primary Reviewer: Secondary Reviewer: 12-AUG-2009 12-AUG-2009

Naren Blery

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-12-2009 15:38:49

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00083757

AAB#: WG309524

Analytical Method: 7471A

Login Number:L09080192

Client ID	ID	Date Collected	TCLP Date	Time Held	Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	Q
SITE 1-TP-BF	01	08/09/09					08/11/09	2.1	28		08/12/09	3	28	
SITE 1-TP-TS	02	08/09/09					08/11/09	2.1	28		08/12/09	3	28	
SITE 2-BLM-TS	03	08/09/09					08/11/09	2	28		08/12/09	3	28	
SITE 2-BLM-BF	04	08/09/09					08/11/09	2	28		08/12/09	3	28	
SITE 3-ML-BF/TS	05	08/09/09					08/11/09	2	28		08/12/09	3	28	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008

PDF File ID: 1464166

Report generated 08/12/2009 13:48

METHOD BLANK SUMMARY

Login Number: L09080192

Blank File ID: HY. 081209.114026

Prep Date: 08/11/09 12:23

Analyzed Date: 08/12/09 11:40

Work Group: WG309524

Blank Sample ID: WG309445-02

Instrument ID: HYDRA

Method: 7471A

Analyst:PDM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG309445-03	HY.081209.114207	08/12/09 11:42	01
SITE 1-TP-BF	L09080192-01	HY.081209.114351	08/12/09 11:43	01
SITE 1-TP-TS	L09080192-02	HY.081209.114556	08/12/09 11:45	01
SITE 2-BLM-TS	L09080192-03	HY.081209.114932	08/12/09 11:49	01
SITE 2-BLM-BF	L09080192-04	HY.081209.115116	08/12/09 11:51	01
SITE 3-ML-BF/TS	L09080192-05	HY.081209.115319	08/12/09 11:53	01

Report Name: BLANK_SUMMARY
PDF File ID: 1464167
Report generated 08/12/2009 13:48

Login Number: L09080192	Prep Date: 08/11/09 12:23	Sample ID: WG309445-02
Instrument ID: HYDRA	Run Date: 08/12/09 11:40	Prep Method: 7471A
File ID: HY. 081209.114026	Analyst:PDM	Method: 7471A
Workgroup (AAB#):WG309524	Matrix:Soil	Units:mg/kg
Contract #:DACA56-94-D-0020	Cal ID: HYDR	A - 12-AIIG-09

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Mercury, Total	0.0100	0.250	0.0100	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK
PDF ID: 1464168
12-AUG-2009 13:48

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

Analytes	Expected	Found	% Rec	LC	S Limits	Q
Mercury, Total	0.267	0.283	106	80	- 120	

LCS - Modified 03/06/2008 PDF File ID:1464169 Report generated: 08/12/2009 13:48

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L09080192
 Cal ID: HYDRA
 Worknum: WG309524

 Instrument ID: HYDRA
 Contract #: DACA56-94-D-0020
 Method: 7471A

 Parent ID: WG309445-01
 File ID: HY.081209.115319
 Dil: 1
 Matrix: SOLID

 Sample ID: WG309445-05
 MS
 File ID: HY.081209.115727
 Dil: 1
 Percent Solid: 88.2

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Mercury, Total	0.0394	0.296	0.298	87.4	0.296	0.303	89.2	1.72	75 - 125	25	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac ®

[#] FAILS RPD LIMIT

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L09080192
 Worknum:
 WG309524

Instrument ID: HYDRA Method: 7471A

 Post Spike ID:
 WG309524-01
 File ID:
 IMY.081209.114741
 Dil:
 Units:
 ug/L

 Sample ID:
 L09080192-02
 File ID:
 IMY.081209.114556
 Dil:
 Matrix:
 Soil

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
MERCURY	1.06	F	0	U	1	106.0	85 - 115	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

00083763

Login Number: L09080192 Analytical Method: 7471A ICAL Worknum: WG309542 Workgroup (AAB#): WG309524

Instrument ID: HYDRA

Initial Calibration Date: 08/12/2009 11:31

	WG3	WG309542-01 WG309542-02 WG309542-03		09542-03	WG3	09542-04	WG3	09542-05	WG309542-06			
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT
Mercury	0	646	0.200	1405	1.00	5722	2.00	10805	5.00	26293	10.0	52810

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1464171 Report generated 08/12/2009 13:48

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

Login Number: L09080192 Analytical Method: 7471A ICAL Worknum: WG309542

Workgroup (AAB#): WG309524 Instrument ID: HYDRA Initial Calibration Date: 08/12/2009 11:31

Analyte	R	Q
Mercury	1.000	

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1464171 Report generated 08/12/2009 13:48

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L09080192
 Run Date: 08/12/2009
 Sample ID: WG309542-08

 Instrument ID: HYDRA
 Run Time: 11:34
 Method: 7471A

 File ID: HY.081209.113456
 Analyst: PDM
 Units: ug/L

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
MERCURY	.15	3.75	.15	υ

ICB - Modified 07/14/2009 PDF File ID:1464173 Report generated 08/12/2009 13:48

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L09080192 Run Date: 08/12/2009 Sample ID: WG309542-10

Instrument ID: HYDRA Run Time: 11:38 Method: 7471A

File ID: HY.081209.113844 Analyst: PDM Units: ug/L

Workgroup (AAB#): WG309524 Cal ID: HYDRA - 12-AUG-09

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.150	3.75	0.150	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

Matrix:SOIL

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1464175 Report generated 08/12/2009 13:48

Microbac ®

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L09080192 Run Date: 08/12/2009 Sample ID: WG309542-12

Instrument ID: HYDRA Run Time: 12:00 Method: 7471A

File ID: HY.081209.120055 Analyst: PDM Units: ug/L

Workgroup (AAB#):WG309524 Cal ID: HYDRA - 12-AUG-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.150	3.75	0.150	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1464175 Report generated 08/12/2009 13:48

Microbac ®

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number: L09080192
 Run Date: 08/12/2009
 Sample ID: WG309542-07

 Instrument ID: HYDRA
 Run Time: 11:33
 Method: 7471A

 Units:ug/L File ID: HY. 081209.113315 Analyst: PDM Workgroup (AAB#):WG309524 Cal ID: HYDRA - 12-AUG-09

Analyte	Expected	Found	%REC	LIMITS	Q
Mercury	2	2.02	101	90 - 110	

^{*} Exceeds LIMITS Limit

QC Key:STD

ICV - Modified 03/06/2008 PDF File ID: 1464172 Report generated 08/12/2009 13:48

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

00083769

Login Number: L09080192 Run Date: 08/12/2009 Sample ID: WG309542-09

Instrument ID: HYDRA Run Time: 11:36 Method: 7471A

File ID: HY.081209.113659 Analyst: PDM QC Key: STD

Workgroup (AAB#): WG309524 Cal ID: HYDRA - 12-AUG-09

Matrix: SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00197	mg/L	98.5	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID:1464174 Report generated 08/12/2009 13:48

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

00083770

Login Number:L09080192 Run Date:08/12/2009 Sample ID:WG309542-11

Instrument ID:HYDRA Run Time:11:59 Method:7471A

File ID:HY.081209.115910 Analyst:PDM QC Key:STD

Workgroup (AAB#):WG309524 Cal ID: HYDRA - 12-AUG-09

Matrix:SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00187	mg/L	93.5	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID:1464174 Report generated 08/12/2009 13:48

2.4 General Chemistry Data

2.4.1 Percent Solids Data

2.4.1.1 Raw Data

L09080192

08/13/09 14:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
SITE 1-TP-BF	L09080192-01	D2216-90	1	11-AUG-09
SITE 1-TP-TS	L09080192-02	D2216-90	1	11-AUG-09
SITE 2-BLM-TS	L09080192-03	D2216-90	1	11-AUG-09
SITE 2-BLM-BF	L09080192-04	D2216-90	1	11-AUG-09
SITE 3-ML-BF/TS	L09080192-05	D2216-90	1	11-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1465214
Report generated: 08/13/2009 14:09

Microbac

1 OF 1

00083775

Report Number: L09080192

Report Date : August 13, 2009

PrePrep Method:NONE Instrument: BAL001

Sample Number: L09080192-01
Client ID: SITE 1-TP-BF Prep Date: 08/12/2009 08:52
Cal Date: Prep Method: D2216-90 Matrix: Soil Analytical Method: D2216-90 Workgroup Number: WG309447
Collect Date: 08/09/2009 10:45 Analyst:CPD Dilution:1 Run Date: 08/12/2009 08:52 File ID: B1.309447-0101

Sample Tag: 01 Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	77.4		1.00	1.00

5 of

00083776

Report Number: L09080192

Report Date : August 13, 2009

Sample Number: L09080192-02 Client ID: SITE 1-TP-TS PrePrep Method:NONE Instrument: BAL001

Prep Date: 08/12/2009 08:52
Cal Date: Prep Method: D2216-90 Matrix: Soil Analytical Method: D2216-90 Workgroup Number: WG309447
Collect Date: 08/09/2009 10:50 Analyst:CPD Dilution:1 Run Date: 08/12/2009 08:52 File ID: B1.309447-0102

Sample Tag: 01 Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	79.5		1.00	1.00

of 5

00083777

Report Date : August 13, 2009

Report Number: L09080192

Sample Number: L09080192-03
Client ID: SITE 2-BLM-TS PrePrep Method:NONE

Instrument:BAL001
Prep Date: 08/12/2009 08:52
Cal Date: Prep Method: D2216-90 Matrix: Soil Analytical Method: D2216-90 Workgroup Number: WG309447
Collect Date: 08/09/2009 11:20 Analyst:CPD Dilution:1 Run Date: 08/12/2009 08:52 File ID: B1.309447-0103

Sample Tag: 01 Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	78.2		1.00	1.00

of 5

00083778

Report Number: L09080192

Report Date : August 13, 2009

PrePrep Method:NONE Instrument: BAL001

Sample Number: L09080192-04
Client ID: SITE 2-BLM-BF Prep Method: D2216-90 Prep Date: 08/12/2009 08:52 Matrix: Soil Analytical Method: D2216-90 Cal Date: Workgroup Number: WG309447
Collect Date: 08/09/2009 11:25 Analyst:CPD Dilution:1 Run Date: 08/12/2009 08:52 File ID: B1.309447-0104

Sample Tag: 01 Units:weight %

Analyte CAS. Number Result Qual PQL SDL Percent Solids 10-02-6 78.3 1.00 1.00

> 5 of

00083779

Report Number: L09080192

Sample Number: L09080192-05
Client ID: SITE 3-ML-BF/TS

Matrix: Soil

Report Date : August 13, 2009

PrePrep Method:NONE Instrument: BAL001

Prep Date: 08/12/2009 08:52
Cal Date: Prep Method: D2216-90 Analytical Method: D2216-90 Analyst:CPD Dilution:1 Run Date: 08/12/2009 08:52 File ID: B1.309447-0105

Workgroup Number: WG309447
Collect Date: 08/09/2009 12:00 Sample Tag: 01 Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	88.2		1.00	1.00

of 5

1.0 Calculating the percent solids of a sample.

$$\%Solids = \frac{WT3 - WT1}{WT2 - WT1} \times F$$

Where:

WT1 = Weight, in grams, of the empty container	1.30 g
WT2 = Weight, in grams, of the container and wet sample	21.274 g
WT3 = Weight, in grams, of the container and dried sample	5.21 g
F = Factor to get units as percent weight	100

%Solids = Percent solids present in sample. 19.58%

2.0 Calculating the percent moisture of a sample.

% Moisture = 100 - % Solids from 1.0 calculation

PERCENT SOLIDS

Workgroup (AAB#):WG309447 Analyst:CPD ADT(on):08/11/2009 12:36
Method:D2216-90 Instrument:BAL001 ADT(off):08/12/2009 08:52

SOP: K0003 Rev: 9

SAMPLE NUMBER	EMPTY PAN WT 1	WET WT 2	DRY WT 3A	DRY WT 3B	DRY WT 3C	PERCENT SOLID	PERCENT MOISTURE
L09080192-01	1.29	42.09	32.88			77.43	
L09080192-02	1.27	34.52	27.69			79.46	
L09080192-03	1.29	30.11	23.82			78.17	
L09080192-04	1.28	20.98	16.71			78.32	
L09080192-05	1.29	22.76	20.22			88.17	
L09080205-01	1.28	24.2	23.63			97.51	
L09080205-04	1.27	33.65	32.75			97.22	
L09080205-06	1.28	25.06	24.79			98.86	
L09080205-08	1.3	34.46	33.86			98.19	
WG309447-01	1.29	22.76	20.22			88.17	11.83
WG309447-02	1.29	24.4	21.88			89.10	10.90

Analyst: Lehele Dis

PERCENT_SOLIDS - Modified 04/24/2008

PDF ID: 1463139
Report generated: 08/12/2009 08:53

3.0 Attachments

Microbac Laboratories Inc. Analyst Listing August 13, 2009

ADC - ANTHONY D. CANTER ALB - ANNIE L. BROWN BRG - BRENDA R. GREGORY CAH - CHARLES A. HALL	AJF - AMANDA J. FICKIESEN AML - ANTHONY M. LONG CAA - CASSIE A. AUGENSTEIN CEB - CHAD E. BARNES	AJM - ANTHONY J. MOSSBURG BLG - BRENDA L. GREENWALT CAF - CHERYL A. FLOWERS CLC - CHRYS L. CRAWFORD
CLW - CHARISSA L. WINTERS DDE - DEBRA D. ELLIOTT DGB - DOUGLAS G. BUTCHER DLP - DOROTHY L. PAYNE	CPD - CHAD P. DAVIS DEL - DON E. LIGHTFRITZ DIH - DEANNA I. HESSON DLR - DIANNA L. RAUCH	CSH - CHRIS S. HILL DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER DR - DEANNA ROBERTS
ECL - ERIC C. LAWSON FJB - FRANCES J. BOLDEN JBK - JEREMY B. KINNEY	EDA - ERIN D. AGEE HAV - HEMA VILASAGAR JDH - JUSTIN D. HESSON	ERP - ERIN R. PORTER HJR - HOLLY J. REED JKT - JANE K. THOMPSON
JWR - JOHN W. RICHARDS KEB - KATHRYN E. BARNES LKN - LINDA K. NEDEFF MDC - MICHAEL D. COCHRAN	JWS - JACK W. SHEAVES KHR - KIM H. RHODES LSB - LESLIE S. BUCINA MES - MARY E. SCHILLING	JYH - JI Y. HU KRA - KATHY R. ALBERTSON MDA - MIKE D. ALBERTSON MMB - MAREN M. BEERY
MRT - MICHELLE R. TAYLOR PDM - PIERCE D. MORRIS REK - ROBERT E. KYER SDH - SHANA D. HINYARD TIP - TAE I. PARRISH VC - VICKI COLLIER	MSW - MATT S. WILSON RAH - ROY A. HALSTEAD RLK - ROBIN L. KLINGER SLM - STEPHANIE L. MOSSBURG TMB - TIFFANY M. BAILEY WTD - WADE T. DELONG	NPM - NATHANIEL P. MILLER RB - ROBERT BUCHANAN RWC - RODNEY W. CAMPBELL SLP - SHERI L. PFALZGRAF TMM - TAMMY M. MORRIS

Microbac Laboratories Inc. List of Valid Qualifiers August 13, 2009

STD_ND=U Qualkey:

Qualifier Description

> U Not detected at or above adjusted sample detection limit

- ***Special Notes for Organic Analytes

 1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.
- 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- N-nitrosodiphenylamine cannot be separated from diphenylamine.
 3-Methylphenol and 4-Methylphenol are unresolvable compounds.
- 5. m-Xylene and p-Xylene are unresolvable compounds.
- 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

COC NO. (DATE-01)

Laboratory Name: Microbac

Shaw Environmental & Infrastructure, Inc.

3010 Briarpark Drive, Suite 400

Houston, TX 77042 (713) 996-4400

Address: 158 Starlite Drive, Marietta OH 45750

Contact : Stephanie Mossburg

Phone: 1-800-373-4071

PM: Praveen Svrivastav (713.996.4588) Prolect Contact: Jennifer Hoang	(713.95 rr Hoan)6.4588) a	TAT: 24 Hr Phone No: 713-996-4408	13-996-44		55					TP=TONY PCZaikowsky)	BE - Booky
Project Name: Pistol Range/১৮/শিঀ৮-৩৭ Site: Confirmation Sampling Project #: 117591-0009B340/ \\ \	inge/∟⊓ i340/ ∏	AAP-O4 591-0009830	Site: Confirm	nation Sarnack, T		JE PT-3N		OĮ.			BLM= Bobby Lee Marti	
Sampler Print:	Sample	Sampler Sign.			T	<i>V</i> 4	Z8	28			ML = Mr. Lee	
			1		ənistı			<u>.</u> - ۲			BF= Backfill	
ALLEN WILLMORE (713) 247-9292	7	<i>Y</i> ,			oo to #		VOC	2100			13 = Topsoll Comments	
Sample Number	Grab	Date	Time	Matrix	•			<u> </u>				
SITE 1 -TP-3F		8/9/06	10:45	Soil	3	٠,٧	ر بر	بر			34-hr TAT!	
SITE 1-TP-TS		60/6/g	05:01	Soil	3	يو		بد			11 194 - hr TAI!!	
SITE 2 - BUIN, TS	×	60/6/8	11:30	Soil	3	メ	メ	×			24-tr 7A7!	
SITE 2 -BUM-BF	×	60/6/6	11:35	Soil	3	У	メ	¥			24-nr TAT!1	
SITE 3 - MC-8F/II	×	68/6/8	12:00	Soil	3	<u>پ</u>	· *	¥			24-hr TAT !!	
SIRE 4-BE-25/15	×	8/9/69	R:30	Soil	3	タ	'Y	ン			Hour Day	
	×	•		Soil							- 1	
	×			Soil								
	×			Soil								
	×			Soil				•				
	×			Soil							-	
	×			Soil								
	×			Soil						en de		
	×			Soil								
	×			Soil				_				
								_				
•	5	Received By:	By:			Special Instructions	Instruc		Please s	see com	comments	
Date/Time	(7:30	Date/Time				-		•				
Relinquished By:		Rec	Microbac OVD Received: 08/11/2009	2009	09:45	8	221000001007	70			Fa.	
Date/Time		Dat	BY: KOBIN KLINGER	WOER / /				·	44.7			
			Tours	phis. Kinger	F							

COOLER INSPECTION

Received: 08/11/2009 09:45 Delivery Method: UPS Opened By: Robin Klinger Comments:

Login(s): L09080192 L09080193

Cooler(s)

Cooler #	Temp Gun	Temp	Tracking #	COC#	Comments
0013996	Н	6.0	1Z66V7250192015547	date-01	

1	Yes	Were shipping coolers sealed?
2	Yes	Were custody seals intact?
3	Yes	Were cooler temperatures in range of 0-6?
4	Yes	Was ice present?
5	Yes	Were COC's received/information complete/signed and dated?
6	Yes	Were sample containers and labels intact and match COC?
7	Yes	Were the correct containers and volumes received?
8	NA	Were correct perservatives used? (water only)
9	NA	Were pH ranges acceptable? (voa's excluded)
10	NA	Were VOA samples free of headspace (<6mm)?
11	Yes	Were samples received within EPA hold times?

Internal Chain of Custody Report

Login: L09080192

Account: 2773 **Project:** 2773.025

Samples: 5

Due Date: 12-AUG-2009

 Samplenum
 Container ID
 Products

 L09080192-01
 604546
 G-60-W

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	11-AUG-2009 10:43	JKT	
2	ANALYZ	V1	ORG4	11-AUG-2009 11:09	FJB	JKT

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-01</u> 604547 8270

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	EXT	11-AUG-2009 10:54	CEB	JKT
3	STORE	EXT	A1	11-AUG-2009 12:45	JKT	CEB

Samplenum Container ID Products

L09080192-01 604548 AG AL BA BE CA CD CO CR CU DIG-ICP FE HG K MG

Bottle: 1

Seq.	Purpose	From	То	Date/T	'ime	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009	10:43	JKT	
2	PREP	W1	DIG	11-AUG-2009	10:50	BRG	JKT
3	ANALYZ*	DIG	METALS	11-AUG-2009	14:02	EDA	BRG
4	STORE	WET	A1	12-AUG-2009	08:16	JKT	CPD

^{*}Sample extract/digestate

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-02</u> 604549 G-60-W

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	11-AUG-2009 10:43	JKT	
2	ANALYZ	V1	ORG4	11-AUG-2009 11:09	FJB	JKT

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

00083788

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L09080192

Account: 2773 **Project:** 2773.025

Samples: 5

Due Date: 12-AUG-2009

 Samplenum
 Container ID
 Products

 L09080192-02
 604550
 8270

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	EXT	11-AUG-2009 10:54	CEB	JKT
3	STORE	EXT	A1	11-AUG-2009 12:45	JKT	CEB

Samplenum Container ID Products

L09080192-02 604551 AG AL BA BE CA CD CO CR CU DIG-ICP FE HG K MG

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	WET	11-AUG-2009 10:43	JKT	
2	STORE	WET	A1	12-AUG-2009 08:16	JKT	CPD

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-03</u> 604552 G-60-W

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	11-AUG-2009 10:43	JKT	
2	ANALYZ	V1	ORG4	11-AUG-2009 11:09	FJB	JKT

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-03</u> 604553 8270

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	EXT	11-AUG-2009 10:54	CEB	JKT
3	STORE	EXT	A1	11-AUG-2009 12:45	JKT	CEB

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080192

Account: 2773
Project: 2773.025

Samples: 5

Due Date: 12-AUG-2009

Samplenum Container ID Products

L09080192-03 604554 AG AL BA BE CA CD CO CR CU DIG-ICP FE HG K MG

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	DIG	11-AUG-2009 10:50	BRG	JKT
3	ANALYZ*	DIG	METALS	11-AUG-2009 14:02	EDA	BRG
4	STORE	WET	A1	12-AUG-2009 08:16	JKT	CPD

^{*}Sample extract/digestate

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-04</u> 604555 G-60-W

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	11-AUG-2009 10:43	JKT	
2	ANALYZ	V1	ORG4	11-AUG-2009 11:09	FJB	JKT

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-04</u> 604556 8270

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	EXT	11-AUG-2009 10:54	CEB	JKT
3	STORE	EXT	A1	11-AUG-2009 12:45	JKT	CEB

Samplenum Container ID Products

L09080192-04 604557 AG AL BA BE CA CD CO CR CU DIG-ICP FE HG K MG

Bottle: 1

Seq.	Purpose	From	То	Date/Time		Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:4	3	JKT	
2	PREP	W1	DIG	11-AUG-2009 10:5	0	BRG	JKT
3	ANALYZ*	DIG	METALS	11-AUG-2009 14:0	2	EDA	BRG
4	STORE	WET	A1	12-AUG-2009 08:1	б	JKT	CPD

^{*}Sample extract/digestate

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09080192

Account: 2773 **Project:** 2773.025

Samples: 5

Due Date: 12-AUG-2009

 Samplenum
 Container
 ID
 Products

 L09080192-05
 604558
 G-60-W

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	V1	11-AUG-2009 10:43	JKT	
2	ANALYZ	V1	ORG4	11-AUG-2009 11:09	FJB	JKT

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080192-05</u> 604559 8270

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	EXT	11-AUG-2009 10:54	CEB	JKT
3	STORE	EXT	A1	11-AUG-2009 12:45	JKT	CEB

Samplenum Container ID Products

L09080192-05 604560 AG AL BA BE CA CD CO CR CU DIG-ICP FE HG K MG

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	11-AUG-2009 10:43	JKT	
2	PREP	W1	DIG	11-AUG-2009 10:50	BRG	JKT
3	ANALYZ*	DIG	METALS	11-AUG-2009 14:02	EDA	BRG
4	STORE	WET	A1	12-AUG-2009 08:16	JKT	CPD

^{*}Sample extract/digestate

Appendix C

Waste Documentation

Shaw Environmental, Inc.

Appendix C Disposal Tracking Log

Roll-Off		Dates		Lead To	CLP Result (m	ng/L)	Quantity		Dispo	osal
Number	Filled	Sampled	Shipped	Composite	Grab	Haz ?	(tons)	Manifest	Truck	Destination
542	8/7/09	8/7/09	9/2/09	0.737 J	0.482 J	no	15.48	20000011	1028	Woolworth Road
859	8/6/09	8/6/09	9/3/09	2.26	3.09	no	18.55	20000012	1033	Woolworth Road
906	8/6/09	8/6/09	9/3/09	2.26	0.985 J	no	19.93	20000013	2738	Woolworth Road
701	8/6/09	8/6/09	9/10/09	2.26	2.64	no	19.26	20000016	1033	Woolworth Road
758	8/6/09	8/6/09	9/10/09	2.26	3.78	no	16.84	20000015	1040	Woolworth Road
1022	8/7/09	8/7/09	9/10/09	0.574 J	1.45	no	15.06	20000014	1033	Woolworth Road
628	8/5/09	8/7/09	9/11/09	0.574 J	0.485 J	no	18.76	20000019	2735	Woolworth Road
731	8/5/09	8/6/09	9/11/09	2.26	0.253 J	no	20.48	20000018	2735	Woolworth Road
766	8/7/09	8/7/09	9/14/09	0.737 J	0.488 J	no	19.17	20000021	1045	Woolworth Road
959	8/6/09	8/7/09	9/14/09	0.737 J	0.541 J	no	18.94	20000020	1045	Woolworth Road
1113	8/7/09	8/7/09	9/25/09	0.737 J	38	YES	19.19	005974010	1048	U.S. Ecology
674	8/7/09	8/7/09	10/6/09	0.574 J	23.5	YES	15.11	005974014	2735	U.S. Ecology
1096	8/6/09	8/7/09	10/6/09	2.26	5.15	YES	19.22	005974011	1033	U.S. Ecology
1111	8/7/09	8/7/09	10/6/09	0.574 J	17.4	YES	19.80	005974013	2740	U.S. Ecology

Notes and Abbreviations:

Rows are sorted first by Shipped Date, then by Roll-Off Number.

Non-Hazardous soil was shipped to Woolworth Road Landfill, 10580 Woolworth Road, Keithville, Louisiana 71047, 318-925-3500, Permit # - P1020

Hazardous soil was shipped to U.S. Ecology Texas, Inc., Petromila Road, 3.5 miles south of Robstown, Robstown, Texas 78380, 361-387-3518, EPA ID # - TXD069452340

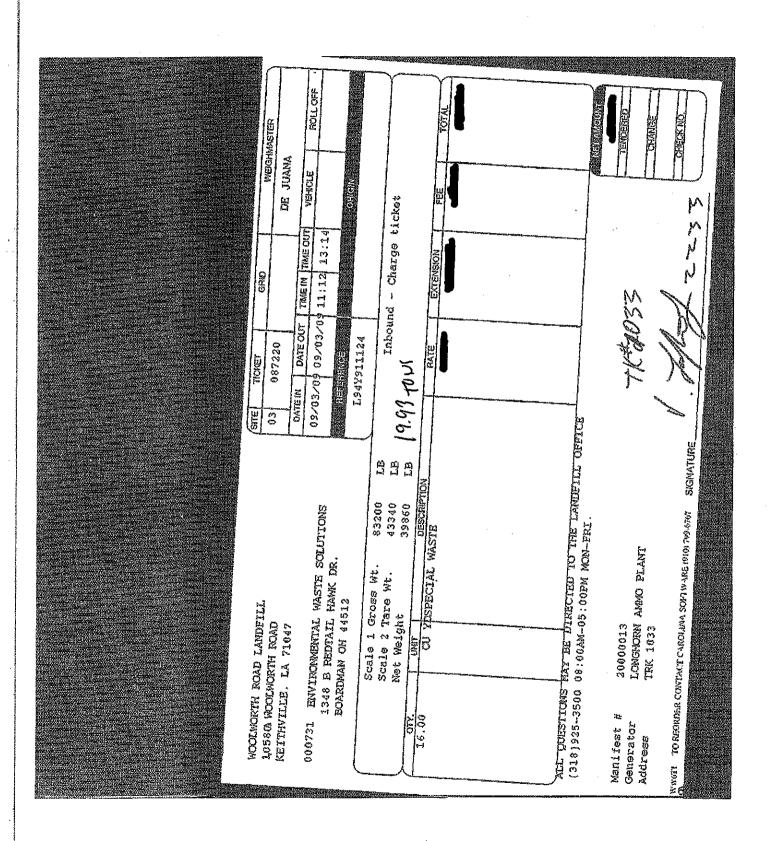
J estimated result (below reporting limit)

mg/L milligrams per liter

TCLP toxicity characteristic leaching procedure

. !		RK # 1028/	βογ # √117			11:18	•	1213	3650) _N /	P
l i l			tor 10 Number	2.F		mergency Response		4. Waste Tra		er V	Ť Į
	₩ 5. Ge	ASTE MANIFEST Inerator's Name and Mailing Address Longhorn Army Ami PO Box 220 Athr: F RAILIN, AR 72551	numition Plant 1988 Zeller 135-0110		, Gen	erator's 6the Address (ECCT FM 1 Kennack, T)	. I A KLANI	n mailing addre	, w. +.	as pla.	nt muca
	6. Tr	ansporter i Company téame Tri-éid				· · · · · · · · · · · · · · · · · · ·	·	OKO US. EPAID	98158879	ااً .	7 4 4
		reneporter 2 Company Namo esignated Facility Name and Site Adx	1925G	- 12	2. }		***************************************	U.S. 6PA 10		, <u>, , , , , , , , , , , , , , , , , , </u>	
		Włookwath Plaed Li 10580 Włookwath P Klebnille, LA 7104	erona kd ?					<u> </u>	7000		
	Fac	9, Waste Shipping Name and Des	ciplion			10, Con No.	alnois Eype	11, Total Quantity	12. Unit WL/Vol.		
GENERATOR -	_	1. NON-HAZADOLIS Lessi Contembrated Soil			. 1	1	MO TO	16	Ÿ		
- GENE		2.	***							-	
	-	3.		4	Y-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S						
		4.	yyana ya a a a a a a a a a a a a a a a a								
	12	3. Special Hendling Instructions and 3b) #2.9479111				_			,cr us		· <u>a</u> · 3
	,	S. GENERATOR'S CERTIFICATION	: I certify the materials desc	ribed above on this manifest	are not subject	to légaral regulations Gardé	foctebought.	oroper dispossili o	d Hazerdous	Waste. Mon	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	idirention's/Offerer's Printed/Lapsed N	301)6		Export ifom U	INOAL.	ol gnity/golit:_	C	······································	15	13 109
		Tengenavor Signatum (for experts Ati	Invport to U.S.		a Expandition o	Date	leading U.S.:	. 2		Mor	ah Uay Yes
		16. Transporter Acknowledgmont of F Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name	ALGA	*		natura <u>PA/L</u> natura	79,	ergi	Ŵ_		الم الم
	削	17, Discrepancy					y	· -1.Â			Avi Bejecion
	A i	17a, Discrepancy Indication Space	Quantity	Птуре		Residue Manifest Flodere			al Rejection A 10 Humber		- - <u>-</u> -
	FACILITY	176. Alternate Facility (or Generaler) Facility's Phone:	nd qtW		= ?					•	coth Day Ye
	DESIGNATED F	racting a Privile. 17c. Signature of Allemate Facility (or Generator)	133 - 133 - 134 -			X				
	PESI	18. Designated Facility Owner or O	nosotor Contilection of pass	alph of materials covered by th	e manifest exc	opi sa noted in Nem i	7a			I	fonli Day Y
	¥	PrintedTyped Name		010		Signalure Day		bc	<u>) ata</u>	80 K	9 103 10 Ansporter
	16	9-BLC-0 5 11977 (Rev. 8)	Q 8)			_		and the second second second			

/09/09				SITE	TICKET	GR(D	WEIGH	IMASTER
WOOLWORTH ROAT 10580 WOOLWORT				03	087219	A TOTAL BANK AND CONTROL OF THE	TERESA	
KEITHVILLE, LA	71047			DATE IN				ROLLOFF
000731 ENVIRO	nmental waste soi	LUTIONS				/09 11:09 12:		
1348 B	REDTAIL HAWK DR.			FΕ	FERENCE	and the state of t	đR(GIN	
BOARDMA	W OH 44512			LS	44911124			
•	cale 1 Gross Wt.	73660	LB	···	Ink	ound - Charge	e ticket	
1	cale 2 Tare Wt.		LB	e 11 6				
No.	ot Weight	30960	LB .	15.48	נאטז			
QTY. 16.00	UNIT CU YDSPECIAL (DESCRIPTION	1		RATE	EXTENSION	FEE	TOTAL
ALL QUESTIONS	MAY BE DIRECTED T	O THE LANU	eig. c	DEFTCE.				NET AMOUNT
	08:00AM-05:00PM A						E Comment of the Comm	TERDERED
	LONGHORN AMMO PI	ANT					}	COANGE
	TRK 1028							CHECK NO.
wwati to reorder co	MTACT CAROLINA SOFTWAR	E (910) 799-6767	SIGNATI	JRE_ <u>:</u>				
							TIPESA KOLY ČEMENIKA POPOLATI	


*/UB/UB

₩ *	,	238/8966			//:	24	10	1136	,52 V	0
		NON-HAZARDOUS WASTE MANIFEST L Generalor 10 Number	2		3. Emergency Response		1 2	121515	F (F 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16
	Ś	5. Generator's Name and Mailing Address Langborn Army Ammunillion Plank PO Box 220 Alim: Rose Zeller Rafilif, AR 72951			Senorator's Site Address LOWS MAY 15800 FM 1 Kamack, TJ	(f different to A	ran mading add America Valori	Has Hasper	lant Lot Aue C))
		Generalor's Phone: 470 635-01 50 7. Transporter 1 Company Name Tif-eti						<u>C. / S.</u> Number 098168671	101 Rwed	£
	7	Transporter 2 Company Name	A described and the second			· · · · · · · · · · · · · · · · · · ·	U.S. EPA 10		<u> </u>	
		i. Designaed Facilly Name and Slie Address VVoolworth Road Landfill 10580 Vilockworth Rd Kleitroffe, LA 71047 Facilly's Phone:					U.S. EPAID P.O			
	۲	9. Weste Shipping Name and Beachpilon			10. Gorda tto.	irers Type	11. Toksi Quantily	12. Unit Wt/Vol.	**************************************	
GENERATOR -		1. NON-HAZADOUS Lead		-	\$	CM DT	16	Y		
- SENE		2 Cordaninetod Soll		**************************************			, ,		·	
		9.		······································						\
ACCORDANGE STATES	-	4	W				•••			
		13. Special Handing Instructions and Additional Information 36) #1.847311124, 12/31/09	•	•			y years sharps	, i kajid gas i		
¥	1	4_GENERATOR'S CERTIFICATION: I certify the materials des Repension's Orient's Printed Typed Name DOSE M LOVEY	cribed above on this manifest are	not subject t Sign		recorting trot	i to lescogeto rec	lazardous We	sie. Month Day G 3	Year 109
	Ţ	S. International Shiperionia	□ e	opert from U.		•				
TRANSPORTER	7	Transporter Acknowledgment of Receipt of Materials Transporter & Praked/Typed Name The State of Typed Name Transporter & Printed Typed Name		Sion:	han The	e reb			Monthi Day	Year 0 9 Year
À	í	17. Discrepancy Indication Space Cuantity	Птуре		☐ fleskium		Panial Ro	ejection	□ Ful Rej	egou
- ACITILA	1	7b. Alternate Facility (or Generaler)			Manifest Reference I	lúuper:	U.S. EPA IO	Number		-
DESIGNATED FACILITY	1	Facility's Phone: 7c. Signatura of Aliemata Facility (or Generator)				*contraction of Soin 3/5			Month Day	Year
AT DESIGNATED FACILITY TO THE TRANSPORTER IN		6. Designated Facility Owner or Operator: Certification of receiv	al of malarials coursed hu the men	(name kali	as najagi in jiwa 17a					
	ρ	rintedTyped Name	CBO	~ ~~	dure Car	ol L	٥. ٢)āle	1 109 143	Year 9
665	3*13	BLC-0 5 11977 (Rev. 8/06)							Transpor	iem #1

/09/09		3.4	SITE	TiO	KET	GRID		WEIGH	MASTER
WOOLWORTH ROA 10580 WOOLWOR			03	0:	37221			DE JUANA	
KEITHVILLE, L	A 71047		DA	TE IN	DATE OU	IT TIME IN	TIME OUT	VEHICLE	ROLL OFF
	Onmental waste so	LUTIONS	09/			/09 11:14	13:17		
	REDTAIL HAWK DR. AN OH 44512			A STATE OF THE PARTY OF THE PAR	enes. 911124			OFIGIA	
s	cale 1 Gross Wt. cale 2 Tare Wt. let Weight	81120 LB 44020 LB 37100 LB	16.51		Inb	ound - C	harge	ticket	
017. 16.00	UNIT CU YESPECIAL	DESCRIPTION	***************************************		RATE	EXT	ENSION	FEE	TOTAL
	MAY BE DIRECTED		30						
	08:00AM-05:00PM 1		OFFIC	, E				-	NET AMOUNT
Manifest #	20000012								CMANGE
Generator	LONGHORN AMMO PI	LANT						i	
Address	TRK 2738	(f) Alon pan awa Partition	#1.00P				•••	į	CHECK NO.
AMOUT TO REUKDER C	ONTACT CAROLINA SOFTWAR	u: (910) 799-6767 SIGNA	IURE						alada romoja
						The state of the s	-eeosyesykkekekekek	our company of the second seco	norman and the second s

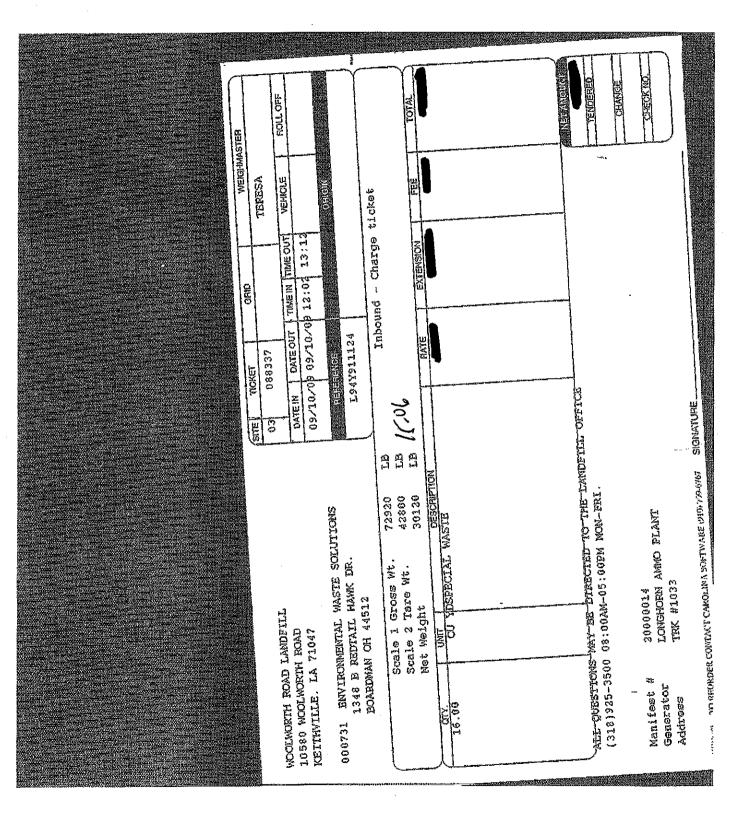
13 th 839	•	11:05		2/3			2
MON-HAZARDOUS 1. Generator ID Number WASTE MANIFEST	1	3, Emergency Response I			icking Numb	010 IL	
WASTE WARMEST 5. Generator's Name and Intaling Ridical Longshorn Army Ammunistion Plant PO Box 220 Atin: Rose Zeiter		Generalor's Sile Address 15800 FM 1 Karnack, TX	il dilicent the	n mainly addie hord Ar. Torm	s) miAnn erciOls	wition plan to 1 Range	
Ralliff, AR 72961 Generalar's Phones 479 835-0110		Kamack, TX		ROSE U.S. EPAID	AUE S	outhof Au	<u>e</u>
6. Transporter 1 Company Hame	न (इन्हरं- या है	i .F		OKO	9 \$158879	1	
7. Transporter 2 Company Name	profit - clima politic - Circles	*	and the state of t	LUS EPAID			
8, Designated Facility Name and Site Address Vicedworth Road Landful 10580 Woodworth Fid	4		e recolate to Aller	U.S. EPAID P. C			
idednice, LA 71047		· · · · · · · · · · · · · · · · · · ·					
Facility's Phona: 318 925-2262 9. Waste Shipping Name and Occoription	ar and r , mr. fr.	10. Conta	iriera Type	11. Total Quantity	12. Unit WL/Vol.	-	
1. NON-HAZADOUS	-	± 4	CM DT	16	٠٧	Sur-	
Contaminated Soil	<u></u> <u>a</u>						2.2.
3.	The second secon						
4.	the same with the B.	weit		<u> </u>			arii Saa
						, ca.	M. x 14
13. Special Handling Instructions and Additional Information Sto) 80.944911124, 12/31/09	-		and F.		ំក់ពី៩១ៈ	e e e e e e e e e e e e e e e e e e e	ورثر أروه
All Separations to see such				-			
14-GENERATOR'S CERTIFICATION: I certify the materials described about	on this manifest are not sub	ject to jederál regulatious	de reporting p	obet (geboeg) o	Hazardous V	Vasie. Month Day	100
Gelerator 60 Heror's Ponted Typical Jeme	, ,	Elignatura /	Σle.	` 		<u> </u>	عا
15. International Shipments Import to U.S.	Export from		entry/exit: aving U.S.:			54 · V	g. e. 2
Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials		Signally 7:1	<u> </u>		<u> </u>	// Monits City	ý ·
Transporter According on the research of Materials Transporter 1 Printed Typed Name	15.		m Si			Month Da	<u> </u>
Transporter 2 Printed Typed Name		Skynature			<u></u>		_ _
17. Discrepancy		Reskiuo	- 10 m	Partia	Rejection	Orue.	-
The characterist management characters (Tristolity)	Тур о	For Maken	es Nomber:				
		Manifest Referen	GO LIZITO	. 11c 283	the basedone	-	
17b. Alientate Fecility (or Generator)		Manifest Referen	žž 1	. U.S. EFF	(ID Number		
C Facility's Phone:		Manifest Peleren		0.5.07		. Norija 🖸	W i
C Facility's Phone:		Manifest Felbren	75.		 	. Month Q	
E Facility's Phone:		3	75.		 		
Facility's Phone: 17c. Signature of Alternate Facility (or Generator)		except as noted in Item 17s	78.		 	on the second	

1508161

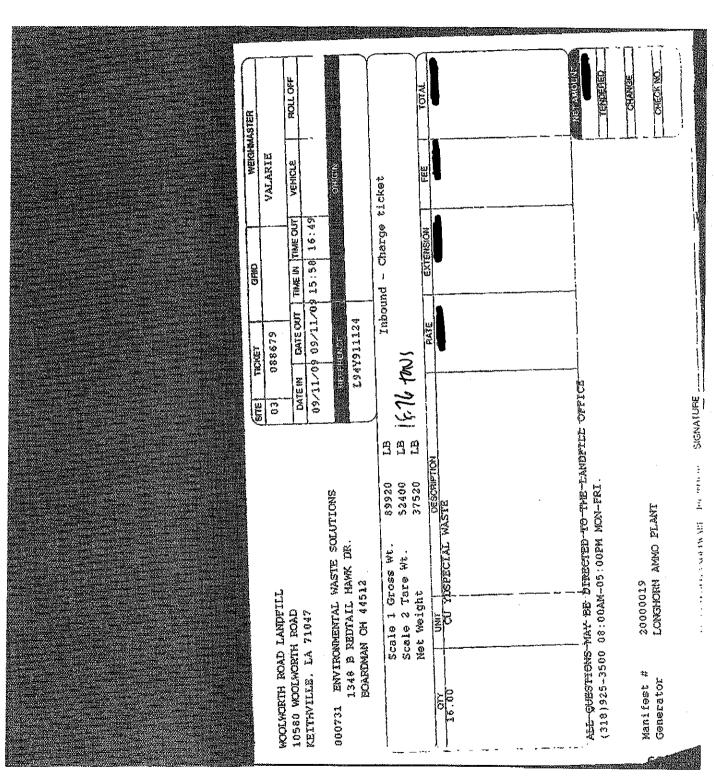
10/05/2009 MON 9:35 FAX 918 426 4770 Triad Transport Inc. 1/20/40 1213910 4:24 1033 1. Generator ID Number Non-Hazardous 2. Page 1 of | 3. Emergency Response Phone 4. Weste Tracking Number WASTE MANIFEST 5. Generator's Name and Mailing Address Longton Amy Ammunition Plank Generalor's Site Address (if different time meding address)
I ONG ALLEN APPEN Y MANAGED PO Box 220 Aim: Rose Zaller 15600 FM 134 Finer pisto. Retiff, AR 72051 Kamack, TX 75861 Generalor's Phone: 470 635 0110 6. Transporter 1 Company Name ોૈશં-હ**હે** OK0981588791 7. Transporter 2 Company Namo U.S. EPA ID Number S. Designated Facility Name and Sile Address Villogworth Fload Leardill U.S. EPA ID Number P-0120 10580 Woolworth Rd IGelhalle, LA 71047 Facility's Phone: 318 925-2282 16. Containers 9. Waste Shipping Name and Description 11. Total 12. Hall No. Type Ozientáv Wit Alah NON-HAZADOUS GENERATOR 4 CM ٧ 283 OT 1 G Contembolish Soll 13. Special Handling instructions and Additional information 80) \$1.94Y911124, 12/31/09 14. CENERATOR'S CENTIFICATION: I cently the materials described above on this manifest are not subject to jedgest regulations for reporting proper disposal of Hazardous Waste. Generalar stofferer's Printed Types Name Day NT4 Export from U.S. Port of Entrylexit: Transporter Signature (for exports only): Dale leaving U.S.: 16. Transporter Admoviedgment of Receipt of Materials Transposes 1 Printed Typed Name Day Month î Transporter 2 Printed/Typed Name North 17. Оізстерансу 17a, Discrepancy Indication Space Quantity Type ___Residue L. Partial Rejection Manifest Reference Number: 17b. Alternato Facility (or Generator) U.S. EPA ID Number Facility's Phone: 17c. Signature of Allemate Facility (or Generator) Month Cay Year 18. Designated Facility Owner or Operator. Conditionation of receipt of materials covered by the manifest except as noted in them 17a Printed Typed Name Signature

169-BLC-O 5 11977 (Rev. 8/06)

TRANSPORTER #1


1	5/09										
	WOOLWORTH ROA	ittanns.1 G			SITE	TR	CKET	GA(C		WEIGH	VASTER
	10580 WOOLWON	RTH ROAD			03	Û	88439		.	VALARIE	
	KEITHVILLE, I	A 71047			DAT	E IN	DATE OL	TOSE IN	TIME OUT		
	000001				************			/09 16:21		AEHICLE	ROLL OFF
	000731 ENVIS	COMMENTAL WAS	STE SOLUTIONS				ļ	/ OB T0: %]	17:06		
	L SPCL MUGKAS	REDTAIL HAF AN OH 44512	K DR.			REFER	ENCE			QRIGIN	
20	worst (Dr.	ern Ou 449TS				L,94Y	911124		***************************************		_
	S	cale 1 Gross	Wt. 87840	+ 1	<u></u>						
	£	cale 2 Tare	Wt. 49320	lb Lb			Inb	ound - C	harge t	icket	
		let Weight	38520	LB	183	16					
	GTY. 1€.00	UNIT	DESCRIPT		8 8 - 0	- •	RATE				
	£6.68	CU YOSPE	CIAL WASTE	·			22.00		NSION 52.00	FEE 0.60	
		l f				ŀ			J2.00	0.80	352,60
Services]							İ	[
		f							1	İ	
									ļ	•	
	:									1	
	i	ļ							- 1	Ī	
		j							ſ		
, (`AEE OHESTENKS	MAN WATER MANAGEMENT							ĺ	ŀ	
	ALL QUESTIONS (318)925-3500	SS:OGAM_OS.O	TED TO THE LAN	DFILL O	FFICE		-C- (N				NETIAMOUNT TO
	,	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	orm MON-PRI,								352,60
										ļ	TENDERED
	Manifest #	20000016									
	Generator	LONGHORN AM	MO PLANT							<u></u>	CHANGE
										L	
M	Diff. To see a										CHECK NO.
W	VOTI TO REORDER CON	ITACT CAROLINA SO	FTWARE (910) 7904:767	SIGNATU	RE						
						and the same	Significant on the second	Occordance	200		

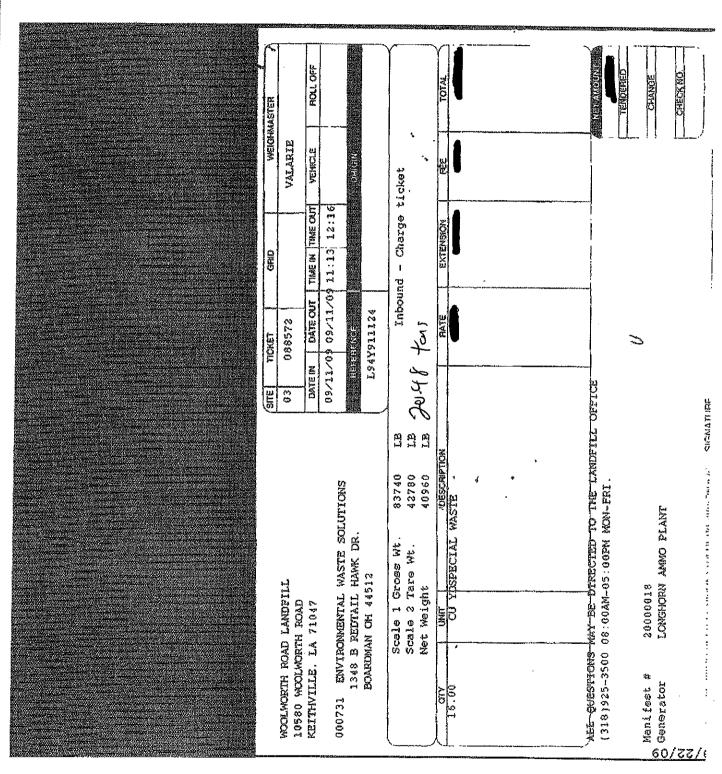
1040/701		12:	34		1213	3910 -
NON-SIAZAFIDOUS 1. Generator ID Number 2. Page 1 WASTE MANUFEST	l of 3. Eme	rgency Response	Phone		acking Husak NCAA	
S. Generator's Name and Malling Address Longton Army Americation Plant) Genera	tor's Site Address	(Figure on the			Announting pla Terriere whother here
PO Box 220 Áim: Rose Zeiter Raint, AR 72951	t	15000 FM 1 Kamack, T/	34 (75661 ₎	pigtol Indert	parqu Ave 5	s somer Whither
Generator's Phone: 479 635-0118 6. Transporter i Company Name	_ Ļ	٧-		U.S. EPAID		-
777-ed 7. Transporter 2 Company Name		4.5	12 -	U.S. EPA ID		
6. Designated Feelity Name and Sile Address Woodworth Flood Landfill	*			U.S. EPA IO	Number 120	
10580 Weekwith Rd				_		
Klesnyše, LA 71047 Facilitys Phone: 318 925-2252	. 6 .	10, Contr	inore	11. Total	12 Unit	
	. * _	No.	Typs	Quantity	Wt Vol	
NON-HAZADOUS		1	CM DT	16		
Lead Corrected Soi				-		
						The second secon
3						•
19. Special Handing Instructions and Additional Information 196) 91.94Y911124, 12/31/09	***************************************	*	÷		-	· in · · · · · · · · · · · · · · · · · ·
P. L.		Λ				
10. GERERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not	subject to fer Slongture	leral regulations fo	reporting pr	oper disposal of	Hazardous W	faste. Month Day
Generalor/Skillergi's Printed/Typed Name/		eM.	Aller			19/10/0
15. International Shipmants I Impact to U.S. Export Transporter Signature (for exports only):	thơn U.S.	Port of Date les	ophylexit wing U.S.:			2
4 64 4 7 7 7			···		,	- · · · ·
Transporter I Printed Type d Name	Signature	A STATE OF THE STA				Month Day
Transporter 1 PrintedTypeg-Name Transporter 1 PrintedTypeg-Name Transporter 2 PrintedTypeg Name	Signature	10	je je			Month Day Month Day
Transporter 1 Printed Typed Name Transporter 2 Printed Typed Name	1	10				9100
Transporter 1 PrintedTyped Name Transporter 2 PrintedTyped Name	1	10		Partial	Rejection	Month Day
Transporter 1 Printed Typed Name Transporter 2 Printed Typed Name 17. Discrepancy 176. Discrepancy Indication Space	Signature		e Number:	Partial I		Month Day
Transporter 1 Printed Typed Name Transporter 2 Printed Typed Name 17. Discrepancy 17a. Discrepancy Indication Space	Signature	☐ Residue	e Number			Month Day
Transporter 1 Printed Typed Name Transporter 2 Printed Typed Name Transp	Signature	☐ Residue	e Number			Month Day
Transporter 1 Printed Typed Name Transporter 2 Printed Typed Name Transp	Signature	Residue Abrillest Reference	a Number:			Month Day Month Day
Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name Transp	Signature	Residue donless Reference	a Number:		D Number	Month Day Month Day
Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name A 17. Discrepancy 17a. Discrepancy Indication Spaces Quantity Type 17b. Atternate Facility (or Generator) Facility's Phane:	Signature	Residue donllest Reforence	a Number:			Month Day Month Day


5/09					SITE	Ϋ́t	CKET	GR	D	WE	GHMASTER
WCOLWORTH ROA		LL			03	(388349			Teresa	
KEITHVILLE, L					DA	TEIN	DATE OL	T TIME !	TIME OL	IT VEHICLE	ROLL OFF
ل د شاربارما ۱۹ ۱۹ با شاها	W ITAGI				69	Z1 0 Z0	9 09 /16	/09 12:	33 13:1	15	
000731 ENVIR	ONMENTAL	. WASTE SOI	UTIONS			7 247 6					
1348 E	REDTAIL	. HAWK DR.				REFE	RENCE			OB[GIV	
BOARDM	ian oh 44	1512				L94	Y911124				
*	Scale 1 (Gross Wt.	76540	LB	and the same	Market de la company	Ini	oound -	Charge	ticket	
	Scale 2 1 Wet Weigh		42860 33680	LB LB	16.	84					
QTY.	UNIT	T	DESCRIPTIO		·	<u> </u>	PATE	Ε)	TENSION	FEE	TOTAL
16.00	CU Y	DSPECIAL V	vaste			1					
	1	1									
	1	}								ļ	
		l									
						Ì				•	i
	}	*				Į					
						ĺ					j
		İ									
								- 1			
ALL QUESTIONS	MAY BE	DIRECTED	O THE LAN	OFILL	OFFI	CE-L					NETAMOUN
(318)925-3500	08:00AM	(-05:00PM N	ON-FRI.				-				
										-	TENDERED
											İ
Manifest #											CHANGE
Generator		DRN ARMY AN	MUNITION !	PLANT							801840
Address	TRK #1	.បុខ្ទប្									CHECK NO
nucle and Spaces of	O. M. 4 . M. 47 4 . M.	At 1574 (AAAAA) / AA	0 10101 000 0000	SIGNAT	EL 6/3/E						
Woll to reorder C		ULINA SUFTWARI		Parioto	UHB_	000000000000000000000000000000000000000		08/2008500500500500000000000000000000000	and the second second second		- مشر والمنافقة المنافقة ا

سا صد ما	אַינער פּאַבר	13:1	/	M	H		121	390	(
1033/R-1	1, Generator ID Number	2. Page 1	Ł	ency Response			acking Numb	10014	A
WASTE MANIFEST 5. Generator's Name and Malife	no Arbitano		Generalio	's Site Address	(il diligrent in	en mailing addra	SS)	nmowith Range South Bi	s JAIA.
Longhorn A	my Ammeriëen Plant) Aim: Rose Zeller		,	15500 FM 1	1 <i>01</i> 0 2 4 2	ghorn M Gravett F	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rouse	
Ratiff, AR	72951		1	Kernack, TX	75561	Rosent	AUR	Some	AUC (P
Generator's Phone: 6. Transporter 1 Company Nan	479 635-0110			7.		U.S. EPA (U)	Millinger		
Tri-ed			 ~			U.S. EPAID	198159879 Number	93	
7. Transporter 2 Company Nar	ine.	_							······································
8. Designated Facility Name at Woodworth 10550 Woo Kleitheille, L	Road Landie North Rd		•	~		U.S. EPAID P.G		_	-
Facility's Phone:	318 925 2252		<i>:</i> ·	f0. Canks		11. Total	12. Unii		
9, Waste Shipping Han	ns and Description			No.	Тура	Quantity	MnAor		
9, Wade Shipping Nam 1. NON-HAZ Lead Constanting 2. 13. Special Handing Instanting 13. Special Handing Instanting 14. 14. Str. Str. Str. Str. Str. Str. Str. Str		,		1	CM	16	Y		
Cordsovice 2.	ited Soil								
3.			س ۾.						
			11.4						
4								T	. I.
111	ctions and Additional Information		•				• •	•	
1	47911124, 1201 09								
		i the collection or not	mill from the Sant	Solution in	forreposition (mper disposal o	í Hazerdous l	Nasie.	erser verspect -
14-GENERATOR'S CERTI	FICATION: I centify the materials desi Office of Statute	contrect above on this manifest ere not	subject to fed Signature	भूती त्यवार्थश्रीकृष्ट	Pariescapión:	roper disposal o	(Hazardous V	Maste.	Day Y
Génerator statietor's Ponje	drived stame			OM.	<u> </u>	raper disposal o	(Kazardous V	Maste. Mooth	Bay Y
Génerator stateror's Pointe V 18. Informational Statements	oTyped lighte. On POY Inport to U.S.		sitiject to fed Signature /// t from U.S.	OM.	entylexit.	coper disposal o	(Häzeidous V	19	100
Génerator s Pónieror s Pónier V CO 13. Informational Sulpments Transporter Skynalure (for e	OTyped Blame Of PCY Import to U.S. Disports only):	☐ £xpar	from U.S.	OM.	<u> </u>	roper disposal o	(Kazeidous)	<u> </u>	100
Génerator s Pónieror s Pónier V CO 13. Informational Sulpments Transporter Skynalure (for e	Off yeed blame I knopent to U.S. Described of Fleecight of Materials of Norme	☐ £xpor		OM.	entryferdt saning U.S.		(Hazerdous \	1 9 E > 18 Monath	10 C
Géneratof s/Criteror's Pointer O CO 13. Informational Sulpments Transporter Skynalure (for e	OTyped stame OFFE Import to U.S. concerts only by general of Piecelpt of Materials of Name A Ten U.S.	☐ £xpor	from U.S.	OM.	entryferdt saning U.S.		Mázerdous V	S > S Month	10 C
Géneratof s/Ciferor's Pónier 15. Informational Sulpments Transporter Skynalure (for e	OTyped stame OFFE Import to U.S. concerts only by general of Piecelpt of Materials of Name A Ten U.S.	☐ Expor	Signaliya	Port of Dale to	entryferdt saning U.S.	1,		I S : 18 Hoodin	10 C
Gånerater skriferor's Pointer 18. Informational Stutements Transporter Skriature (for employee for the formation of the for	OTyped Marine OFFE Import to U.S. concerts only k general of Receipt of Materials d Name A Name	☐ £xpor	from U.S. Signature	OM.	embylerit:	Pariss	Projection	I S : 18 Hoodin	10 C
Gånerater skriferor's Pointer 18. Informational Stutements Transporter Skriature (for employee for the formation of the for	of typed blame	☐ Expor	from U.S. Signature	Port of Dale to	embylerit:	Pariss		I S : 18 Hoodin	10 C
Generator's Colleror's Points 18. Informational Sulpanents 18. Informational Sulpanents 16. Transporter Signalure (for case) 16. Transporter 1 Printed Type 17. Discrepancy 17. Discrepancy Indication 17. Atternate Facility (or case) 17. Atternate Facility (or case)	of typed Name I smport to U.S. concris only: general of Receipt of Materials d Name A Per A D S d Name O Space Quantity Generator)	☐ Expor	from U.S. Signature	Port of Dale to	embylerit:	Pariss	Frejection	I S : 18 Hoodin	OBY 10 C
Generator's Colleron's Points 18. Informational Sulpinerits Transporter Signature (for employee Actionwide) Transporter 1 Printed Type Transporter 2 Printed Type 17. Discrepancy Indication 17. Attemate Facility (or employee) E. Facility's Phone:	of typed Name I smport to U.S. concris only: general of Receipt of Materials d Name A Per A D S d Name O Space Quantity Generator)	☐ Expor	Signature	Port of Dale to	entlytedit saving U.S.	U.S. SP	Frejection NO Charaber	1 G Month	OBY 10 C
Generator's Pointer B. Informational Sulpanents Transporter Stynature (for case) Transporter Acknowled Transporter 1 Printed Type Transporter 2 Printed Type Transporter 2 Printed Type 176. Discrepancy Indicated Transporter 3 Printed Type Transporter 2 Printed Type Transporter 2 Printed Type Transporter 2 Printed Type Transporter 3 Printed Type Transporter 3 Printed Type Transporter 4 Printed Type Transporter 5 Printed Type Transporter 6 Printed Type Transporter 7 Printed Type Transporter 7 Printed Type Transporter 8 Printed Type Transporter 9 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 2 Printed Type Transporter 1 Printed Type Transporter 2 Printed Type Transporter 3 Printed Type Transporter 4 Printed Type Transporter 6 Printed Type Transporter 7 Printed Type Transporter 8 Printed Type Transporter 9 Printed Type Transporter 1 Printed Type Transporter 1 Printed Type Transporter 2 Printed Type Transporter 2 Printed Type Transporter 2 Printed Type Transporter 3 Printed Type Transporter 3 Printed Type Transporter 4 Printed Type Transporter 4 Printed Type Transporter 7 Printed Typ	of typed Name I smport to U.S. concris only: general of Receipt of Materials d Name of Space of Space Generator) a Facility (or Generator)	☐ fixpe	ifom U.S. Signature L Signature	Port of Dale to	entytexis	U.S. SP	Frejection NO Charaber	ts > ; s Recall Meanth	OBY 10 C
Generator's Colleron's Points 18. Informational Suignments Transporter Skynalura (for employer Act anowled) Transporter 1 Prinked Type Transporter 2 Prinked Type 17. Discrepancy Indicates 17. Discrepancy Indicates 17. Attemate Facility (or employer) 17. Signature of Attemate 17. Signature of Attemate 17. Signature of Attemate 17. Signature of Attemate	of typed Name I smport to U.S. concris only: general of Receipt of Materials d Name of Space of Space Generator) a Facility (or Generator)	☐ Expor	ifom U.S. Signature L Signature	Port of Date to Date t	entytexis	U.S. SEV	Frejection NO Charaber	ts > ; s Recall Meanth	Oay IO C Oay IO C

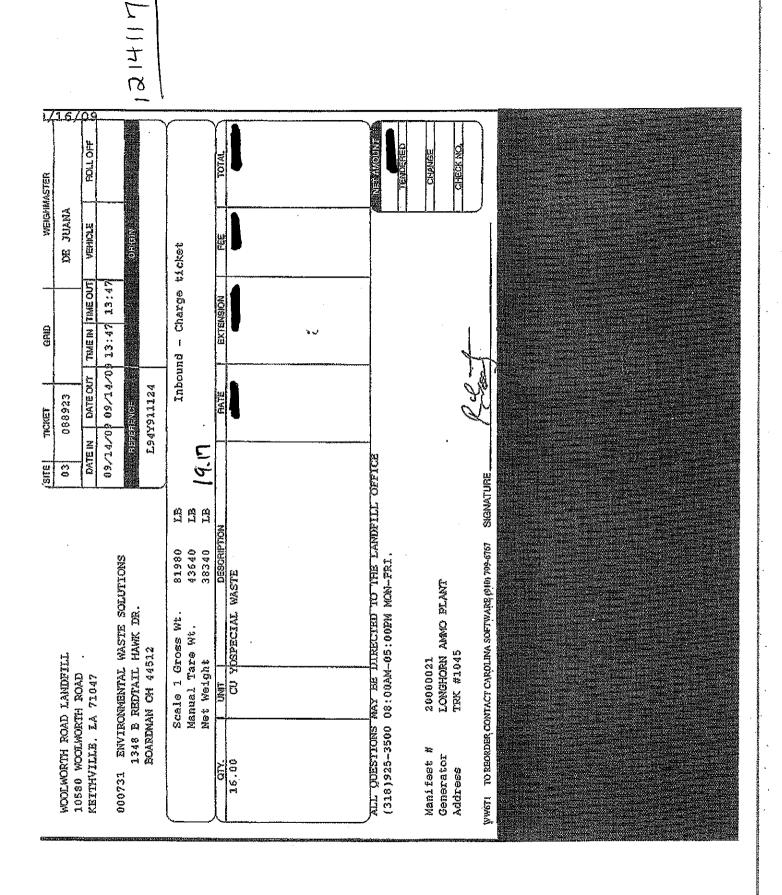
1065161

1351 AA				4:						1 8	
135/3-U28 MONHAZARBOUS	1. Generator ID Number		2. Page 1 of	3. Emergency	y Response	Phone		ecking Rum vCCC		<u> </u>	•
WASTE MANIFEST 5. Generator's Name and Halli Longitism A PO Sox 22	ing Address Army Ammunition Plant O Athr: Rose Zeiter			Constitute S	an Address 100 FM 1	(I disent in A A I Is	n maling addin f . pr en i	(F) (F)	1 R.	, *رشم	
Reserved AR Generator's Phone: 6. Transporter 1 Company New	479 635 5110		ļ	PLS:	mack, T)		U.S. EPA ID			like Le	······································
Tri-ed 7. Transporter 2 Company Na		Of the state of th				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	U.S. EPA (C	19815887 Humber	91		
8 Casionaled Facility Name 6	and Site Astrices	This year of the latest the second second second second second second second second second second second second	·····				U.S. EPAID P-0				
	: Road LandM obsorb: Rd LA 71047						1				
Facility's Phone: 9. Weste Shipping Na	313 925-2282	Obb //	<u> </u>		10, Centa No.	ainere Type	11. Total Quantity	12. Unit VALAVOI.		-	
1. NOWHA					114. \$	CM DT	16	¥	iii	-	
Lesd Contembre 2.					· · · · · · · · · · · · · · · · · · ·						
		····						-			e de la colo
3.											-, , ,
4.	40,000				-						
e :						1	l		<u></u>		
	ctions and accisional Information 14781 124, 1253 150					J					
									·		
96) SLÔ	AYEN 1124, 1231 AB FCATION: Loginy the materials desc	abed above on this mark	ing are not sub	ijeci ig ligjdrel i	equisions t	z-esoting pr	oper dispessible	i Hazardous	Nasie.	Month C	sy Yea
14. GENERATOR'S CERTIFICATIONS OF THE PROPERTY OF CONTROL OF THE PROPERTY OF T	AYB11124, 12/31 KAO FICATION: Loginy the materials desc Ultipper Name Les / EV	A		Tuels		she.	oper disposal d	l Hazardous	Meste.	Monin C	•
14. GENERATOR'S CERTI General o'Cliford's Printed To, treamational Shickments	FICATION: I certify the materials clear Unseet Name Let / EV Import to U.S.	A	feet are not sub	Tuels	M. Post of	careporting pr	oper disposal d	i Hazardous	Nosie.	~ .	•
14. GENERATOR'S CERTI General elements Printed A 15. Infamelional Shements Transporter Separative (for e	FICATION: Logary the materials decording a service of the control of U.S. controls of Receipt of Materials	A	Export free	AUS.	M. Post of	SAL	oper disposed of	i Hazardous		7 1	I OS
14. GENERATOR'S CERTI General elements Printed A 15. Infamelional Shements Transporter Separative (for e	FIGATION: Logary the materials describing from the materials describing from the materials describing from the materials describing from the materials described from the materials described from the materials of Nationals.		Export free	Separate August 19 Signature	M. Post of	SAL	oper disposed of	i Hazardous		4 1 Month 1 9 1	l los
14. GENERATOR'S CERTIL Generate externol successions Transporter Sumanue (for e 18. Transporter Printed Types Transporter 2 Printed Types	FIGATION: Logary the materials describing from the materials describing from the materials describing from the materials describing from the materials described from the materials described from the materials of Nationals.		Export free	AUS.	M. Post of	SAL	oper disposal of	i Hazardoss		4 1 Month 1 9 1	i los
14. GENERATOR'S CERTI General elements Printed A 15. Infamelional Shements Transporter Separative (for e	FFCATION: I certify the materials describing the materials describing the materials describing to U.S. import to U.S. import of Receipt of Materials of Name		Export free	Segnature Signature	M. Post of	SAL	Oper dispession			Month C	i los
14. GENERATOR'S CERTING GENERAL PLANT CERTIN	FFCATION: I certify the materials describing the materials describing the materials describing to U.S. Import to U.S. Import of Receipt of Materials of Name		Export free	Separate V.S. Signature Signature	Pontal Date to	salay lack: eving U.S:	/ / · · ·			Month C	Jay Ver
14. GENERATOR'S CERTING GENERAL PLANT CERTIN	FFCATION: I certify the materials describing the materials describing the materials describing to U.S. Import to U.S. Import of Receipt of Materials of Name		Export free	Separate V.S. Signature Signature	Post of Date to	salay lack: eving U.S:	/ / · · ·	Rejection		All Month (I O S
id. GENERATOR'S CERTING GENERAL PROJECT SPINISHED STATEMENT OF STREET STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEM	FROATHON: I certify the materials describing the materials describing to U.S. Import to U.S. Import to U.S. Import of Receipt of Materials of Nome If Nome Of Space Quartity Senerator)		Export free	Separate V.S. Signature Signature	Post of Date to	salay lack: eving U.S:	/ / · · ·	Rejection		All Month (I O S Italy Yes I O S Rejection Day Yes
id. GENERATOR'S CERTIL General et George Printer Transporter Somature (for e 18. Transporter Astrovited Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types Transporter Printed Types	FROATHON: I certify the materials describing the materials describing to U.S. Import to U.S. Import to U.S. Import of Receipt of Materials of Nome If Nome Of Space Quartity Senerator)		Export free	Separate V.S. Signature Signature	Post of Date to	salay lack: eving U.S:	/ / · · ·	Rejection		All Month (I O S
id. GENERATOR'S CERTIL Generate et Generate et Generate et Generate et Generate for et B. Transporter Somature (for et B. Transporter Astrovided) Transporter a Printed Types	FROATHON: I certify the materials describing the materials describing to U.S. Import to U.S. Import to U.S. Import of Receipt of Materials of Nome If Nome Of Space Quartity Senerator)	Птуре	Export tree	Segnature Signature Signature Maurite	Port of Date to Date to Postdue ast Reference in Hern 17a	salay lack: eving U.S:	/ / · · ·	Rejection		Month (I O S Italy Yes I O S Rejection Day Yes


100h101

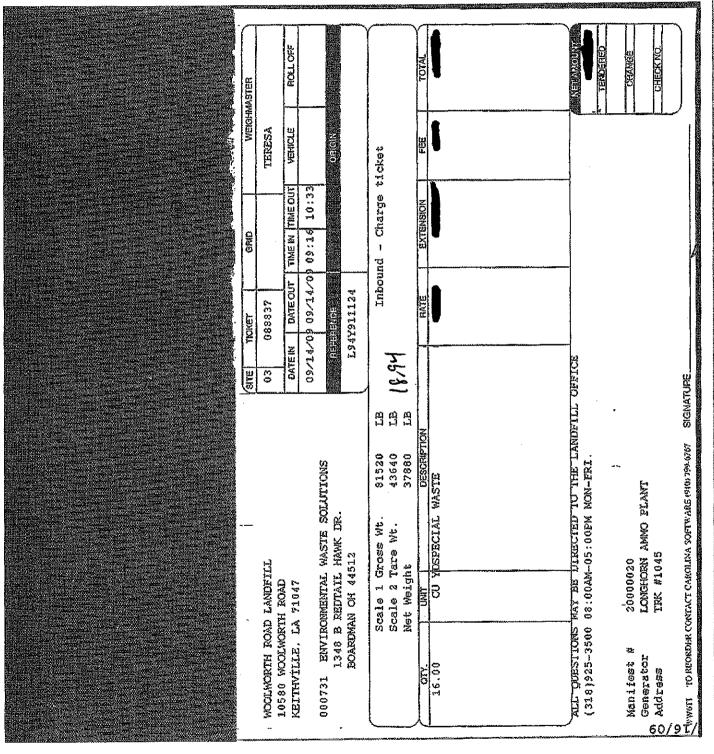
1/22/09

11 14


121402(VP)

4	_	NON-HAZARDOUS WASTE WANIFEST	Generator ID Number	2 Page 1 of	3. Emergency Response		4. Waste (ulit	1115	· · · · · · · · · · · · · · · · · · ·	
	6. Generator's Name and Mailing Address Longton Army Ammunition Plant PO Box 228 Altin Ross Zeller Resill AR 72881 Resill AR 72881 Resill AR 72881 Resill AR 72881 Resill AR 72881 Resill AR 72881 Resill AR 72881										
		Transporter t Company Nar	ra Pa				U.S. SPARO CXC		' @1	4	(#* <u>*</u>
	7.	Tri-ed Transporter 2 Company Nac	l lé				U.S. EPA IO Number				
	8.	Designated Facility Name a					U.S. EPAID				~~
	Workwith Road Landiil 1850 Woodwith Rd										
	13eth/18e. LA 71047 Fackly's Phone: 114 425-2292				10 Cores	10. Containars					
		9. Waste Shipping Nam	ne and Description		No.	Type	11. Total Querity	12.Unk Vr.Noi.	-		7.5
GENERATOR -		i. NON-HAZ			t	CM OT	6	Y			
CENE	_	2. Consumbra		ALL STATES OF THE STATES OF TH						Grav Grave	
						ļ				***************************************	
		3.									AMMERICA
	L	4.									
				•			l				
	ľ		dons and Additional Information								
		\$0) se_se	14911124, 1231 <i>1</i> 29								THE REAL PROPERTY.
							•				
	-	14. GENERAJOR'S CERTIF	ICATION: I confly the materials des	actions above on this manifest are not sub	jeci to 1853;ral regulationa k	k tebangah bac	ර්ම ගුන්රුලෝ ශු	Hazardous	Wasie. Norëi	Day Y	/eur
Į. V	Ī	Gangratocar Offeror's Printed	Typed Marine	1	Signal 3	sles.			19		
MTE	15. Setsmalloral Shipments									West March	
33	╬	Transporter Signature (for e) 16. Transporter Advisordedge	ment of Receipt of Materials	,		CONTRACTOR		×			Yels
PORTER	,,	Trapisporter 1 PrinterUTyped	Name // // // // // // // // // // // // //		Signature 7	11. /	n-		25 cms	1// 14	7/1 Year
TRANSP	/	Triscoporter/2 Printed/Typed	Natio	ı	Signature /				Afonti	Dey 1	
	-									-	
T RES		17. Discrepancy	Stace -	<u>سم</u>			70	tolantina		Full Ballaction	, 1
		17a. Ciscrepency Indication	Space Cuantity	Птурэ	☐ Residuo	htumbaa	Partied	injection		Full Rejection	
			L Cotanany	Птуре	Residuo Manifoot Roberanci	a Number	O Pariss r			Full Rejection	1
7000 day		17a, Discrepancy Indication 17b. Atternate Facility (or Gr	sneraby)	Птура		a Number					
42 CO (100 days		17a. Discrepancy Indication	sneraby)	Птура		a Number			Monit	T Day	Year
Section of the second		17a, Discrepancy Indication 17b. Atternate Facility (or Gr	sneraby)	Птура		a Number:					
CONTRACTOR CAND IT		17a. Discrepancy Indication 17b. Attempts Facility (or Gr Facility's Phone: 17c. Signature of Atternate	enerator) Facility (or Generator)		Manifoot Robertano	- Number				T Day	
ALIMAN SALAMAN		17a. Discrepancy Indication 17b. Attempts Facility (or Gr Facility's Phone: 17c. Signature of Atternate	enerator) Facility (or Generator)	Type Type ipt of materials covered by the manifest e	Manifoot Robertano				Monit	T Day	

120/1101


1/10/03 1214117 4. Waste Tracking Number 2. Page 1 of | 3. Emergency Response Phone Generator (C) Number NON-HAZARDOUS none Waste Manifest Generalor's São Address (il different than mailing address S. Generator's Name and Maling Address Lengthorn Army Ammunition Plant Longhorn MAP Former Pistol Rosse PO Box 220 Atin: Rose Zeller 15600 FM 134 Robert Avenue South of Kamack TX 76561 -Ratin, AR 72951 المناوي Generator's Phone: U.S. EPA (D Number 8, Transporter I Company Name OK0981586791 Tri-ed U.S. EPA 10 Number 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Pacally Name and Silo Address "Wookworth Pload Landfa P-0120 10580 Wackworth Rd Kleindle, LA 71047 Facility's Phone: 10. Containers 11. Total 12. Unit 9. Waste Shipping Name and Description Wt./Vol. Quantity Na. Тура CM ¥ NON-HAZADOUS ď CHEMINATOR OT Lesd Contaminated Soll 13. Special Handling Instructions and Additional Information 96) \$1.947011124, 12/31/09 14. GENERATOR'S CERTIFICATION: Loanily the materials described above on this manifest are not subject to federal faquilations for resonling proper disposal of Flazardous Waste. Modit Day Year feragods/Odleror's Prigled/Typed Nam Export from U.S. import to U.S. Transporter Signature (for exports only): 16. Transporter Admoviedgment of Receipt of Meterials Day March Transporter 1 Printed Typed Name Signature RICHARD Co Transporter 2 Printed Typed Name Signature 17. Discrepancy 17a. Discrepancy Indication Space Птуре Residite Pestial Rejection Fell Rejection U.S. EPA ID Number 17b. Alternate Facility (or Generator) Facility's Phone: Raonth Day Year 17c, Signature of Alternate Facility (or Generator) 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the matrifest except as noted in Item 17a Printed/Typed Name TRANSPORTER #1 169-BLC-O 5 11977 (Rev. 8/06)

S TO A COMMETTER STATE S 1214117 4. Waste Tracking Humber 3.0000000 2. Page 1 of § S. Emergency Response Phone Waste Manifest Generator's Site Address (if different linen melting address) 5. Generator's Name and Mailing Address Longhorn AM Former Assol Range Robert Are South of Are. Q Longtom Army Ammerition Plant PO Box 220 Atm: Rose Zeller 15500) PM 134 Kamack, TX 75861 " Radif, AR 72951 Generator's Phono:

6. Transporter 1 Company Name U.S. EPA ID Number **CK0281588791** U.S. EPA ID Kumber Ts1-ad
7. Transporter 2 Company Name U.S. EPA IO Number 8. Designated Facility Name and Site Address P-0120 Woodworth Road Landfill 10580 Weekwarin Rd Kieświe, LA 71047 Facility's Phone: 10. Containers 11. Total 12. Udt 9. Waste Shipping Name and Description Quantity WL/Vol. No. Турс ٧ 1 CM GEMERATOR NON-HAZADOUS 16 Dĩ Lead Continuented Sol 13. Special Handling Instructions and Additional Information 9b) #1.94Y911124, 12/31#19 14. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest are not subject to foderal regulations for reputiting proper disposal of Hazandous Waste. Day Year Manth Gederator s/Olitaror's Printel/Types Name 0 Export from U.S. Fort of entrylexit: import to U.S. Date leaving U.S. Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials Yes O Transporter 1 Printed Typed Name q ICAMRO Transporter 2 Printed/Typed Name Morah 17. Olscrepancy Full Rejection 17a. Discrepancy Indication Space Птура Residue Partial Rejection Cuantity Manifest Reference Number U.S. EPA ID Number 17b. Alternate Facility (or Generator) Facility's Phone: Year Moniti Day 17c. Signature of Alternate Facility (or Generalor) 18. Designated Facility Owner or Operator. Certification of receipt of materials covered by the marifest except as noted in Jiem 17a Printed/Typed Name Transporter #1 169-BLC-O 6 11977 (Rev. 8/06)

1048/B-113

40# 7182

TU-36, 380

Ple	se print or type. (Form designed for use on eille (12-pitch) typewriter.)						Approved. C	MB No.	<u> 2050-0039</u>
Λ	UNIFORM HAZARDOUS 1. Generator ID Number	2. Page 1 of 3. Em	ingency Response Pi	ione (Hanffest 1	Inacking Mi	#### # ↑ ↑ ↑		IV.
П	WASTE MANIFEST		9-635-0110				<u>4010</u>	J	71/
Ш	5. Generator's Name and Mailing Address (If different than mailing address)								
Ш	LONGHORN ARMY AMMUNITION PLANT ROBERT AVE SOUTH OF AVE Q								
П									
П	PO BOX 220 RATCLIFF, ARKANSAS 72951 KARNACK, TEXAS 75561 Generator's Phone: 4477 695 0120 Air POSTE FEW FED								
Ш	Generator's Phone: 459 635 0110 AH: NOSE ZETI.			Ü	.S. EPA ID N	hmber			
П	TRIAD TRANSPORT			1			OKD96	81588	7 91
П	7. Transporter 2 Company Name			Ų	S. EPA ID N	lumber			
Ш				1					
Ш	8. Designated FeoTity Name and Site Address			U	.S. EPA ID N	lumber			
П	•								1
Ш	US ECOLOGY TEXAS, LP	D 500				TWT	06945234	M / #A	~~ I
П	2.5 MILES S. PETRONILA RD., ROBSTOWN, TX 78	565V				171	And days	N/ 80	032
П	Fecility's Phone: (361) 387-3518		1						
Ш	9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Container		1. Total	12. Unil	13. W	aste Code	s
Ш	HIM and Packing Group (if any))		No.	Туре С	uantity	Wt.Vol.			
1	1.			[1		1
GENERATOR	RQ WASTE HAZARDOUS, SOLID, N.O.S., 9,NA (LEAD CONTAMINATED SOIL)	3077, III	1	CM -	10900	├ - ₽ ┤	<u> </u>	9H	D008
₹	(LEAD CONTAMINATED SOIL)				1618	yds.	1		
K	. 2		i i	- ('PB'				
뜅			1		W				
Ш			1						
	3.								
			1 1	- 1					
Ш			1 1			1			
Н	4.		 						
Ш	*-]					-	
П			1	l					
П			<u> </u>						
Ш	14. Special Handling Instructions and Additional Information							77	
11	a) 09-006-6424 c)								
Н	a) 09-006-6424 c)								
П	· · · · · · · · · · · · · · · · · · ·								
Ш	15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this	s consignment are fully	and accurately descri	ibed above by t	10 proper sh	ipping neme	, and are classi	fled, pack	aged,
Н	marked and labeled/placarded, and are in all respects in proper condition for transport acc	cording to applicable int	emational and nations	al governmental	regulations.	li export shi	pment and I an	i the Prim	ary
Ш	Exporter, I certify that the contents of this consignment conform to the terms of the attache I certify that the waste minimization statement identified in 40 CFR 262.27(e) (if I am a large	30 EPA ACKNOWSEOGISES Se muantify denerator) (lon Consent. ≤467(ifiam a smail o	wantily generate	ari is true.				
Н	Generator of Officror's Printed Nyped Hame	Signature			1		Month	Day	Year
Ш.	Mose M. Laler	* <i>\(\mu\)</i>	RIM.	2	<i>()</i> ,		19	129	109
	16. international Shipments	1 / "	- 0777		<i></i>			4.	107
INT	☐ Import to U.S.	Export from U.S.	Port of entry/						
	Transporter signature (for exports only):		Date leaving	v.ş.:	 -				
TRANSPORTER	17. Transporter Acknowledgment of Receipt of Materials	A					924		
동	Transporter 1 Printed/Typed Name	Signature	177				Month		Year
SP(Donald R Scawa		W YVO	41119				37	
M	Transporter 2 Printed/Typed Name	Signature	· t ·	- {			Month	Day	Year
Œ									
1	18. Discrepancy								
	18a. Discrepancy Indication Space Quantity Type		Residue		Partial Rej	ortion	Г	Full Rej	action
	— Сианиу — (урв	1	I LONGE	_	Transcript		_	a i du riej	, named i
			lanifest Reference No	umber					
ےا	18b. Alternate Facility (or Generator)		- Proper i voner EINO III		.S. EPAID N	tumber	-		
ا≳ا	Enally to Dhono.			1					
اق	Facility's Phone: 18c. Signature of Alternate Facility (or Generator)			L			Mont	h Day	Year
DESIGNATED FACILITY	too adverse statement count for appropria						***************************************	Ja;	ן ייין
훘				-					ļ
충	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste trea		cycling systems)						
	1 H132 2	3.			4.				
	1)10-	<u>_</u>							
	20. Designated Facility Owner or Ollerator. Certification of receipt of hazerdous materials cover	ed by the manifest exc	ept as noted in Item 1	87 LV					
[Printed/Typed Name (/	Signature		71			Mont		
) Gui Andrede	1					16	120	NS
EPA	Form 8700-22 (Rev. 3-05) Previous editions are obsolete.			11 11	DESTIN	IATION	CTATE (
	. and at an are firest a pal 1 thurse agreement and absorber.	DESIG	NATED FAC	ILIM IO	DE2 HIV	MUIN	3 A	ר תבנ	いいいにい)

Scale Ticket

Phone: 800 242 3209

US ECOLOGY TEXAS, INC.

ROBSTOWN, TX

Scale Ticket #: 94770

Checkin Date: 09/28/2009 Time: 08:57 Work Order #: 09092807182

Checkout Date: 09/28/2009 Time: 11:46

005974010JJK

Transporter:

TRIAD TRANSPORT, INC.

Customer

ENVIRONMENTAL WASTE MGT. LLC 1348 B REDTAIL HAWK DR.

BOARDMAN, OH

, OK

EPA ID: OKD981588791

Truck #: 1048

Tractor #:

Trailer #:

Driver: DONAOLD BROWN

GROSS WEIGHT:

80,560.00 LBs

TARE WEIGHT:

42,180.00 LBs

NET WEIGHT:

38,380.00 LBs 1919 PNS

2735/8-474 W0 7416
Please print or type. (Form designed for use on elite (12-pitch) typewriter.) TW. 30220 Form Approved. OMB No. 2050-0039 Manifest Tracking Number 005974014 UNIFORM HAZARDOUS 1. Generator P North 2 1 3 8 2 0 1 2 9 2. Page 1 of 3. Engage Talke party Phone WASTE MANIFEST regator's Stie Address (if different than mailing address)
ROBERT AVE SOUTH OF AVE O GEORGEORN ARMY AMMUNITION PLANT PO BOX 220 RATCLIFF, ARKANSAS 72951 KARNACK, TEXAS 75561 (490) 635-0110 AH ROSE ZEILER U.S. ERA ID Number 6. Traingrat Comer NSPORT OKD9681588591~ U.S. EPA ID Number 7. Transporter 2 Company Name 8. Docks record by the free free free LP U.S. EPA ID Number 35 MILES S. PETRONILA RD., ROBSTOWN, TX 78380 TXD069452340 / 50052 (361) 387-3518 one: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) WLVbl. Type ROWASTE HAZARDOUS, SOLID, N.O.S., 9, NA3077, III (LEAD CONTAMINATED SOIL) 150000 CM 1 0137319H D008 נשע 退 14. Special Handling Instructions and Additional Information s) 09-006-6424 c) Mary 10 and 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, peckaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. Legitify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (ii) am a small quantity generator) is true. erator's/Offeror's Printed/Type/Name Month Year Export from U.S. Port of entry/exité Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Year 09 10 they Printed/Typed Name 18. Discrepancy 18a. Discrepancy Indication Space ☐ туре Quantity Partial Rejection Full Rejection Residuo Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Month ; Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in item 18a Printed/Typed Name MRZE EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete. DESIGNATED FACILITY TO DESTINATION STATE (IF RE

Scale Ticket

Phone: 800 242 3209

US ECOLOGY TEXAS, INC.

ROBSTOWN, TX

Scale Ticket #: 94703

Work Order #: 09100707416

Checkin Date: 10/07/2009

Checkout Date: 10/07/2009

Time: 11:56

005974014JJK

Transporter:

TRIAD TRANSPORT, INC.

1630 DIESEL

MCALESTER, OK

EPA ID: OKD981588791

Truck #: 2735

Tractor #:

Trailer #:

ENVIRONMENTAL WASTE MGT. LLC

1348 B REDTAIL HAWK DR.

Driver: ROGER WILLIAMS

GROSS WEIGHT:

73,580.00 LBs

TARE WEIGHT:

Time: 09:40

43,360.00 LBs

LBs

Customer

BOARDMAN, OH

NET WEIGHT:

30,220.00

15.11 TONS

TW- 38, 440 1033/B-1096 Type. (Form designed for use on elite (12-pitch) typewriter.) Form Approved, OMB No. 2050-0039 Nanifest Tracking Number 005974011 UNIFORM HAZARDOUS 1. Generator 10 Number 2 1 3 8 2 0 1 2 9 JJK WASTE MANIFEST Generator's Site Address (il diffurent than mailing address) 5. Generator's Name and Mailing Address ROBERT AVE SOUTH OF AVE Q LONGHORN ARMY AMMUNITION FLANT KARNACK, TEXAS 78561 PO BOX 220 RATCLIFF, ARKANSAS 72951 Att. ROSE ZEILER (479) 635-0110 Generator's Phone: U.S. EPA ID Number OKD9681588791 E. Imperial COTRANSPORT U.S EPAID Number 7 Transporter 2 Company Name U.S. EPAID Number * DeUSEECOLOGY SEXAS, LP TXD069452340 / 50062 3.5 MILES S. PETRONILA RD., ROBSTOWN, TX 78380 (361) 387-3518 Facility's Phone: 10, Containers 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 11. Total 12. Unit 13. Waste Codes Ωn Wt.Vol and Packing Group (if any)) Quantity Type HM No. Ŧ **46000** 013781911 RO WASTE HAZARDOUS, SOLID, N.O.S., 9,NA3077, III (LEAD CONTAMINATED SOIL) D008 CM1 16 ٧ds 14. Special Handling Instructions and Additional Information a) 09-006-6424 c) b) 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placended, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowlodgment of Consent. I contribute the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generalis) by (if I am a small quantity generator) is true Day Year Month a/s/Offeror's Printed/Type Lylame OQ 10 Cei E Port of entry ext Expect from U.S. Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Adinowledgment of Receipt of Materials Month Day Year Transporter 1 Printed/Typed Name 10 б 09 ern _o+ Day Transporter 2 Printed/Typed Name Discrepancy Full Rejection Partial Rejection received 38 440 LBS. OF Per Kieth G. maste solutions. U.S. EPAID Numbe 18b. Alternate Fecility (or Generator Facility's Phone: Month Day Year DESIGNATED 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator. Certification of receipt of hazerdous materials covered by the manifest except as noted in Item 16a Monta Day Yea. Printed/Typed Name Sichature 109 10 107 25

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED)

047410

SA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

Scale Ticket

Phone: 800 242 3209

US ECOLOGY TEXAS, INC.

ROBSTOWN, TX

Scale Ticket #: 96208

Checkin Date: 10/07/2009

Time: 08:29

Work Order #: 09100707410

Checkout Date: 10/07/2009

Time: 10:17

005974011JJK

Transporter:

TRIAD TRANSPORT, INC

1630 DIESEL

MCALESTER, OK

EPA ID: OKD981588791

Truck #: 1033

Tractor #:

Trailer #:

ENVIRONMENTAL WASTE MGT. LLC

1348 B REDTAIL HAWK DR.

Driver: VERN LOFTEN JR.

GROSS WEIGHT:

80,360.00 LBs

TARE WEIGHT:

41,920.00 LBs

Customer

BOARDMAN, OH

NET WEIGHT:

38,440.00 LBs

19.22 TONS

	6	•	0740/B- or type. (Form design		lite (12-eilch) t	wewiter)	(ب #	740	78	ŧ	Form	Approved. O	/. 3 ⁹	7,600
1	ŲI	NIFC	ORM HAZARDOUS STEMANIFEST	1. Generator ID N	umber 62138	20129	2. Page		gency Response 9-635-0110		00		Ö13	J	JK
	5.	Gent L P	erator's Name and Mail ONGHORN A O BOX 220 R tor's Phone:	RMY AMI	ARKANS	AS 72951	ZEULER (R	or's Site Address (OHERT AV ARNACK,	Æ SOU	TH OF A	ve Q ∞)			
	6.	Trans	sporter i Company Nen RIAD TRANS	PORT	7		y H		-	,	U.S. EPAID	Number	OKD96	1538	791
	7.	Tran	sporter 2 Company Nan	ne							Ū.S. EPA ID I				
	ľ	3	gnated Facility Name at JS ECOLOGY & MILES S. P (361)		RD., RC	estown,	TX 78380				U.S. EPA ID		06946234	iO _. / 6 0() 62 ,
$\ $	9	a. IM	9b. U.S. DOT Descript and Packing Group (if		er Shipping Nam	e, Hazard Class, ID	Number,		10. Contain No.	iers Type	11. Total Quantity	12. Unit WL/Vol.	13. W	asta Code	s
GENERATOR -	7	;	1. RO.WASTE (LEAD.CO)	HAZARD NTA MI NA	OUS, SOI	.D, N.O.S.,	9,NA3077,	ш	1	CM	40000 16	Aq2	013731	9H	D008
GENE			2.												
	-		3.											j.	
	\mid		4					·			·			100	
	Ļ								(14,1)		المعارضة ومراور مر	OUAC MCCOM			
		•	p)	6-6424 c) d)	,		•		. Language of the second of th	B.	- //1				
	1		GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the pertifythat the waste m	arded, and are in a contents of this or	i respects in pro asianment coats	per condition for their rum to the terms of th	rsport according to re attached EPA A	appucable in cknowledgme ty generator)	nt of Consent. or (6) (if I am a sm	Miss Academa	Harrim référence.	shipping name is. If export sh		•	
	1	dne	Associated Associated	Typed Name	/			Signature	ReM	24	be		Monti	n Day	09
E	=1		ternational Shipments porter signature (for exp		tb U.S.		Export	from U.S.	Port of ea Date leav						
OA.E	<u> </u>	_	ansporter Acknowledgm porter 1 Printed Alyped N	lame				Signature		2/ 1/	101		Mont	- 4	
TO A MEDODATED		ദ്ധാട	porter 2 Printed Typed P	Fo V	4lde	<u>۔ </u>		Signature	odol	611	M. Aug		Mont		
1	_	8. D	screpancy	<u>-</u>	<u></u>			<u></u>							
		8a. (Discrepancy Indication S	space 🔽 o	uantity	0/2 0/2	Type	uR.	Residue		Partial F	-	. [] Futt Re	ejection
,	 - -	₩	Alternate Facility (or Ger	39,600	LES M	ok rep		, Keist	Manifest Reference	e Number.	U.S. EPAI	Manber	41/W	ssle	Solds
100		,		,							1				
			ty's Phone: Signature of Alternate Fr	acitity (or Generator)	<u> </u>							Mor	en Da	ay Year
	탉		lazardous Waste Report	Management Meth	od Codes (i.e., o	odes for hazardous	wasto treatment, o		ecycling systems)		14.				
ľ	٠L	1)	4132	2.			3.							
	Ш	20. C	esignated Facility Own	er or Operator, Cert	fication of receip	d of hazardous mate	rials covered by the	o manifest ex	cept as noted in fit	m 18a	:		Mor	ith Da	ry Year

Scale Ticket

Phone: 800 242 3209

US ECOLOGY TEXAS, INC.

ROBSTOWN, TX

Scale Ticket #: 96165

Checkin Date: 10/07/2009

Time: 07:44

Work Order #: 09100707408

Checkout Date: 10/07/2009

Time: 09:52

005974013JJK

Transporter:

TRIAD TRANSPORT, INC

1630 DIESEL

MCALESTER, OK

EPA ID: OKD981588791

Truck #: 2740

Tractor #:

Trailer #:

ENVIRONMENTAL WASTE MGT. LLC

1348 B REDTAIL HAWK DR.

Driver: RODOLFO VALDEZ

GROSS WEIGHT:

81,720.00 LBs

TARE WEIGHT:

42,120.00 LBs

Customer

BOARDMAN, OH

NET WEIGHT:

39,600.00 LBs

19.80 TONS

Jones, Greg N

From: Shannon.Wilkin@epamail.epa.gov
Sent: Wednesday, January 06, 2010 5:02 PM

To: Jones, Greg N

Subject: RE: Compliance with Off-Site Rule

Hello Greg, thanks for the site information. Both facilities you mentioned below are acceptable for CERCLA waste. U.S. Ecology, Robstown, TX (EPA ID #TXD069452340) last inspected 01/28/09; Republic Waste Services, Keithville, LA (LDEQ ID #9077) last inspected 06/09).

Wilkin Ronald Shannon
Hazardous Waste Enforcement Branch
Compliance Assurance & Enforcement Division
U.S. EPA Region 6
(214) 665-2282 - voice
(214) 665-7264 - fax
shannon.wilkin@epa.gov

From: "Jones, Greg N" < Greg.N.Jones@shawgrp.com>

To: Wilkin Shannon/R6/USEPA/US@EPA

Date: 01/06/2010 12:16 PM

Subject: RE: Compliance with Off-Site Rule

Mr. Shannon,

The two facilities and wastes streams are as follows:

- U.S. Ecology's Robstown, TX facility: approximately 75 tons of lead-contaminated soil (code D008)
- Republic Waste Services' Woolworth Road facility in Keithsville, LA: approximately 180 tons of lead-contaminated soil (non-hazardous)

These waste streams originated at a small site that was used intermittently for small arms practice (referred to as the former Pistol Range) at Longhorn Army Ammunition Plant in Karnack, Texas,.

Thanks

Gregary N. Jones, PhD, PE
Senior Environmental Engineer
Applied Science & Engineering
Shaw Environmental & Infrastructure Group
1401 Enclave Parkway, Suite 250
Houston, TX 77077
281/531-3172 direct
281/796-1212 cell

Shaw[™] a world of Solutions[™] www.shawgrp.com

Please consider the environment before printing this e-mail.

Added Note: The Woolworth Road landfill is also known as an Allied Waste facility because Allied Waste Industries merged with Republic Services in December 2008.

Appendix D

Field Reports

- PRWW01 Plugging Report
- Surveyor Report
- Daily Quality Control Reports

STATE OF TEXAS PLUGGING REPORT for Tracking #56365

Owner Well #: Owner: **USACE** PRWW01

Address: Spur 449 and Highway 134 Grid #: 35-24-7

Karnack, TX 75661

Longhorn Ammunition Plant Latitude: Well Location: 32° 39' 43" N

Karnack, TX 75661

Well County: Harrison Longitude: 094° 07' 19" W

> **GPS Brand Used:** N/A

Well Type: Monitor

HISTORICAL DATA ON WELL TO BE PLUGGED

Original Well Driller: Jedi Drilling

Driller's License Number of Original Well Driller:

N/A

Date Well Drilled: 9/5/2007 Well Report Tracking

No Data

Number:

Diameter of Well: 4 inches Total Depth of Well: 34' feet

Date Well Plugged: 6/4/2009

Person Actually Performing Plugging Operation:

Walker-Hill Environmental, Inc

License Number of

Plugging Operator:

58141

Plugging Method: Tremmie pipe cement from bottom to top.

No Data Plugging Variance #:

> 1st Interval: 0 inches diameter, From 0 ft to (No Data) ft 2nd Interval: No Data 3rd Interval: No Data

Cement/Bentonite Plugs

Placed in Well:

Casing Left Data:

1st Interval: From 0 ft to 34 ft; Sack(s)/type of cement used: 6

2nd Interval: No Data 3rd Interval: No Data 4th Interval: No Data 5th Interval: No Data

Certification Data: The plug installer certified that the plug installer plugged this well (or the well was plugged

under the plug installer's direct supervision) and that each and all of the statements herein are true and correct. The plug installer understood that failure to complete the required items

will result in the log(s) being returned for completion and resubmittal.

Company Information: Walker-Hill Environmental, Inc.

PO Box 1147

Foxworth, MS 39483

Plug Installer License

Number:

58141

Licensed Plug Installer

Signature:

Gary P. Hill

Registered Plug Installer No Data Apprentice Signature:

Apprentice Registration

Number:

No Data

Plugging Method

Comments:

Well could not be pulled so it was over drilled and tremie grouted with cement to

surface grade.

Please include the plugging report's tracking number (Tracking #56365) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

09/22/2009 15:36

9032363530

.Kay002.txt

PAGE 02

LANDMARK CONSULTANTS, Inc.

Tom A. Fidler, R. P. L. S.

September 22, 2009

Shaw Environmental 3010 Brairpark Houston, Tx 77042

ATTN: Kay Everett

Dear Ms. Everett:

Here is a list of the coordinates that Praveen gave to our survey crew on the ground at the pistol range at Longhorn. Our crew was instructed to put a wood lath at each of the points, which we did.

If you have any questions, please call ..

#	North	East	Description	
781 782 783 784 785 786 787 788	6951929.70 6951929.70 6951904.30 6951893.80 6951886.30 6951866.30 6951866.30 6951899.70	3314847.90 3314857.50 3314871.20 3314890.40 3314890.40 3314870.80 3314848.70 3314832.90 3314832.90	EXCAVATION PERIMETER PO- EXCAVATION PERIMETER PO-	INT "B" INT "C" INT "D" INT "E" INT "F" INT "G" INT "H" INT "IT
790	6951904.70	3314837.50	DMP-Ref Less man	

Tom A Fidler, RPL8

1015 W. Loop 281, Suite 8, P.O. Box 606 Longview, Texas 75606 (903) 236-3377 FAX (903) 236-3530

PROFESSIONAL LAND SURVEYORS
TEXAS * CALIFORNIA * ARKANSAS * ARIZONA

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 1 (Aug 4, 2009)
Site Conditions: ground is soft from previous rainfall Lost Time Due to Inclement Weather: 0%	eekend): 8 inches rain during week prior to start of field work
b.	
C.	
d.	
e.	
f.	
WORK PERFORMED: (Include location and descripti performed by prime and/or subcontractors as previo activity reports when applicable):	on of work performed including equipment used. Refer to work usly designated by letter above. Attached subcontractor daily
	nd conduct preparatory inspections of Pistol Range and LHAAP- le
MATERIALS AND/OR EQUIPMENT DELIVERED: (date/hours used, date of safety check, and supplier)	Include a description of materials and/or equipment, quantity,
(1) Hitachi 225 Excavator, (1) Case 621D Loader, supplies, (1) PDR 1000 aerosol monitor	(1) 150' roll geotextile fabric, miscellaneous Health & Safety
	Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
Satisfactory
b. Initial Inspection: (Attach Minutes)
NA
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
NA
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
NA
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
None

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)	
Shaw – Final Removal Action Work Plan, Former Pistol Range and LHAAP-04	
Shaw – Final Installation-wide Work Plan Appendix A, Health & Safety Plan	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)	
Site orientation and Health & Safety	
VISITORS:	
None	
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment work performed during this reporting period are in compliance with the contract plans and specifications enoted above.	
Bill Squire	
	08/04/09
Shaw CQCSM (or designee) Date	

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 2 (Aug 5, 2009)
(Include number, trade, hours, empl a. Shaw – Praveen Srivastav (P Engineer), Steve Moreau (Co	RACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: oyer, location, and description of work.) roject Manager), Greg Jones (Remediation Manager), Susan Watson (Project nstruction Manager), Bill Squire (SSO/QC), Allen Willmore (Geologist), Rich r), Clyde Woods (Equipment Operator)
b.	
C.	
d.	
e.	
f.	
WORK PERFORMED: (Include loca	ation and description of work performed including equipment used. Refer to work tractors as previously designated by letter above. Attached subcontractor daily
Receive roll off boxes and construct	tion supplies; conduct initial inspections of Pistol Range and LHAAP-04; complete stol Range; begin excavation of the Pistol Range target embankment; collect soil characterization
MATERIALS AND/OR EQUIPMEN date/hours used, date of safety chee	T DELIVERED: (Include a description of materials and/or equipment, quantity, ck, and supplier)
	5 truckloads) dirt for Pistol Range access road
	Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
Pistol Range - Satisfactory
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
NA
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at Pistol Range – no exceedances
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Site conditions (ie soft ground) at the Pistol Range prevented the loader from scooping up excavated soil at the excavation area, therefore an intermediate stockpile of excavated soil was placed on plastic sheeting and was subsequently transferred to the roll off containers
Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)	
NA	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)	
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety	
VISITORS: None	
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)	
LHAAP-04 disposal characterization samples collected: 04SD01 (0-2) for perchlorate, TCLP RCRA metals, RCI analyses 04SD02 (0-2) for perchlorate, TCLP RCRA metals, RCI analyses 04SD03 (0-3) for perchlorate, TCLP RCRA metals, RCI analyses 04SD04 (0-2) for perchlorate, TCLP RCRA metals, RCI analyses 04SD05 (0-4) for perchlorate, TCLP RCRA metals, RCI analyses 04CONC01 for perchlorate analysis 04CONC02 for perchlorate analysis	
Pistol Range confirmation samples collected: PRCSFL04 for lead analysis PRCSWDF (plus MS/MSD) for lead analysis PRCL01 for VOC, SVOC, TAL metals analysis	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used a work performed during this reporting period are in compliance with the contract plans and specifications except noted above.	and as
Bill Squire 08/05/	/09
Shaw CQCSM (or designee) Date	

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 3 (Aug 6, 2009)
WEATHER: (x) Clear () P. Cloud Wind Temperature: High95 Low70 Precipitation: Today: None Prev. Period (i.e., Site Conditions: ground is soft from previous rainfall Lost Time Due to Inclement Weather: 0%	weekend): 8 inches rain during week prior to start of field work
b.	
c.	
d.	
e.	
f.	
	ption of work performed including equipment used. Refer to work riously designated by letter above. Attached subcontractor daily
General: Receive roll off boxes, water truck, pick up	truck, 250 gal fuel tank
confirmation soil samples from excavation walls a	Pistol Range; complete excavation of the Pistol Range; collect and floor; collect disposal characterization samples from roll off ox nos. 701, 758, 766, 859, 906, 959, 1096, 1111, 1113; cover all
LHAAP-04: No activity today	
MATERIALS AND/OR EQUIPMENT DELIVERED: date/hours used, date of safety check, and supplier	(Include a description of materials and/or equipment, quantity,
(6) 20 yd roll off containers, lined, (1) water truck, (
	Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA .
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at Pistol Range – no exceedances
Maximum TWA – 0.012 mg/m ³
Min - max Direct Reading – 0.000 mg/m³ and 0.020 mg/m³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Site conditions (ie soft ground) at the Pistol Range continued to prevent the loader from scooping up excavated soil at the excavation area, therefore an intermediate stockpile of excavated soil was placed on plastic sheeting and was subsequently transferred to the roll off containers
Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of subm	itter.)				
NA					
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)					
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety					
-					
VISITORS:					
None					
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)					
Roll off container disposal characterization samples collected:					
PRRO 701 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses					
PRRO 731 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses PRRO 758 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses					
PRRO 758 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses PRRO 859 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses					
PRRO 906 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses					
PRRO 1096 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses					
PRSD01 for TCLP VOCs, TCLP RCRA metals, RCI analyses					
N. DDODGA					
Note: PRSD01 is a composite of 6 samples above					
Bit I Bit I					
Pistol Range confirmation samples collected: PRCSFL01 for lead analysis					
PRCSFL01 for lead analysis PRCSFL02 for lead analysis					
PRCSFL03 for lead analysis					
PRCSFL03-QC for lead analysis					
PRCSFL05 for lead analysis					
PRCSWBD for lead analysis					
PRCSWHB for lead analysis					
PRCSWFH for lead analysis					
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and ed					
work performed during this reporting period are in compliance with the contract plans and specil noted above.	ications	except as			
noted above.					
Bill Squire					
•		08/06/09			
Shaw CQCSM (or designee)	Date				

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 4 (Aug 7, 2009)
Wind Temperature: High95 Low70	Cloudy : 8 inches rain during week prior to start of field work
PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: (Include number, trade, hours, employer, location, and description of work.) a. Shaw – Steve Moreau (Construction Manager), Bill Squire (SSO/QC), Allen Willmore (Geologist), Rich Rennhack (Equipment Operator), Clyde Woods (Equipment Operator)	
b.	
C.	
d.	
e.	
WORK PERFORMED: (Include location and description of work performed including equipment used. Refer to work performed by prime and/or subcontractors as previously designated by letter above. Attached subcontractor daily activity reports when applicable):	
General: Receive roll off boxes (nos 674, 542, 1082)	
<u>Pistol Range</u> : conduct follow up inspection of Pistol Range; complete transfer of stockpiled material to roll off boxes; measure depth of excavation at perimeter stake locations (see remarks section below) & document with photographs; collect disposal characterization samples from roll off boxes (see remarks section below); filled roll off box nos. 542, 674, 1022; cover all roll off boxes at end of day	
LHAAP-04: No activity today	
MATERIALS AND/OR EQUIPMENT DELIVERED: (Include a description of materials and/or equipment, quantity, date/hours used, date of safety check, and supplier) (3) 20 yd roll off containers, lined	

Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at Pistol Range – no exceedances
Maximum TWA – 0.032 mg/m ³
Min - max Direct Reading – 0.015 mg/m³ and 0.026 mg/m³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Site conditions (ie soft ground) at the Pistol Range continued to prevent the loader from scooping up excavated soil at the excavation area, therefore an intermediate stockpile of excavated soil was placed on plastic sheeting and was subsequently transferred to the roll off containers
Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of subm	itter.)
NA	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)	
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety	
VISITORS:	
None	
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)	\
REMARKS. (Any additional information pertinent to the project not defined by the previous entires.	<u> </u>
Roll off container disposal characterization samples collected:	
PRRO 542 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRRO 766 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRRO 959 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRRO 1113 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRSD02 for TCLP VOCs, TCLP RCRA metals, RCI analyses	
Note: PRSD02 is a composite of 4 samples above	
PRRO 628 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRRO 674 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRRO 1022 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRRO 1111 GR for TCLP VOCs, TCLP RCRA metals, RCI analyses	
PRSD03 for TCLP VOCs, TCLP RCRA metals, RCI analyses	
The best of Tell Teles, Tell The Tell Tell and Jees	
Note: DDSD03 is a composite of 4 complex shows	
Note: PRSD03 is a composite of 4 samples above	
Excavation depths (ft):	
Perimeter stake $A = 1.0$ $E = 1.33$ $I = 1.33$	
B = 1.33 F = 1.25 J = 2.0	
C = 1.33 $G = 1.33$	
D = 1.5 H = 1.33	
Preliminary results received for confirmation samples: PRCSFL04 (9.98 mg/kg), PRCSWDF (20.1	mg/kg). Samples
are below target clean up level of 1000 mg/kg	3 3/ 1
are below target cream up rever or root mg/kg	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and en	
work performed during this reporting period are in compliance with the contract plans and speci	fications except as
noted above.	•
Bill Squire	
Diff Oquito	08/07/09
0. 00004/	
Shaw CQCSM (or designee)	Date

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 5 (Aug 8, 2009)
WEATHER: (x) Clear () P. Cloudy () Cloudy Wind Temperature: High95 Low70 Precipitation: Today: None Prev. Period (i.e., weekend): 8 inches rain during week prior to start of field work Site Conditions: ground is soft from previous rainfall Lost Time Due to Inclement Weather: 0%	
PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: (Include number, trade, hours, employer, location, and description of work.) a. Shaw – Steve Moreau (Construction Manager), Bill Squire (SSO/QC), Allen Willmore (Geologist), Rich Rennhack (Equipment Operator), Clyde Woods (Equipment Operator)	
b.	
C.	
d.	
e.	
WORK PERFORMED: (Include location and description of work performed including equipment used. Refer to work performed by prime and/or subcontractors as previously designated by letter above. Attached subcontractor daily activity reports when applicable):	
General: NA	
<u>Pistol Range</u> : conduct follow up inspection of Pistol Range; place grass seed and erosion control straw matting on the slope of the berm where confirmation samples were below cleanup goals & document with photographs; roll off boxes covered. Mobilize loader to LHAAP-04	
LHAAP-04: Loader mobilized from Pistol Range	
MATERIALS AND/OR EQUIPMENT DELIVERED: (Include a description of materials and/or equipment, quantity, date/hours used, date of safety check, and supplier)	
None	

Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
No aerosol monitoring at Pistol Range because no dust generating activities conducted
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
None Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)	
NA	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)	
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety	
VISITORS:	
None	
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)	
Preliminary results received for confirmation samples: PRCSFL04 (9.98 mg/kg), PRCSWDF (20.1 mg/kg). Samples are below target clean up level of 1000 mg/kg	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used and work performed during this reporting period are in compliance with the contract plans and specifications except as noted above.	
Bill Squire 08/08/09	
Shaw CQCSM (or designee) Date	

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc.	Project Name: Longhorn AAP
3010 Briarpark Drive	Project Location: Pistol Range & LHAAP-04
Houston, Texas 77042	Shaw Report No.: 8 (Aug 12, 2009)
Wind Temperature: High95 Low70 Precipitation: Today: None Prev. Period (i.e., weekend Site Conditions: dry Lost Time Due to Inclement Weather: 0%) Cloudy d): 8 inches rain during week prior to start of field work
PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: (Include number, trade, hours, employer, location, and description of work.) a. Shaw – Steve Moreau (Construction Manager), Bill Squire (SSO/QC), Allen Willmore (Geologist), Rich Rennhack (Equipment Operator), Clyde Woods (Equipment Operator)	
b.	
C.	
_d.	
e.	
WORK PERFORMED: (Include location and description of work performed including equipment used. Refer to work performed by prime and/or subcontractors as previously designated by letter above. Attached subcontractor daily activity reports when applicable):	
General: NA	
<u>Pistol Range</u> : Received remainder of analytical results for 1000 mg/kg.	confirmation samples; all results below cleanup level of
<u>LHAAP-04</u> : Conduct follow up inspection of LHAAP-04; colle section below); begin breaking up concrete pad with hydraul	
MATERIALS AND/OR EQUIPMENT DELIVERED: (Include date/hours used, date of safety check, and supplier)	
Deere 310G loader/backhoe with hydraulic hammer attachment	

Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes) LHAAP-04 concrete pad - satisfactory b. Initial Inspection: (Attach Minutes) LHAAP-04 concrete pad - satisfactory c. Follow-up Inspection: (List results of inspection compared to specification requirements.) All work completed in accordance with Work Plan d. Safety Inspection: (Include safety violations and corrective actions taken.) No deficiencies OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.) NA QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.) Aerosol monitoring at LHAAP-04 - no exceedances Maximum TWA - 0.161 mg/m³; Min - max Direct Reading - 0.000 mg/m³ and 0.861 mg/m³ VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.) None CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.) None Page 2 of 3 Draft Final Removal Action Work Plan, Former Pistol Range and LHAAP-04 Appendix B, Attachment 1

Shaw Environmental, Inc.

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and n	ame of submitter.)
NA	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedu	le, etc.)
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety	
VISITORS:	
None	
REMARKS: (Any additional information pertinent to the project not defined by the prev	vious entries.)
LHAAP-04 confirmation samples collected:	
04CSFL04 with ms/msd for perchlorate analysis	
04CSWAB for perchlorate analysis	
Excavator down for repairs; Hertz Equipment on site at 1400 to replace starter	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All m	• •
work performed during this reporting period are in compliance with the contract plan	ns and specifications except as
noted above.	
Dill Consider	
Bill Squire	00/42/00
0, 00001/ 1 :)	08/12/09
Shaw CQCSM (or designee)	Date

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 13 (Aug 19, 2009)
WEATHER: () Clear (x) P. Cloudy (Wind) Cloudy kend): 8 inches rain during week prior to start of field work
PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: (Include number, trade, hours, employer, location, and description of work.) a. Shaw – Steve Moreau (Construction Manager), Bill Squire (SSO/QC), Allen Willmore (Geologist), Rich Rennhack (Equipment Operator), Clyde Woods (Equipment Operator)	
b.	
C.	
d.	
e.	
WORK PERFORMED: (Include location and description of work performed including equipment used. Refer to work performed by prime and/or subcontractors as previously designated by letter above. Attached subcontractor daily activity reports when applicable):	
General: NA	
	t (embankment previously graded, seeded, and covered with proximately 12 yds ea, approximately 168 yds total) received a contours
LHAAP-04: • No activity today	
	clude a description of materials and/or equipment, quantity,
Deere 450 bulldozer from Hertz Equipment Rental	

Page 1 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)
NA
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety
VISITORS:
None
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)
LHAAP-04 samples collected: None
Pistol Range samples collected: None
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used a
work performed during this reporting period are in compliance with the contract plans and specifications except
noted above.
Bill Squire
08/19/
Shaw CQCSM (or designee) Date

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc.	Project Name: Longhorn AAP
3010 Briarpark Drive	Project Location: Pistol Range & LHAAP-04
Houston, Texas 77042	Shaw Report No.: 14 (Aug 20, 2009)
WEATHER: () Clear (x) P. Cloudy (Wind) Cloudy kend): 8 inches rain during week prior to start of field work
PRIME CONTRACTOR/SUBCONTRACTORS AND ARE	EAS OF RESPONSIBILITY/LABOR COUNT:
(Include number, trade, hours, employer, location, and d	
 Shaw – Praveen Srivastav (Project Manager), Ste Allen Willmore (Geologist), Rich Rennhack (Equipm 	eve Moreau (Construction Manager), Bill Squire (SSO/QC), ent Operator), Clyde Woods (Equipment Operator)
b.	
C.	
d.	
e.	
performed by prime and/or subcontractors as previous activity reports when applicable):	of work performed including equipment used. Refer to work ly designated by letter above. Attached subcontractor daily
General: NA	
Pistol Range:	
Site walk with USEPA representative	
LHAAP-04:	
 Site walk with USEPA representative 	
	clude a description of materials and/or equipment, quantity,
date/hours used, date of safety check, and supplier)	
None	Page 1 of 3
	rage 1013

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at Pistol Range – no dust generating activities conducted
VEDDAL INCTDUCTIONS DECENTED OF CIVIENT (List and instructions are sized from account and account of the contract of the contr
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
None
Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submittel	r.)
NA	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)	
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety	
VISITORS:	
USEPA representative	
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)	
LHAAP-04 samples collected: 04CLAYPIPE-082009 for perchlorate analysis	
BY CLB	
Pistol Range samples collected: None	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equin	ment used and
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used and work performed during this reporting period are in compliance with the contract plans and specifications except as	
noted above.	tions except as
noted above.	
Bill Squire	
·	08/20/09
Shaw CQCSM (or designee)	ate
,	

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 25 (Sep 3, 2009)
Wind Temperature: High85 Low65	riod (i.e., weekend): 8 inches rain during week prior to start
PRIME CONTRACTOR/SUBCONTRACTORS AND ARE (Include number, trade, hours, employer, location, and d a. Shaw – Steve Moreau (Construction Manager), Alle	
b. JW Rentals, Inc Trucking	
c. Triad-Roll-Off Box Transport	
d.	
e.	
WORK PERFORMED: (Include location and description of work performed including equipment used. Refer to work performed by prime and/or subcontractors as previously designated by letter above. Attached subcontractor daily activity reports when applicable):	
General: NA	
Pistol Range: Continued load out of roll-off boxes at Pistol Ra	nge.
 LHAAP-04: Continue load out of stockpiled soil – 6 trucks load out of	paded and sent to Woolworth Rd LF (see remarks section) and of day e outfall located on the western portion of LHAAP-04,
MATERIALS AND/OR EQUIPMENT DELIVERED: (Included) date/hours used, date of safety check, and supplier)	elude a description of materials and/or equipment, quantity,
None	Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at LHAAP-04 – no exceedances
Maximum TWA – 0.000 mg/m³; Min - max Direct Reading – 0.000 mg/m³ and 0.000 mg/m³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
Instructed to take a break from work through Labor Day weekend by Praveen Srivastav.
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Excavation is wider and deeper than originally plan due to unexpected perchlorate exceedences. Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of subm	itter.)
NA	
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)	
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety	
VISITORS:	_
None	
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.))
LHAAP-04 samples collected: 04VAVLVE-OUTFALL, 04CSFL05(7)RE(9), 04BH01(6-8), 04BH02(6-8), 04BH03(6-8),
Pietel Danier annulas cellected. Neve	
Pistol Range samples collected: None	
Loadout of stockpiled soil:	
Manifested as Class II Non-Hazardous, Mercury and Perchlorate contaminated soil	
6 trucks loaded @ 18 yds/truck (estimated)	
Manifest nos. 20000033 through 20000046	
 Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047 	
Loadout of Roll-Off Boxes	
Manifested as Class II Non-Hazardous, Lead contaminated soil	
3 roll-off boxes loaded @ 16 yds/box (estimated)	
Manifest nos. 20000011 through 20000013	
Manifest nest 20000011 timesign 2000010	
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and en	quipment used and
work performed during this reporting period are in compliance with the contract plans and speci	fications except as
noted above.	·
Allen Willmore	
	09/3/09
Show COCSM (or decignoo)	Date
Shaw CQCSM (or designee)	Date

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. Project Name: Longhorn AAP 3010 Briarpark Drive Project Location: Pistol Range & LHAAP-04 Houston, Texas 77042 Shaw Report No.: 27 (Sep 10, 2009) WEATHER: () Clear (x) P. Cloudy (x) Cloudy Wind Temperature: High___96___ Low__74_ Precipitation: Today: Clear to Ptly Cloudy Prev. Period (i.e., weekend): Dry weekend Site Conditions: dry Lost Time Due to Inclement Weather: 0% PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: (Include number, trade, hours, employer, location, and description of work.) a. Shaw - Steve Moreau (Construction Manager), Allen Willmore (Geologist), Clyde Woods (Equipment Operator) b. JW Rentals, Inc. - Trucking Triad-Roll Off Boxes d. e. WORK PERFORMED: (Include location and description of work performed including equipment used. Refer to work performed by prime and/or subcontractors as previously designated by letter above. Attached subcontractor daily activity reports when applicable): General: NA Pistol Range: Continue load out of Roll-off Boxes LHAAP-04: Continue load out of stockpiled soil – 15 trucks loaded and sent to Woolworth Rd LF (see remarks section) Soil stockpile covered with plastic sheeting at end of day Verified measurements of excavation Re-visited sampling plan MATERIALS AND/OR EQUIPMENT DELIVERED: (Include a description of materials and/or equipment, quantity, date/hours used, date of safety check, and supplier)

Page 1 of 3

None

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA .
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at LHAAP-04 – no exceedances
Maximum TWA – 0.000 mg/m ³ ; Min - max Direct Reading – 0.000 mg/m ³ and 0.000 mg/m ³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
Place Hazardous Waste Stickers on roll-off boxes B-674, B-1096, B-1113, and B-1111 at the Former Pistol Range. Sample new walls and floors at LHAAP-04. Collect sample 04CSFL10(13) at base of wall due to groundwater.
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Excavation is wider and deeper than originally plan due to unexpected perchlorate exceedences.
Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)
NA
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety
VISITORS:
Praveen Srivastav, Susan Watson.
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)
LHAAP-04 samples collected: 04CSFL14(8), 04CSWC1C, 04CSFL11RE(13), and 04CSFL10(13)
Pistol Range samples collected: None
Loadout of stockpiled soil: Manifested as Class II Non-Hazardous, Mercury and Perchlorate contaminated soil 15 trucks loaded @ 18 yds/truck (estimated) Manifest nos. 10001 through 10015 Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047
Loadout of roll-off boxes: • Manifested as Class II Non-Hazardous, lead contaminated soil • 3 boxes hauled away @ 16 yds/box (estimated) • Manifest nos. 20000014 through 20000016 Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used an work performed during this reporting period are in compliance with the contract plans and specifications except a noted above.
Allen Willmore 09/10/0
Shaw CQCSM (or designee) Date

Page 3 of 3

DAILY CONTRACTOR QUALITY CONTROL REPORT

Shaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longhorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 28 (Sep 11, 2009)
Wind Temperature: High97 Lo	x) P. Cloudy (x) Cloudy bw74 Cloudy Prev. Period (i.e., weekend): Dry weekend 0%
(Include number, trade, hours, employ	ACTORS AND AREAS OF RESPONSIBILITY/LABOR COUNT: ver, location, and description of work.) ion Manager), Allen Willmore (Geologist), Clyde Woods (Equipment Operator)
b. JW Rentals, Inc Trucking	
c. Triad-Roll Off Boxes	
d.	
e.	
performed by prime and/or subcontra activity reports when applicable):	on and description of work performed including equipment used. Refer to work actors as previously designated by letter above. Attached subcontractor daily
General: NA	
Pistol Range: Continue load out of Roll-off	Boxes
 LHAAP-04: Continue load out of stockpile Soil stockpile covered with pl 	ed soil – 13 trucks loaded and sent to Woolworth Rd LF (see remarks section) astic sheeting at end of day
MATERIALS AND/OR EQUIPMENT date/hours used, date of safety check,	DELIVERED: (Include a description of materials and/or equipment, quantity, and supplier)
None	

Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA NA
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at LHAAP-04 – no exceedances
Maximum TWA – 0.000 mg/m ³ ; Min - max Direct Reading – 0.000 mg/m ³ and 0.000 mg/m ³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Excavation is wider and deeper than originally planned due to unexpected perchlorate exceedences. Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)
NA
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety
VISITORS:
Praveen Srivastav, Susan Watson.
1 laveen envasiar, easan vraison.
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)
LHAAP-04 samples collected: 04CSFL05RE(13), 04CSFL02RE(7), 04CSFL09RE(13), 04CSWCDRE(4)L,
04CSFL13(8), 04CSWCDRE(19)U, 04CSFL07RE(11), 04CSWD1E, 04CSWD1EQC, 04CSWEF3, 04CSFL12RE(13),
04CSWR1H, 04CSWFR1
Pistol Range samples collected: None
Fision Range samples collected. None
Loadout of stockpiled soil:
Manifested as Class II Non-Hazardous, Mercury and Perchlorate contaminated soil
13 trucks loaded @ 18 yds/truck (estimated)
Manifest nos. 10016 through 10028
 Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047
Loadout of roll-off boxes:
 Manifested as Class II Non-Hazardous, lead contaminated soil
 3 boxes hauled away @ 16 yds/box (estimated)
 Manifest nos. 20000018 and 20000019
Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047
CONTRACTORIC VERIFICATION. The chave report is correlate and correct. All reptagial and consistence thread and
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used and work performed during this reporting period are in compliance with the contract plans and specifications except as
noted above.
noted above.
Allen Willmore
09/11/09

Page 3 of 3

Date

Shaw CQCSM (or designee)

DAILY CONTRACTOR QUALITY CONTROL REPORT

Snaw Environmental, Inc. 3010 Briarpark Drive Houston, Texas 77042	Project Name: Longnorn AAP Project Location: Pistol Range & LHAAP-04 Shaw Report No.: 29 (Sep 14, 2009)
WEATHER: () Clear () P. Cloudy (x) C Wind Temperature: High87 Low71 Precipitation: Today: light to heavy rain throughout day Site Conditions: wet Lost Time Due to Inclement Weather: 0%, Trucks could not	Prev. Period (i.e., weekend): Wet weekend
PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS (Include number, trade, hours, employer, location, and desca. Shaw – Steve Moreau (Construction Manager), Allen V	
b. Triad	
C.	
d.	
e.	
WORK PERFORMED: (Include location and description of performed by prime and/or subcontractors as previously activity reports when applicable):	
General: Wet weather prevents truck from loading.	
Pistol Range:Hauled 2 non-hazardous roll-off boxes from the Fo	ormer Pistol Range
 LHAAP-04: Proceeded to pump water from excavation into 55 	0-gallon and 325 gallon water tanks.
MATERIALS AND/OR EQUIPMENT DELIVERED: (Included ate/hours used, date of safety check, and supplier)	
None	Page 1 of 3

Ü

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at LHAAP-04 – no exceedances
Maximum TWA – 0.000 mg/m³; Min - max Direct Reading – 0.000 mg/m³ and 0.000 mg/m³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Excavation is wider and deeper than originally planned due to unexpected perchlorate exceedences. Page 2 of 3

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)
NA
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety
VISITORS:
None.
None.
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)
LHAAP-04 samples collected: None
Pistol Range samples collected: None
ristoritarige samples collected. Notice
Loadout of roll-off boxes at the Former Pistol Range:
Manifested as Class II Non-Hazardous, Mercury and Perchlorate contaminated soil
2 roll-offs loaded @ 16 yds/box (estimated)
 Manifest nos. 20000020 and 20000021
 Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used and work performed during this reporting period are in compliance with the contract plans and specifications except as noted above.
Allen Willmore
09/14/09
Shaw CQCSM (or designee) Date

Page 3 of 3

Shaw Environmental, Inc.

Project Name: Longhorn AAP

DAILY CONTRACTOR QUALITY CONTROL REPORT

Houston, Texas 77042	Shaw Report No.: 37 (Sep 25, 2009)
WEATHER: (x) Clear () P. Cloudy () Cloud Wind From northwest Temperature: High 93 Low 68 Precipitation: Today: None Prev. Period (i.e., weekend): D Site Conditions: dry Lost Time Due to Inclement Weather: 0%	
PRIME CONTRACTOR/SUBCONTRACTORS AND AREAS OF (Include number, trade, hours, employer, location, and descriptio a. Shaw – Steve Moreau (Construction Manager), Allen Willmo	n of work.)
b. Stranco Trucking	
c. Triad	
d.	
e.	
WORK PERFORMED: (Include location and description of work performed by prime and/or subcontractors as previously design activity reports when applicable):	
General: NA	
Pistol Range: • Continue load out of 1 hazardous waste roll-off box (see	e remarks section)
Continue load out of stockpiled soil – 9 trucks loaded ar Soil stockpile covered with plastic sheeting at end of da Collected soil samples for perchlorate analysis at LHAA	y
MATERIALS AND/OR EQUIPMENT DELIVERED: (Include a date/hours used, date of safety check, and supplier)	description of materials and/or equipment, quantity,

None

Page 1 of 3

RESULTS OF SURVEILLANCE: (Include satisfactory work completed or deficiencies with action to be taken.) a. Preparatory Inspection: (Attach Minutes)
NA
b. Initial Inspection: (Attach Minutes)
NA
c. Follow-up Inspection: (List results of inspection compared to specification requirements.)
All work completed in accordance with Work Plan
d. Safety Inspection: (Include safety violations and corrective actions taken.)
No deficiencies
OFF-SITE SURVEILLANCE ACTIVITIES: (Include action taken.)
NA
QC TESTS PERFORMED AND RESULTS: (As required by plans and/or specifications.)
Aerosol monitoring at LHAAP-04 – no exceedances
Maximum TWA – 0.000 mg/m³; Min - max Direct Reading – 0.000 mg/m³ and 0.000 mg/m³
VERBAL INSTRUCTIONS RECEIVED OR GIVEN: (List any instructions received from government personnel or given by Shaw on construction deficiencies identified, required retesting, etc., and the corresponding action to be taken.)
None.
CHANGED CONDITIONS/DELAYS/CONFLICTS ENCOUNTERED: (List any conflicts with the delivery order [i.e., Scope of Work and/or drawings], delays to the project attributable to site, and weather conditions, etc.)
Excavation is wider and deeper than originally plan due to unexpected perchlorate exceedences.
Page 2 of 3

2

SUBMITTALS REVIEWED: (Include submittal number, specification reference, and name of submitter.)
NA
MEETINGS: (List the meetings, i.e., Health and Safety, Site Operations, Cost/Schedule, etc.)
Tailgate Safety Meeting to discuss Daily Operations and Health & Safety
VISITORS:
None
REMARKS: (Any additional information pertinent to the project not defined by the previous entries.)
LHAAP-04 samples collected: 04CSFL07RE(12), 04CSWR2H, 04WCDRE(19)L, 04CSFL13RE(13),
04CSFL14RE(13), 04CSFL14RE(13)QC
Pistol Range samples collected: None
Loadout of stockpilod poils
Loadout of stockpiled soil: • Manifested as Class II Non-Hazardous, Mercury and Perchlorate contaminated soil
Infamiliested as Class if Non-Hazardous, Mercury and Perchlorate contaminated soil 9 trucks loaded @ 18 yds/truck (estimated)
Manifest nos. 10049 through 10055, and 10057
· · · · · · · · · · · · · · · · · · ·
Sent to Allied Waste - Woolworth Rd Landfill, 10580 Woolworth Rd, Keithville, LA 71047 Loadout of hazardous waste roll-off boxes:
Manifested as Hazardous Waste, Lead contaminated soil
1 truck loaded @ 16 yds/box (estimated)
Manifest nos. 005974010
Sent to US Ecology Texas, LP - Woolworth 3.8 miles S. Petronila Rd., Robstown, Tx 78380
Sent to OS Ecology Texas, EF - Woolworth 3.6 Innes S. Fellonia Rd., Robstown, TX 76360
CONTRACTOR'S VERIFICATION: The above report is complete and correct. All material and equipment used and
work performed during this reporting period are in compliance with the contract plans and specifications except as
noted above.
Allen Willmore
09/25/09
Shaw CQCSM (or designee) Date

Page 3 of 3

2.3.4.3 Raw Data

WORKGROUP: WG309412

FLASHPOINT

LCS:	32/43		•	1/11 -	
TEMPERATU	RE:	PRESSU	JRE:	44.7	
SOP K1010 R	Revision #:		SW846 1010) Marten Closed Cup	Tester
		Anstrum	INITIAL	COMMENTS or	FINAL
SAMPLE	DESCRIPTION		TEMP(C)	FLASHPOINT	RESULT (C)
LCS	p-Xy/ene		14	flashe 27	27
LCS DUP	','		15	flesh 028	Z8
Blank	DI HOO.		18	no flashe Les	768
08-188-01	water sol. lig. no odo	_	2	=lame exte 71	>71
08-144-61	Soil lunable to stin		18	flame exte 72	712
08-178-61	Sorl/ whatole to Stin		j8	-1 ame ext 072	772
-12	+		20	Dane oxt@70	
08-149-04	Soupy water		11e	flome exteb9	769
	,				
					· · · · · · · · · · · · · · · · · · ·
DUP: 188-01	(ditto)		14	Flame auto 70	>70
ANALYST	26		_	DATE: <u>08/11/09</u>	

DCN#80389

Microbac Laboratories Inc. FLASH CALCULATIONS

Workgroup: WG309412

Date: 11-AUG-09

Analyst: JBK

Observed Barometric Pressure: 744.7

Lowest Pressure in Bracket: 740

Temperature Correction #1: 2.6

Temperature Correction #2: 2.53

Lowest Pressure in Bracket: 700

Lowest Pressure in Bracket: 700

Grav Correction #1: .48

Grav Correction #2: .42

Temperature Correction: 2.54645

Grav Correction: .44682

Corrected Barometric Pressure: 758.14673

Correction for Flash: .06115791

2.3.5 Reactive Cyanide Data

2.3.5.1 Summary Data

LABORATORY REPORT

L09080178

08/12/09 14:33

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
PRDS02	L09080178-01	SW7.33	1	08-AUG-09
PRDS03	L09080178-02	SW7.33	1	08-AUG-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1464225
Report generated: 08/12/2009 14:33

Microbac

1 OF 1

Micropac Laboratories inc.

00083871

Report Number: L09080178

Report Date : August 12, 2009

Sample Number:L09080178-01 PrePrep Method:NONE Instrument: UV-120-1V

Client ID: PRDS02 Prep Method: SW7.33 Prep Date: 08/10/2009 07:30 Matrix: Soil Analytical Method: SW7.33 Cal Date: Workgroup Number: WG309302 Collect Date: 08/07/2009 14:15 Run Date: 08/10/2009 07:30 File ID: 1V.0908100730-10 Analyst: DLP

Dilution: 1 Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		U	9.94	4.97

U Not detected at or above adjusted sample detection limit

of 2

Microbac

Micropac Laboratories inc.

00083872

Report Date : August 12, 2009

Report Number: L09080178

Sample Number: **L09080178-02** PrePrep Method:NONE Instrument: UV-120-1V

Client ID: PRDS03 Prep Method: SW7.33 Prep Date: 08/10/2009 07:30 Matrix: Soil Analytical Method: SW7.33 Cal Date: Workgroup Number: WG309302 Collect Date: 08/07/2009 14:30 Run Date: 08/10/2009 07:30 File ID: 1V.0908100730-11 Analyst: DLP Dilution: 1

Units: mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Reactivity, Cyanide	57-12-5		U	9.95	4.98

U Not detected at or above adjusted sample detection limit

of 2

Microbac

2.3.5.2 QC Summary Data

Microbac Laboratories Inc. Data Checklist

Date:	10-AUG-2009
Analyst:	DLP
Analyst:	<u>NA</u>
Method:	REACTON
Instrument:	<u>UV-120-1V</u>
Curve Workgroup:	NA
Runlog ID:	
Analytical Workgroups:	

<u>Calibration/Linearity</u>	07-16-09
Second Source Check	
ICV/CCV (std)	X
ICB/CCB	
Blank	
LCS/LCS Dup	X
MS/MSD	
Duplicate	X
Upload Results	X
Client Forms	
QC Violation Sheet	
Case Narratives	
Signed Raw Data	X
STD/LCS on benchsheet	X
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	
Primary Reviewer	DLP
Secondary Reviewer	DIH
Comments	

Primary Reviewer: 11-AUG-2009 Deutter Page Dannalpsson

Secondary Reviewer: 11-AUG-2009

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-11-2009 16:00:40

2.3.5.3 Raw Data

WG 307248

Curves

Parameter: REACT - CN
Spectrophotometer: UU-120-1V
Calibration (Curve) standard stock: 5+4 33348
Concentration: 968 mg/L
Recipe for preparation of curve standards found in: SOP: <u>K7332</u> Revision: <u>8</u> Page: <u>8</u>
Second Source Stock: 5td 33349 (concentration: 1020mg/L
Daily Preparation: 5(1020)/250 = 20.4
concentration = $\frac{5(2.04)}{50} = 0.204$

Calibration Standards (mg/L)	Volume	Cell Size	Wavelength	Absorbance
Ø, 00	5 D	Cell Size	578	0.000
0.01936				0.027
0.01936				0 053
0.0968				0.138
0.1936				0.284
0.2904				0.414
0.3872				0.557
249 0.204		J		0.298
	-		•	
Amalyati	/_		D 4 /T' - 7	/14/09 @109
Analyst:	77		Date/Time:/	rujor 6701

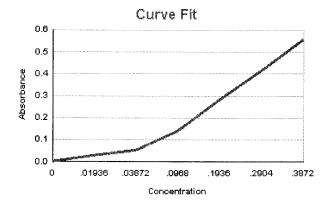
DCN#80111

Microbac Laboratories Inc. INITIAL CALIBRATION

Workgroup: WG307248
Analytical Method: 846
Instrument ID: UV-120-1V

Analyst:<u>JBK</u>
Initial Calibration Date:07/16/2009

Analyte: CYANIDE


Number of Points: 7

Slope: 1.43990

Y-Intercept: -0.000635703

Coef. Of Correlation (R²): 0.999810 Coef. Of Correlation (R): 0.999905

Concentration X	Absorbance Y	X ²	X * Y	Y-Fitted (mX ² +B)		
0.00	0.00	0.00	0.00	-0.000635703		
0.0194	0.0270	0.000375	0.000523	0.0272407		
0.0387	0.0530	0.00150	0.00205	0.0551171		
0.0968	0.138	0.00937	0.0134	0.138746		
0.194	0.284	0.0375	0.0550	0.278128		
0.290	0.414	0.0843	0.120	0.417511		
0.387	0.557	0.150	0.216	0.556893		

WG_ICAL_CAL_WET - Modified 03/06/2008
Report generated 07/16/2009 11:18

Microbac Laboratories Inc. ALTERNATE SOURCE REPORT

Workgroup #: WG307248

Instrument ID: UV-120-1V

File ID: 1V.0907161040-08

Run Date: 07/16/2009

CCV ID: WG307248-08

Run Time: 10:40

Units: mg/kg

Analyst: JBK

Analyte: CYANIDE

Cal ID: UV-120 -

Analyte	Expected	Found	RF	%D	Q
Reactivity, Cyanide	.204	0.207	1.46	1.5	

* Exceeds %D Limit

CCC Calibrtion Check Compounds
SPCC System Performance Check Compounds

WET_WG_SSCV - Modified 03/06/2008
Report generated 07/16/2009 11:19

Microbac

WORKGROUP: WG309302

Reactive Cyanide

LCS: SHL 34091 (1020)
CCV: 500 34090 (968)
SOP: K7332 Revision # 8 Daily Dilution: 5(968) 1250 19.36 Curve ID: 307248 7-1609 Spec: W 120-N 10-5(1.936) 50 20.1936 **Grams Reacted** Dilution Cell Size Aborbance @ 578nm 0.1936 CCV: 0.304 1cm DU8-10-09 80 10.00 45 LCS: 0.370 08-107-10,013 0.001 10.062 60 0.000 10.038 <u>03</u> 0,000 04 10.013 6.000 05 10.051 0.000 0.000 10.059 1cm 0.000 10.049 0.001 1cm 10.044

Analyst: Date/Time: 08-10-09/0730

DCN#80376

Microbac Laboratories Inc. SAMPLE REPORT

Workgroup: WG309302

Analyst: DLP

Analyte: CYANIDE

Date: 08/10/2009

Sample ID	I Vol	F Vol	Response	Scru	bber	Slope	Y Intercept	Dil	Anal. Conc.	Rep. Conc.	Units
WG309302-01	10	10	0.370	50	250	1.440	-0.0006357	5	1.2870	6.4351	mg/kg
L09080107-01	10.013	10	0.00100	50	250	1.440	-0.0006357	1	0.028363	ND	mg/kg
WG309302-02	10.062	10	0	50	250	1.440	-0.0006357	1	0.010969	0.010902	mg/kg
L09080107-02	10.062	10	0	50	250	1.440	-0.0006357	1	0.010969	ND	mg/kg
L09080107-03	10.038	10	0	50	250	1.440	-0.0006357	1	0.010996	ND	mg/kg
L09080107-04	10.013	10	0	50	250	1.440	-0.0006357	1	0.011023	ND	mg/kg
L09080107-05	10.051	10	0	50	250	1.440	-0.0006357	1	0.010981	ND	mg/kg
L09080144-01	10.015	10	0	50	250	1.440	-0.0006357	1	0.011021	ND	mg/kg
WG309302-03	10.044	10	0	50	250	1.440	-0.0006357	1	0.010989	0.010941	mg/kg
L09080178-01	10.059	10	0	50	250	1.440	-0.0006357	1	0.010973	ND	mg/kg
L09080178-02	10.049	10	0.00100	50	250	1.440	-0.0006357	1	0.028261	ND	mg/kg

UV_REACTC - Modified 03/06/2008
Report generated 08/11/2009 09:36

Microbac Laboratories Inc. CONTINUING CALIBRATION REPORT

Workgroup #: WG309346

File ID: 1V.0908100730-01 CCV ID: WG309346-01

Units: mg/kg Analyte:CYANIDE Instrument ID: UV-120-1V

Run Date: 08/10/2009

Run Time: <u>07:30</u> Analyst: <u>DLP</u>

Cal ID:<u>UV-120 -</u>

Analyte	Expected	Found	RF	%D	Q
Reactivity, Cyanide	.194	0.212	1.57	9.3	

* Exceeds %D Limit

CCC Calibrtion Check Compounds SPCC System Performance Check Compounds

WET_WG_CCV - Modified 03/06/2008

Report generated 08/10/2009 11:14

Microbac

3.0 Attachments

Microbac Laboratories Inc. Analyst Listing August 12, 2009

ADC - ANTHONY D. CANTER ALB - ANNIE L. BROWN BRG - BRENDA R. GREGORY CAH - CHARLES A. HALL CLW - CHARISSA L. WINTERS DDE - DEBRA D. ELLIOTT DGB - DOUGLAS G. BUTCHER	AJF - AMANDA J. FICKIESEN AML - ANTHONY M. LONG CAA - CASSIE A. AUGENSTEIN CEB - CHAD E. BARNES CPD - CHAD P. DAVIS DEL - DON E. LIGHTFRITZ DIH - DEANNA I. HESSON	AJM - ANTHONY J. MOSSBURG BLG - BRENDA L. GREENWALT CAF - CHERYL A. FLOWERS CLC - CHRYS L. CRAWFORD CSH - CHRIS S. HILL DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER
DLP - DOROTHY L. PAYNE ECL - ERIC C. LAWSON FJB - FRANCES J. BOLDEN JBK - JEREMY B. KINNEY JWR - JOHN W. RICHARDS KEB - KATHRYN E. BARNES LKN - LINDA K. NEDEFF MDC - MICHAEL D. COCHRAN MRT - MICHELLE R. TAYLOR PDM - PIERCE D. MORRIS REK - ROBERT E. KYER SDH - SHANA D. HINYARD TIP - TAE I. PARRISH VC - VICKI COLLIER	DLR - DIANNA L. RAUCH EDA - ERIN D. AGEE HAV - HEMA VILASAGAR JDH - JUSTIN D. HESSON JWS - JACK W. SHEAVES KHR - KIM H. RHODES LSB - LESLIE S. BUCINA MES - MARY E. SCHILLING MSW - MATT S. WILSON RAH - ROY A. HALSTEAD RLK - ROBIN L. KLINGER SLM - STEPHANIE L. MOSSBURG TMB - TIFFANY M. BAILEY WTD - WADE T. DELONG	DR - DEANNA ROBERTS ERP - ERIN R. PORTER HJR - HOLLY J. REED JKT - JANE K. THOMPSON JYH - JI Y. HU KRA - KATHY R. ALBERTSON MDA - MIKE D. ALBERTSON MMB - MAREN M. BEERY NPM - NATHANIEL P. MILLER RB - ROBERT BUCHANAN RWC - RODNEY W. CAMPBELL SLP - SHERI L. PFALZGRAF TMM - TAMMY M. MORRIS

Microbac Laboratories Inc. List of Valid Qualifiers August 12, 2009

STD_ND=U Qualkey:

Qualifier Description

> U Not detected at or above adjusted sample detection limit

- ***Special Notes for Organic Analytes

 1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.
- 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- N-nitrosodiphenylamine cannot be separated from diphenylamine.
 3-Methylphenol and 4-Methylphenol are unresolvable compounds.
- 5. m-Xylene and p-Xylene are unresolvable compounds.
- 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

COC NO. (DATE-01)

Laboratory Name: Microbac

Shaw Environmental & Infrastructure, Inc.

3010 Briarpark Drive, Suite 400

Houston, TX 77042

(713) 996-4400

Address: 158 Starlite Drive, Marietta OH 45750

Contact: Stephanie Mossburg Phone: 1-800-373-4071

B-959, B-113, B-7460) (Ro 11 offs B-1111, B-1020, B-638 D-674) for PRDSO2 (PRDSO3 OMLY!! 24. HOUR TAT! (RILLOFF, B-543, Comments Reactivity Sulfide-SW7.34 Corrosivity pH-9045D ignitability-1010 Reactivity Cyanide-SW7.33 34-HOUR TAT! HOLD F0C5 Foch HOCO How ASC. STOP! 중 221000001000 PENDING ANAMONSIS Special Instructions \$34-Hour TAT! Don E Lightfuty Received: 08/08/2009 10:36 ₹ 90° Received: 08/08/2009

By: Don LIGHTFRITZ

On E Juh Microbac OVD **BCI SJATJIM **TCLP VOCs (8260)** Phone No: 713-996-4408 Site: Confirmation Sampling # of Containers Location: Karnack, TX Matrix Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil Received for Laboratory By: 13:50 14:30 13:36 Time 13:30 13:55 (3:35 07: (1 13:35 91:10 (3:15 Received By: 7:30 Date/Time Date/Time 18/4/09 6/4/00 b0/t/8 \$1/04 B0/4/8 BO/ E/2 Date 1/4/08 1/0/60 8/4/03 3/4/00 PM: Praveen Svrivastav (713.996.4588) Sampler Sign: Project Contact: Jennifer Hoang Grab Project Name: Pistol Range Project #: 117591-0009B340 × × × × × 8/7/09 ALLEN WILLMORE Sample Number Relinquished By: Relinquished By: MRO GIY GR PRO 542 CR Sampler Print: (713) 247-9292 RRO1022CR 12Ro 1113 GR PRRU 766GR PRKG 628GR PROIII GR R20459 GR Date/Time PRINSON Date/Time PRD503

COOLER INSPECTION

Received: 08/08/2009 10:36 Delivery Method: UPS Opened By: Don Lightfritz Comments:

Login(s): L09080178 L09080179

Cooler(s)

Cooler #	Temp Gun	Temp	Tracking #	COC#	Comments
0013142	Н	3.0	<u>1Z66V7254491566525</u>	date-01	

1	Yes	Were shipping coolers sealed?
2	Yes	Were custody seals intact?
3	Yes	Were cooler temperatures in range of 0-6?
4	Yes	Was ice present?
5	Yes	Were COC's received/information complete/signed and dated?
6	Yes	Were sample containers and labels intact and match COC?
7	Yes	Were the correct containers and volumes received?
8	NA	Were correct perservatives used? (water only)
9	NA	Were pH ranges acceptable? (voa's excluded)
10	NA	Were VOA samples free of headspace (<6mm)?
11	Yes	Were samples received within EPA hold times?

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L09080178

Account: 2773 **Project:** 2773.025

Samples: 2

Due Date: 11-AUG-2009

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080178-01</u> 604484 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:43	RLK	
2	PREP	W1	TCL	10-AUG-2009 11:14	RWC	RLK
3	STORE	TCL	A1	10-AUG-2009 11:59	RLK	RWC

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09080178-01</u> 604485 TC-ZHE

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:43	RLK	
2	PREP	W1	TCL	10-AUG-2009 11:14	RWC	RLK
3	STORE	TCL	A1	10-AUG-2009 11:59	RLK	RWC

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09080178-01 604486 REACTC REACTS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:43	RLK	
2	ANALYZ	W1	WET	10-AUG-2009 12:07	DLP	JKT
3	STORE	WET	A1	12-AUG-2009 08:02	RLK	JBK

 Samplenum
 Container ID
 Products

 L09080178-02
 604487
 TC-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:43	RLK	
2	PREP	W1	TCL	10-AUG-2009 11:14	RWC	RLK
3	STORE	TCL	A1	10-AUG-2009 11:59	RLK	RWC

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

00083888

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L09080178

Account: 2773 **Project:** 2773.025

Samples: 2

Due Date: 11-AUG-2009

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:43	RLK	
2	PREP	W1	TCL	10-AUG-2009 11:14	RWC	RLK
3	STORE	TCL	A1	10-AUG-2009 11:59	RLK	RWC

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09080178-02 604489 REACTC REACTS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-AUG-2009 10:43	RLK	
2	ANALYZ	W1	WET	10-AUG-2009 12:07	DLP	JKT
3	STORE	WET	A1	12-AUG-2009 08:02	RLK	JBK

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

158 Starlite Drive, Marietta, OH 45750 • T:740-373-4071 • F:740-373-4835 • http://www.microbac.com

Laboratory Report Number: L09080179

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories.

Review and compilation of your report was completed by Microbac's Sales and Service Team. If you have questions, comments or require further assistance regarding this report, please contact your team member noted in the reviewed box below at 800-373-4071. Team member e-mail addresses also appear here for your convenience.

Kathy Albertson Stephanie Mossburg Tony Long Amanda Fickiesen Annie Brown Team Chemist/Data Specialist Team Chemist/Data Specialist Team Chemist/Data Specialist Client Services Specialist Client Services Specialist

kalbertson@microbac.com smossburg@microbac.com tlong@microbac.com afickiesen@microbac.com abrown@microbac.com

This report was reviewed on August 19, 2009.

Stephanie Mossburg

Stephanie Mossburg - Team Chemist/Data Specialist

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories.

This report was certified on August 19, 2009.

State of origin: Texas

10 & Vande berg

Accrediting authority: Texas Commission on Environmental Quality ID:T104704252-07-TX

QAPP: Microbac OVD

This report contains a total of 195 pages.

David Vandenberg - Managing Director

Look closer. Go further. Do more.

Microbac Laboratories, Inc.

Phone: 800.373.4071 Fax: 740.373.4835

Ohio Valley Division

158 Starlite Drive

Marietta, OH 45750

Your data is now available online via our Web Access Portal!

Access and print reports, check the status of your projects, and review electronic data forms online from anywhere with internet access!

View a demo by visiting www.microbac.com and entering the Ohio Valley location Click on "Online Data Access"

User ID: jdoe@abc.com Password: demo

Contact your Microbac service representative to set up a FREE account today!

LOOK CLOSER, GO FURTHER, DO MORE.

Microbac REPORT L09080179 PREPARED FOR Shaw E I, Inc. WORK ID:

1.0 Introduction	
2.1 Metals Data	
2.1.1 Metals I C P Data	
2.1.1.1 Summary Data	
2.1.1.2 QC Summary Data	
2.1.2 Metals CVAA Data (Mercury)	
2.1.2.1 Summary Data	
2.1.2.2 QC Summary Data	
2.2 General Chemistry Data	
2.2.1 Reactivity Data	
2.2.1.1 Summary Data	
2.2.1.2 QC Summary Data	
2.2.1.3 Raw Data	
2.2.2 PH Data	
2.2.2.1 Summary Data	
2.2.2.2 QC Summary Data	
2.2.2.3 Raw Data	
2.2.3 Method Flashpoint	
2.2.3.1 Summary Data	
2.2.3.2 QC Summary Data	
2.2.3.3 Raw Data	
2.2.4 Reactive Cyanide Data	
2.2.4.1 Summary Data	
2.2.4.2 QC Summary Data	
2.2.4.3 Raw Data	
3.0 Attachments	

Date: <u>January 12, 2010</u>
Project No.: <u>117591</u>

Phone: (281) 531-3100/Fax: (281) 531-3143

TRANSMITTAL LETTER:

To:	Mr.	Aaron Willian	ns					
Address	: <u>US</u>	Army Corps of	f Engineers - '	Tulsa				
	CES	WT-PP-M						
	1645	South 101st I	East Ave					
	<u>Tuls</u>	a, Oklahoma ´	74128					
Re:	Cont	ghorn Army A	mmunition Pl			Submittal	X	Other
Item N	<i>lo:</i>	No. of Copies	Date:		Docu	ment Title		
Item N	<i>o</i> :	J	Date: January 2010	_	Documed Plan for LHAA	AP-46, Plant 2 A		Group 4
	Vo:	Copies	January	_	ed Plan for LHAA	AP-46, Plant 2 A		Group 4
1		Copies 2	January 2010	Longhorn Ar	ed Plan for LHAA	AP-46, Plant 2 A ant, Karnack, Te		Group 4
Aaron –	- Encl	Copies 2 losed please fin	January 2010 and the final ve	Longhorn Ar	ed Plan for LHAA my Ammunition Pla	r your records.	exas	

Distribution List:

Ms. Rose Zeiler – BRAC-LHAAP

Mr. Matthew Mechenes - AEC

Ms. Fay Duke – TCEQ (2)

Mr. Steve Tzhone – EPA (2)

Mr. Dale Vodak - TCEQ

Mr. Paul Bruckwicki –USFWS

Mr. John Lambert/Scottie Fiehler (distributed by A. Williams) - USACE

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

January 12, 2010

DAIM-ODB-LO

Mr. Stephen Tzhone US Environmental Protection Agency Superfund Division (6SF-AT) 1445 Ross Avenue Dallas, TX 75202-2733

Re: Final Proposed Plan for LHAAP-46, Plant 2 Area, Group 4

Longhorn Army Ammunition Plant, Karnack, Texas, January 2010

Dear Mr. Tzhone,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager, be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely.

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

F. Duke, TCEQ, Austin, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert/S. Fiehler, USACE, OK

A. Williams, USACE, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw – Houston, TX (for project files)

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

January 12, 2010

DAIM-ODB-LO

Ms. Fay Duke (MC-136) SSDAT/Superfund Section Remediation Division Texas Commission on Environmental Quality 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Final Proposed Plan for LHAAP-46, Plant 2 Area, Group 4

Longhorn Army Ammunition Plant, Karnack, Texas, January 2010

SUP 126

Dear Ms. Duke,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely,

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

S. Tzhone, USEPA Region 6, Dallas, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

A. Williams, USACE, OK

J. Lambert/S. Fiehler, USACE, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw – Houston, TX (for project files)

FINAL PROPOSED PLAN FOR LHAAP-46, PLANT 2 AREA, GROUP 4

ISSUED BY: U.S. ARMY

Longhorn Army Ammunition Plant Karnack, Texas

January 2010

INTRODUCTION

The purpose of this Proposed Plan is to present for public review the remedial alternatives for LHAAP-46. This Proposed Plan identifies the Preferred Remedial Alternative for LHAAP-46, site of the former Plant 2 Area, approximately 190 acres in size and located in the northcentral part of the Longhorn Army Ammunition Plant (LHAAP) in centraleast Texas. This plan includes summaries of other potential remedial alternatives evaluated for implementation at the site. The primary purpose of the Proposed Plan is to facilitate public involvement in the remedy selection process. The Proposed Plan will provide the public with basic background information about LHAAP-46, identify the preferred final remedies for potential threats posed by the chemical contamination at the site, explain the rationale for the preference, and describe other remedial options considered.

The U.S. Army is issuing this Proposed Plan for public review, comment, and participation to fulfill part of its public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 as amended by the Superfund Amendments and Reauthorization Act of 1986 and to present the public the best alternative under Section 300.430(f)(2) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The CERCLA prescribes a step-wise progression of increasingly complex activities to respond to risk posed by contaminated sites (Figure 1).

The preparation and review of a Proposed Plan is a distinct step required by CERCLA. This Proposed Plan summarizes information that can be found in greater detail in the Remedial Dates to remember: January 25, 2010, to

February 23, 2010

MARK YOUR CALENDER

PUBLIC COMMENT PERIOD:

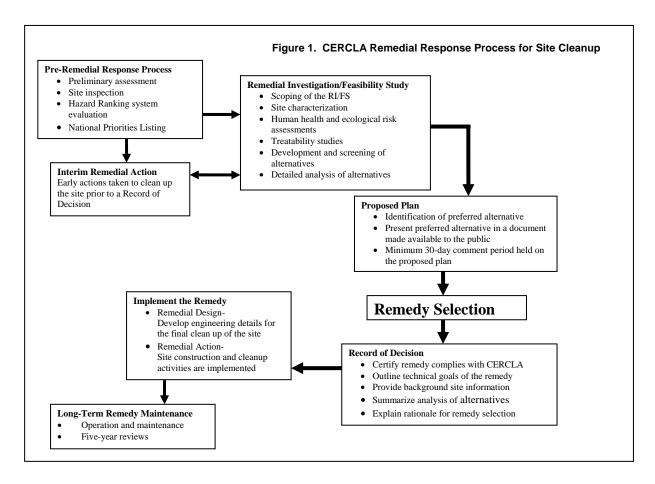
January 25, 2010 to February 23, 2010 The U.S. Army will accept written comments on the Proposed Plan during the public comment period.

PUBLIC MEETING: The U.S. Army will hold a public meeting to explain the Proposed Plan for LHAAP-46. Oral and written comments will be accepted at the meeting. The meeting will be held on January 26, 2010 from 6:00 p.m. to 8:00 p.m. at Karnack Community Center.

For more information, see the Administrative Record at the following location:

Marshall Public Library 300 S. Alamo Marshall, Texas 75670 Business Hours: Monday – Thursday (10:00 a.m. – 8:00 p.m.)

Friday – Saturday (10:00 a.m. – 8:00 p.m.)


For further information on LHAAP-46, please contact:

Dr. Rose M. Zeiler Site Manager Longhorn Army Ammunition Plant P.O. Box 220

Ratcliff, Arkansas 72951 Phone No.: 903.679.3192 Direct No.: 479.635.0110

E-mail address: rose.zeiler@us.army.mil

Investigation (RI) Report, the Data Gaps Investigation Report, the Feasibility Study (FS) Report, which includes the Natural Attenuation Evaluation Report, the Installation-Wide Baseline Ecological Risk Assessment (BERA), and other supporting documents that are contained in the Administrative Record for LHAAP-46. The project management team, including the U.S. Army, U.S. Environmental Protection Agency (USEPA), and the Texas Commission on Environmental Quality (TCEQ), encourages the public to review these documents to gain a more comprehensive understanding of the environmental conditions at LHAAP-46, and also to review and comment on the

alternatives presented in this Proposed Plan.

The U.S. Army, the lead agency for environmental response actions at LHAAP, is acting in partnership with USEPA Region 6 and TCEQ. As the lead agency, the U.S. Army is charged with planning and implementing remedial actions at LHAAP. The regulatory agencies assist the U.S. Army by providing technical support, project review, project comment, and oversight in accordance with CERCLA and the NCP as well as the Federal Facility Agreement (FFA).

The proposed plan summarizes the site characteristics, scope and role of response action, and summary of site risks. This is followed by a presentation of the remedial action objectives (RAO) and summary of remedial alternatives for LHAAP-46.

Finally, an evaluation of alternatives and a summary of the preferred alternative are presented.

SITE BACKGROUND

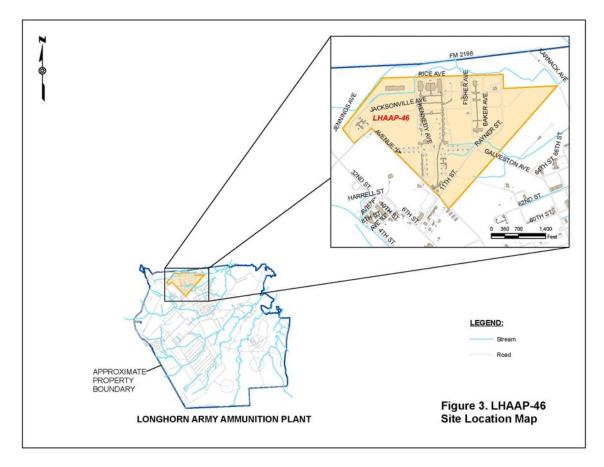
LHAAP is located in central-east Texas in the northeastern corner of Harrison County (**Figure 2**). The installation occupies approximately 1400 of its former 8,416 acres between State Highway 43 at Karnack, Texas, and the western shore of Caddo Lake. The nearest cities are Marshall, Texas, approximately 14 miles to the southwest, and Shreveport, Louisiana, approximately 40 miles to the southeast. Caddo Lake, a large freshwater lake situated on the Texas-Louisiana border, bounds LHAAP to the north and east.



Figure 2 Location of the Longhorn Army Ammunition Plant, Harrison County, Texas

The U.S Army has transferred nearly 7,000 acres to the U.S. Fish and Wildlife Service (USFWS) for management as the Caddo Lake National Wildlife Refuge. The property transfer process is continuing as response is completed at individual sites. The local restoration advisory board has been kept informed of previous investigations at this site through regularly held quarterly meetings. Additionally, the administrative record is updated at least twice per year and is available at the local public library.

Due to releases of chemicals from facility operations, LHAAP was placed on the Superfund National Priorities List (NPL) on August 9, 1990. Activities to remediate contamination associated with the listing of LHAAP as a Superfund site began in 1990. After being listed on the NPL, the U.S. Army, the USEPA, and the Texas


Water Commission (currently known as the TCEQ) entered into a CERCLA Section 120 FFA for remedial activities at LHAAP. The FFA became effective December 30, 1991. LHAAP operated until 1997 when it was placed on inactive status and classified by the U.S. Army Armament, Munitions, and Chemical Command as excess property.

LHAAP-46 was not one of the originally listed NPL sites in the FFA but will be managed in the same manner because of the presence of contaminated groundwater under the site.

LHAAP-46, known as the Plant 2 Area, is located in the north-central portion of LHAAP (**Figure 3**) and covers approximately 190 acres. Facilities for producing JB-2 propellant fuel at LHAAP-46 began in 1944, but construction was halted in 1945 with the end of World War II. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices in 1964 until approximately 1997.

Between 1992 and 2003 numerous investigations were conducted in a phased approach to determine the nature and extent of contamination at LHAAP-46.

These investigations included a Pre-Phase I investigation in 1992 and 1993; Phase I through III RIs conducted in 1993, 1994, 1996, and1998 (Jacobs, 2002); perchlorate investigation of five wells in 2002 (STEP, 2005); and groundwater and soil sampling as part of the Phase II Environmental Site Assessment performed in 2003 (Plexus, 2005). Media investigated included soil and groundwater.

The Final Baseline Human Health Risk Assessment (BHHRA) (Jacobs, 2003) used data from the investigations conducted through 2001 including the plant-wide perchlorate investigation. Additional investigations were conducted by Shaw in 2004, 2006, 2007, and 2008 after the BHHRA was finalized to further delineate the extent of groundwater contamination identified during previous sampling events. The results of the 2004 investigation were presented in the Data Gaps Report (Shaw, 2007a). Sampling results from Building 407 sampling in 2006, natural attenuation and geochemical evaluation in 2007, monitoring wells (volatile organic compounds [VOCs]) sampling in 2008, and details of new intermediate zone well installations are included in the Final Feasibility Study (Shaw, 2009).

SITE CHARACTISTICS


The surface features at LHAAP-46 are a mixture of asphalt-paved roads, parking areas, building foundation remnants, old buildings, and overgrown wooded and grassy vegetation-covered areas. The topography in this area is relatively flat with the surface drainage flowing east into tributaries of Goose Prairie Creek, which eventually flows into Caddo Lake. The lake is a source of drinking water for several neighboring communities in Louisiana.

Groundwater at the site was encountered approximately 11 to 23 feet below ground surface (bgs) in the shallow groundwater zone, to approximately 23 to 30 feet bgs in the intermediate zone, and to approximately 33 feet bgs in the deep zone. The predominant groundwater flow in the shallow zone at the site is generally

to the east and in the intermediate zone is generally to the northeast. When there is no apparent separation between the zones or sand layers, the layers are considered interconnected. This occurs at LHAAP-46 near wells LHSMW23 and LHSMW26 and the groundwater bearing zone has been designated as a composite shallow/intermediate zone.

The post-2002 sump soil sampling results were evaluated in the Final Data Evaluation Report for LHAAP-35/36 and it was concluded that the cancer risk and noncancer hazard values were still within the acceptable range, and no further action was required for the soils around the 46 sumps and 14 waste rack sumps located at LHAAP-46 (Shaw, 2008).

The additional data collected since the risk assessment was evaluated in the FS to refine the list of chemicals of concern (COCs) in groundwater. It should be noted that the additional data collected did not change the overall outcome of the risk assessment as discussed in the "SUMMARY OF SITE RISKS" section. The COCs for LHAAP-46 identified in the FS are trichloroethene (TCE) in the shallow and intermediate groundwater zones as shown on Figure 4. The shallow zone has approximately 1.41 million gallons of contaminated groundwater in the shallow zone and approximately 7.85 million gallons in the intermediate zone. No principal threat source material was identified at LHAAP-46.

SCOPE AND ROLE OF THE ACTION

The scope and role of the action discussed in this proposed plan includes all remedial actions planned for this site. The recommended remedial action at LHAAP-46 will prevent potential risks associated with exposure to contaminated groundwater in both the shallow and intermediate groundwater zones. Although the groundwater at LHAAP is not currently being used as drinking water, nor may be used in the future based on its reasonably anticipated use as a national wildlife refuge, when establishing the RAOs for this response action, the U.S. Army has considered the NCP's expectation to return useable groundwater to its beneficial use wherever practicable. The U.S. Army has also considered the State of Texas designation of all groundwater as potential drinking water, unless otherwise classified, and consistent with, Texas Administrative Code (TAC), Title 30, §335.563 (h)(1). The Army intends to return the contaminated shallow and intermediate groundwater zones at LHAAP-46 to their potential beneficial uses, which is considered to be the attainment of Safe Drinking Water Act maximum contaminant levels (MCLs) to the extent practicable, and consistent with the Code of Federal Regulations, Title 40, 300.430(e)(2)(i)(B&C). If a return to beneficial uses is not practicable, the NCP expectation is to prevent further migration of the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction.

The preferred remedial action will ensure protection of human health and the environment. The preferred remedial action will include groundwater monitoring to demonstrate that the plumes are not migrating and to verify that contaminant levels are being reduced. Land use controls (LUCs) may be

terminated when contaminant levels are reduced to MCLs.

SUMMARY OF SITE RISKS

The reasonably anticipated future use of this site is nonresidential as part of the Caddo Lake National Wildlife Refuge. This anticipated future use is based on a Memorandum of Agreement (U.S. Army, 2004) between the USFWS and the Army which documents the transfer process of the LHAAP acreage to USFWS to become the Caddo Lake National Wildlife Refuge. Presently the Caddo Lake National Wildlife Refuge occupies nearly 7,000 acres of the former installation. The property must be kept as a National Wildlife Refuge unless there is an act of Congress which removes the parcel or the land is exchanged in accordance with the National Wildlife Refuge System Administration Act of 1966 and the National Wildlife Refuge System Act Amendments of 1974.

As part of the RI/FS, a baseline human health risk assessment and screening ecological risk assessment were conducted for LHAAP-46 to determine current and future effects of contaminants on human health and the environment to support technical review and risk management decisions.

Human Health Risks

The baseline risk assessment estimates what risk the site poses if no action were taken. It provides the basis for taking action and identifies the contaminants and exposure pathways that need to be addressed by the remedial action. The applicable receptor scenario for future use as a wildlife refuge is a hypothetical future maintenance worker. For carcinogens, risks are generally expressed as the incremental probability of an individual developing cancer over a

lifetime as a result of exposure to the carcinogen and are expressed in scientific notation (e.g., 1×10^{-6}). USEPA's acceptable risk range for site-related exposures is 1×10^{-4} to 1×10^{-6} , i.e., onein-ten thousand to one-in-one million. The potential for non-cancer effects is expressed by a ratio of the exposure to the toxicity. An individual chemical ratio less than 1 indicates that toxic non-cancer effects from that chemical are unlikely. A non-cancer hazard index (HI) is calculated when all the ratios for the individual chemicals are summed. An HI greater than 1 indicates that site-related exposures may present a risk to human health. Thus, an HI of less than 1 is acceptable since toxic non-cancer effects are unlikely.

Using data presented in the RI, cancer risk and the non-cancer HI were calculated based on future maintenance worker exposure to the site environmental media (e.g., soil and groundwater) under an industrial scenario. Based on the BHHRA, the soil does not pose a carcinogenic risk or a noncarcinogenic hazard to the hypothetical future maintenance worker. However, the groundwater at LHAAP-46 poses an unacceptable non-carcinogenic human health hazard to a hypothetical future maintenance worker at LHAAP-46 under an industrial scenario with the exposure route of drinking the water or using the water for hand washing and showering. Contaminant concentrations in the groundwater were also compared to the MCLs.

The primary COC in groundwater is TCE. The maximum detected concentration of TCE was observed at 85.5 parts per billion (ppb) which exceeds the MCL of 5 ppb, a federal and state drinking water standard. All daughter products of TCE

are also considered COCs, which include dichloroethenes and vinyl chloride.

Because the risk evaluation was based on the reasonably anticipated future use as a wildlife refuge, Texas Administrative Code requires that a recordation notification be filed with Harrison County per TAC §335.566 disclosing that the site is suitable for nonresidential use. Additionally, limited monitoring in the form of Five-Year Reviews will serve to document that the use of the site remains consistent with the industrial/recreational exposure scenario evaluated in the risk assessment.

Ecological Risks

The ecological risk for site LHAAP-46 was addressed in the installation-wide BERA (Shaw, 2007c). For the BERA, the entire installation was divided into three large sub-areas (i.e., the Industrial Sub-Area, Waste Sub-Area, and Low Impact Sub-Area) for the terrestrial evaluation. The individual sites at LHAAP were grouped into one of these sub-areas, which were delineated based on commonalities of historic use, habitat type, and spatial proximity to each other. The conclusions regarding the potential for chemicals detected at individual sites to adversely affect the environment must be made in the context of the overall conclusions of the sub-area in which the site falls. Site LHAAP-46 lies within the Industrial Sub-Area.

The BERA evaluated potential ecological risk to a number of endpoint receptors, as well as terrestrial plant and invertebrate communities. Endpoint receptors were evaluated using a food chain model that estimated a daily dose intake, which was subsequently compared with toxicity reference values to generate a hazard quotient. Terrestrial communities were

evaluated through comparisons of detected concentrations to conservative benchmarks. Multiple lines of evidence (e.g., spatial distribution of concentrations, etc.) were also considered. After evaluating all lines of evidence, the BERA concluded that the potential for ecological risk was sufficiently low at the Industrial Sub-Area, and that no further evaluation for ecological receptors was required (Shaw, 2007c). Therefore, no action is needed at LHAAP-46 for the protection of ecological receptors.

Preferred Alternative

It is the current judgment of the U.S. Army that the preferred alternative identified in this Proposed Plan, or one of the other active measures considered in the Proposed Plan, is necessary to protect the public health or welfare or the environment from actual or threatened releases of hazardous substances into the environment.

REMEDIAL ACTION OBJECTIVES

The Army recognizes USEPA's policy to return all groundwater to beneficial uses, based on the non-binding programmatic expectation in the NCP. The RAOs for LHAAP-46, which address contamination associated with the media at the site and take into account the future uses of LHAAP streams, land, and groundwater, are:

- Protect human health for the hypothetical future maintenance worker by preventing exposure to groundwater contaminated by VOCs.
- Return groundwater to its potential beneficial use as a drinking water, wherever practicable, within a reasonable time period given the particular site circumstances.

SUMMARY OF REMEDIAL ALTERNATIVES

The feasibility studies identified and screened remedial technologies and associated process options that may be appropriate for satisfying the RAOs for LHAAP-46 with respect to effectiveness, implementability, and cost. The following remedial alternatives were developed from the retained remedial technologies carried forward after the initial screening:

- Alternative 1 No Action Alternative
- Alternative 2 Monitored Natural Attenuation (MNA) and LUCs
- Alternative 3 In Situ Bioremediation, MNA, and LUCs

Common Elements. There are common elements in the alternatives.

Land Use Controls

Because contamination would be left in place at LHAAP-46 for Alternative 2, and because contamination would be present for the duration of remedial activities in Alternatives 3, LUCs would be common to these alternatives. The LUCs will prevent human exposure to residual groundwater contamination presenting an unacceptable risk to human health, and ensure no withdrawal or use of groundwater beneath the sites for anything other than environmental monitoring and testing. LUCs will support the RAOs.

The U.S. Army would be responsible for implementation, maintenance, inspection, reporting, and enforcement of the LUCs. The Army intends to provide details of the LUCs implementation and maintenance actions in the Remedial Design (RD) for LHAAP-46. The groundwater restriction LUCs shall be maintained until the concentrations of contaminants and byproduct (daughter) contaminants in

groundwater have been reduced to levels below their respective MCLs under the Safe Drinking Water Act to allow unrestricted use and unlimited exposure at LHAAP-46. In addition, the Texas Department of Licensing and Regulation responsible for notifying well drillers of groundwater restrictions would be notified and a notification of LUCs with the Harrison County Courthouse would include a map showing the areas of groundwater restriction at the site.

In order to transfer LHAAP-46 to another federal entity, an Environmental Condition of Property (ECOP) document will be prepared and attached to the letter of transfer. The ECOP will include LUCs for groundwater as part of the Environmental Protection Provisions. The property will be transferred subject to the land use controls that are identified in the ECOP. These restrictions would prohibit or restrict property uses that may result in exposure to the contaminated groundwater (e.g., drilling restrictions, drinking water well restrictions).

Inspection and Long-Term Monitoring

Alternatives 2 and 3 include inspection and long-term groundwater monitoring activities. Monitoring would be continued as required to demonstrate effectiveness of the remedy, compliance with applicable or relevant and appropriate requirements (ARARs), to-be-considered requirements, RAOs, and to support CERCLA Five-Year Reviews.

Although the U.S. Army may later pass these procedural responsibilities to the transferee by property transfer agreement, the U.S. Army shall retain ultimate responsibility for remedy integrity.

Alternative 1 - No Action. As required by the NCP, the no action alternative provides a comparative baseline against

which the action alternatives can be evaluated. Under this alternative, the groundwater would be left "as is" without implementing any additional containment, removal, treatment, or other mitigating actions. No other actions would be implemented to prevent potential human exposure to contaminated groundwater.

Estimated Capital Cost: \$0

Estimated Operations and Maintenance

(O&M) Cost: \$0

Estimated Duration: --

Estimated Present Worth Cost: \$0

Alternative 2 – Monitored Natural Attenuation and Land Use Controls

This alternative will provide actions to limit exposure to the contaminated groundwater in both the shallow and intermediate zones and demonstrate reduction of contamination via natural processes to MCLs.

MNA is a passive remedial action that relies on natural biological, chemical, and physical processes to reduce the mass and concentration of groundwater COCs under favorable conditions. MNA would assure the protection of human health and the environment by documenting that the contaminated groundwater remains localized with minimal migration and that contaminant concentrations are being reduced to MCLs. The LUCs would remain in effect until MCLs are met.

Estimated Capital Cost: \$60,500 Estimated O&M Cost: \$460,700

Estimated Duration: 30 years

Estimated Present Worth Cost: \$521,200

Alternative 3 – In Situ Bioremediation, Short-Term LUCs, and LTM. This alternative will reduce groundwater contaminant concentrations to MCLs and prevent exposure to the contaminated groundwater until MCLs are met. To achieve these goals, this alternative utilizes in situ bioremediation to enhance attenuation and reduce groundwater contaminant concentrations to the MCLs, and maintains LUCs only until such time that the MCLs are met for groundwater contaminants through remediation.

Estimated Capital Cost: \$379,000

Estimated O&M Cost: \$365,000

Estimated Duration: 15 years

Estimated Present Worth Cost: \$744,000

EVALUATION OF ALTERNATIVES

Nine criteria identified in the NCP, §300.430(e)(9)(iii), are used to evaluate the different remediation alternatives individually and against each other in order to select a remedy. This section profiles the relative performance of each alternative against the nine criteria, noting how it compares to the other options under consideration. The nine evaluation criteria are discussed below. The "Detailed Analysis of Alternatives" can be found in the FS for the site (Shaw, 2009).

1. Overall Protection of Human Health and the Environment

The three alternatives provide varying levels of human health protection.

Alternative 1, no action, does not achieve the RAOs and provides the least protection of all the alternatives; it provides no reduction in risks to human health or the environment because no measures would be implemented to eliminate the pathway for human exposure to the groundwater contamination.

Alternatives 2 and 3 satisfy the RAOs for LHAAP-46. Alternatives 2 and 3 provide confirmation that human health and the

environment are protected because monitoring would be conducted to document that the plumes are not migrating. Furthermore, LUCs would protect human health by preventing access to the contaminated groundwater until contaminants in groundwater are reduced to the MCLs.

2. Compliance with ARARs

Alternative 1 does not comply with chemical-specific ARARs because no remedial action or measures would be implemented. Alternatives 2 and 3 comply with groundwater and surface water chemical specific ARARs because they will return contaminated groundwater to its potential beneficial use as a drinking water, wherever practicable, in compliance with the Safe Drinking Water Act MCLs as relevant and appropriate.

Location-specific and action-specific ARARs would not apply to Alternative 1 since no remedial activities would be conducted. Alternatives 2 and 3 comply with all location-specific and action-specific ARARs.

3. Long-Term Effectiveness and Permanence

Alternative 1 would be the least effective and least permanent in the long term because no contaminant removal or treatment would take place and no measures would be implemented to control exposure risks posed by the contaminated groundwater. Also, the potential exists for contaminated groundwater to migrate toward and discharge into Goose Prairie Creek and then subsequently into Caddo Lake, a source of drinking water. However, the results of plume migration modeling indicate that contaminants present in the shallow groundwater at LHAAP-46 will

not adversely impact the surface water of Goose Prairie Creek (Shaw, 2007b).

Alternatives 2 and 3 are remedial actions that would permanently reduce contaminant levels in the groundwater over time and return the groundwater to its potential beneficial use as drinking water wherever practicable, with Alternative 3 taking the least amount of time.

Natural attenuation processes are effectively controlling plume migration at LHAAP-46 and have stabilized the size of the plume. Based on predictive analysis, natural attenuation is expected to continue to be successful at the site. However, when performance is based on predictive analysis, contingency measures should be included in the decision document (USEPA, 1999). Therefore, Alternative 2 will include a contingent remedy if selected as the preferred remedy.

Alternative 3 would also work to control plume migration through contaminant reduction by in situ bioremediation. However, some uncertainty exists regarding the ability of in situ bioremediation to effectively reduce concentrations further and enhance natural attenuation, and therefore, further evaluation would be required. Should in situ bioremediation be considered ineffective after implementation, the remedy may need to be reevaluated. Alternatives 2 and 3 rely on LUCs for the protection of human health until the MCLs are achieved.

4. Reduction of Toxicity, Mobility, or Volume through Treatment

Alternative 1 does not employ treatment and would not result in a reduction of toxicity, mobility, or volume of contaminants. MNA and in situ bioremediation would permanently reduce the mass and concentration of contaminants and, therefore, the volume, toxicity and mobility of the contaminants. MNA is a passive remedial action and bioremediation is an active treatment process.

Alternatives 2 and 3, however, include the generation of daughter products that may temporarily increase toxicity or mobility of the contaminant plume, with in situ bioremediation working in a shorter time frame. Both alternatives include monitoring so that daughter products would be quantified, documented, and evaluated. Daughter product concentrations will be reduced under both alternatives to levels below their associated MCLs to return groundwater to its potential beneficial use as drinking water, wherever practicable.

Since there is no known residual source of groundwater contamination in the soils at LHAAP-46, achievement of cleanup levels in groundwater would be expedited under Alternative 3 by implementing in situ bioremediation in areas of highest contaminant concentrations in the groundwater. It is noted, however, that monitoring for contaminants would be performed to assess the effectiveness of the treatment. It is also anticipated that COCs will remain above MCLs in the plume outside the treated areas and will continue to attenuate to levels below MCLs over time.

5. Short-Term Effectiveness

Because Alternative 1 does not involve any remedial measures, no short-term risk to workers, the community or the environment would exist. The activities associated with Alternative 2 and Alternative 3 are protective to the surrounding community from short-term risks. Alternatives 2 and 3 involve potential short-term risks to workers associated with exposure to contaminated groundwater and operation of drilling/construction equipment.

Alternatives 2 and 3 both contain LUCs as elements of their remedies and would provide almost immediate protection by prohibiting installation of potable wells through relatively quick LUC implementation. The time period to achieve groundwater cleanup levels is the most significant difference between Alternative 1 versus Alternatives 2 and 3. Alternative 3 is expected to take less time to achieve RAOs, provided treatability testing for in situ bioremediation is favorable. The implementation of Alternative 2 would require more time than Alternative 3.

6. Implementability

Under the no action alternative, no remedial action would be taken. Therefore, no difficulties or uncertainties would be associated with its implementation. Alternative 2 is easily implemented from a technical standpoint because no construction activities would be performed, although routine long-term maintenance and enforcement of the LUCs, long-term evaluation of MNA, and long-term sampling would be required.

Alternative 3 is also technically implementable, although less so than Alternative 2 because of the uncertainties associated with the ability of in situ bioremediation to effectively lower contaminant levels and to enhance natural attenuation. Alternative 3 would be somewhat more difficult to implement than Alternative 2 from a technical standpoint due to the specialized expertise

required to design and construct the in situ bioremediation treatment elements.

Administratively, all of the alternatives are implementable.

7. Cost

Cost estimates are used in the CERCLA FS process to eliminate those remedial alternatives that are significantly more expensive than competing alternatives without offering commensurate increases in performance or overall protection of human health or the environment. The cost estimates developed are preliminary estimates with an intended accuracy range of +50 to -30 percent. Final costs will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final scope, final schedule, final engineering design, and other variables.

Costs developed are capital costs (including fixed-price remedial construction) and long-term O&M costs (post-remediation). Overall 30-year present worth costs are developed for each alternative assuming a discount rate of 2.8 percent.

The progression of present worth costs from the least expensive alternative to the most expensive alternative is as follows: Alternative 1, Alternative 2, and Alternative 3. No costs are associated with Alternative 1 because no remedial activities would be conducted.

Alternative 2 has the lowest present worth and capital costs of the remedial action alternatives. The highest capital cost is associated with Alternative 3 primarily due to the activities associated with the injection phase of in situ bioremediation.

8. State/Support Agency Acceptance

The USEPA and TCEQ have reviewed the Proposed Plan. Comments received from the USEPA and TCEQ during the Proposed Plan development have been incorporated. Both agencies concur with the preferred alternative.

9. Community Acceptance

Community acceptance of the preferred alternative will be evaluated after the public comment period ends and will be described in the Record of Decision (ROD) for the site.

SUMMARY OF THE PREFERRED ALTERNATIVE

Alternative 2, MNA and LUCs, is the preferred alternative for LHAAP-46 and is consistent with the intended future use of the site as a wildlife refuge. This alternative is recommended because it will satisfy the RAOs for the site through groundwater use restriction LUCs, which will ensure protection of human health by preventing human exposure to contaminated groundwater and MNA, which will return the contaminated water to its potential beneficial use as a drinking water, wherever practicable. The LUCs will remain in place until MCLs are met. Furthermore, MNA will assure protection of human health and the environment by preventing contaminated groundwater from migrating into nearby surface water bodies at levels that exceed MCLs. The long-term monitoring and reporting associated with the MNA remedy will continue until primary COC and daughter product MCLs are achieved. Based on a preliminary natural attenuation evaluation and groundwater modeling, MCLs are expected to be met through natural attenuation in approximately 23 years for TCE (Shaw, 2009). Considering the lithologic variability, particularly the

lateral and vertical change from sand to clay, the times to MCL may vary by an order of magnitude. The groundwater flow rates are within the normal range for the formation material at these sites. Thus, no adverse impact is expected to the surface water during the time it would take natural attenuation to reduce contaminant concentrations to MCLs. The selected alternative offers a high degree of long-term effectiveness, can be easily and immediately implemented, and costs less than the Alternative 3.

The performance of MNA will be evaluated after two years of performance monitoring using data from the eight quarters and from the historical sampling events of the prior ten years. The performance objectives will be included in the RD. If it is found that the performance objectives are not met, a contingent remedy such as in situ bioremediation (see Alternative 3 description for basic elements) will be implemented. The decision regarding use of the contingent remedy to address the groundwater contamination will be considered after two years of MNA and would be implemented, if required, after approval of the remedial design. The contingent remedy will be designed to address the contamination after two years of MNA.

Based on the information currently available, the U.S. Army believes that the preferred alternative meets the threshold criteria and provides the best balance of tradeoffs among the other alternatives with respect to the CERCLA §121(b) criteria used to evaluate remedial alternatives. The preferred alternative will 1) be protective of human health and the environment; 2) comply with ARARs; 3) be cost-effective; 4) utilize permanent solution; and 5) does not utilize an active treatment as a principal element.

Although the selected remedy is not intended to address the statutory preference for treatment to the maximum extent possible, the final selected remedy offers, within a reasonable time frame and at a lower cost, a similar level of protection to human health and the environment than the remedy alternative which satisfies the preference for treatment. In addition, no source materials constituting principal threats will be addressed within the scope of this action.

The Army intends to present details of the LUCs implementation plan, the groundwater monitoring plan, and the MNA remedy implementation in a RD for LHAAP-46.

The remedy selected in the ROD may change from the preferred alternative presented here, based on public comment.

Notification of nonresidential use will accompany all transfer documents and

will be recorded in the County Courthouse. Five-Year Reviews will be performed to document the remedy remains protective of human health and the environment.

COMMUNITY PARTICIPATION

The U.S. Army, USEPA, and TCEQ provide information regarding LHAAP-46 through public meetings, the Administrative Record file for the facility, and announcements published in the Shreveport Times and Marshall News Messenger newspapers.

The dates for the public comment period, the date, location, and time of the public meeting, and the locations of the Administrative Record files are provided on the front page of this Proposed Plan.

Any significant changes to the Proposed Plan, as presented in this document, will be identified and explained in the ROD.

Primary Reference Documents for LHAAP-46

Jacobs Engineering Group Inc. (Jacobs), 2002, Final Remedial Investigation Report for the Group 4 Sites 35A, 35B, 35C, 46, 47, 48, 50, 60, and Goose Prairie Creek, at the Longhorn Army Ammunition Plant, Karnack, Texas, January.

Jacobs, 2003, Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites (Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunder's Branch, Central Creek, and Caddo Lake), Longhorn Army Ammunition Plant, Karnack, Texas, June.

Plexus, 2005, Environmental Site Assessment, Phase I and II Report, Final, Production Areas, Longhorn Army Ammunition Plant, Karnack, Texas, June.

Shaw Environmental, Inc. (Shaw), 2007a, Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw, 2007b, Final Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, April.

Shaw, 2007c, Installation-Wide Baseline Ecological Risk Assessment, Longhorn Army Ammunition Plant, Karnack, Texas, Volume I: Step 3 Report, November.

Shaw, 2008, Final Data Evaluation Report, Chemical Concentrations in Soil Samples Associated with LHAAP-35/36 Sumps, Longhorn Army Ammunition Plant, June.

Shaw, 2009, Final Feasibility Study, LHAAP-46, Longhorn Army Ammunition Plant, Karnack, Texas, October.

Solutions to Environmental Problems, In, (STEP), 2005, Final Project Report, Plant-Wide Perchlorate Investigation, April.

United States Army, 2004, Memorandum of Agreement Between the Department of the Army and the Department of the Interior for the Interagency Transfer of Lands at the Longhorn Army Ammunition Plant for the Caddo Lake National Wildlife Refuge, Harrison County, Texas, Signed by the Department of the Interior on April 27, 2004 and the Army on April 29, 2004.

U.S. Environmental Protection Agency (USEPA), 1999, *Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites*, April.

GLOSSARY OF TERMS

Administrative Record — The body of reports, official correspondence, and other documents that establish the official record of the analysis, cleanup, and final closure of a CERCLA site.

ARARs — Applicable or relevant and appropriate requirements. Refers to the federal and state requirements that a selected remedy will attain.

Attenuation — The process by which a compound is reduced in concentration over time, through absorption, adsorption, degradation, dilution, and/or transformation.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) — This law authorizes the Federal Government to respond directly to releases (or threatened releases) of hazardous substances that may be a danger to public health, welfare, or the environment. The U.S. Army currently has the lead responsibility for these activities.

Environmental Media — Major environmental categories that surrounds or contact humans, animals, plants, and other organisms (e.g., surface water, ground water, soil or air) and through which chemicals or pollutants move.

Exposure — Contact of an organism with a chemical or physical agent. Exposure is quantified as the amount of the agent available at the exchange boundaries of the organism (e.g., skin, lung, digestive tract, etc.) and available for absorption.

Groundwater — Underground water that fills pores in soil or openings in rocks to the point of saturation.

Hazard Index — The hazard index is the sum of the hazard quotients for all chemicals to which an individual is exposed. A hazard index value of 1.0 or less indicates that no adverse non-cancer human health effects are expected to occur. Each hazard quotient is a comparison of an estimated chemical intake (dose) with a reference dose level below which adverse health effects are unlikely. Each hazard quotient is expressed as the ratio of the estimated intake (numerator) to the reference dose (denominator). The value is used to evaluate the potential for non-cancer health effects, such as organ damage, from chemical exposures.

Maximum Contaminant Level (MCL) — The maximum contaminant level is the maximum permissible level of a contaminant in a public system. MCLs are defined in the Code of Federal Regulation (40 CFR 141, National Primary Drinking Water Regulations which implement portions of the Safe Drinking Water Act). The TCEQ has adopted MCLs at the regulatory cleanup level for both industrial and residential uses. Any detected compound in the groundwater samples with a MCL were evaluated by comparing them to their associated MCL. MCL comparisons are performed using an average or other site-representative concentration.

Proposed Plan — A report for public comment highlighting the key factors that form the basis for the selection of the preferred remediation alternative.

Remedial Action — The actual construction or implementation phase of a Superfund site cleanup that follows remedial design.

Risk Assessment — An analysis of the potential adverse health effects (current and future) caused by hazardous substances at a site in the absence of any actions to control or mitigate these releases (i.e., under an assumption of no action). The assessment contributes to decisions regarding appropriate response alternatives.

Superfund — The common name used for CERCLA; also referred to as the Trust Fund. The Superfund Program was established to help fund cleanup of hazardous waste sites. It also allows legal action to force those responsible for sites to clean them up.

ACRONYMS

ARARs applicable or relevant and appropriate requirements

BERA Baseline Ecological Risk Assessment

bgs below ground surface

BHHRA baseline human health risk assessment

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COC chemical of concern

ECOP environmental condition of property

FFA Federal Facility Agreement

FS feasibility study HI hazard index

LHAAP Longhorn Army Ammunition Plant

LUC land use control

MCL maximum contaminant level MNA monitored natural attenuation

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NPL National Priorities List O&M operation and maintenance

ppb parts per billion

RAO remedial action objective

RD remedial design
RI remedial investigation
ROD record of decision

TAC Texas Administrative Code

TCE trichloroethene

TCEQ Texas Commission on Environmental Quality USEPA U.S. Environmental Protection Agency

USFWS U.S. Fish and Wildlife Service VOC volatile organic compound

USE THIS SPACE TO WRITE YOUR COMMENTS
Your input on the Proposed Plan for LHAAP-46 is important to the U.S. Army. Comments provided by the public are valuable in helping the U.S. Army select a final remedy for these sites.
You may use the space below to write your comments, then fold and mail to Dr. Rose M. Zeiler, P.O. Box 220, Ratcliff, Arkansas 72951. Comments must be postmarked by February 23, 2010. If you have questions about the comment period, please contact Dr. Rose M. Zeiler at 479-635-0110. Those with electronic communications capabilities may submit their comments to the U.S. Army via Internet at the following e-mail address: rose.zeiler@us.army.mil

Date: <u>January 19, 2010</u> Project No.: <u>117591</u>

Phone: (281) 531-3100/Fax: (281) 531-3136

TRANSMITTAL LETTER:

	Mr. Aaron Williams						
Addres	s: US	Army Corps of	f Engineers - 7	Γulsa	<u> </u>		
	CES	SWT-PP-M					
	1645 South 101st East Ave				<u></u>		
	<u>Tuls</u>	sa, Oklahoma 7	74128		_		
Re:	Fina	ıl Proposed Pla	n for LHAAP	-35A(58), Shops	Area, Group 4		
	Con	tract No. W912	2QR-04-D-002	27/DS02	_		
For: 1	Reviev	w As Re	quested	Approval	Corrections	Submittal	Other X
Item 1	Vo:	No. of Copies	Date:		Docum	ent Title	
1		2	January 2010		d Plan for LHAAF my Ammunition Pl		
distribu		osed are two co indicated belo		's draft final vers	sion of the above-na	med document. (Copies have been
	ted as		w.		sion of the above-na	med document. (Copies have been
	ted as	indicated belo	w.		sion of the above-na Sincerely:	Praveen Sri Project Man	vastav

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

January 19, 2010

DAIM-ODB-LO

Mr. Stephen Tzhone US Environmental Protection Agency Superfund Division (6SF-AT) 1445 Ross Avenue Dallas, TX 75202-2733

Re: Final Proposed Plan for LHAAP-35A(58), Shops Area, Group 4 Longhorn Army Ammunition Plant, Karnack, Texas, January 2010

Dear Mr. Tzhone,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager, be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely.

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

F. Duke, TCEQ, Austin, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw – Houston, TX (for project files)

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

January 19, 2010

DAIM-ODB-LO

Ms. Fay Duke (MC-136) SSDAT/Superfund Section Remediation Division Texas Commission on Environmental Quality 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Final Proposed Plan for LHAAP-35A(58), Shops Area, Group 4, Longhorn Army Ammunition Plant, Karnack, Texas, January 2010 SUP 126

Dear Ms. Duke,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely,

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

S. Tzhone, USEPA Region 6, Dallas, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw, Houston, TX (for project files)

FINAL PROPOSED PLAN FOR LHAAP-35A(58), SHOPS AREA, GROUP 4

ISSUED BY: U.S. ARMY

Longhorn Army Ammunition Plant Karnack, Texas

January 2010

INTRODUCTION

The purpose of this Proposed Plan is to present for public review the remedial alternatives for LHAAP-35A(58), the former Shops Area. LHAAP-35A(58) is approximately 11 acres in size and is located in the north-central part of the Longhorn Army Ammunition Plant (LHAAP) in central-east Texas. This plan includes summaries of other potential remedial alternatives evaluated for implementation at the site. The primary purpose of the Proposed Plan is to facilitate public involvement in the remedy selection process. The Proposed Plan provides the public with basic background information about LHAAP-35A(58), identifies the preferred final remedies for potential threats posed by the chemical contamination at the site, explains the rationale for the preference, and describes other remedial options that were considered.

The U.S. Army is issuing this Proposed Plan for public review, comment, and participation to fulfill part of its public participation responsibilities under Sections 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 as amended by the Superfund Amendments and Reauthorization Act of 1986, and under Section 300.430(f)(2) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The CERCLA prescribes a step-wise progression of increasingly complex activities to respond to risk posed by contaminated sites (Figure 1).

The preparation and review of a Proposed Plan is a distinct step required by CERCLA. This Proposed Plan summarizes information that can be found Dates to remember: January 25, 2010, to

February 23, 2010

MARK YOUR CALENDER

PUBLIC COMMENT PERIOD:

January 25, 2010, to February 23, 2010 The U.S. Army will accept written comments on the Proposed Plan during the public comment period.

PUBLIC MEETING: The U.S. Army will hold a public meeting to explain the Proposed Plan for LHAAP-35A(58). Oral and written comments will be accepted at the meeting. The meeting will be held on January 26, 2010 from 6:00 p.m. to 8:00 p.m. at Karnack Community Center.

For more information, see the Administrative Record at the following location:

Marshall Public Library 300 S. Alamo Marshall, Texas 75670

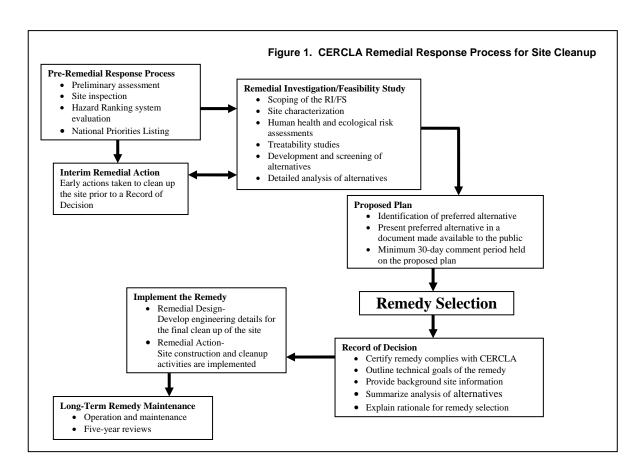
Business Hours:

Monday – Thursday (10:00 a.m. – 8:00 p.m.) Friday – Saturday (10:00 a.m. – 5:00 p.m.)

For further information on LHAAP-35A(58), please contact:

Dr. Rose M. Zeiler Site Manager

Longhorn Army Ammunition Plant P.O. Box 220


Ratcliff, Arkansas 72951

Phone No.: 903-679-3192 Direct No.: 479-635-0110

E-mail address: rose.zeiler@us.army.mil

in greater detail in the Remedial Investigation (RI) Report, the Data Gaps Investigation Report, the Feasibility Study (FS) Report (which includes the Natural Attenuation Evaluation Report), the Installation-Wide Baseline Ecological Risk Assessment (BERA), and other supporting documents that are contained in the Administrative Record for LHAAP-35A(58). The project management team, including the U.S. Army, U.S. Environmental Protection Agency (USEPA), and the Texas Commission on Environmental Quality (TCEQ), encourages the public to review

January 2010

these documents to gain a more comprehensive understanding of the environmental conditions at LHAAP-35A(58), and also to review and comment on the alternatives presented in this Proposed Plan.

The U.S. Army, the lead agency for environmental response actions at LHAAP, is acting in partnership with USEPA Region 6 and TCEQ. As the lead agency, the U.S. Army is charged with planning and implementing remedial actions at LHAAP. The regulatory agencies assist the U.S. Army by providing technical support, project review, project comment, and oversight in accordance with CERCLA and the NCP as well as the Federal Facility Agreement (FFA). The proposed plan summarizes the site characteristics, scope and role of response action, and summary of site risks. This is followed by a presentation of the remedial action objectives (RAOs) and summary of remedial alternatives for LHAAP-35A(58).

Finally, an evaluation of alternatives and a summary of the preferred alternative are presented.

SITE BACKGROUND

LHAAP is located in central-east Texas in the northeastern corner of Harrison County (Figure 2). The installation occupies approximately 1,400 of its former 8,416 acres between State Highway 43 at Karnack, Texas, and the western shore of Caddo Lake. The nearest cities are Marshall, Texas, approximately 14 miles to the southwest, and Shreveport, Louisiana, approximately 40 miles to the southeast. Caddo Lake, a large freshwater lake situated on the Texas-Louisiana border, bounds LHAAP to the north and east.

The U.S Army has transferred nearly 7,000 acres to the U.S. Fish and Wildlife Service (USFWS) for management as the Caddo

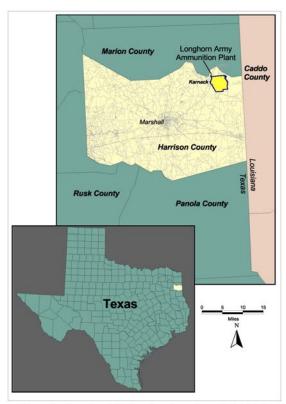
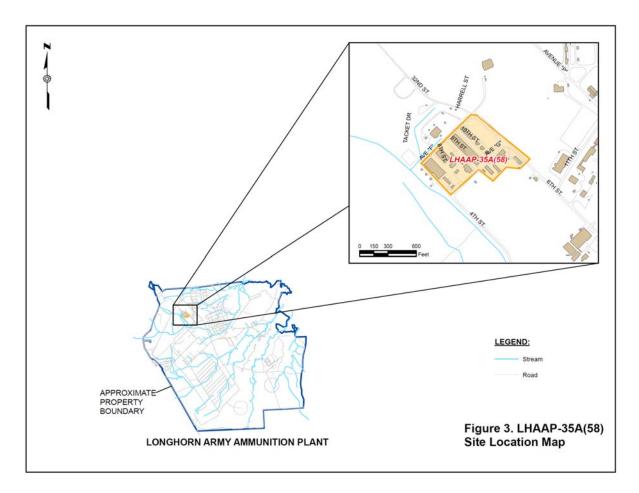


Figure 2 Location of the Longhorn Army Ammunition Plant, Harrison County, Texas

Lake National Wildlife Refuge. The property transfer process is continuing as response is completed at individual sites. The local restoration advisory board has been kept informed of previous investigations at this site through regularly held quarterly meetings. Additionally, the administrative record is updated at least twice per year and is available at the local public library.

Due to releases of chemicals from operations at the facility, LHAAP was placed on the Superfund National Priorities List (NPL) on August 9, 1990. Activities to remediate contamination associated with the NPL listing of LHAAP began in 1990. After being listed on the NPL, the U.S. Army, the USEPA, and the Texas Water Commission (currently known as the TCEQ) entered into a CERCLA Section 120 FFA for remedial activities at LHAAP. The FFA became effective

December 30, 1991. LHAAP operated until 1997 when it was placed on inactive status and classified by the U.S. Army Armament, Munitions, and Chemical Command as excess property.


LHAAP-35A(58) was not one of the originally listed NPL sites in the FFA but will be managed in the same manner because of the presence of contaminated groundwater at the site.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP (**Figure 3**) and covers approximately 11 acres. Within the LHAAP-35A(58) boundary are other sites: LHAAP-02, vacuum truck overnight parking; LHAAP-03, Paint Shop Building 722 (waste collection); LHAAP-60, pesticide storage building; LHAAP-68, mobile storage tank parking; and LHAAP-69, service station underground storage tanks. Environmental decisions for these sites are being addressed separately.

The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility. The site was active throughout LHAAP's mission and became inactive in 1996-1997, along with the entire installation.

Between 1992 and 2008, numerous investigations were conducted in a phased approach to determine the nature and extent of contamination at LHAAP-35A(58).

These investigations included a Pre-Phase I investigation in 1992 and 1993; Phase I through III RIs conducted in 1993-1994, 1996, and 1998 (Jacobs, 2002); and groundwater and soil sampling as part of the Phase II Environmental Site

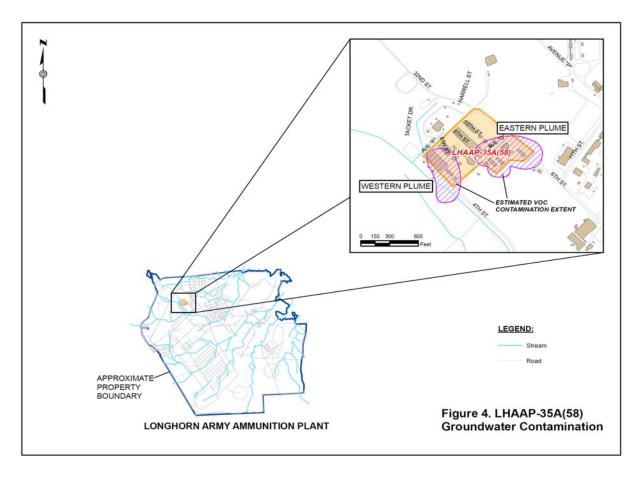
Assessment performed in 2003 (Plexus, 2005). Media investigated included soil and groundwater.

The Final Baseline Human Health Risk Assessment (BHHRA) (Jacobs, 2003) used data from the investigations conducted through 2001. Additional investigations were conducted by Shaw in 2004, 2006, 2007, and 2008 after the BHHRA was finalized to further delineate the extent of groundwater contamination identified during previous sampling events. The results of the 2004 investigation were presented in the Data Gaps Report (Shaw, 2007a). Sampling results from sump sampling in 2006 (Shaw, 2008), natural attenuation and geochemical evaluation in 2007, pesticide sampling (related to LHAAP-60) in 2007, direct push technology groundwater sampling and monitoring well (volatile organic

compounds [VOCs]) sampling in 2008, and shallow groundwater sampling for plume delineations are included in the Final Feasibility Study (Shaw, 2009).

SITE CHARACTISTICS

The surface features at LHAAP-35A(58) are a mixture of asphalt-paved roads, parking areas, building foundation remnants, and areas heavily vegetated with grasses, shrubs, and trees. The topography in this area is relatively flat with the surface drainage flowing into tributaries of Goose Prairie Creek, which eventually flows into Caddo Lake. The lake is a source of drinking water for several neighboring communities in Louisiana.


Groundwater zones at the site include a shallow zone at approximately 10 to 25 feet below ground surface (bgs), an

intermediate zone at approximately 60 to 71 feet bgs, and the deep zone at approximately 126 to 140 feet bgs. The predominant groundwater flow in the shallow zone at the site is generally to the east on the eastern side of the site and to the southwest on the western side of the site.

The sump soil sampling results were evaluated in the Final Data Evaluation Report for LHAAP-35/36 (Shaw, 2008), and it was concluded that the cancer risk and noncancer hazard values were still within the acceptable range, and no further action was required for the soils around the four sumps located at LHAAP-35A(58).

The additional data collected since the risk assessment was evaluated in the FS to refine the list of chemicals of concern (COCs) in the shallow groundwater. It

should be noted that the additional sample results did not change the overall outcome of the risk assessment as discussed in the "SUMMARY OF SITE RISKS" section. The COCs for LHAAP-35A(58) identified in the FS are VOCs, including tetrachloroethene (PCE) and trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride in the shallow groundwater zone. The shallow zone has approximately 2.4 million gallons of contaminated groundwater in the eastern plume and 1.4 million gallons of contaminated groundwater in the western plume. The shallow groundwater plumes are shown on Figure 4. Data collected from the intermediate and deep groundwater zones confirms that PCE and TCE have not migrated down to these lower zones. No principal threat source material was identified at LHAAP-35A(58).

SCOPE AND ROLE OF THE PROPOSED ACTION

The scope and role of the action discussed in this proposed plan includes all remedial actions planned for this site. The recommended remedial action at LHAAP-35A(58) will prevent potential risks associated with exposure to contaminated groundwater in both plume areas in the shallow groundwater zone. The groundwater at LHAAP is not currently being used as drinking water and may not be used in the future based on its reasonably anticipated use as a national wildlife refuge. When establishing the RAOs for this response action, the U.S. Army has considered the NCP's expectation to return useable groundwater to its potential beneficial use wherever practicable. The U.S. Army has also considered the State of Texas designation of all groundwater as potential drinking water, unless otherwise classified, and consistent with. Texas Administrative Code (TAC), Title 30, §335.563 (h)(1). The Army intends to return the contaminated shallow groundwater zone at LHAAP-35A(58) to its potential beneficial uses, which is considered to be the attainment of Safe Drinking Water Act maximum contaminant levels (MCLs) to the extent practicable, and consistent with Code of Federal Regulations, Title 40, \$300.430(e)(2)(i)(B&C). If a return to potential beneficial uses is not practicable, the NCP expectation is to prevent further migration of the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction.

The preferred remedial action will ensure protection of human health and the environment. The preferred remedial action will include groundwater monitoring to demonstrate that the plumes are not migrating and to verify that contaminant levels are being reduced.

Land use controls (LUCs) may be terminated when contaminant levels are reduced to MCLs.

SUMMARY OF SITE RISKS

The reasonably anticipated future use of this site is nonresidential as part of the Caddo Lake National Wildlife Refuge. This anticipated future use is based on a Memorandum of Agreement (U.S. Army, 2004) between the USFWS and the Army which documents the transfer process of the LHAAP acreage to USFWS to become the Caddo Lake National Wildlife Refuge. Presently the Caddo Lake National Wildlife Refuge occupies nearly 7,000 acres of the former installation. The property must be kept as a National Wildlife Refuge unless there is an act of Congress which removes the parcel or the land is exchanged in accordance with the National Wildlife Refuge System Administration Act of 1966 and the National Wildlife Refuge System Act Amendments of 1974.

As part of the RI/FS, a baseline human health risk assessment and screening ecological risk assessment were conducted for LHAAP-35A(58) to determine current and future effects of contaminants on human health and the environment to support technical review and risk management decisions.

Human Health Risks

The baseline risk assessment estimates the risk that the site poses if no action is taken. It provides the basis for taking action and identifies the contaminants and exposure pathways that need to be addressed by the remedial action. The applicable receptor scenario for future use as a wildlife refuge is a hypothetical future maintenance worker. For carcinogens, risks are generally expressed as the incremental probability of an individual developing

cancer over a lifetime as a result of exposure to the carcinogen and are expressed in scientific notation (e.g., 1×10^{-6}). USEPA's acceptable risk range for site-related exposures is 1×10^{-4} to 1×10^{-6} , i.e., one-in-ten thousand to onein-one million. The potential for noncancer effects is expressed by a ratio of the exposure to the toxicity. An individual chemical ratio less than 1 indicates that toxic non-cancer effects from that chemical are unlikely. A non-cancer hazard index (HI) is calculated when the ratios for the individual chemicals are summed. An HI greater than 1 indicates that site-related exposures may present a risk to human health. Thus, an HI of less than 1 is acceptable since toxic non-cancer effects are unlikely.

Using data presented in the RI, the cancer risk and the non-cancer HI were calculated based on future maintenance worker exposure to the site environmental media (e.g., soil and groundwater) under an industrial scenario. Based on the human health risk assessment, the soil does not pose a cancer risk or a non-cancer hazard to the hypothetical future maintenance worker. However, the groundwater at LHAAP-35A(58) poses unacceptable cancer risk (1.6×10^{-2}) and non-cancer hazard (HI of 38) to a hypothetical future maintenance worker. The risk and HI values are based on an industrial exposure scenario that includes drinking the water or using the water for hand washing and showering.

The primary COCs in groundwater contributing to cancer risk and non-cancer hazard are 1,1-DCE and PCE. The maximum detected concentration of PCE was observed at 5,400 parts per billion (ppb) which exceeds the MCL of 5 ppb, a federal and state drinking water standard. The maximum concentration of 1,1-DCE was observed at 1,341 ppb, which exceeds

the MCL of 7 ppb. All contaminant byproducts (daughter products) of PCE are also considered COCs, these include TCE, 1,2-DCE, and vinyl chloride.

Because the risk evaluation was based on the reasonably anticipated future use as a wildlife refuge, a recordation notification will be filed with Harrison County per TAC §335.566 disclosing that the site is suitable for nonresidential use. Additionally, limited monitoring in the form of Five-Year Reviews will serve to document that the use of the site remains consistent with the industrial/recreational exposure scenario evaluated in the risk assessment.

Ecological Risks

The ecological risk for site LHAAP-35A(58) was addressed in the installation-wide BERA (Shaw, 2007b). For the BERA, the entire installation was divided into three large sub-areas (i.e., the Industrial Sub-Area, Waste Sub-Area, and Low Impact Sub-Area) for the terrestrial evaluation. The individual sites at LHAAP were grouped into one of these sub-areas, which were delineated based on commonalities of historic use, habitat type, and spatial proximity to each other. The conclusions regarding the potential for chemicals detected at individual sites to adversely affect the environment must be made in the context of the overall conclusions of the sub-area in which the site falls. Site LHAAP-35A(58) lies within the Industrial Sub-Area.

The BERA evaluated potential ecological risk to a number of endpoint receptors, as well as terrestrial plant and invertebrate communities. Endpoint receptors were evaluated using a food chain model that estimated a daily dose intake, which was subsequently compared with toxicity reference values to generate a hazard

quotient. Terrestrial communities were evaluated through comparisons of detected concentrations to conservative benchmarks. Multiple lines of evidence (e.g., spatial distribution of concentrations, etc.) were also considered. After evaluating all lines of evidence, the BERA concluded that the potential for ecological risk was sufficiently low at the Industrial Sub-Area, and that no further evaluation for ecological receptors was required (Shaw, 2007b). Therefore, no action is needed at LHAAP-35A(58) for the protection of ecological receptors.

Preferred Alternative

It is the current judgment of the U.S. Army that the preferred alternative identified in this Proposed Plan, or one of the other active measures considered in the Proposed Plan, is necessary to protect the public health or welfare or the environment from actual or threatened releases of hazardous substances into the environment.

REMEDIAL ACTION OBJECTIVES

The Army recognizes USEPA's policy to return all groundwater to potential beneficial uses, based on the non-binding programmatic expectation in the NCP. The RAOs for LHAAP-35A(58), which address contamination associated with the media at the site and take into account the future uses of LHAAP streams, land, and groundwater are:

- Protect human health for the hypothetical future maintenance worker by preventing exposure to groundwater contaminated with VOCs.
- Protect human health and the environment by preventing VOC contaminated groundwater from migrating into the nearby surface water.

 Return groundwater to its potential beneficial use as drinking water, wherever practicable, within a reasonable time period given the particular site circumstances.

SUMMARY OF REMEDIAL ALTERNATIVES

The feasibility studies identified and screened remedial technologies and associated process options that may be appropriate for satisfying the RAOs for LHAAP-35A(58) with respect to effectiveness, implementability, and cost. The following remedial alternatives were developed from the retained remedial technologies carried forward after the initial screening:

- Alternative 1 No Action Alternative
- Alternative 2 Monitored Natural Attenuation (MNA) and LUCs
- Alternative 3 In Situ Bioremediation with short-term LUCs and LTM
- Alternative 4 In Situ Bioremediation for Eastern Plume followed by MNA and LUCs; MNA and LUCs for Western Plume

Common Elements. Two elements, LUCs and Inspection/LTM, are common to Alternatives 2, 3, and 4. These elements are described below.

Land Use Controls

Contamination would be left in place at LHAAP-35A(58) for Alternatives 2 and 4, and contamination would be present for the duration of remedial activities in Alternatives 3. Therefore, LUCs are a common component of all three alternatives. The LUCs would prevent human exposure to residual groundwater contamination that presents an unacceptable risk to human health, and would ensure that there is no withdrawal or

use of groundwater beneath the sites for anything other than environmental monitoring and testing. LUCs would support the RAOs.

The U.S. Army would be responsible for implementation, maintenance, inspection, reporting, and enforcement of the LUCs. The Army intends to provide details of the LUCs implementation and maintenance actions in the Remedial Design (RD) for LHAAP-35A(58). The groundwater restriction LUCs would be maintained until the concentrations of contaminants and by-product (daughter) contaminants in groundwater have been reduced to levels below their respective MCLs under the Safe Drinking Water Act to allow unrestricted use and unlimited exposure at LHAAP-58. In addition, the Texas Department of Licensing and Regulation responsible for notifying well drillers of groundwater restrictions would be notified and a notification of LUCs with the Harrison County Courthouse would include a map showing the areas of groundwater restriction at the site.

In order to transfer LHAAP-35A(58), an Environmental Condition of Property (ECOP) document would be prepared and attached to the letter of transfer. The ECOP will include LUCs for groundwater as part of the Environmental Protection Provisions. The property would be transferred subject to the land use controls that are identified in the ECOP. These restrictions would prohibit or restrict property uses that may result in exposure to the contaminated groundwater (e.g., drilling restrictions, drinking water well restrictions).

Inspection and Long-Term Monitoring

Alternatives 2, 3 and 4 include inspection and long-term groundwater monitoring activities. Monitoring would be continued as required to demonstrate effectiveness of the remedy, compliance with applicable or relevant and appropriate requirements (ARARs), to-be-considered requirements, and RAOs, and to support CERCLA Five-Year Reviews.

Although the U.S. Army may later pass these procedural responsibilities to the transferee by property transfer agreement, the U.S. Army shall retain ultimate responsibility for remedy integrity.

Alternative 1 – No Action. As required by the NCP, the no action alternative provides a comparative baseline against which the action alternatives can be evaluated. Under this alternative, the groundwater would be left "as is" without implementing any additional containment, removal, treatment, or other mitigating actions. No other actions would be implemented to prevent potential human exposure to contaminated groundwater.

Estimated Capital Cost: \$0

Estimated O&M Present Worth Cost: \$0

Estimated Duration: --

Estimated Total Present Worth Cost: \$0

Alternative 2 – Monitored Natural Attenuation and Land Use Controls.

This alternative will provide actions to limit exposure to the contaminated groundwater in both shallow zone plume areas and demonstrate reduction of contamination via natural processes.

MNA is a passive remedial action that relies on natural biological, chemical, and physical processes to reduce the mass and concentration of groundwater COCs under favorable conditions. MNA would assure the protection of human health and the environment by documenting that the contaminated groundwater remains localized with minimal migration and that contaminant concentrations are being

reduced to MCLs. The LUCs would remain in effect until MCLs are met.

Estimated Capital Cost: \$60,500

Estimated O&M Present Worth Cost: \$432,300

Estimated Duration: 30 years

Estimated Total Present Worth Cost: \$492.800

Alternative 3 – In Situ Bioremediation, Short-Term LUCs, and LTM. This

alternative will reduce groundwater contaminant concentrations to MCLs and prevent exposure to the contaminated groundwater until MCLs are met. To achieve these goals, this alternative utilizes in situ bioremediation to enhance attenuation and reduce groundwater contaminant concentrations to the MCLs, and maintains LUCs only until such time that the MCLs are met for groundwater contaminants through remediation.

Estimated Capital Cost: \$860,000

Estimated O&M Present Worth Cost: \$483,000

Estimated Duration: 10 years

Estimated Total Present Worth Cost: \$1,343,000

Alternative 4 – In Situ Bioremediation for Eastern Plume followed by MNA and LUCs; MNA and LUCs for Western Plume. The goals of this alternative are to reduce groundwater contaminant concentrations to MCLs and prevent exposure to the contaminated groundwater until MCLs are met. To achieve these goals, this alternative utilizes both in situ bioremediation to enhance attenuation and MNA to reduce groundwater contaminant concentrations to the MCLs. The LUCs would remain in effect until such time that

the MCLs are met for groundwater

contaminants through both in situ bioremediation and MNA.

Estimated Capital Cost: \$191,000

Estimated O&M Present Worth Cost: \$594.000

Estimated Duration: 30 years

Estimated Total Present Worth Cost: \$785,000

EVALUATION OF ALTERNATIVES

Nine criteria identified in the NCP, §300.430(e)(9)(iii), are used to evaluate the different remediation alternatives individually and against each other in order to select a remedy. This section profiles the relative performance of each alternative against the nine criteria, noting how it compares to the other options under consideration. The nine evaluation criteria are discussed below. The "Detailed Analysis of Alternatives" can be found in the FS for the site (Shaw, 2009).

1. Overall Protection of Human Health and the Environment

The four alternatives provide varying levels of human health protection.
Alternative 1, no action, does not achieve the RAOs and provides the least protection of all the alternatives; it provides no reduction in risks to human health or the environment because no measures would be implemented to eliminate the pathway for human exposure to the groundwater contamination.

Alternatives 2, 3, and 4 satisfy the RAOs for LHAAP-35A(58). Alternatives 2, 3 and 4 provide confirmation that human health and the environment are protected because monitoring would be conducted to document that the plumes are not migrating. Furthermore, LUCs would protect human health by preventing access

to the contaminated groundwater until contaminants in groundwater are reduced to the MCLs.

2. Compliance with ARARs

Alternative 1 does not comply with chemical-specific ARARs because no remedial action or measures would be implemented. Alternatives 2, 3 and 4 comply with groundwater and surface water chemical specific ARARs because they will return the contaminated shallow groundwater zone at LHAAP-35A(58) to its potential beneficial use as drinking water, wherever practicable, in compliance with Safe Drinking Water Act MCLs as relevant and appropriate.

Location-specific and action-specific ARARs would not apply to Alternative 1 since no remedial activities would be conducted. Alternatives 2, 3 and 4 comply with all location-specific and action-specific ARARs.

3. Long-Term Effectiveness and Permanence

Alternative 1 would be the least effective and least permanent in the long term because no contaminant removal or treatment would take place and no measures would be implemented to control exposure risks posed by the contaminated groundwater. However, the results of plume migration modeling indicate that the contamination present in the shallow groundwater at LHAAP-35A(58) will not adversely impact the surface water of Goose Prairie Creek (Shaw, 2007c). Alternative 2 offers a moderate degree of long-term effectiveness through the implementation of MNA with land use controls, which would minimize the potential risk posed by the contaminated groundwater., Alternative 2 may pose the same risk as Alternative 1 if MNA is not effective, the plume is not stable and

migrates. Alternatives 3 and 4 use active in situ bioremediation which will reduce groundwater contaminant concentrations. The long-term effectiveness of the in situ bioremediation may be limited by: 1) the nature of the permeable water-bearing zones and 2) the distribution and presence of COCs remaining in the groundwater in untreated areas. Alternatives 2, 3 and 4 are remedial actions that would permanently reduce contaminant levels in the groundwater over time and return the groundwater to its potential beneficial use as drinking water wherever practicable, with Alternative 3 requiring the least amount of time.

4. Reduction of Toxicity, Mobility, or Volume through Treatment

Alternative 1 does not employ treatment and would not result in a reduction of toxicity, mobility, or volume of contaminants.

Natural attenuation and in situ bioremediation would permanently reduce the mass and concentration of contaminants and, therefore, the volume, toxicity and mobility of the contaminants. MNA is a passive remedial action and bioremediation is an active treatment process.

Alternatives 2, 3, and 4 generate daughter products that may temporarily increase toxicity or mobility of the contaminant plume, with in situ bioremediation (Alternatives 3 and 4) working in a shorter time frame. The alternatives include monitoring so daughter products would be quantified, documented, and evaluated. Daughter product concentrations will be reduced under these alternatives to levels below their associated MCLs to return groundwater to its potential beneficial use as drinking water, wherever practicable.

Since there is no known residual source of groundwater contamination in the soils at LHAAP-35A(58), achievement of cleanup levels in groundwater would be expedited under Alternatives 3 or 4 by implementing in situ bioremediation in areas of highest contaminant concentrations in the groundwater. Monitoring for contaminants would be performed to assess the effectiveness of the treatment. It is also anticipated that COCs will remain above MCLs in the plume outside the treated areas and will continue to attenuate to levels below MCLs over time.

5. Short-Term Effectiveness

Alternative 1 does not involve any remedial measures; therefore, no short-term risk to workers, the community, or the environment would exist. The activities associated with Alternative 2 and Alternative 3 are protective to the surrounding community from short-term risks.

Alternatives 2, 3, and 4 involve potential short-term risks to workers associated with exposure to contaminated groundwater and operation of drilling/construction equipment. Alternatives 3 and 4 require more drilling/construction activities than Alternative 2.

Since Alternatives 2, 3, and 4 contain LUCs as elements of their remedies, they would provide almost immediate protection by prohibiting installation of potable wells through LUC implementation.

6. Implementability

Under the no action alternative, no remedial action would be taken. Therefore, no difficulties or uncertainties would be associated with its implementation. Alternative 2 is easily implemented from a technical standpoint

because no construction activities would be performed, although routine long-term maintenance and enforcement of the LUCs, long-term evaluation of MNA, and long-term sampling would be required.

Alternatives 3 and 4 are also technically implementable, although less so than Alternative 2 because of the uncertainties associated with the effective field implementation of in situ bioremediation to lower contaminant levels and to enhance natural attenuation. These alternatives would be somewhat more difficult to implement due to the specialized expertise required for design and construction.

Administratively, all of the alternatives are implementable.

7. Cost

Cost estimates are used in the CERCLA FS process to eliminate those remedial alternatives that are significantly more expensive than competing alternatives without offering commensurate increases in performance or overall protection of human health or the environment. The cost estimates developed are preliminary estimates with an intended accuracy range of +50 to -30 percent. Final costs will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final scope, final schedule, final engineering design, and other variables.

The cost estimates include capital costs (including fixed-price remedial construction) and long-term O&M costs (post-remediation). Present worth costs were developed for each alternative assuming a discount rate of 2.8 percent. The estimates for Alternatives 2 and 4 utilize a 30-year project life for costing purposes, although the timeframe to achieve RAOs is expected to be longer. Alternative 3 would be expected to be

complete approximately 10 years after injection.

The progression of present worth costs from the least expensive alternative to the most expensive alternative is as follows: Alternative 1, Alternative 2, Alternative 4, and Alternative 3. No costs are associated with Alternative 1 because no remedial activities would be conducted. Alternative 2 has the lowest present worth and capital costs of the remedial action alternatives. The highest capital cost is associated with Alternative 3 primarily due to the activities associated with the injection phase of in situ bioremediation.

8. State/Support Agency Acceptance

The USEPA and TCEQ have reviewed the Proposed Plan. Comments received from the USEPA and TCEQ have been incorporated. Both agencies concur with the preferred alternative.

9. Community Acceptance

Community acceptance of the preferred alternative will be evaluated after the public comment period ends and will be described in the Record of Decision (ROD) for the site.

SUMMARY OF THE PREFERRED ALTERNATIVE

Alternative 4, in situ bioremediation followed by MNA and LUCs for the eastern plume and MNA and LUCs for the western plume, is the preferred alternative for LHAAP-35A(58) and is consistent with the intended future use of the site as a wildlife refuge. This alternative is recommended because it will satisfy the RAOs for the site through groundwater use restriction LUCs, which will ensure protection of human health by 1) preventing human exposure to contaminated groundwater and 2) returning

the contaminated water to its potential beneficial use as a drinking water, wherever practicable through MNA and in situ bioremediation. The LUCs will remain in place until MCLs are met. Furthermore, long-term monitoring will assure that human health and the environment are being protected by verifying that contaminated groundwater does not migrate into nearby surface water bodies at levels that exceed MCLs. The long-term monitoring and reporting associated with this remedy will continue until primary COC and daughter product MCLs are achieved. Based on a preliminary natural attenuation evaluation and groundwater modeling, groundwater ARARs are expected to be met through natural attenuation in approximately 200 years in the western plume (Shaw, 2009) and within the same timeframe for the eastern plume. Considering the lithologic variability, particularly the lateral and vertical change from sand to clay, the times to MCL may vary by an order of magnitude. The groundwater flow rates are within the normal range for the formation material at these sites. Thus, no adverse impact is expected to the surface water during the time it would take natural attenuation to reduce contaminant concentrations to MCLs. The selected alternative offers a high degree of longterm effectiveness, can be implemented, and costs less than the Alternative 3.

The performance of MNA in the western plume will be evaluated after two years of performance monitoring using data from the eight quarters and from the historical sampling events of the prior ten years. The performance objectives for groundwater remediation will be included in the RD. If it is found that the performance objectives are not met, a contingent remedy such as in situ bioremediation (see Alternative 3 description for basic elements) will be

implemented. The decision regarding use of the contingent remedy to address the groundwater contamination will be considered after two years of MNA and would be implemented, if required, after approval of the RD.

Based on the information currently available, the U.S. Army believes that the preferred alternative meets the threshold criteria and provides the best balance of tradeoffs among the other alternatives with respect to the CERCLA §121(b) criteria used to evaluate remedial alternatives. The preferred alternative will 1) be protective of human health and the environment; 2) comply with ARARs; 3) be cost-effective; 4) utilize permanent solution; and 5) utilizes treatment as a principal element. In addition, no source materials constituting a principle threat will be addressed within the scope of this action.

The Army intends to present details of the LUCs implementation plan, the groundwater monitoring plan, and the MNA remedy implementation in a RD for LHAAP-35A(58).

The remedy selected in the ROD may change from the preferred alternative presented here, based on public comment.

Notification of nonresidential use will accompany all transfer documents and will be recorded in the County Courthouse. Five-Year Reviews will be performed to document that the remedy remains protective of human health and the environment.

COMMUNITY PARTICIPATION

The U.S. Army, USEPA, and TCEQ provide information regarding LHAAP-35A(58) through public meetings, the Administrative Record file for the facility, and announcements published in the Shreveport Times and Marshall News Messenger newspapers.

The dates for the public comment period, the date, location, and time of the public meeting, and the locations of the Administrative Record files are provided on the front page of this Proposed Plan.

Any significant changes to the Proposed Plan, as presented in this document, will be identified and explained in the ROD.

Primary Reference Documents for LHAAP-35A(58)

Jacobs Engineering Group Inc. (Jacobs), 2002, Final Remedial Investigation Report for the Group 4 Sites 35A, 35B, 35C, 46, 47, 48, 50, 60, and Goose Prairie Creek, at the Longhorn Army Ammunition Plant, Karnack, Texas, January.

Jacobs, 2003, Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites (Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunder's Branch, Central Creek, and Caddo Lake), Longhorn Army Ammunition Plant, Karnack, Texas, June.

Plexus, 2005, Environmental Site Assessment, Phase I and II Report, Final, Production Areas, Longhorn Army Ammunition Plant, Karnack, Texas, June.

Shaw Environmental, Inc. (Shaw), 2007a, Final Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, April.

Shaw, 2007b, Installation-Wide Baseline Ecological Risk Assessment, Longhorn Army Ammunition Plant, Karnack, Texas, Volume I: Step 3 Report, November.

Shaw, 2007c, Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Revision 1, Karnack, Texas, February.

Shaw, 2008, Final Data Evaluation Report, Chemical Concentrations in Soil Samples Associated with LHAAP-35/36 Sumps, Longhorn Army Ammunition Plant, June.

Shaw, 2009, Final Feasibility Study, LHAAP-35A(58), Longhorn Army Ammunition Plant, Karnack, Texas, December.

United States Army, 2004, Memorandum of Agreement Between the Department of the Army and the Department of the Interior for the Interagency Transfer of Lands at the Longhorn Army Ammunition Plant for the Caddo Lake National Wildlife Refuge, Harrison County, Texas, Signed by the Department of the Interior on April 27, 2004 and the Army on April 29, 2004.

GLOSSARY OF TERMS

Administrative Record — The body of reports, official correspondence, and other documents that establish the official record of the analysis, cleanup, and final closure of a CERCLA site.

ARARs — Applicable or relevant and appropriate requirements. Refers to the federal and state requirements that a selected remedy will attain.

Attenuation — The process by which a compound is reduced in concentration over time, through absorption, adsorption, degradation, dilution, and/or transformation.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) — This law authorizes the Federal Government to respond directly to releases (or threatened releases) of hazardous substances that may be a danger to public health, welfare, or the environment. The U.S. Army currently has the lead responsibility for these activities at LHAAP.

Environmental Media — Major environmental categories of substances that surround or contact humans, animals, plants, and other organisms (e.g. surface water, ground water, soil or air) and through which chemicals or pollutants move.

Exposure — Contact of an organism with a chemical or physical agent. Exposure is quantified as the amount of the agent available at the exchange boundaries of the organism (e.g., skin, lung, digestive tract, etc.) and available for absorption.

Groundwater — Underground water that fills pores in soil or openings in rocks to the point of saturation.

Hazard Index — The hazard index is the sum of the hazard quotients for all chemicals to which an individual is exposed. A hazard index value of 1.0 or less indicates that no adverse non-cancer human health effects are expected to occur. Each hazard quotient is a comparison of an estimated chemical intake (dose) with a reference dose level below which adverse health effects are unlikely. Each hazard quotient is expressed as the ratio of the estimated intake (numerator) to the reference dose (denominator). The value is used to evaluate the potential for non-cancer health effects, such as organ damage, from chemical exposures.

Maximum Contaminant Level (MCL) — The maximum contaminant level is the maximum permissible level of a contaminant in a public water system. MCLs are defined in the Code of Federal Regulation (40 CFR 141, National Primary Drinking Water Regulations, which implement portions of the Safe Drinking Water Act). The TCEQ has adopted MCLs as the regulatory cleanup levels for both industrial and residential uses. Any detected compound in the groundwater samples with a MCL was evaluated by comparing it to its associated MCL.

Proposed Plan — A report for public comment highlighting the key factors that form the basis for the selection of the preferred remediation alternative.

Remedial Action — The actual construction or implementation phase of a Superfund site cleanup that follows remedial design.

Risk Assessment — An analysis of the potential adverse health effects (current and future) caused by hazardous substances at a site in the absence of any actions to control or mitigate these releases (i.e., under an assumption of no action). The assessment contributes to decisions regarding appropriate response alternatives.

Superfund — The common name used for CERCLA; also referred to as the Trust Fund. The Superfund Program was established to help fund cleanup of hazardous waste sites. It also allows legal action to force those responsible for sites to clean them up.

ACRONYMS

ARARs applicable or relevant and appropriate requirements

BERA Baseline Ecological Risk Assessment

bgs below ground surface

BHHRA baseline human health risk assessment

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COC chemical of concern DCE dichloroethene

ECOP environmental condition of property

FFA Federal Facility Agreement

FS feasibility study HI hazard index

LHAAP Longhorn Army Ammunition Plant

LUC land use control

MCL maximum contaminant level MNA monitored natural attenuation

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NPL National Priorities List O&M operation and maintenance

PCE tetrachloroethene ppb parts per billion

RAO remedial action objective

RD remedial design RI remedial investigation ROD record of decision

TAC Texas Administrative Code

TCE trichloroethene

TCEQ Texas Commission on Environmental Quality USEPA U.S. Environmental Protection Agency

USFWS U.S. Fish and Wildlife Service VOC volatile organic compound

USE THIS SPACE TO WRITE YOUR COMMENTS
Your input on the Proposed Plan for LHAAP-35A(58) is important to the U.S. Army. Comments provided by the public are valuable in helping the U.S. Army select a final remedy for these sites.
You may use the space below to write your comments, then fold and mail to Dr. Rose M. Zeiler, P.O. Box 220, Ratcliff, Arkansas 72951. Comments must be postmarked by February 23, 2010. If you have questions about the comment period, please contact Dr. Rose M. Zeiler at 479.635.0110. Those with electronic communications capabilities may submit their comments to the U.S. Army via Internet at the following e-mail address: rose.zeiler@us.army.mil

Date: <u>January 19, 2010</u> Project No.: <u>117591</u>

Phone: (281) 531-3100/Fax: (281) 531-3136

TRANSMITTAL LETTER:

To:	Mr. Aaron Williams						
	Address: US Army Corps of Engineers - Tulsa						
Auur ess.	-		Eligiliceis - 1	uisa	_		
	CES	WT-PP-M			_		
	1645 South 101st East Ave						
	Tulsa, Oklahoma 74128				_		
Re:	Final	Proposed Pla	n for LHAAP-	50, Former Sump	o Water Tank, Grou	p 4	
	Cont	ract No. W912	2QR-04-D-002	27/DS02	_		
For: R	eview	As Re	quested	Approval	Corrections	Submittal	Other X
Item N	o:	No. of Copies	Date:		Docun	nent Title	
1		2	January 2010	Group 4	d Plan for LHAAP ny Ammunition Pla		-
					-		
		osed are two co	•	s final version of	f the above-named d	locument. Copies	s have been
Please c	all w	ith any questic	ons or commen	its.			
					Sincerely:	Praveen Sri Project Mar	
	. Lan		, Tulsa (sent to	o A. Williams for	r distribution)		

Mr. P. Bruckwicki- U.S. Fish and Wildlife Service

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

January 19, 2010

DAIM-ODB-LO

Mr. Stephen Tzhone US Environmental Protection Agency Superfund Division (6SF-AT) 1445 Ross Avenue Dallas, TX 75202-2733

Re: Final Proposed Plan for LHAAP-50, Former Sump Water Tank, Group 4 Longhorn Army Ammunition Plant, Karnack, Texas, January 2010

Dear Mr. Tzhone,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager, be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely.

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

F. Duke, TCEQ, Austin, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw – Houston, TX (for project files)

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

January 19, 2010

DAIM-ODB-LO

Ms. Fay Duke (MC-136) SSDAT/Superfund Section Remediation Division Texas Commission on Environmental Quality 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Final Proposed Plan for LHAAP-50, Former Sump Water Tank, Group 4, Longhorn Army Ammunition Plant, Karnack, Texas, January 2010 SUP 126

Dear Ms. Duke,

The above-referenced document is being transmitted to you for your files. The document has been prepared by Shaw Environmental, Inc. (Shaw) on behalf of the Army as part of Shaw's performance based contract for the facility.

The point of contact for this action is the undersigned. I ask that Praveen Srivastav, Shaw's Project Manager be copied on any communications related to the project. I may be contacted at 479-635-0110, or by email at rose.zeiler@us.army.mil.

Sincerely,

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

S. Tzhone, USEPA Region 6, Dallas, TX

D. Vodak, TCEQ, Tyler, TX

P. Bruckwicki, Caddo Lake NWR, TX

J. Lambert, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

M. Mechenes, USAEC, MD

P. Srivastav, Shaw, Houston, TX (for project files)

FINAL PROPOSED PLAN FOR LHAAP-50, FORMER SUMP WATER TANK, GROUP 4

ISSUED BY: U.S. ARMY

Longhorn Army Ammunition Plant Karnack, Texas

January 2010

INTRODUCTION

The purpose of this Proposed Plan for LHAAP-50, site of the Former Sump Water Tank, is to present for public review the remedial alternatives that were evaluated and to identify the Preferred Remedial Alternative. LHAAP-50, approximately 1 acre in size, is an industrial area located in the north-central part of the Longhorn Army Ammunition Plant (LHAAP) in central-east Texas. The primary purpose of the Proposed Plan is to facilitate public involvement in the remedy selection process. The Proposed Plan provides the public with basic background information about LHAAP-50, identifies the preferred final remedy for potential threats posed by the chemical contamination at the site, explains the rationale for the preference, and describes other remedial options that were considered.

The U.S. Army is issuing this Proposed Plan for public review and comment to fulfill part of its public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 as amended by the Superfund Amendments and Reauthorization Act of 1986 and to present the public the preferred alternative under Section 300.430(f)(2) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The CERCLA prescribes a step-wise progression of increasingly complex activities to respond to risk posed by contaminated sites (Figure 1).

The preparation and review of a Proposed Plan is a distinct step required by CERCLA. This Proposed Plan summarizes information that can be found in greater detail in the Remedial Investigation (RI Report, the Feasibility Dates to remember: January 25, 2010 to

February 23, 2010

MARK YOUR CALENDER

PUBLIC COMMENT PERIOD:

January 25, 2010 to February 23, 2010
The U.S. Army will accept written comments on the Proposed Plan during the public comment period.

PUBLIC MEETING: The U.S. Army will hold a public meeting to explain the Proposed Plan for LHAAP-50. Oral and written comments will be accepted at the meeting. The meeting will be held on January 26, 2010 from 6:00 p.m. to 8:00 p.m. at Karnack Community Center.

For more information, see the Administrative Record at the following location:

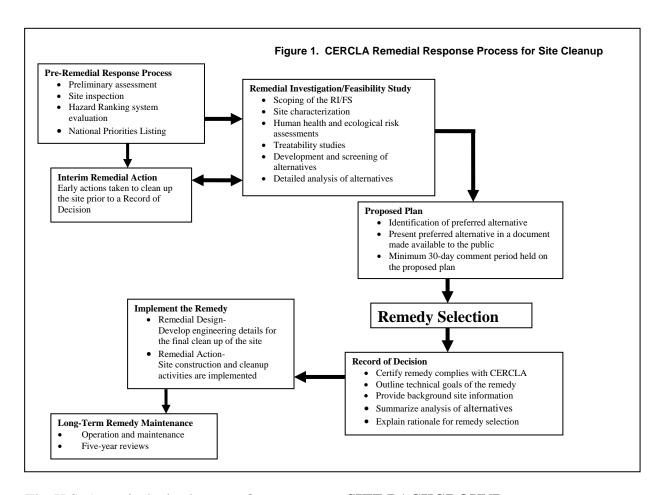
Marshall Public Library 300 S. Alamo Marshall, Texas 75670

Business Hours:

P.O. Box 220

Monday – Thursday (10:00 a.m. – 8:00 p.m.) Friday – Saturday (10:00 a.m. – 5:00 p.m.)

For further information on LHAAP-50, please contact:


Dr. Rose M. Zeiler Site Manager Longhorn Army Ammunition Plant

Ratcliff, Arkansas 72951 Phone No.: 903-679-3192

Direct No.: 479-635-0110

E-mail address: rose.zeiler@us.army.mil

Study (FS) Report (including the Natural Attenuation Evaluation Report), the plantwide perchlorate investigation, the Data Gaps Investigation, and the Installation-Wide Baseline Ecological Risk Assessment (BERA), and other supporting documents that are contained in the Administrative Record for LHAAP-50. The project management team, including the U.S. Army, U.S. Environmental Protection Agency (USEPA), and the Texas Commission on Environmental Quality (TCEQ), encourages the public to review these documents to gain a more comprehensive understanding of the environmental conditions at LHAAP-50, and also to review and comment on the Plan.

The U.S. Army is the lead agency for environmental response actions at LHAAP and is acting in partnership with USEPA Region 6 and TCEQ. As the lead agency, the U.S. Army is charged with planning and implementing remedial actions at LHAAP. The regulatory agencies assist the U.S. Army by providing technical support, project review, project comment, and oversight in accordance with CERCLA and the NCP as well as the Federal Facility Agreement (FFA).

The proposed plan summarizes the characteristics, scope and role of the response action, and summary of site risks. This is followed by a presentation of the remedial action objectives (RAOs) and summary of remedial alternatives for LHAAP-50. Finally, an evaluation of alternatives and a summary of the preferred alternative are presented.

SITE BACKGROUND

LHAAP is located in central-east Texas in the northeastern corner of Harrison County (**Figure 2**). The installation occupies approximately 1,400 acres of its former 8,416 acres between State Highway 43 at Karnack, Texas, and the western shore of Caddo Lake. The nearest cities are Marshall, Texas, approximately 14 miles to the southwest, and Shreveport, Louisiana, approximately 40 miles to the southeast. Caddo Lake, a large freshwater lake situated on the Texas-Louisiana border bounds LHAAP to the north and east.

The U.S. Army has transferred nearly 7,000 acres to the U.S. Fish and Wildlife Service (USFWS) as the Caddo Lake National Wildlife Refuge. The property transfer process is continuing as response is completed at individual sites. The local restoration advisory board has been kept

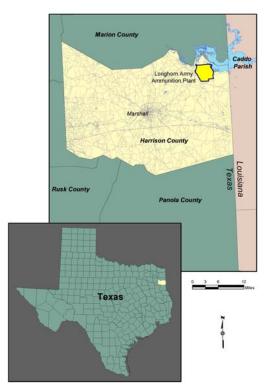
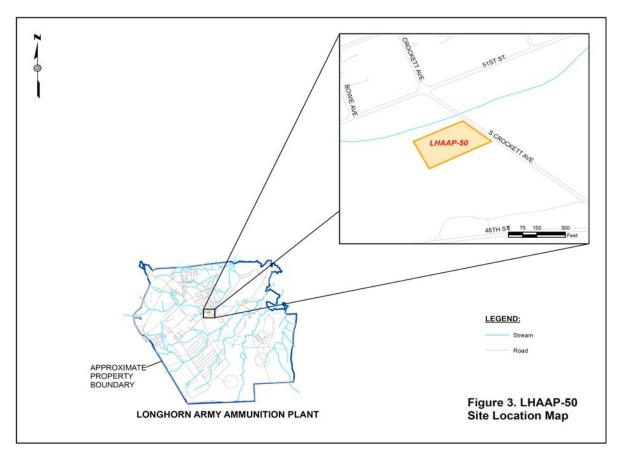


Figure 2 Location of the Longhorn Army Ammunition Plant, Harrison County, Texas

informed of previous investigations at this site through regularly held quarterly meetings. Additionally, the administrative record is updated at least twice per year and is available at the local public library.


Due to releases of chemicals from facility operations, LHAAP was placed on the Superfund National Priorities List (NPL) on August 9, 1990. Activities to remediate contamination associated with the NPL listing of LHAAP began in 1990. After being listed on the NPL, the U.S. Army, the USEPA, and the Texas Water Commission (currently known as the TCEQ) entered into a CERCLA Section 120 FFA for remedial activities at LHAAP. The FFA became effective December 30, 1991. LHAAP operated until 1997 when it was placed on inactive status and classified by the U.S. Army Armament, Munitions, and Chemical Command as excess property.

LHAAP-50 was not one of the originally listed NPL sites in the FFA but will be managed in the same manner because of the presence of contaminated groundwater at the site.

LHAAP-50, known as the former Sump Water Tank, is located in the north-central portion of LHAAP (Figure 3) and covers approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank (AST) which received industrial wastewater from various industrial waste production sumps throughout LHAAP from 1955 to 1988 (Plexus, 2005). The wastewater was transported to the AST at LHAAP-50. After the solids were filtered, discharges from the storage tank were made upstream of the bridge on Crockett Avenue, south of 51st Street into Goose Prairie Creek. The flow in the creek was sufficient to dilute the water to safe levels (Jacobs, 2002). If natural flow in the creek was considered insufficient, clean water was apparently pumped into the creek to dilute the contents. Because the storage tank was described as holding industrial wastewater, it is possible hazardous wastes may have been released by these activities. The AST has been removed.

Between 1992 and 2008, numerous investigations were conducted in a phased approach to determine the nature and extent of contamination at LHAAP-50.

Beginning in 1995, an initial site investigation was conducted at LHAAP-50 where sediments and soils were sampled to assess whether industrial wastewater that had been stored in the AST had impacted the site. Phase II and III investigations were conducted that included the collection of soil, sediment, surface water, and groundwater samples (Jacobs, 2002). Additional investigations

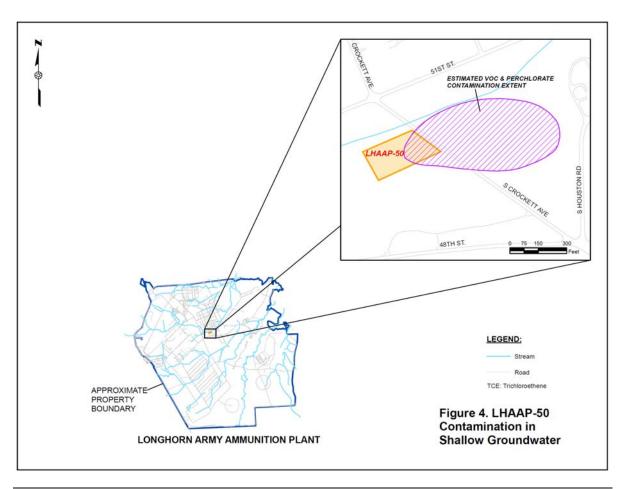
were conducted, including the installation of several wells and soil borings from 2000 through 2002 (STEP, 2005) and from 2004 through 2008 (Shaw, 2007a; Shaw, 2009), to determine the nature and extent of contamination at LHAAP-50. Media investigated included soil, sediment, surface water, and groundwater.

The Final Baseline Human Health Risk Assessment (BHHRA) (Jacobs, 2003) used data from the investigations conducted through 2001. The additional data collected since the BHHRA was evaluated in the FS to determine if the outcome of the risk assessment would change. The additional data collected did not change the outcome of the risk assessment as discussed in the "SUMMARY OF SITE RISKS" section. Additional investigations were performed in 2002 (STEP, 2005) and by Shaw in 2004 (Shaw, 2007a), 2005, 2007, and

2008 (Shaw, 2009) to further delineate the extent of groundwater contamination identified during previous sampling events.

SITE CHARACTERISTICS

The northeastern half of LHAAP-50 is an open area of grass and brush that is bounded by South Crocket Avenue to the northeast. The southwestern half of the site is an area of heavy timber bounded by a drainage ditch to the west, a railroad spur to the south, and Goose Prairie Creek to the north. Runoff from the northeastern half of the site is generally toward the northeast. Runoff is collected by a drainage ditch to the northeast that runs parallel to South Crockett Avenue and eventually joins Goose Prairie Creek. Runoff from the southwestern portion of the site is collected to the west by a drainage ditch that carries the runoff north into Goose Prairie Creek. Goose Prairie


Creek eventually empties into Caddo Lake, a source of drinking water for several neighboring communities in Louisiana.

Groundwater at the site was encountered approximately 20 feet below ground surface (bgs) in the shallow groundwater zone and approximately 55 feet bgs in the intermediate zone. The predominant groundwater flow in the shallow zone at the site is generally to the east.

Contamination was found in the soil and groundwater. However, no principal threat source material was identified at LHAAP-50.

The COCs for LHAAP-50 identified in the FS for the various media are summarized below:

- Shallow zone groundwater COCs include perchlorate and volatile organic compounds (VOCs) including tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), cis-1,2-DCE, and vinyl chloride. The shallow groundwater plume is shown on **Figure 4** and is approximately 5.5 million gallons.
- The potential exists for contaminated groundwater to migrate toward and discharge into Goose Prairie Creek and then subsequently into Caddo Lake, a drinking water supply. Although the results of plume migration modeling indicate that contaminants present in the shallow groundwater will not adversely impact Goose Prairie Creek surface water (Shaw 2007b), there are

uncertainties associated with calibration and literature based degradation rates used in the migration modeling. However, the groundwater elevation is currently below the creek bed elevation (Shaw, 2009); therefore, no impact to surface water from the contaminated groundwater is expected.

- Perchlorate is an emerging contaminant that is soluble and has the potential to migrate to groundwater. An area of perchlorate-contaminated soil was identified within the perchlorate groundwater plume footprint. The contaminated soil area is approximately 4,000 square feet and 1 foot in depth.
- The soil-to-surface water pathway may exist since surface water samples collected from Goose Prairie Creek have detected perchlorate. The perchlorate concentrations in the creek are currently below the mediumspecific concentration for groundwater that could be used for residential purposes. The residential level was used for comparison because Goose Prairie Creek discharges into Caddo Lake.

SCOPE AND ROLE OF THE PROPOSED ACTION

The scope and role of the action discussed in this proposed plan includes all remedial actions planned for this site. The preferred remedial action will ensure protection of human health and the environment. The action at LHAAP-50 will prevent potential risks associated with exposure to contaminated groundwater and will remove soil that may act as a residual source to groundwater and surface water.

Groundwater at Longhorn is not currently being used as drinking water, nor may it

be used in the future based on its reasonably anticipated use as a national wildlife refuge. However, when establishing the RAOs for this response action, the U.S. Army has considered the NCP's expectation to return useable groundwater to its potential beneficial use wherever practicable. The U.S. Army has also considered the State of Texas designation of all groundwater as potential drinking water, unless otherwise classified, consistent with Texas Administrative Code (TAC), Title 30, §335.563 (h)(1). The Army intends to return the contaminated shallow groundwater zone at LHAAP-50 to its potential beneficial uses, which is considered to be the attainment of Safe Drinking Water Act maximum contaminant levels (MCLs) to the extent practicable, and consistent with Code of Federal Regulations, Title 40, \$300.430(e)(2)(i)(B&C). If an MCL is not available for a chemical, the promulgated TCEQ medium-specific concentration for groundwater that could be used for industrial purposes will be used. If return to potential beneficial uses is not practicable, the NCP expectation is to prevent further migration of the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction.

The preferred remedial action will include groundwater monitoring to demonstrate that the plume is not migrating and to verify that contaminant levels are being reduced. Land use controls (LUCs) may be terminated when contaminant levels are reduced to MCLs.

SUMMARY OF SITE RISKS

The reasonably anticipated future use of this site is nonresidential as part of the Caddo Lake National Wildlife Refuge. This anticipated future use is based on a Memorandum of Agreement (U.S. Army, 2004) between the USFWS and the U.S. Army which documents the transfer process of the LHAAP acreage to USFWS to become the Caddo Lake National Wildlife Refuge. Presently the Caddo Lake National Wildlife Refuge occupies nearly 7,000 acres of the former installation. The property must be kept as a National Wildlife Refuge unless there is an act of Congress which removes the parcel or the land is exchanged in accordance with the National Wildlife Refuge System Administration Act of 1966 and the National Wildlife Refuge System Act Amendments of 1974.

As part of the RI/FS, a BHHRA and screening ecological risk assessment were conducted for LHAAP-50 to determine current and future effects of contaminants on human health and the environment to support technical review and risk management decisions.

Human Health Risks

Using the data presented in the RI, the baseline risk assessment estimates the risk that the site poses if no action is taken. It provides the basis for taking action and identifies the contaminants and exposure pathways that need to be addressed by the remedial action. The applicable receptor scenario for future use as a wildlife refuge is a hypothetical future maintenance worker. For carcinogens, risks are generally expressed as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to the carcinogen and are expressed in scientific notation (e.g., 1×10^{-6}). USEPA's acceptable risk range for site-related exposures is 1×10^{-4} to 1×10^{-6} , i.e., one-in-ten thousand to onein-one million. The potential for noncancer effects is expressed by a ratio of the exposure to the toxicity. An

individual chemical ratio less than 1 indicates that toxic non-cancer effects from that chemical are unlikely. A non-cancer hazard index (HI) is calculated when the ratios for the individual chemicals are summed. An HI greater than 1 indicates that site-related exposures may present a risk to human health. Thus, an HI of less than 1 is acceptable since toxic non-cancer effects are unlikely.

The cancer risk and the non-cancer hazard index were calculated based on future maintenance worker exposure to the site environmental media (e.g., soil and groundwater) under an industrial scenario. The human health risk assessment concluded that chemicals in the soil do not pose an unacceptable risk or hazard to the hypothetical future maintenance worker. However, groundwater at LHAAP-50 poses unacceptable cancer risk (5.5×10^{-3}) and non-cancer hazard (HI of 305) to a hypothetical future maintenance worker. The risk and HI values are based on an industrial exposure scenario that includes drinking the water or using the water for hand washing and showering. The impacts of the post-2002 soil sampling results were evaluated to determine their effect on risk, and it was concluded that the cancer risk and non-cancer hazard values posed by soil fall within the acceptable range (Shaw, 2009). Groundwater sampling results obtained from post risk assessment groundwater samples do not alter the conclusions of the risk assessment that groundwater poses risk (Shaw, 2009).

The chemicals of concern (COC) in groundwater contributing to both cancer risk and non-cancer hazard are PCE, TCE, 1,1-DCE, 1,2-DCA, and vinyl chloride. These COCs also exceed their associated MCLs. The primary contributor to the cancer risk is TCE. The primary contributor to the non-cancer hazard for

the hypothetical future maintenance worker is perchlorate. Perchlorate does not have an MCL, but perchlorate concentrations in groundwater at LHAAP-50 exceed the TCEQ promulgated perchlorate groundwater medium-specific concentration for industrial use. Cis-1,2-DCE also contributes to the non-cancer hazard for the hypothetical future maintenance worker and is an additional groundwater COC. Cis-1,2-DCE also exceeds its associated MCL. The contaminant byproducts (daughter products) of PCE and TCE are also considered COCs, these include 1,2-DCE as well as 1,1-DCE and vinyl chloride. Buildup of toxic byproducts of perchlorate does not occur during biological degradation (ITRC, 2002).

Even though the risk assessment did not conclude that exposure to soil would cause risk, additional evaluation was conducted of the soil as potential soil-to-surface water and soil-to-groundwater pathways for the emerging contaminant, perchlorate. The maximum concentration of perchlorate in the surface soil between 0 to 0.5 feet bgs was detected at 45,600 micrograms per kilogram (μ g/kg) which exceeds the TCEQ soil medium-specific concentration for industrial use based on groundwater protection (GWP-Ind) for perchlorate of 7,200 μ g/kg. Thus, perchlorate in soil is a COC.

Because the risk assessment was based on the reasonably anticipated future use as a wildlife refuge, Texas Administrative Code requires that a recordation notification be filed with Harrison County per TAC §335.566 disclosing that the site is suitable for nonresidential use. Additionally, limited monitoring in the form of Five-Year Reviews will serve to document that the use of the site remains consistent with the industrial/recreational

exposure scenario evaluated in the risk assessment.

Ecological Risks

The ecological risk for site LHAAP-50 was addressed in the installation-wide BERA (Shaw, 2007c). For the BERA, the entire installation was divided into three large sub-areas (i.e., the Industrial Sub-Area, Waste Sub-Area, and Low Impact Sub-Area) for the terrestrial evaluation. The individual sites at LHAAP were grouped into one of these sub-areas, which were delineated based on commonalities of historic use, habitat type, and spatial proximity to each other. The conclusions regarding the potential for chemicals detected at individual sites to adversely affect the environment must be made in the context of the overall conclusions of the sub-area in which the site falls. Site LHAAP-50 lies within the Industrial Sub-Area.

The BERA evaluated potential ecological risk to a number of endpoint receptors, as well as terrestrial plant and invertebrate communities. Endpoint receptors were evaluated using a food chain model that estimated a daily dose intake, which was subsequently compared with toxicity reference values to generate a hazard quotient. Terrestrial communities were evaluated through comparisons of detected concentrations to conservative benchmarks. Multiple lines of evidence (e.g., spatial distribution of concentrations, etc.) were also considered. After evaluating all lines of evidence, the BERA concluded that the potential for ecological risk was sufficiently low at the Industrial Sub-Area, and that no further evaluation for ecological receptors was required (Shaw, 2007c). Therefore, no action is needed at LHAAP-50 for the protection of ecological receptors.

Preferred Alternative

It is the current judgment of the U.S. Army that the preferred alternative identified in this Proposed Plan, or one of the other active measures considered in the Proposed Plan, is necessary to protect the public health or welfare or the environment from actual or threatened releases of hazardous substances into the environment.

REMEDIAL ACTION OBJECTIVES

The Army recognizes USEPA's policy to return all groundwater to potential beneficial uses, based upon the non-binding programmatic expectation in the NCP. The RAOs for LHAAP-50 which address contamination associated with the media at the site and take into account the future uses of LHAAP streams, land, and groundwater are:

- Protect human health for the hypothetical future maintenance worker by preventing exposure to groundwater contaminated with VOCs and perchlorate.
- Protect human health by preventing further potential degradation of groundwater and surface water from soil contaminated with perchlorate.
- Return groundwater to its potential beneficial use as drinking water, where practicable, within a reasonable time period given the particular site circumstances.

SUMMARY OF REMEDIAL ALTERNATIVES

The feasibility studies identified and screened remedial technologies and associated process options that may be appropriate for satisfying the RAOs for LHAAP-50 with respect to effectiveness, implementability, and cost. The following remedial alternatives were developed

from the remedial technologies that were retained after the initial screening:

- Alternative 1 No Action Alternative
- Alternative 2 Excavation, Monitored Natural Attenuation (MNA), LUCs
- Alternative 3 Excavation, In Situ Bioremediation, MNA, LUCs

Common Elements. Four elements (soil excavation, MNA, LUCs, and inspection/LTM) are common to Alternatives 2 and 3. These elements are described below.

Soil Excavation

Soil contamination would be excavated at LHAAP-50 under both Alternatives 2 and 3 and will eliminate the soil to groundwater pathway and soil-to-surface water pathway for perchlorate-contaminated soil.

MNA

MNA is a passive remedial action that relies on natural biological, chemical, and physical processes to reduce the mass and concentrations of groundwater COCs under favorable conditions. The natural attenuation evaluation indicates that MNA is a feasible technology for the groundwater at LHAAP-50 (Shaw, 2009). MNA would reduce contaminant concentrations to the cleanup levels.

LUCs

The LUCs would be implemented to support the RAOs. The U.S. Army would be responsible for long-term implementation, maintenance, inspection, reporting, and enforcement of the LUCs. The Army intends to provide details of the LUC long-term implementation and long-term maintenance actions in a remedial design (RD) document for the site. The LUCs would prevent human exposure to residual groundwater contamination

presenting an unacceptable risk to human health and ensure that there is no withdrawal or use of groundwater beneath the sites for anything other than environmental monitoring and testing. The groundwater restriction LUCs would be maintained until the concentrations of contaminants and by-product (daughter) contaminants in groundwater had been reduced to levels below their respective cleanup levels. In addition, the Texas Department of Licensing and Regulation responsible for notifying well drillers of groundwater restrictions would be notified and a notification of LUCs with the Harrison County Courthouse would include a map showing the areas of groundwater restriction at the site.

In order to transfer this property (LHAAP-50), an Environmental Condition of Property (ECOP) document would be prepared and attached to the letter of transfer. The ECOP would include LUCs for groundwater as part of the Environmental Protection Provisions. The property would be transferred subject to the land use controls identified in the ECOP. These restrictions would prohibit or restrict property uses that might result in exposure to the contaminated groundwater (e.g., drilling restrictions, drinking water well restrictions).

Inspection/Long-Term Groundwater Monitoring

Alternatives 2 and 3 include inspection and long-term groundwater monitoring activities. Monitoring would be continued as required to demonstrate effectiveness of the remedy, to demonstrate compliance with applicable or relevant and appropriate requirements (ARARs), and to-be-considered requirements, RAOs, and to support CERCLA Five-Year Reviews.

Although the U.S. Army may later pass these procedural responsibilities to the transferee by property transfer agreement, the U.S. Army shall retain ultimate responsibility for remedy integrity.

Alternative 1 – No Action. As required by the NCP, the no action alternative provides a comparative baseline against which the action alternatives can be evaluated. Under this alternative, the groundwater would be left "as is" without implementing any additional containment, removal, treatment, or other mitigating actions. No other actions would be implemented to prevent potential human exposure to contaminated groundwater or to demonstrate that nearby surface water bodies are protected from groundwater impacts.

Estimated Capital Cost: \$0

Estimated O&M Present Worth Cost: \$0

Estimated Duration: -
Estimated Present Worth Cost: \$0

Alternative 2 – Excavation, Monitored Natural Attenuation, LUCs

Alternative 2 provides the excavation and off-site disposal of perchlorate-contaminated soil from LHAAP-50, thereby eliminating the soil-to-groundwater and soil-to-surface water pathways; MNA of groundwater to reduce groundwater contaminants to their cleanup levels; and protection of the industrial worker by preventing exposure to contaminated groundwater through LUCs.

MNA is a passive remedial action that relies on natural biological, chemical, and physical processes to reduce the mass and concentration of groundwater COCs under favorable conditions. MNA would assure the protection of human health and the environment by verifying that migration

of contaminants does not occur and that MNA is effective in attaining the RAOs. The LUCs, inspection and long-term monitoring would remain in effect until cleanup levels are met.

Estimated Capital Cost: \$215,000 Estimated O&M Present Worth Cost: \$424,000

Estimated Duration: 30 years
Estimated Total Present Worth Cost: \$639,000

Alternative 3 – Excavation, In Situ Bioremediation, MNA, LUCs. This alternative includes excavation and offsite disposal of the perchloratecontaminated soil, thereby eliminating soil-to-groundwater and soil-to-surface water pathways; in situ bioremediation and MNA to reduce groundwater contamination to cleanup levels; and protection of the industrial worker by preventing exposure to contaminated groundwater through LUCs. To achieve these goals, this alternative utilizes in situ bioremediation to reduce groundwater contaminant concentrations in a target area. The target area has the highest contaminant concentrations. The in situ bioremediation will rapidly reduce these highest concentrations. MNA will be used in the areas outside the treated area to reduce the COC concentrations to cleanup levels. LUCs and inspections/LTM will be conducted only until such time that the cleanup levels are met for groundwater contaminants.

Estimated Capital Cost: \$402,000

Estimated O&M Present Worth Cost: \$512,000

Estimated Duration: 30 years

Estimated Total Present Worth Cost: \$914,000

EVALUATION OF ALTERNATIVES

Nine criteria identified in the NCP, §300.430(e)(9)(iii), are used to evaluate the different remediation alternatives individually and against each other in order to select a remedy. This section profiles the relative performance of each alternative against the nine criteria, noting how it compares to the other options under consideration. The nine evaluation criteria are discussed below. The "Detailed Analysis of Alternatives" can be found in the FS for the site (Shaw, 2009).

1. Overall Protection of Human Health and the Environment

The three alternatives provide varying levels of human health protection.
Alternative 1, no action, does not achieve the RAOs and provides the least protection of all the alternatives; it provides no reduction in risks to human health or the environment because no measures would be implemented to eliminate the pathway for human exposure to the groundwater contamination.

Alternatives 2 and 3 satisfy the RAOs for LHAAP-50. Alternatives 2 and 3 provide confirmation that human health and the environment are protected because contaminated soil would be removed and disposed off-site and monitoring would be conducted to document that the plumes are not migrating. Furthermore, LUCs would protect human health by preventing access to the contaminated groundwater until contaminants in groundwater are reduced to the cleanup levels.

2. Compliance with ARARs

Alternative 1 does not comply with chemical-specific ARARs because no remedial action or measures would be implemented. Alternatives 2 and 3 comply with groundwater and surface water chemical specific ARARs because they will return the contaminated shallow groundwater zone at LHAAP-50 to its potential beneficial use as drinking water, wherever practicable, in compliance with Safe Drinking Water Act MCLs as relevant and appropriate.

Location-specific and action-specific ARARs would not apply to Alternative 1 since no remedial activities would be conducted. Alternatives 2 and 3 comply with all location-specific and action-specific ARARs.

3. Long-Term Effectiveness and Permanence

Alternative 1 would be the least effective and permanent in the long term because no contaminant removal or treatment would take place and no measures would be implemented to control exposure risks posed by contaminated site groundwater.

Alternative 1 would also be the least effective and permanent for the risk posed to human health from the soil-to-groundwater and soil-to-surface water pathways since no removal would be conducted. The potential long-term risk from soil would be permanently removed for Alternatives 2 and 3 since the soil will be excavated and placed in a permitted landfill with the necessary facilities and long-term maintenance to control risks from the perchlorate contaminated soil.

MNA processes at LHAAP-50 are controlling plume migration and have stabilized the size of the areas exhibiting COC concentrations exceeding cleanup levels. Alternative 3 would reduce contaminant levels quicker than Alternative 2 through in situ bioremediation.

4. Reduction of Toxicity, Mobility, or Volume through Treatment

Alternative 1 does not employ treatment and would not result in a reduction of toxicity, mobility, or volume of contaminants.

Natural attenuation and in situ bioremediation coupled with excavation would permanently reduce the mass and concentration of contaminants and, therefore, the volume, toxicity and mobility of the contaminants. MNA is a passive remedial action and in situ bioremediation is an active treatment process.

Alternatives 2 and 3 generate daughter products that may temporarily increase toxicity or mobility of the contaminant plume, with in situ bioremediation working in a shorter time frame. Both alternatives include monitoring so daughter products would be quantified, documented and evaluated. Daughter product concentrations will be reduced under these alternatives to levels below their cleanup levels to return groundwater to its potential beneficial use as drinking water wherever practicable.

Achievement of cleanup levels in groundwater would be expedited by implementing in situ bioremediation in areas of highest contaminant concentrations for Alternative 3. Monitoring for contaminants would be performed to assess the effectiveness of the treatment. It is also anticipated that COCs will remain in the plume outside the treated areas and will continue to attenuate to cleanup levels over time.

The soil excavation in Alternatives 2 and 3 provides a reduction of mobility because perchlorate is removed from the site and placed in a permitted disposal facility. Toxicity and volume are not

reduced by the excavation portion of the alternative as the form and quantity of the perchlorate is not altered.

5. Short-Term Effectiveness

Alternative 1 does not involve any remedial measures; therefore, no short-term risk to workers, the community or the environment would exist. The activities associated with Alternatives 2 and 3 are protective to the surrounding community from short-term risks except for minimal potential short-term risks during transport (possible accident when soil is transported off site) of perchlorate-contaminated soil.

Alternatives 2 and 3 involve potential short-term risks to workers associated with exposure to contaminated groundwater and soil during operation of drilling/construction equipment. Alternatives 2 and 3 contain LUCs as elements of their remedies and would provide almost immediate protection from the contaminated groundwater by prohibiting installation of potable water wells through relatively quick LUC implementation. The time period to achieve groundwater cleanup levels is the most significant difference between Alternative 1 versus Alternatives 2 and 3. Alternative 3 is expected to take less time to achieve RAOs, provided treatability testing for in situ bioremediation is favorable. The implementation of Alternative 2 would require more time than Alternative 3.

6. Implementability

Under the no action alternative, no remedial action would be taken. Therefore, no difficulties or uncertainties would be associated with its implementation. Alternatives 2 and 3 are easily implemented from a technical standpoint as all required equipment,

materials, and services are readily available.

Alternative 3 would be somewhat more difficult to implement than Alternative 2 from a technical standpoint due to the specialized expertise required for design and construction of the in situ bioremediation treatment.

Administratively, all of the alternatives are implementable.

7. Cost

Cost estimates are used in the CERCLA FS process to eliminate those remedial alternatives that are significantly more expensive than competing alternatives without offering commensurate increases in performance or overall protection of human health or the environment. The cost estimates are preliminary estimates with an intended accuracy range of +50 to -30 percent. Final costs will depend on actual labor and material costs, actual site conditions, productivity, competitive market conditions, final scope, final schedule, final engineering design, and other variables.

The costs estimates include capital costs (including fixed-price remedial construction) and long-term O&M costs (post-remediation). Overall present worth costs are developed for each alternative assuming a discount rate of 2.8 percent. The duration used for the estimates is a 30-year period.

The progression of present worth costs from the least expensive alternative to the most expensive alternative is as follows: Alternative 1, Alternative 2, and Alternative 3. No costs are associated with Alternative 1 because no remedial activities would be conducted.

Alternative 2 has the lower present worth and capital costs of the active remedial alternatives. The higher capital cost is associated with Alternative 3 primarily due to the activities associated with the injection phase of in situ bioremediation.

8. State/Support Agency Acceptance

The USEPA and TCEQ have reviewed the Proposed Plan. Comments received from the USEPA and TCEQ have been incorporated. Both agencies concur with the preferred alternative.

9. Community Acceptance

Community acceptance of the preferred alternative will be evaluated after the public comment period and will be described in the Record of Decision (ROD) for the site.

SUMMARY OF THE PREFERRED ALTERNATIVE

Alternative 2 is the preferred alternative for LHAAP-50 and is consistent with the intended future use of the site as a wildlife refuge. This alternative is recommended because it will satisfy the RAOs for the site through contaminated soil removal with off-site disposal by eliminating the soil-to-groundwater and soil-to-surface water pathways, and through groundwater use restriction LUCs that will ensure protection of human health by preventing human exposure to contaminated groundwater until cleanup levels are met. The monitoring and reporting associated with the MNA remedy will continue until cleanup levels are achieved. Based on groundwater modeling, groundwater cleanup levels are expected to be met through natural attenuation in approximately 50 years for trichloroethene. Considering the lithologic variability, particularly the lateral and vertical change from sand to clay, the calculated times to reach cleanup

levels may range up to an order of magnitude greater. Based on the groundwater flow rates and predictive modeling, no adverse impact to the surface water is expected during the time it would take natural attenuation to reduce contaminant concentrations to cleanup levels. The selected alternative offers a high degree of long-term effectiveness, can be easily and immediately implemented, and costs less than Alternative 3.

The performance of natural attenuation will be evaluated after two years of performance monitoring using data from the eight quarters and from the historical sampling events of the prior ten years. The performance objectives for groundwater remediation will be included in the RD. If it is found that the performance objectives are not met, a contingency remedy such as in situ bioremediation (see Alternative 3 description for basic elements) will be implemented. The decision regarding use of the contingency remedy to address the groundwater contamination will be considered after two years of MNA and would be implemented, if required, after approval of the RD. The contingency remedy will be designed to address the contamination after two years of MNA.

Based on information currently available, the U.S. Army believes the preferred alternative meets the threshold criteria and provides the best balance of tradeoffs with respect to the CERCLA §121(b) criteria used to evaluate remedial alternatives. The preferred alternative will 1) be protective of human health and the environment; 2) comply with ARARs; 3) be cost-effective; 4) utilize a permanent solution; and 5) does not utilize an active treatment as a principal element. Although the selected remedy is not intended to address the statutory

preference for treatment to the maximum extent possible, the final selected remedy offers, within a reasonable time frame and at a lower cost, a similar level of protection to human health and the environment than the remedy alternative which satisfies the preference for treatment. In addition, no source materials constituting principle threats will be addressed within the scope of this action.

The Army intends to present details of the LUCs implementation plan, groundwater monitoring plan, and MNA remedy implementation in a RD for LHAAP-50.

The remedy selected in the ROD may change from the preferred alternative presented here, based on public comment.

Five-Year Reviews will be performed to document that the remedy remains protective of human health and the environment.

COMMUNITY PARTICIPATION

The U.S. Army, USEPA, and TCEQ provide information regarding LHAAP-50 through public meetings, the Administrative Record file for the facility, and announcements published in the Shreveport Times and Marshall News Messenger newspapers.

The dates for the public comment period, the date, location, and time of the public meeting and the locations of the Administrative Record files are provided on the front page of this Proposed Plan.

Any significant changes to the Proposed Plan, as presented in this document, will be identified and explained in the ROD.

Primary Reference Documents for LHAAP-50

Interstate Technology and Regulatory Council (ITRC), 2002, A Systematic Approach to In Situ Bioremediation in Groundwater, August.

Jacobs Engineering Group Inc. (Jacobs), 2002, Final Remedial Investigation Report for the Group 4 Sites 35A, 35B, 35C, 46, 47, 48, 50, 60, and Goose Prairie Creek, at the Longhorn Army Ammunition Plant, Karnack, Texas, January.

Jacobs, 2003, Final Baseline Human Health and Screening Ecological Risk Assessment for the Group 4 Sites (Sites 04, 08, 35A, 35B, 35C, 46, 47, 48, 50, 60, 67, Goose Prairie Creek, Saunder's Branch, Central Creek, and Caddo Lake), Longhorn Army Ammunition Plant, Karnack, Texas, June.

Plexus, 2005, Environmental Site Assessment, Phase I and II Report, Final, Production Areas, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw Environmental, Inc. (Shaw), 2007a, Final Data Gaps Investigation Report, Longhorn Army Ammunition Plant, Karnack, Texas, April.

Shaw, 2007b, Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Longhorn Army Ammunition Plant, Karnack, Texas, February.

Shaw, 2007c, Installation-Wide Baseline Ecological Risk Assessment, Longhorn Army Ammunition Plant, Karnack, Texas, Volume I: Step 3 Report, November.

Shaw, 2009, Final Feasibility Study, LHAAP-50, Longhorn Army Ammunition Plant, Karnack, Texas, November.

Solutions to Environmental Problems (STEP), 2005, Plant-Wide Perchlorate Investigation, Longhorn Army Ammunition Plant, Karnack, Texas, Final, Oak Ridge, Tennessee, April.

United States Army, 2004, Memorandum of Agreement Between the Department of the Army and the Department of the Interior for the Interagency Transfer of Lands at the Longhorn Army Ammunition Plant for the Caddo Lake National Wildlife Refuge, Harrison County, Texas, Signed by the Department of the Interior on April 27, 2004 and the Army on April 29, 2004.

GLOSSARY OF TERMS

Administrative Record — The body of reports, official correspondence, and other documents that establish the official record of the analysis, cleanup, and final closure of a CERCLA site.

ARARs — Applicable or relevant and appropriate requirements. Refers to the federal and state requirements that a selected remedy will attain.

Attenuation — The process by which a compound is reduced in concentration over time, through absorption, adsorption, degradation, dilution, and/or transformation.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

— This law authorizes the Federal Government to respond directly to releases (or threatened releases) of hazardous substances that may be a danger to public health, welfare, or the environment. The U.S. Army currently has the lead responsibility for these activities at LHAAP.

Environmental Media — Major environmental categories of substances that surround or contact humans, animals, plants, and other organisms (e.g. surface water, ground water, soil or air) and through which chemicals or pollutants move.

Exposure — Contact of an organism with a chemical or physical agent. Exposure is quantified as the amount of the agent available at the exchange boundaries of the organism (e.g., skin, lung, digestive tract, etc.) and available for absorption.

Groundwater — Underground water that fills pores in soil or openings in rocks to the point of saturation.

Groundwater cleanup levels — Groundwater promulgated federal standards (MCLs) for drinking water will be used. If no federal standard exists, the TCEQ promulgated groundwater medium-specific concentrations for industrial use will be used.

Hazard Index — The hazard index is the sum of the hazard quotients for all chemicals to which an individual is exposed. A hazard index value of 1.0 or less indicates that no adverse non-cancer human health effects are expected to occur. Each hazard quotient is a comparison of an

estimated chemical intake (dose) with a reference dose level below which adverse health effects are unlikely. Each hazard quotient is expressed as the ratio of the estimated intake (numerator) to the reference dose (denominator). The value is used to evaluate the potential for non-cancer health effects, such as organ damage, from chemical exposures.

Maximum Contaminant Level (MCL) — The maximum contaminant level is the maximum permissible level of a contaminant in a public water system. MCLs are defined in the Code of Federal Regulation (40 CFR 141, National Primary Drinking Water Regulations, which implement portions of the Safe Drinking Water Act). The TCEQ has adopted MCLs as the regulatory cleanup levels for both industrial and residential uses. Any detected compound in the groundwater samples with a MCL was evaluated by comparing it to its associated MCL.

Proposed Plan — A report for public comment highlighting the key factors that form the basis for the selection of the preferred remediation alternative.

Remedial Action — The actual construction or implementation phase of a Superfund site cleanup that follows remedial design.

Risk Assessment — An analysis of the potential adverse health effects (current and future) caused by hazardous substances at a site in the absence of any actions to control or mitigate these releases (i.e., under an assumption of no action). The assessment contributes to decisions regarding appropriate response alternatives.

Surface water — If the surface discharges to Caddo Lake, a public drinking water supply, then the MCL or TCEQ promulgated groundwater medium-specific concentration for residential use will be used. If the surface water is only for contact recreations, the TCEQ surface water contact recreational level will be used.

Superfund — The common name used for CERCLA; also referred to as the Trust Fund. The Superfund Program was established to help fund cleanup of hazardous waste sites. It also allows legal action to force those responsible for hazardous waste sites to pay for environmental actions.

ACRONYMS

ARARs applicable or relevant and

appropriate requirements

AST aboveground storage tank BERA Baseline Ecological Risk

Assessment

bgs below ground surface BHHRA baseline human health risk

assessment

CERCLA Comprehensive Environmental

Response, Compensation, and

Liability Act

COC chemical of concern
DCA dichloroethane
DCE dichloroethene

ECOP environmental condition of

property

FFA Federal Facility Agreement

FS feasibility study GWP-Ind soil medium-specific

concentration for industrial use

based on groundwater

protection

HI hazard index

LHAAP Longhorn Army Ammunition

Plant

LUC land use control

MCL maximum contaminant level μg/kg micrograms per kilogram MNA monitored natural attenuation NCP National Oil and Hazardous

Substances Pollution Contingency Plan

NPL National Priorities List O&M operation and maintenance

PCE tetrachloroethene

RAO remedial action objective

RD remedial design RI remedial investigation

RI/FS remedial

investigation/feasibility study

ROD record of decision

TAC Texas Administrative Code TCE trichloroethene

TCEQ Texas Commission on

Environmental Quality

USEPA U.S. Environmental Protection

Agency

USFWS U.S. Fish and Wildlife Service VOC volatile organic compound

USE THIS SPACE TO WRITE YOUR COMMENTS
Your input on the Proposed Plan for LHAAP-50 is important to the U.S. Army. Comments provided by the public are valuable in helping the U.S. Army select a final remedy for these sites.
You may use the space below to write your comments, then fold and mail to Dr. Rose M. Zeiler, P.O. Box 220, Ratcliff, Arkansas 72951. Comments must be postmarked by February 23, 2010. If you have questions about the comment period, please contact Dr. Rose M. Zeiler at 479-635-0110. Those with electronic communications capabilities may submit their comments to the U.S. Army via Internet at the following e-mail address: rose.zeiler@us.army.mil

The Times PROOF OF PUBLICATION

STATE OF LOUISIANA

PARISH OF CADDO

Before me, the undersigned authority, personally came and appeared

Altheas Critton personally known to me,

Who being duly sworn, deposes and says that she is the Assistant to the Classified Advertising Manager of The Times, and that the attached Advertisement entitled:

PUBLIC NOTICE The UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS

As per copy of advertisement hereto annexed, was published in

The Times on the following dates to wit:

January 17 & 24, 2010

(Signed) (Altheas Cutton)

Sworn to and subscribed before me this 25th day of January, 2010

(Notary)

ana H. Sarber

DIANA W. BARBER, NOTARY PUBLIC # 60491 CADDO PARISH, LOUISIANA MY COMMISSION IS FOR LIFE

LSU's Rural Life Museum dedicates visitor center

By Carol Anne Biltzer The Associated Press

BATON ROUGE - LSU's Rural Life Museum has entered the 21st century with a new \$4.7 million Visitor/Exhibit Center - 20,000 square feet of modern conveniences

built around touches of the past.

The blending of old and new is reminiscent of the style of the late Steele Burden, who in 1970 started the museum with his sister, the late Ione Burden. Throughout the lush museum landscape, Steele Burden carefully placed artifacts in a juxta-position of man and nature.

Although the museum is one of the area's most important tourist attractions, until now there were few amenities for the more than 60,000 people who visit annually.
"The facility was not big enough

to supply services like restrooms, water and a place for visitors to gather," said longtime museum director David Floyd, "On rainy days, visitors had to wait outside to enter the museum.

Although the building's dedica-tion was Friday, it will be months before exhibits and landscaping are

The Visitor/Exhibit Center provides an introduction to the buildings and artifacts on the museum grounds. It will also provide storage and state-of-the-art security.

"We needed to do a better job of preserving the collection," Floyd "We didn't have an adequate facility. We had no temperature control, no fire suppression and no security beyond a guard."

The modern conveniences have traditional context. "We learned from 39 years of operating in an old building that people loved the back porch of the old barn. They loved to sit there," Floyd said. "So we incorporated porches wherever we could in the new building.

A new entrance route uses an oak allee designed and planted decades ago by Steele Burden. The old Poplar Grove Plantation steam engine will be on display at

the entrance.

The route takes visitors through heritage plantings of corn and cotton. Huge granite lonic columns from the original Hill Memorial Library on the old LSU campus will also be on display along with several grindstones. "All of this is to give visitors little hints of what they will see in the museum." Floyd

The new one-story metal building is designed after the original mule barn designed by Steele Burden. "We did not want to forget about the old building." Floyd said. "We tried

Marketing director Bitsy McInnis (from left), director David Floyd and conservator David Nicolosi pose for a photo in part of the new addi-tion to the Rural Life Museum in Baton Rouge on Dec. 30.

in the building to have just one

A new catering kitchen's modern

appliances were donated by chef

A large exhibit room connects

the new building and the old mule

barn. Its exhibits interpret the

two main areas of the Rural Life

Plantation Section and the Folk Life

Section, which contains examples

of vernacular architecture from the

Anglo-Saxon Upland South as well

as examples of architecture from

Auseum: Steele Burden's original

to use the same concept Steele had Floyd said. "We didn't want spaces

The parking lot will be out of main function. sight, "The whole area will have a rural look, even though I-10 is just

beyond the woods," he said. The building uses modern materials while incorporating vintage lumber and other materials reminiscent of Steele Burden's original

'Although it's a modern building, we brought in vignettes of vernac-ular architecture." Floyd said. That includes vintage lumber

from old barus destroyed by Huricane Gustav and donated by the

At the entrance, busts of Steele and Ione Burden flank a vintage wood wall that will bear Steele Burden's description of his mission: "to increase the appreciation of our heritage and the way of life of our ancestors, their hardships, toils, vision, inspiration and determination by preserving something of the architecture and artifacts from our rural past.

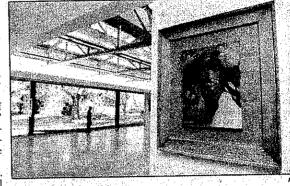
The new gift shop's roof includes cypress beams from an old planta-tion. Old store cabinets hold items for sale.

"The beams give the feeling of looking under an old house, and the cypress floors create the feel of an old plantation commissary,

The new building is centered on a courtyard where large artifacts will

be shown multiuse theater's large wooden barn-style doors can open to incorporate the lobby. "We want the museum areas to be versatile so that we can do all activities here,

A long old-fashioned storage cabinet abuts the wall of windows that surrounds the courtyard of the new addition to the Rural Life Museum in Baton Rouge on Jan. 5. The cabinet is part of the museum's gift shop.


The Holand South area contains examples of North Louisiana architecture like the dogtrot house and log barns," Floyd said.

The Gulf Coast South area spotlights the cultures of south Louisiana: the French, German, Spanish, African, Acadian, Canary Islanders and others, he said.

"This will be the front page of what you are going to see outside." Floyd said. "We want to create a permanent exhibit that changes constantly. All of the information is the

same, but the artifacts change."
In today's tough economic times Floyd is proud that donations paid the entire cost.

"There is no state or federal money involved," he said. "We had tremendous community support.

painting hangs beside an entrance to the theater in the new addition of LSU's Rural Life Museum in Baton Rouge. One wall of the theater is made of glass, with a view of the trees that separate it from

the Gulf Coast South. 00% NATURAL GRANITE at Laminate Prices I FREE ESTIMATES! Professional Installation We carry the most popular colors

> 318-549-9000 www.whatgranite.com

What Granite Countertops 1009 PEARL DR., BOSSIER CITY, LA 71111

What you can't see Na hurt you!

Allergens • Pollen • Dust Mites • Pet Dander • Endotoxins call today for a FREE Inspection! **AC DUCT CLEANERS** 218-0770

AIR DUCT . ODOR REMOVAL . AIR PURIFICATION SYSTEM

Grandparents Secret
Hand Smocked Children's Clothing

For more information call 318.617.7751

PUBLIC NOTICE
THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS
FOR ENVIRONMENTAL SITES LHAAP-46, -49, -50, -35A(58), AND THE PISTOL RANGE,
LONGHORN ARMY AMMUNITION PLANT, TEXAS

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period begins January 25, 2010, and concludes February 23, 2010. On Tuesday. January 26, 2010, from 6:00 to 8:00 p.m., the U.S. Army is inviting all interested parties to attend an open house forum to view the Proposed Plans and ask questions. The open house forum will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs): and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human. health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 ucres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank which received wastewater from various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated groundwater and soil at the site: 1) no action: 2) soil - excavation, groundwater - MNA and LUCs; and 3) soil - excavation, groundwater - in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive. woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action, 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative; in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation.

The former Pistol Range is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unaeceptable risk to human health or to ecological receptors.

For further information or to submit written comments, contact: Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951; phone number 479-635-0110 or e-mail rose zeiler@us.army.mil

SHREVEPORT OFFICE IS MOVING JANUARY 22

We will be relocating on Friday. The office will close at \$:30 p.m. Thursday, January 21, and reopen Monday, January 25 at 8 a.m. in the new location.

Our new address will be 411 ASHLEY RIDGE SHREVEPORT, LA 71106

Our phone numbers will remain the same 318.795.0573 GROUP SALES 318.795.4911 INDIVIDUAL SALES

00083961

The real miracle was four years ago

FROMA HARROP

The miracle in Massachusetts was made possible through a bigger miracle four years ago. That's when the commonwealth became the first and so far only state to guarantee near-universal coverage. The Republican winner of the Senate seat long held by Ted Kennedy, Scott Brown, voted for the legislation as a state senator. In vowing to be the key 41st vote against the Democrats' health care reforms, Brown carefully added that Massachusetts voters should not worry about their own health care security: They already have it through the state program. Thus, Massachusetts was the

worst state in which to test the wider public's feelings about national health care reform. Polls showed people in Massachusetts, as elsewhere, unhappy with the legislation in Washington. But those numbers include many who thought the reforms too weak or were simply disgusted by the legislative sausage-making. And whether these proposals were better than nothing is a meaning-less question to people who already

have something. The foes of health reform have long used a divide-and-conquer strategy in crafting an anti-reform coalition. They pit those who have government-guaranteed health care, such as the elderly, against those who don't. Rest assured that if there were no Medicare, the older folk with tea bags stapled to their hats would be on the other side of the barricades. Medicare is the most socialized element of the American health care system.

Similarly, the damp enthusiasm in Massachusetts for the reforms coming out of Washington belies the popularity of the state reforms enacted in 2006. "It's not perfect," a Brown supporter told a reporter, "but why should we have to pay again when we have health care?" HEALTH CARE REFORM IS DEAD!
LONG LIVE ARMA!
LONG LIVE ARMA! LONG LIVE BIG INSURANCE!

commission is now urging a move away from expensive fee-for-ser-

would pay groups of doctors and hospitals fixed sums to cover the

patient for a year.
Politically, the Massachusetts

now, fix it later.

program could serve as a national model. Pass universal coverage

Even though their reforms are

ington could have done better still by not trying to please everyone (including Republicans who were just playing with them). But despite their control of the White House

and majorities in Congress, Dem-

ocrats seemed capable only of reacting to critics, of cringing with

superior, Democrats in Wash-

vice health care and to a model that

of bringing it back to the lab for repair. The state has already cut fear under even the most ludicrous benefits and raised taxes. A special

If you don't have the courage of your convictions, it doesn't matter whether your party has 59 or 60 or 65 seats in the Senate. Under President Bush, Republicans got whatever they wanted with 50 senators.

The Democrats remind me of King Lear. Having given away his land, the source of kingly power. Lear turns to his fool for amuse. ment and threatens to whip him.
"I am better than thou art now," responds the cheeky fool, who like all Shakespeare fools, has every-thing figured out. "I am a fool; thou art nothing."

Write to Froma Harrop at Creators Syndicate 5777 W. Century Blvd., Suite 700 Los Angeles, CA 90045, She can be contacted via e-mail at

We the people still means something

CAL

In his first comment following Scott Brown's stunning victory the Massachusetts special election to fill the seat of the late Sen. Edward Kennedy, President Obama told the losing candidate Martha Coakley, "you can't win them all." No, but President Obama hasn't won any since his own election more than 15 months ago (not counting the Nobel Peace Prize, which was an unearned gift). Three candidates he campaigned for in New Jersey, Virginia and Mas-sachusetts lost, and his personal appeal for Chicago to host the Olympics in 2016 was rejected. That's 0-4. If he were a quarter-back, the coach would be eyeing the backup right about now.

Many lessons were taught, but

how many will be learned from Brown's victory? Chief among them is that the public doesn't like arrogance, whether it comes with a "D" or an "R" after the name. Democrats were taught that lesson in 1994 when voters gave Republicans a majority in the House of Representatives for the first time in more than 40 years. Republicans ran against arrogance and the tyranny of the majority. But they quickly became what they replaced, believing that voters had given them a license to do whatever they

It seems President Obama and the congressional leadership both need to be taught the same lesson. Speaker Nancy Pelosi isn't getting the message. She is promising to push through health care "reform" no matter what, Her San Francisco seat is safe, but the seats of many other Democrats — especially those Blue Dogs and Democrats who won in traditionally Republican districts -- are not. Will those Democrats be willing to play "Thelma and Louise" and drive off a cliff just so the Obama-Pelosi-Reid wing of their party can claim

victory?
President Obama's poll numbers. which have been sinking almost since his inauguration, will not he helped if he refuses to change course. Washington Post political reporter Chris Cillizza quoted a Democratic operative in the Post on Tuesday, "My message to my on Luesday, "My message to my clients?" he said. "Jump ship now. ... Obama can't help you." Rep. Anthony Weiner, D.N.Y., advises his colleagues to "take a step back" from health care reform and

THOMAS OPINION

focus on creating jobs. Sen. Evan Bayh, D-Ind., up for re-election in November, reacted to the Brown victory: "There's going to be a ten-dency on the part of our people to be in denial about all this ... if you lose Massachusetts and that's not a wake-up call, there's no hope of waking up." Bayli added: "It's why moderates and independents even in a state as Democratic as Massachusetts just aren't buying our message. ... They just don't believe the answers we are currently pro-posing are solving their problems."

In 1966, Arkansas Democratic Senator J. William Fulbright wrote about the arrogance of power: "Ti attitude above all others, which I feel sure is no longer valid, is the arrogance of power, the tendency of great nations to equate power with virtue and major responsibilities with a universal mission." It is as true of individuals as it can be of nations. Some politicians arrive in office seeking to serve themselves and not the people and quickly forget why they were sent to Washington in the first place. They build empires to their egos and too quickly sell their souls to lobbyists and other hidders in the build the souls to the souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to the self-their souls to self-their self-their souls to self-their and other bidders in the belief that re-election is the ultimate goal and highest good. Anger isn't policy and Repub-

licans must prove not only that Democrats are misusing their power, but also that if Republicans are given another chance at power, they won't again squander it on themselves. Humility is a light grace. The path to getting things done serves the people, not politi-

The Massachusetts election The Massachusetts election showed that even in the bluest of blue states, "we the people" still means something. Voters in Massachusetts have jerked the chain of Washington politicians and reminded them who is in charge. This is what "the tea party" movement is about, Liberal Democrats dismiss it at their peril. Just ask Martha Coakley. dismiss it at the Martha Coakley.

Write Cal Thomas at tmseditors@

Not perfect is an understatement.

Unlike the legislation in Congress, the Massachusetts plan made vir-

tually no effort to contain spiraling

health care costs. That makes the

which Brown still supports, far less

conservative than the national ver-

But despite the program's unex-pected costs — despite its indi-

vidual mandate to obtain coverage or face a fine — the Massachusetts

program retains solid backing at

nome. Once people realize that

family member, they can get med-

house, they won't let anyone take

So there's no talk of repealing

the Massachusetts program, but

ical care without having to sell their

whatever happens to their job, whatever dire disease befalls a

Massachusetts health care plan.

sion he opposes.

This Weekend Jan. 22, 23 & 24 Fri 4-8, Sat 10-7 & Sun 10-5

Shreveport Convention Center Next to the Home Show

TUBS.POOLS.OUTDOOR KITCHENS•AND MUCH

Call **1-800-766-5725** or log onto our website at

DHISTANA

\$3900 Per Identi

www.poolandspashow.com The Civil War This is your Louisiana. In Louisiana

Louisiana played a significant role in the American Civil War To learn more, visit www.lastateparks.com & www.louislanatravel.com

THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49, -56, -35A(58), AND THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period begins January 25, 2010, and concludes February 23, 2010. On Tuesday, January 26, 2010, from 6:00 to 8:00 p.m., the U.S. Army is inviting all interested parties to attend an open house forum to view the Proposed Plans and ask questions. The open house forum will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated on capacity aboveground storage tank which received wastewater from groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LUCs; and 3) soil - excavation. groundwater - in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative; excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres. The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative: in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation.

The former Pistol Range is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to ecological receptors.

For further information or to submit written comments, contact: Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220. Ratcliff, Arkansas, 72951; phone number 479-635-0110 or e-mail rose zeiler@us.army.mil.

Proof of Publication

from

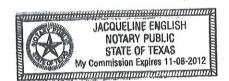
MARSHALL NEWS MESSENGER

P.O. BOX 730

1175/29 \$ 812,50

MARSHALL, TX 75670

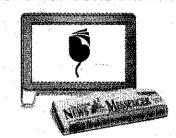
(903) 935-7914


#2173129	4812,30	STATE OF TEXAS COUNTY OF HARRISON	
		On this	
		of the MARSHALL NEWS MESSENGER, a da published at MARSHALL, County of HARRIS TEXAS, who, being by me duly sworn, states tha advertisement, a true copy of which is hereto published in said newspaper in its issues thereof o	ON, State of at the attached annexed, was
		dates:	20 10
		day of	_ 20
		day of	20
		day of	20
		day of	20
1		Δ	

day of

Notary Public, Harrison County, Texas

Subscribed and sworn to before me this


My Commision 11-8.7012 expires

Welcome to "Marshall's Marketplace"

Office Hours: Monday-Friday • 8 AM - 5 PM P.O. Box 730, 309 E. Austin, Marshall, Texas 75671

935-SELL (7355)

Pick it Up! Click it Up!

www.marshallnewsmessenger.com

Fax: 903-935-6242 Local from Longview: 903-758-7355

1030: **AUTO PARTS** AND SERVICE

P265/70R18 for \$85 P275/60R20 for \$95. 903-240-8001 REMANUFACTUREDI 6.9, 7.3, 6.6 diesel Warranty/Delivered.

New pulloffs, \$75!!

Call 713-918-5811 *∞*1040≖ TRAILERS

2006 CM 3Horse slant load w/walk in tack, dressing room, barn kept \$4200, 903-748-7291

050= **BOATS**/ **SUPPLIES**

2006 Glastron 1955X. w/5.0 L Mercruiser garage kept, exc cond \$19,500 903-748-7291

1075 TRACTORS/ **FARM** EQUIPMENT

Tractor for Sale Branson 3510i Almost New 35hp 4WD, 12 Spd, Synchro nized Gears Front End Loader Shredder Blade Pallet Forks Less Than 100 hours 3.5 years or 3900 hrs MFG Warranty * Call 903- 769-2367

≤1 1 00° **SPORT UTILITY**

2001 CHEV. TAHOE LS, dark blue, 95K miles. Very clean! Tan cloth interior, 2 rows of seats. large rear cargo area \$8995, 903-646-0921

2005 CADILLAC SRX Sport Utility, blue w/gray Int, Luxury Pkg, 71K mi. \$18,000, 903-291-0051

2007 Nissan Pathfinder. white w/tan leather, sun roof, Bose stereo, 3rd row, 44K mi, \$18,900 call Scott 903-452-9299

2007 Dodge Durango Black w/gray interior, p/w, p/l, 3rd rear seat, \$14,900, 903-720-2954

1110= **TRUCKS**

1992 Ford F350 delsel auto, 2-car hauler w/hydraulic wheel lift, \$4500. 903-917-1097

2003 FORD crew cab tool box & wheels, 1 owner, 96K mi, dent, \$5,750, 903-407-2048

2005 Ford F150 4X4, King Ranch, Super Crew, 77K mi. 4" lift, clean! \$16,000. 903-241-1396

2008 Nissan Frontier Pickup, white. 5,000 miles. Cd player, Runs great. Garaged. Like new! \$17,000. Call 903-668-4030

VANS

1994 Dodge work van runs & drives good looks good, \$1650 903-917-1097

≠1260= MAZDA

2007 Mazda Miata MX-5 Grand Touring convertible, 4500 Miles, Copper red with brown top. brown leather interior, six

LEGAL NOTICES

THE STATE OF TEXAS

LEGAL NOTICES

∮2030≅ **LEGAL NOTICES**

LEGAL NOTICES

2030——— LEGAL NOTICES

LEGAL NOTICES

Fax Your Ad to Us 903-935-6242

Place an Ad Today! 903-935-7355

NOTICE OF SALE

BY VIRTUE OF AN ORDER OF SALE

COUNTY OF HARRISON DATED 6 Jan. 2010, and issued pursuant to a judgment decree of the District Court of Harrison County, Texas, by the Clerk of said Court on said date in the hereinafter styled and numbered causes, and to me directed and delivered as Sheriff of said Court, I have on 6 Jan. 2010, seized, levied upon, and will on the first Tuesday in February, 2010, the same being the 2nd day of said month at the Courthouse door of said County, in the City of Marshall, between the hours of 10:00 o'clock A.M. and 4:00 o'clock P.M. on said day, proceed to sell for cash to the highest bidder all of the right, title, and interest of the defendants in such suit in and to the following described real estate levied upon as the property of said defendants, the same lying and being situated in the County of Harrison and the State of Texas to wit.

CAUSE NO. STYLING, DEFENDANTS AND PROPERTY DESCRIPTION

assessed on the tax roles of this jurisoiction (01825-00040-01998-000000)
07-0067-7 Harrison Central Appraisal District v. Sarah Ann Jones aka Sarah Harper Jones, Lynn Rogers Hall, Robin Bush Colteaux, Paul Scott Bush, William Henry Harper, Linda Harper Flegener
Lots 63 and 64, Block 2, Lake Deerwood Subdivision and a 1970 Fleetwood Festival model manufactured home, 12 x 42 ft., Label #
DLS0064498, Harrison County, Texas (01855-01100-00000-000000)
07-0088-T Harrison Central Appraisal District v. Unknown Heirs of Homer Lee Sands, Unknown Heirs of Margaret Pippins Sands and Samuel

H 0.152 Acre, more or less, being Lot 1, Block 6, Wileyview 2nd Addition to the City of Marshall, Harrison County, Texas being that property more particularly described in Volume 705, Page 371 of the Deed Records, Harrison County, Texas (05300-00460-00000-000000) 07-0106-T Harrison Central Appraisal District v. Unknown Heirs of Pearl Wesley, Mae Dell Wesley, Angela Pearl Wesley, Unknown Heirs of

County, Texas (00815-0090-00040-000000)
08-0085-T Harrison Central Appraisal District v. Lewis E. Williams
Part of Outlot 282, Northwest, City of Marshall, Harrison County, Texas (03040-04550-00000-000000)
08-0086-T Harrison Central Appraisal District v. Stephanie Branch aka Stephanie Tamiko Williams
South part of Outlot 206, Southwest, City of Marshall, Harrison County, Texas (03020-03865-00000-000000)
08-0097-T Harrison Central Appraisal District v. Anthony Jones, Truste for the Tree Farm Perpetual Educational Trust Fund
82,254 Acres, more or less, out of Abstract 393 of the M Lindsey Survey, Harrison County, Texas being that property more particularly described in Volume 1395, Page 295 of the Deed Records, Harrison County, Texas (00393-00011-00000-000000)
08-0108-T Harrison Central Appraisal District v. Bobble Jean Tatum aka Bobble Phillips

Lot 1, Part of Lot 2, Block 8, Lothrop 2nd Addition to the City of Marshall, Harrison County, Texas (04375-00510-00000-000000)

08-0114T Harrison Central Appraisal District v. Jean Odell Burt

Outlots 155 - 155 D, Outlot 156, Southwest, City of Marshall, Harrison County, Texas (03020-02910-00000-00000)

08-0116-T Harrison Central Appraisal District v. Ramona Eshee aka Ramona Gubitz aka Ramona Dennis aka Ramona Wiggins aka Ramona Plantis aka Ramona Wiggins aka Ramon

OB-0116-T Harrison Central Appraisal District v. Ramons Estine and national Source and Indiana Source and Indiana Source and Indiana Source and Indiana Source and Indiana Source and Indiana Source and Indiana Source and Indiana Source (04850-00335-00000-00000) OB-0117-T Harrison Central Appraisal District v. Jornale Johnson Evans
Lot 3, Block 2, Sunset Acres, City of Marshall, Harrison County, Texas (05020-00110-00000-00000)
OB-0118-T Harrison Central Appraisal District v. John L. Hayes, Jr. and Freida Hayes
25 Acres, more or less, out of Abstract 71 of the L B Blankenship Survey, being Block No. 4 in Partition Deed allotted to Sim Warren in Volume 78, Page 630, Harrison County, Texas being that property more particularly described in Volume 3562, Page 98 of the Deed Records, Harrison County, Texas (00071-01835-00000-000000)
OB-0132-T Herrison Central Appraisal District v. Terri Lynn Opperman

Tract 1: Lot 3, Block 4, Wileyview 2nd Addition to the City of Marshall, Harrison County,

OB-0122T Harrison Central Appraisal District v. Terri Lynn Opperman
Lot 5, Block 24, Parkview Addition to the City of Marshall, Harrison County, Texas (04700-02000-00000-000000)
08-0169-T Harrison Central Appraisal District v. Stanley 0, Mann TRACT 2: West part of Lot 2, Block 30, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-02130-00000-000000)

TRACT 3: West part of Lot 2, Block 30, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-02140-00000-000000)

TRACT 3: West part of Lot 1, Block 28, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-01975-00000-000000)

TRACT 4: Acre, more or less, out of Abstract 747 of the A Whetstone Survey, Tract 1, Harrison County, Texas being that property more particularly described in Volume 2821, page 72 of the Deed Records, Harrison County, Texas (00747-00430-00000-000000)

TRACT 5: 0.500 Acre, more or less, out of Abstract 747 of the A Whetstone Survey, Tract 2, Harrison County, Texas being that property more particularly described in Volume 2821, Page 72 of the Deed Records, Harrison County, Texas (00747-00430-00010-000000)

The following property held in trust by Harrison County Appraisal District, Trustee, & Harrison County as Co-Trustee will be offered for resale pursuant to Section 34,05 of the Texas Property Tax Code:

Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #03-0135-T styled Harrison Central Appraisal District v. Richard Miles, et al. (05300-00210-00000-000000)

Tract 2: So, 64 ft, Lots 22 - 24 and 15, Part of Outlot 97 Northeast, Lot 6, Walter Brown Estate Resubdivision, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #04-0127-T styled Harrison Central Appraisal District v. Jimmy Brown aka Jimmy L. Brown et al (03030-01916-00000-000000)

Tract 3: Outlot 94 A, Northeast, City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #04-0127-T styled Harrison Central Appraisal District v. Jimmy Brown aka Jimmy L. Brown et al.

PUBLIC NOTICE

THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49, -50, -35A(58), AND THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range, Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period begins January 25, 2010, and concludes February 23, 2010. On Tuesday, January 26, 2010, from 6:00 to 8:00 p.m., the U.S. Army is inviting all interested parties to attend an open house forum to view the Proposed Plans and ask questions. The open house forum will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

inuman exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred femedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gaillon capacity aboveground storage tank which received wastewater from various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres. The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for a

The former **Pistol Range** is located in the southeastern portion of LHAAP and covers an area of approximately 0,4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soll with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unaccept able risk to human health or to ecological receptors.

Zeller, Longhorn Army Ammunition Plant, P.O. Box 220, Ratoliff, Arkansas, 72951; phone number 479-635-0110 or e-mail HYPERLINK "mailto:rose.zeiler@us.army.mil"

rose.zeiler@us.army.mii.

INVITATION FOR BIDS

The Housing Authority of the City of Marshall, Texas (hereinafter called the "Local Housing Authority") will receive sealed bids for the modern Ization of 74 dwelling units; mechanical modifica-tions, alterations, and electrical, including demoli tion and all work specified and/or shown on the

THURSDAY, FEBRUARY 18, 2010 AT 2:00 PM
THE HOUSING AUTHORITY OF
THE CITY OF MARSHALL
1401 POPLAR STREET
MARSHALL, TEXAS 75670

immediately thereafter all bids will be publicly pened and read aloud. Proposed forms of contract documents; including

plans and specifications are on file and available for inspection at the office of the Housing Authority of the City of Marshall and at the office of Cam eron Alread, Architect Inc., 209 W. 8th St., Fort Worth, Texas 76102, (817) 332-6231 and at plan rooms in various cities of the state. Copies of the documents may be obtained by depositing \$100:00 with the Architect for one set of documents per General Contractor. Such deposits will be refunded on return of the plans, specifications and other documents in good condition within 30 days after bid opening. Plans and specifications that have been taken apart are not considered in good condition.

PRE BID CONFERENCE will be held THURSDAY, FEBRUARY 4, 2010 at 2:00 P.M. at the Marshall Housing Authority.

HOUSING AUTHORITY OF THE CITY OF MARSHALL, TEXAS Milton H, Williams, III, Executive Director 903/938-0717

EMPLOY

CLASSIFIEDS 935-SELL (7355)

Pick it Up! Click it Up!

TRANSPORTATION

|030≥ **AUTO PARTS** AND SERVICE

P265/70R17. New pulloffs, \$75!! P265/70R18 for \$85 P275/60R20 for \$95. 903-240-8001

LWB ARE Camper Shell w/big back glass, fits Dodge pickup, \$500. 903-578-1999

REMANUFACTUREDI 6,9, 7.3, 6.6 diesel eng. Warranty/Delivered. Call 713-918-5811.

1998 Champion 203 Elite/DC, exc. condition! 225 EFI Merc, \$12,500. Call 903-576-2554

2006 Glastron 1958X garage kept, exc cond, \$19,500 903-748-7291

Caterpillar T40C Forklift 903-917-1097

≤1100**=** SPORT UTILITY

2005 CADILLAC SRX Sport Utility, blue w/gray int. Luxury Pkg. 71K mi. \$17,500, 903-291-0051

1110= **TRUCKS**

1983 GMC Slerra SWB 305.30 over RV Cam. Edelbrock Performer intake, 600 carb, lots of new parts, needs transmission, \$3200obo. 903-407-8888

BMW

2002 BMW 325C1 con vertible, white w/black rag top, exc cond \$14,950, 903-926-7883

160 CADILLAC

2006 CTS-V standard trans w/Corvette motor, Rare Carl 405hp, 65Kmi Nav. sys; loaded, clean \$22,500. Serious inquiries only. 903-452-2678

200° FORD

ONE OWNER! 2006 feather int auto, new tires, excellent condition, 51K miles, \$16,000 firm, 903-235-8038

2008 Amante, only 22% best offer,903-297-3902

2003 Saturn Vue extra new tires, loaded, red \$6.250. ready, \$6 903-742-1318

2005 **ADOPTIONS**

2030≖ **LEGAL NOTICES**

THE STATE OF TEXAS

COUNTY OF HARRISON

2030 LEGAL NOTICES

LEGAL NOTICES

2030 LEGAL NOTICES

NOTICE OF SALE

BY VIRTUE OF AN ORDER OF SALE

DATED 6 Jan. 2010, and issued pursuant to a Judgment decree of the District Court of Harrison County, Texas, by the Clerk of said Court on said date in the hereinafter styled and numbered causes, and to me directed and delivered as Sheriff of said Court, I have on 6 Jan. 2010, selzed, levied upon, and will on the first Tuesday in February. 2010, the same being the 2nd day of said month at the Courthouse door of said County, in the City of Marshall, between the hours of 10:00 o'clock A.M. and 4:00 o'clock P.M. on said day, proceed to sell for cash to the highest bidder all of the right, title, and interest of the defendants in such suit in and to the following described real estate levied upon as the property of said defendants, the same lying and being situated in the County of Harrison and the State of Texas to-wit:

STYLING, DEFENDANTS AND PROPERTY DESCRIPTION

02-0045-T Harrison Central Appraisal District v. Dalsy Peppers Spencer, Purvis Peppers, Unknown Heirs of Mildred Peppers, Unknown Heirs

02-045-T Harrison Central Appraisal District v. Daisy Peppers Spencer, Purvis Peppers, Unknown neits of Institute Company of Robert Peppers, and Unknown Heirs of Rosco Peppers
Lot 5, Block E, Jester Addition to the City of Marshall, Harrison County, Texas (04230-00290-00000-000000)
05-0110-T Harrison Central Appraisal District v. Bernard Joe Carrier, Judy Pauline Carrier and Alecia Carrier
TRACT 1: Lot 22, Block 10, Sexton 1st Addition to the City of Marshall, Harrison County, Texas (04865-01190-00000-000000)
TRACT 2: Lot 11, Block 6, Allen Heights Addition to the City of Marshall, Harrison County, Texas (03100-00590-00000-000000)
05-0143-T Harrison Central Appraisal District v. Rickey Edwin Starr Individually and DBA Albert Starr Weiding Service
1.007 Acres out of Abstract 431 of the H Martin Survey, Harrison County, Texas being that property more particularly described in Volume 560, Page 329 of the Deed of Trust Records, Harrison County, Texas (00431-00190-000010-000000)

Acres out of Abstract 431 of the H Martins Strivey, Harrison County, Texas being that property more particularly described in Volume 560, Page 329 of the Deed of Trust Records, Harrison County, Texas (00431-00190-00010-000000)

06-0135-T Harrison Central Appraisal District v. Nicole Denise Jones

1 Acre, more or less, out of Abstract 29 of the B Anderson Survey, Harrison County, Texas being that property more particularly described in Volume 2512, Page 136 of the Deed Records, Harrison County, Texas (00029-00100-00000-000000)

06-0166-T Harrison Central Appraisal District v. Unknown Heirs of Girtha Lee Kennedy and Denise Kennedy Henderson Lot 20, South 1/2 of Lot 19, Block 1, Sexton 2nd Addition to the City of Marshall, Harrison County, Texas (04870-00130-00000-000000)

06-0180-T Harrison Central Appraisal District v. Lila Mae Moore Simmons, Audrey Simmons Cato, Robert Lee Simmons, James Richard Simmons, Charline Bolden Simmons, Joseph Simmons, Jr., and Charles Edward Simmons

Lot 2, Block 1, W. Ward Addition to the City of Marshall, Harrison County, Texas (05270-00100-00000-000000)

06-0190-T Harrison Central Appraisal District v. Unknown Heirs of Henry Taylor, Unknown Heirs of Almeta Taylor aka Alimeta Taylor, Robert Phelps aka Robbie B. Phelps and Alicla Deann Phelps

Lot 1, Block 1, Scheuber 1st Addition to the City of Marshall, Harrison County, Texas (04820-00010-00000-000000)

07-0006-T Harrison Central Appraisal District v. Unknown Heirs of Ann M. Brazzel and Paul Brazzel

1.750 Acre, more or less, out of Abstract 227 of the WM Elliott Survey, Harrison County, Texas being that property more particularly described in Volume 1085, Page 689 and Volume 1220, Page 625 of the Deed Records, Harrison County, Texas being that property more particularly described and assessed on the tax rolls of this jurisdiction (00709-00100-0005-001999)

TRACT 2: 1,00 Acre, more or less, out of Abstract 709 of the P Taylor Survey, Harrison County, Texas being that property more particularly

GO709-00100-0005-001999)
TRACT 2: 1.00 Acre, more or less, out of Abstract 709 of the P Taylor Survey, Harrison County, Texas being that property more particularly described in Volume 2189, Page 78 of the Deed Records, Harrison County, Texas (00709-00100-000020)
07-0031-T Harrison Central Appraisal District v. Paul A. Berry & Unknown Heirs of Mollie S. Berry
H 0.536 Acre being Lot 98, Block 3. Unit 2, Lake Deerwood, Harrison County, Texas being that property more particularly described in Volume 1308 Page 384 of the Deed Records, Harrison County, Texas (01855-03269-00001-000000)
07-0035-T Harrison Central Appraisal District v. Thelma Estelle Evers
0.412 Acre, more or less, being Lot 143 and 144 N, Block 2, Unit 2, Lake Deerwood, Harrison County, Texas being that property more particularly described in Volume 1141, Page 215 of the Deed Records, Harrison County, Texas (01855-01710-00000-000000)
07-0045-T Harrison Central Appraisal District v. Unknown Heirs of Edward C. Smith and Unknown Heirs of Katherine M. Smith
Tract 1: 0.160 Acre, more or less, being Lot 12, Block A, Unit B, Lake Deerwood, Harrison County, Texas being that property more particularly described in Volume 1502, Page 113 of the Deed Records, Harrison County. Texas (01825-00040-00010-000000)
17ract 2: House located on Lot 1.2, Block A, Unit B, Lake Deerwood, Harrison County, Texas being that property more particularly described in Volume 1502, Page 113 of the Deed Records, Harrison County, Texas being that property more particularly described in Volume 1502, Page 113 of the Deed Records, Harrison County, Texas being that property more particularly described in Volume 1502, Page 113 of the Deed Records, Harrison County, Texas being that property more particularly described and assessed on the tax rolls of this jurisdiction (01825-00040-001998-000000)
07-0067-T Harrison Central Appraisal District v. Sarah Ann Jones aka Sarah Harper Jones, Lynn Rogers Half, Robin Bush Colteaux, Paul Scott Bush, William Henry Harper, Linda Harper Figgenor
Lots 63 and

Hoppins
H 0.152 Acre, more or less, being Lot 1, Block 6, Wileyview 2nd Addition to the City of Marshall, Harrison County, Texas being that property more particularly described in Volume 705, Page 371 of the Deed Records, Harrison County, Texas (05300-00460-00000-000000)
07-0306-T Harrison Central Appraisal District v. Unknown Heirs of Pearl Wesley, Mae Dell Wesley, Angela Pearl Wesley, Unknown Heirs of

H 0.152 Acre, more or less, being Lot 1, Block 6, Wileywiew 2nd Addition to the City of Marshall, Harrison County, Texas being that property more particularly described in Volume 705, Page 371 of the beed Records, Harrison County, Texas (03030-00460-0000-00000) 07-0106-T Harrison Central Appraisal District v. Unknown Heirs of Pearl Wesley, Mage Dell Wesley, Angela Pearl Wesley, Unknown Heirs of Wendell Wesley, Addie Crumby, and Andre Cempbell H 0.101 Acre, more or less, being Lot 1, Block 3, Sexton 2nd Addition to the City of Marshall, Harrison County, Texas (04870-0030-00000-00000) 07-0133-T Harrison Central Appraisal District v. Alice Mitchail Butier, a feme sole and JP Morgan Chase Bank, NA TRACT 1: Lot 6, South part of Lot 4, Block 2, Sexton 2nd Addition to the City of Marshall, Harrison County, Texas (04870-00170-0000-000000) TRACT 3: H East part of Lot 4, Block 25, Longinotti Addition to the City of Marshall, Harrison County, Texas (04860-01270-0000-000000) TRACT 3: Lot 18, South 1/2 of Lot 16, Block 10, Sexton Addition to the City of Marshall, Harrison County, Texas (04860-01270-0000-000000) 07-0183-T Harrison Central Appraisal District v. Lot Chatham aka Laskey Chatham, Beronda F, Chatham, and Jm Walter Homes, Inc. Lots 5 and 6, Block 5, Chatham Addition to the City of Marshall, Harrison County, Texas (06860-00000-000000) 07-0183-T Harrison Central Appraisal District v. David W, Jackson and Teresa G, Jackson 0.165 Acre, more or less, being Part of Cultur 299 A, Northwest, City of Marshall, Harrison County, Texas (being that property more particularly described in Volume 1284, Page 659 of the Deed Records, Harrison County, Texas (03040-04910-00000-000000) 09-0008-T Harrison Central Appraisal District v. Mary Ford aka Mary K. Roach West part of Lot 1, Block 2, Sunnyside Addition to the City of Marshall, Harrison County, Texas (03470-00240-00000-00000) 09-0008-T Harrison Central Appraisal District v. Volume 1064 of Abstract 632 of the S bote Survey, Harrison County, Texas (03470-00240-00000-000000) 09-0008

Lingoid
East 60 ft. of Lot 2, North 30 ft. of Lot 3, Block 2, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-00335-00000-000000)

D8-011-7: Harrison Central Appraisal District v. Lorraine Johnson Evans
Lot 3, Block 2, Sunset Acres, City of Marshali, Harrison County, Texas (05020-00110-00000-00000)
08-0118-7: Harrison Central Appraisal District v. John L. Hayes, Jr., and Freida Hayes
25 Acres, more or less, out of Abstract 7.1 of the L. B Blankenship Survey, being Block No. 4 in Partition Deed allotted to Sim Warren in Volume
78, Page 630, Harrison County, Texas being that property more particularly described in Volume 3562, Page 98 of the Deed Records, Harrison
County, Texas (00071-01835-00000-000000)

08-0122-T Herrison Central Appraisal District v. Terri Lynn Opperman
Lot 5, Block 24, Parkview Addition to the City of Marshall, Harrison County, Texas (04700-02000-00000-000000)
08-0169-T Harrison Central Appraisal District v. Stanley 0. Mann

08-0169-T Harrison Central Apprelsal District v. Stanley O. Mann
TRACT 1: East part of Lot 2, Block 30, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-02130-00000-000000)
TRACT 2: West part of Lot 2, Block 30, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-02140-00000-000000)
TRACT 3: West part of Lot 1, Block 28, Scogin Addition to the City of Marshall, Harrison County, Texas (04850-01975-00000-000000)
TRACT 4: Acre, more or less, out of Abstract 747 of the A Whetstone Survey, Tract 1, Harrison County, Texas being that property more particularly described in Volume 2821, page 72 of the Deed Records, Harrison County, Texas (00747-00430-00000-000000)
TRACT 5: 0.500 Acre, more or less, out of Abstract 747 of the A Whetstone Survey, Tract 2, Harrison County, Texas being that property more particularly described in Volume 2821, Page 72 of the Deed Records, Harrison County, Texas (00747-00430-00010-000000)

The following property held in trust by Harrison County Appraisal District, Trustee, & Harrison County as Co-Trustee will be offered for resale pursuant to Section 34.05 of the Texas Property Tax Code:

Tract 1: Lot 3, Block 4, Wileyview 2nd Addition to the City of Marshall, Harrison County

Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #03-0135-T styled Harrison Central Appraisal District v. Richard Miles, et al. (05300-00210-00000-000000)

Tract 2: So. 64 ft. Lots 22 - 24 and 15, Part of Outlot 97 Northeast, Lot 6, Walter Brown Estate Resubdivision, Harrison County, Texas which was

James 2: 36, 41 f, Lots 22 - 24 and 15, Part of outdot 97 Northeast, Lot 6, waiter grown Estate Resuddivision, Harrison County, texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #04-0127-7 styled Harrison Central Appraisal District v. Jimmy Brown aka Jimmy L. Brown et al (03030-01916-00000-000000)

Tract 3: Outlot 94 A, Northeast, City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #04-0127-7 styled Harrison Central Appraisal District v. Jimmy Brown aka Jimmy L. Brown et al (03030-01720-00000-000000)

Tract 4: Lot 3, Block 1, Hubbard Addition to the City of Marshall, Harrison County, Texaswhich was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #04-0142-T styled Harrison Central Appraisal District v. Cerra S. Slade aka C S Slade, Jr. (04140-00030-00000-000000)

Tract 5: Part of Outlot 221 A, Southeast, City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #04-0148-T styled Harrison Central Appraisal District v. Unknown Heirs of Carolyn Anderson Van, et al (03010-04550-00000-000000)

(03010-04550-00000-000000)

Tract 6: Outlot 291, Northwest, 0.434 Acre, more or less, City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #05-0103-T styled Harrison Central Appraisal District v. M. T. Waxler et al (03040-04790-00000-000000)

Tract 7: Lots 3, 4, Block 5, J I Carter Addition to the City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #06-0070-T styled Harrison Central Appraisal District v. Unknown Heirs of Beulah Reyna, et al (03390-00300-00000-000000)

Tract 8: 0.234 Acre, more or less, being Lot 13, Block 6, Hubbard West Addition to the City of Marshall, Harrison County, Texas being that property more particularly described in Volume 469, Page 91, Release Deed of Trust, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #06-0234-T styled Harrison Central Appraisal District v. Arthur D. Hollie aka Arthur D. Hollie, Jr. et al (04150-00240-00000-000000)

Tract 9: Lot 2, Block 19, Lothrop 2nd Addition to the City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #08-0017-T styled Harrison Central Appraisal District v. Gerald Wayne Calloway (04375-01240-00000-000000)

Tract 10:: E ast 60 ft of Lots 8 and 9, 12, Block 45, Hendricks 2nd Addition to the City of Marshall, Harrison County, Texas which was bid in trust on July 7, 2009 at a tax foreclosure sale pursuant to a judgment in Cause #03-0202-T styled Harrison Central Appraisal District v. Lynn Lynn (1999) 00245 00000 0000000

LEGAL NOTICES

:2030= **LEGAL NOTICES**

:2030<u>:</u> LEGAL NOTICES

PUBLIC NOTICE

THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49, -50, -35A(58), AND THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS

LONGHORN ARMY AMMUNITION PLANT, TEXAS

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period begins January 25, 2010, and concludes February 23, 2010. On Tuesday, January 26, 2010, from 6:00 to 8:00 p.m., the U.S. Army is inviting all interested parties to attend an open house forum to ylew the Pro-Tuesday, January 26, 2010, from 6:00 to 8:00 p.m., the U.S. Army Is Inviving all Interested parties to attend an open house forum to view the Proposed Plans and ask questions. The open house forum will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S, Alamo, Marshall, Texas; 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was

portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site; 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

CHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the pre-ferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to

existing data and determination or no unacceptable risk to numan health or to ecological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-galion capacity aboveground storage tank which received wastewater from various industrial waste sumps from 1955 to 1988. Three wastewater from various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LUCs; and 3) soil - excavation, groundwater - in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and provided soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater as restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

thAAP-35A(58), known as the Shops Area, is located in the north-central por-ition of LHAAP and covers approximately 11 acres. The Shops Area was estab-lished in 1942 as part of the installation's initial construction. Plant-operated alshed in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative: in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ highermediation.

The former Pistol Range is located in the southeastern portion of LHAAP and The former **Pistol Range** is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to ecological receptors.

For further information or to submit written comments, contact; Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951: phone number 479-635-0110 or e-mail HYPERLINK "malito:rose.zeller@us.army.mil"

rose.zeiler@us.army.mil.

INVITATION FOR BIDS

The Housing Authority of the City of Marshall, Texas (hereinafter called the "Local Housing Authority") will receive sealed bids for the modern ization of 74 dwelling units; mechanical modifica-tions, alterations, and electrical, including demoli tion and all work specified and/or shown on the drawings until:

THURSDAY, FEBRUARY 18, 2010 AT 2:00 PM THE HOUSING AUTHORITY OF THE CITY OF MARSHALL 1401 POPLAR STREET MARSHALL, TEXAS 75670

mmediately thereafter all bids will be publicly opened and read aloud.

Proposed forms of contract documents; including plans and specifications are on file and available for inspection at the office of the Housing Authority of the City of Marshall and at the office of Cameron Alread, Architect Inc., 209 W. 8th St., Fort Worth, Texas 76102, (817) 332-6231 and at plan rooms in various cities of the state. Copies of the documents may be obtained by depositing \$100,00 with the Architect for one set of docu-ments per General Contractor. Such deposits will be refunded on return of the plans, specifications and other documents in good condition within 30 days after bid opening. Plans and specifications good condition.

PRE BID CONFERENCE will be held THURSDAY 4, 2010 at 2:00 P.M. at the Marshall Housing Authority.

HOUSING AUTHORITY OF THE CITY OF MARSHALL, TEXAS Milton H. Williams, III, Executive Director 903/938-0717 **EQUAL HOUSING OPPORTUNITY**

Marshall Self Storage 2600 Victory Dr. Marshall, TX 75672 Auction to be held Sat.. Feb. 6, at 10 a.m. B-30, C-18 Kathy Cox -Aluminum step ladder, table & chairs, horse saddles, bedroom furni-ture, shop vac, baby swing & walker, sporting equipment, luggage, awning, Christmas decorations, file cabinets, wall art, personal items.

A-38 April George - 3

∞2040≈

tion or return of equipment stolen Dec. 28, 2009 off Shamrock Rd, south of Ore City, TW5 Ford Cab Tractor

frontend loader, bucket & forks: Ford 5900 tractor with hay forks; 35' Tandem axle gooseneck trailer; 1 Bush Hog brand bush hog. Call 903-424-3980 or 903-968-6517

Black Lab, "Haley" 12 yrs old, approx 85 lbs, lost Rollingwood/Forest Trail area, REWARD! 903-407-0501

Short-Hair Retriever strawberry/blond col-ored, w/collar, no tags, lost fern Lake area. \$ 2 0 0 Reward! 210-274-7823

Pick it Up! Click it Up! marshallnewsmessenger.com

Over 30,000

visitors every month.

One website.

window AC units, small

MEDIA RELEASE

The United States Army has prepared Proposed Plans for five environmental sites at the Longhorn Army Ammunition Plant: LHAAP-46, -49, -50, -35A(58) and the former Pistol Range. The Proposed Plans are documents that describe the sites and their proposed remedies. The Proposed Plans were developed to facilitate public involvement in the remedy selection process.

Copies of the Proposed Plans and supporting documentation will be available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670 on January 25, 2010 through February 23, 2010.

The public information forum will be held on January 26, 2010, from 6:00 to 8:00 p.m. at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas 75661.

All public comments on the Proposed Plans must be submitted by February 23, 2010. Written comments may be provided to Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951 or e-mailed to rose.zeiler@us.army.mil.

From:

faxadmin@shawgrp.com]

Sent:

Monday, January 18, 2010 1:17 PM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KTBS3 at 9033340288

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

0 minutes, 54 seconds

Transmit Time:

01/18/2010 13:15

Transfer Rate:

14400

Status Code:

0000

Retry Count:

1

Job Id:

8834

Unique Id:

ENTBTRFAX01_SMTPFaxQ_1001181905290102

Fax Line:

7

Fax Server:

*** FAX TX REPORT *** ***************

TRANSMISSION OK

JOB NO.

1201

DESTINATION ADDRESS

913186314194

PSWD/SUBADDRESS

DESTINATION ID

01/18 13:45

ST. TIME USAGE T

00'36

PGS. RESULT 1 OK

MEDIA RELEASE

The United States Army has prepared Proposed Plans for five environmental sites at the Longhorn Army Ammunition Plant: LHAAP-46, -49, -50, -35A(58) and the former Pistol Range. The Proposed Plans are documents that describe the sites and their proposed remedies. The Proposed Plans were developed to facilitate public involvement in the remedy selection process.

Copies of the Proposed Plans and supporting documentation will be available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas. 75670 on January 25, 2010 through February 23, 2010.

The public information forum will be held on January 26, 2010, from 6:00 to 8:00 p.m. at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas 75661.

All public comments on the Proposed Plans must be submitted by February 23, 2010. Written comments may be provided to Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951 or e-mailed to rose.zeiler@us.army.mil.

From: Sent:

faxadmin [faxadmin@shawgrp.com] Monday, January 18, 2010 1:08 PM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KSLA at 3186776705

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

0 minutes, 53 seconds

Transmit Time:

01/18/2010 13:07

Transfer Rate:

14400

Status Code:

0000

Retry Count:

999

Job Id:

0

Job Id.

8839

Unique Id:

ENTBTRFAX01 SMTPFaxQ 1001181907030105

Fax Line:

1

Fax Server:

From: Sent: faxadmin [faxadmin@shawgrp.com] Monday, January 18, 2010 1:09 PM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KTBS3 at 3182194680

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

0 minutes, 53 seconds

Transmit Time:

01/18/2010 13:08

Transfer Rate:

14400

Status Code:

0000

Retry Count:

0000

Job Id:

· 0 8840

Unique Id:

ENTBTRFAX01_SMTPFaxQ 1001181908000106

Fax Line:

7

Fax Server:

From:

faxadmin@shawgrp.com]

Sent:

Monday, January 18, 2010 1:11 PM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KETK at 9035612459

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

1 minutes, 46 seconds

Transmit Time:

01/18/2010 13:09

Transfer Rate:

12000

Status Code:

0000

Retry Count:

Job Id:

8841

Unique Id:

ENTBTRFAX01_SMTPFaxQ_1001181908450107

Fax Line:

Fax Server:

email this ad

PUBLIC NOTICE THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE

Legal Notices

PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49, -50, -35A(58), AND print this ad THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS The U.S. Army

is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public s review and comments. The public comment period begins January 25, 2010, and concludes February 23, 2010. On Tuesday, January 26, 2010, from 6:00 to 8:00 p.m., the U.S. Army is inviting all interested parties to attend an open house forum to view the Proposed Plans and ask questions. The open house forum will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below. LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable, LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-49. LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank which receivedwastewater from various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LUCs; and 3) soil - excavation, groundwater - in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved. LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres. The Shops Area was established in 1942 as part of the installations initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative: in situ

bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation. The former Pistol Range is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to ecological receptors. For further information or to submit written comments, contact: Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951; phone number 479-635-0110 or e-mail HYPERLINK "mailto:rose.zeiler@us.army.mil" rose.zeiler@us.army.mil.

First published in Sunday, January 17, 2010 edition of The Marshall News Messenger

Page 1 of 1 | Total results: 1 ads | New Search

Cox Newspapers, L.P. - The Marshall News Messenger - Our Partners

By using this service, you accept the terms of our visitor agreement and privacy policy.

Registered site users, you may edit your profile.

Having trouble? Visit our help & FAQ

LONGHORN ARMY AMMUNITION PLANT,

Karnack, Texas

MONTHLY MANAGERS' MEETING

AGENDA

DATE: Tuesday, 26 January 2010

TIME: 1:00 p.m.

PLACE: Longhorn AAP@ Army Corps Trailer

Welcome RMZ

Action Items:

Army

• Provide 2009 IAP hardcopy to the library.

Defense Environmental Restoration Program (DERP) PBC Update

PS/GJ

- Document Status/Environmental Sites (Table)
- Groundwater Treatment Plant

DERP Total Environmental Restoration Contract Update

• LHAAP-37/67 – Draft Final ROD Status

RMZ

BRAC-Funded Environmental Restoration

• LHAAP-19 – Demolition Landfill Progress

JRL/AW

MMRP

JRL/AW

Update

Other Issues

RMZ

• LHAAP-18/24 ESD

Adjourn

Subject: Draft Final Minutes, Monthly Managers Meeting,

Longhorn Army Ammunition Plant (LHAAP)

Location of Meeting: US Fish and Wildlife Administrative Building, Karnack, TX

Date of Meeting: January 26, 2010; 2:00 PM – 4:15 PM

Meeting Participants:

BRAC: Rose M. Zeiler

USAEC: Matthew Mechenes

USACE-Tulsa: Aaron Williams, John Lambert (telephone)

Shaw: Praveen Srivastav, Greg Jones, Kay Everett, Susan Watson

USEPA Region 6: Steve Tzhone, Terry Burton

TCEQ: Fay Duke

USFWS: Paul Bruckwicki

Previous Action Items

Army

• Provide 2009 IAP hardcopy to the library. (completed)

EPA Groundwater Sampling

LHAAP-18/24

Steve Tzhone indicated that EPA collected samples at LHAAP-18/24, including wells that are not sampled on a regular basis. The samples were analyzed for perchlorate and metals. Steve reported that there was a laboratory problem regarding the analysis of perchlorate samples. These samples

1

could not be reanalyzed since the lab did not retain the samples. However, the other samples and results were unaffected, and USGS is currently evaluating that data.

MMRP Sites

Steve said that EPA is awaiting data from the Army regarding the MMRP sites. Rose Zeiler said she wanted to look at the geology and review analytical results before she submitted the next document. Rose indicated that the perchlorate results in groundwater from the MMRP sites were consistent with site operations at the Ground Signal and South Bomb Test Areas indicative of testing and detonation area rather than a production area.

EPA and Army had collected a split sample that showed perchlorate results of 76 and 50 μg/L, respectively. The 76 result is just over the 72 µg/L TCEQ Medium Specific Concentration. Rose said that the Army considered this result in the South Test/South Bomb area to be a residue from detonation and that Army did not see need for further monitoring. Steve said that the EPA is sensitive to both perchlorate and groundwater restoration issues. Also, EPA interprets their groundwater sampling data as showing that perchlorate concentrations are increasing, and EPA is concerned that the qualified 76 result is near/above the TCEQ standard. He said that he discussed the issue with Carlos Sanchez and others in EPA. He is not saying that there is a source, but feels that additional monitoring is a reasonable step going forward. He indicated that EPA was okay with further monitoring as a remedy. Rose said that Army acknowledges perchlorate in the groundwater but noted that several wells have had detections in the past and were later non detect and that this detection is consistent with past history. She also stated that monitoring is not a remedy and that it is inappropriate for EPA to apply a remedy when there had not been an exceedance of a standard. Rose clarified that the 76 result was one of two hits (the other at 3.4 ppb) from the several wells sampled by the EPA in the area and that the value was a "qualified" value. Army did not agree with EPA that the 76 value was indicative of increasing concentrations. Rose asked Steve what his opinion would be if the next sample event resulted in a much lower value, would EPA then consider that it would be indicative of decreasing concentrations? She reiterated that the Army split sample result (50 µg/L), the unqualified result, was below the standard of 72.

Steve contacted George Malone at EPA. George indicated that a remedy could not be selected without going through the RI/FS process and associated evaluation per nine criteria. He noted that sampling was not a remedial action.

Army offered to collect another sample for confirmation of previous results. Steve said that the EPA is okay with no active remedy, but would like to see limited monitoring. The specific EPA suggestion was quarterly monitoring of six wells for two years, followed by semi-annual monitoring for three years. Rose protested that the amount of monitoring was excessive and resembled a monitoring that would be conducted for MNA. Fay Duke suggested annual sampling.

Fay suggested that Army put the issues in writing for review by the parties (as she had requested in the past). Steve added that EPA could not base any decisions on 7 or 8 year old data; they needed more recent data and thus initiated this special sampling event to obtain more recent data. Rose indicated that she was working on the memo to TCEQ and will continue to evaluate local hydrogeology and provide a memo on the results. Further discussion was tabled.

<u>Defense Environmental Restoration Program (DERP) PBC Update</u> Prav

Praveen Srivastav

Document Status/Environmental Sites (Table)

Praveen went over the document status/environmental sites table.

- LHAAP-02: The Draft Final Decision Document for LHAAP-02 is in comment resolution with the Army.
- The draft work plan for soil removal at LHAAP-03 is in preparation.
- LHAAP-04: The Draft Completion Report for LHAAP-04 is in Army review.
- LHAAP-06, -07, -51, -55, -64, -66, and -68: The survey data with accompanying affidavits for LHAAP-06, LHAAP-07, LHAAP-51, LHAAP-55, LHAAP-64, LHAAP-66, and LHAAP-68 were provided to the Army. The survey data and affidavits will be used to file county notifications after proper signatures are obtained.
- LHAAP-16: The response to comments (RTCs) for the Draft Final Feasibility Study Addendum, Rev 01 for LHAAP-16 is in regulatory review. Shaw provided a track-changed document showing the revisions.
- LHAAP-17: The RTCs for the Draft Final Feasibility Study for LHAAP-17 is also in regulatory review. Shaw is resolving a regulatory comment on the trigger for shutting down groundwater extraction in one of the alternatives.
- LHAAP-18/24: Army comments have been received for the Draft Feasibility Study for LHAAP-18/24 and resolution is in progress. Revised RTCs in Army's review as of 7/26/09.
- LHAAP-29: Revised RTCs for the Draft Final Feasibility Study for LHAAP-29 have been reviewed by Army and are being prepared for submittal to regulators.
- LHAAP-46: The Final Focused Feasibility Study for LHAAP-46 was submitted November 30, 2009. The Final Proposed Plan for LHAAP-46 was submitted January 12, 2010.
- LHAAP-47: Responses on the Draft Feasibility Study for LHAAP-47 are being resolved with Army.
- LHAAP-49: The Final Proposed Plan for LHAAP-49 was submitted January 8, 2010. The Draft ROD for LHAAP-49 is in Army review.
- LHAAP-50: The Final Feasibility Study for LHAAP-50 was submitted December16, 2009. The Final Proposed Plan for LHAAP-50 was submitted January 19, 2010.
- LHAAP-58: The Final Feasibility Study for LHAAP-58 was submitted December 16, 2009. The Final Proposed Plan for LHAAP-5 was submitted January 19, 2010.
- LHAAP-60: The survey data along with the affidavit for LHAAP-60 was provided to the Army to be used to file the county notification. The document is awaiting signature and subsequent filing with the county office.
- LHAAP-35/36: The RTCs for the Draft Final Decision Document for LHAAP-35/36 are in progress.
- Pistol Range: The Final Completion Report for the Pistol Range was submitted January 12, 2010. The Final Proposed Plan for the Pistol Range was submitted January 12, 2010.

Praveen asked if the group had any opinion about combining designs for various sites during the Remedial Design phase. There was a general discussion, and it was determined that separate designs would be preferred due to difficulties with tracking, reviewing, and filing documents that address multiple sites.

Fay and Steve indicated that they would like to get copies of the public notices for the Proposed Plan meeting.

Groundwater Treatment Plant Update

Praveen noted that the treatment plant operated normally during the past month with the exception of some freezing issues one week.

DERP Total Environmental Restoration Contract (TERC) Update

Rose Zeiler

LHAAP-37/67 – Draft Final ROD Status

The LHAAP-37/67 ROD is with the regulators.

Sampling at LHAAP-65 has been requested, but Matt Mechenes indicated there was no funding for this activity. John Lambert said that a manual request is being conducted so that they can sample the sumps at this location.

BRAC-Funded Environmental Restoration

Aaron Williams

LHAAP-19—Demolition Landfill Progress

Rose noted that Army is having the cap seeded with native grasses and asked Paul Bruckwicki for his opinion on the maintenance of such a cap. Paul Bruckwicki indicated that every 3 years a burn of the cap grasses should be conducted as part of the planned maintenance for the landfill. It was discussed how this activity should be combined with the remedial design for the landfill. No final decisions were made.

MMRP John Lambert

Update

See earlier discussion under EPA Groundwater Sampling. John Lambert and Stephen Tzhone discussed who had the next action for responding to correspondence on the MMRP Sites. John indicated that Army provided responses to EPA comments on the Draft-Final MC Data Summary for the MMRP Sites in August 2009 and no response had been received by EPA. Stephen and John checked email correspondence and Stephen agreed that a response from EPA was due to Army.

Other Issues

LHAAP-18/24 ESD

This is ready for submittal to the regulators.

Sitewide Schedule Review

This review will be conducted in May.

RAB Tour Rescheduled

The tour has been rescheduled to March as requested by the RAB and community.

IAP Schedule

March 15 through the 29th is the data collection period and at the end of the 29th, the schedule is sent to the AEC facilitator where all the comments are incorporated or "refreshed". After this process, the schedule goes to the regulators for their official look. They will have two weeks for review.

Next Meeting

The next monthly manager's meeting will be held February 23, 2010 at 1:30 PM by teleconference.

Meeting Adjourned

Action Items

EPA – Provide analytical results on IDW from recent groundwater sampling.

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract January 26, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
1	Draft Rev 01Decision Document, LHAAP-02	10/01/09	x		Draft Final	02/15/10	x	х		In comment resolution after Army's review	DD calls for limited groundwater monitoring
2	Draft Soil Removal Work Plan, LHAAP-03	02/15/10	х							In preparation	
3	Draft Completion Report, LHAAP- 04	01/21/10	x							In Army review	
4	County Notification LHAAP-06, 07, 51, 55, 64, 66, 68	01/30/10	x							In Army signatures	
5	Draft Final Feasibility Study Addendum, Rev 01, LHAAP-16	7/3/08		х	Final	02/28/10	х	х	In progress	RTCs reviewed by regulators. Track- change document in Army review	
6	Draft Final Feasibility Study, LHAAP-17	4/14/09	х	х	Final	02/15/09	х	х	In progress	RTCs in regulatory review. Shaw resolving one comment.	
7	Draft Feasibility Study, LHAAP- 18/24	3/3/09	х		Draft Final	02/28/10	х	х	In progress	Army comments received. Resolution in progress. Revised RTCs in Army's review as of 7/26/09	
8	Draft Final Feasibility Study, LHAAP-29	03/11/09	х	х		02/28/10	X	х	In progress	Revised RTCs reviewed by Army. Preparing RTCs for submittal to regulators	

1

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract January 26, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
9	Final Focused Feasibility Study, LHAAP-46	10/30/09	Х	X					Resolution complete	Final FS submitted	
10	Final Proposed Plan, LHAAP-46	01/12/10	X	x						Final PP submitted	
11	Draft Focused Feasibility Study, LHAAP-47	12/23/08	х		Draft Final	01/30/10	x	х	In progress		
12	Final Proposed Plan, LHAAP-49	01/08/10	х	X						Final PP submitted	
13	Draft ROD, LHAAP-49	10/20/09	х		Draft Final	12/22/09	x	x		In Army review	
14	Final Feasibility Study, LHAAP-50	12/16/09	х	х						Final FS submitted	
15	Final Proposed Plan, LHAAP-50	01/19/10	х	х						Final PP submitted	
16	Final Feasibility Study, LHAAP-58	12/16/09	х	х						Final FS submitted	
17	Final Proposed Plan, LHAAP-58	01/19/10	х	х						Final PP submitted	
18	County Notification, LHAAP-60	1/30/10							In Army signatures		

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract January 26, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Arr		Comment Resolution	Status	Remarks
19	Draft Final Decision Document, LHAAP-35/36	7/15/09	X	X	Final	2/15/10	х	x	Resolved	TCEQ comment received on DF DD. Resolution in progress.	
20	Final Completion Report, Pistol Range	01/12/10	х	x						Final report submitted	
21	Final Proposed Plan, Pistol Range	01/12/10	х	х						Final report submitted	

LONGHORN ARMY AMMUNITION PLANT MONTHLY MANAGERS' MEETING

Location	Longhorn Army	Ammunition I	Plant - Army Tra	iler, Karnack, TX	
Date	26-Jan-2010	Time	2:00 PM		

ATTENDEES

Marsa (T	Ouropiration	Dhana	Т — «:!
Name (printed)	Signature	Organization	Phone	E-mail
Longhorn Team M	embers			
Rose M. Zeiler	19 Moules	BRAC	(479) 635-0110	rose.zeiler@us.army.mil
Matthew Mechenes	malmar	USAEC	(410) 436-1505	matthew.mechenes@us.army.mil
Aaron Williams	Claron William	USACE, Tulsa	(918) 669-4915	aaron.k.williams@usace.army.mil
John Lambert		USACE, Tulsa	(918) 669-4992	john.r.lambert@SWT03.usace.army.mil
Stephen Tzhone	NR	USEPA, Dallas	(214) 665-8409	tzhone.stephen@epa.gov
Raji Josiam	0	USEPA, Dallas	(214) 665-8529	josiam.raji@epa.gov
Fay Duke	Tar pouler	TCEQ, Austin	(512) 239-2443	fduke@tceq.state.tx.us
Dale Vodak	<i>V</i>	TCEQ, Tyler	(903) 535-5142	dvodak@tceq.state.tx.us
Barry Forsythe		USFSW, Dallas	(214) 665-8467	forsythe.barry@epa.gov
Paul Bruckwicki	PRIN	USFSW, Karnack	(903) 679-4536	paul_bruckwicki@fws.gov
Mark Williams		USFSW, Karnack	(903) 679-9144	mark_williams@fws.gov
Praveen Srivastav	Mush	SHAW, Houston	(281) 531-3188	praveen.srivastav@shawgrp.com
Kay Everett	Kno	SHAW, Houston	(281) 531-3121	kay.everett@shawgrp.com
Greg Jones	Treem Work	SHAW, Houston	(281) 531-5172	greg.n.jones@shawgrp.com
Susan Watson	Ken	SHAW, Houston	(281) 531-3107	susan.watson@shawgrp.com
Term Burton	0			
John Lambert				
	2			
		L		

THIS PAGE INTENTIONALLY BLANK

Shaw Environmental & Infrastructure, Inc.

3010 Briarpark Drive Houston, Texas 77042 713-996-4400

Fax: 281-368-4401

Memorandum

Date: February 16, 2010

To: Aaron Williams, USACE, Tulsa

CC: Praveen Srivastav

Greg Jones

From: Kay Everett

RE: Results of Additional Sampling at Site LHAAP-02 (Former Vacuum Truck Overnight

Parking), Longhorn Army Ammunition Plant, Karnack, Texas

Introduction and Objective

This memorandum transmits the results of the 2009 soil sampling activities conducted at site LHAAP-02 (Former Vacuum Truck Overnight Parking) of the Longhorn Army Ammunition Plant. The objective of this sampling event was to collect soil samples with elevated metals concentrations, and subject them to the Synthetic Precipitation Leaching Procedure (SPLP) Method 1312 analysis.

Sampling Location

The 2009 sampling locations were based on an earlier sampling event (USCHPPM, 2000) that identified several soil sample locations with elevated metals concentrations. On July 9, 2009, five soil samples were collected as close as possible to earlier soil sampling locations where results previously exceeded the medium-specific concentrations (MSCs) developed for this site (Shaw, 2009). Samples were identified as:

Original Sample Location (USCHPPM, 2000)	July 9, 2009 Sample Location ID
LAP-026A	02SB026A(0-6)
LAP-027A	02SB027A(0-6)
LAP-028B	02SB028B(12-18)
LAP-0210	02SB210(0-6)
LAP-0211	02SB211(-6)

See **Figure 1**. The "A" and "B" suffixes in the original sample labels correspond to the sampling intervals 0 to 6 inches below ground surface (bgs) and 12 to 18 inch bgs, respectively.

After a review of the analytical results for total metals from the five locations, the samples from 02SB027A(0-6) and 02SB028B(12-18) were selected for the SPLP analysis for arsenic, cadmium, copper, lead, and mercury because of their higher concentrations of one or more parameters and the sampling interval.

Analytical Results

The results of laboratory analyses are presented in Table 1 attached. The detailed laboratory results are provided in the attached compact disk.

Individual analyses are associated with the laboratory reports as follows:

Laboratory Reports	Sample ID	Analysis
L09070188	02SB026A(0-6)	Metals
L09070188	02SB027A(0-6)	Metals
L09070188	02SB028B(12-18)	Metals
L09070188	02SB0210(0-6)	Metals
L09070188	02SB0211(0-6)	Metals

L09070202	02SB027A(0-6)	SPLP for Metals
L09070202	02SB028B(12-18)	SPLP for Metals

References

Shaw Environmental and Infrastructure, Inc. (Shaw), 2009, Final Site Investigation Report LHAAP-02, Vacuum Truck Overnight Parking Lot, Longhorn Army Ammunition Plant, Karnack, Texas, January.

U.S. Army Center for Health Promotion and Preventive Medicine (USCHPPM), 2000, Hazardous and Medical Waste Study No.: 37-EF-5506-00, Response Complete Verification and Relative Risk Site Evaluation for Longhorn Army Ammunition Plant, Karnack, Texas, July.

LHAAP-02, Vacuum Truck Overnight Parking **Table 1**Shaw Environmental, Inc.

2009 Soil Sampling Results

							ᆫ	IAA	P-UZ												
				02SB0)26					02SB0)27										
				02SB026	A (0-	6)			C	2SB027	A (0-6	3)				(02SB028	B (12-1	18)		
		MSC							9-Jul-09						9-Jul-09						
		GWP		REC	3					REG	}			REG							
Parameter	Units	IND	Result Qual	ValQual	RC	DL	MDL	DF	Result Qual	ValQual	RC	DL	MDL	DF	Result	Qual	ValQual	RC	DL	MDL	DF
Percent Solids	Percent		86.2			0	0		87.4			0	0		89.3				0	0	
Arsenic	mg/kg	1	8.05			0.342	0.0856	1	12.7			0.335	0.0838	1	13.3				0.334	0.0835	1
Cadmium	mg/kg	0.5	0.458			0.114	0.0285	1	2.89			0.112	0.0279	1	1.44				0.111	0.0278	1
Copper	mg/kg	130	7.68			0.685	0.171	1	32.5			0.67	0.168	1	19.7				0.668	0.167	1
Lead	mg/kg	1.5	70			4.57	2.28	20	607			4.47	2.23	20	460				4.45	2.23	20
Mercury	mg/kg	0.2	0.0383 J	J	15	0.116	0.0116	1	0.201			0.113	0.0113	1	0.104	J	J	15	0.111	0.0111	1
-																					
		MCL																			
Arsenic	mg/L	0.01							0.037			0.001	0.0003		0.0611				0.0010		
Cadmium	mg/L	0.0005							0.00055			5E-04	0.0001		0.0011				0.0005	0.0001	
Copper	mg/L	1.3							0.00886			0.002	0.0005		0.0191				0.0020	0.0005	
Lead	mg/L	0.015							0.0623			5E-04	0.0003		0.224				0.0005	0.0003	
Mercury	mg/L	0.002							0.0001 U	U		2E-04	0.0001		0.0001	U	U		0.0002	0.0001	
-																					
																					+
																					+
																					+
																					+
																					+
	Percent Solids Arsenic Cadmium Copper Lead Mercury Arsenic Cadmium Copper Lead	Percent Solids Percent Arsenic mg/kg Cadmium mg/kg Copper mg/kg Lead mg/kg Mercury mg/kg Arsenic mg/L Cadmium mg/L Copper mg/L Lead mg/L Lead mg/L	GWP Parameter	MSC GWP	D2SB026. MSC 9-Jul-	MSC 9-Jul-09 REG	D2SB026A (0-6)	D2SB026 O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (O2SB026 O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0-6) O2SB026A (0	MSC 9-Jul-09 REG	O2SB026 O2SB026A (0-6) O2SB027/ MSC	O2SB026 O2SB026A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB027A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A (0-6) O2SB02A	D2SB026 D2SB027A (0-6) D2SB027A (0-6)	Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description	Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description	Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description	D2SB026 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2SB027 D2S	OSB026	Cadmium Mg/kg D.2 D.388 D.288026 D.288026 D.288027 D.288027 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028 D.288028	Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Comport Com	Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Carrier Car

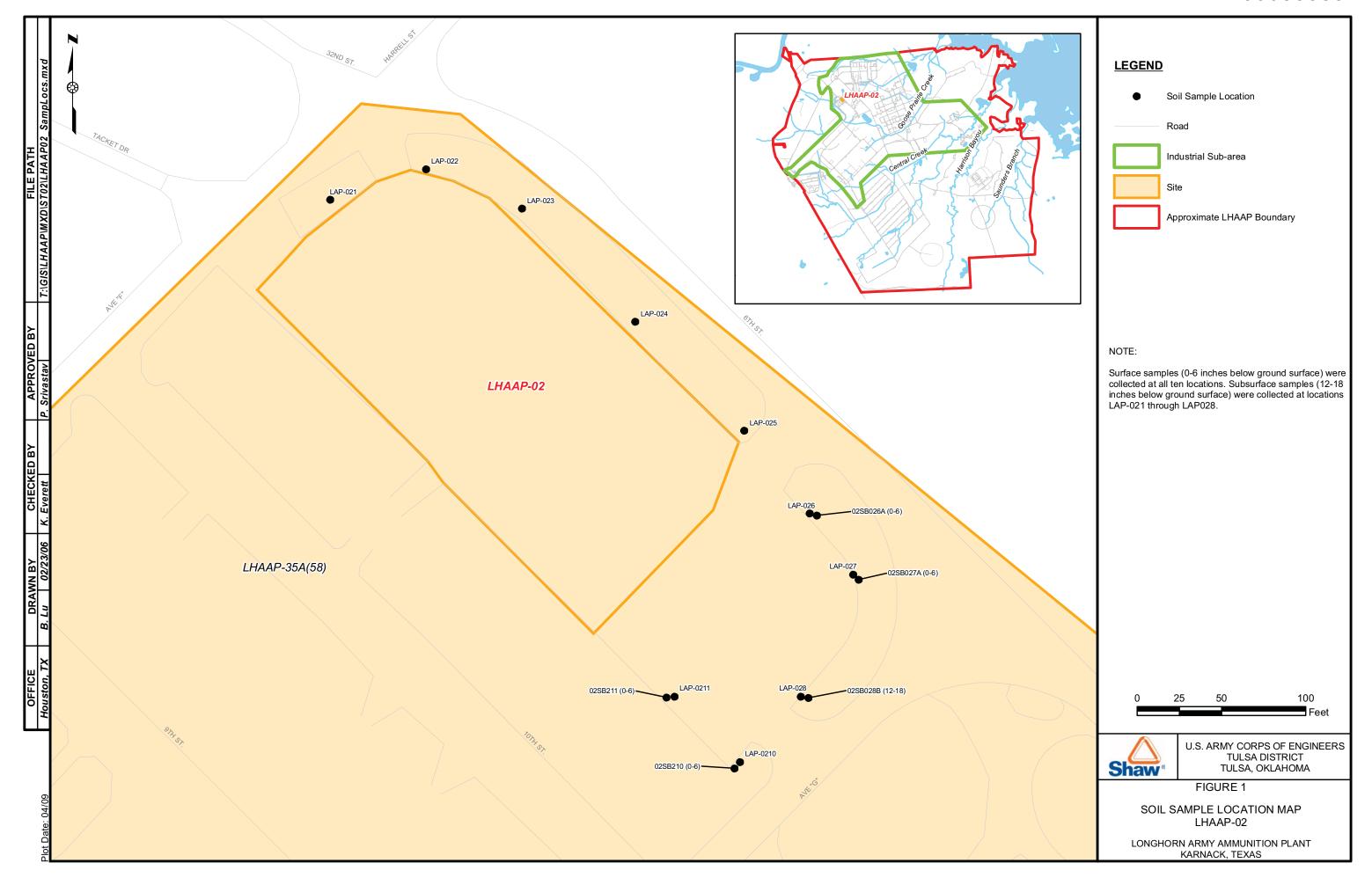

LHAAP-02, Vacuum Truck Overnight Parking

Table 1

Shaw Environmental, Inc.

2009 Soil Sampling Results

										LH	<u> IAAP-02</u>													
LOCATION_CODE						02SB							02SE							B021				
SAMPLE_NO						02SB021		6)					02SB02		-6)				02SB021		DUP			
SAMPLE_DATE			MSC			9-Jul					9-Jul-09							9-Jul-09						
SAMPLE_PURPOSE			GWP			RE	-							ĒĠ			FD							
Test Group	Parameter	Units	IND		Qual	ValQual	RC	DL		DF			ValQual	RC	DL	MDL	DF	Result Qua	l ValQual	RC I			DF	
GEN CHEMISTRY	Percent Solids			84.8				0	0		89.9				0	0		91			0	v		
METALS	Arsenic	mg/kg	1	8.66				0.347	0.0868	1	8.1		J-FD	17		0.0801	1	15	J-FD	17	0.323			
METALS	Cadmium	mg/kg	0.5	1.42				0.116	0.0289	1	0.629				0.107	0.0267	1	0.593			0.108			
METALS	Copper	mg/kg	130	13.3				0.695	0.174		10				0.64	0.16		10.7			0.646			
METALS	Lead	mg/kg	1.5	237				4.63	2.32	20			J-FD	17	4.27	2.13	20	152	J-FD	17	4.31		_	
METALS	Mercury	mg/kg	0.2	0.0954	J	J	15	0.117	0.0117	1	0.125		J-FD	17	0.111	0.0111	1	0.0505 J	J-FD	15,1	0.109	0.0109	1	
			MCL																					
SPLP-METALS	Arsenic	mg/L	0.01																					
SPLP-METALS	Cadmium	mg/L	0.0005																					
SPLP-METALS	Copper	mg/L	1.3																					
SPLP-METALS	Lead	mg/L	0.015																					
SPLP-METALS	Mercury	mg/L	0.002																					
						oreviations																		
											round surfac	e or 1	2 to 18 ir	nches	below gr	ound surfac	e)							
						cates that	value	e excee	ds regula	tory li	imit.													
				DL - dilu																				
				FD - field																				
								utrial Us	e Based	on G	roundwater	Prote	ction											
						concentrat																		
						n-Specific			n															
			MCL - Maximum Contaminant Level																					
			MDL - method detection limit																					
			RC - reason code (reason codes on attached																					
						ratory det		n limits																
			ValQual - validation qualifier																					

158 Starlite Drive, Marietta, OH 45750 • T:740-373-4071 • F:740-373-4835 • http://www.microbac.com

Laboratory Report Number: L09070188

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories.

Review and compilation of your report was completed by Microbac's Sales and Service Team. If you have questions, comments or require further assistance regarding this report, please contact your team member noted in the reviewed box below at 800-373-4071. Team member e-mail addresses also appear here for your convenience.

Kathy Albertson Stephanie Mossburg Tony Long Amanda Fickiesen Annie Brown Team Chemist/Data Specialist Team Chemist/Data Specialist Team Chemist/Data Specialist Client Services Specialist Client Services Specialist

kalbertson@microbac.com smossburg@microbac.com tlong@microbac.com afickiesen@microbac.com abrown@microbac.com

This report was reviewed on July 23, 2009.

Stephanie Mossburg

Stephanie Mossburg - Team Chemist/Data Specialist

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories.

This report was certified on July 23, 2009.

David Vandenberg - Managing Director

State of origin: Texas

10 & Vande berg

Accrediting authority: Texas Commission on Environmental Quality ID:T104704252-07-TX

QAPP: Microbac OVD

This report contains a total of 142 pages.

Look closer. Go further. Do more.

Microbac REPORT L09070188 PREPARED FOR Shaw E I, Inc. WORK ID:

1.0 Introduction	
2.1 Metals Data	
2.1.1 Metals ICP-MS Data	21
2.1.1.1 Summary Data	
2.1.1.2 QC Summary Data	
2.1.2 Metals CVAA Data (Mercury)	
2.1.2.1 Summary Data	
2.1.2.2 QC Summary Data	
2.2 General Chemistry Data	
2.2.1 Percent Solids Data	
2.2.1.1 Raw Data	
3.0 Attachments	

1.0 Introduction

Microbac Laboratories Inc. REPORT NARRATIVE

Microbac Login No: L09070188

CHAIN OF CUSTODY: The chain of custody number was 117591

SHIPMENT CONDITIONS: The chain of custody forms were received sealed in a cooler. The cooler temperature

was 3 degrees C.

SAMPLE MANAGEMENT: All samples received were intact.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Microbac Laboratories Inc., both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Approved: 13-JUL-09
Sitephanic Mossburg

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:
 - a) LCS spiking amount,
 - b) Calculated %R for each analyte, and
 - c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren Beery	Metals Supervisor	July 21, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09070188
Project Name: 798-LONGHORN
Method: 6020
Prep Batch Number(s): WG307406
Reviewer Name: MAREN M. BEERY
LRC Date: July 21, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td>ER1</td></mql,>	√				ER1
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected?	√				
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	√				
Were method blanks taken through the entire analytical process, including preparation and,	√				
if applicable, cleanup procedures?					
Were blank concentrations <rl?< td=""><td>√</td><td></td><td></td><td></td><td></td></rl?<>	√				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	√				
Was each LCS taken through the entire analytical procedure, including prep and cleanup	√				
steps?					
Were LCSs analyzed at the required frequency?	√				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	√				
Does the detectability data document the laboratory's capability to detect the COCs at the	√				
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	3000	388
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
Were all necessary corrective actions performed for the reported data?	-				
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?	√		<u> </u>		
Was the number of standards recommended in the method used for all analytes?	↓				
Were all points generated between the lowest and highest standard used to calculate the	<u> </u>				
curve?	•				
Are ICAL data available for all instruments used?	 				
Has the initial calibration curve been verified using an appropriate second source standard?	→				
Initial and continuing calibration verification (ICV and CCV) and continuing	_ v				
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	V ✓				
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB <rl?< td=""><td>√</td><td></td><td></td><td></td><td></td></rl?<>	√				
Mass spectral tuning:	V				
			/		
Was the appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits?			√		
			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			✓		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			✓		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			✓		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?	√				
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	√				
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	√				
Is the MDL either adjusted or supported by the analysis of DCSs?	· √				
Proficiency test reports:	<u> </u>				
Was the laboratory's performance acceptable on the applicable proficiency tests or	√				
evaluation studies?	•				

Description	Yes	No	NA(1)	3000	388
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
L09070188

798-LONGHORN

6020

WG307406

Reviewer Name:
MAREN M. BEERY

LRC Date:
July 21, 2009

EXCEPTIONS REPORT

ER# 1- Client samples 01 through 06 required dilution analyses in order to obtain results for lead within the linear range. Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

MAREN M. BEERY	Maren Bley	Metals Supervisor	July 15, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09070188
Project Name: 798-LONGHORN
Method: 7471
Prep Batch Number(s): WG306971
Reviewer Name: MAREN M. BEERY
LRC Date: July 15, 2009

Chain-Of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Were all samples prepared and analyzed within holding times? Were all samples prepared and analyzed within holding times? Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all results for soil and sediment samples reported on a dry weight basis? Were 3m in the soil and sediment samples reported on a dry weight basis? Were were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were were covery data Were surrogates added prior to extraction? Were surrogates percent recoveries in all samples within the laboratory QC limits? Test report/Summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were blanks analyzed at the appropriate frequency? Were blank concentrations RRIP (RIP) Were all cannup procedures? Were all CoS included in the LCS? Was each LCS taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were all CoS included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Were LCS analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory of limits? Were MS (MG HMS) if capicable) 48 th	Description	Yes	No	NA(1)	NR(2)	ER(3)
were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the laboratory ID numbers? Were all samples prepared and analyzed within holding times? Other than those results <mql, (msd)="" (or="" <mql,="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blanks="" bpd="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" cocs="" data="" dry="" duplicate="" entire="" extraction?="" for="" fre<="" frequency?="" holding="" identifications="" if="" in="" included="" including="" laboratory="" lcs="" lcs?="" limits?="" matrix="" method="" moisture="" ms="" msd="" msd?="" of="" on="" or="" other="" peer="" percent="" planks="" preparation="" prepared="" prior="" procedures?="" process,="" project="" project,="" qc="" raw="" recoveries="" recovery="" reported="" reported?="" required="" results="" samples="" samples?="" sediment="" soil="" soils)="" specified="" spike="" standards?="" supervisor?="" surrogate="" surrogates="" taken="" td="" than="" the="" those="" through="" tics="" times?="" to="" type(s)="" values="" weight="" were="" wishmsd="" within="" ∀="" ✓=""><td>Chain-Of-Custody (C-O-C)</td><td></td><td></td><td></td><td></td><td></td></mql,>	Chain-Of-Custody (C-O-C)					
Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" %rs="" (and="" (lcs):="" (or="" a="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" and<="" applicable)="" applicable,="" appropriate="" at="" basis?="" blanks="" bracketed="" by="" calibration="" checked="" cleanup="" colors="" data="" dry="" each="" entire="" for="" frequency?="" identifications="" if="" in="" included="" including="" laboratory="" lcs="" lcs?="" lcsd,="" limits?="" method="" moisture="" ms="" of="" on="" or="" other="" peer="" percent="" planks="" preparation="" procedure,="" procedures?="" process,="" project="" project,="" qc="" raw="" recoveries="" recovery="" reported="" reported?="" required="" results="" samples="" samples?="" sediment="" soil="" solids)="" specified="" standards?="" supervisor?="" surrogate="" taken="" td="" the="" through="" tics="" type(s)="" values="" vere="" was="" weight="" were="" within=""><td>Did samples meet the laboratory's standard conditions of sample acceptability upon</td><td>√</td><td></td><td></td><td></td><td></td></mql,>	Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %rs="" (and="" (moisture="" (ms)="" (msd)="" (or="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable)="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculate="" calculations="" calibration="" capability="" checked="" cleanup="" cocs="" data="" detect="" detectability="" document="" does="" dry="" duplicate="" each="" entire="" extraction?="" for="" forms="" frequency?="" frequency?<="" identifications="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits?="" manlyte="" matrix="" mdl="" method="" ms="" msd="" msd?="" of="" on="" or="" other="" peer="" percent="" prep="" preparation="" prior="" procedure,="" procedures?="" process,="" project="" project,="" qc="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" rpd="" samples="" samples?="" sediment="" soil="" solids)="" specified="" spike="" sqls?="" standards?="" steps?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" used="" values="" was="" weight="" were="" within=""><td>receipt?</td><td></td><td></td><td></td><td></td><td></td></mql,>	receipt?					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Were all samples prepared and analyzed within holding times? Other than those results <mql, %rs="" (and="" (or="" a="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable)="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculate="" calculations="" calibration="" capability="" checked="" cleanup="" cocs="" data="" detect="" detectability="" detected?="" document="" does="" dry="" each="" entire="" extraction?="" for="" forms="" frequency?="" frequency?<="" identifications="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits?="" mdl="" method="" moisture="" ms="" msd="" msd?="" not="" of="" on="" or="" other="" peer="" percort="" percovery="" prep="" preparation="" prior="" procedure,="" procedures?="" process,="" project="" project,="" qc="" raw="" recoveries="" reported="" reported?="" reports="" required="" results="" rpd="" sadded="" samples="" samples?="" sediment="" soil="" solids)="" specified="" sqls?="" standards?="" steps?="" summary="" supervisor?="" surrogate="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" used="" values="" was="" weight="" were="" within=""><td>Were all departures from standard conditions described in an exception report?</td><td>√</td><td></td><td></td><td></td><td></td></mql,>	Were all departures from standard conditions described in an exception report?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %rs="" (and="" (lcs):="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" applicable)="" appropriate="" at="" basis?="" be="" blank="" blanks="" bracketed="" by="" calculate="" calculations="" calibration="" checked="" cleanup="" cocs="" control="" data="" detected="" detected?="" dry="" each="" entire="" extraction?="" for="" forms="" frequency?="" frequency?<="" identifications="" if="" in="" included="" including="" laboratory="" lcs="" lcs?="" lcsd="" lcsd,="" limits="" limits?="" mdl="" method="" moisture="" ms="" msd="" msd?="" not="" of="" on="" oncentrations="" or="" other="" peer="" percent="" prep="" prior="" procedure,="" project="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" rpd="" sample="" samples="" samples?="" sediment="" soil="" solids)="" specified="" sqls?="" standards?="" steps?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" used="" values="" was="" weight="" were="" within=""><td>Sample and quality control (QC) identification</td><td></td><td></td><td></td><td></td><td></td></mql,>	Sample and quality control (QC) identification					
Test reports Were all samples prepared and analyzed within holding times? Vere all samples prepared and analyzed within holding times? Vere all samples prepared and analyzed within holding times? Vere all samples prepared and analyzed within holding times? Were all samples prepared and analyzed under raw values bracketed by calibration of standards? Were all analyte identifications checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all results for soil and sediment samples reported on a dry weight basis? Were # moisture (or solids) reported for all soil and sediment samples? Vere moisture (or solids) reported for all soil and sediment samples? Vere frequired for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were all COCs included in the LCS? Was acach LCS taken through the entire analytical procedure, including prep and cleanup steps? Were all COCs included in the LCS? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Vere LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Vere LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Vere LCS (and LCSD, if applicable) were the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Vere the project/method specified analytes included in the MS and MSD? Vere MS/MSD analyzed at the appropriate frequency?	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Were all samples prepared and analyzed within holding times? Other than those results <mql, %rs="" (and="" (lcs):="" (or="" <rl?="" a="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable)="" applicable,="" appropriate="" at="" blank="" blanks="" bracketed="" by="" calculate="" calculations="" calibration="" capability="" checked="" cleanup="" cocs="" concentrations="" control="" data="" detect="" detectability="" detected?="" document="" does="" each="" entire="" for="" frequency?="" frequency?<="" identifications="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits="" limits?="" mdl="" method="" moisture="" ms="" msd="" msd?="" not="" of="" or="" other="" peer="" percent="" prep="" preparation="" procedure,="" procedures?="" process,="" project="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" redover="" redovery="" reported="" reported?="" required="" rpd="" sample="" samples="" samples?="" sediment="" soil="" solids)="" specified="" sqls?="" standards?="" steps?="" supervisor?="" surrogate="" taken="" td="" the="" through="" tics="" to="" type(s)="" used="" values="" was="" were="" within=""><td>Are all laboratory ID numbers cross-referenced to the corresponding QC data?</td><td>√</td><td></td><td></td><td></td><td></td></mql,>	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Other than those results <mql, %="" (and="" (lcs):="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable)="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculate="" calculations="" calibration="" capability="" checked="" cleanup="" cocs="" concentrations="" control="" cs,="" data="" detect="" detectability="" detected?="" document="" does="" dry="" entire="" extraction?="" for="" forms="" frequency?="" frequency?<="" identifications="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits="" limits?="" mdl="" method="" moisture="" ms="" msd="" msd?="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" rpd="" sample="" samples="" samples?="" sediment="" soil="" solids)="" specified="" sqls?="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" used="" values="" was="" weight="" were="" with="" within=""><td>Test reports</td><td></td><td></td><td></td><td></td><td></td></mql,>	Test reports					
Other than those results <mql, %="" (and="" (lcs):="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable)="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculate="" calculations="" calibration="" capability="" checked="" cleanup="" cocs="" concentrations="" control="" cs,="" data="" detect="" detectability="" detected?="" document="" does="" dry="" entire="" extraction?="" for="" forms="" frequency?="" frequency?<="" identifications="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits="" limits?="" mdl="" method="" moisture="" ms="" msd="" msd?="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" rpd="" sample="" samples="" samples?="" sediment="" soil="" solids)="" specified="" sqls?="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" used="" values="" was="" weight="" were="" with="" within=""><td></td><td>√</td><td></td><td></td><td></td><td></td></mql,>		√				
standards? Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor? Were all results for soil and sediment samples reported on a dry weight basis? Were in work in the project, TICs reported for all soil and sediment samples? Were surroited for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Vere appropriate type(s) of blanks analyzed? Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits?="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" required="" rpd="" samples="" specified="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td></td><td>√</td><td></td><td></td><td></td><td></td></rl?>		√				
Were all analyte identifications checked by a peer or supervisor? Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogates percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" lcss="" limits?="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" required="" rpd="" samples="" specified="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td></rl?>	· · · · · · · · · · · · · · · · · · ·					
Were all analyte identifications checked by a peer or supervisor? Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogates percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" lcss="" limits?="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" required="" rpd="" samples="" specified="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td>Were calculations checked by a peer or supervisor?</td><td>√</td><td></td><td></td><td></td><td></td></rl?>	Were calculations checked by a peer or supervisor?	√				
Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? Were % moisture (or solids) reported? Were united for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogates percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cocs="" control="" data="" detect="" detectability="" document="" does="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits?="" mdl="" method="" ms="" msd="" msd?="" preparation="" procedure,="" project="" qc="" rpd="" samples="" specified="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td></td><td>√</td><td></td><td></td><td></td><td></td></rl?>		√				
Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?		√				
Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Were MS/MSD analyzed at the appropriate frequency? Were MS/MSD analyzed at the appropriate frequency? Were MS/MSD analyzed at the appropriate frequency?		√				
If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" (ms)="" (msd)="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" duplicate="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" lcss="" limits?="" matrix="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" required="" rpd="" samples="" specified="" spike="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td></td><td>√</td><td></td><td></td><td></td><td></td></rl?>		√				
Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?				√		
Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" (ms)="" (msd)="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" duplicate="" each="" entire="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" limits?="" matrix="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" rpd="" samples="" specified="" spike="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td></td><td></td><td></td><td></td><td></td><td></td></rl?>						
Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCS analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?	•			√		
Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?				√		
Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?				-		
Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Was the LCSD RPD within QC limits? Was the LCSD RPD within QC limits? Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?		\				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations < RL? Laboratory control samples (LCS): Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?						
if applicable, cleanup procedures? Were blank concentrations <rl? %rs="" (and="" (lcs):="" (ms)="" (msd)="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" duplicate="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" lcss="" limits?="" matrix="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" required="" rpd="" samples="" specified="" spike="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td></td><td>√</td><td></td><td></td><td></td><td></td></rl?>		√				
Were blank concentrations <rl? %rs="" (and="" (lcs):="" (ms)="" (msd)="" all="" analytes="" analytical="" analyzed="" and="" applicable)="" appropriate="" at="" calculate="" capability="" cleanup="" cocs="" control="" data="" detect="" detectability="" document="" does="" duplicate="" each="" entire="" frequency?="" frequency?<="" if="" in="" included="" including="" laboratory="" laboratory's="" lcs="" lcs?="" lcsd="" lcsd,="" lcss="" limits?="" matrix="" mdl="" method="" ms="" msd="" msd?="" prep="" procedure,="" project="" qc="" required="" rpd="" samples="" specified="" spike="" sqls?="" steps?="" taken="" td="" the="" through="" to="" used="" was="" were="" within=""><td></td><td></td><td></td><td></td><td></td><td></td></rl?>						
Laboratory control samples (LCS): ✓ Were all COCs included in the LCS? ✓ Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? ✓ Were LCSs analyzed at the required frequency? ✓ Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? ✓ Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? ✓ Was the LCSD RPD within QC limits? ✓ Matrix spike (MS) and matrix spike duplicate (MSD) data ✓ Were the project/method specified analytes included in the MS and MSD? ✓ Were MS/MSD analyzed at the appropriate frequency? ✓		\				
Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Was the LCSD RPD within QC limits? ✓ Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?		,				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Was the LCSD RPD within QC limits? ✓ Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? ✓ Were MS/MSD analyzed at the appropriate frequency?		/				
steps? Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency?						
Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency? ✓		ľ				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency? ✓		/				
Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency? ✓		l				
MDL used to calculate the SQLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency? ✓						
Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency? ✓						
Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD? ✓ Were MS/MSD analyzed at the appropriate frequency?				\		
Were the project/method specified analytes included in the MS and MSD? Were MS/MSD analyzed at the appropriate frequency? ✓				-		
Were MS/MSD analyzed at the appropriate frequency? √				\		
	1 0					
WCIC IND VALID IN AUDICADIE I WINS WITHII HIE IADUIAULY CIC. HIHIIS!	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			1		

Description	Yes	No	NA(1) QQQ	8400
Were MS/MSD RPDs within laboratory QC limits?			√	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			√	
Were analytical duplicates analyzed at the appropriate frequency?			√	
Were RPDs or relative standard deviations within the laboratory QC limits?			√ ·	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	√			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√			
Are unadjusted MQLs included in the laboratory data package?	\			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	\			
Were all necessary corrective actions performed for the reported data?	√			
Was applicable and available technology used to lower the SQL minimize the matrix	<i>\</i>			
interference affects on the sample results?	,			
ICAL				
Were response factors and/or relative response factors for each analyte within QC limits?			/	
Were percent RSDs or correlation coefficient criteria met?	/		<u> </u>	
Was the number of standards recommended in the method used for all analytes?	· √			
Were all points generated between the lowest and highest standard used to calculate the	√			
curve?	'			
Are ICAL data available for all instruments used?	/			
Has the initial calibration curve been verified using an appropriate second source standard?	√			
Initial and continuing calibration verification (ICV and CCV) and continuing	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?	1			
Were percent differences for each analyte within the method-required QC limits?	∨			
Was the ICAL curve verified for each analyte?	V √			
Was the absolute value of the analyte concentration in the inorganic CCB <rl?< td=""><td>∨ ✓</td><td></td><td></td><td></td></rl?<>	∨ ✓			
Mass spectral tuning:	V			
Was the appropriate compound for the method used for tuning?				
Were ion abundance data within the method-required QC limits?			√	
Internal standards (IS):			√	
Were IS area counts and retention times within the method-required QC limits?			√	
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section 4.12.2)				
· · · · · · · · · · · · · · · · · · ·	/			
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data?	√			
<u> </u>			√	
Dual column confirmation				
Did dual column confirmation results meet the method-required QC?			√	
Tentatively identified compounds (TICs):				
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√	
Interference Check Sample (ICS) results:				
Were percent recoveries within method QC limits?			√	
Serial dilutions, post digestion spikes, and method of standard additions				
Were percent differences, recoveries, and the linearity within the QC limits specified in the	√			
method? Method detection limit (MDL) studies				
Method detection limit (MDL) studies				
Was a MDL study performed for each reported analyte?	√			
Is the MDL either adjusted or supported by the analysis of DCSs?	√			
Proficiency test reports:			 	
Was the laboratory's performance acceptable on the applicable proficiency tests or	✓			
evaluation studies?				

Description	Yes	No	NA(1)	3000	34002
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
L09070188

798-LONGHORN

WG306971

WG306971

MAREN M. BEERY

LRC Date:
July 15, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;

R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:

- a) LCS spiking amount,
- b) Calculated %R for each analyte, and
- c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

DEANNA I. HESSON	Dannalpsson	Conventional Lab Supervisor	July 20, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Laboratory Name:Microbac Laboratories Inc.Laboratory Log Number:L09070188Project Name:798-LONGHORNMethod:PCTSOLIDSPrep Batch Number(s):WG306819

Reviewer Name: DEANNA I. HESSON
LRC Date: July 20, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration<="" other="" raw="" td="" values="" were=""><td></td><td></td><td>√</td><td></td><td></td></mql,>			√		
standards?					
Were calculations checked by a peer or supervisor?	√				
Were all analyte identifications checked by a peer or supervisor?			√		
Were sample quantitation limits reported for all analytes not detected?			√		
Were all results for soil and sediment samples reported on a dry weight basis?	√				
Were % moisture (or solids) reported for all soil and sediment samples?	√				
If required for the project, TICs reported?			√		
Surrogate recovery data					
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			√		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?			√		
Were blanks analyzed at the appropriate frequency?			√		
Were method blanks taken through the entire analytical process, including preparation and,			√		
if applicable, cleanup procedures?					
Were blank concentrations <mql?< td=""><td></td><td></td><td>√</td><td></td><td></td></mql?<>			√		
Laboratory control samples (LCS):					
Were all COCs included in the LCS?			✓		
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?			✓		
Were LCSs analyzed at the required frequency?			√		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?			· ✓		
Does the detectability data document the laboratorys capability to detect the COCs at the			· ✓		
MDL used to calculate the SQLs?					
Was the LCSD RPD within QC limits?			√		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	008400
Were MS/MSD RPDs within laboratory QC limits?			1	
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?	√			
Were analytical duplicates analyzed at the appropriate frequency?	· /			
Were RPDs or relative standard deviations within the laboratory QC limits?	· /			
Method quantitation limits (MQLs):	•			
Are the MQLs for each method analyte included in the laboratory data package?			√	
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?			√	
Are unadjusted MQLs included in the laboratory data package?			√	
Other problems/anomalies			•	
Are all known problems/anomalies/special conditions noted in this LRC and ER?	-			
Were all necessary corrective actions performed for the reported data?	√			
Was applicable and available technology used to lower the SQL minimize the matrix	V		√	
interference affects on the sample results?			V	
Were response factors and/or relative response factors for each analyte within QC limits?			✓	
Were percent RSDs or correlation coefficient criteria met?			√	
Was the number of standards recommended in the method used for all analytes?			✓	
Were all points generated between the lowest and highest standard used to calculate the curve?			√	
Are ICAL data available for all instruments used?			√	
Has the initial calibration curve been verified using an appropriate second source standard?			V	
Initial and continuing calibration verification (ICV and CCV) and continuing			V	
calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?			√	
Were percent differences for each analyte within the method-required QC limits?			√	
Was the ICAL curve verified for each analyte?			√	
Was the absolute value of the analyte concentration in the inorganic CCB <mdl?< td=""><td></td><td></td><td>√</td><td></td></mdl?<>			√	
Mass spectral tuning:				
Was the appropriate compound for the method used for tuning?			√	
Were ion abundance data within the method-required QC limits?			√	
Internal standards (IS):				
Were IS area counts and retention times within the method-required QC limits?			√	
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025				
section 4.12.2)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√			
Were data associated with manual integrations flagged on the raw data?			√	
Dual column confirmation				
Did dual column confirmation results meet the method-required QC?			√	
Tentatively identified compounds (TICs):				
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√	
Interference Check Sample (ICS) results:				
Were percent recoveries within method QC limits?			√	
Serial dilutions, post digestion spikes, and method of standard additions				
Were percent differences, recoveries, and the linearity within the QC limits specified in the			√	
method?				
Method detection limit (MDL) studies				
Was a MDL study performed for each reported analyte?			√	
Is the MDL either adjusted or supported by the analysis of DCSs?			√	
Proficiency test reports:				
Was the laboratory's performance acceptable on the applicable proficiency tests or			√	
evaluation studies?				

Description	Yes	No	NA(1)	3000	400
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate			√		
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?			√		
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Laboratory Name:
Laboratory Log Number:
Project Name:
Method:
Prep Batch Number(s):
Reviewer Name:
Laboratories Inc.
L09070188
798-LONGHORN
PCTSOLIDS
WG306819
DEANNA I. HESSON
LRC Date:
July 20, 2009

EXCEPTIONS REPORT

ER# - Description

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

2.1 Metals Data

2.1.1 Metals ICP-MS Data

2.1.1.1 Summary Data

L09070188

07/23/09 15:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
02SB026A (0-6)	L09070188-01	6020	20	10-JUL-09
02SB026A (0-6)	L09070188-01	6020	1	10-JUL-09
02SB027A (0-6)	L09070188-02	6020	1	10-JUL-09
02SB027A (0-6)	L09070188-02	6020	20	10-JUL-09
02SB028B (12-18)	L09070188-03	6020	20	10-JUL-09
02SB028B (12-18)	L09070188-03	6020	1	10-JUL-09
02SB0210 (0-6)	L09070188-04	6020	1	10-JUL-09
02SB0210 (0-6)	L09070188-04	6020	20	10-JUL-09
02SB0211 (0-6)	L09070188-05	6020	1	10-JUL-09
02SB0211 (0-6)	L09070188-05	6020	20	10-JUL-09
02SB0211 (0-6)DUP	L09070188-06	6020	1	10-JUL-09
02SB0211 (0-6)DUP	L09070188-06	6020	20	10-JUL-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1445274
Report generated: 07/23/2009 15:09

Microbac

1 OF 1

00084013

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-01
Client ID: 02SB026A (0-6)

Matrix: Soil

Workgroup Number: WG307406
Collect Date: 07/09/2009 10:10

Sample Tag: DL01

PrePrep Method:NONE

Prep Method: 3051 Analytical Method: 6020 Analyst: JYH
Dilution: 20

Units:mg/kg

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:50 Cal Date: 07/20/2009 11:04 Run Date:07/20/2009 21:34
File ID:EL.072009.213459
Percent Solid:86.2

Analyte	CAS. Number	Result	Qual	PQL	SDL
Lead, Total	7439-92-1	70.0		4.57	2.28

12 of

00084014

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-01
Client ID: 02SB026A (0-6) PrePrep Method:NONE

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:50 Prep Method: 3051 Matrix: Soil Analytical Method: 6020 Cal Date: 07/17/2009 11:24 Analyst:JYH
Dilution:1 Run Date:07/18/2009 05:18
File ID:EL.071809.051823
Percent Solid:86.2 Workgroup Number: WG307406
Collect Date: 07/09/2009 10:10

Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Total	7440-38-2	8.05		0.342	0.0856
Cadmium, Total	7440-43-9	0.458		0.114	0.0285
Copper, Total	7440-50-8	7.68		0.685	0.171

12 of

00084015

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-02
Client ID: 02SB027A (0-6) PrePrep Method:NONE

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:51 Prep Method: 3051 Matrix: Soil Analytical Method: 6020 Cal Date: 07/17/2009 11:24 Analyst:JYH
Dilution:1 Run Date:07/18/2009 05:24
File ID:EL.071809.052442
Percent Solid:87.4 Workgroup Number: WG307406
Collect Date: 07/09/2009 10:15

Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Total	7440-38-2	12.7		0.335	0.0838
Cadmium, Total	7440-43-9	2.89		0.112	0.0279
Copper, Total	7440-50-8	32.5		0.670	0.168

12 of

00084016

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-02
Client ID: 02SB027A (0-6)

Matrix: Soil

Workgroup Number: WG307406
Collect Date: 07/09/2009 10:15

Sample Tag: DL01

PrePrep Method:NONE

Prep Method: 3051 Analytical Method: 6020

Analyst: JYH
Dilution: 20 Units:mg/kg

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:51 Cal Date: 07/20/2009 11:04 Run Date:07/20/2009 11:04
Run Date:07/20/2009 21:41
File ID:EL.072009.214117
Percent Solid:87.4

Analyte	CAS. Number	Result	Qual	PQL	SDL
Lead, Total	7439-92-1	607		4.47	2.23

12 of

00084017

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: <u>L09070188-03</u> Client ID: <u>02SB028B (12-18)</u> PrePrep Method:NONE

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:51 Prep Method: 3051 Matrix: Soil Analytical Method: 6020 Cal Date: 07/20/2009 11:04

Run Date:07/20/2009 11:04
Run Date:07/20/2009 21:47
File ID:EL.072009.214735
Percent Solid:89.3 Workgroup Number: WG307406
Collect Date: 07/09/2009 10:20 Analyst: JYH
Dilution: 20 Sample Tag: DL01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Lead, Total	7439-92-1	460		4.45	2.23

12 of

00084018

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: <u>L09070188-03</u> Client ID: <u>02SB028B (12-18)</u>

Matrix: Soil

Workgroup Number: WG307406
Collect Date: 07/09/2009 10:20 Sample Tag: 01

PrePrep Method:NONE

Prep Method: 3051 Analytical Method: 6020 Analyst:JYH
Dilution:1

Units:mg/kg

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:51 Cal Date: 07/17/2009 11:24 Run Date:07/18/2009 05:31
File ID:EL.071809.053102
Percent Solid:89.3

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Total	7440-38-2	13.3		0.334	0.0835
Cadmium, Total	7440-43-9	1.44		0.111	0.0278
Copper, Total	7440-50-8	19.7		0.668	0.167

12 of

MICIODAC LADOTACOTTES INC.

00084019

Report Number:L09070188
Report Date :July 23, 2009

Sample Number: L09070188-04
Client ID: 02SB0210 (0-6)

Matrix: Soil

Workgroup Number: WG307406
Collect Date: 07/09/2009 10:25

Sample Tag:

PrePrep Method:NONE

Prep Method: 3051
Analytical Method: 6020

Analyst:JYH
Dilution:1
Units:mg/kg

Instrument: ELAN-ICP

Prep Date: 07/15/2009 06:52
Cal Date: 07/17/2009 11:24
Run Date: 07/18/2009 05:37

File ID: EL. 071809.053721
Percent Solid: 84.8

Result Analyte CAS. Number Qual PQL SDL Arsenic, Total 7440-38-2 8.66 0.347 0.0868 Cadmium, Total Copper, Total 7440-43-9 1.42 0.116 0.0289 7440-50-8 13.3 0.695 0.174

7 of 12

00084020

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-04 Client ID: 02SB0210 (0-6)

Matrix: Soil

Workgroup Number: WG307406 Collect Date: 07/09/2009 10:25

Sample Tag: DL01

PrePrep Method:NONE

Prep Method: 3051 Analytical Method: 6020

Analyst: JYH
Dilution: 20 Units:mg/kg

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:52 Cal Date: 07/20/2009 11:04 Run Date: 07/20/2009 21:53
File ID: EL. 072009.215352
Percent Solid: 84.8

Result Analyte CAS. Number Qual PQL SDL Lead, Total 7439-92-1 237 4.63 2.32

> 12 of

00084021

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-05
Client ID: 02SB0211 (0-6) PrePrep Method:NONE

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:53 Prep Method: 3051 Matrix: Soil Analytical Method: 6020 Cal Date: 07/17/2009 11:24 Analyst:JYH
Dilution:1 Run Date:07/18/2009 05:43
File ID:EL.071809.054337
Percent Solid:89.9 Workgroup Number: WG307406
Collect Date: 07/09/2009 10:30

Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Total	7440-38-2	8.10		0.320	0.0801
Cadmium, Total	7440-43-9	0.629		0.107	0.0267
Copper, Total	7440-50-8	10.0		0.640	0.160

of 12

MICIODAC LADOTACOTTES INC.

00084022

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:53

Cal Date: 07/20/2009 11:04

Report Number:L09070188
Report Date :July 23, 2009

Sample Number: L09070188-05 PrePrep Method: NONE

Client ID: 02SB0211 (0-6) Prep Method: 3051

Matrix: Soil Analytical Method: 6020

Analytical Method: TVIII

 Workgroup Number: WG307406
 Analyst: JYH
 Run Date: 07/20/2009 22:13

 Collect Date: 07/09/2009 10:30
 Dilution: 20
 File ID: EL.072009.221356

 Sample Tag: DL01
 Units: mg/kg
 Percent Solid: 89.9

 Analyte
 CAS. Number
 Result
 Qual
 PQL
 SDL

 Lead, Total
 7439-92-1
 348
 4.27
 2.13

10 of 12

00084023

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-06
Client ID: 02SB0211 (0-6)DUP

Matrix: Soil

Workgroup Number: WG307406
Collect Date: 07/09/2009 10:30

Sample Tag: 01

PrePrep Method:NONE

Prep Method: 3051 Analytical Method: 6020

Units:mg/kg

Analyst: JYH
Dilution: 1

Instrument: ELAN-ICP
Prep Date: 07/15/2009 06:53 Cal Date: 07/17/2009 11:24 Run Date:07/18/2009 15:49
File ID:EL.071809.054955
Percent Solid:91.0

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Total	7440-38-2	15.0		0.323	0.0808
Cadmium, Total	7440-43-9	0.593		0.108	0.0269
Copper, Total	7440-50-8	10.7		0.646	0.162

11 12 of

00084024

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-06
Client ID: 02SB0211 (0-6)DUP PrePrep Method:NONE

Matrix: Soil

Workgroup Number: WG307406
Collect Date: 07/09/2009 10:30

Sample Tag: DL01 Units:mg/kg

Instrument: <u>ELAN-ICP</u>
Prep Date: 07/15/2009 06:53 Prep Method: 3051 Analytical Method: 6020 Cal Date: 07/20/2009 11:04 Run Date:07/20/2009 12:20
File ID:EL.072009.222011
Percent Solid:91.0 Analyst: JYH
Dilution: 20

		Qual	PQL	SDL
Lead, Total 7439-	92-1 152		4.31	2.15

12 12 of

2.1.1.2 QC Summary Data

Example 6020 Calculations Perkin Elmer ELAN 6100

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	100
Vi = Initial volume	40
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/L)	0.25

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	200
Vi = Initial volume	0.5
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/kg)	40

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	40
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	50

50 ug/kg = 0.050 mg/kg

Perkin Elmer ELAN ICP/MS

STANDARDS KEY

QC Std 1 - ICV QC Std 2 - ICB QC Std 3 - CRI - Soil QC Std 4 - CRI - Water QC Std 5 - ICSA QC Std 6 - ICSAB QC Std 7 - CCV QC Std 8 - CCB

Calibration Solutions

Analyte	Stock Conc. (mg/L)	S1 (mg/L)	S2 (mg/L)	S3 (mg/L)	S4 (mg/L)
Al	10	0	0.0004	0.05	0.1
Sb	10	0	0.0004	0.05	0.1
As	10	0	0.0004	0.05	0.1
Ba	10	0	0.0004	0.05	0.1
Be	10	0	0.0004	0.05	0.1
Ca	1000	0	0.04	5	10
Cd	10	0	0.0004	0.05	0.1
Cr	10	0	0.0004	0.05	0.1
Co	10	0	0.0004	0.05	0.1
Cu	10	0	0.0004	0.05	0.1
Fe	1000	0	0.04	5	10
Pb	10	0	0.0004	0.05	0.1
Mg	1000	0	0.04	5	10
Mn	10	0	0.0004	0.05	0.1
Ni	10	0	0.0004	0.05	0.1
K	1000	0	0.04	5	10
Se	10	0	0.0004	0.05	0.1
Ag	10	0	0.0004	0.05	0.1
Na	1000	0	0.04	5	10
Tl	10	0	0.0004	0.05	0.1
V	10	0	0.0004	0.05	0.1
U	1000	0	0.0004	0.05	0.1
Zn	10	0	0.0004	0.05	0.1

Microbac Laboratories Inc. Microwave Digestion Log

Workgroup: WG307047

SOP: ME406 Revison 11
Spike Solution: STD33694

Analyst:<u>CTB</u>

Spike Witness: REK

Spike Analyst: VC
Run Date: 07/15/2009 06:57

HNO3 Lot #: COA13945

Method: 3051

Digest tubes Lot #: COA13926

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG307047-02	BLANK	7	.5 g	200 mL	174.163 g	174.159 g		
2	WG307047-03	LCS	7	.5 g	200 mL	175.279 g	175.267 g	.5 mL	
3	L09070188-01	SAMP	7	.508 g	200 mL	176.124 g	176.111 g		07/21/09
4	L09070188-02	SAMP	7	.512 g	200 mL	177.347 g	177.337 g		07/21/09
5	L09070188-03	SAMP	7	.503 g	200 mL	174.101 g	174.082 g		07/21/09
6	L09070188-04	SAMP	7	.509 g	200 mL	174.515 g	174.489 g		07/21/09
7	L09070188-05	SAMP	7	.521 g	200 mL	172.876 g	172.868 g		07/21/09
8	L09070188-06	SAMP	7	.51 g	200 mL	174.031 g	174.017 g		07/21/09
9	WG307047-01	REF	7	.529 g	200 mL	176.599 g	176.581 g		
10	L09070206-01	RS01	7	.529 g	200 mL	176.599 g	176.581 g		07/21/09
11	L09070206-03	SAMP	7	.507 g	200 mL	176.435 g	176.422 g		07/21/09
12	L09070206-04	SAMP	7	.516 g	200 mL	173.764 g	173.752 g		07/21/09
13	L09070206-08	SAMP	7	.513 g	200 mL	173.757 g	173.738 g		07/21/09
14	L09070206-09	SAMP	7	.52 g	200 mL	173.993 g	173.97 g		07/21/09
15	L09070206-10	SAMP	7	.536 g	200 mL	175.822 g	175.793 g		07/21/09
16	WG307047-04	MS	7	.529 g	200 mL	175.785 g	175.766 g	.5 mL	
17	L09070206-12	MS01	7	.529 g	200 mL	175.785 g	175.766 g	.5 mL	07/21/09
18	WG307047-05	MSD	7	.529 g	200 mL	174.674 g	174.66 g	.5 mL	
19	L09070206-13	SD01	7	.529 g	200 mL	174.674 g	174.66 g	.5 mL	07/21/09

Analyst: Min B

Reviewer:

MW_DIG - Modified 07/02/2008

PDF ID: 1440864
Report generated: 07/15/2009 07:39

Instrument Run Log

Instrument:	ELAN-ICP	Data	set: <u>071709A.REP</u>			
Analyst1:	JYH	Analy	rst2: N/A			
Method:		S	OP:	R	ev:	-
Maintenance Log ID:	29481					
Calibration Std: STI	033660	ICV/CCV Std:	STD33775	Post Spike:	STD33697	
ICSA: STI	033928	ICSAB:	STD33616	Int. Std:	33807	
Comments:	Workgroups:	307404,307367,307	407,307405,307406,3	07033,307156		
Comments.						

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	EL.071709.110108	Blank	Blank		1		07/17/09 11:01
2	EL.071709.110651	WG307450-01	Calibration Point		1		07/17/09 11:06
3	EL.071709.111234	WG307450-02	Calibration Point		1		07/17/09 11:12
4	EL.071709.111818	WG307450-03	Calibration Point		1		07/17/09 11:18
5	EL.071709.112403	WG307450-04	Calibration Point		1		07/17/09 11:24
6	EL.071709.112948	WG307450-05	Initial Calibration Verification		1		07/17/09 11:29
7	EL.071709.113643	WG307450-06	Initial Calib Blank		1		07/17/09 11:36
8	EL.071709.114338	WG307450-07	CRQL Check Solid		1		07/17/09 11:43
9	EL.071709.115037	WG307450-08	CRQL Check Water		1		07/17/09 11:50
10	EL.071709.115735	WG307450-09	Interference Check		1		07/17/09 11:57
11	EL.071709.120432	WG307450-10	Interference Check		1		07/17/09 12:04
12	EL.071709.121128	WG307450-11	CCV		1		07/17/09 12:11
13	EL.071709.121823	WG307450-12	ССВ		1		07/17/09 12:18
14	EL.071709.122444	WG307330-03	Method/Prep Blank	40/100	1		07/17/09 12:24
15	EL.071709.123057	WG307330-04	Laboratory Control S	40/100	1		07/17/09 12:30
16	EL.071709.123711	L09070345-01	OUTFALL 002/COMP	40/100	2	WG307330-02	07/17/09 12:37
17	EL.071709.124324	WG307330-07	Duplicate	40/100	2	L09070345-01	07/17/09 12:43
18	EL.071709.124939	WG307330-01	Reference Sample		1	L09070299-06	07/17/09 12:49
19	EL.071709.125553	WG307330-05	Matrix Spike	40/100	1	L09070299-06	07/17/09 12:55
20	EL.071709.130208	WG307330-06	Matrix Spike Duplica	40/100	1	L09070299-06	07/17/09 13:02
21	EL.071709.130823	L09070322-01	IDW-071509	40/100	1		07/17/09 13:08
22	EL.071709.131439	WG307367-01	Post Digestion Spike		1	L09070322-01	07/17/09 13:14
23	EL.071709.132054	WG307367-02	Serial Dilution		5	L09070322-01	07/17/09 13:20
24	EL.071709.132730	WG307450-13	CCV		1		07/17/09 13:27
25	EL.071709.133425	WG307450-14	ССВ		1		07/17/09 13:34
26	EL.071709.134059	L09070315-02	07-026-09	40/100	1		07/17/09 13:40
27	EL.071709.134716	L09070315-04	07-027-09	40/100	1		07/17/09 13:47
28	EL.071709.135331	L09070315-05	07-028-09	40/100	1		07/17/09 13:53
29	EL.071709.135944	L09070315-07	07-029-09	40/100	1		07/17/09 13:59
30	EL.071709.140558	L09070315-08	07-030-09	40/100	1		07/17/09 14:05
31	EL.071709.141213	L09070315-10	07-031-09	40/100	1		07/17/09 14:12
32	EL.071709.141827	L09070315-11	07-032-09	40/100	1		07/17/09 14:18
33	EL.071709.142442	L09070315-13	07-033-09	40/100	1		07/17/09 14:24
34	EL.071709.143058	L09070315-15	07-034-09	40/100	1		07/17/09 14:30
35	EL.071709.143714	L09070315-17	07-035-09	40/100	1		07/17/09 14:37
36	EL.071709.144349	WG307450-15	CCV		1		07/17/09 14:43
37	EL.071709.145044	WG307450-16	ССВ		1		07/17/09 14:50

Page: 1 Approved: July 20, 2009

Instrument Run Log

Instrument: Analyst1:			aset: <u>071709A.REP</u> vst2: <u>N/A</u>		
Method:		S	OP:	R	ev:
Maintenance Log ID:	29481				
Calibration Std: STI		ICV/CCV Std: ICSAB:	STD33775 STD33616	_ Post Spike: _ Int. Std:	
Comments:	Workgroups:	307404,307367,307	407,307405,307406,	307033,307156	
Comments.					

Seq.			,				
	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	EL.071709.145718	L09070315-19	07-036-09	40/100	1		07/17/09 14:57
39	EL.071709.150335	L09070315-20	07-037-09	40/100	1		07/17/09 15:03
40	EL.071709.150952	L09070299-02	DRL-G-MW-6A-DIS	40/100	1		07/17/09 15:09
41	EL.071709.151609	L09070299-04	DRL-G-MW-14-DIS	40/100	1		07/17/09 15:16
42	EL.071709.152225	L09070299-08	DRL-K-EQBLK-1-DIS	40/100	1		07/17/09 15:22
43	EL.071709.152838	WG307194-02	Method/Prep Blank	.5/200	1		07/17/09 15:28
44	EL.071709.153452	WG307194-03	Laboratory Control S	.5/200	1		07/17/09 15:34
45	EL.071709.154109	L09070323-02	465-SB4-SS1-140709-01	.51/200	1		07/17/09 15:41
46	EL.071709.154723	WG307404-01	Post Digestion Spike		1	L09070323-02	07/17/09 15:47
47	EL.071709.155446	WG307404-02	Serial Dilution		5	L09070323-02	07/17/09 15:54
48	EL.071709.160122	WG307450-17	CCV		1		07/17/09 16:01
49	EL.071709.160816	WG307450-18	ССВ		1		07/17/09 16:08
50	EL.071709.161449	WG307194-01	Reference Sample		10	L09070314-03	07/17/09 16:14
51	EL.071709.162247	WG307194-04	Matrix Spike	.513/200	10	L09070314-03	07/17/09 16:22
52	EL.071709.162903	WG307194-05	Matrix Spike Duplica	.515/200	10	L09070314-03	07/17/09 16:29
53	EL.071709.163518	L09070323-03	465-SB5-SS1-140709-01	.522/200	1		07/17/09 16:35
54	EL.071709.164134	L09070323-04	465-BG1-SS1-140709-02	.503/200	5		07/17/09 16:41
55	EL.071709.164818	L09070323-05	465-BG3-SS1-140709-02	.531/200	1		07/17/09 16:48
56	EL.071709.165435	L09070323-06	465-BG2-SS1-140709-02	.53/200	1		07/17/09 16:54
57	EL.071709.170050	L09070323-07	465-BG4-SS1-140709-01	.514/200	1		07/17/09 17:00
58	EL.071709.170704	L09070323-09	465-SB4-SS1-140709-01	.525/200	1		07/17/09 17:07
59	EL.071709.171318	L09070316-01	ANC-SD-6	.54/200	1		07/17/09 17:13
60	EL.071709.171953	WG307450-19	CCV		1		07/17/09 17:19
61	EL.071709.172647	WG307450-20	ССВ		1		07/17/09 17:26
62	EL.071709.173342	WG307450-21	Interference Check		1		07/17/09 17:33
63	EL.071709.174038	WG307450-22	Interference Check		1		07/17/09 17:40
64	EL.071709.174734	WG307450-23	CCV		1		07/17/09 17:47
65	EL.071709.175429	WG307450-24	ССВ		1		07/17/09 17:54
66	EL.071709.180103	WG307107-02	Method/Prep Blank	.5/200	1		07/17/09 18:01
67	EL.071709.180718	WG307107-03	Laboratory Control S	.5/200	1		07/17/09 18:07
68	EL.071709.181334	WG307107-01	Reference Sample		1	L09060679-01	07/17/09 18:13
69	EL.071709.181950	WG307107-04	Matrix Spike	.5/200	1	L09060679-01	07/17/09 18:19
70	EL.071709.182606	WG307107-05	Matrix Spike Duplica	.5/200	1	L09060679-01	07/17/09 18:26
71	EL.071709.183223	L09060679-04	0906-MWD093-03-SS	.515/200	5		07/17/09 18:32
72	EL.071709.183840	L09060679-05	0906-MWD083-02-SS	.507/200	1		07/17/09 18:38
73	EL.071709.184456	WG307407-01	Post Digestion Spike		1	L09060679-05	07/17/09 18:44
74	EL.071709.185110	WG307407-02	Serial Dilution		5	L09060679-05	07/17/09 18:51

Page: 2 Approved: July 20, 2009

Instrument Run Log

Instrument:	ELAN-ICP	Data	set: <u>071709A.REP</u>			
Analyst1:	JYH	Analy	vst2: N/A			
Method:		S	OP:	R	ev:	
Maintenance Log ID:	29481					
Calibration Std: STE	33660	ICV/CCV Std:	STD33775	_ Post Spike:	STD33697	
ICSA: STE	33928	ICSAB:	STD33616	_ Int. Std:	33807	
Comments:	Workgroups:	307404,307367,307	407,307405,307406	,307033,307156		
Comments.						

Sea.						1 -	
	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	EL.071709.185746	WG307450-25	ccv		1		07/17/09 18:57
76	EL.071709.190440	WG307450-26	ССВ		1		07/17/09 19:04
77	EL.071709.191114	L09060679-06	0906-MWD093-01-SS	.511/200	5		07/17/09 19:11
78	EL.071709.191729	L09060679-07	0906-MWD083-04-SS	.513/200	1		07/17/09 19:17
79	EL.071709.192344	L09060679-08	0906-MWD093-04-SS	.515/200	5		07/17/09 19:23
80	EL.071709.193000	L09060679-09	0906-MWD083-01-SS	.507/200	1		07/17/09 19:30
81	EL.071709.193616	L09060679-10	0906-MWD083-05-SS	.513/200	1		07/17/09 19:36
82	EL.071709.194232	L09060679-11	0906-MWD093-02-SS	.509/200	5		07/17/09 19:42
83	EL.071709.194849	L09060677-25	0906-MBE001-01-SS	.5/200	1		07/17/09 19:48
84	EL.071709.195506	L09060677-26	0906-MWD091N-07-SS-1	.504/200	5		07/17/09 19:55
85	EL.071709.200123	L09060677-27	0906-MWD091N-07-SS-2	.5/200	5		07/17/09 20:01
86	EL.071709.200741	L09060677-28	0906-MWD091N-07-SS-3	.5/200	5		07/17/09 20:07
87	EL.071709.201418	WG307450-27	CCV		1		07/17/09 20:14
88	EL.071709.202112	WG307450-28	ССВ		1		07/17/09 20:21
89	EL.071709.202746	L09060677-30	0906-MWD092-05-SS	.5/200	5		07/17/09 20:27
90	EL.071709.203401	L09060677-31	0906-MWD092-04-SS	.503/200	5		07/17/09 20:34
91	EL.071709.204016	L09060677-32	0906-MWD092-02-SS	.504/200	5		07/17/09 20:40
92	EL.071709.204631	L09060677-33	0906-MBE001-07-SS-1	.507/200	1		07/17/09 20:46
93	EL.071709.205247	L09060677-34	0906-MBE001-07-SS-2	.503/200	1		07/17/09 20:52
94	EL.071709.205903	L09060677-35	0906-MBE001-07-SS-3	.509/200	5		07/17/09 20:59
95	EL.071709.210519	L09060677-36	0906-MBE001-09-SS	.503/200	1		07/17/09 21:05
96	EL.071709.211136	L09060677-25	0906-MBE001-01-SS		50		07/17/09 21:11
97	EL.071709.211753	L09060677-26	0906-MWD091N-07-SS-1	.504/200	50		07/17/09 21:17
98	EL.071709.212410	L09060677-27	0906-MWD091N-07-SS-2	.5/200	50		07/17/09 21:24
99	EL.071709.213047	WG307450-29	CCV		1		07/17/09 21:30
100	EL.071709.213742	WG307450-30	ССВ		1		07/17/09 21:37
101	EL.071709.214417	L09060677-28	0906-MWD091N-07-SS-3	.5/200	50		07/17/09 21:44
102	EL.071709.215035	L09060677-30	0906-MWD092-05-SS	.5/200	50		07/17/09 21:50
103	EL.071709.215652	L09060677-31	0906-MWD092-04-SS	.503/200	50		07/17/09 21:56
104	EL.071709.220307	L09060677-32	0906-MWD092-02-SS	.504/200	50		07/17/09 22:03
105	EL.071709.220922	L09060677-33	0906-MBE001-07-SS-1	.507/200	50		07/17/09 22:09
106	EL.071709.221538	L09060677-34	0906-MBE001-07-SS-2	.503/200	50		07/17/09 22:15
107	EL.071709.222154	L09060677-35	0906-MBE001-07-SS-3		50		07/17/09 22:21
108	EL.071709.222810	L09060677-36	0906-MBE001-09-SS		50		07/17/09 22:28
109	EL.071709.223427	WG307107-01	Reference Sample		50	L09060679-01	07/17/09 22:34
110	EL.071709.224044	WG307107-04	Matrix Spike	.5/200	50	L09060679-01	07/17/09 22:40
111	EL.071709.224721	WG307450-31	CCV		1		07/17/09 22:47

Page: 3 Approved: July 20, 2009

Instrument Run Log

Instrument:	ELAN-ICP	Data	aset: <u>071709A.RE</u>	P		
Analyst1:	JYH	Analy	/st2: N/A			
Method:		S	OP:	R	ev:	
Maintenance Log ID:	29481					
Calibration Std: ST	D33660	ICV/CCV Std:	STD33775	Post Spike:	STD33697	
ICSA: ST	D33928	ICSAB:	STD33616	Int. Std:	33807	
Comments:	Workgroups:	307404,307367,307	407,307405,30740	06,307033,307156		
Comments.						

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
112	EL.071709.225415	WG307450-32	ССВ		1		07/17/09 22:54
113	EL.071709.230051	WG307107-05	Matrix Spike Duplica	.5/200	50	L09060679-01	07/17/09 23:00
114	EL.071709.230708	L09060679-04	0906-MWD093-03-SS	.515/200	50		07/17/09 23:07
115	EL.071709.231326	L09060679-05	0906-MWD083-02-SS	.507/200	50		07/17/09 23:13
116	EL.071709.231945	WG307407-01	Post Digestion Spike		50	L09060679-05	07/17/09 23:19
117	EL.071709.232602	WG307407-02	Serial Dilution		250	L09060679-05	07/17/09 23:26
118	EL.071709.233217	L09060679-06	0906-MWD093-01-SS	.511/200	50		07/17/09 23:32
119	EL.071709.233833	L09060679-07	0906-MWD083-04-SS	.513/200	50		07/17/09 23:38
120	EL.071709.234450	L09060679-08	0906-MWD093-04-SS	.515/200	50		07/17/09 23:44
121	EL.071709.235106	L09060679-09	0906-MWD083-01-SS	.507/200	50		07/17/09 23:51
122	EL.071709.235723	L09060679-10	0906-MWD083-05-SS	.513/200	50		07/17/09 23:57
123	EL.071809.000400	WG307450-33	CCV		1		07/18/09 00:04
124	EL.071809.001054	WG307450-34	ССВ		1		07/18/09 00:10
125	EL.071809.001730	L09060679-11	0906-MWD093-02-SS	.509/200	50		07/18/09 00:17
126	EL.071809.002347	WG307052-03	Method/Prep Blank	.5/200	1		07/18/09 00:23
127	EL.071809.003005	WG307052-04	Laboratory Control S	.5/200	1		07/18/09 00:30
128	EL.071809.003623	L09060637-08	0906-MWD092-CS-ALLIUM(.513/200	1		07/18/09 00:36
129	EL.071809.004242	WG307052-01	Reference Sample		1	L09060638-01	07/18/09 00:42
130	EL.071809.004901	WG307052-05	Matrix Spike	.518/200	1	L09060638-01	07/18/09 00:49
131	EL.071809.005519	WG307052-05	Matrix Spike	.518/200	1	L09060638-01	07/18/09 00:55
132	EL.071809.010134	L09060638-15	0906-MWD091S-02-GF	.524/200	1		07/18/09 01:01
133	EL.071809.010751	WG307405-01	Post Digestion Spike		1	L09060638-15	07/18/09 01:07
134	EL.071809.011407	WG307405-02	Serial Dilution		5	L09060638-15	07/18/09 01:14
135	EL.071809.012044	WG307450-35	CCV		1		07/18/09 01:20
136	EL.071809.012738	WG307450-36	ССВ		1		07/18/09 01:27
137	EL.071809.013413	L09060638-16	0906-MWD092-01-GF	.531/200	1		07/18/09 01:34
138	EL.071809.014031	L09060638-17	0906-MWD091-10-GF	.523/200	1		07/18/09 01:40
139	EL.071809.014648	L09060638-19	SPINACH SRM 1570A	.501/200	1		07/18/09 01:46
140	EL.071809.015306	L09060686-01	0906-MWD084-AL02-GF	.521/200	1		07/18/09 01:53
141	EL.071809.015924	L09060686-02	0906-MWD084-07-GF-1	.523/200	1		07/18/09 01:59
142	EL.071809.020543	WG307052-02	Reference Sample		1	L09060686-03	07/18/09 02:05
143	EL.071809.021202	WG307052-07	Matrix Spike	.525/200	1	L09060686-03	07/18/09 02:12
144	EL.071809.021821	WG307052-08	Matrix Spike Duplica	.525/200	1	L09060686-03	07/18/09 02:18
145	EL.071809.022439	L09060686-06	0906-MWD084-01-GF	.521/200	1		07/18/09 02:24
146	EL.071809.023055	L09060686-07	0906-MWD084-04-GF	.532/200	1		07/18/09 02:30
147	EL.071809.023732	WG307450-37	CCV		1		07/18/09 02:37
148	EL.071809.024426	WG307450-38	ССВ		1		07/18/09 02:44

Page: 4 Approved: July 20, 2009

Instrument Run Log

Instrument:	ELAN-ICP	Data	set: <u>071709A.REP</u>		
Analyst1:	Analyst1: <u>JYH</u>		rst2: N/A		
Method:	-	S	OP:	Rev:	
Maintenance Log ID:	29481				
Calibration Std: STI	033660	ICV/CCV Std:	STD33775	Post Spike: STD33697	_
ICSA: STI	033928	ICSAB:	STD33616	Int. Std: 33807	_
Comments:	Workgroups:	307404,307367,307	407,307405,307406,	307033,307156	
Comments.					

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
149	EL.071809.025101	L09060686-08	0906-MWD084-02-GF	.517/200	1		07/18/09 02:51
150	EL.071809.025718	L09060686-09	0906-MWD084-10-GF	.509/200	1		07/18/09 02:57
151	EL.071809.030335	L09060686-10	0906-MWD084-07-GF-3	.516/200	1		07/18/09 03:03
152	EL.071809.030953	L09060686-11	0906-MWD084-07-GF-2	.506/200	1		07/18/09 03:09
153	EL.071809.031611	L09060686-12	0906-MWD084-07-SM-3-SYA	.511/200	1		07/18/09 03:16
154	EL.071809.032229	L09060686-13	0906-MWD084-07-SL-3-SYA	.52/200	1		07/18/09 03:22
155	EL.071809.032847	L09060686-14	0906-MWD084-07-SM-2-AR	.524/200	1		07/18/09 03:28
156	EL.071809.033525	WG307450-39	CCV		1		07/18/09 03:35
157	EL.071809.034220	WG307450-40	ССВ		1		07/18/09 03:42
158	EL.071809.034856	WG307047-02	Method/Prep Blank	.5/200	1		07/18/09 03:48
159	EL.071809.035515	WG307047-03	Laboratory Control S	.5/200	1		07/18/09 03:55
160	EL.071809.040135	WG307047-01	Reference Sample		5	L09070206-01	07/18/09 04:01
161	EL.071809.040753	WG307047-04	Matrix Spike	.529/200	5	L09070206-01	07/18/09 04:07
162	EL.071809.041409	WG307047-05	Matrix Spike Duplica	.529/200	5	L09070206-01	07/18/09 04:14
163	EL.071809.042026	L09070206-03	NR-004-711	.507/200	5		07/18/09 04:20
164	EL.071809.042643	L09070206-04	NR-004-711-FD	.516/200	5		07/18/09 04:26
165	EL.071809.043301	WG307406-01	Post Digestion Spike		5	L09070206-04	07/18/09 04:33
166	EL.071809.043919	WG307406-02	Serial Dilution		25	L09070206-04	07/18/09 04:39
167	EL.071809.044556	WG307450-41	CCV		1		07/18/09 04:45
168	EL.071809.045250	WG307450-42	ССВ		1		07/18/09 04:52
169	EL.071809.045926	L09070206-08	NR-004-707	.513/200	5		07/18/09 04:59
170	EL.071809.050544	L09070206-09	NR-004-708	.52/200	5		07/18/09 05:05
171	EL.071809.051203	L09070206-10	NR-004-709	.536/200	5		07/18/09 05:12
172	EL.071809.051823	L09070188-01	02SB026A (0-6)	.508/200	1		07/18/09 05:18
173	EL.071809.052442	L09070188-02	02SB027A (0-6)	.512/200	1		07/18/09 05:24
174	EL.071809.053102	L09070188-03	02SB028B (12-18)	.503/200	1		07/18/09 05:31
175	EL.071809.053721	L09070188-04	02SB0210 (0-6)	.509/200	1		07/18/09 05:37
176	EL.071809.054337	L09070188-05	02SB0211 (0-6)	.521/200	1		07/18/09 05:43
177	EL.071809.054955	L09070188-06	02SB0211 (0-6)DUP	.51/200	1		07/18/09 05:49
178	EL.071809.055612	WG306970-01	Reference Sample		20	L09060636-01	07/18/09 05:56
179	EL.071809.060249	WG307450-43	CCV		1		07/18/09 06:02
180	EL.071809.060944	WG307450-44	ССВ		1		07/18/09 06:09
181	EL.071809.061619	WG306970-04	Matrix Spike	.51/200	20	L09060636-01	07/18/09 06:16
182	EL.071809.062237	WG306970-05	Matrix Spike Duplica	.51/200	20	L09060636-01	07/18/09 06:22
183	EL.071809.062856	WG306940-01	Reference Sample		20	L09060594-27	07/18/09 06:28
184	EL.071809.063240	WG306940-04	Matrix Spike	.541/200	20	L09060594-27	07/18/09 06:32
185	EL.071809.063624	WG306940-05	Matrix Spike Duplica	.541/200	20	L09060594-27	07/18/09 06:36
			1				L

Page: 5 Approved: July 20, 2009

Instrument Run Log

Instrument:	ELAN-ICP	Data	aset: <u>071709A.REP</u>		
Analyst1:	JYH	Analy	yst2: N/A		
Method:		S	SOP:		ev:
Maintenance Log ID:	29481				
Calibration Std: ST	Calibration Std: STD33660		STD33775	Post Spike:	STD33697
ICSA: ST	D33928	ICSAB:	STD33616	_ Int. Std:	33807
Comments:	Workgroups:	307404,307367,307	407,307405,307406,	307033,307156	
Comments.					

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
186	EL.071809.064009	L09060636-09	0906-MWD092-07-GF-3	.525/200	20		07/18/09 06:40
187	EL.071809.064353	L09060636-10	0906-MWD092-08-GF	.505/200	20		07/18/09 06:43
188	EL.071809.064736	L09070314-01	B-1, 1-3'	.536/200	10		07/18/09 06:47
189	EL.071809.065116	L09070314-02	B-1, 6-8'	.519/200	10		07/18/09 06:51
190	EL.071809.065516	WG307450-45	CCV		1		07/18/09 06:55
191	EL.071809.070211	WG307450-46	CCB		1		07/18/09 07:02

Page: 6 Approved: July 20, 2009

Instrument Run Log

Instrumen	t: ELAN-ICP	Data	aset: <u>072009A.REF</u>	-		
Analyst	Analyst1: JYH		Analyst2: N/A			
Metho	Method:		SOP:		ev:	
Maintenance Log II): <u>29493</u>					
Calibration Std: S	TD33660	ICV/CCV Std:	STD33775	Post Spike:	STD33697	
ICSA: S	TD33928	ICSAB:	STD33616	Int. Std:	33807	
Comments:	Workgroups:	307476,307528,307	406,307405,307529	9,306872		
Comments.						

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	EL.072009.104126	Blank	Blank		1		07/20/09 10:41
2	EL.072009.104709	WG307570-01	Calibration Point		1		07/20/09 10:47
3	EL.072009.105252	WG307570-02	Calibration Point		1		07/20/09 10:52
4	EL.072009.105836	WG307570-03	Calibration Point		1		07/20/09 10:58
5	EL.072009.110421	WG307570-04	Calibration Point		1		07/20/09 11:04
6	EL.072009.111007	WG307570-05	Initial Calibration Verification		1		07/20/09 11:10
7	EL.072009.111701	WG307570-06	Initial Calib Blank		1		07/20/09 11:17
8	EL.072009.112357	WG307570-07	CRQL Check Solid		1		07/20/09 11:23
9	EL.072009.113056	WG307570-08	CRQL Check Water		1		07/20/09 11:30
10	EL.072009.113754	WG307570-09	Interference Check		1		07/20/09 11:37
11	EL.072009.114450	WG307570-10	Interference Check		1		07/20/09 11:44
12	EL.072009.115147	WG307570-11	CCV		1		07/20/09 11:51
13	EL.072009.115841	WG307570-12	ССВ		1		07/20/09 11:58
14	EL.072009.120514	WG307062-03	Method/Prep Blank	.5/200	1		07/20/09 12:05
15	EL.072009.121127	WG307062-04	Laboratory Control S	.5/200	1		07/20/09 12:11
16	EL.072009.121740	L09060677-01	0906-MMP036-03-SS	.5/200	5		07/20/09 12:17
17	EL.072009.122354	WG307062-01	Reference Sample		5	L09060677-02	07/20/09 12:23
18	EL.072009.123008	WG307062-05	Matrix Spike	.504/200	5	L09060677-02	07/20/09 12:30
19	EL.072009.123623	WG307062-06	Matrix Spike Duplica	.504/200	5	L09060677-02	07/20/09 12:36
20	EL.072009.124238	L09060677-05	0906-MMP036-05-SS	.503/200	5		07/20/09 12:42
21	EL.072009.124853	WG307476-01	Post Digestion Spike		5	L09060677-05	07/20/09 12:48
22	EL.072009.125508	WG307476-02	Serial Dilution		25	L09060677-05	07/20/09 12:55
23	EL.072009.130144	WG307570-13	CCV		1		07/20/09 13:01
24	EL.072009.130838	WG307570-14	CCB		1		07/20/09 13:08
25	EL.072009.131513	L09060677-06	0906-MMP036-06-SS	.509/200	5		07/20/09 13:15
26	EL.072009.132129	L09060677-07	0906-MMP036-07-SS-1	.505/200	5		07/20/09 13:21
27	EL.072009.132746	L09060677-08	0906-MMP036-07-SS-2	.51/200	1		07/20/09 13:27
28	EL.072009.133401	L09060677-09	0906-MMP036-07-SS-3	.518/200	1		07/20/09 13:34
29	EL.072009.134015	L09060677-10	0906-MMP036-08-SS	.511/200	5		07/20/09 13:40
30	EL.072009.134629	L09060677-11	0906-MMP036-09-SS	.514/200	1		07/20/09 13:46
31	EL.072009.135244	L09060677-12	0906-MMP036-10-SS	.511/200	1		07/20/09 13:52
32	EL.072009.135859	L09060677-14	0906-MWD082-09-SS	.513/200	5		07/20/09 13:58
33	EL.072009.140514	L09060677-15	0906-MWD082-10-SS	.514/200	1		07/20/09 14:05
34	EL.072009.141130	L09060677-16	0906-MWD091N-08-SS	.515/200	5		07/20/09 14:11
35	EL.072009.141806	WG307570-15	CCV		1		07/20/09 14:18
36	EL.072009.142500	WG307570-16	CCB		1		07/20/09 14:25
37	EL.072009.143134	L09060677-17	0906-MWD082-06-SS	.52/200	5		07/20/09 14:31

Page: 1 Approved: July 22, 2009

Instrument Run Log

Instrument:	ELAN-ICP	Data	set: <u>072009A.REP</u>		
Analyst1:	JYH	Analy	st2: N/A		
Method:		S	OP:	Rev:	
Maintenance Log ID:	29493				
Calibration Std: STI	033660	ICV/CCV Std:	STD33775	Post Spike: STD33697	
ICSA: STI	033928	ICSAB:	STD33616	Int. Std: 33807	
Comments:	Workgroups:	307476,307528,307	406,307405,307529,3	06872	
Comments.					

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	EL.072009.143750	L09060677-18	0906-MWD091N-04-SS	.513/200	1		07/20/09 14:37
39	EL.072009.144407	L09060677-19	0906-MWD091N-01-SS	.504/200	1		07/20/09 14:44
40	EL.072009.145023	L09060677-20	0906-MWD091N-02-SS	.503/200	1		07/20/09 14:50
41	EL.072009.145640	WG307062-02	Reference Sample		1	L09060677-22	07/20/09 14:56
42	EL.072009.150256	WG307062-07	Matrix Spike	.511/200	1	L09060677-22	07/20/09 15:02
43	EL.072009.150910	WG307062-08	Matrix Spike Duplica	.511/200	1	L09060677-22	07/20/09 15:09
44	EL.072009.151541	L09060677-01	0906-MMP036-03-SS	.5/200	50		07/20/09 15:15
45	EL.072009.152201	WG307062-01	Reference Sample		50	L09060677-02	07/20/09 15:22
46	EL.072009.153059	WG307062-05	Matrix Spike	.504/200	50	L09060677-02	07/20/09 15:30
47	EL.072009.153734	WG307570-17	CCV		1		07/20/09 15:37
48	EL.072009.154428	WG307570-18	ССВ		1		07/20/09 15:44
49	EL.072009.155211	WG307062-06	Matrix Spike Duplica	.504/200	50	L09060677-02	07/20/09 15:52
50	EL.072009.155826	WG307476-01	Post Digestion Spike		50		07/20/09 15:58
51	EL.072009.160441	WG307476-01	Post Digestion Spike		50	L09060677-05	07/20/09 16:04
52	EL.072009.161057	WG307476-02	Serial Dilution		250	L09060677-05	07/20/09 16:10
53	EL.072009.161713	L09060677-06	0906-MMP036-06-SS	.509/200	.509/200 50		07/20/09 16:17
54	EL.072009.162329	L09060677-08	0906-MMP036-07-SS-2	.51/200	10		07/20/09 16:23
55	EL.072009.162944	L09060677-09	0906-MMP036-07-SS-3	.518/200	10		07/20/09 16:29
56	EL.072009.164611	L09060677-10	0906-MMP036-08-SS	.511/200	50		07/20/09 16:46
57	EL.072009.165234	L09060677-11	0906-MMP036-09-SS	.514/200	20		07/20/09 16:52
58	EL.072009.170044	L09060677-12	0906-MMP036-10-SS	.511/200	10		07/20/09 17:00
59	EL.072009.170719	WG307570-19	CCV		1		07/20/09 17:07
60	EL.072009.171414	WG307570-20	CCB		1		07/20/09 17:14
61	EL.072009.172047	L09060677-15	0906-MWD082-10-SS	.514/200	10		07/20/09 17:20
62	EL.072009.172703	L09060677-16	0906-MWD091N-08-SS	.515/200	50		07/20/09 17:27
63	EL.072009.173318	L09060677-17	0906-MWD082-06-SS	.52/200	50		07/20/09 17:33
64	EL.072009.173934	L09060677-18	0906-MWD091N-04-SS		10		07/20/09 17:39
65	EL.072009.174551	L09060677-20	0906-MWD091N-02-SS		10		07/20/09 17:45
66	EL.072009.175208	WG307062-02	Reference Sample		10	L09060677-22	07/20/09 17:52
67	EL.072009.175823	WG307062-07	Matrix Spike		10	L09060677-22	07/20/09 17:58
68	EL.072009.180437	WG307062-08	Matrix Spike Duplica		10	L09060677-22	07/20/09 18:04
69	EL.072009.181112	WG307570-21	CCV		1		07/20/09 18:11
70	EL.072009.181807	WG307570-22	ССВ		1		07/20/09 18:18
71	EL.072009.182440	WG307207-02	Method/Prep Blank	.5/200	1		07/20/09 18:24
72	EL.072009.183054	WG307207-03	Laboratory Control S	.5/200	1		07/20/09 18:30
73	EL.072009.183709	L09060692-01	0906-MWD092-05-GF	.554/200	1		07/20/09 18:37
74	EL.072009.184325	WG307207-01	Reference Sample		1	L09060692-02	07/20/09 18:43

Page: 2 Approved: July 22, 2009

Instrument Run Log

Instrum	ent: ELAN-ICP	Datas	set: <u>072009A.REP</u>		
Analy	st1: JYH	Analys	st2: <u>N/A</u>		
Meth	od:	S0	OP:	Rev:	
Maintenance Log	ID: <u>29493</u>				
Calibration Std:	STD33660	ICV/CCV Std:	STD33775	Post Spike: STD33697	
ICSA:	STD33928	ICSAB:	STD33616	Int. Std: 33807	
Comments:	Workgroups:	307476,307528,3074	106,307405,307529	,306872	
Comments.					

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	EL.072009.184940	WG307207-04	Matrix Spike	509/200	1	L09060692-02	07/20/09 18:49
76	EL.072009.185556	WG307207-05	Matrix Spike Duplica	.509/200	1	L09060692-02	07/20/09 18:55
77	EL.072009.190213	L09060692-05	0906-MWD092-04-FB	.51/200	1		07/20/09 19:02
78	EL.072009.190829	L09060692-06	0906-MWD092-02-GF	.502/200	1		07/20/09 19:08
79	EL.072009.191446	WG307528-01	Post Digestion Spike		1	L09060692-06	07/20/09 19:14
80	EL.072009.192104	WG307528-02	Serial Dilution		5	L09060692-06	07/20/09 19:21
81	EL.072009.192740	WG307570-23	CCV		1		07/20/09 19:27
82	EL.072009.193434	WG307570-24	CCB		1		07/20/09 19:34
83	EL.072009.194108	L09060692-07	0906-MBE001-07-GS-1	.516/200	1		07/20/09 19:41
84	EL.072009.194722	L09060692-08	0906-MBE001-07-GS-2	.519/200	1		07/20/09 19:47
85	EL.072009.195337	L09060692-09	0906-MBE001-07-GS-3	.536/200	1		07/20/09 19:53
86	EL.072009.195952	L09060692-10	0906-MBE001-07-FB-1	.509/200	1		07/20/09 19:59
87	EL.072009.200607	L09060692-11	0906-MBE001-07-FB-2	.501/200	1		07/20/09 20:06
88	EL.072009.201223	L09060692-12	0906-MBE001-07-FB-3	.514/200	1		07/20/09 20:12
89	EL.072009.201839	L09060692-13	0906-MBE001-07-SL-ARTR-	.513/200	1		07/20/09 20:18
90	EL.072009.202456	L09060692-14	0906-MBE001-07-SM-ARTR	.556/200	1		07/20/09 20:24
91	EL.072009.203113	L09060692-15	0906-MBE001-07-SL-ARTR-	.521/200	1		07/20/09 20:31
92	EL.072009.203728	L09060686-36	0906-MBE001-04-CS-WILD	.132/200	1		07/20/09 20:37
93	EL.072009.204403	WG307570-25	CCV		1		07/20/09 20:44
94	EL.072009.205057	WG307570-26	ССВ		1		07/20/09 20:50
95	EL.072009.205730	L09060686-37	0906-MBE001-10-SL-SYAL	.558/200	1		07/20/09 20:57
96	EL.072009.210344	L09060686-38	0906-MBE001-10-SM-SYAL	.528/200	1		07/20/09 21:03
97	EL.072009.210958	L09060686-39	0906-MWD091S-03-FB	.503/200	1		07/20/09 21:09
98	EL.072009.211613	L09060686-40	0906-MBE001-10-GF	.525/200	1		07/20/09 21:16
99	EL.072009.212228	L09060686-41	0906-MBE001-08-SM-SYAL	.577/200	1		07/20/09 21:22
100	EL.072009.212843	L09060686-46	SPINACH SRM 1570A-2	.584/200	1		07/20/09 21:28
101	EL.072009.213459	L09070188-01	02SB026A (0-6)	.508/200	20		07/20/09 21:34
102	EL.072009.214117	L09070188-02	02SB027A (0-6)	.512/200	20		07/20/09 21:41
103	EL.072009.214735	L09070188-03	02SB028B (12-18)	.503/200	20		07/20/09 21:47
104	EL.072009.215352	L09070188-04	02SB0210 (0-6)	.509/200	20		07/20/09 21:53
105	EL.072009.220027	WG307570-27	CCV		1		07/20/09 22:00
106	EL.072009.220722	WG307570-28	ССВ		1		07/20/09 22:07
107	EL.072009.221356	L09070188-05	02SB0211 (0-6)	.521/200	20		07/20/09 22:13
108	EL.072009.222011	L09070188-06	02SB0211 (0-6)DUP	.51/200	20		07/20/09 22:20
109	EL.072009.222627	L09060638-15	0906-MWD091S-02-GF	.524/200	5		07/20/09 22:26
110	EL.072009.223243	WG307405-01	Post Digestion Spike		5	L09060638-15	07/20/09 22:32
111	EL.072009.223859	WG307405-02	Serial Dilution		25	L09060638-15	07/20/09 22:38

Page: 3 Approved: July 22, 2009

Instrument Run Log

Instrumen	t: ELAN-ICP	Data	aset: <u>072009A.REF</u>	-		
Analyst	Analyst1: JYH		Analyst2: N/A			
Metho	Method:		SOP:		ev:	
Maintenance Log II): <u>29493</u>					
Calibration Std: S	TD33660	ICV/CCV Std:	STD33775	Post Spike:	STD33697	
ICSA: S	TD33928	ICSAB:	STD33616	Int. Std:	33807	
Comments:	Workgroups:	307476,307528,307	406,307405,307529	9,306872		
Comments.						

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
112	EL.072009.224516	WG307052-02	Reference Sample	1.14	20	L09060686-03	07/20/09 22:45
113	EL.072009.225133	WG307052-07	Matrix Spike	.525/200	20	L09060686-03	07/20/09 22:51
114	EL.072009.225750	WG307052-08	Matrix Spike Duplica	.525/200	20	L09060686-03	07/20/09 22:57
115	EL.072009.230408	L09060686-07	0906-MWD084-04-GF	.532/200	20		07/20/09 23:04
116	EL.072009.231026	L09060686-09	0906-MWD084-10-GF	.509/200	20		07/20/09 23:10
117	EL.072009.231703	WG307570-29	CCV		1		07/20/09 23:17
118	EL.072009.232358	WG307570-30	ССВ		1		07/20/09 23:23
119	EL.072009.233034	WG307205-03	Method/Prep Blank	40/100	1		07/20/09 23:30
120	EL.072009.233651	WG307205-04	Laboratory Control S	40/100	1		07/20/09 23:36
121	EL.072009.234306	L09070256-18	0906-ER-VE-12	40/100	1		07/20/09 23:43
122	EL.072009.234922	L09070262-30	0906-ER-VE-52	40/100	1		07/20/09 23:49
123	EL.072009.235538	WG307205-01	Reference Sample		1	L09070280-02	07/20/09 23:55
124	EL.072109.000155	WG307205-05	Matrix Spike	40/100	1	L09070280-02	07/21/09 00:01
125	EL.072109.000812	WG307205-06	Matrix Spike Duplica	40/100	1	L09070280-02	07/21/09 00:08
126	EL.072109.001429	L09070280-08	DRL-G-MW-12A-DIS	40/100	1		07/21/09 00:14
127	EL.072109.002047	WG307529-01	Post Digestion Spike		1	L09070280-08	07/21/09 00:20
128	EL.072109.002705	WG307529-02	Serial Dilution		5	L09070280-08	07/21/09 00:27
129	EL.072109.003342	WG307570-31	CCV		1		07/21/09 00:33
130	EL.072109.004037	WG307570-32	ССВ		1		07/21/09 00:40
131	EL.072109.004712	L09070265-08	0906-ER-SS-12	40/100	1		07/21/09 00:47
132	EL.072109.005331	L09070277-06	0906-ER-SS-52	40/100	1		07/21/09 00:53
133	EL.072109.005950	L09070280-10	DRL-G-MW-12B-DIS	40/100	1		07/21/09 00:59
134	EL.072109.010607	L09070280-12	DRL-G-MW-13-DIS	40/100	1		07/21/09 01:06
135	EL.072109.011223	L09070280-14	DRL-G-MW-13A-DIS	40/100	1		07/21/09 01:12
136	EL.072109.011840	L09070280-16	DRL-G-MW-21A-DIS	40/100	1		07/21/09 01:18
137	EL.072109.012456	WG307205-07	Duplicate	40/100	1	L09070280-16	07/21/09 01:24
138	EL.072109.013113	L09070280-18	DRL-G-MW-21A-DUP-DIS	40/100	1		07/21/09 01:31
139	EL.072109.013730	L09070316-02	ANC-SW-6	40/100	1		07/21/09 01:37
140	EL.072109.014407	WG307570-33	CCV		1		07/21/09 01:44
141	EL.072109.015102	WG307570-34	ССВ		1		07/21/09 01:51
142	EL.072109.015737	WG306805-03	Method/Prep Blank	40/100	1		07/21/09 01:57
143	EL.072109.020355	WG306805-04	Laboratory Control S	40/100	1		07/21/09 02:03
144	EL.072109.021013	WG306805-01	Reference Sample		10	L09070206-02	07/21/09 02:10
145	EL.072109.021632	WG306805-05	Matrix Spike	40/100	10	L09070206-02	07/21/09 02:16
146	EL.072109.022251	WG306805-06	Matrix Spike Duplica	40/100	10	L09070206-02	07/21/09 02:22
147	EL.072109.022910	L09070206-05	NR-004-602	40/100	10		07/21/09 02:29
148	EL.072109.023528	WG306872-01	Post Digestion Spike		10	L09070206-05	07/21/09 02:35

Page: 4 Approved: July 22, 2009

Instrument Run Log

Analyst1: JYH Analyst2: N/A	
Allalysti. 5111 Allalystz. 14/A	
Method: SOP: Rev:	
Maintenance Log ID: 29493	
Calibration Std: STD33660 ICV/CCV Std: STD33775 Post Spike: STD33697	
ICSA: <u>STD33928</u>	
Workgroups: 307476,307528,307406,307405,307529,306872 Comments:	
Comments	

Seq.	File ID	Sample	ID	Dron	Dil	Reference	Date/Time
	_	Sample	טו	Prep	ווט	Reference	Date/Time
149	EL.072109.024144	WG306872-02	Serial Dilution		50	L09070206-05	07/21/09 02:41
150	EL.072109.024820	WG307570-35	CCV		1		07/21/09 02:48
151	EL.072109.025515	WG307570-36	ССВ		1		07/21/09 02:55
152	EL.072109.030150	L09070206-06	NR-004-602-FD	40/100	10		07/21/09 03:01
153	EL.072109.030807	L09070206-07	EB-070909	40/100	1		07/21/09 03:08
154	EL.072109.031424	L09070209-18	0906-ER-SS-10	40/100	1		07/21/09 03:14
155	EL.072109.032042	L09070209-29	0906-ER-SS-50	40/100	1		07/21/09 03:20
156	EL.072109.032659	L09070210-24	0906-ER-VE-50	40/100	1		07/21/09 03:26
157	EL.072109.033318	L09070210-44	0906-ER-VE-10	40/100	1		07/21/09 03:33
158	EL.072109.033955	WG307570-37	CCV		1		07/21/09 03:39
159	EL.072109.034650	WG307570-38	ССВ		1		07/21/09 03:46
160	EL.072109.035325	WG307435-02	Method/Prep Blank		1		07/21/09 03:53
161	EL.072109.035944	WG307435-03	Laboratory Control S		1		07/21/09 03:59
162	EL.072109.040604	WG307435-01	Reference Sample		1	L09070374-11	07/21/09 04:06
163	EL.072109.041223	WG307435-04	Matrix Spike		1	L09070374-11	07/21/09 04:12
164	EL.072109.041841	WG307435-05	Matrix Spike Duplica		1	L09070374-11	07/21/09 04:18
165	EL.072109.042458	L09070379-01	G-31-GSS005C(0.0-0.5)		1		07/21/09 04:24
166	EL.072109.043115	L09070379-03	G-31-DSS001C(0.0-0.5)		1		07/21/09 04:31
167	EL.072109.043732	WG307541-01	Post Digestion Spike		1	L09070379-03	07/21/09 04:37
168	EL.072109.083429	WG307570-39	QC Std 6		1		07/21/09 08:34

Page: 5 Approved: July 22, 2009

Microbac Laboratories Inc. Data Checklist

Date:	17-JUL-2009
Analyst:	<u>JYH</u>
Analyst:	NA
Method:	6020
Instrument:	ELAN
Curve Workgroup:	307450
Runlog ID:	29151

Analytical Workgroups: <u>307404,307367,307407,307405,307406,307033,307156</u>

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	X
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	299,315,322,345,314,316,323,677
	679,637,638,686,188,206,594,636
Client Forms	X
Level X	
Level 3	188
Level 4	315,322,316,323,677,679,637,638
	686,206,594,636
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	MMB
Comments	

Primary Reviewer:

Secondary Reviewer: 20-JUL-2009

J'He 18 Maren Beery

CHECKLIST1 - Modified 03/05/2008 Generated: JUL-20-2009 15:48:18

Microbac Laboratories Inc. Data Checklist

Date:	20-JUL-2009
Analyst:	<u>JYH</u>
Analyst:	<u>NA</u>
Method:	6020
Instrument:	ELAN
Curve Workgroup:	307570
Runlog ID:	29169
Analytical Workgroups:	307476,307528,307406,307405,307529,306872

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	X
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	677,686,692,188,638,686,256,262
	265,277,280,316,206,209,210
Client Forms	X
Level X	
Level 3	188
Level 4	677,686,692,638,686,262,265,277
	316,206,209,210
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	MMB
Comments	

Primary Reviewer:

Secondary Reviewer: 22-JUL-2009

J'He 1hr Maren Beery

CHECKLIST1 - Modified 03/05/2008 Generated: JUL-22-2009 19:23:38

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00084042

Analytical Method: 6020

Login Number: L09070188

ID Date TCLP Time Max Q Extract Time Max Q Run Time Max Q

AAB#: WG307406

Client ID		Collected	Date	Held	Hold	Date	Held	Hold	Date	Held	Hold	
02SB026A (0-6)	01	07/09/09				07/15/09	5.9	180	07/20/09	11.5	180	
02SB026A (0-6)	01	07/09/09				07/15/09	5.9	180	07/18/09	8.8	180	
02SB027A (0-6)	02	07/09/09				07/15/09	5.9	180	07/18/09	8.8	180	
02SB027A (0-6)	02	07/09/09				07/15/09	5.9	180	07/20/09	11.5	180	
02SB028B (12-18)	03	07/09/09				07/15/09	5.9	180	07/18/09	8.8	180	
02SB028B (12-18)	03	07/09/09				07/15/09	5.9	180	07/20/09	11.5	180	
02SB0210 (0-6)	04	07/09/09				07/15/09	5.9	180	07/20/09	11.5	180	
02SB0210 (0-6)	04	07/09/09				07/15/09	5.9	180	07/18/09	8.8	180	
02SB0211 (0-6)	05	07/09/09				07/15/09	5.8	180	07/18/09	8.8	180	
02SB0211 (0-6)	05	07/09/09				07/15/09	5.8	180	07/20/09	11.5	180	
02SB0211 (0-6)DUP	06	07/09/09				07/15/09	5.8	180	07/20/09	11.5	180	
02SB0211 (0-6)DUP	06	07/09/09				07/15/09	5.8	180	07/18/09	8.8	180	

^{* =} SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 1444992
Report generated 07/21/2009 12:45

METHOD BLANK SUMMARY

Login Number: L09070188

Blank File ID: EL.071809.034856

Prep Date: 07/15/09 06:57

Analyzed Date: 07/18/09 03:48

Work Group: WG307406

Blank Sample ID: WG307047-02

Instrument ID: ELAN-ICP

Method: 6020

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG307047-03	EL.071809.035515	07/18/09 03:55	01
02SB026A (0-6)	L09070188-01	EL.071809.051823	07/18/09 05:18	01
02SB027A (0-6)	L09070188-02	EL.071809.052442	07/18/09 05:24	01
02SB028B (12-18)	L09070188-03	EL.071809.053102	07/18/09 05:31	01
02SB0210 (0-6)	L09070188-04	EL.071809.053721	07/18/09 05:37	01
02SB0211 (0-6)	L09070188-05	EL.071809.054337	07/18/09 05:43	01
02SB0211 (0-6)DUP	L09070188-06	EL.071809.054955	07/18/09 05:49	01
02SB026A (0-6)	L09070188-01	EL.072009.213459	07/20/09 21:34	DL01
02SB027A (0-6)	L09070188-02	EL.072009.214117	07/20/09 21:41	DL01
02SB028B (12-18)	L09070188-03	EL.072009.214735	07/20/09 21:47	DL01
02SB0210 (0-6)	L09070188-04	EL.072009.215352	07/20/09 21:53	DL01
02SB0211 (0-6)	L09070188-05	EL.072009.221356	07/20/09 22:13	DL01
02SB0211 (0-6)DUP	L09070188-06	EL.072009.222011	07/20/09 22:20	DL01

Report Name: BLANK_SUMMARY
PDF File ID: 1444993
Report generated 07/21/2009 12:45

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Arsenic, Total	0.0750	0.300	0.0750	1	Ū
Cadmium, Total	0.0250	0.100	0.0250	1	υ
Copper, Total	0.150	0.600	0.150	1	υ
Lead, Total	0.100	0.200	0.100	1	Ū

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK PDF ID: 1444994 21-JUL-2009 12:45

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L09070188
 Run Date: 07/18/2009
 Sample ID: WG307047-03

 Instrument ID: ELAN-ICP
 Run Time: 03:55
 Prep Method: 3051

 File ID: EL.071809.035515
 Analyst: JYH
 Method: 6020

 Workgroup (AAB#): WG307406
 Matrix: Soil
 Units: mg/kg

QC Key:STD Lot#:STD33694 Cal ID:ELAN-I-17-JUL-09

Analytes		Found	% Rec	LCS	Limi	ts	Q
Arsenic, Total	10.0	9.51	95.1	80	-	120	
Cadmium, Total	10.0	9.53	95.3	80	-	120	
Copper, Total	10.0	9.41	94.1	80	-	120	
Lead, Total	10.0	9.29	92.9	80	-	120	

LCS - Modified 03/06/2008 PDF File ID:1444995 Report generated: 07/21/2009 12:45

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L09070188
 Cal ID: ELAN-ICP
 Worknum: WG307406

 Instrument ID: ELAN-ICP
 Contract #: DACA56-94-D-0020
 Method: 6020

 Parent ID: WG307047-01
 File ID: EL.071809.040135
 Dil: 5
 Matrix: SOLID

 Sample ID: WG307047-04
 MS
 File ID: EL.071809.040753
 Dil: 5
 Units: mg/kg

 Sample ID: WG307047-05
 MSD
 File ID: EL.071809.041409
 Dil: 5
 Percent Solid: 82.7

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Arsenic, Total	6.94	11.4	18.0	97.0	11.4	19.3	108	6.58	75 - 125	20	
Cadmium, Total	0.0983	11.4	10.5	91.1	11.4	11.2	96.8	5.97	75 - 125	20	
Copper, Total, Total	2.87	11.4	13.1	89.2	11.4	13.6	94.3	4.35	75 - 125	20	
Lead, Total, Total	3.30	11.4	13.5	88.9	11.4	14.4	96.7	6.41	75 - 125	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac ®

WG_MS_MSD_DRYWT - Modified 03/07/2008 PDF File ID:1444996 Report generated 07/21/2009 12:45

[#] FAILS RPD LIMIT

Serial Dilution Report

 Login: L09070188
 Worknum: WG307406

 Instrument: ELAN-ICP
 Method: 6020

Serial Dil: WG307406-02 File ID: EL.071809.043919 Dil: 25 Units: ug/L

Sample: L09070206-04 File ID: EL.071809.042643 Dil: 5

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Arsenic	329.5		365		10.80	E
Cadmium	6.75	Х	7.9	X	17.00	
Copper	189.5		187	Х	1.32	
Lead	175		174.5		0.29	

U = Result is below MDL.

F = Result is greater than or equal to MDL and less than the RL.

X = Result is greater than or equal to RL and less than 100 times the MDL.

 ${\tt E}$ = %D exceeds control limit of 10% and initial sample result is greater than or equal to 100 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 1444990 07/21/2009 12:45

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L09070188
 Worknum:
 WG307406

Instrument ID: ELAN-ICP Method: 6020

 Post Spike ID: WG307406-01
 File ID:EL.071809.043301
 Dil:5
 Units: ug/L

 Sample ID: L09070206-04
 File ID:EL.071809.042643
 Dil:5
 Matrix: Soil

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ARSENIC	118		65.9		50	104.4	75 - 125	
CADMIUM	46.8		1.35		50	90.9	75 - 125	
COPPER	81.7		37.9		50	87.5	75 - 125	
LEAD	89.9		35.0		50	109.8	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): Login: L09070188 WG307406 Instrument ID: ELAN-ICP
Initial Calibration Date: 17-JUL-2009 11:24 Analytical Method: 6020 ICAL Worknum: WG307450

	WG307	450-01	WG307	450-02	WG307450-03		WG307			
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ARSENIC	0	-293	.4	489	50	92600	100	183000	.999997	
CADMIUM	0	7.34	.4	720	50	85700	100	172000	.999989	
COPPER	0	98.0	.4	1310	50	143000	100	275000	.999904	
LEAD	0	179	.4	10500	50	1270000	100	2510000	1	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 1445000

Report generated: 21-JUL-2009 12:45

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): Login: L09070188 WG307406 Instrument ID: ELAN-ICP
Initial Calibration Date: 20-JUL-2009 11:04 Analytical Method: 6020 ICAL Worknum: WG307570

	WG307	570-01	WG307570-02		WG307570-03 WG307570-0		570-04			
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ARSENIC	0	-194	.4	441	50	72100	100	141000	1	
CADMIUM	0	3.23	.4	563	50	61900	100	124000	.999833	
COPPER	0	118	.4	1020	50	107000	100	206000	.999993	
LEAD	0	243	.4	9320	50	1050000	100	2070000	.999955	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 1445000

Report generated: 21-JUL-2009 12:45

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L09070188
 Run Date: 07/17/2009
 Sample ID: WG307450-06

 Instrument ID: ELAN-ICP
 Run Time: 11:36
 Method: 6020

 File ID: EL.071709.113643
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-ICP - 17-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
ARSENIC	.1875	.75	.1875	υ
CADMIUM	.0625	.25	.0625	υ
COPPER	.375	1.5	.375	υ
LEAD	.25	.5	.25	υ

ICB - Modified 07/14/2009 PDF File ID:1445002 Report generated 07/21/2009 12:45

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L09070188
 Run Date: 07/20/2009
 Sample ID: WG307570-06

 Instrument ID: ELAN-ICP
 Run Time: 11:17
 Method: 6020

 File ID: EL.072009.111701
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-ICP - 20-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
ARSENIC	.1875	.75	.1875	υ
CADMIUM	.0625	.25	.0625	υ
COPPER	.375	1.5	.375	υ
LEAD	.25	.5	.25	υ

ICB - Modified 07/14/2009 PDF File ID:1445002 Report generated 07/21/2009 12:45

 Login Number:
 L09070188
 Run Date:
 07/17/2009
 Sample ID:
 WG307450-12

 Instrument ID:
 ELAN-ICP
 Run Time:
 12:18
 Method:
 6020

 File ID:
 EL.071709.121823
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

 Login Number: L09070188
 Run Date: 07/17/2009
 Sample ID: WG307450-20

 Instrument ID: ELAN-ICP
 Run Time: 17:26
 Method: 6020

 File ID: EL.071709.172647
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

00084055

 Login Number: L09070188
 Run Date: 07/17/2009
 Sample ID: WG307450-24

 Instrument ID: ELAN-ICP
 Run Time: 17:54
 Method: 6020

 File ID: EL.071709.175429
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

 Login Number: L09070188
 Run Date: 07/18/2009
 Sample ID: WG307450-40

 Instrument ID: ELAN-ICP
 Run Time: 03:42
 Method: 6020

 File ID: EL.071809.034220
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

 Login Number:
 Login Number:
 Run Date:
 07/18/2009
 Sample ID:
 WG307450-42

 Instrument ID:
 ELAN-ICP
 Run Time:
 04:52
 Method:
 6020

 File ID:
 EL.071809.045250
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

Matrix:SOIL

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

 Login Number:
 L09070188
 Run Date:
 07/18/2009
 Sample ID:
 WG307450-44

 Instrument ID:
 ELAN-ICP
 Run Time:
 06:09
 Method:
 6020

 File ID:
 EL.071809.060944
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

00084059

 Login Number: L09070188
 Run Date: 07/20/2009
 Sample ID: WG307570-12

 Instrument ID: ELAN-ICP
 Run Time: 11:58
 Method: 6020

 File ID: EL.072009.115841
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 20-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

00084060

 Login Number:
 L09070188
 Run Date:
 07/20/2009
 Sample ID:
 WG307570-26

 Instrument ID:
 ELAN-ICP
 Run Time:
 20:50
 Method:
 6020

 File ID:
 EL.072009.205057
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 20-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

00084061

 Login Number: L09070188
 Run Date: 07/20/2009
 Sample ID: WG307570-28

 Instrument ID: ELAN-ICP
 Run Time: 22:07
 Method: 6020

 File ID: EL.072009.220722
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 20-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	Ū
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

Microbac ®

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

 Login Number:
 L09070188
 Run Date:
 07/20/2009
 Sample ID:
 WG307570-30

 Instrument ID:
 ELAN-ICP
 Run Time:
 23:23
 Method:
 6020

 File ID:
 EL.072009.232358
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 20-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.188	0.750	0.188	υ
Cadmium	0.0625	0.250	0.0625	υ
Copper	0.375	1.50	0.375	υ
Lead	0.250	0.500	0.250	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1445005 Report generated 07/21/2009 12:45

Microbac ®

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number: L09070188
 Run Date: 07/17/2009
 Sample ID: WG307450-05

 Instrument ID: ELAN-ICP
 Run Time: 11:29
 Method: 6020

File ID: EL. 071709.112948 Analyst: JYH Units:ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 17-JUL-09

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Arsenic	50	48.5	97.0	90 - 110	
Cadmium	50	47.1	94.1	90 - 110	
Copper	50	48.5	96.9	90 - 110	
Lead	50	48.0	96.0	90 - 110	

^{*} Exceeds LIMITS Limit

ICV - Modified 03/06/2008 PDF File ID: 1445001 Report generated 07/21/2009 12:45

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number:
 Login Number:
 Run Date:
 07/20/2009
 Sample ID:
 WG307570-05

 Instrument ID:
 ELAN-ICP
 Run Time:
 11:10
 Method:
 6020

 File ID:
 EL.072009.111007
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG307406 Cal ID:ELAN-I - 20-JUL-09

Analyte	Expected	Found	%REC	LIMITS	Q
Arsenic	50	48.2	96.4	90 - 110	
Cadmium	50	49.4	98.9	90 - 110	
Copper	50	47.8	95.7	90 - 110	
Lead	50	48.1	96.1	90 - 110	

^{*} Exceeds LIMITS Limit

QC Key:STD

00084065

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	49.9	ug/L	99.8	90 - 110	
Cadmium	50.0	47.9	ug/L	95.8	90 - 110	
Copper	50.0	49.2	ug/L	98.5	90 - 110	
Lead	50.0	49.6	ug/L	99.1	90 - 110	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	49.8	ug/L	99.5	90 - 110	
Cadmium	50.0	47.5	ug/L	95.1	90 - 110	
Copper	50.0	48.4	ug/L	96.7	90 - 110	
Lead	50.0	48.0	ug/L	95.9	90 - 110	

^{*} Exceeds LIMITS Criteria

00084067

Login Number: L09070188 Run Date: 07/17/2009 Sample ID: WG307450-23 Instrument ID: <u>ELAN-ICP</u> Run Time: <u>17:47</u> Method: <u>6020</u>
File ID: <u>EL.071709.174734</u> Analyst: <u>JYH</u> QC Key: <u>STD</u>

Workgroup (AAB#): WG307406 Cal ID: ELAN-I - 17-JUL-09

Matrix:SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	49.4	ug/L	98.9	90 - 110	
Cadmium	50.0	47.5	ug/L	95.0	90 - 110	
Copper	50.0	48.7	ug/L	97.4	90 - 110	
Lead	50.0	49.2	ug/L	98.5	90 - 110	

^{*} Exceeds LIMITS Criteria

00084068

 Login Number: L09070188
 Run Date: 07/18/2009
 Sample ID: WG307450-39

 Instrument ID: ELAN-ICP
 Run Time: 03:35
 Method: 6020

 File ID: EL.071809.033525
 Analyst: JYH
 QC Key: STD

 Workgroup (AAB#): WG307406
 Cal ID: ELAN-I - 17-JUL-09

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.5	ug/L	96.9	90 - 110	
Cadmium	50.0	47.4	ug/L	94.8	90 - 110	
Copper	50.0	47.3	ug/L	94.6	90 - 110	
Lead	50.0	47.6	ug/L	95.2	90 - 110	

^{*} Exceeds LIMITS Criteria

Matrix:SOIL

00084069

 Login Number: L09070188
 Run Date: 07/18/2009
 Sample ID: WG307450-41

 Instrument ID: ELAN-ICP
 Run Time: 04:45
 Method: 6020

 File ID: EL.071809.044556
 Analyst: JYH
 QC Key: STD

 Workgroup (AAB#): WG307406
 Cal ID: ELAN-I - 17-JUL-09

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	49.5	ug/L	98.9	90 - 110	
Cadmium	50.0	46.7	ug/L	93.3	90 - 110	
Copper	50.0	46.1	ug/L	92.2	90 - 110	
Lead	50.0	47.5	ug/L	95.1	90 - 110	

^{*} Exceeds LIMITS Criteria

Matrix:SOIL

00084070

 Login Number: L09070188
 Run Date: 07/18/2009
 Sample ID: WG307450-43

 Instrument ID: ELAN-ICP
 Run Time: 06:02
 Method: 6020

 File ID: EL.071809.060249
 Analyst: JYH
 QC Key: STD

 Workgroup (AAB#): WG307406
 Cal ID: ELAN-I - 17-JUL-09

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.7	ug/L	97.4	90 - 110	
Cadmium	50.0	47.3	ug/L	94.6	90 - 110	
Copper	50.0	46.0	ug/L	92.0	90 - 110	
Lead	50.0	46.6	ug/L	93.3	90 - 110	

^{*} Exceeds LIMITS Criteria

Matrix:SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.2	ug/L	96.3	90 - 110	
Cadmium	50.0	48.5	ug/L	97.1	90 - 110	
Copper	50.0	48.3	ug/L	96.6	90 - 110	
Lead	50.0	48.6	ug/L	97.3	90 - 110	

^{*} Exceeds LIMITS Criteria

00084072

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	47.2	ug/L	94.4	90 - 110	
Cadmium	50.0	47.1	ug/L	94.3	90 - 110	
Copper	50.0	48.5	ug/L	96.9	90 - 110	
Lead	50.0	49.1	ug/L	98.2	90 - 110	

^{*} Exceeds LIMITS Criteria

00084073

Login Number: L09070188 Run Date: 07/20/2009 Sample ID: WG307570-27

Instrument ID: ELAN-ICP Run Time: 22:00 Method: 6020

File ID: EL.072009.220027 Analyst: JYH QC Key: STD

Workgroup (AAB#): WG307406 Cal ID: ELAN-I - 20-JUL-09

Matrix: SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.1	ug/L	96.2	90 - 110	
Cadmium	50.0	48.8	ug/L	97.6	90 - 110	
Copper	50.0	48.6	ug/L	97.1	90 - 110	
Lead	50.0	48.1	ug/L	96.2	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L09070188 Run Date: 07/20/2009 Sample ID: WG307570-29

Instrument ID: ELAN-ICP Run Time: 23:17 Method: 6020

File ID: EL.072009.231703 Analyst: JYH QC Key: STD

Workgroup (AAB#): WG307406 Cal ID: ELAN-I - 20-JUL-09

Matrix: SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.4	ug/L	96.8	90 - 110	
Cadmium	50.0	48.3	ug/L	96.6	90 - 110	
Copper	50.0	48.1	ug/L	96.3	90 - 110	
Lead	50.0	47.7	ug/L	95.3	90 - 110	

^{*} Exceeds LIMITS Criteria

Microbac Laboratories Inc. INTERFERENCE CHECK SAMPLES

Login number: L09070188 Workgroup (AAB#): WG307406

Instrument ID: ELAN-ICP

Method: 6020 Sol. A: WG307450-21 File ID: EL. 071709.173342 Units:uq/L **Sol. AB**: WG307450-22 File ID: EL. 071709.174038 Matrix:Soil

		Sol. A		Sol. AB			
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Arsenic	NS	-0.0530	NS	100	104	104	
Cadmium	NS	0.0835	NS	100	95.7	95.7	
Copper	NS	0.285	NS	100	96.7	96.7	
Lead	NS	0.0160	NS	100	99.5	99.5	

NS = Not spiked

* = Recovery of spiked element is outside acceptance limit of 80% - 120% of true value.

= Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).

Microbac Laboratories Inc. INTERFERENCE CHECK SAMPLES

Login number: <u>L09070188</u> Workgroup (AAB#): <u>WG307406</u>

Instrument ID: ELAN-ICP

 Sol. A: WG307570-09
 File ID: EL.072009.113754

 Sol. AB: WG307570-10
 File ID: EL.072009.114450

Method:6020
Units:ug/L
Matrix:Soil

		Sol. A		Sol. AB			
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Arsenic	NS	-0.0362	NS	100	101	101	
Cadmium	NS	0.0196	NS	100	101	101	
Copper	NS	0.324	NS	100	97.1	97.1	
Lead	NS	0.00230	NS	100	101	101	

NS = Not spiked

* = Recovery of spiked element is outside acceptance limit of 80% - 120% of true value.

= Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).

Microbac Laboratories Inc. CRI SAMPLE

Analytes	Expected	Found	% Rec	I	imits	3	Q
Cadmium, Total	0.250	0.205	82.0	50	_	150	

CRI - Modified 03/06/2008 PDF File ID:1444998 Report generated 07/21/2009 12:45

Microbac Laboratories Inc. CRI SAMPLE

 Login Number: L09070188
 Run Date: 07/20/2009
 Sample ID: WG307570-07

 Instrument ID: ELAN-ICP
 Run Time: 11:23
 Prep Method: 3051

 File ID: EL.072009.112357
 Analyst: JYH
 Method: 6020

 Workgroup (AAB#): WG307570
 Matrix: Soil
 Units: ug/L

 Contract #: DACA56-94-D-0020
 Cal ID: ELAN-ICP-20-JUL-2009 11:04

Analytes	Expected	Found	% Rec	Li	imits	Q
Arsenic, Total	0.750	0.762	102	50	- 150	
Cadmium, Total	0.250	0.231	92.4	50	- 150	
Copper, Total	1.50	1.52	101	50	- 150	

CRI - Modified 03/06/2008 PDF File ID:1444998 Report generated 07/21/2009 12:45

Microbac Laboratories Inc. INTERNAL STANDARD REPORT

Login: L09070188 Analytical Method: 6020

Analytical Workgroup: WG307406 Matrix: 7
Instrument: ELAN-ICP Analyst: JYH

ICAL Date:17-JUL-2009 11:06

			BISMUTH	GERMANIUM	INDIUM	TERBIUM
Sample	Type	Run Date	% Rec	% Rec	% Rec	% Rec
L09070188-01	SAMP	18-JUL-2009 05:18	78.866	63.307	71.117	77.449
L09070188-02	SAMP	18-JUL-2009 05:24	78.084	66.472	71.386	76.483
L09070188-03	SAMP	18-JUL-2009 05:31	76.936	68.458	72.647	77.018
L09070188-04	SAMP	18-JUL-2009 05:37	78.361	70.298	75.088	79.609
L09070188-05	SAMP	18-JUL-2009 05:43	77.716	70.769	73.568	79.509
L09070188-06	SAMP	18-JUL-2009 05:49	76.954	69.527	73.777	78.722
L09070206-04	SAMP	18-JUL-2009 04:26	51.324	58.61	62.535	65.579
WG307047-01	REF	18-JUL-2009 04:01	77.92	82.908	83.086	84.632
WG307047-02	BLANK	18-JUL-2009 03:48	81.926	85.325	85.899	87.182
WG307047-03	LCS	18-JUL-2009 03:55	86.173	85.383	85.038	86.245
WG307047-04	MS	18-JUL-2009 04:07	78.985	84.428	83.102	83.806
WG307047-05	MSD	18-JUL-2009 04:14	78.861	84.088	83.878	85.294
WG307406-01	PSPK	18-JUL-2009 04:33	49.73	55.516	54.483	67.317
WG307406-02	SERIAL	18-JUL-2009 04:39	66.436	58.926	65.909	71.233
WG307450-05	ICV	17-JUL-2009 11:29	97.751	97.727	98.727	98.758
WG307450-06	ICB	17-JUL-2009 11:36	97.306	97.817	98.662	98.56
WG307450-11	CCV	17-JUL-2009 12:11	94.728	97.941	97.085	97.542
WG307450-12	ССВ	17-JUL-2009 12:18	97.686	99.42	99.184	99.77
WG307450-19	CCV	17-JUL-2009 17:19	88.376	87.423	91.056	91.965
WG307450-20	ССВ	17-JUL-2009 17:26	86.976	85.939	89.806	90.777
WG307450-23	CCV	17-JUL-2009 17:47	87.298	89.006	90.467	90.15
WG307450-24	ССВ	17-JUL-2009 17:54	89.397	89.696	93.127	91.567
WG307450-39	CCV	18-JUL-2009 03:35	85.518	85.341	84.47	86.4
WG307450-40	ССВ	18-JUL-2009 03:42	84.558	84.513	84.811	86.403
WG307450-41	CCV	18-JUL-2009 04:45	76.456	62.577	71.855	78.061
WG307450-42	ССВ	18-JUL-2009 04:52	76.959	61.043	71.464	77.668
WG307450-43	CCV	18-JUL-2009 06:02	80.534	73.53	78.709	82.541
WG307450-44	ССВ	18-JUL-2009 06:09	80.092	72.974	78.917	82.006

Acceptance criteria: 30% - 120% Underlined recoveries are out of range

Microbac Laboratories Inc. INTERNAL STANDARD REPORT

Login: L09070188 Analytical Method: 6020

Analytical Workgroup: WG307406 Matrix: 7
Instrument: ELAN-ICP Analyst: JYH

ICAL Date: 20-JUL-2009 10:47

			BISMUTH	GERMANIUM	INDIUM	TERBIUM
Sample	Type	Run Date	% Rec	% Rec	% Rec	% Rec
L09070188-01	SAMP	20-JUL-2009 21:34	91.152	97.368	90.49	92.388
L09070188-02	SAMP	20-JUL-2009 21:41	93.27	98.809	92.326	93.135
L09070188-03	SAMP	20-JUL-2009 21:47	92.516	95.487	90.777	91.604
L09070188-04	SAMP	20-JUL-2009 21:53	90.564	95.472	89.464	90.634
L09070188-05	SAMP	20-JUL-2009 22:13	91.869	96.094	92.66	93.605
L09070188-06	SAMP	20-JUL-2009 22:20	92.829	97.882	92.325	93.087
WG307570-05	ICV	20-JUL-2009 11:10	99.133	100.103	96.426	97.545
WG307570-06	ICB	20-JUL-2009 11:17	98.542	97.917	96.675	97.681
WG307570-11	CCV	20-JUL-2009 11:51	96.858	103.79	95.605	96.464
WG307570-12	ССВ	20-JUL-2009 11:58	98.371	103.979	96.068	96.926
WG307570-25	CCV	20-JUL-2009 20:44	91.439	97.801	89.779	90.826
WG307570-26	ССВ	20-JUL-2009 20:50	92.293	98.168	89.772	90.828
WG307570-27	CCV	20-JUL-2009 22:00	93.004	95.861	89.975	92.186
WG307570-28	ССВ	20-JUL-2009 22:07	93.365	94.487	89.719	91.892
WG307570-29	CCV	20-JUL-2009 23:17	92.994	95.104	90.142	91.861
NG307570-30	ССВ	20-JUL-2009 23:23	94.181	97.677	91.921	93.97

Acceptance criteria: 30% - 120% Underlined recoveries are out of range

INT_STD_ICPMS - Modified 03/05/2008
 PDF File ID:1445006
Report generated: 07/21/2009 12:45

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L09070188
 Date:
 06/08/2009

 Insturment ID:
 ELAN-ICP
 Method:
 6020

	Integration Time	Concentration
Analyte	(Sec.)	(ug/L)
Antimony	1.00	100.0
Arsenic	1.00	100.0
Barium	1.00	100.0
Cadmium	1.00	100.0
Chromium	1.00	100.0
Cobalt	1.00	100.0
Copper	1.00	100.0
Lead	1.00	100.0
Manganese	1.00	100.0
Nickel	1.00	100.0
Selenium	1.00	100.0
Silver	1.00	100.0
Thallium	1.00	100.0
Vanadium	1.00	100.0
Zinc	1.00	100.0

LINEAR_RANGE - Modified 03/06/2008 PDF File ID:1444997 Report generated: 07/21/2009 12:45

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L09070188
 Date:
 06/17/2009

 Insturment ID:
 ELAN-ICP
 Method:
 6020

	Integration Time	Concentration
Analyte	(Sec.)	(ug/L)
Uranium	1.00	100.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

2.1.2 Metals CVAA Data (Mercury)

2.1.2.1 Summary Data

L09070188

07/23/09 15:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: 389869/ 390836(GWTP)

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
02SB026A (0-6)	L09070188-01	7471A	1	10-JUL-09
02SB027A (0-6)	L09070188-02	7471A	1	10-JUL-09
02SB028B (12-18)	L09070188-03	7471A	1	10-JUL-09
02SB0210 (0-6)	L09070188-04	7471A	1	10-JUL-09
02SB0211 (0-6)	L09070188-05	7471A	1	10-JUL-09
02SB0211 (0-6)DUP	L09070188-06	7471A	1	10-JUL-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1445275
Report generated: 07/23/2009 15:09

Microbac

1 OF 1

00084086

Report Number: L09070188 Report Date : July 23, 2009

Sample Number:L09070188-01 PrePrep Method:NONE Instrument: HYDRA

Client ID: 02SB026A (0-6) Prep Method: 7471A Prep Date: 07/14/2009 10:04 Matrix: Soil Analytical Method: 7471A Cal Date: 07/14/2009 16:24 Workgroup Number: WG307040
Collect Date: 07/09/2009 10:10 Run Date: 07/14/2009 16:52 Analyst: SLP File ID: HY. 071409.165207
Percent Solid: 86.2 Dilution: 1

Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6	0.0383	J	0.116	0.0116

 $\ensuremath{\mathtt{J}}$ The analyte was positively identified, but the quantitation was below the RL

6 of

00084087

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-02
Client ID: 02SB027A (0-6) PrePrep Method:NONE Instrument: HYDRA

Prep Method: 7471A
Analytical Method: 7471A Prep Date: 07/14/2009 10:05
Cal Date: 07/14/2009 16:24 Matrix: Soil Workgroup Number: WG307040
Collect Date: 07/09/2009 10:15 Analyst: SLP

Run Date:07/14/2009 16:55
File ID:HY.071409.165535
Percent Solid:87.4 Dilution: 1 Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6	0.201		0.113	0.0113

of 6

00084088

Report Number: L09070188 Report Date : July 23, 2009

Sample Number:L09070188-03

Client ID: 02SB028B (12-18)

Matrix: Soil

Workgroup Number: WG307040
Collect Date: 07/09/2009 10:20

Sample Tag: 01

PrePrep Method:NONE

Prep Method: 7471A Analytical Method: 7471A

Analyst: SLP Dilution: 1

Units:mg/kg

Instrument: HYDRA

Prep Date: 07/14/2009 10:06 Cal Date: 07/14/2009 16:24 Run Date: 07/14/2009 16:57 File ID: HY. 071409.165719

Percent Solid:89.3

Analyte CAS. Number Result Qual PQL SDL Mercury, Total 7439-97-6 0.104 J 0.111 0.0111

 ${\tt J}$ The analyte was positively identified, but the quantitation was below the RL

of 6

MICIODAC LADOTACOTTES INC.

00084089

Report Number:L09070188
Report Date :July 23, 2009

Sample Number: L09070188-04 PrePrep Method: NONE Instrument: HYDRA

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6	0.0954	J	0.117	0.0117

 $\ensuremath{\mathtt{J}}$ The analyte was positively identified, but the quantitation was below the RL

4 of 6

00084090

Report Number: L09070188 Report Date : July 23, 2009

PrePrep Method:NONE Instrument: HYDRA

Sample Number: L09070188-05
Client ID: 02SB0211 (0-6) Prep Method: 7471A
Analytical Method: 7471A Prep Date: 07/14/2009 10:08
Cal Date: 07/14/2009 16:24 Matrix: Soil Workgroup Number: WG307040
Collect Date: 07/09/2009 10:30 Analyst: SLP

Run Date:07/14/2009 10:24
Run Date:07/14/2009 17:04
File ID:HY.071409.170437
Percent Solid:89.9 Dilution: 1 Sample Tag: 01 Units:mg/kg

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury, Total	7439-97-6	0.125		0.111	0.0111

of 6

00084091

Report Number: L09070188 Report Date : July 23, 2009

Sample Number:L09070188-06

Client ID: 02SB0211 (0-6)DUP

Matrix: Soil

Workgroup Number: WG307040
Collect Date: 07/09/2009 10:30 Sample Tag: 01

PrePrep Method:NONE

Prep Method: 7471A
Analytical Method: 7471A

Analyst: SLP Dilution: 1 Units: mg/kg Instrument: HYDRA

Prep Date: 07/14/2009 10:09 Cal Date: 07/14/2009 16:24 Run Date: 07/14/2009 17:06 File ID: HY.071409.170618
Percent Solid: 91.0

Analyte	CAS. Number	Result Qual		PQL	SDL
Mercury, Total	7439-97-6	0.0505	J	0.109	0.0109

J The analyte was positively identified, but the quantitation was below the RL

6 of

2.1.2.2 QC Summary Data

Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and five standards.

2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to Volume (mL)	40
Vi = Aliquot Volume (mL)	40
D = Manual dilution factor, if required (10X = 10)	1
Cx = Concentration of element in ppb (ug/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Ws} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to volume (mL)	40
Ws = Aliquot weight (g)	0.6
D = Manual dilution factor	1
Cx = Concentration of element in ug/kg	6.67

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

1 Cx = Concentration calculated as received (wet basis)	6.67
Px = Percent solids of sample (%wt)	80
• • •	
Cdry = Concentration calculated as dry weight (ug/kg)	8.33

8.33 ug/kg = 0.00833 mg/kg

Microbac Laboratories Inc. Metals Digest Log

Workgroup: WG306971

Analyst:PDM

Spike Analyst: REK

Method: 7471A

Run Date: 07/14/2009 10:11

Hotblock Start Temp: 94.9 @ 10:40

Hotblock End Temp: 95.2 @ 11:10

SOP: ME405 Revison 8

Spike Solution: STD33964

Spike Witness: VC

HCL Lot #: COA13815

Digest tubes Lot #: COA13926

HNO3 Lot #: COA13945

KMnO4 1:1 Lot #: RGT13913 HG SOIL STD 10PPM Lot #: STD33971

HG SOILS ICV Lot #: STD33972

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Spike Amount	Due Date
1	WG306971-02	BLANK	7	.6 g	40 mL		
2	WG306971-03	LCS	7	.6 g	40 mL	4 mL	
3	L09070156-02	SAMP	7	.6 g	40 mL		07/20/09
4	L09070162-03	SAMP	7	.602 g	40 mL		07/20/09
5	L09070188-01	SAMP	7	.6 g	40 mL		07/21/09
6	L09070188-02	SAMP	7	.605 g	40 mL		07/21/09
7	L09070188-03	SAMP	7	.605 g	40 mL		07/21/09
8	L09070188-04	SAMP	7	.603 g	40 mL		07/21/09
9	L09070188-05	SAMP	7	.6 g	40 mL		07/21/09
10	WG306971-01	REF	7	.604 g	40 mL		
11	L09070188-06	SAMP	7	.604 g	40 mL		07/21/09
12	L09070253-01	SAMP	7	.6 g	40 mL		07/16/09
13	WG306971-04	MS	7	.604 g	40 mL	4 mL	
14	WG306971-05	MSD	7	.604 g	40 mL	4 mL	

Analyst: Purce Morris

Reviewer: Bunda Sugary

BLOCK_DIG - Modified 07/22/2008 PDF ID: 1440488

Report generated: 07/14/2009 11:56

Instrument Run Log

Instrument:	HYDRA	Datas	et: <u>071409</u>	9G.PRN		
Analyst1:	SLP	Analys	t2: <u>N/A</u>			
Method:	7471A		P: <u>ME405</u>	5	Rev: <u>8</u>	_
Maintenance Log ID:	29428					
Calibration Std: STD	33971	ICV/CCV Std:	STD33972	Post Sp	oike: STD33971	
ICSA: N/A		ICSAB:	N/A	Int.	Std:	
Comments:	Workgroups:	307040				
Comments.						

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	HY.071409.161426	WG307099-01	Calibration Point	гтер	1	Reference	07/14/09 16:14
2	HY.071409.161611	WG307099-01	Calibration Point		1		07/14/09 16:16
3	HY.071409.161756	WG307099-02 WG307099-03	Calibration Point				07/14/09 16:17
					1		
4	HY.071409.161938	WG307099-04	Calibration Point		1		07/14/09 16:19
5	HY.071409.162121	WG307099-05	Calibration Point		1		07/14/09 16:21
6	HY.071409.162436	WG307099-06	Calibration Point		1		07/14/09 16:24
7	HY.071409.162911	WG307099-07	Initial Calibration Verification		1		07/14/09 16:29
8	HY.071409.163135	WG307099-08	Initial Calib Blank		1		07/14/09 16:31
9	HY.071409.163319	WG307099-09	CCV		1		07/14/09 16:33
10	HY.071409.163513	WG307099-10	ССВ		1		07/14/09 16:35
11	HY.071409.164037	WG306971-02	Method/Prep Blank	.6/40	1		07/14/09 16:40
12	HY.071409.164221	WG306971-03	Laboratory Control S	.6/40	1		07/14/09 16:42
13	HY.071409.164434	L09070156-02	OUTLET S01 SLUDGE	.6/40	1		07/14/09 16:44
14	HY.071409.164651	WG307040-01	Post Digestion Spike		1	L09070156-02	07/14/09 16:46
15	HY.071409.164832	L09070162-03	11IDW02	.602/40	1		07/14/09 16:48
16	HY.071409.165019	WG307040-02	Post Digestion Spike		1	L09070162-03	07/14/09 16:50
17	HY.071409.165207	L09070188-01	02SB026A (0-6)	.6/40	1		07/14/09 16:52
18	HY.071409.165351	WG307040-03	Post Digestion Spike		1	L09070188-01	07/14/09 16:53
19	HY.071409.165535	L09070188-02	02SB027A (0-6)	.605/40	1		07/14/09 16:55
20	HY.071409.165719	L09070188-03	02SB028B (12-18)	.605/40	1		07/14/09 16:57
21	HY.071409.165912	WG307099-11	CCV		1		07/14/09 16:59
22	HY.071409.170055	WG307099-12	ССВ		1		07/14/09 17:00
23	HY.071409.170250	L09070188-04	02SB0210 (0-6)	.603/40	1		07/14/09 17:02
24	HY.071409.170437	L09070188-05	02SB0211 (0-6)	.6/40	1		07/14/09 17:04
25	HY.071409.170618	L09070188-06	02SB0211 (0-6)DUP	.604/40	1	WG306971-01	07/14/09 17:06
26	HY.071409.170830	WG306971-04	Matrix Spike	.604/40	1	L09070188-06	07/14/09 17:08
27	HY.071409.171034	WG306971-04	Matrix Spike Duplica	.604/40	1	L09070188-06	07/14/09 17:10
28	HY.071409.171219	L09070253-01	G-31-MSB002A(4.0)	.504/40	1	203070100-00	07/14/09 17:10
29	HY.071409.171219	L09070253-01 L09070253-01	G-31-MSB002A(4.0)	.6/40	2		07/14/09 17:12
			Serial Dilution	.0/40	10	1,00070050,04	
30	HY.071409.172315	WG307040-05				L09070253-01	07/14/09 17:23
31	HY.071409.172510	WG307040-04	Post Digestion Spike		2	L09070253-01	07/14/09 17:25
32	HY.071409.172652	WG307099-13	CCV		1		07/14/09 17:26
33	HY.071409.172835	WG307099-14	ССВ		1		07/14/09 17:28

Page: 1 Approved: July 15, 2009

July 15, 2009 Maren Blery

Microbac Laboratories Inc. Data Checklist

Date:	14-JUL-2009
Analyst:	SLP
Analyst:	<u>NA</u>
Method:	7471A
Instrument:	HYDRA
Curve Workgroup:	307099
Runlog ID:	29091
Analytical Workgroups:	307040

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	0156, 0162, 0188, 0253
Client Forms	X
Level X	
Level 3	0188
Level 4	0162, 0253
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	SLP
Secondary Reviewer	MMB
Comments	

Primary Reviewer: 15-JUL-2009 Secondary Reviewer: 15-JUL-2009

Sheri L. Plakoux Maren Beery

CHECKLIST1 - Modified 03/05/2008
Generated: JUL-15-2009 19:07:33

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00084097

AAB#: WG307040

Analytical Method: 7471A

Login Number: L09070188

	Date	Date	Date	Max Hold	Time Held	Date	Max Hold	Time Held	
Client ID	Collected	Received	Extracted	Time Ext.	Ext.	Analyzed	Time Anal	Anal.	Q
02SB0210 (0-6)	07/09/09	07/10/09	07/14/09	28	4.99	07/14/09	28	0.288	
02SB027A (0-6)	07/09/09	07/10/09	07/14/09	28	4.99	07/14/09	28	0.285	
02SB0211 (0-6)DUP	07/09/09	07/10/09	07/14/09	28	4.99	07/14/09	28	0.290	
02SB0211 (0-6)	07/09/09	07/10/09	07/14/09	28	4.99	07/14/09	28	0.289	
02SB026A (0-6)	07/09/09	07/10/09	07/14/09	28	5.00	07/14/09	28	0.283	·
02SB028B (12-18)	07/09/09	07/10/09	07/14/09	28	4.99	07/14/09	28	0.285	

* EXT = SEE PROJECT QAPP REQUIREMENTS
*ANAL = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 1441330 Report generated 07/15/2009 10:13

Page 108

METHOD BLANK SUMMARY

Login Number:L09070188

Blank File ID:HY.071409.164037

Prep Date:07/14/09 10:11

Analyzed Date:07/14/09 16:40

Work Group: WG307040

Blank Sample ID: WG306971-02

Instrument ID: HYDRA

Method: 7471A

Analyst:SLP

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG306971-03	HY.071409.164221	07/14/09 16:42	01
02SB026A (0-6)	L09070188-01	HY.071409.165207	07/14/09 16:52	01
02SB027A (0-6)	L09070188-02	HY.071409.165535	07/14/09 16:55	01
02SB028B (12-18)	L09070188-03	HY.071409.165719	07/14/09 16:57	01
02SB0210 (0-6)	L09070188-04	HY.071409.170250	07/14/09 17:02	01
02SB0211 (0-6)	L09070188-05	HY.071409.170437	07/14/09 17:04	01
02SB0211 (0-6)DUP	L09070188-06	HY.071409.170618	07/14/09 17:06	01

Report Name: BLANK_SUMMARY
PDF File ID:1441331
Report generated 07/15/2009 10:13

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Mercury, Total	0.0100	0.100	0.0100	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* | Analyte concentration | > RL

Report Name:BLANK PDF ID: 1441332 15-JUL-2009 10:13

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

00084100

 Login Number: L09070188
 Run Date: 07/14/2009
 Sample ID: WG30697

 Instrument ID: HYDRA
 Run Time: 16:42
 Prep Method: 7471A

 Run Date: 07/14/2009 Sample ID: WG306971-03 File ID: HY. 071409.164221 Analyst:SLP Method: 7471A Matrix: Soil Workgroup (AAB#): WG307040 Units:mg/kg QC Key:STD Lot#:STD33964 Cal ID: HYDRA-14-JUL-09 Expected Analytes Found % Rec LCS Limits Q 0.267 0.289 108 80 - 120 Mercury, Total

LCS - Modified 03/06/2008 PDF File ID:1441333 Report generated: 07/15/2009 10:13

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

Loginnum: L09070188	Cal ID: HYDRA-	Worknum: WG307040
Instrument ID: HYDRA	Contract #:DACA56-94-D-0020	Method:7471A
Parent ID: WG306971-01	File ID: HY.071409.170618 Dil:1	Matrix:SOLID
Sample ID:WG306971-04 MS	File ID: <u>HY.071409.170830</u> Dil: <u>1</u>	Units:mg/kg
Sample ID:WG306971-05 MSD	File ID:HY.071409.171034 Dil:1	Percent Solid:91.0

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Mercury, Total	0.0505	0.291	0.362	107	0.291	0.359	106	0.808	75 - 125	25	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac ®

[#] FAILS RPD LIMIT

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L09070188
 Worknum:
 WG307040

Instrument ID: HYDRA Method: 7471A

 Post Spike ID: WG307040-03
 File ID:HY.071409.165351
 Dil:1
 Units: ug/L

 Sample ID: L09070188-01
 File ID:HY.071409.165207
 Dil:1
 Matrix: Soil

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
MERCURY	1.42	F	0.495	F	1	97.5	85 - 115	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

Login Number: L09070188 Analytical Method: 7471A ICAL Worknum: WG307099 Workgroup (AAB#): WG307040

Instrument ID: HYDRA

Initial Calibration Date: 07/14/2009 16:24

	WG3	07099-01	WG3	07099-02	WG3	07099-03	3 WG307099-04 WG307099-05		WG307099-06			
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT
Mercury	0	30	0.200	808	1.00	3900	2.00	7420	5.00	18868	10.0	37642

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1441335 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

Login Number: L09070188 Analytical Method: 7471A ICAL Worknum: WG307099

Workgroup (AAB#): WG307040 Instrument ID: HYDRA Initial Calibration Date: 07/14/2009 16:24

Analyte	R	Q
Mercury	1.000	

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1441335 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L09070188
 Run Date: 07/14/2009
 Sample ID: WG307099-08

 Instrument ID: HYDRA
 Run Time: 16:31
 Method: 7471A

 File ID: HY.071409.163135
 Analyst: SLP
 Units: ug/L

Workgroup (AAB#):WG307040 Cal ID:HYDRA - 14-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
MERCURY	.15	1.5	.15	υ

ICB - Modified 07/14/2009 PDF File ID:1441337 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L09070188 Run Date: 07/14/2009 Sample ID: WG307099-10

Instrument ID: HYDRA Run Time: 16:35 Method: 7471A

File ID: HY.071409.163513 Analyst: SLP Units: ug/L

Workgroup (AAB#):WG307040 Cal ID: HYDRA - 14-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.150	1.50	0.150	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1441339 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

 Login Number: L09070188
 Run Date: 07/14/2009
 Sample ID: WG307099-12

 Instrument ID: HYDRA
 Run Time: 17:00
 Method: 7471A

 File ID: HY.071409.170055
 Analyst: SLP
 Units: ug/L

Workgroup (AAB#):WG307040 Cal ID: HYDRA - 14-JUL-09

Matrix:SOIL

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.150	1.50	0.150	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1441339 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number:L09070188 Run Date:07/14/2009 Sample ID:WG307099-14

Instrument ID:HYDRA Run Time:17:28 Method:7471A

File ID:HY.071409.172835 Analyst:SLP Units:ug/L

Workgroup (AAB#):WG307040 Cal ID: HYDRA - 14-JUL-09

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.150	1.50	0.150	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

Matrix:SOIL

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1441339 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number: L09070188 Run Date: 07/14/2009 Sample ID: WG307099-07

Instrument ID: HYDRA Run Time: 16:29 Method: 7471A

File ID: HY.071409.162911 Analyst: SLP Units: ug/L

Workgroup (AAB#): WG307040 Cal ID: HYDRA - 14-JUL-09

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Mercury	2	2.16	108	90 - 110	

^{*} Exceeds LIMITS Limit

ICV - Modified 03/06/2008 PDF File ID: 1441336 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

00084110

 Login Number: L09070188
 Run Date: 07/14/2009
 Sample ID: WG307099-09

 Instrument ID: HYDRA
 Run Time: 16:33
 Method: 7471A

 File ID: HY.071409.163319
 Analyst: SLP
 QC Key: STD

 Workgroup (AAB#): WG307040
 Cal ID: HYDRA - 14-JUL-09

 Matrix: SOIL
 Analyst: SLP

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00206	mg/L	103	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID:1441338 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

00084111

Login Number: L09070188 Run Date: 07/14/2009 Sample ID: WG307099-11

Instrument ID: HYDRA Run Time: 16:59 Method: 7471A

File ID: HY.071409.165912 Analyst: SLP QC Key: STD

Workgroup (AAB#): WG307040 Cal ID: HYDRA - 14-JUL-09

Matrix: SOIL

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00206	mg/L	103	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID:1441338 Report generated 07/15/2009 10:13

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

00084112

 Login Number: L09070188
 Run Date: 07/14/2009
 Sample ID: WG307099-13

 Instrument ID: HYDRA
 Run Time: 17:26
 Method: 7471A

 File ID: HY.071409.172652
 Analyst: SLP
 QC Key: STD

 Workgroup (AAB#): WG307040
 Cal ID: HYDRA - 14-JUL-09

 Matrix: SOIL
 Analyst: SLP

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00198	mg/L	99.0	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID:1441338 Report generated 07/15/2009 10:13

2.2 General Chemistry Data

2.2.1 Percent Solids Data

2.2.1.1 Raw Data

L09070188

07/23/09 15:09

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740)373-4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
02SB026A (0-6)	L09070188-01	D2216-90	1	10-JUL-09
02SB027A (0-6)	L09070188-02	D2216-90	1	10-JUL-09
02SB028B (12-18)	L09070188-03	D2216-90	1	10-JUL-09
02SB0210 (0-6)	L09070188-04	D2216-90	1	10-JUL-09
02SB0211 (0-6)	L09070188-05	D2216-90	1	10-JUL-09
02SB0211 (0-6)DUP	L09070188-06	D2216-90	1	10-JUL-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1445273
Report generated: 07/23/2009 15:09

Microbac

1 OF 1

00084117

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-01
Client ID: 02SB026A (0-6) PrePrep Method:NONE

Instrument:BAL001
Prep Date: 07/14/2009 09:59
Cal Date: Prep Method: D2216-90 Matrix: Soil Analytical Method: D2216-90 Workgroup Number: WG306819
Collect Date: 07/09/2009 10:10 Analyst: JDH
Dilution: 1 Run Date: 07/14/2009 09:59
File ID: B1.306819-0101

Sample Tag: 01 Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	86.2		1.00	1.00

6 of

00084118

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-02
Client ID: 02SB027A (0-6)

Matrix: Soil

Workgroup Number: WG306819
Collect Date: 07/09/2009 10:15

Sample Tag: 01

PrePrep Method:NONE

Prep Method: D2216-90 Analytical Method: D2216-90

Analyst: JDH
Dilution: 1

Units:weight %

Instrument:BAL001

Prep Date: 07/14/2009 09:59 Cal Date:

Run Date: 07/14/2009 09:59
File ID: B1.306819-0102

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	87.4		1.00	1.00

of 6

00084119

Report Number: L09070188 Report Date : July 23, 2009

PrePrep Method:NONE Instrument: BAL001

Sample Number: <u>L09070188-03</u> Client ID: <u>02SB028B (12-18)</u> Prep Method: D2216-90 Prep Date: 07/14/2009 09:59

Matrix: Soil Analytical Method: D2216-90 Cal Date: Workgroup Number: WG306819
Collect Date: 07/09/2009 10:20 Analyst: JDH
Dilution: 1 Run Date: 07/14/2009 09:59 File ID: B1.306819-0103 Sample Tag: 01 Units:weight %

Analyte CAS. Number Result Qual PQL SDL Percent Solids 10-02-6 89.3 1.00 1.00

> 6 of

00084120

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-04 Client ID: 02SB0210 (0-6)

Matrix: Soil

Workgroup Number: WG306819
Collect Date: 07/09/2009 10:25

Sample Tag: 01

PrePrep Method:NONE Instrument: BAL001

Prep Date: 07/14/2009 09:59
Cal Date: Prep Method: D2216-90 Analytical Method: D2216-90

Analyst: JDH
Dilution: 1 Run Date: 07/14/2009 09:59
File ID: B1.306819-0104

Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	84.8		1.00	1.00

6 of

00084121

Report Number: L09070188 Report Date : July 23, 2009

PrePrep Method:NONE Instrument: BAL001

Sample Number: <u>L09070188-05</u> Client ID: <u>02SB0211 (0-6)</u> Prep Method: D2216-90 Prep Date: 07/14/2009 09:59 Matrix: Soil Analytical Method: D2216-90 Cal Date: Workgroup Number: WG306819
Collect Date: 07/09/2009 10:30
Sample Tag: 01 Analyst: JDH
Dilution: 1 Run Date: 07/14/2009 09:59
File ID: B1.306819-0105

Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	89.9		1.00	1.00

6 of

00084122

Report Number: L09070188 Report Date : July 23, 2009

Sample Number: L09070188-06
Client ID: 02SB0211 (0-6)DUP

Matrix: Soil

Workgroup Number: WG306819
Collect Date: 07/09/2009 10:30

Sample Tag: 01

PrePrep Method:NONE Instrument: BAL001

Prep Method: D2216-90

Prep Date: 07/14/2009 09:59
Cal Date: Analytical Method: D2216-90

Analyst: JDH
Dilution: 1 Run Date: 07/14/2009 09:59
File ID: B1.306819-0106

Units:weight %

Analyte	CAS. Number	Result	Qual	PQL	SDL
Percent Solids	10-02-6	91.0		1.00	1.00

6 of

1.0 Calculating the percent solids of a sample.

$$\%Solids = \frac{WT3 - WT1}{WT2 - WT1} \times F$$

Where:

WT1 = Weight, in grams, of the empty container	1.30 g
WT2 = Weight, in grams, of the container and wet sample	21.274 g
WT3 = Weight, in grams, of the container and dried sample	5.21 g
F = Factor to get units as percent weight	100

%Solids = Percent solids present in sample. 19.58%

2.0 Calculating the percent moisture of a sample.

% Moisture = 100 - % Solids from 1.0 calculation

Microbac Laboratories Inc. PERCENT SOLIDS

Workgroup (AAB#):WG306819 Analyst:JDH ADT(on):07/13/2009 09:07
Method:D2216-90 Instrument:BAL001 ADT(off):07/14/2009 09:59

SOP: K0003 Rev: 9

SAMPLE NUMBER	EMPTY PAN WT 1	WET WT 2	DRY WT 3A	DRY WT 3B	DRY WT 3C	PERCENT SOLID	PERCENT MOISTURE
L09070188-01	1.33	32.89	28.54			86.22	
L09070188-02	1.32	22.24	19.61			87.43	
L09070188-03	1.32	25.14	22.58			89.25	
L09070188-04	1.33	28.38	24.28			84.84	
L09070188-05	1.33	35.24	31.82			89.91	
L09070188-06	1.33	28	25.61			91.04	
L09070203-01	1.33	24.11	19.94			81.69	
L09070203-02	1.31	30.83	26.74			86.14	
L09070203-03	1.32	41.93	37.64			89.44	
L09070203-04	1.32	24.03	23.92			99.52	
L09070203-05	1.33	33.85	31.06			91.42	
L09070203-06	1.32	26.66	21.83			80.94	
L09070203-07	1.33	26.18	21.82			82.45	
L09070203-08	1.32	27.88	27.61			98.98	
L09070203-09	1.32	33.38	30.15			89.93	
L09070203-10	1.33	31.46	25.7			80.88	
L09070203-11	1.33	30.85	19.92			62.97	
L09070203-12	1.31	28.66	18.95			64.50	
WG306819-01	1.31	28.66	18.95			64.50	35.50
WG306819-02	1.31	23.74	15.94			65.23	34.77

Analyst:

PERCENT_SOLIDS - Modified 04/24/2008

PDF ID: 1440269
Report generated: 07/14/2009 09:58

3.0 Attachments

Microbac Laboratories Inc. Analyst Listing July 23, 2009

ADC - ANTHONY D. CANTER ALB - ANNIE L. BROWN BRG - BRENDA R. GREGORY CAH - CHARLES A. HALL CLW - CHARISSA L. WINTERS DDE - DEBRA D. ELLIOTT DGB - DOUGLAS G. BUTCHER	AJF - AMANDA J. FICKIESEN AML - ANTHONY M. LONG CAA - CASSIE A. AUGENSTEIN CEB - CHAD E. BARNES CPD - CHAD P. DAVIS DEL - DON E. LIGHTFRITZ DIH - DEANNA I. HESSON	AJM - ANTHONY J. MOSSBURG BLG - BRENDA L. GREENWALT CAF - CHERYL A. FLOWERS CLC - CHRYS L. CRAWFORD CSH - CHRIS S. HILL DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER
DLP - DOROTHY L. PAYNE ECL - ERIC C. LAWSON FJB - FRANCES J. BOLDEN JBK - JEREMY B. KINNEY JWR - JOHN W. RICHARDS KEB - KATHRYN E. BARNES LKN - LINDA K. NEDEFF MDC - MICHAEL D. COCHRAN MRT - MICHELLE R. TAYLOR PDM - PIERCE D. MORRIS REK - ROBERT E. KYER SDH - SHANA D. HINYARD TIP - TAE I. PARRISH VC - VICKI COLLIER	DLR - DIANNA L. RAUCH EDA - ERIN D. AGEE HAV - HEMA VILASAGAR JDH - JUSTIN D. HESSON JWS - JACK W. SHEAVES KHR - KIM H. RHODES LSB - LESLIE S. BUCINA MES - MARY E. SCHILLING MSW - MATT S. WILSON RAH - ROY A. HALSTEAD RLK - ROBIN L. KLINGER SLM - STEPHANIE L. MOSSBURG TMB - TIFFANY M. BAILEY WTD - WADE T. DELONG	DR - DEANNA ROBERTS ERP - ERIN R. PORTER HJR - HOLLY J. REED JKT - JANE K. THOMPSON JYH - JI Y. HU KRA - KATHY R. ALBERTSON MDA - MIKE D. ALBERTSON MMB - MAREN M. BEERY NPM - NATHANIEL P. MILLER RB - ROBERT BUCHANAN RWC - RODNEY W. CAMPBELL SLP - SHERI L. PFALZGRAF TMM - TAMMY M. MORRIS

Microbac Laboratories Inc. List of Valid Qualifiers 23, 2009 July

STD_ND=U Qualkey:

Qualifier Description

> U Not detected at or above adjusted sample detection limit

- ***Special Notes for Organic Analytes

 1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.
- 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- N-nitrosodiphenylamine cannot be separated from diphenylamine.
 3-Methylphenol and 4-Methylphenol are unresolvable compounds.
- 5. m-Xylene and p-Xylene are unresolvable compounds.
- 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

Address: 158 Starlite Drive, Marietta OH 45750

Laboratory Name: Microbac

Shaw Environmental & Infrastructure, Inc.

3010 Briarpark Drive, Suite 400

Houston, TX 77042

Contact: Stephanie Mossburg

COC NO.

COOLER INSPECTION

Received: 07/10/2009 10:07 Delivery Method: UPS Opened By: Robin Klinger Comments:

Login(s): L09070188

Cooler(s)

Cooler #	Temp Gun	Temp	Tracking #	COC#	Comments
	Н	3.0	420457505279		

1	Yes	Were shipping coolers sealed?
2	Yes	Were custody seals intact?
3	Yes	Were cooler temperatures in range of 0-6?
4	Yes	Was ice present?
5	Yes	Were COC's received/information complete/signed and dated?
6	No	Were sample containers and labels intact and match COC?
7	Yes	Were the correct containers and volumes received?
8	NA	Were correct perservatives used? (water only)
9	NA	Were pH ranges acceptable? (voa's excluded)
10	NA	Were VOA samples free of headspace (<6mm)?
11	Yes	Were samples received within EPA hold times?

Discrepancies:

The ID for last sample on the COC 02SB0211(0-6)dup@1015 has on lid 028B but the time and date on the sample label match the last sample on the COC.

Look closer. Go further. Do more.

Internal Chain of Custody Report

Login: L09070188

Account: 2773 **Project:** 2773.025

Samples: 6

Due Date: 21-JUL-2009

Samplenum Container ID Products

L09070188-01 597214 AS-MS CD-MS CU-MS HGSL PB-MS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-JUL-2009 14:08	RLK	
2	PREP	W1	DIG	10-JUL-2009 15:03	BRG	RLK
3	STORE	WET	A1	14-JUL-2009 08:48	ERE	JDH
4	PREP	A1	DIG	14-JUL-2009 09:44	REK	ERE
5	STORE	DIG	A1	15-JUL-2009 13:44	ERE	REK

Samplenum Container ID Products

L09070188-02 597215 AS-MS CD-MS CU-MS HGSL PB-MS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-JUL-2009 14:08	RLK	
2	PREP	W1	DIG	10-JUL-2009 15:03	BRG	RLK
3	STORE	WET	A1	14-JUL-2009 08:48	ERE	JDH
4	PREP	A1	DIG	14-JUL-2009 09:44	REK	ERE
5	STORE	DIG	A1	15-JUL-2009 13:44	ERE	REK

Samplenum Container ID Products

L09070188-03 597216 AS-MS CD-MS CU-MS HGSL PB-MS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-JUL-2009 14:08	RLK	
2	PREP	W1	DIG	10-JUL-2009 15:03	BRG	RLK
3	STORE	WET	A1	14-JUL-2009 08:48	ERE	JDH
4	PREP	A1	DIG	14-JUL-2009 09:45	REK	ERE
5	STORE	DIG	A1	15-JUL-2009 13:44	ERE	REK

Samplenum Container ID Products

L09070188-04 597217 AS-MS CD-MS CU-MS HGSL PB-MS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-JUL-2009 14:08	RLK	
2	PREP	W1	DIG	10-JUL-2009 15:03	BRG	RLK
3	STORE	WET	A1	14-JUL-2009 08:48	ERE	JDH
4	PREP	A1	DIG	14-JUL-2009 09:44	REK	ERE
5	STORE	DIG	A1	15-JUL-2009 13:44	ERE	REK

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Internal Chain of Custody Report

Login: L09070188

Account: 2773 **Project:** 2773.025

Samples: 6

Due Date: 21-JUL-2009

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L09070188-05 597218 AS-MS CD-MS CU-MS HGSL PB-MS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-JUL-2009 14:08	RLK	
2	PREP	W1	DIG	10-JUL-2009 15:03	BRG	RLK
3	STORE	WET	A1	14-JUL-2009 08:48	ERE	JDH
4	PREP	A1	DIG	14-JUL-2009 09:44	REK	ERE
5	STORE	DIG	A1	15-JUL-2009 13:44	ERE	REK

Samplenum Container ID Products

L09070188-06 597219 AS-MS CD-MS CU-MS HGSL PB-MS

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	W1	10-JUL-2009 14:08	RLK	
2	PREP	W1	DIG	10-JUL-2009 15:03	BRG	RLK
3	STORE	WET	A1	14-JUL-2009 08:48	ERE	JDH
4	PREP	A1	DIG	14-JUL-2009 09:45	REK	ERE
5	STORE	DIG	A1	15-JUL-2009 13:44	ERE	REK

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

158 Starlite Drive, Marietta, OH 45750 • T:740-373-4071 • F:740-373-4835 • http://www.microbac.com

Laboratory Report Number: L09070202

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories.

Review and compilation of your report was completed by Microbac's Sales and Service Team. If you have questions, comments or require further assistance regarding this report, please contact your team member noted in the reviewed box below at 800-373-4071. Team member e-mail addresses also appear here for your convenience.

Kathy Albertson Stephanie Mossburg Tony Long Amanda Fickiesen Annie Brown Team Chemist/Data Specialist Team Chemist/Data Specialist Team Chemist/Data Specialist Client Services Specialist Client Services Specialist

kalbertson@microbac.com smossburg@microbac.com tlong@microbac.com afickiesen@microbac.com abrown@microbac.com

This report was reviewed on August 11, 2009.

Stephanie Mossburg

Stephanie Mossburg - Team Chemist/Data Specialist

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories.

This report was certified on August 11, 2009.

State of origin: Texas

10 & Vande berg

Accrediting authority: Texas Commission on Environmental Quality ID:T104704252-07-TX

QAPP: Microbac OVD

This report contains a total of 105 pages.

David Vandenberg - Managing Director

Look closer. Go further. Do more.

Microbac Laboratories, Inc.
Ohio Valley Division
158 Starlite Drive

Marietta, OH 45750

Phone: 800.373.4071 Fax: 740.373.4835

Your data is now available online via our Web Access Portal!

Access and print reports, check the status of your projects, and review electronic data forms online from anywhere with internet access!

View a demo by visiting www.microbac.com and entering the Ohio Valley location Click on "Online Data Access"

User ID: jdoe@abc.com Password: demo

Contact your Microbac service representative to set up a FREE account today!

LOOK CLOSER, GO FURTHER, DO MORE

Microbac REPORT L09070202 PREPARED FOR Shaw E I, Inc. WORK ID:

1.0 Introduction	
2.1 Metals Data	
2.1.1 Metals ICP-MS Data	16
2.1.1.1 Summary Data	17
2.1.1.2 QC Summary Data	21
2.1.2 Metals CVAA Data (Mercury)	69
2.1.2.1 Summary Data	
2.1.2.2 QC Summary Data	
3.0 Attachments	99

1.0 Introduction

Α1

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:
 - a) LCS spiking amount,
 - b) Calculated %R for each analyte, and
 - c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

RG-366/TRRP-13 December 2002

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

SHERI L. PFALZGRAF	Sheri L. Hakqia	Chemist II	August 11, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09070202

Project Name: 798-LONGHORN

Method: 6020

Prep Batch Number(s): WG308973

Reviewer Name: SHERI L. PFALZGRAF LRC Date: August 11, 2009

Description	Yes	No	NA(1)	NR(2)	ER(3)
Chain-Of-Custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon	√				
receipt?					
Were all departures from standard conditions described in an exception report?	√				
Sample and quality control (QC) identification					
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	√				
Test reports					
Were all samples prepared and analyzed within holding times?	√				
Other than those results <mql, all="" bracketed="" by="" calibration="" other="" raw="" standards?<="" td="" values="" were=""><td>√</td><td></td><td></td><td></td><td></td></mql,>	√				
Were calculations checked by a peer or supervisor?	/				
Were all analyte identifications checked by a peer or supervisor?	V ✓				
Were sample quantitation limits reported for all analytes not detected?	\ \ \ \				
Were all results for soil and sediment samples reported on a dry weight basis?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Were % moisture (or solids) reported for all soil and sediment samples?	✓				
If required for the project, TICs reported?	'		-		
Surrogate recovery data			•		
Were surrogates added prior to extraction?			√		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			1		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	√				
Were blanks analyzed at the appropriate frequency?	· /				
Were method blanks taken through the entire analytical process, including preparation and,	· ✓				
if applicable, cleanup procedures?	·				
Were blank concentrations <rl?< td=""><td>\</td><td></td><td></td><td></td><td></td></rl?<>	\				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	\				
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	√				
Were LCSs analyzed at the required frequency?	/				
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	\ \ \ \				
Does the detectability data document the laboratory's capability to detect the COCs at the	\ \ \ \				
MDL used to calculate the SQLs?	'				
Was the LCSD RPD within QC limits?			V		
Matrix spike (MS) and matrix spike duplicate (MSD) data					
Were the project/method specified analytes included in the MS and MSD?			√		
Were MS/MSD analyzed at the appropriate frequency?			√		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			√		

Description	Yes	No	NA(1)	3000	44133
Were MS/MSD RPDs within laboratory QC limits?			√ ·		
Analytical duplicate data			•		
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			· √		
Were RPDs or relative standard deviations within the laboratory QC limits?			· √		
Method quantitation limits (MQLs):			•		
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	→				
Other problems/anomalies	•				
Are all known problems/anomalies/special conditions noted in this LRC and ER?		/			1
Were all necessary corrective actions performed for the reported data?	√	_			1
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?	•				
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			/		
Were percent RSDs or correlation coefficient criteria met?	√		V		
Was the number of standards recommended in the method used for all analytes?	∨ ✓				
Were all points generated between the lowest and highest standard used to calculate the	∨ ✓				
curve?	v				
Are ICAL data available for all instruments used?	√				
Has the initial calibration curve been verified using an appropriate second source standard?	∨ ✓				
Initial and continuing calibration verification (ICV and CCV) and continuing	V				
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	√				
Were percent differences for each analyte within the method-required QC limits?	✓				
Was the ICAL curve verified for each analyte?	-				
•	√				
Was the absolute value of the analyte concentration in the inorganic CCB <rl?< td=""><td>✓</td><td></td><td></td><td></td><td></td></rl?<>	✓				
Mass spectral tuning:			/		
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			✓		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	✓				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			✓		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?	√				
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	✓				
Method detection limit (MDL) studies					
Was a MDL study performed for each reported analyte?	√				
Is the MDL either adjusted or supported by the analysis of DCSs?	·				
Proficiency test reports:	-				
Was the laboratory's performance acceptable on the applicable proficiency tests or	√				
evaluation studies?	•				

				$\mathbf{N} \mathbf{A} \mathbf{A} \mathbf{C}$	$\mathbf{A} \mathbf{A} \mathbf{\Delta}$
Description	Yes	No	NA(1)	となる	44133
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name:Microbac Laboratories Inc.Laboratory Log Number:L09070202Project Name:798-LONGHORN

Method: 6020
Prep Batch Number(s): WG308973

Reviewer Name: SHERI L. PFALZGRAF LRC Date: August 11, 2009

EXCEPTIONS REPORT

ER#1 - Due to analyst error, client samples 02 and 03 were analyzed at dilutions for all analytes. The samples were later reanalyzed undiluted for all analytes.

Footnotes:

(1) NA = Not applicable to method or project

(2) NR = Not reviewed

(3) ER# = Exception report number

Laboratory Data Package Cover Page

This data Package consists of:

This signature page, the laboratory review checklists, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each enviornmental sample that includes:
 - a) Items consistant with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) Cleanup methods, and
 - e) If required for the project, tentatively identified compounds (TICs)
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R) for each analyte, and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms FOR laboratory control samples (LCSs) including:
 - a) LCS spiking amount,
 - b) Calculated %R for each analyte, and
 - c) The laboratory"s LCS QC limits.

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

- a) Samples associated with the MS/MSD clearly identified,
- b) MS/MSD spiking amounts,
- c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
- d) Calculated %R and relative percent differences (RPDs), and
- e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) revocery and precision:

- a) the amount of analyte measured in the duplicate,
- b) the calculated RPD, and
- c) the laboratory's QC limits for anlytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exceptions reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, If applicable: [] This laboratory is an in-house laboratory controlled by the person repsonding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is trus.

SHERI L. PFALZGRAF	Sheri L. Rakgraf	Chemist II	August 11, 2009
Name (Printed)	Signature	Official Title (printed)	DATE

RG-366/TRRP-13 December 2002

A1

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.

Laboratory Log Number: L09070202

Project Name: 798-LONGHORN

Method: 7471

Prep Batch Number(s): WG308974

Reviewer Name: SHERI L. PFALZGRAF LRC Date: August 11, 2009

Chain-Of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" test="" th="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><th>✓</th><th></th><th></th></mql,>	✓		
receipt? Were all departures from standard conditions described in an exception report? Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Are all field sample ID numbers cross-referenced to the laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Are all laboratory ID numbers cross-referenced to the corresponding QC data? Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Test reports Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Were all samples prepared and analyzed within holding times? Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>✓</td><td></td><td></td></mql,>	✓		
Other than those results <mql, %="" (lcs):<="" (or="" <rl?="" a="" added="" all="" analyte="" analytes="" analytical="" analyzed="" analyzed?="" and="" and,="" applicable,="" appropriate="" at="" basis?="" blank="" blanks="" bracketed="" by="" calculations="" calibration="" checked="" cleanup="" concentrations="" control="" data="" detected?="" dry="" entire="" extraction?="" for="" forms="" frequency?="" identifications="" if="" in="" including="" laboratory="" limits="" limits?="" method="" moisture="" not="" of="" on="" or="" other="" peer="" percent="" preparation="" prior="" procedures?="" process,="" project,="" qc="" quantitation="" raw="" recoveries="" recovery="" reported="" reported?="" reports="" required="" results="" sample="" samples="" samples?="" sediment="" soil="" solids)="" standards?="" summary="" supervisor?="" surrogate="" surrogates="" taken="" td="" test="" the="" through="" tics="" to="" type(s)="" values="" weight="" were="" within=""><td>√</td><td></td><td></td></mql,>	√		
standards? ✓ Were calculations checked by a peer or supervisor? ✓ Were all analyte identifications checked by a peer or supervisor? ✓ Were sample quantitation limits reported for all analytes not detected? ✓ Were all results for soil and sediment samples reported on a dry weight basis? ✓ Were % moisture (or solids) reported for all soil and sediment samples? ✓ If required for the project, TICs reported? ✓ Surrogate recovery data ✓ Were surrogates added prior to extraction? ✓ Were surrogate percent recoveries in all samples within the laboratory QC limits? ✓ Test reports/summary forms for blank samples ✓ Were appropriate type(s) of blanks analyzed? ✓ Were blanks analyzed at the appropriate frequency? ✓ Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? ✓ Were blank concentrations <rl?< td=""> ✓ Laboratory control samples (LCS):</rl?<>	√		
Were all analyte identifications checked by a peer or supervisor? Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were sample quantitation limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were % moisture (or solids) reported for all soil and sediment samples? If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
If required for the project, TICs reported? Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Surrogate recovery data Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>✓</td><td></td><td></td></rl?>	✓		
Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Were surrogate percent recoveries in all samples within the laboratory QC limits? Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>\checkmark</td><td></td><td></td></rl?>	\checkmark		
Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td>√</td><td></td><td></td></rl?>	√		
Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
if applicable, cleanup procedures? Were blank concentrations <rl? (lcs):<="" control="" laboratory="" samples="" td=""><td></td><td></td><td></td></rl?>			
Laboratory control samples (LCS):			
Were all COCs included in the LCS? ✓			
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? ✓			
Were LCSs analyzed at the required frequency? ✓			
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? ✓			
Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?			
Was the LCSD RPD within QC limits?	√		
Matrix spike (MS) and matrix spike duplicate (MSD) data	•		
Were the project/method specified analytes included in the MS and MSD?	√		
Were MS/MSD analyzed at the appropriate frequency?		+	
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	\checkmark	+	ļ

Description	Yes	No	NA(1)	3000	34x134
Were MS/MSD RPDs within laboratory QC limits?			√		
Analytical duplicate data					
Were appropriate analytical duplicates analyzed for each matrix?			√		
Were analytical duplicates analyzed at the appropriate frequency?			√		
Were RPDs or relative standard deviations within the laboratory QC limits?			√		
Method quantitation limits (MQLs):					
Are the MQLs for each method analyte included in the laboratory data package?	√				
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	√				
Are unadjusted MQLs included in the laboratory data package?	√				
Other problems/anomalies					
Are all known problems/anomalies/special conditions noted in this LRC and ER?		√			1
Were all necessary corrective actions performed for the reported data?	√				
Was applicable and available technology used to lower the SQL minimize the matrix	√				
interference affects on the sample results?					
ICAL					
Were response factors and/or relative response factors for each analyte within QC limits?			√		
Were percent RSDs or correlation coefficient criteria met?	√				
Was the number of standards recommended in the method used for all analytes?	√				
Were all points generated between the lowest and highest standard used to calculate the	1				
curve?					
Are ICAL data available for all instruments used?	1				
Has the initial calibration curve been verified using an appropriate second source standard?	1				
Initial and continuing calibration verification (ICV and CCV) and continuing					
calibration blank (CCB):					
Was the CCV analyzed at the method-required frequency?	1				
Were percent differences for each analyte within the method-required QC limits?	1				
Was the ICAL curve verified for each analyte?	√				
Was the absolute value of the analyte concentration in the inorganic CCB < RL?	1				
Mass spectral tuning:					
Was the appropriate compound for the method used for tuning?			√		
Were ion abundance data within the method-required QC limits?			√		
Internal standards (IS):					
Were IS area counts and retention times within the method-required QC limits?			√		
Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025					
section 4.12.2)					
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	√				
Were data associated with manual integrations flagged on the raw data?			√		
Dual column confirmation					
Did dual column confirmation results meet the method-required QC?			√		
Tentatively identified compounds (TICs):					
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			√		
Interference Check Sample (ICS) results:					
Were percent recoveries within method QC limits?			√		
Serial dilutions, post digestion spikes, and method of standard additions					
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	√				
Method detection limit (MDL) studies			-		-
Was a MDL study performed for each reported analyte?	1				
Is the MDL either adjusted or supported by the analysis of DCSs?	V				
Proficiency test reports:	'				
Was the laboratory's performance acceptable on the applicable proficiency tests or	/				
was the laboratory's performance acceptable on the applicable proficiency tests of evaluation studies?	•				

Description	Yes	No	NA(1)	3000	4R 34
Standards documentation					
Are all standards used in the analyses NIST-traceable or obtained from other appropriate	√				
sources?					
Compound/analyte identification procedures					
Are the procedures for compound/analyte identification documented?	√				
Demonstration of analyst competency (DOC)					
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4?	√				
Is documentation of the analyst's competency up-to-date and on file?	√				
Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC					
17025 Section 5)					
Are all the methods used to generate the data documented, verified, and validated, where	√				
applicable?					
Laboratory standard operating procedures (SOPs):					
Are laboratory SOPs current and on file for each method performed?	√				

Microbac Laboratories Inc. Laboratory Review Checklist

Laboratory Name: Microbac Laboratories Inc.
Laboratory Log Number: L09070202
Project Name: 7471

Method: 7471

Prep Batch Number(s): WG308974

Reviewer Name: SHERI L. PFALZGRAF
LRC Date: August 11, 2009

EXCEPTIONS REPORT

ER#1 - Due to failure to meet NPDES acceptance criteria for this batch upon initial analysis, the ICV was reanalyzed with compliant results.

Footnotes:

- (1) NA = Not applicable to method or project
- (2) NR = Not reviewed
- (3) ER# = Exception report number

2.1 Metals Data

2.1.1 Metals ICP-MS Data

2.1.1.1 Summary Data

LABORATORY REPORT

00084149

L09070202

08/11/09 13:38

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: 389869/ 390836(GWTP)

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
02SB027A (0-6)	L09070202-02	6020	1	10-JUL-09
02SB028B (12-18)	L09070202-03	6020	1	10-JUL-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1463336
Report generated: 08/11/2009 13:38

Microbac

1 OF 1

00084150

Report Date : August 11, 2009

Report Number: L09070202

Report Date . August 11, 2005

Sample Tag: 01 Units: mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Leachable	7440-38-2	0.0370		0.00100	0.000250
Cadmium, Leachable	7440-43-9	0.000548		0.000500	0.000125
Copper, Leachable	7440-50-8	0.00886		0.00200	0.000500
Lead, Leachable	7439-92-1	0.0623		0.000500	0.000250

1 of 2

Microbac

00084151

Report Date : August 11, 2009

Report Number: L09070202

Sample Number: L09070202-03 Client ID: 02SB028B (12-18) PrePrep Method: 1312
Prep Method: 3015 Instrument: <u>ELAN-ICP</u>
Prep Date: 08/05/2009 09:17

Matrix: Leachate Analytical Method: 6020 Cal Date: 08/07/2009 10:16 Analyst: JYH
Dilution: 1 Workgroup Number: WG309040
Collect Date: 07/09/2009 10:20 Run Date: 08/07/2009 19:43 File ID: EL. 080709.194342

Sample Tag: 01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Arsenic, Leachable	7440-38-2	0.0611		0.00100	0.000250
Cadmium, Leachable	7440-43-9	0.00111		0.000500	0.000125
Copper, Leachable	7440-50-8	0.0191		0.00200	0.000500
Lead, Leachable	7439-92-1	0.224		0.000500	0.000250

of 2

Microbac

2.1.1.2 QC Summary Data

Example 6020 Calculations Perkin Elmer ELAN 6100

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	100
Vi = Initial volume	40
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/L)	0.25

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

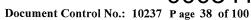
Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	200
Vi = Initial volume	0.5
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/kg)	40

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	40
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	50

50 ug/kg = 0.050 mg/kg


Perkin Elmer ELAN ICP/MS

STANDARDS KEY

QC Std 1 - ICV QC Std 2 - ICB QC Std 3 - CRI - Soil QC Std 4 - CRI - Water QC Std 5 - ICSA QC Std 6 - ICSAB QC Std 7 - CCV QC Std 8 - CCB

Calibration Solutions

Analyte	Stock Conc. (mg/L)	S1 (mg/L)	S2 (mg/L)	S3 (mg/L)	S4 (mg/L)
Al	10	0	0.0004	0.05	0.1
Sb	10	0	0.0004	0.05	0.1
As	10	0	0.0004	0.05	0.1
Ba	10	0	0.0004	0.05	0.1
Be	10	0	0.0004	0.05	0.1
Ca	1000	0	0.04	5	10
Cd	10	0	0.0004	0.05	0.1
Cr	10	0	0.0004	0.05	0.1
Co	10	0	0.0004	0.05	0.1
Cu	10	0	0.0004	0.05	0.1
Fe	1000	0	0.04	5	10
Pb	10	0	0.0004	0.05	0.1
Mg	1000	0	0.04	5	10
Mn	10	0	0.0004	0.05	0.1
Ni	10	0	0.0004	0.05	0.1
K	1000	0	0.04	5	10
Se	10	0	0.0004	0.05	0.1
Ag	10	0	0.0004	0.05	0.1
Na	1000	0	0.04	5	10
Tl	10	0	0.0004	0.05	0.1
V	10	0	0.0004	0.05	0.1
U	1000	0	0.0004	0.05	0.1
Zn	10	0	0.0004	0.05	0.1

TCLP Non-Volatile

nalyst(s): <u>/ a e</u> Date: <u>08-04-09</u>

Analys	st/Date	Apalyst/Date				
Pac a	08:04:09	Ruce	8.05-09			
Time	Temp	Time	Temp			
On	On °C	Off	Off°C			
1430	24	0730	23			

					Size Re	duction		
Jug # Sample # Te	ests Method	Fluid #	Matrix*	%Solid	Yes	No ,	Int. Wt. (g)	Fluid Vol. (mL)
Jug# Sample# Te D 07-654-14 ME D 07-69901 L	1311	F1-757	5/5	100	103	V	100.02	
D 01-69901 I	, 1	1 1	3	1	1		100,00	1
G-6 08-0046-01 SV	/	1 1	5/5 S S/5		-	/	100.02 100.04 2000 100.04 100.04	
NA FBLK ME I	. 1	+	NA	N/A			2000	
D 07.202-02 ME	1312	SF2-182	N/A . 5/5	100	-	1	100 04	
D 07-202-02 ME D 03 1	1,0,70	DIKTON	1	1		1	100.01	
NIA FBIK -		1-1	NA	N/A		/	2000	
77.77			, 4/1	74.71		′	3000	
								
					<u> </u>			
					ļ			
					1			
					 			
					<u> </u>			
	109	1						
	0 440							
	0.00							
	.0/				1			

*Matrix Code = (S-solid) (SS-sand, soil or sludge) (P-paint) (O-organic) (W-water or waste) Agitator speed is 30 ± 2 rpm unless otherwise noted.

Peer Review By:	Supervisor Review:
· -	
Comments:	

Microbac Laboratories Inc. Microwave Digestion Log

Workgroup: WG308973

SOP: ME407 Revison 10

Analyst:<u>VC</u>

Spike Solution: STD33694

Spike Analyst: VC

Spike Witness: REK

Run Date: 08/05/2009 09:17

HNO3 Lot #: COA13945

Method: 3015

Digest tubes Lot #: COA14013

	SAMPLE #	Туре	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG308973-03	BLANK	1	40 mL	100 mL	207.176 g	207.163 g		
2	WG308947-01	FBLK	18	40 mL	100 mL	207.658 g	207.649 g		
3	WG308973-04	LCS	1	40 mL	100 mL	206.305 g	206.281 g	.25 mL	
4	L09070202-02	SAMP	18	40 mL	100 mL	206.885 g	206.873 g		08/12/09
5	L09070202-03	SAMP	18	40 mL	100 mL	208.392 g	208.38 g		08/12/09
6	WG308973-01	REF	1	40 mL	100 mL	208.396 g	208.378 g		
7	L09080039-01	SAMP	1	40 mL	100 mL	208.396 g	208.378 g		08/06/09
8	L09080049-01	SAMP	1	40 mL	100 mL	206.134 g	206.104 g		08/18/09
9	L09080049-02	SAMP	1	40 mL	100 mL	206.771 g	206.732 g		08/18/09
10	WG308973-02	REF	2	40 mL	100 mL	208.586 g	208.566 g		
11	L09080054-01	SAMP	2	40 mL	100 mL	208.586 g	208.566 g		08/11/09
12	WG308973-05	MS	1	40 mL	100 mL	206.694 g	206.664 g	.25 mL	
13	WG308973-06	MSD	1	40 mL	100 mL	207.057 g	207.05 g	.25 mL	
14	WG308973-07	DUP	1	40 mL	100 mL	206.281 g	206.259 g		

Analyst: Vech Collen

Reviewer:

MW_DIG - Modified 07/02/2008

PDF ID: 1458152 Report generated: 08/05/2009 10:31

Instrument Run Log

 Instrument:
 ELAN-ICP
 Dataset:
 080509B.REP

 Analyst1:
 JYH
 Analyst2:
 N/A

 Method:
 6020
 SOP:
 ME700
 Rev: 6

 Maintenance Log ID:
 29664
 ME700
 Rev: 6

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 308920,309040,309036

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	EL.080509.112425	Blank	Blank		1		08/05/09 11:24
2	EL.080509.113008	WG309059-01	Calibration Point		1		08/05/09 11:30
3	EL.080509.113551	WG309059-02	Calibration Point		1		08/05/09 11:35
4	EL.080509.114135	WG309059-03	Calibration Point		1		08/05/09 11:41
5	EL.080509.114720	WG309059-04	Calibration Point		1		08/05/09 11:47
6	EL.080509.115305	WG309059-05	Initial Calibration Verification		1		08/05/09 11:53
7	EL.080509.115959	WG309059-06	Initial Calib Blank		1		08/05/09 11:59
8	EL.080509.120655	WG309059-07	CRQL Check Solid		1		08/05/09 12:06
9	EL.080509.121354	WG309059-08	CRQL Check Water		1		08/05/09 12:13
10	EL.080509.122052	WG309059-09	Interference Check		1		08/05/09 12:20
11	EL.080509.122749	WG309059-10	Interference Check		1		08/05/09 12:27
12	EL.080509.123445	WG309059-11	CCV		1		08/05/09 12:34
13	EL.080509.124139	WG309059-12	ССВ		1		08/05/09 12:41
14	EL.080509.124812	WG308903-01	Reference Sample		500	L09080038-13	08/05/09 12:48
15	EL.080509.125425	WG308903-04	Matrix Spike	.504/200	500	L09080038-13	08/05/09 12:54
16	EL.080509.130039	WG308903-05	Matrix Spike Duplica	.504/200	500	L09080038-13	08/05/09 13:00
17	EL.080509.130652	L09080038-01	CZLW-1	.511/200	500		08/05/09 13:06
18	EL.080509.131307	L09080038-02	CZLW-1-02	.515/200	500		08/05/09 13:13
19	EL.080509.131921	WG308920-01	Post Digestion Spike		500	L09080038-02	08/05/09 13:19
20	EL.080509.132536	WG308920-02	Serial Dilution		2500	L09080038-02	08/05/09 13:25
21	EL.080509.133151	L09080038-03	CZLW-2	.525/200	500		08/05/09 13:31
22	EL.080509.133807	L09080038-04	CZLW-3	.506/200	500		08/05/09 13:38
23	EL.080509.134422	L09080038-05	CZLW-4	.521/200	500		08/05/09 13:44
24	EL.080509.135058	WG309059-13	CCV		1		08/05/09 13:50
25	EL.080509.135753	WG309059-14	CCB		1		08/05/09 13:57
26	EL.080509.140428	L09080038-06	CZLW-5	.504/200	500		08/05/09 14:04
27	EL.080509.141045	L09080038-07	CZLW-6	.508/200	500		08/05/09 14:10
28	EL.080509.141700	L09080038-08	CZLE-1	.502/200	500		08/05/09 14:17
29	EL.080509.142314	L09080038-09	CZLE-2	.511/200	500		08/05/09 14:23
30	EL.080509.142928	L09080038-12	CZLE-5	.527/200	500		08/05/09 14:29
31	EL.080509.143603	WG309059-15	CCV		1		08/05/09 14:36
32	EL.080509.144257	WG309059-16	ССВ		1		08/05/09 14:42
33	EL.080509.145056	WG308951-02	Method/Prep Blank	.5/200	1		08/05/09 14:50
34	EL.080509.145709	WG308951-03	Laboratory Control S	.5/200	1		08/05/09 14:57
35	EL.080509.150323	WG308951-01	Reference Sample		10	L09080052-09	08/05/09 15:03
36	EL.080509.150937	WG308951-04	Matrix Spike	.51/200	10	L09080052-09	08/05/09 15:09
37	EL.080509.151551	WG308951-05	Matrix Spike Duplica	.51/200	10	L09080052-09	08/05/09 15:15

Page: 1 Approved: August 10, 2009

Sheri L. Rakgraf

Instrument Run Log

 Instrument:
 ELAN-ICP
 Dataset:
 080509B.REP

 Analyst1:
 JYH
 Analyst2:
 N/A

 Method:
 6020
 SOP:
 ME700
 Rev: 6

Maintenance Log ID: 29664

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 308920,309040,309036

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	EL.080509.152205	L09080052-05	G-31-HSS004B (0.5)	.503/200	10		08/05/09 15:22
39	EL.080509.152820	WG309036-01	Post Digestion Spike		10	L09080052-05	08/05/09 15:28
40	EL.080509.153435	WG309036-02	Serial Dilution		50	L09080052-05	08/05/09 15:34
41	EL.080509.154111	WG309059-17	CCV		1		08/05/09 15:41
42	EL.080509.154806	WG309059-18	ССВ		1		08/05/09 15:48
43	EL.080509.155505	L09080049-03	G-31-MSS013 (6.0)	.509/200	5		08/05/09 15:55
44	EL.080509.160429	L09080049-04	G-31-MSS014 (6.0)	.514/200	5		08/05/09 16:04
45	EL.080509.161045	L09080049-05	G-31-MSB07B (6.0)		5		08/05/09 16:10
46	EL.080509.161702	L09080049-06	G-31-MSB04B (2.5)	.501/200	5		08/05/09 16:17
47	EL.080509.162317	L09080049-07	G-31-MSS017 (2.5)	.502/200	5		08/05/09 16:23
48	EL.080509.162930	L09080049-08	G-31-MDUP002 (2.5)	.501/200	10		08/05/09 16:29
49	EL.080509.164058	L09080049-08	G-31-MDUP002 (2.5)	.501/200	50		08/05/09 16:40
50	EL.080509.164714	L09080049-03	G-31-MSS013 (6.0)	.509/200	50		08/05/09 16:47
51	EL.080509.165330	L09080049-04	G-31-MSS014 (6.0)	.514/200	50		08/05/09 16:53
52	EL.080509.170006	WG309059-19	CCV		1		08/05/09 17:00
53	EL.080509.170700	WG309059-20	ССВ		1		08/05/09 17:07
54	EL.080509.171334	L09080049-05	G-31-MSB07B (6.0)	.503/200	1		08/05/09 17:13
55	EL.080509.171951	L09080049-06	G-31-MSB04B (2.5)	.501/200	50		08/05/09 17:19
56	EL.080509.172606	L09080049-07	G-31-MSS017 (2.5)	.502/200	500		08/05/09 17:26
57	EL.080509.173219	L09080049-08	G-31-MDUP002 (2.5)	.501/200	1000		08/05/09 17:32
58	EL.080509.173854	WG309059-21	CCV		1		08/05/09 17:38
59	EL.080509.174549	WG309059-22	ССВ		1		08/05/09 17:45
60	EL.080509.175222	WG308973-03	Method/Prep Blank	40/100	1		08/05/09 17:52
61	EL.080509.175836	WG308947-01	Fluid Blank		1		08/05/09 17:58
62	EL.080509.180451	WG308973-04	Laboratory Control S	40/100	1		08/05/09 18:04
63	EL.080509.181106	WG308973-01	Reference Sample		1	L09080039-01	08/05/09 18:11
64	EL.080509.181721	WG308973-05	Matrix Spike	40/100	1	L09080039-01	08/05/09 18:17
65	EL.080509.182337	WG308973-06	Matrix Spike Duplica	40/100	1	L09080039-01	08/05/09 18:23
66	EL.080509.182953	L09080054-01	DRL-Z-OUTLET 006	40/100	1		08/05/09 18:29
67	EL.080509.183609	WG308973-07	Duplicate	40/100	1	L09080054-01	08/05/09 18:36
68	EL.080509.184226	WG309040-01	Post Digestion Spike		1	L09080054-01	08/05/09 18:42
69	EL.080509.184843	WG309040-02	Serial Dilution		5	L09080054-01	08/05/09 18:48
70	EL.080509.185520	WG309059-23	CCV		1		08/05/09 18:55
71	EL.080509.190214	WG309059-24	ССВ		1		08/05/09 19:02
72	EL.080509.190847	L09070202-02	02SB027A (0-6)		5		08/05/09 19:08
73	EL.080509.191501	L09070202-03	02SB028B (12-18)		5		08/05/09 19:15
74	EL.080509.192115	L09080049-01	FB014 (080109)	40/100	1		08/05/09 19:21

Page: 2 Approved: August 10, 2009

Sheri L. Plakgraf

Instrument Run Log

 Instrument:
 ELAN-ICP
 Dataset:
 080509B.REP

 Analyst1:
 JYH
 Analyst2:
 N/A

 Method:
 6020
 SOP:
 ME700
 Rev: 6

 Maintenance Log ID:
 29664
 ME700
 Rev: 6

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 308920,309040,309036

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	EL.080509.192730	L09080049-02	FB015 (080309)	40/100	1	Reference	08/05/09 19:27
76	EL.080509.193405	WG309059-25	CCV	40/100	1		08/05/09 19:34
77	EL.080509.194059	WG309059-26	CCB		1		08/05/09 19:40
78	EL.080509.194733	WG309039-20 WG308031-02	Method/Prep Blank		1		08/05/09 19:47
79	EL.080509.195348	WG308031-02 WG308031-03	Laboratory Control S		1		08/05/09 19:53
80	EL.080509.193348	WG308031-03	Reference Sample		1	L09070470-20	08/05/09 20:00
81	EL.080509.200620	WG308031-01	Matrix Spike		1	L09070470-20	08/05/09 20:06
82	EL.080509.20020 EL.080509.201236	WG308031-04 WG308031-05	Matrix Spike Duplica		1	L09070470-20	08/05/09 20:12
83	EL.080509.201250	L09070470-01	H-14		1	209070470-20	08/05/09 20:18
84	EL.080509.201633 EL.080509.202510	L09070470-01	I-13/J-13		1		08/05/09 20:25
85	EL.080509.202510	WG308879-01	Post Digestion Spike		1	L09070470-02	08/05/09 20:23
86	EL.080509.203127 EL.080509.203743	WG308879-01	Serial Dilution		5	L09070470-02 L09070470-02	08/05/09 20:37
	EL.080509.203743 EL.080509.204418	WG308679-02 WG309059-27	CCV		1	L09070470-02	08/05/09 20:37
87	EL.080509.204418 EL.080509.205112	WG309059-27 WG309059-28	CCB		1		08/05/09 20:44
88							
89	EL.080509.205746	L09070470-03	I-14		1		08/05/09 20:57
90	EL.080509.210401	L09070470-04	I-15		1		08/05/09 21:04
91	EL.080509.211016	L09070470-05	I-16		1		08/05/09 21:10
92	EL.080509.211631	L09070470-06	J-14		1		08/05/09 21:16
93	EL.080509.212247	L09070470-07	N-13		1		08/05/09 21:22
94	EL.080509.212903	L09070470-08	N-14		1		08/05/09 21:29
95	EL.080509.213519	L09070470-09	0-7		1		08/05/09 21:35
96	EL.080509.214136	L09070470-10	O-8		1		08/05/09 21:41
97	EL.080509.214753	L09070470-11	O-13		1		08/05/09 21:47
98	EL.080509.215410	L09070470-12	O-14		1		08/05/09 21:54
99	EL.080509.220047	WG309059-29	CCV		1		08/05/09 22:00
100	EL.080509.220741	WG309059-30	ССВ		1		08/05/09 22:07
101	EL.080509.221416	L09070470-13	O-15		1		08/05/09 22:14
102	EL.080509.222032	L09070470-14	P-13		1		08/05/09 22:20
103	EL.080509.222647	L09070470-15	P-14		1		08/05/09 22:26
104	EL.080509.223303	L09070470-16	P-15		1		08/05/09 22:33
105	EL.080509.223918	L09070470-17	P-16		1		08/05/09 22:39
106	EL.080509.224534	L09070470-18	Q-13		1		08/05/09 22:45
107	EL.080509.225151	L09070470-19	Q-14		1		08/05/09 22:51
108	EL.080509.225827	WG309059-31	CCV		1		08/05/09 22:58
109	EL.080509.230522	WG309059-32	ССВ		1		08/05/09 23:05

Page: 3 Approved: August 10, 2009

Sheri L. Plakgraf

Instrument Run Log

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 309144,309201,309217,309263,309040,308782,309275,309276,3091

Comments: 309201

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	EL.080709.095330	Blank	Blank	ттер	1	Reference	08/07/09 09:53
2	EL.080709.095330	WG309258-01	Calibration Point		1		08/07/09 09:59
3	EL.080709.100456	WG309258-02	Calibration Point		1		08/07/09 09:39
4	EL.080709.101040	WG309258-03	Calibration Point		1		08/07/09 10:10
5	EL.080709.101625	WG309258-04	Calibration Point		1		08/07/09 10:16
6	EL.080709.102210	WG309258-05	Initial Calibration Verification		1		08/07/09 10:22
7	EL.080709.102904	WG309258-06	Initial Calib Blank		1		08/07/09 10:29
8	EL.080709.103600	WG309258-07	CRQL Check Solid		1		08/07/09 10:36
9	EL.080709.104259	WG309258-08	CRQL Check Water		1		08/07/09 10:42
10	EL.080709.104957	WG309258-09	Interference Check		1		08/07/09 10:49
11	EL.080709.105654	WG309258-10	Interference Check		1		08/07/09 10:56
12	EL.080709.110350	WG309258-11	CCV		1		08/07/09 11:03
13	EL.080709.111044	WG309258-12	ССВ		1		08/07/09 11:10
14	EL.080709.111717	L09080005-01	LOQ-1	40/100	1		08/07/09 11:17
15	EL.080709.112330	WG309183-02	Method/Prep Blank	.5/200	1		08/07/09 11:23
16	EL.080709.113005	WG309258-13	CCV		1		08/07/09 11:30
17	EL.080709.113659	WG309258-14	ССВ		1		08/07/09 11:36
18	EL.080709.114332	WG309183-03	Laboratory Control S	.5/200	1		08/07/09 11:43
19	EL.080709.115022	L09080106-01	PRCSFL04	.513/200	1		08/07/09 11:50
20	EL.080709.115636	WG309183-01	Reference Sample		1	L09080106-02	08/07/09 11:56
21	EL.080709.120250	WG309183-04	Matrix Spike	.513/200	1	L09080106-02	08/07/09 12:02
22	EL.080709.120905	WG309183-05	Matrix Spike Duplica	.513/200	1	L09080106-02	08/07/09 12:09
23	EL.080709.121520	L09080106-03	PRCL01	.522/200	1		08/07/09 12:15
24	EL.080709.122136	WG309201-01	Post Digestion Spike		1	L09080106-03	08/07/09 12:21
25	EL.080709.122752	WG309201-02	Serial Dilution		5	L09080106-03	08/07/09 12:27
26	EL.080709.123408	L09080127-01	G-31-HSS003B (0.5)	.544/200	10		08/07/09 12:34
27	EL.080709.124044	WG309258-15	CCV		1		08/07/09 12:40
28	EL.080709.124738	WG309258-16	CCB		1		08/07/09 12:47
29	EL.080709.125601	WG309183-01	Reference Sample		10	L09080106-02	08/07/09 12:56
30	EL.080709.130216	WG309183-04	Matrix Spike	.513/200	10	L09080106-02	08/07/09 13:02
31	EL.080709.130830	WG309183-05	Matrix Spike Duplica	.513/200	10	L09080106-02	08/07/09 13:08
32	EL.080709.131506	WG309258-17	CCV CCV	2 . 2. 200	1		08/07/09 13:15
33	EL.080709.132200	WG309258-18	CCB		1		08/07/09 13:22
34	EL.080709.132835	WG309190-03	Method/Prep Blank	40/100	1		08/07/09 13:28
35	EL.080709.132633	WG309190-03 WG309190-04	Laboratory Control S	40/100	1		08/07/09 13:34
	EL.080709.133450 EL.080709.134103	L09080081-03	POLISHED WATER -FRIDA	40/100	1		08/07/09 13:34
36							
37	EL.080709.134717	L09080081-04	DI WATER -FRIDAY	40/100	1		08/07/09 13:47

Page: 1 Approved: August 10, 2009

Sheri L. Rakgraf

Instrument Run Log

Instrument:	ELAN-ICP	Dataset:	080709A.REP	_	
Analyst1:	JYH	Analyst2:	N/A	_	
Method:	6020	SOP:	ME700	Rev: 6	
Maintenance Log ID:					

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 309144,309201,309217,309263,309040,308782,309275,309276,3091

Comments: 309144,309201,309217,309263,309040,308782,309276

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
38	EL.080709.135332	L09080100-01	OUTFALL 002/COMP	40/100	1	WG309190-01	08/07/09 13:53
39	EL.080709.140007	WG309258-19	CCV		1		08/07/09 14:00
40	EL.080709.140701	WG309258-20	ССВ		1		08/07/09 14:07
41	EL.080709.141335	WG309190-05	Duplicate	40/100	1	L09080100-01	08/07/09 14:13
42	EL.080709.141950	WG309190-02	Reference Sample		1	L09080100-01	08/07/09 14:19
43	EL.080709.142605	WG309190-06	Matrix Spike	40/100	1		08/07/09 14:26
44	EL.080709.143221	WG309190-07	Matrix Spike Duplica	40/100	1	L09080100-01	08/07/09 14:32
45	EL.080709.143837	L09080124-02	LTL-K-EQBLK-2	40/100	1		08/07/09 14:38
46	EL.080709.144454	WG309217-01	Post Digestion Spike		1	L09080124-01	08/07/09 14:44
47	EL.080709.145110	WG309217-02	Serial Dilution		5	L09080124-01	08/07/09 14:51
48	EL.080709.145747	WG309258-21	CCV		1		08/07/09 14:57
49	EL.080709.150441	WG309258-22	ССВ		1		08/07/09 15:04
50	EL.080709.151456	WG309251-02	Method/Prep Blank	.5/200	1		08/07/09 15:14
51	EL.080709.152112	WG309251-03	Laboratory Control S	.5/200	1		08/07/09 15:21
52	EL.080709.152725	WG309251-01	Reference Sample		1	L09080143-08	08/07/09 15:27
53	EL.080709.153340	WG309251-04	Matrix Spike		1	L09080143-08	08/07/09 15:33
54	EL.080709.153954	WG309251-05	Matrix Spike Duplica		1	L09080143-08	08/07/09 15:39
55	EL.080709.154609	L09080143-01	PRCSFL03	.521/200	1		08/07/09 15:46
56	EL.080709.155224	L09080143-02	PRCSFL03-QC	.536/200	1		08/07/09 15:52
57	EL.080709.155840	WG309263-01	Post Digestion Spike		1	L09080143-02	08/07/09 15:58
58	EL.080709.160456	WG309263-02	Serial Dilution		5	L09080143-02	08/07/09 16:04
59	EL.080709.161132	WG309258-23	CCV		1		08/07/09 16:11
60	EL.080709.161826	WG309258-24	ССВ		1		08/07/09 16:18
61	EL.080709.162501	L09080143-03	PRCSWBD	.549/200	1		08/07/09 16:25
62	EL.080709.163117	L09080143-04	PRCSFL01		1		08/07/09 16:31
63	EL.080709.163734	L09080143-05	PRCSWHB	.525/200	1		08/07/09 16:37
64	EL.080709.164351	L09080143-06	PRCSFL02	.514/200	1		08/07/09 16:43
65	EL.080709.165007	L09080143-07	PRCSWFH		1		08/07/09 16:50
66	EL.080709.165657	WG309251-01	Reference Sample		10	L09080143-08	08/07/09 16:56
67	EL.080709.170311	WG309251-04	Matrix Spike	.511/200	10	L09080143-08	08/07/09 17:03
68	EL.080709.170926	WG309251-05	Matrix Spike Duplica	.51/200	10	L09080143-08	08/07/09 17:09
69	EL.080709.171542	L09080143-04	PRCSFL01	.522/200	10		08/07/09 17:15
70	EL.080709.172157	L09080143-07	PRCSWFH	.501/200	50		08/07/09 17:21
71	EL.080709.172832	WG309258-25	CCV		1		08/07/09 17:28
72	EL.080709.173526	WG309258-26	ССВ		1		08/07/09 17:35
73	EL.080709.174200	WG309240-01	Method/Prep Blank		1		08/07/09 17:42
74	EL.080709.174815	WG309240-02	Laboratory Control S		1		08/07/09 17:48

Page: 2 Approved: August 10, 2009

Sheri L. Rakgraf

Instrument Run Log

Instrument:	ELAN-ICP	Dataset:	080709A.REP		
Analyst1:	JYH	Analyst2:	N/A		
Method:	6020	SOP:	ME700	Rev: <u>6</u>	_
Maintenance Log ID:					

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 309144,309201,309217,309263,309040,308782,309275,309276,3091

Comments: 309144,309201,309217,309263,309040,308782,309275,309276,3

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
75	EL.080709.175430	WG309240-03	Laboratory Control S	Пер	1	Reference	08/07/09 17:54
76	EL.080709.180046	L09080139-03	L09070470-01		1		08/07/09 18:00
77	EL.080709.180702	L09080139-04	L09070470-08		1		08/07/09 18:07
78	EL.080709.181318	WG309264-01	Post Digestion Spike		1	L09080139-04	08/07/09 18:13
79	EL.080709.181935	WG309264-02	Serial Dilution		5	L09080139-04	08/07/09 18:19
80	EL.080709.182611	WG309254-02 WG309258-27	CCV		1	209000139-04	08/07/09 18:26
81	EL.080709.183306	WG309258-28	CCB		1		08/07/09 18:33
82	EL.080709.183941	WG309230-20	Method/Prep Blank		1		08/07/09 18:39
83	EL.080709.184559	WG309241-01 WG309241-02	Laboratory Control S		1		08/07/09 18:45
84	EL.080709.185216	WG309241-02 WG309241-03	Laboratory Control S		1		08/07/09 18:52
85	EL.080709.185834	L09080139-01	L09070470-01		1		08/07/09 18:58
86	EL.080709.185834 EL.080709.190451	L09080139-01	L09070470-01 L09070470-08		1		08/07/09 18:38
87	EL.080709.191106	WG309241-01	Method/Prep Blank		1	1,00000400.00	08/07/09 19:11
88	EL.080709.191721	WG309266-02	Serial Dilution		5	L09080139-02	08/07/09 19:17
89	EL.080709.192357	WG309258-29	CCV		1		08/07/09 19:23
90	EL.080709.193052	WG309258-30	ССВ		1		08/07/09 19:30
91	EL.080709.193726	L09070202-02	02SB027A (0-6)	40/100	1		08/07/09 19:37
92	EL.080709.194342	L09070202-03	02SB028B (12-18)	40/100	1		08/07/09 19:43
93	EL.080709.194958	L09080049-01	FB014 (080109)	40/100	1		08/07/09 19:49
94	EL.080709.195615	WG308719-01	Reference Sample		100	L09070704-01	08/07/09 19:56
95	EL.080709.200232	WG308719-04	Matrix Spike	.512/200	100	L09070704-01	08/07/09 20:02
96	EL.080709.200849	WG308719-05	Matrix Spike Duplica	.513/200	100	L09070704-01	08/07/09 20:08
97	EL.080709.201507	WG308782-01	Post Digestion Spike		100	L09070704-01	08/07/09 20:15
98	EL.080709.202125	WG308782-02	Serial Dilution		500	L09070704-01	08/07/09 20:21
99	EL.080709.202802	WG309258-31	CCV		1		08/07/09 20:28
100	EL.080709.203457	WG309258-32	ССВ		1		08/07/09 20:34
101	EL.080709.204133	WG308175-03	Method/Prep Blank	40/100	1		08/07/09 20:41
102	EL.080709.204750	WG308175-04	Laboratory Control S	40/100	1		08/07/09 20:47
103	EL.080709.205405	WG308175-02	Reference Sample		1	L09070545-06	08/07/09 20:54
104	EL.080709.210021	WG308175-06	Matrix Spike	40/100	1	L09070545-06	08/07/09 21:00
105	EL.080709.210637	WG308175-07	Matrix Spike Duplica	40/100	1	L09070545-06	08/07/09 21:06
106	EL.080709.211254	L09070545-01	1:1.5 BCR:MIW	40/100	1		08/07/09 21:12
107	EL.080709.211911	L09070545-02	1:3 BCR:MIW	40/100	1		08/07/09 21:19
108	EL.080709.212528	L09070545-03	PH 3	40/100	1		08/07/09 21:25
109	EL.080709.213146	WG309275-01	Post Digestion Spike		1	L09070545-03	08/07/09 21:31
110	EL.080709.213804	WG309275-02	Serial Dilution		5	L09070545-03	08/07/09 21:38
111	EL.080709.214441	WG309258-33	CCV		1		08/07/09 21:44

Page: 3 Approved: August 10, 2009

Sheri L. Kakonak

Instrument Run Log

 Calibration Std:
 STD34439
 ICV/CCV Std:
 STD34194
 Post Spike:
 STD33697

 ICSA:
 STD34135
 ICSAB:
 STD34134
 Int. Std:
 STD34348

Workgroups: 309144,309201,309217,309263,309040,308782,309275,309276,3091

Comments: 209201

	1						
Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
112	EL.080709.215136	WG309258-34	ССВ		1		08/07/09 21:51
113	EL.080709.215811	L09070545-04	PH 3.7	40/100	1		08/07/09 21:58
114	EL.080709.220430	L09070545-05	1:15 BCR:MIW	40/100	1		08/07/09 22:04
115	EL.080709.221049	WG308175-05	Duplicate	40/100	1	L09070545-05	08/07/09 22:10
116	EL.080709.221727	WG309258-35	CCV		1		08/07/09 22:17
117	EL.080709.222421	WG309258-36	ССВ		1		08/07/09 22:24
118	EL.080709.223056	WG308694-02	Method/Prep Blank	40/100	1		08/07/09 22:30
119	EL.080709.223711	WG308694-03	Laboratory Control S	40/100	1		08/07/09 22:37
120	EL.080709.224328	WG308694-01	Reference Sample		1	L09070681-25	08/07/09 22:43
121	EL.080709.224944	WG308694-04	Matrix Spike	40/100	1	L09070681-25	08/07/09 22:49
122	EL.080709.225601	WG308694-05	Matrix Spike Duplica	40/100	1	L09070681-25	08/07/09 22:56
123	EL.080709.230218	L09070681-04	MW2A-239-20	40/100	1		08/07/09 23:02
124	EL.080709.230836	L09070681-09	MW4A-239-20	40/100	1		08/07/09 23:08
125	EL.080709.231454	WG309276-01	Post Digestion Spike		1	L09070681-09	08/07/09 23:14
126	EL.080709.232112	WG309276-02	Serial Dilution		5	L09070681-09	08/07/09 23:21
127	EL.080709.232750	WG309258-37	CCV		1		08/07/09 23:27
128	EL.080709.233444	WG309258-38	ССВ		1		08/07/09 23:34
129	EL.080709.234120	L09070681-14	MW5A-239-20	40/100	1		08/07/09 23:41
130	EL.080709.234739	L09070681-19	OW1A-239-20	40/100	1		08/07/09 23:47
131	EL.080709.235358	L09070681-22	MW2B-239-14	40/100	1		08/07/09 23:53
132	EL.080809.000016	L09070681-34	MW3A-239-14	40/100	1		08/08/09 00:00
133	EL.080809.000632	L09070681-37	MW3B-239-14	40/100	1		08/08/09 00:06
134	EL.080809.001249	L09070681-40	MW3C-239-14	40/100	1		08/08/09 00:12
135	EL.080809.001906	L09070681-43	MW3C2-389-14	40/100	1		08/08/09 00:19
136	EL.080809.002523	L09070681-46	MW4B-239-14	40/100	1		08/08/09 00:25
137	EL.080809.003141	L09070681-49	MW4C-239-14	40/100	1		08/08/09 00:31
138	EL.080809.003759	L09070681-52	OW1B-239-14	40/100	1		08/08/09 00:37
139	EL.080809.004436	WG309258-39	CCV		1		08/08/09 00:44
140	EL.080809.005130	WG309258-40	ССВ		1		08/08/09 00:51
141	EL.080809.005806	L09070681-59	OW2A-239-20	40/100	1		08/08/09 00:58
142	EL.080809.010425	L09070681-64	OW3A-239-20	40/100	1		08/08/09 01:04
143	EL.080809.011044	L09070709-36	ORG-S01-239-14	40/100	1		08/08/09 01:10
144	EL.080809.011703	L09070709-38	ORG-S02-239-14	40/100	1		08/08/09 01:17
145	EL.080809.012341	WG309258-41	CCV		1		08/08/09 01:23
146	EL.080809.013035	WG309258-42	ССВ		1		08/08/09 01:30

Page: 4 Approved: August 10, 2009

Sheri L. Hakgraf

Microbac Laboratories Inc. Data Checklist

Date: 05-AUG-2009

Analyst: JYH

Analyst: NA

Method: 6020

Instrument: ELAN

Curve Workgroup: 309059

Runlog ID: 29473

Analytical Workgroups: <u>308920,309040,309036</u>

Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	X
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	038,049,052,202,039,054
Client Forms	X
Level X	
Level 3	202
Level 4	038,049,052,039
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	SLP

Primary Reviewer: 06-AUG-2009

J'ye 1hu

Secondary Reviewer: 10-AUG-2009

Sheri L. Plakgraf

CHECKLIST1 - Modified 03/05/2008
Generated: AUG-10-2009 10:37:51

Comments

Microbac Laboratories Inc. Data Checklist

Date:	<u>07-AUG-2009</u>
Analyst:	JYH
Analyst:	NA
Method:	6020
Instrument:	ELAN
Curve Workgroup:	309258
Runlog ID:	29521

Analytical Workgroups: 309144,309201,309217,309263,309040,308782,309275,309276

	1
Calibration/Linearity	X
ICV/CCV	X
ICB/CCB	X
ICSA/ICSAB	Х
CRI	X
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	005,106,127,081,124,143,202,049
	545,681,709,652
Client Forms	X
Level X	
Level 3	106,143,202
Level 4	127,081,049,652,
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	SLP
Comments	

Primary Reviewer:

Secondary Reviewer: 10-AUG-2009

J'ye 1hu Sheri L. Rakong

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-10-2009 13:03:44

EQUIVALENT TO AFCEE FORM 9

00084166 HOLDING TIMES

AAB#: WG309040

Analytical Method: 6020

Login Number: L09070202

											_			
	ID	Date	TCLP	Time	Max	Q	Extract	Time	Max	Q	Run	Time	Max	Q
Client ID		Collected	Date	Held	Hold		Date	Held	Hold		Date	Held	Hold	ı
														ı
02SB027A (0-6)	02	07/09/09					08/05/09	27	180		08/07/09	29.4	180	
, ,		1 1												
02SB028B (12-18)	0.3	07/09/09					08/05/09	27	180		08/07/09	29.4	180	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 1459364
Report generated 08/10/2009 13:37

METHOD BLANK SUMMARY

Login Number:L09070202

Blank File ID:EL.080509.175222

Prep Date:08/05/09 09:17

Analyzed Date:08/05/09 17:52

Work Group: WG309040

Blank Sample ID: WG308973-03

Instrument ID: ELAN-ICP

Method: 6020

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG308973-04	EL.080509.180451	08/05/09 18:04	01
DUP	WG308973-07	EL.080509.183609	08/05/09 18:36	01
02SB027A (0-6)	L09070202-02	EL.080709.193726	08/07/09 19:37	01
02SB028B (12-18)	L09070202-03	EL.080709.194342	08/07/09 19:43	01

Report Name: BLANK_SUMMARY
PDF File ID: 1459365
Report generated 08/10/2009 13:37

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Arsenic, Leachable	0.000250	0.00100	0.000250	1	υ
Cadmium, Leachable	0.000125	0.000500	0.000125	1	υ
Copper, Leachable	0.000500	0.00200	0.000500	1	υ
Lead, Leachable	0.000250	0.000500	0.000250	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK PDF ID: 1459366 10-AUG-2009 13:37

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG308973-04

 Instrument ID: ELAN-ICP
 Run Time: 18:04
 Prep Method: 3015

 File ID: EL.080509.180451
 Analyst: JYH
 Method: 6020

 Workgroup (AAB#): WG309040
 Matrix: Leachate
 Units: mg/L

QC Key:STD Lot#:STD33694 Cal ID:ELAN-I-05-AUG-09

Analytes	Expected	Found	% Rec	LCS Limits		Q	
Arsenic, Leachable	0.0625	0.0598	95.7	80	-	120	
Cadmium, Leachable	0.0625	0.0616	98.5	80	-	120	
Copper, Leachable	0.0625	0.0597	95.5	80	-	120	
Lead, Leachable	0.0625	0.0640	102	80	-	120	

LCS - Modified 03/06/2008 PDF File ID:1459367 Report generated: 08/10/2009 13:37

Microbac ®

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L09070202
 Cal ID: ELAN-ICP
 Worknum: WG309040

 Instrument ID: ELAN-ICP
 Contract #: DACA56-94-D-0020
 Method: 6020

 Parent ID: WG308973-01
 File ID: EL.080509.181106
 Dil: 1
 Matrix: WATER

 Sample ID: WG308973-06
 MSD
 File ID: EL.080509.182337
 Dil: 1
 Units: mg/L

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Arsenic	0.000337	0.0625	0.0576	91.7	0.0625	0.0562	89.4	2.49	75 - 125	20	
Cadmium	ND	0.0625	0.0582	93.1	0.0625	0.0572	91.5	1.79	75 - 125	20	
Copper	0.00138	0.0625	0.0678	106	0.0625	0.0667	104	1.67	75 - 125	20	
Lead	0.0234	0.0625	0.0851	98.7	0.0625	0.0833	95.8	2.11	75 - 125	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac ®

WG_MS_MSD_DRYWT - Modified 03/07/2008 PDF File ID:1459368 Report generated 08/10/2009 13:37

[#] FAILS RPD LIMIT

Microbac Laboratories Inc.

Serial Dilution Report

 Login: L09070202
 Worknum: WG309040

 Instrument: ELAN-ICP
 Method: 6020

Serial Dil: WG309040-02 File ID: EL.080509.184843 Dil: 5 Units: ug/L

Sample: L09080054-01 File ID: EL.080509.182953 Dil: 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Arsenic	2.26	Х	2.535	X	12.20	
Cadmium	ND	U	ND	U		
Copper	ND	U	ND	U		
Lead	ND	U	ND	U		

U = Result is below MDL.

F = Result is greater than or equal to MDL and less than the RL.

X = Result is greater than or equal to RL and less than 100 times the MDL.

E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 100 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 1459362 08/10/2009 13:37

Microbac Laboratories Inc. POST SPIKE REPORT

Sample Login ID: <u>L09070202</u> Worknum: <u>WG309040</u>

Instrument ID: ELAN-ICP Method: 6020

 Post Spike ID: WG309040-01
 File ID:EL.080509.184226
 Dil:1
 Units: ug/L

 Sample ID: L09080054-01
 File ID:EL.080509.182953
 Dil:1
 Matrix: Leachate

Analyte	Post Spike Result	C	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ARSENIC	46.7		2.26		50	88.9	75 - 125	
CADMIUM	45.7		0	U	50	91.3	75 - 125	
COPPER	50.7		0	U	50	101.5	75 - 125	
LEAD	47.8		0	U	50	95.6	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): Login: L09070202 WG309040 Instrument ID: ELAN-ICP
Initial Calibration Date: 05-AUG-2009 11:47 Analytical Method: 6020 ICAL Worknum: WG309059

	WG3090	059-01	WG309	059-02	WG309	059-03	WG309059-04			
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ARSENIC	0	-253	.4	334	50	74500	100	145000	.99999	
CADMIUM	0	10.8	.4	496	50	58700	100	116000	.999959	
COPPER	0	128	.4	1160	50	119000	100	225000	.999984	
LEAD	0	369	. 4	11000	50	1260000	100	2500000	.999994	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 1459372

Report generated: 10-AUG-2009 13:37

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): Login: L09070202 WG309040 Instrument ID: ELAN-ICP
Initial Calibration Date: 07-AUG-2009 10:16 Analytical Method: 6020 ICAL Worknum: WG309258

	WG3092	WG309258-01		258-02	WG309	258-03	WG309258-04			
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ARSENIC	0	-193	.4	422	50	78500	100	157000	.999938	
CADMIUM	0	7.04	.4	580	50	74400	100	145000	.999991	
COPPER	0	105	.4	1050	50	116000	100	223000	.999973	
LEAD	0	395	. 4	13100	50	1610000	100	3180000	1	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 1459372

Report generated: 10-AUG-2009 13:37

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L09070202
 Run Date:
 08/05/2009
 Sample ID:
 WG309059-06

 Instrument ID:
 ELAN-ICP
 Run Time:
 11:59
 Method:
 6020

 File ID:
 EL.080509.115959
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-ICP - 05-AUG-09

Matrix:<u>LEACHATE</u>

Analytes	MDL	RDL	Concentration	Qualifier
ARSENIC	.1	.4	.1	υ
CADMIUM	.05	.2	.05	υ
COPPER	.2	.8	.2	υ
LEAD	.1	.2	.1	υ

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L09070202
 Run Date:
 08/07/2009
 Sample ID:
 WG309258-06

 Instrument ID:
 ELAN-ICP
 Run Time:
 10:29
 Method:
 6020

 File ID:
 EL.080709.102904
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-ICP - 07-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
ARSENIC	.1	.4	.1	υ
CADMIUM	.05	.2	.05	υ
COPPER	.2	.8	.2	υ
LEAD	.1	.2	.1	υ

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309059-12

 Instrument ID: ELAN-ICP
 Run Time: 12:41
 Method: 6020

 File ID: EL.080509.124139
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.100	0.400	0.100	υ
Cadmium	0.0500	0.200	0.0500	υ
Copper	0.200	0.800	0.200	υ
Lead	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309059-22

 Instrument ID: ELAN-ICP
 Run Time: 17:45
 Method: 6020

 File ID: EL.080509.174549
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.100	0.400	0.100	υ
Cadmium	0.0500	0.200	0.0500	υ
Copper	0.200	0.800	0.200	υ
Lead	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1459377 Report generated 08/10/2009 13:38

Microbac ®

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309059-24

 Instrument ID: ELAN-ICP
 Run Time: 19:02
 Method: 6020

 File ID: EL.080509.190214
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.100	0.400	0.100	υ
Cadmium	0.0500	0.200	0.0500	υ
Copper	0.200	0.800	0.200	υ
Lead	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1459377 Report generated 08/10/2009 13:38

Microbac ®

 Login Number: L09070202
 Run Date: 08/07/2009
 Sample ID: WG309258-12

 Instrument ID: ELAN-ICP
 Run Time: 11:10
 Method: 6020

 File ID: EL.080709.111044
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 07-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.100	0.400	0.100	υ
Cadmium	0.0500	0.200	0.0500	υ
Copper	0.200	0.800	0.200	υ
Lead	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

 Login Number:
 L09070202
 Run Date:
 08/07/2009
 Sample ID:
 WG309258-30

 Instrument ID:
 ELAN-ICP
 Run Time:
 19:30
 Method:
 6020

 File ID:
 EL.080709.193052
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 07-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.100	0.400	0.100	υ
Cadmium	0.0500	0.200	0.0500	υ
Copper	0.200	0.800	0.200	υ
Lead	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1459377 Report generated 08/10/2009 13:38

Microbac ®

 Login Number: L09070202
 Run Date: 08/07/2009
 Sample ID: WG309258-32

 Instrument ID: ELAN-ICP
 Run Time: 20:34
 Method: 6020

 File ID: EL.080709.203457
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 07-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Arsenic	0.100	0.400	0.100	υ
Cadmium	0.0500	0.200	0.0500	υ
Copper	0.200	0.800	0.200	υ
Lead	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number:
 L09070202
 Run Date:
 08/05/2009
 Sample ID:
 WG309059-05

 Instrument ID:
 ELAN-ICP
 Run Time:
 11:53
 Method:
 6020

 File ID:
 EL.080509.115305
 Analyst:
 JYH
 Units:
 ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

QC Key:STD

Analyte		Expected	Found	%REC	LIMITS	Q
Arsenic		50	49.5	99.0	90 - 110	
Cadmium		50	48.4	96.7	90 - 110	
Copper		50	50.1	100	90 - 110	
Lead		50	48.4	96.9	90 - 110	

^{*} Exceeds LIMITS Limit

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number: L09070202
 Run Date: 08/07/2009
 Sample ID: WG309258-05

 Instrument ID: ELAN-ICP
 Run Time: 10:22
 Method: 6020

 File ID: EL.080709.102210
 Analyst: JYH
 Units: ug/L

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 07-AUG-09

QC Key:STD

Analyte	Expected	Found	%REC	LIMITS	Q
Arsenic	50	48.4	96.8	90 - 110	
Cadmium	50	49.9	99.7	90 - 110	
Copper	50	49.0	97.9	90 - 110	
Lead	50	47.9	95.8	90 - 110	

^{*} Exceeds LIMITS Limit

00084185

Login Number:L09070202 Run Date:08/05/2009 Sample ID:WG309059-11

Instrument ID:ELAN-ICP Run Time:12:34 Method:6020

File ID:EL.080509.123445 Analyst:JYH QC Key:STD

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

Workgroup (AAB#):WG309040 Cal ID:ELAN-I
Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.3	ug/L	96.6	90 - 110	
Cadmium	50.0	49.1	ug/L	98.2	90 - 110	
Copper	50.0	51.7	ug/L	103	90 - 110	
Lead	50.0	50.6	ug/L	101	90 - 110	

^{*} Exceeds LIMITS Criteria

00084186

Login Number: L09070202 Run Date: 08/05/2009 Sample ID: WG309059-21

Instrument ID: ELAN-ICP Run Time: 17:38 Method: 6020

File ID: EL.080509.173854 Analyst: JYH QC Key: STD

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	47.6	ug/L	95.3	90 - 110	
Cadmium	50.0	48.1	ug/L	96.2	90 - 110	
Copper	50.0	49.5	ug/L	99.0	90 - 110	
Lead	50.0	47.4	ug/L	94.8	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L09070202 Run Date: 08/05/2009 Sample ID: WG309059-23

Instrument ID: ELAN-ICP Run Time: 18:55 Method: 6020

File ID: EL.080509.185520 Analyst: JYH QC Key: STD

Workgroup (AAB#): WG309040 Cal ID: ELAN-I - 05-AUG-09

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 05-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	46.7	ug/L	93.4	90 - 110	
Cadmium	50.0	47.0	ug/L	94.1	90 - 110	
Copper	50.0	49.5	ug/L	98.9	90 - 110	
Lead	50.0	47.8	ug/L	95.7	90 - 110	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	48.5	ug/L	96.9	90 - 110	
Cadmium	50.0	48.4	ug/L	96.8	90 - 110	
Copper	50.0	49.9	ug/L	99.8	90 - 110	
Lead	50.0	48.8	ug/L	97.6	90 - 110	

^{*} Exceeds LIMITS Criteria

00084189

Login Number: L09070202 Run Date: 08/07/2009 Sample ID: WG309258-29

Instrument ID: ELAN-ICP Run Time: 19:23 Method: 6020

File ID: EL.080709.192357 Analyst: JYH QC Key: STD

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 07-AUG-09

Matrix:LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	49.1	ug/L	98.1	90 - 110	
Cadmium	50.0	49.0	ug/L	98.0	90 - 110	
Copper	50.0	50.2	ug/L	100	90 - 110	
Lead	50.0	49.8	ug/L	99.7	90 - 110	

^{*} Exceeds LIMITS Criteria

00084190

Login Number:L09070202 Run Date:08/07/2009 Sample ID:WG309258-31

Instrument ID:ELAN-ICP Run Time:20:28 Method:6020

File ID:EL.080709.202802 Analyst:JYH QC Key:STD

Workgroup (AAB#):WG309040 Cal ID:ELAN-I - 07-AUG-09

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Arsenic	50.0	49.3	ug/L	98.7	90 - 110	
Cadmium	50.0	49.2	ug/L	98.4	90 - 110	
Copper	50.0	51.2	ug/L	102	90 - 110	
Lead	50.0	50.4	ug/L	101	90 - 110	

^{*} Exceeds LIMITS Criteria

Matrix:LEACHATE

Login number: L09070202 Workgroup (AAB#): WG309040

Instrument ID: ELAN-ICP

Method: 6020 File ID: EL.080509.122052 Units:ug/L **Sol. A:**WG309059-09 **Sol. AB**: WG309059-10 File ID: EL. 080509.122749 Matrix: Leachate

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Arsenic	NS	0.0439	NS	100	95.9	95.9	
Cadmium	NS	0.0519	NS	100	96.1	96.1	
Copper	NS	0.278	NS	100	99.7	99.7	
Lead	NS	0.0114	NS	100	96.6	96.6	

NS = Not spiked

* = Recovery of spiked element is outside acceptance limit of 80% - 120% of true value.

= Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).

Login number: L09070202 Workgroup (AAB#): WG309040

Instrument ID: ELAN-ICP

Method: 6020 File ID: EL. 080709.104957 Units:ug/L **Sol. A:**WG309258-09 **Sol. AB**: WG309258-10 File ID: EL. 080709.105654 Matrix: Leachate

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Arsenic	NS	0.0337	NS	100	96.8	96.8	
Cadmium	NS	0.0870	NS	100	95.7	95.7	
Copper	NS	0.270	NS	100	95.0	95.0	
Lead	NS	0.0214	NS	100	97.7	97.7	

NS = Not spiked

* = Recovery of spiked element is outside acceptance limit of 80% - 120% of true value.

= Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309059-08

 Instrument ID: ELAN-ICP
 Run Time: 12:13
 Prep Method: 3015

 File ID: EL.080509.121354
 Analyst: JYH
 Method: 6020

 Workgroup (AAB#): WG309059
 Matrix: Leachate
 Units: ug/L

 Contract #: DACA56-94-D-0020
 Cal ID: ELAN-ICP-05-AUG-2009 11:47

Analytes	Expected	Found	% Rec	Limits		Q	
Cadmium, Leachable	0.200	0.204	102	50	-	150	

CRI - Modified 03/06/2008 PDF File ID:1459370 Report generated 08/10/2009 13:37

 Login Number: L09070202
 Run Date: 08/07/2009
 Sample ID: WG309258-08

 Instrument ID: ELAN-ICP
 Run Time: 10:42
 Prep Method: 3015

 File ID: EL.080709.104259
 Analyst: JYH
 Method: 6020

 Workgroup (AAB#): WG309258
 Matrix: Leachate
 Units: ug/L

 Contract #: DACA56-94-D-0020
 Cal ID: ELAN-ICP-07-AUG-2009 10:16

Analytes	Expected	Found	% Rec	Limits	Q
Cadmium, Leachable	0.200	0.209	105	50 - 150	

CRI - Modified 03/06/2008 PDF File ID:1459370 Report generated 08/10/2009 13:37

Microbac Laboratories Inc. INTERNAL STANDARD REPORT

Login: L09070202 Analytical Method: 6020

Analytical Workgroup: WG309040 Matrix: 18
Instrument: ELAN-ICP Analyst: JYH

ICAL Date:05-AUG-2009 11:30

			BISMUTH	GERMANIUM	INDIUM	TERBIUM
Sample	Type	Run Date	% Rec	% Rec	% Rec	% Rec
WG308947-01	FBLK	05-AUG-2009 17:58	88.839	103.887	98.015	96.517
WG308973-01	REF	05-AUG-2009 18:11	116.051	102.994	100.558	104.845
WG308973-02	REF	05-AUG-2009 18:29	110.735	101.841	99.576	106.061
WG308973-03	BLANK	05-AUG-2009 17:52	89.021	101.469	98.291	97.242
WG308973-04	LCS	05-AUG-2009 18:04	92.46	103.341	98.987	98.893
WG308973-05	MS	05-AUG-2009 18:17	113.498	104.018	101.826	105.397
WG308973-06	MSD	05-AUG-2009 18:23	114.142	104.678	102.414	106.991
WG308973-07	DUP	05-AUG-2009 18:36	111.065	100.219	99.402	107.085
WG309040-01	PSPK	05-AUG-2009 18:42	111.226	100.518	99.368	106
WG309040-02	SERIAL	05-AUG-2009 18:48	99.372	98.504	97.224	100.35
WG309059-05	ICV	05-AUG-2009 11:53	104.217	95.933	98.43	102.097
WG309059-06	ICB	05-AUG-2009 11:59	102.347	99.298	100.738	102.514
WG309059-11	CCV	05-AUG-2009 12:34	103.775	100.034	99.93	102.888
WG309059-12	CCB	05-AUG-2009 12:41	105.601	101.213	100.04	102.411
WG309059-21	CCV	05-AUG-2009 17:38	105.328	101.157	99.157	100.631
WG309059-22	ССВ	05-AUG-2009 17:45	104.393	103.319	99.37	103.441
WG309059-23	CCV	05-AUG-2009 18:55	106.43	98.052	97.423	102.219
WG309059-24	ССВ	05-AUG-2009 19:02	105.066	99.361	98.326	102.088

Acceptance criteria: 30% - 120% Underlined recoveries are out of range

Microbac Laboratories Inc. INTERNAL STANDARD REPORT

Login: L09070202 Analytical Method: 6020

Analytical Workgroup: WG309040 Matrix: 18 Instrument: ELAN-ICP

Analyst: JYH ICAL Date: 07-AUG-2009 09:59

			BISMUTH	GERMANIUM	INDIUM	TERBIUM
Sample	Туре	Run Date	% Rec	% Rec	% Rec	% Rec
L09070202-02	SAMP	07-AUG-2009 19:37	111.316	109.527	103.746	100.729
L09070202-03	SAMP	07-AUG-2009 19:43	109.754	108.79	102.349	99.249
WG309258-05	ICV	07-AUG-2009 10:22	104.802	101.158	98.796	99.594
WG309258-06	ICB	07-AUG-2009 10:29	102.892	102.581	100.157	96.579
WG309258-11	CCV	07-AUG-2009 11:03	101.579	97.834	95.599	95.853
WG309258-12	ССВ	07-AUG-2009 11:10	99.561	97.94	97.884	96.474
WG309258-29	CCV	07-AUG-2009 19:23	105.26	106.218	99.284	97.309
WG309258-30	ССВ	07-AUG-2009 19:30	102.676	107.462	101.298	97.644
WG309258-31	CCV	07-AUG-2009 20:28	104.064	107.142	102	96.929
WG309258-32	CCB	07-AUG-2009 20:34	101.979	107.399	100.9	97.39

Acceptance criteria: 30% - 120% Underlined recoveries are out of range

Microbac Laboratories Inc. INTERNAL STANDARD REPORT

Login: L09070202 Analytical Method: 6020

05-AUG-2009 18:29

Analytical Workgroup: WG309040 Matrix: 2

BISMUTH GERMANIUM INDIUM TERBIUM
Sample Type Run Date % Rec % Rec % Rec % Rec

110.735

101.841

99.576

106.061

Acceptance criteria: 30% - 120% Underlined recoveries are out of range

L09080054-01

SAMP

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L09070202
 Date:
 06/08/2009

 Insturment ID:
 ELAN-ICP
 Method:
 6020

	Integration Time	Concentration
Analyte	(Sec.)	(ug/L)
Antimony	1.00	100.0
Arsenic	1.00	100.0
Barium	1.00	100.0
Cadmium	1.00	100.0
Chromium	1.00	100.0
Cobalt	1.00	100.0
Copper	1.00	100.0
Lead	1.00	100.0
Manganese	1.00	100.0
Nickel	1.00	100.0
Selenium	1.00	100.0
Silver	1.00	100.0
Thallium	1.00	100.0
Vanadium	1.00	100.0
Zinc	1.00	100.0

LINEAR_RANGE - Modified 03/06/2008 PDF File ID:1459369 Report generated: 08/10/2009 13:37

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L09070202
 Date:
 06/17/2009

 Insturment ID:
 ELAN-ICP
 Method:
 6020

	Integration Time	Concentration
Analyte	(Sec.)	(ug/L)
Uranium	1.00	100.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

LINEAR_RANGE - Modified 03/06/2008 PDF File ID:1459369 Report generated: 08/10/2009 13:37

2.1.2 Metals CVAA Data (Mercury)

2.1.2.1 Summary Data

LABORATORY REPORT

00084202

L09070202

08/11/09 13:38

Submitted By

Microbac Laboratories Inc. 158 Starlite Drive Marietta, OH 45750 (740) 373 - 4071

Account Name: Shaw E & I, Inc.

ABB Lummus Biulding
3010 Briarpark Drive Suite 4N
Houston, TX 77042
Attention: Jennifer Hoang

Project Number: 2773.025
Project: Longhorn AAP
Site: LONGHORN AAP KARNACK TX

P.O. Number: <u>389869/ 390836(GWTP)</u>

Sample Analysis Summary

Client ID	Lab ID	Method	Dilution	Date Received
02SB027A (0-6)	L09070202-02	7470A	1	10-JUL-09
02SB028B (12-18)	L09070202-03	7470A	1	10-JUL-09

L1_A_PROD - Modified 03/06/2008 PDF File ID: 1463337
Report generated: 08/11/2009 13:38

Microbac

1 OF 1

Micropac Laboratories inc.

00084203

Report Number: L09070202

Matrix: Leachate

Report Date : August 11, 2009

Sample Number: L09070202-02
Client ID: 02SB027A (0-6)

PrePrep Method:1312
Prep Method:7470A
Analytical Method:7470A Instrument: HYDRA
Prep Date: 08/05/2009 09:14 Cal Date: 08/05/2009 15:15 Analyst: PDM Run Date: 08/05/2009 15:37 File ID: HY. 080509.153737 Dilution: 1

Workgroup Number: WG309027
Collect Date: 07/09/2009 10:15 Sample Tag: 01 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury	7439-97-6		Ū	0.000200	0.000100

U Not detected at or above adjusted sample detection limit

of 2

Micropac Laboratories inc.

00084204

Report Date : August 11, 2009

Sample Number: L09070202-03 Client ID: 02SB028B (12-18)

Report Number: L09070202

Matrix: Leachate Workgroup Number: WG309027
Collect Date: 07/09/2009 10:20 Sample Tag: 01

PrePrep Method:1312
Prep Method:7470A
Analytical Method:7470A Instrument: HYDRA
Prep Date: 08/05/2009 09:14 Cal Date: 08/05/2009 15:15 Analyst: PDM Run Date: 08/05/2009 15:41 File ID: HY. 080509.154132

Dilution: 1 Units:mg/L

Analyte	CAS. Number	Result	Qual	PQL	SDL
Mercury	7439-97-6		υ	0.000200	0.000100

U Not detected at or above adjusted sample detection limit

of 2

2.1.2.2 QC Summary Data

Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and five standards.

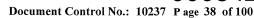
2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to Volume (mL)	40
Vi = Aliquot Volume (mL)	40
D = Manual dilution factor, if required (10X = 10)	1
Cx = Concentration of element in ppb (ug/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Ws} \times D$$


Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to volume (mL)	40
Ws = Aliquot weight (g)	0.6
D = Manual dilution factor	1
Cx = Concentration of element in ug/kg	6.67

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

1 Cx = Concentration calculated as received (wet basis)	6.67
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	8.33

8.33 ug/kg = 0.00833 mg/kg

TCLP Non-Volatile

nalyst(s): <u>/ a e</u> Date: <u>08-04-09</u>

Analys	st/Date	Analyst/Date			
Pac i	08.0407	Race	8.05-09		
Time	Temp	Time	Temp		
On	On °C	Off	Off°C		
1430	24	0730	23		

Jug # Sample # Tests Method Fluid # Marrix* %Solid Yes No Int. Wt. (g) Flied Vol. (nh.)								Size Re	duction		
D 07-689-14 ME 1311 F1-757 5/5 100 V 100.02 2000 D 01-699-01 I SV 100.04 G-C 08-004-01 SV 100.04 N/A FBUK ME I N/A N/A 1, 2000 D 07-202-02-ME 1312 SFR-18R 5/5 100 V 100.04 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A FBUK I N/A N/A N/A 1 2000 N/A N/A N/A N/A N/A N/A 1 2000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Jug#	Sample #	Tests	Method	Fluid #	Matrix*	%Solid			Int Wt (a)	Fluid Vol. (mL)
3-6-08-0016-01 SV	Ď	07-654-14	M	1311		5/5		103			
3-6-08-0016-01 SV	Ď	11-69901	T .	1	1	3	1	/	•	100.02	1
NIA POLA I I I NIK NIK 1 DOGG I	12.1	18-0046-01	.5√					-	/	100.00	
NIA POLA I I I NIK NIK 1 DOGG I	AIA	FAIR	MEI	1	1	NA	11/4			2000	
NIA POLA I I I NIK NIK 1 DOGG I	175	07.202-02	WF	1312	SF2 102	3/5	100	-	2	100 04	
NIA POLA I I I NIK NIK 1 DOGG I	1	03		1	DIKTON	1	1		-/-	100.01	
	A174	FBIK			1 1		1/4	-	/	2000	
	1/VIA	1 Out				74/11	NIN	-	1	2000	
		ii			†						
Due 80101					 						
8.01.01 Auc					 						
A de de de la constant de la constan	-				 						
	-										
	-				<u> </u>			 			
	1				ļ			ļ			
							[ļ			
Duc Solver							<u> </u>	ļ			
					 			ļ			
	-			ΙΛ.				ļ			
				104	 			ļ			
			70.K	10.	_			ļ			
			1 1		 			ļ			
			1/1/2/		ļ			ļ .			
					-			ļ			
			/					ļ			
			/					<u> </u>			
								<u> </u>			
									`		
		<u> </u>									

*Matrix Code = (S-solid) (SS-sand, soil or sludge) (P-paint) (O-organic) (W-water or waste) Agitator speed is 30 ± 2 rpm unless otherwise noted.

Comments:	
Peer Review By:	Supervisor Review:

Microbac Laboratories Inc. Metals Digest Log

Workgroup:WG308974

Analyst:<u>REK</u>

Spike Analyst:REK

Method: 7470A

Run Date: 08/05/2009 09:14

Hotblock Start Temp: 92.4 @ 09:10

Hotblock End Temp: 92.6 @ 11:10

SOP: ME404 Revison 12

Spike Solution: STD34449

Spike Witness: <u>VC</u>

H2SO4 Lot #: COA13254

HNO3 Lot #: COA13945

Digest tubes Lot #: COA14013

KMnO4 1:1 Lot #:RGT13913

K2S2O8 1:1 Lot #:RGT14066

Mercury Water ICV Lot #:STD34451
HG H2O STDS 10PPM Lot #:STD34457

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Spike Amount	Due Date
1	WG308974-02	BLANK	1	40 mL	40 mL		
2	WG308947-01	FBLK	18	40 mL	40 mL		
3	WG308950-01	FBLK	17	4 mL	40 mL		
4	WG308974-03	LCS	1	40 mL	40 mL	4 mL	
5	L09070202-02	SAMP	18	40 mL	40 mL		08/12/09
6	L09070202-03	SAMP	18	40 mL	40 mL		08/12/09
7	L09070652-14	SAMP	17	4 mL	40 mL		08/20/09
8	WG308974-01	REF	17	4 mL	40 mL		
9	L09070699-01	SAMP	17	4 mL	40 mL		08/11/09
10	L09080041-02	SAMP	2	40 mL	40 mL		08/14/09
11	L09080041-04	SAMP	2	40 mL	40 mL		08/14/09
12	L09080049-01	SAMP	1	40 mL	40 mL		08/18/09
13	L09080049-02	SAMP	1	40 mL	40 mL		08/18/09
14	WG308974-04	MS	1	4 mL	40 mL	4 mL	
15	WG308974-05	MSD	1	4 mL	40 mL	4 mL	

Analyst:

Reviewer: End Poten

BLOCK_DIG - Modified 07/22/2008 PDF ID: 1458630 Report generated: 08/05/2009 12:34 <u>Microbac</u>

Microbac Laboratories Inc.

Instrument Run Log

Instrument:	HYDRA	Dataset:	080509B.PRN	
Analyst1:	ADC	Analyst2:	N/A	
Method:	7470A	SOP:	ME404	Rev: 11
Maintenance Log ID:	29694			

Calibration Std: STD34457 Post Spike: STD34457 ICV/CCV Std: STD34451 ICSA: N/A Int. Std: ICSAB: N/A

Workgroups: WG309027

Comments: Due to failure upon intial analysis for NPDES criteria, the ICV was reanalyzed immediately with compliant results.

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	HY.080509.150606	WG309150-01	Calibration Point		1		08/05/09 15:06
2	HY.080509.150759	WG309150-02	Calibration Point		1		08/05/09 15:07
3	HY.080509.150947	WG309150-03	Calibration Point		1		08/05/09 15:09
4	HY.080509.151132	WG309150-04	Calibration Point		1		08/05/09 15:11
5	HY.080509.151319	WG309150-05	Calibration Point		1		08/05/09 15:13
6	HY.080509.151536	WG309150-06	Calibration Point		1		08/05/09 15:15
7	HY.080509.151722	WG309150-07	Ck2ICV		1		08/05/09 15:17
8	HY.080509.151955	WG309150-08	Ck3ICB		1		08/05/09 15:19
9	HY.080509.152150	WG309150-09	Initial Calibration Verification		1		08/05/09 15:21
10	HY.080509.152347	WG309150-10	Initial Calib Blank		1		08/05/09 15:23
11	HY.080509.152610	WG309150-11	CCV		1		08/05/09 15:26
12	HY.080509.152803	WG309150-12	ССВ		1		08/05/09 15:28
13	HY.080509.153012	WG308974-02	Method/Prep Blank	40/40	1		08/05/09 15:30
14	HY.080509.153153	WG308974-03	Laboratory Control S	40/40	1		08/05/09 15:31
15	HY.080509.153339	WG308947-01	Fluid Blank		1		08/05/09 15:33
16	HY.080509.153524	WG308950-01	Fluid Blank		1		08/05/09 15:35
17	HY.080509.153737	L09070202-02	02SB027A (0-6)	40/40	1		08/05/09 15:37
18	HY.080509.153939	WG309027-01	Post Digestion Spike		1	L09070202-02	08/05/09 15:39
19	HY.080509.154132	L09070202-03	02SB028B (12-18)	40/40	1		08/05/09 15:41
20	HY.080509.154319	L09070652-14	629-TCLP METALS		1		08/05/09 15:43
21	HY.080509.154554	WG309027-02	Serial Dilution		5	L09070652-14	08/05/09 15:45
22	HY.080509.154751	L09070652-14	629-TCLP METALS	4/40	25		08/05/09 15:47
23	HY.080509.154933	WG309150-13	CCV		1		08/05/09 15:49
24	HY.080509.155125	WG309150-14	CCB		1		08/05/09 15:51
25	HY.080509.155310	L09070699-01	VEHICLE REPAIR WIPES AI	4/40	1	WG308974-01	08/05/09 15:53
26	HY.080509.155517	WG309027-04	Post Digestion Spike		1	L09070699-01	08/05/09 15:55
27	HY.080509.155658	WG308974-04	Matrix Spike	4/40	1	L09070699-01	08/05/09 15:56
28	HY.080509.155843	WG308974-05	Matrix Spike Duplica	4/40	1	L09070699-01	08/05/09 15:58
29	HY.080509.160027	L09080041-02	CATEGORICAL/COMP	40/40	1		08/05/09 16:00
30	HY.080509.160228	L09080041-04	MANHOLE/COMP	40/40	1		08/05/09 16:02
31	HY.080509.160454	L09080049-01	FB014 (080109)	40/40	1		08/05/09 16:04
32	HY.080509.160641	WG309027-03	Post Digestion Spike		1	L09080049-01	08/05/09 16:06
33	HY.080509.160826	L09080049-02	FB015 (080309)	40/40	1		08/05/09 16:08
34	HY.080509.161036	WG309150-15	CCV		1		08/05/09 16:10
35	HY.080509.161240	WG309150-16	ССВ		1		08/05/09 16:12
36	HY.080509.161454	WG309027-02	Serial Dilution		125	L09070652-14	08/05/09 16:14
37	HY.080509.161639	WG309027-02	Serial Dilution		625	L09070652-14	08/05/09 16:16

Approved: Page: 1

August 11, 2009 Sheri L. Pfakgraf

Microbac Laboratories Inc.

Instrument Run Log

Instrument: HYDRA Dataset: 080509B.PRN Analyst1: ADC Analyst2: N/A Method: 7470A SOP: ME404 Rev: 11 Maintenance Log ID: 29694

Calibration Std: STD34457 ICV/CCV Std: STD34451 Post Spike: STD34457 ICSA: N/A Int. Std: ICSAB: N/A

> Workgroups: WG309027

Comments: Due to failure upon intial analysis for NPDES criteria, the ICV was reanalyzed immediately with compliant results.

Se	eq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
3	8	HY.080509.161822	WG309150-17	CCV		1		08/05/09 16:18
3	9	HY.080509.162005	WG309150-18	CCB		1		08/05/09 16:20

Comments

Seq.	Rerun	Dil.	Reason	Analytes
20	Х	25	Over Calibration Range	Hg

Approved: August 11, 2009 Page: 2

Sheri L. Hakgraf

Microbac Laboratories Inc. Data Checklist

Date:	<u>05-AUG-2009</u>
Analyst:	ADC
Analyst:	NA
Method:	7470A
Instrument:	HYDRA
Curve Workgroup:	308150
Runlog ID:	29494

Analytical Workgroups:	WG309027
, ,	

X
X
X
X
X
X
X
X
X
X
X
049, 041, 0202, 0699, 0652
X
0202
049, 0652
X
X
X
ADC
SLP

Primary Reviewer: 06-AUG-2009

Secondary Reviewer: 11-AUG-2009 The Cater Sheri L. Harging

CHECKLIST1 - Modified 03/05/2008 Generated: AUG-11-2009 10:34:50

Microbac Laboratories Inc.

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

08/05/09

27

TCLP

Date

Time

Held

Date

Collected

07/09/09

07/09/09

02

03

00084212

08/05/09 27.2 28

Analytical Method: 7470A

Client ID

02SB027A (0-6)

02SB028B (12-18)

Login Number:L09070202

Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	Q
		08/05/09	27	28		08/05/09	27.2	28	

28

AAB#: WG309027

*	=	SEE	PROJECT	QAPP	REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 1459562 Report generated 08/06/2009 12:28

Microbac ®

Page 81

METHOD BLANK SUMMARY

Login Number: L09070202

Blank File ID: HY.080509.153012

Prep Date: 08/05/09 09:14

Analyzed Date: 08/05/09 15:30

Work Group: WG309027

Blank Sample ID: WG308974-02

Instrument ID: HYDRA

Method: 7470A

Analyst:PDM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG308974-03	HY.080509.153153	08/05/09 15:31	01
02SB027A (0-6)	L09070202-02	HY.080509.153737	08/05/09 15:37	01
02SB028B (12-18)	L09070202-03	HY.080509.154132	08/05/09 15:41	01

Report Name: BLANK_SUMMARY
PDF File ID: 1459563
Report generated 08/06/2009 12:28

Analytes	SDL	PQL	Concentration	Dilution	Qualifier
Mercury	0.000100	0.000200	0.000100	1	υ

SDL Method Detection Limit

PQL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* | Analyte concentration | > RL

Report Name:BLANK PDF ID: 1459564 06-AUG-2009 12:28

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

00084215

Login Number: L09070202 Run Date: 08/05/2009 Sample ID: WG308974-03 Instrument ID: HYDRA Run Time: 15:31 Prep Method: 7470A File ID: HY. 080509.153153 Analyst:PDM Method: 7470A Matrix: Leachate Workgroup (AAB#): WG309027 Units:mg/L QC Key:STD Lot#:STD34449 Cal ID: HYDRA-05-AUG-09 Expected LCS Limits Analytes Found % Rec Q Mercury 0.00400 0.00405 101 85 - 115

LCS - Modified 03/06/2008 PDF File ID:1459565 Report generated: 08/06/2009 12:28

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L09070202
 Cal ID: HYDRA Worknum: WG309027

 Instrument ID: HYDRA Contract #: DACA56-94-D-0020 Method: 7470A

 Parent ID: WG308974-01 Sample ID: WG308974-04 MS File ID: HY.080509.155658 Dil:1 Units:mg/L
 Dil:1 Units:mg/L

 Sample ID: WG308974-05 MSD File ID: HY.080509.155843 Dil:1
 Dil:1

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Mercury	ND	0.0400	0.0318	79.5	0.0400	0.0307	76.8	3.52	85 - 115	20	*

^{*} FAILS %REC LIMIT

FAILS RPD LIMIT

 ${\tt NOTE:}$ This is an internal quality control sample.

Microbac ®

WG_MS_MSD_DRYWT - Modified 03/07/2008 PDF File ID:1459566 Report generated 08/06/2009 12:28

Microbac Laboratories Inc. POST SPIKE REPORT

Sample Login ID: <u>L09070202</u> Worknum: <u>WG309027</u>

Instrument ID: HYDRA Method: 7470A

 Post Spike ID: WG309027-01
 File ID:HY.080509.153939
 Dil:1
 Units: ug/L

 Sample ID: L09070202-02
 File ID:HY.080509.153737
 Dil:1
 Matrix: Leachate

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
MERCURY	0.897		0	U	1	89.7	85 - 115	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

Login Number: L09070202 Analytical Method: 7470A ICAL Worknum: WG309150 Workgroup (AAB#): WG309027

Instrument ID: HYDRA

Initial Calibration Date: 08/05/2009 15:15

	WG3	09150-01	WG3	09150-02	WG3	09150-03	WG3	09150-04	WG3	09150-05	WG3	09150-06
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT
Mercury	0	288	0.200	819	1.00	3347	2.00	6146	5.00	15366	10.0	30870

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1459567 Report generated 08/06/2009 12:28

Microbac Laboratories Inc. INITIAL CALIBRATION SUMMARY

00084219

Login Number: L09070202 Analytical Method: 7470A ICAL Worknum: WG309150

Workgroup (AAB#): WG309027 Instrument ID: HYDRA Initial Calibration Date: 08/05/2009 15:15

Analyte	R	Q
Mercury	1.000	

INT = Instrument intensity

R = Coefficient of correlation

= Data Qualifier = Out of Compliance; R < 0.995

INT_CAL_HG_FU - Modified 03/06/2008 PDF File ID: 1459567 Report generated 08/06/2009 12:28

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309150-10

 Instrument ID: HYDRA
 Run Time: 15:23
 Method: 7470A

 File ID: HY.080509.152347
 Analyst: PDM
 Units: ug/L

Workgroup (AAB#):WG309027 Cal ID:HYDRA - 05-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
MERCURY	.1	.2	.1	υ

ICB - Modified 07/14/2009 PDF File ID:1459569 Report generated 08/06/2009 12:28

 Login Number:
 L09070202
 Run Date:
 08/05/2009
 Sample ID:
 WG309150-12

 Instrument ID:
 HYDRA
 Run Time:
 15:28
 Method:
 7470A

 File ID:
 HY.080509.152803
 Analyst:
 PDM
 Units:
 ug/L

Workgroup (AAB#):WG309027 Cal ID: <u>HYDRA - 05-AUG-09</u>

 Analytes
 MDL
 RDL
 Concentration
 Qualifier

 Mercury
 0.100
 0.200
 0.100
 U

U = Result is less than MDL.

F = Result is between MDL and RL.

Matrix:LEACHATE

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1459571 Report generated 08/06/2009 12:28

Microbac ®

 Login Number:
 L09070202
 Run Date:
 08/05/2009
 Sample ID:
 WG309150-14

 Instrument ID:
 HYDRA
 Run Time:
 15:51
 Method:
 7470A

 File ID:
 HYY.080509.155125
 Analyst:
 PDM
 Units:
 ug/L

Workgroup (AAB#):WG309027 Cal ID: HYDRA - 05-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.200	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309150-16

 Instrument ID: HYDRA
 Run Time: 16:12
 Method: 7470A

 File ID: HY.080509.161240
 Analyst: PDM
 Units: ug/L

Workgroup (AAB#):WG309027 Cal ID: HYDRA - 05-AUG-09

Matrix:LEACHATE

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.200	-0.114	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1459571 Report generated 08/06/2009 12:28

Microbac ®

 Login Number:
 L09070202
 Run Date:
 08/05/2009
 Sample ID:
 WG309150-18

 Instrument ID:
 HYDRA
 Run Time:
 16:20
 Method:
 7470A

 File ID:
 HY.080509.162005
 Analyst:
 PDM
 Units:
 ug/L

Workgroup (AAB#):WG309027 Cal ID: HYDRA - 05-AUG-09

Analytes MDL RDL Concentration Qualifier
Mercury 0.100 0.200 -0.102 U

U = Result is less than MDL.

F = Result is between MDL and RL.

Matrix:LEACHATE

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID:1459571 Report generated 08/06/2009 12:28

Microbac ®

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number: L09070202
 Run Date: 08/05/2009
 Sample ID: WG309150-09

 Instrument ID: HYDRA
 Run Time: 15:21
 Method: 7470A

 File ID: HY.080509.152150
 Analyst: PDM
 Units: ug/L

Workgroup (AAB#):WG309027 Cal ID: HYDRA - 05-AUG-09

Analyte	Expected	Found	%REC	LIMITS	Q
Mercury	2	1.93	96.5	90 - 110	

^{*} Exceeds LIMITS Limit

QC Key:STD

00084226

Login Number:L09070202 Run Date:08/05/2009 Sample ID:WG309150-11

Instrument ID:HYDRA Run Time:15:26 Method:7470A

File ID:HY.080509.152610 Analyst:PDM QC Key:STD

Workgroup (AAB#):WG309027 Cal ID: HYDRA - 05-AUG-09

Matrix:LEACHATE

Analyte	Ez	xpected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0	.00200	0.00190	mg/L	95.0	80 - 120	

^{*} Exceeds LIMITS Criteria

00084227

Login Number: L09070202 Run Date: 08/05/2009 Sample ID: WG309150-13

Instrument ID: HYDRA Run Time: 15:49 Method: 7470A

File ID: HY.080509.154933 Analyst: PDM QC Key: STD

Workgroup (AAB#): WG309027 Cal ID: HYDRA - 05-AUG-09

Matrix: LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q	
Mercury, Total		0.00200	0.00181	mg/L	90.5	80 - 120	

^{*} Exceeds LIMITS Criteria

00084228

Login Number:L09070202 Run Date:08/05/2009 Sample ID:WG309150-15

Instrument ID:HYDRA Run Time:16:10 Method:7470A

File ID:HY.080509.161036 Analyst:PDM QC Key:STD

Workgroup (AAB#):WG309027 Cal ID: HYDRA - 05-AUG-09

Matrix:LEACHATE

Analyte	Ex	pected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.	.00200	0.00211	mg/L	106	80 - 120	

^{*} Exceeds LIMITS Criteria

00084229

Login Number: L09070202 Run Date: 08/05/2009 Sample ID: WG309150-17

Instrument ID: HYDRA Run Time: 16:18 Method: 7470A

File ID: HY.080509.161822 Analyst: PDM QC Key: STD

Workgroup (AAB#): WG309027 Cal ID: HYDRA - 05-AUG-09

Matrix: LEACHATE

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q	
Mercury, Total		0.00200	0.00182	mg/L	91.0	80 - 120	

^{*} Exceeds LIMITS Criteria

3.0 Attachments

Microbac Laboratories Inc. Analyst Listing August 11, 2009

	AJF - AMANDA J. FICKIESEN	
ALB - ANNIE L. BROWN BRG - BRENDA R. GREGORY	AML - ANTHONY M. LONG CAA - CASSIE A. AUGENSTEIN	BLG - BRENDA L. GREENWALT CAF - CHERYL A. FLOWERS
BRG - BRENDA R. GREGORI	CAA - CASSIE A. AUGENSTEIN	CAF - CHERIL A. FLOWERS
CAH - CHARLES A. HALL	CEB - CHAD E. BARNES	CLC - CHRYS L. CRAWFORD
CLW - CHARISSA L. WINTERS	CPD - CHAD P. DAVIS	CSH - CHRIS S. HILL
DDE - DEBRA D. ELLIOTT	DEL - DON E. LIGHTFRITZ	DEV - DAVID E. VANDENBERG
DGB - DOUGLAS G. BUTCHER	DIH - DEANNA I. HESSON	DLB - DAVID L. BUMGARNER
DLP - DOROTHY L. PAYNE	DLR - DIANNA L. RAUCH	DR - DEANNA ROBERTS
ECL - ERIC C. LAWSON	EDA - ERIN D. AGEE	ERP - ERIN R. PORTER
FJB - FRANCES J. BOLDEN	HAV - HEMA VILASAGAR	HJR - HOLLY J. REED
JBK - JEREMY B. KINNEY	JDH - JUSTIN D. HESSON	JKT - JANE K. THOMPSON
JWR - JOHN W. RICHARDS	JWS - JACK W. SHEAVES	JYH - JI Y. HU
KEB - KATHRYN E. BARNES	KHR - KIM H. RHODES	KRA - KATHY R. ALBERTSON
LKN - LINDA K. NEDEFF	LSB - LESLIE S. BUCINA	MDA - MIKE D. ALBERTSON
MDC - MICHAEL D. COCHRAN	MES - MARY E. SCHILLING	MMB - MAREN M. BEERY
MRT - MICHELLE R. TAYLOR	MSW - MATT S. WILSON	NPM - NATHANIEL P. MILLER
PDM - PIERCE D. MORRIS	RAH - ROY A. HALSTEAD	RB - ROBERT BUCHANAN
REK - ROBERT E. KYER	RLK - ROBIN L. KLINGER	RWC - RODNEY W. CAMPBELL
SDH - SHANA D. HINYARD	SLM - STEPHANIE L. MOSSBURG	SLP - SHERI L. PFALZGRAF
TIP - TAE I. PARRISH	TMB - TIFFANY M. BAILEY	TMM - TAMMY M. MORRIS
VC - VICKI COLLIER	WTD - WADE T. DELONG	

Microbac Laboratories Inc. List of Valid Qualifiers August 11, 2009

STD_ND=U Qualkey:

Qualifier Description

> U Not detected at or above adjusted sample detection limit

- ***Special Notes for Organic Analytes

 1. Acrolein and acrylonitrile by method 624 are semi-quantitative screens only.
- 2. 1,2-Diphenylhydrazine is unstable and is reported as azobenzene.
- N-nitrosodiphenylamine cannot be separated from diphenylamine.
 3-Methylphenol and 4-Methylphenol are unresolvable compounds.
- 5. m-Xylene and p-Xylene are unresolvable compounds.
- 6. The reporting limits for Appendix II/IX compounds by method 8270 are based on EPA estimated PQLs referenced in 40 CFR Part 264, Appendix IX. They are not always achievable for every compound an are matrix dependent.

																900)84
COC NO.	Laboratory Name: Microbac Address:158 Starlite Drive, Marietta OH 45750 Contact:Stephanie Mossburg Phone: 1-800-373-4071		Comments	**As,Cd,Cu,Pb										sty analysis			
	; , Marietta urg													Alssa			
	Laboratory Name: Microbac Address : 158 Starlite Drive, M Contact : Stephanie Mossburg Phone: 1-800-373-4071													jours for possible			
	Laboratory Name: Micı Address : 158 Starlite I Contact : Stephanie M Phone: 1-800-373-4071		4/1-1				-							2nd ja			
	Laborato Address Contact : Phone: 1							-						K-Hold *			
														1			
			Mercury (7471)		بحد	بدر	بدر	جد	×	×				Special Instructions		'ke: 000371	
	• .	(020)	# of Containers **Metals (6010/60		×	بحو	×	حو	ير	>	-			Specia		221000000371	
,		6-4408 ck, TX		Matrix	Soil À	Soil A	Soil 2	Soil 2	Soil a	Soil A				-			2
		ANDARD Soils): Karnad	(Š										09 11:2E	I happy
	inc.	TAT: STANDARD Phone No: 713-996-4408 Site: 02 (Soils) Location: Karnack, TX		Time	0):01	10:15	10:20	10:25	10:30	10:30				<u> </u>		obac OVD 'ed: 07/10/20 BIN KLINGER	
	structure, 00	4588)	Sign:	Date	7/9/2009	7/9/2009	7/9/2009	7/9/2009 lo:25	7/9/2009	7/9/2009				Received By:	Date/Time	Micr Receiv By: RC	-
	& Infras Suite 4	713.996. Hoang	Sampler Sign:	Grab	×	×	×	×	×	×					17:00		
	Shaw Environmental & Infrastructure, Inc. 3010 Briarpark Drive, Suite 400 Houston, TX 77042 (713) 996-4400	PM: Praveen Svrivastav (713.996.4588) Project Contact: Jennifer Hoang Project Name: LHAAP-02 Project #: 117591-	Sampler Print: Allen Willmore (713.247.9292)	Sample Number	02SB026A(0-6)	02SB027A(0-6)	02SB028B(12-18)	02SB0210(0-6)	02SB0211(0-6)	02SB0211(0-6)-DUP				Relinquished By:	Date/Time 7/0/09 17	Relinquished By: Date/Time	

COOLER INSPECTION

Received: 07/10/2009 10:07 Delivery Method: UPS Opened By: Robin Klinger Comments:

Login(s): L09070202

Cooler(s)

	Cooler #	Temp Gun	Temp	Tracking #	COC#	Comments
I		Н	3.0	420457505279		

1	Yes	Were shipping coolers sealed?
2	Yes	Were custody seals intact?
3	Yes	Were cooler temperatures in range of 0-6?
4	Yes	Was ice present?
5	Yes	Were COC's received/information complete/signed and dated?
6	No	Were sample containers and labels intact and match COC?
7	Yes	Were the correct containers and volumes received?
8	NA	Were correct perservatives used? (water only)
9	NA	Were pH ranges acceptable? (voa's excluded)
10	NA	Were VOA samples free of headspace (<6mm)?
11	Yes	Were samples received within EPA hold times?

Discrepancies:

6 The last sample on the COC does not match the lid on the bottle but the times and dates match.

Look closer. Go further. Do more.

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L09070202 **Account:** 2773

Project: 2773.025

Samples: 6

Due Date: 12-AUG-2009

Samplenum Container ID Products

L09070202-01 597388

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	w1	10-JUL-2009 14:58	RLK	

Samplenum Container ID Products

L09070202-02 597389

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	w1	10-JUL-2009 14:58	RLK	

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L09070202-02</u> 603135 SPLP-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	L1	04-AUG-2009 09:00	JKT	
2	PREP	L1	TCL	04-AUG-2009 11:08	RWC	JKT
3	STORE	TCL	A1	05-AUG-2009 09:31	JKT	RWC

Samplenum Container ID Products

L09070202-03 597390

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	w1	10-JUL-2009 14:58	RLK	

SamplenumContainer IDProductsL09070202-03603136SPLP-EX

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	L1	04-AUG-2009 09:00	JKT	
2	PREP	L1	TCL	04-AUG-2009 11:08	RWC	JKT
3	STORE	TCL	A1	05-AUG-2009 09:31	JKT	RWC

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L09070202 **Account:** 2773

Project: 2773.025
Samples: 6

Due Date: 12-AUG-2009

Samplenum Container ID Products

L09070202-04 597391

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	w1	10-JUL-2009 14:58	RLK	

Samplenum Container ID Products

L09070202-05 597392

Bottle: 1

Se	q. Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	w1	10-JUL-2009 14:58	RLK	

Samplenum Container ID Products

L09070202-06 597393

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish
1	LOGIN	COOLER	w1	10-JUL-2009 14:58	RLK	

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

The Times PROOF OF PUBLICATION

STATE OF LOUISIANA

PARISH OF CADDO

Before me, the undersigned authority, personally came and appeared

Altheas Critton personally known to me,

Who being duly sworn, deposes and says that she is the Assistant to the Classified Advertising Manager of The Times, and that the attached Advertisement entitled:

PUBLIC NOTICE THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49m -50m -35A(58), AND THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

As per copy of advertisement hereto annexed, was published in

The Times on the following dates to wit:

February 22 & 28, 2010

(Signed) (Althean Cutton)

Sworn to and subscribed before me this 1st day of March, 2010

una 38. Sa

DIANA W. BARBER, NOTARY PUBLIC # 60491 CADDO PARISH, LOUISIANA

AY COMMISSION IS FOR LIFE

(Notary)

New credit card law will keep a check on banks

By Candice Choi and Eileen A.J. Connelly

NEW YORK -- The new credit NEW YORK — The new credit card law is finally here. Starting today, banks will need to abide by new regu-lations on terms and disclosures. The idea behind the landmark law was to prevent banks from using practices that often dug borrowers deeper into

A look at how the credit card law affects key aspects of your account.

Then: Banks could raise the interest rate on an account at any time, including the rate on an existing balances, even if you weren't late on pay-

ments.

Now: The rate cannot be raised in the first year after an account is opened unless an introductory rate has come to an end. After that, card-holders must be notified 45 days in advance of any rate change.

For existing belaves extrace cont the

For existing balances, rates can't be raised unless the account is at least 60 days past due. If payments are made on time for six consecutive months, the original rate must be restored. There's still no cap on rates.

Disclosures

Then: The fine print on cardholder agreements was often difficult to understand. Rates, fees and penalies for other services such as cash advances, for example, could be hard to find. The impact of the interest rate on paying down a balance was hard to on paying down a balance was hard to

compute.

Now: Cardholders will see how
many months it will take to pay off a
balance if only minimum payments
are made. Statements will also indicate how much needs to be paid each month to pay off a balance within three years.

Service fees

Then: Banks could charge as much as they wanted. They could assess annual fees, activation fees and other fees. This was mostly a problem for subprime cards marketed to those with poor credit scores. One popular card, for example, the Premier Bankcard, charged \$256 in first-year fees for a \$250 credit line.

Now: Service fees, such as activa-tion and annual fees, will be capped at 25 percent of the credit limit during the first year of use. After that, there

Grace periods

Then: Some card companies sent out statements not long before payments were due, and sometimes shifted payment due dates from month to month, meaning that care the transfer was the companies of the companies of the care to ment due dates from month to month, meaning that payments would not always have enough time to arrive and get processed before being deemed late. As a result, some cardholders ended up getting charged interest or late fees even when they thought they were sending in payments on time.

Now: The law requires that due

Now: The law requires that due dates remain consistent. Statements must be sent out 21 days before the payment due date, and finance charges and fees cannot be applied before that period is up. In practice, about half of card issuers have a stranded true periods to a lower extended grace periods to as long as

Over-the-limit fees

Then: Banks set credit limits, then Then: Banks set credit limits, then routinely allowed charges to exceed those limits. When that happened, though, the customer was charged an over-the-limit fee as high as \$39. These fees were often triggered by interest charges or late-payment fees that pushed a balance over the credit limit. What's more, multiple over-the-limit fees could get charged in a single billing cycle if the balance was paid down and another charge nushed the down and another charge pushed the balance back over the limit. Now: The cardholder must specifi-

Now: The cardholder must specifically agree to permit transactions that exceed the credit limit. Only then can over-the-limit fees be charged. But the fees can't be triggered by other fees or interest charges. Only one over-the-limit fee may be imposed during a billing cycle. No over-the-limit fees may be charged unless the cardholder has specifically agreed to permit-transactions exceeding their authorized credit limit. These fees aumorized credit limit. These fees can no longer be triggered by other fees or interest charges imposed by the card issuer, and only one such fee may be imposed during a billing cycle.

In practice, several of the largest card companies have dropped these fees. Some banks are using popup boxes on their Web sites or other methods to obtain consumer autho-

Then: If you made a late payment on one credit card or loan, or even late

A Visa sticker is shown at a business in Detroit in July. Starting today banks will need to abide by a spate of new rules on terms and

How to seek referrals from business clients

recently been looking for new ways to recruit business. Some of my coworkers have been getting new business through referrals. I have always been bestant to ask for refer outsiness through referrals. I have always been hesitant to ask for referrals because I do not want to push any of my clients away. Is there any advice you could give me on how to ask my clients for referrals?

Answer: Asking for referrals can be an uncomfortable step for many people. The feeling of being pushy or aggressive causes many of us to hold back. You want to make sure that you maintain a good relation-ship with your customers and create a desirable relationship for all the parties involved. Here are some tips that will help you build your relationship with your client while you ask

Remind the customers of their specific benefit. Make a point to remember or write down when a client tells you how your company has benefited them. You can use this information during a future call.

■ Describe your customer pro-file. Briefly describe the range of challenges faced and benefits received by your customers. This may remind your existing customer of opportunities they are missing. It also will help them to think of other

people who could use your service.

Identify a benefit for giving a

MICHAEL CROM ON THE JOB

referral. Explain to your current cus-tomer how she or he would benefit from referring this person to you. Try to see things from your current customer's point of view and iden-tify the value it would create for this rson, not their company, the pros-

■ Suggest they already know someone. Provide examples of people or job positions who could benefit from your offerings. Try to make it easy for your client. If you have a specific person or people in mind mention them by name.

**Ask for an introduction. Ask your contact if he or she is willing to

give you and introduction before you ontact the new person. This will help make the process more friendly and open the door wider.

Michael Crom is executive vice president of Dale County.

president of Dale Carnegie Training. www.dalecarnegie.com or e-mail cameglecoach@dalecamegle.com

A shopper pulls a credit card from her wallet to make a purchase at the checkout at the Best Buy in Mechanicsburg, Pa., in November. The Federal Reserve has issued sweeping new rules to better protect Americans from sudden hikes in interest rates on credit cards.

payments for obligations like utility bills, that could trigger interest rate

hikes on other credit card accounts. Now: Card companies cannot raise interest rates on existing credit card balances. Interest rates can't rise during the first year an account is open, unless the original agreement pelled out a promotional rate for a limited time.

Consumers with older accounts must be informed of any interest rate increase on new charges at least 45 days in advance. They must also be given a chance to opt out of the hike by canceling the account and paying down the balance at the old interest rate. If an interest rate is increased, the card company must review the account once every six months to assess whether the rate should be dropped.

Then: Students arriving on college campuses often confronted a gantlet of credit card marketers handing out T-shirts, pizza and other gifts in exchange for filling out card applications. Credit cards were frequently handed out without checking the applicant's income sources. In 2008, 84 percent of undergraduates had at least one credit card. Average bal-

nces topped \$3,100.

Now: Credit cards may no longer be issued to anyone under age 21, unless the applicant has a co-signer, or can show independent means to repay the debt. Colleges must disclose any marketing deals they make with credit card companies. Banks are not allowed to hand out gifts on or near campuses or at college-related

Thrift, spending less key to helping lessen money woes

Question: I turned 50 this year. I've still got kids at home and one in college. The market kicked me pretty hard, and I don't see how I'll ever save enough money to retire. I don't know where my money goes, but I don't feel like we live some extravagant lifestyle. I don't have any debt, but I don't save any money either. What do I do?

Answer: Sometimes truth is better than sympathy.

The truth is that you are, in fact,

overspending. If you do not stop, you will bear the consequences those consequences may come sooner or they may come later. But the later they come, the uglier they will be. Your capacity to produce income is not perpetual, but depleting. Once your "well" stops producing "oil," you're going to really wonder where your money

You, and most of America, have been telling yourself a lie — that you are not overspending. You are one of the eminently reasonable folks who are not "extravagant. The issue for you is not extrava-gance, but thrift. Thrift is not about finding out exactly where you are "overspending." Try that and you'll be lucky to come up with more than a few bucks. Thrift is spending less than you make, and saving or investing that difference.

If you were laid off from your job tomorrow, and the only other work you could find paid you 20 percent less, I'd give you pretty good odds on surviving. You would undoubt-edly make some radical lifestyle changes, but you would survive (what other choice would you have?). That is the kind of dramatic approach that is called for -- not later, but immediately.

Here are some things to conm insure yourself now. Due to your spending habits, your most

Byron MOORE FINANCIAL FUNDAMENTALS

valuable asset is still you. Prudent people don't allow their most valued assets to remain uninsured or under insured

■ Pay yourself first. Take a "pay cut" to your household lifestyle and start saving 10 percent or more of your gross income. Remember. - pay yourself first. This will be the decisive decision that will mean either success or failure for you.

III Plan yourself out. Good actions, like insuring yourself now or paying yourself first, can become great results when taken in the context of a comprehensive financial plan. A plan acts like a coach for a team, coordinating efforts and bringing out the best in everyone. Work with a certified financial planner practitioner to design your

I'm sorry you've had your share of hard knocks. Lots of folks have. But none of that changes the hard reality that time is passing no matter what your circumstances

Choose thrift now, or get pain

Byron R. Moore, CFP is a member of the Ark-La-Tex Chapter, Financial Planning Association, whose members contribute to this column weekly. If you have questions or topics you would like to see addressed in this space, send inquiries to Financial Fundamentals c/o The Times, Money/Business, P.O. Box 30222, Shreveport LA 71130-0222 or e-mail shreveportmoney@gannett.com,

PUBLIC NOTICE THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49, -50, -35A(58), AND THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period began January 25, 2010, and has been extended to March 25, 2010. On Tuesday, March 9, 2010, from 7:00 to 9:00 p.m., the U.S. Army is inviting all interested parties to attend a public presentation of the proposed remedies for these sites and to ask questions and provide comments on the Proposed Plans. Questions, comments, and responses on the Proposed Plans will be recorded by a court reporter. This public meeting will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below

LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank which received wastewat various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LUCs; and 3) soil - excavation, groundwater - in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres. The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative: in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation.

The former Pistol Range is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to ecological receptors.

For further information or to submit written comments, contact: Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951; phone number 479-635-0110 or e-mail rose zeiler@us.armv.mil.

Unconventional' teacher making connection

By Heather Miller

BALDWIN — Stepping into the classroom of B. Edward Boudreaux Middle School teacher Stephen Schmidt, one might find wild stories of Jean Lafitte or Marie Laveau, or witness students playing games and role-playing as a way of taking in Louisiana history.

One thing you won't find upon entering Schmidt's classroom — a textbook

In Schmidt's class, textbooks exist purely for reference and the key to his students' learning is with "the

"I'm definitely unconventional." said Schmidt, an eighth-grade social studies teacher from Kansas City, Kan. "The classes are very activity-based. I trick them into learning ... I'm a master of manipulation.

room is not filled with history notes, but instead holds index cards with significant dates tacked onto it.

The students in Schmidt's class race to the white board — "Survivor" style — to see who can first remember the significance of dates like 1492 and 1776.

Schmidt has been teaching at B. Edward Boudreaux for three years, but his work with children dates back many years, starting as a white water rafting and backpacking guide for the Boy Scouts in Colorado. He spent his summers taking Boy Scouts on white water rafting, back-

packing and rock climbing trips, then spent his winters as a snowboarding instructor

The definitely unconventional, and Schmidt, an eighth-grade social tudies teacher from Kansas City, fan. "The classes are very activity-ased. I trick them into learning man a master of manipulation."

The white board in Schmidt's class-

with a shattered elbow and unable to continue his outdoor activities, he decided to attend college at Kansas

tate University.
While in college, the university asked Schmidt to join a group of stu-dents in traveling to the Middle East for international community service work. Schmidt spent four months teaching English as a second language and doing agricultural work for social service centers set up throughout Jordan and the West

"I think I was chosen because they knew I was the type of person who could sleep in a ditch in my sleeping bag and I wouldn't complain," he said.

Kansas State University is where he met his wife, who he accompanied to Louisiana when she got a teaching job in St. Mary Parish in 2000. But the couple detoured a bit

After an accident left Schmidt during their journey from Kansas to Louisiana, hitchhiking through continue his outdoor activities, he Mexico before deciding on a home

Schmidt finished his bachelor's degree in history at the University of Louisiana at Lafayette in 2005. working on sugar cane farms in St. Mary Parish while completing his studies.

"When we were on the farm. everyone out there said I needed to be teaching — because I bored them so much," he said. "I love teaching. I get paid to have a lot of fun. Ask students about his class, and

Ask students about his class, and "fun" is a word that echoes often when referencing their experience in Schmidt's classroom.

"He's different than other teachers," said eighth-grade student Kevin Smith, 15. "He makes it easy. He's cool in all kinds of ways."

Darien Dwier, a 14-year-old eighth-grader, said Schmidt teaches the stu-

He's cool in all kinds of ways.

dents about a variety of topics, not just social studies. "The other teachers don't act like Mr. Schmidt," said Jalicia Brous-sard, 16. "He tells it like it is, doesn't beat around the bush. But he likes

beat around the bush. But he likes helping people, too."
When Schmidt is not busy "corrupting the youth" through eighthgrade social studies, he spends much of his time coaching the B. Edward Boudreaux Middle School Chess Team.

Chess Team. The team has grown exponentially since its inception three years ago, Schmidt said, with 30 to 40 students on the team who placed third in the other level years.

state last year. "He inspires the students, really motivates them," said B. Edward Boudreaux Principal Naomi Harding. "He goes out of his way to work with the students, so much so that seventh-grade students are excited about going to his class in eighth

Schmidt, an Eagle Scout, also serves as scoutmaster for the Boy Scouts Evangeline Area Council Troop No. 1, the troop that holds the original charter for the Evange-

line Council. The group is highly active, and Schmidt spends many weekends on

scout outings around the state. "I don't think there's any organization that better prepares young men for being good civic participants. Schmidt said.

"To advance in the ranks, you have to participate in community service. I think people look at (Boy Scouts) as being sort of antiquated now, but I think it's a really good thing for young boys to chant once a week about being trustworthy and loyal. I think a lot of the old-time stuff is what kids crave.

New Orleans native designing line of urban playclothes

NEW ORLEANS - The day before her fall 2010 collection was before her fall 2010 collection was to debut at New York Fashion Week, designer Madeleine von Froomer was flying back from New Orleans, where she had watched the Saints win the Super Bowl at a friend's house in the French Quarter.

She landed at LaGuardia just in time for a bilgraged to hit.

She landed at Lactiardia just in time for a blizzard to hit.
"In retrospect, I probably should have missed the Super Bowl," she said by phone Wednesday from her Lower East. Side office. "I had to pack all of our fall collection in the middle of this herible snowstern. middle of this horrible snowstorm. and we weren't sure anyone was going to come out in that weather. But no matter how big this (show) was, I couldn't miss being in New Orleans when the Saints won. I lost

my voice screaming that night."

Von Froomer, a New Orleans
native who spent a chunk of her childhood on an organic blueberry farm in Picayune, Miss., is the codesigner behind Sophomore, the cult brand founded by Chrissie Miller. It's a line of urban play-clothes: high-waisted short shorts; U-neck T-shirts; bustier-topped sun-dresses; slouchy, short-sleeved hen-

leys all with a 1970s vibe.
Asymmetrical hem tank dresses with low sloping necklines are hot. They're the sort of clothes a socialite Iney re the sort of crotnes a socialite might wear when slumming with friends not approved by her parents. Think "Boogie Nights" gone a little upscale. For the Gen Art "New Garde" fashion show in New York, Sophomore designers Madeleine von Froomer, and Chrissie Miller thered 40 autifit in a little photon staged 40 outfits in a live photo shoot, with models shimmying in snoot, with models shifting and and out of clothes, photographers snapping photos and designers choreographing on the sides. "We thought it would be more interesting than models standing around," von

Miller founded the company in 2003 as a line of graphic T-shirts.

Von Froomer, who honed her skills working as a design assistant at Proenza Schouler, joined Sophomore about three years ago to expand the collections beyond pullovers

The clothes are easy basics with sophisticated price tags: T-shirts start at \$50, and cotton dresses range from \$100 to \$300. Von Froomer likes to say they're the cheapest things on the racks at high-end stores such as Selfridges in London and Opening Ceremony in Man-hattan. About 50 shops around the world carry the line, though none is in New Orleans.

A graduate of Ben Franklin High School and the New Orleans Center for Creative Arts, von Froomer studied painting and art history at the Maryland Institute College of Art. After graduation, and seriously tired of waiting tables, she headed to New York in hope of landing a job in

New York in nope of tanding a job in an art gallery. But her timing was terrible. She arrived one week before the Sept. 11, 2001, terrorist attacks.

The city suddenly was reeling, and her job prospects plummeted. With plenty of time and not much else to do, von Froomer started sewing on an old machine she had found at a thrift store in Baltimore.

"I was never interested in fashion, but I started selling clothes to a friend who owned a boutique," she said. "I thought, "Well, this will work."

From there, she perlayed a couple of fashion internships into design assistant positions. Von Froomer plans to take the growth at Sophomore in measured steps, trying to stay true to the brand's 1970s Lower

East Side ethos.
"What attracts me to that era is a certain sexiness. The clothes from the 1970s were really laid back; they had an ease to them. In the '80s, there were big shoulder pads and big silhouettes. In the 1960s, everyone dressed more stiffly. The 70s, the clothes moved with you They were sexy, and that's what we're capturing."

Find nearby deals on almost anything at your favorite stores.

When your TYPE 2 DIABETES is out of control, finding harmony is essential

If you're having trouble controlling your iabetes, considei participating in HARMONY, a research study evaluating an investigational diabetes medication that's taken only once a week.

It's estimated that 50% of diabetics in the U.S. struggle to successfully control their blood sugar. The inconvenience of multiple daily treatment can often add to this struggle. Now, the Harmony program is evaluating the effectiveness of an investigational, long-acting type 2 diabetes medication, which may require less frequent dosings.

To be eligible for this study, you must be:

18 years of age or older,

diagnosed with type 2 diabetes, AND

HARMONY

having trouble centralling your blood sugar levels.

Qualified participants will receive study treatment as well as study-related medical evaluations and tests at no cost

> To learn more about the **HARMONY** program, please contact:

Clinical Trials of America 318.226.2909 www.HarmonyClinicalTrials.com

Affordable Hearing!!

Call today to see if you qualify for the **NEW Starkey Hearing Aid!**

- FREE Consultation
- 12 month 0% Interest (wac)
- 60 Day Trial

PRICES STARTING AT PER MONTH

Sarah E. Hull Audiologist 318-747-9191

BETTER HEARING SYSTEMS of North West Louisiana, 11c

1900 Block of Benton Road California Plaza Bossier City, LA 71111

See our website: www.BetterHearingSystemsLA.com

PUBLIC NOTICE

THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES LHAAP-46, -49, -50, -35A(58), AND THE PISTOL RANGE, LONGHORN ARMY AMMUNITION PLANT, TEXAS PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period began January 25, 2010, and has been extended to March 25, 2010. On Tuesday, March 9, 2010, from 7:00 to 9:00 p.m., the U.S. Army is inviting all interested parties to attend a public presentation of the proposed remedies for these sites and to ask questions and provide comments on the Proposed Plans. Questions, comments, and responses on the Proposed Plans will be recorded by a court reporter. This public meeting will be held at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank which received wastewater from various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LUCs; and 3) soil - excavation. groundwater - in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres. The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative; in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation.

The former Pistol Range is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to

For further information or to submit written comments, contact: Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Rateliff, Arkansas, 72951; phone number 479-635-0110 or e-mail rose zeitenatus army mil.

Proof of Publication

from

MARSHALL NEWS MESSENGER

P.O. BOX 730	MARSHALL, TX 75670	(903) 935-7914
#2205547 #830.78	COUNTY OF HARRISON	of March ,20 10
	personally appeared before me in and for said county and state.	the undersigned, a Notary Public
	of the MARSHALL NEWS ME published at MARSHALL, Co TEXAS, who, being by me duly advertisement, a true copy of published in said newspaper in i	ounty of HARRISON, State of sworn, states that the attached which is hereto annexed, was
	4	bruary 20 10 bruary 20 10
		20
		20
	SIGNATURE CLANNE SI	ay 31 d
	Subscribed and sworn to day of	20 $\frac{10}{10}$.
	Notary Public, Har	rison County, Texas

My Commision 11 - 8-2013

JACQUELINE ENGLISH
NOTARY PUBLIC
STATE OF TEXAS
My Commission Expires 11-08-2012

Welcome to "Marshall's Marketplace"

Office Hours: Monday-Friday • 8 AM - 5 PM P.O. Box 730, 309 E. Austin, Marshall, Texas 75671

935-SELL (7355)

Pick it Up! Click it Up!

www.marshallnewsmessenger.com

Fax: 903-935-6242 Local from Longview: 903-758-7355

000

030 ND SERVICE

ANUFACTUREDI .3, 6.6 diesel eng. nty/Delivered. 13-918-5811.

O60 DEORGYCLES ATVS

HONDA SHADOW 750, custom paint, ang seat, cobra s, highway pegs, shield, new tires, 100 orig miles, 0. 903-935-4001

Harley D. Ultra ic, 11k miles. Very Warranty till Jan \$17,200. Call 38-0870

070 CREATIONAL VEHICLES

Forest River 1, 29" bumper pull 1 trailer, full size punk beds in rear, twin, new couch & sble cushions, well care of Sacrifice 0. Call 903-736-903-261-2145

28' Vema Trailers, hoose from! Start t \$4950 903)64, 399-8383

100 DRT UTILITY

Chevy S10 Blazer 1x4, runs & drives 1775. .7-1097

TRUCKS

3, 7.3 diesel Quad /flatbed, 2-WD, leck hook-up, Pink, Ross & Koenig xes, \$8500!)3-736-5836, or

Chev. Sliverado HD LT, ext. cab ed, 4-WD, 101K, at, alum, wheels 0.903-777-3672 777-4920

ord Explorer rac, Fire Redl niles. Loaded, 0, 903-235-2808

Ford F350 V8, rew Cab, loaded player, leather duty bumper on oosenck hookup bed. Extra clear les. \$37,500 3-938-7631

iMC 2500 Sierra c, ext cab, 6.5 WB, work ready, ce truck, \$4500. ce truck, \$450 03-742-1318

S, clean as new! 3K Mil. New tires te. \$10,000 e. 903-653-1908

EVROLET

ANSPORTATION JANNOLNŒMENTS

2030: LEGAL NOTICES

LEGAL NOTICE:

This Texas Lottery Com-mission Scratch-Off game will close on March 19, 2010. You have until September 15, 2010, to redeem any tickets for this game: #1005 Bonus Break the Bank (\$5) overall odds are 1 in 3.81. This Texas Lottery Commission Scratch-Of Commission Scratch-Off game will close on March 22, 2010. You have until September 18, 2010, to redeem any tickets for this game: #1282 Hous-ton Texans (\$5) overall odds are 1 in 3.84. These Texas Lottery Commission Scratch-Off Commission Scratch-Off games will close on April 28, 2010. You have until October 25, 2010, to redeem any tickets for these games: #1186 Happy Holldays! (\$1) overall odds are 1 in 4.62, #1187 Snow Dough (\$2) overall odds are 1 in 3.93, #1205. Cash Bounty (\$1) overall odds are 1 in 4.93. The odds listed here are the overall odds of win-

the overall odds of win-ning any prize in a game, including break-even prizes. Lottery retailers are authorized to redeem are authorized to redeem prizes of up to and including \$599 Prizes of \$600 or more must be claimed in person at a Lottery Claim Center or by mail with a completed Texas Lottery claim form; however, annulty prizes or prizes annuity prizes or prizes over \$999,999 must be claimed in person at the Commission Headquar-ters in Austin, Call Cus-

ters in Austin. Call Custom er. Service at 1.800.37L0TTO or visit the Lottery Web site at www.txiottery.corg for more information and location of nearest Claim Center. The Texas Lottery is not responsible for lost or stolen tickets, or for tickets lost in the mall. Tickets, transactions, players, and winners are subject to, and players and winners agree to abide by, all players and winners agree to abide by, all applicable laws, Commission rules, regulations, policies, directives, instructions, conditions, procedures, and final decisions of the Executive Director. Executive Director, A Scratch-Off game may continue to be sold even when all the top prizes have been claimed. Must be 18 years of age or older to purchase a Texas Lottery ticket. PLAY RESPONSIBLY. The

Texas Lottery Supports

Texas Education.

2030 LEGAL NOTICES

LEGAL NOTICES

PUBLIC NOTICE

PUBLIC NOTICE
THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE
PROPOSED PLANS FOR ENVIRONMENTAL SITES
LHAAP46; 49, 50, 35A(58), AND THE PISTOL RANGE,
LONGHORN ARMY AMMUNITION PLANT, TEXAS
PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period began January 25, 2010, and has been extended to March 25, 2010. On Tuesday, March 9, 2010, from 7:00 to 9:00 p.m., the U.S. Army is inviting all interested parties to attend a public presentation of the proposed remedies for these sites and to ask questions and provide comments on the Proposed Plans. Questions, comments, and responses on the Proposed Plans will be recorded by a court reporter. This public meeting will be held at the Karnack Community Center, Highway 134 and Spur 49. Karnack, Texas. Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo. Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

below.

LikaAP.48, the former Plant 2 production area, is located in the north-central portion of LihAAP, and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAP 49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to acceptable recentors at HAAP.40

support of trinitrotoluene production. Based on available information, the preferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to ecological receptors at LHAAP-9.

LHAAP-50, a former sump water tank, is located in the north-central portion of LHAAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank which received wastewater from various industrial waste sumps from 1955 to 1988. Three afternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil - excavation, groundwater - MNA and LLUCs, and 3) soil - excavation, groundwater - in situ bioremediation, MMA, and LLUCs, and 3) soil - excavation, groundwater - more received wastewater and soil-to-groundwater - and soil-to-groundwater and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and soil-to-groundwater - and implementing groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately 11 acres. The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater and 2) returning the contaminated groundwater and covers and the server of the sit

action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to ecological receptors.

For further information or to submit written comments, contact: Dr. Rose M. Zeller, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951; phone number 479-635-0110 or e-mail rose.zeiler@us.army.mil.

LEGAL NOTICES

Materials Advertisement and invitation for Bids

Harrison County will receive bids for materials for

Harrison County will receive bids for materials for water line improvements near Karnack, Texas until 10:00 am on Thursday, March 11, 2010 at Karnack Water Supply, 943 T J Taylor Ave., Karnack Water Supply, 943 T J Taylor Ave., Karnack, Texas. The bids will be publicly opened and read aloud at 10:00 am on Thursday, March 11, 2010 at Karnack Water Supply.

Bids are invited for the several items and quantities as detailed in the Bid Form which include but are not limited to the following: approximately 18,000 LF of 6" PVC Water Main, 211 - 3/4" Meter Assemblies, and necessary appurtenances. Bid/Contract Documents, including Technical Specifications are on file at Karnack Water Supply, 943 T J Taylor Ave., Karnack, Texas 903-679-3264.

A Bid Bond in the amount of 5% of the bid issued

A Bid Bond in the amount of 5% of the bid issued by an acceptable surety will be required with each bid. A certified check or bank draft payable to Harrison County or negotiable U.S. Government Bonds (as per value) may be submitted in lieu of the Bid

Harrison County reserves the right to reject any or all bids or to waive any informalities in the bidding. Bids may be held by Harrison County for a period not to exceed 60 days from the date of the bid opening for the purpose of reviewing the bids and investigating the bidders' qualifications prior to the ontract award

Harrison County - Richard Anderson, County Judge February 15, 2010

All contractors and/or subcontractors who are debarred, suspended or otherwise excluded from or ineligible for participation on federal assistance programs may not undertake any activity in part or in full under this project.

≈2040<u>=</u>

LOST

LOST: Black Dachshund wearing red sweater & a Chocolate Lab

NOTICE OF PUBLIC HEARING

HEARING
Planning and Zoning
Meeting: Monday, March
8, 2010 at 6:00 p.m.
City Commission Meeting: Thursday, March
11, 2010 at 6:30 p.m.
Location for Meeting:
Commission Chambers,
Marshall City Hall 401 Marshall City Hall, 401 South Alamo, Marshall,

The following request will be considered at this meeting

7-10-03: A request to rezone the residual portion of OL 54 NW and 56 NW of the Peter Whetstone Addition, from R-2 Single Family Detached to PD-Planned Development.

Location: 1006 W. Grand & W. Burleson

Applicant: Southern Mississippi Development
All interested persons
are invited to attend
these meetings and will be given an opportunity to be heard in connec-tion with these matters if they so desire. Inquiries may be referred to the Director of Planning at (903) 935-4457 of P. O. Box 698, Marshall, Texas 75671.

BY ORDER OF THE PLANNING AND ZONING COMMISSION AND THE CITY COMMISSION OF THE CITY OF MARSHALL TEXAS. Winston Robinson, Direc-

tor of Planning

2060<u>*</u> PERSONALS/ SPECIAL NOTICES

REWARD \$1000 for information leading

up to the arrest and con-viction of person(s) responsible for the theft of 2 well service dog-houses from pioneer well services, 903-553-9875

Have a great GARAGE SALE with the help of NEWS MESSENGER

<u>CLASSIFIEDS</u> 903-935-7355 **EMPLOYMENT**

3000

3012 ADMINISTRATIVE CLERICAL LAQUINTA INN Now Hir-

ing: Front Desk Repre-sentative. Please submit your resume to 5301 E. End Blvd S.

RECEPTIONIST NEEDED inquire at Certified Collision & Glass, 4008 E. End Blvd S. 938-2091

Click.Click.Uroom!

Over 30,000 visitors

every

month.

One website.

Marshall News Messenger.com

extremely huge, very friendly, missing from FM 1793. REWARDI for return Call 713-291-2244 or 713-922-1752 REWARD, LOST DOG

JAKE, Last seen Wed. 2/10/10, 2700 Block of BROWN/BLACK DACHS-H U N D M I X 9 0 3 571-3815, LEAVE MSG

Need to Place an Ad? **Just Call** 903-935-7355

Has your cargo load doubled?

is your car getting more crowded than your dinner table? Then it's time to visit MarshallNewsMessenger.com, You'll, find the biggest local selection and handy research features to make shopping for cars online easy. Whether you need something new or used, small or family-sized, visit MarshallNewsMessenger.com. We'll help you find the car that fits.

Click.Click.Vroom!

Click.Click.*Uroom!*

PUBLIC NOTICE THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLAN FOR ENVIRONMENTAL SITES LHAAP-35B (37) and -67,

LONGHORN ARMY AMMUNITON PLANT, TEXAS PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

The U.S. Army, as lead agency for environmental response actions at Long horn Army Ammunition Plant (LHAAP), in partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency on Environmental Quality and the U.S. Environmental Protection Agency Region 6, has reopened a proposed plan comment period for the following sites: LHAAP-35B (37) and LHAAP-67. Although the Proposed Plan identifies the preferred remedy for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period begins March 8, 2010 and concludes April 8, 2010. On Tuesday, March 9, 2010, from 7:00 to 9:00 p.m., the U.S. Army is inviting all interested parties to attend a public presentation of the proposed remedy for these sites and to ask questions and provide comments on the Proposed Plan. Questions, comments, and responses on the Proposed Plan will be recorded by a court reporter. This public meeting will be held at the Karnack Community Center, Highway 134 and Spur 449; Karnack, Texas. Coples of the Proposed Plan and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summarles of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

LHAAP-35B (37), the Chemical Laboratory, is located in the north-central portion of LHAAP and covers an area of 12.2 acres. LHAAP-35B (37) was built prvette Convert**NOTICE TO CONTRACTORS** OFFICIAL PUBLIC NOTICE HARRISON COUNTY, TEXAS RFP NUMBER: 2010-01

RFP NUMBER: 2010-01

PROPOSAL MUST BE CLEARLY MARKED:

RFP #2010-01

Notice is hereby given that competitive sealed Proposals for the construction of a New Harrison County Jail Annex to be located in Marshall, Texas will be received by Amy Holdeman, CPPB, Harrison County Purchasing Agent, at the Harrison County Purchasing Department, 200 West Houston Street, 1st Floor, Room 107, Marshall, TX 75670 until 2:00 P.M. CST. (MARCH 9TH 2010, then publicly opened in the Harrison County Purchasing Department, 200 West Houston Street, 1st Floor, Room 107, Marshall, Texas, 75670. Note: The Time-Date Stamp Clock located in the Purchasing Department will serve as the OFFICIAL ing Department will serve as the OFFICIAL CLOCK for the purpose of verifying the date and time of receipt of Proposals.

Copies of plans and specifications may be obtained from the **HARRISON COUNTY PURCHAS** ING DEPARTMENT at 200 West Houston St. 1st Floor. Room 107, Marshall, Texas 75670. A refundable deposit of \$125.00 in the form of a cashier's check, money order, or company check payable to "Harrison County" will be required for each set of Bidding Documents that is issued. The ANNOUNCEMENTS

2000

CLASSIFIEDS 935-SELL (7355)

Pick it Up! Click it Up!

1030 AND SERVICE

NERAL TIRES v Pulloffs \$75!! 25/60R16 - \$50. 35/65 R18 - \$75 75/60R20 for \$95,

VIANUFACTUREDI , 7.3, 6.6 diesel eng I 713-918-5811.

1050 BOATS/ **SUPPLIES**

92 18 Ft Procraft O dual pro bass boat. O Mercury motor new stor Guide trolling tor, CD player, 2 fish ders. Great conditionally 2 owners including self. In need of a ger boat for the nily. Asking \$5,500. If 903-808-7372

1060 TOTORCYCLES **ATVS**

11 HONDA SHADOW it 750, custom paint, stang seat, cobra es, highway pegs, dshield, new tires, ,000 orig miles, 100. 903-935-4001

7 Yamaha Roadline ruiser, fuel injected, 34 CCV twin, 3,700 perfect cond.Wai ted until 2013 250. 903-926-5062

1070 ECREATIONAL **VEHICLES**

choose from! Start at \$4950. 903 -5064, 399-8383

1075 TRACTORS EQUIPMENT

), runs & operates t. \$2500 -917-1097

I 100≖ PORT UTILITY

9 Chevy S10 Blazer, i, 4x4, runs & drives i, \$775. 917-1097

1110 TRUCKS

4 GMC 2500 Sierra sic, ext cab, 6.5 el, LWB, work ready, r nice truck, \$4500. es 903-742-1318

6 Chev. Silverado O HD LT, ext. cab tbed, 4-WD, 101K, seat, alum. wheels, 950, 903-777-3672 03-777-4920

1130[∞] VIIQUES AND CLASSICS

st Monday grounds ton March 5,6,& 7 que, classic autos & 3. 903-567-6762

160 CADILLAC

I SLS, clean as new! If 63K Mil. New tires beige. \$10,000 tiable. 903-653-1908

190 2040 DODGE

3024 LOST **HEALTH CARE**

marshallnewsmessenger.com PUBLIC NOTICE

THE UNITED STATES ARMY INVITES PUBLIC COMMENT ON THE PROPOSED PLANS FOR ENVIRONMENTAL SITES

LHAAP-46, -49, -50, -35A(58), AND THE PISTOL RANGE,
LONGHORN ARMY AMMUNITION PLANT, TEXAS

PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

Time for a new car?

Click.Click.*Uroom!*

PUBLIC MEETING AT KARNACK COMMUNITY CENTER MARCH 9, 2010

The U.S. Army is the lead agency for environmental response actions at Longhorn Army Ammunition Plant (LHAAP). In partnership with Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency Region 6, the U.S. Army has developed Proposed Plans for the following NPL sites: LHAAP-46, LHAAP-49, LHAAP-50, LHAAP-35A(58), and the Pistol Range. Although the Proposed Plans identify preferred remedies for each of the sites, the U.S. Army welcomes the public's review and comments. The public comment period began January 25, 2010, and has been extended to March 25, 2010. On Tuesday, March 9, 2010, from 7:00 to 9:00 p.m., the U.S. Army is inviting all interested parties to attend a public presentation of the proposed remedies for these sites and to ask questions and provide comments on the Proposed Plans. Questions, comments, and responses on the Proposed Plans will be recorded by a court reporter. This public meeting will be held at the Kernack Community Center, Highway 134 and Spur 449, Karnack, Texas, Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670. Summaries of each of the sites, including discussion of various alternatives that were evaluated, are provided below.

below.
LHAAP-46, the former Plant 2 production area, is located in the north-central portion of LHAAP and covers an area of approximately 190 acres. Plant 2 was used to produce pyrotechnic devices from February 1952 to 1956 and was reactivated to produce pyrotechnic and illumination devices from 1964 until approximately 1997. Three alternatives were evaluated for addressing the contaminated groundwater at the site 11 no action; 2) monitored natural attenuation (MNA) and land use controls (LUCs); and 3) in situ bioremediation, short-term LUCs, and long-term monitoring (LTM). Based on available information, the preferred remedy is MNA and LUCs. The preferred remedy would utilize groundwater use restriction LUCs to protect human health by preventing human exposure to contaminated groundwater and MNA to return the contaminated water to its potential beneficial use as drinking water, wherever practicable.

LHAAP-49, a former Acid Storage Area, is located in the west-central portion of LHAAP and covers an area of approximately 30 acres. The site was used from 1942 to 1945 for formulation and storage of acids and acid mixtures in support of trinitrotoluene production. Based on available information, the pre-ferred remedy at this time is no action. The recommendation is based on the existing data and determination of no unacceptable risk to human health or to cological receptors at LHAAP-49.

LHAAP-50, a former sump water tank, is located in the north-central portion LHAP-50, a former sump water tank, is located in the north-central portion of LHAP and covers an area of approximately 1 acre. Historically, LHAAP-50 contained a 47,000-gallon capacity aboveground storage tank which received wastewater from various industrial waste sumps from 1955 to 1988. Three alternatives were evaluated for addressing the contaminated groundwater and soil at the site: 1) no action; 2) soil—excavation, groundwater—MNA and LUCs; and 3) soil—excavation, groundwater—in situ bioremediation, MNA, and LUCs. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy

LOS. Based on available information, the preferred remedy at this time is the second alternative: excavation and off-site disposal of perchlorate-contaminated soils, and MNA and LUCs for groundwater. The preferred remedy would ensure protection of human health by eliminating the soil-to-groundwater and soil-to-surface water pathways, implementing groundwater use restriction LUCs to prevent exposure to contaminated groundwater, and implementing MNA until groundwater cleanup levels are achieved.

LHAAP-35A(58), known as the Shops Area, is located in the north-central portion of LHAAP and covers approximately, 11 acres. The Shops Area was established in 1942 as part of the installation's initial construction. Plant-operated laundry, automotive, woodworking, metalworking, painting, refrigeration, and electrical shops served the needs of the overall facility and became inactive in 1996 and 1997. Four alternatives were evaluated for addressing the contaminated groundwater at the site: 1) no action; 2) MNA with LUCs; 3) in situ bioremediation with short-term LUCs and LTM; and 4) in situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. Based on available information, the preferred remedy at this time is the fourth alternative: In situ bioremediation followed by MNA and LUCs for the eastern plume, and MNA and LUCs for the western plume. The preferred remedy would ensure protection of human health by 1) implementing groundwater use restriction LUCs which prevent human exposure to contaminated groundwater and 2) returning the contaminated water to its potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation.

potential beneficial use as a drinking water, wherever practicable, through MNA and in situ bioremediation.
The former **Pistot Range** is located in the southeastern portion of LHAAP and covers an area of approximately 0.4 acres. The area was used by base security personnel as early as the 1950s and intermittently through 2004 as a small arms firing range. The target area was a natural, wooded slope at the eastern side of the site. Soil with contamination above industrial cleanup levels was excavated and disposed off site during a 2009 removal action. Based on available information, the preferred remedy at this time is no action. The recommendation is based on existing data and determination of no unacceptable risk to human health or to ecological receptors.
For further information or to submit written comments, contact. Dr. Rose M.

For further information or to submit written comments, contact: Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951; phone number 479-635-0110 or e-mail rose.zeiler@us.army.mil.

Materials Advertisement and Invitation for Bids

Harrison County will receive bids for materials for water line improvements near Karnack, Texas until 10:00 am on Thursday, March 11, 2010 at Karnack Water Supply, 943 T J Taylor Ave., Karnack, Texas. The bids will be publicly opened and read aloud at 10:00 am on Thursday, March 11, 2010 at Karnack Water Supply.

Bids are invited for the several items and quanti ties as detailed in the Bid Form which include but are not limited to the following: approximately 18,000 LF of 6" PVC Water Main, 211 3/4" Meter Assemblies, and necessary appurtenances. Bid/Contract Documents, including Technical Specifications are on file at Karnack Water Supply, 943 T.J. Taylor, Ave., Karnack, Texas. 903-679-3264

Bid Bond in the amount of 5% of the bid issued by an acceptable surety will be required with each bid. A certified check or bank draft payable to Harrison County or negotiable U.S. Government Bonds (as per value) may be submitted in lieu of the Bid

Harrison County reserves the right to reject any or all bids or to waive any informalities in the bidding. Bids may be held by Harrison County for a period not to exceed 60 days from the date of the bid opening for the purpose of reviewing the bids and investigating the bidders' qualifications prior to the contract award.

<u> Harrison County - Richard Anderson, County Judge</u> February 15, 2010

All contractors and/or subcontractors who are debarred, suspended or otherwise excluded from or ineligible for participation on federal assis-tance programs may not undertake any activity in part or in full under this project

HEALTH CARE

Upshur Manor has an opening for an

Assistant Director of Nursing RN/LVN bonus for the right

candidate! *2p-10p LVN & PRN all shifts offering an \$1,000.00 sign on bonus for full time LVN

* 6a-2p, 2p-10p, 10p-6a CNAs & PRN all shifts offering a \$500.00 sign on bonus for full time CNAs

Benefits include: Voluntary: Medical/ Voluntary: Medical/ Dental/Vision. Company Paid: Life Insurance, LTD/STD, Vacation/Sick/Holiday, CEU's.

Send your resumes to Administrator: 623 Highway 155 North, Gilmer, Texas 75644 Phone 903-797-2143 You can also email your resume to upshur.adm@ nexion-health.com EOE M/F/D/V

Heritage House of Marshall

HEALTH CARE

HEALTH CARE

Management & Training Corporation

SUBSTANCE ABUSE COUNSELOR II (LCDC) SUBSTANCE ABUSE COUNSELOR I (Counselor Intern) East Texas Treatment Facility

Henderson, TX Do you have a Bachelor's Degree in Psychology, Sociology, Criminal Justice and/or Behavioral Sciences?

Begin a Career with the LARGEST Licensed freatment Facility within the State of Texas!

East Texas Treatment Facility is a new 2280 bed privately owned state of the art facility, a division of Management & Training Corporation. MTC is a private contractor with the Texas Department of Criminal Justice that provides treatment services for offenders in the in-Prison DWI Recovery Program, Substance Abuse Felony Punishment Program, and

the Intermediate Sanction Treatment Program. Competitive salary, benefits, and the potential for annual merit Increases with performance bonuses. Benefit package includes health/medical insurance, dental insurance, term life insurance, disabil-Ity Insurance, with a Health Reimbursement Account that pays a percentage of the insurance deductible. Please apply online: www.mtctrains.com

MTC is a Drug-Free Workplace and Equal Opportunity Employer M/F/V/D

Inspirations Outpatient Geriatric Counseling Center

on the campus of Marshall Regional Center

is recruiting to fill the following positions:

* LVN * * CNA/Patient Van Driver *

Our program operates Mon-Fri, 8am to 5pm. Driver must be 25 years of age. We offer excellent pay, full benefits and a 401k plan.

Please email resume to careers@ahmgf.com or fax to 903-934-5451. EOE

(Pittsburg, TX) **Pittsburg Nursing Center**

Current TX Administrator's license

Proven track record in long-term care

Learn more at: www.pittsburgnursingcenter.com

Email resume to: Matthew Lischmann RESUMES@AHSLLC.BIZ

PH: 817-607-7400

EOE M/F/D/V

CARTHAGE Accepting

Texas Medical Center applications for the fall Meditheore System following positions: Scrub Nurse - Surgery

RN - Surgery RN - Nursing Service RN - OB Unit

Maintenance Mechanic - PRN Radiology Dept. Secretary Ward Clerk - Nursing Service

LVN - Nursing Service CNA Positions (2) Housekeeper

Full Time Positions Benefits Included

email: mgshuttlesworth@etmc.org phone: 903-694-4651 fax: 903-694-4625 :3060

NOW HIRING Experienced Cook & Dietary Aide Apply in person @ 的 Magnolla Manor 510 E. Bonham Jefferson, TX

Servers & Bartenders Pulmonary/Critical Care & Sleep Medicine Physi-2 & 5 p.m. cian needed by Marshall

RESTAURANTS FOOD SERVICE

GUCCI'S now hiring Apply in person between

Health Services, Inc. in Marshall, TX. Freq. Grill now hiring, Only evening and weekend Experienced Waltstaff call. Must have M.D. or & Cooks need apply. In

:3070= SALES

HEALTH CARE

MAKE YOUR MOVE to a Rewarding Sales Career

Division of a national sales organization is expanding in this area

Representatives \$80,000 - \$106,000 1st year potential

Managers \$100,000 - \$125,000 1st year potential Great Training Program Unusual Marketing

This is a ground floor opportunity with rapid advancement from within. We have one of the top training programs in the nation

To schedule a personal interview contact Vicky Harris at 800-628-6428 x1380

ŠKILLED LABOR

TRANSPORTATION LOGISTICS

TRANSPORTATION/ LOGISTICS

Texas State Technical College

Job Placement Assistance!

NOW OFFERING TRUCK DRIVING TRAINING! **ENROLLING NOW!** (903) 923-3403

Call Now to Speak with a Representative

25 DRIVER TRAINEES NEEDED NOW! Learn to drive for US Expressi Earn \$750 Per Week

No experience Needed Local CDL Training Job ready in weeks 1-888-528-7115 **SELECT ENERGY SERVICES**

is currently seeking Night Drivers. 1 yr exp & tanker endorsement required.Salt water hauling exp.preferred. 12 hr shifts, pay DOE. Apply in person: 191 Private Rd 7336, DeBerry, TX 75639.

17,640 readers every sunday.

NEWS MESSENGER

FIREFIGHTER/EMT/PARAMEDIC City of Marshall

Civil Service Exam
Saturday, March 13, 2010
Marshall Civic Center

\$39,982 Paramedic/TCFP
Paramedic/EMT hiring preference! To register, contact Joey Dunagan (903) 935-4586

dunagan.joey@marshalltexas.net or www.marshalltexas.net EOE

The Little School House II Daycare

Now Enrolling
Birth-13 yrs
Small Environment

No Enrollment or Supply Fees

CCS Accepted 903-934-9665

403 S. Bolivar, Marshall **Employment Opportunities**

At Your Fingertips marshallnewsmessenger.com

NATIONAL OILWELL VARCO

National Oilwell Varco (NOV) is the leading provider for the worldwide oil and gas industry and has been dedicated to providing the highest quality oilfield products and services for more than 140 years.

The NOV Downhole division is currently seeking quality candidates to fill the following positions in

VATION

SERVICE TECHNICIANS

Essential duties include performing tests as specified; visually inspect all seals and stress areas; replacing all worn parts and seals; disassembling and pressure washing Downhole tools; assembling and performing outgoing tests; and maintaining accurate documentation of tools via service reports.

Candidates must possess a high school diploma or equivalent, good verbal and written communication skills, and strong mechanical aptitude.

NOV offers a comprehensive and very competitive employee benefits package including health, dental, life and disability insurance, a retirement plan, and

Interested candidates, please apply in person from Monday, March 1st - Friday, March 5th between 8:00am - 4:00pm at 3108 Maverick Drive, Kilgore, TX 75662.

www.nov.com

EOF, M/F/D/V

CITY OF MARSHALL EMPLOYMENT OPPORTUNITY

ANIMAL CONTROL SUPERVISOR

the Animal Control Division and staff, including office and field operations. Requires HS diploma/GED (some college preferred), 3 years experience in animal control, veterinary services, or related field plus 2 years supervisory experience. Must be able to work on-call rotation, evenings & weekends; must be able to cope with offensive sights, odors, noise, and potential physi-

TRANSPORTATION LOGISTICS

NOW TAKING APPLICATIONS Experience the best

driving job, everl

No touch freight, tarping

or dealing w/trallers.
One of the nations largest
DriveAway Co. is leasing ind.
contractors w/Class A & B

Responsible for the supervision of all phases of

cally injurious situations; requires strenuous

MEDIA RELEASE

The United States Army has prepared Proposed Plans for five environmental sites at the Longhorn Army Ammunition Plant: LHAAP-46, -49, -50, -35A(58) and the former Pistol Range. The Proposed Plans are documents that describe the sites and their proposed remedies. The Proposed Plans were developed to facilitate public involvement in the remedy selection process.

Copies of the Proposed Plans and supporting documentation are available for public review at the Marshall Public Library, 300 S. Alamo, Marshall, Texas, 75670 beginning January 25, 2010. The public comment period has been extended to March 25, 2010.

An informal open forum was held on January 26, 2010. A second public meeting, with a formal question and answer session, will be held on March 9, 2010, from 7:00 to 9:00 p.m. at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas 75661.

All written public comments on the Proposed Plans must be postmarked on or before March 25, 2010. Written comments may be provided to Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951 or e-mailed to rose.zeiler@us.army.mil. E-mailed comments must be submitted by close of business on March 25, 2010.

From: Sent:

faxadmin [faxadmin@shawgrp.com] Monday, February 22, 2010 8:59 AM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KTB\$3 at 9033340288

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

0 minutes, 54 seconds

Transmit Time:

02/22/2010 08:57

Transfer Rate:

14400

Status Code:

0000

Retry Count:

0

Job Id:

8413

Unique Id:

ENTBTRFAX01 SMTPFaxQ 1002221456580388

Fax Line:

1

Fax Server:

From:

faxadmin@shawgrp.com]

Sent:

Monday, February 22, 2010 9:00 AM

To: Subject: Norris, Mary Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KMSS at 3186314194

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

. 3

Connect Time:

1 minutes, 0 seconds

Transmit Time: Transfer Rate: 02/22/2010 08:58

14400

Status Code:

0000

Retry Count:

0

Job Id:

8414

Unique Id:

ENTBTRFAX01_SMTPFaxQ_1002221458220389

Fax Line:

Fax Server:

From: Sent:

faxadmin@shawgrp.com]

Monday, February 22, 2010 9:01 AM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KSLA at 3186776705

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

Connect Time:

0 minutes, 54 seconds

Transmit Time:

02/22/2010 08:59

Transfer Rate:

14400

Status Code:

0000

Retry Count:

0

Job Id:

8415 ENTBTRFAX01_SMTPFaxQ 1002221459350390

Unique Id: Fax Line:

Fax Server:

From: Sent:

faxadmin [faxadmin@shawgrp.com] Monday, February 22, 2010 9:02 AM

To:

Norris, Mary

Subject:

Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KTBS3 at 3182194680

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

0 minutes, 54 seconds

Transmit Time:

02/22/2010 09:00

Transfer Rate:

14400 0000

Status Code: Retry Count:

0000

Job Id:

8416

Unique Id:

ENTBTRFAX01_SMTPFaxQ_1002221500170391

Fax Line:

7

Fax Server:

From:

faxadmin@shawgrp.com]

Sent:

Monday, February 22, 2010 9:03 AM

To:

Subject:

Norris, Mary Fax: Tx 'ok' Report

This message was sent via FAXCOM, a product from Biscom Inc. http://www.biscom.com/

-----Fax Transmission Report-----

To:

KETK at 9035612459

Subject:

Media Release

Result:

The transmission was successful.

Explanation:

All Pages Ok

Pages Sent:

3

Connect Time:

1 minutes, 18 seconds

Transmit Time:

02/22/2010 09:01

Transfer Rate:

14400

Status Code:

0000

Retry Count:

0

Job Id:

8417

Unique Id:

ENTBTRFAX01_SMTPFaxQ_1002221500590392

Fax Line:

4

Fax Server:

LONGHORN ARMY AMMUNITION PLANT,

Karnack, Texas

MONTHLY MANAGERS' MEETING

AGENDA

DATE: Thursday, 25 February 2010

TIME: 3:00 p.m.

PLACE: Teleconference, Call-in-Number Courtesy of Shaw: 866-797-9304, Passcode 4155734

Welcome RMZ

Action Items:

Army

• Provide 2009 IAP hardcopy to the library.

EPA

• **EPA** – Provide analytical results on IDW from recent groundwater sampling

Programmatic Issues - Comment Response vs. Comment Resolution of Public Comment RMZ

Defense Environmental Restoration Program (DERP) PBC Update

PS/GJ

- Status of Select Documents
 - LHAAP-17, LHAAP-29, and LHAAP-16 DF Feasibility Studies
 - LHAAP-47 and LHAAP-18/24 Draft Feasibility Studies
- Groundwater Treatment Plant

DERP Total Environmental Restoration Contract Update

• Re-opened Public Comment Period for LHAAP-37/67

RMZ

MMRP JRL/AW

Army Position Memo to TCEQ

Other Issues RMZ

- Sitewide Schedule Review
- RAB Tour Rescheduled
- IAP Schedule

Adjourn

Subject: Draft Final Minutes, Monthly Managers Meeting,

Longhorn Army Ammunition Plant (LHAAP)

Location of Meeting: Teleconference

Date of Meeting: February 25, 2010; 3:00 PM – 4:00 PM

Meeting Participants:

BRAC: Rose M. Zeiler

USAEC: Matthew Mechenes

USACE-Tulsa: Aaron Williams, John Lambert

Shaw: Praveen Srivastav, Greg Jones, Kay Everett, Susan Watson

USEPA Region 6: Steve Tzhone

TCEO: Fay Duke, Dale Vodak

USFWS: Paul Bruckwicki, Barry Forsythe

USGS: Kent Becher

Previous Action Items

Army

• Provide 2009 IAP hardcopy to the library. (completed)

EPA

• Provide analytical results on IDW from recent groundwater sampling at MMRP sites. (in progress)

Steve Tzhone indicated that EPA was about to sign the ESD for LHAAP-18/24, but found an editorial change. Rose Zeiler said that BRAC had already signed it as is and that the document should not be changed at this stage for a page number change and an acronym. Fay Duke said she

1

also had concern about changing it at this point. Steve said that he would get the document back to the Army tomorrow or Monday.

Programmatic Issue

Comment Response vs. Comment Resolution of Public Comment Rose M. Zeiler

The handling of the comment responsiveness stage was discussed regarding when comments or questions received from the public during the current and future public comment period should be answered. The discussion centered on whether current email questions should be answered now or after the comment period is over and all comments have been received. Steve said that there is not a requirement to answer them immediately. The requirement is that verbatim information be available for people to refer to, and that a responsiveness summary provides answers in a condensed manner. However, Steve said that questions could be answered as they are given. By providing a transcript to the public, he indicated that this may mitigate receiving questions later that are similar in nature. John Lambert suggested that these questions be answered at the next meeting if possible.

Abbreviated Defense Environmental Restoration Program (DERP) PBC Update

Status of Select Documents

Praveen Srivastav

Praveen Srivastav went over select documents from the document status/environmental sites table.

- LHAAP-16: The responses to comments (RTCs) for the Draft Final Feasibility Study Addendum, Rev 01 for LHAAP-16 is in regulatory review. Shaw provided a tracked-changes document showing the revisions.
- LHAAP-17: The RTCs for the Draft Final Feasibility Study for LHAAP-17 is also in regulatory review. Shaw is resolving a regulatory comment on the trigger for shutting down groundwater extraction in one of the alternatives.
- LHAAP-18/24: Army comments have been received for the Draft Feasibility Study for LHAAP-18/24 and resolution is in progress.
- LHAAP-29: Revised RTCs for the Draft Final Feasibility Study for LHAAP-29 have been reviewed by Army and were under regulatory review as of 02/11/10.
- LHAAP-47: The Draft Final Feasibility Study for LHAAP-47 is in progress.

Rose Zeiler indicated concern over meeting the enforceable schedule stating that Shaw would not be able to meet the schedules agreed upon by all parties for LHAAP-17 and LHAAP-29. She said that a request for a schedule extension will need to be made and asked if we are scheduling enough time for regulatory reviews. The schedule for LHAAP-16 has already slipped. She said that resolution of key issues on these sites is complicated. The time it takes to resolve these issues may make the schedules for these sites slip further. Steve indicated that more time can be buffered into the extension. If it doesn't get pushed out of this fiscal year, he did not see a problem with some slippage and suggested in the extension letter to add all known sites that may be affected by the resolution issues. Rose Zeiler stated that schedule slippage is a problem for Army in that with passing time, the options become less and less feasible within the current contract constraints. She emphasized that the whole team must work together to keep the schedule from slipping anymore. John Lambert reiterated that it doesn't appear that any FY10 sites will cross from FY10 to FY11 at

this time. It was discussed that if a site crosses this line (whereby the ROD will require an extension), then HQ would be involved.

Rose asked where LHAAP-17 was at this time. Praveen indicated that a response to the Army will be sent tomorrow (on Friday) and if Army had a chance to look at it and it was okay, it could go to the regulators as early as next week. Steve said that he would check with Terry (Burton) regarding EPA comments on LHAAP-29 and confirm if next week is reasonable to get back. Fay Duke said that she was finishing up the document for LHAAP-16 and has not looked at the LHAAP-29 responses yet. She said she would need to organize her comments by putting them in a table and would send out today. Rose stated that Shaw does not have a record of EPA providing concurrence or non-concurrence on Site 16 RTCs from last fall. Steve stated that he would check his file and provide either documentation of his response or would make a response.

Rose suggested that if there are any lingering issues regarding these FSs that the stakeholders could meet before or after March's monthly manager's meeting and work those issues at that time.

Looking at the schedule, John said that the FS completion for LHAAP-18/24 is scheduled for May 2010. That is only 3 months away and there needs to be time to resolve comments. John sees slippage for sites LHAAP-16, -17, and -29. He indicated that extension had already been requested for LHAAP-16, and it looks like LHAAP-17 and LHAAP-29 will not meet February FS deadline. Steve said that one extension letter can be issued electronically for all impacted sites and that he can send back an approved response electronically for the extensions.

Fay asked when the 5-year review would start. Steve said the trigger is the actual completion date of the Remedial Action or RA or for the on-site construction completion date of "RIP" (remedy in place), the terminology the Army uses. Fay asked if the next 5-yr review is 2014. Steve said the first 5-year was actually September 23, 2002 and the second 5-review was 2007 and that would make the next one 2012. He indicated, however, that groundwater issues regarding the 2007 review were resolved in 2008. There was concern that the definition refers to the start of RA; John said that this might be interpreted as the initiation of the RA operations. Fay noted that FSs typically say that monitoring will be performed until the first 5-year review. Since, there is already a review schedule for LHAAP-16 and 18/24 and Army wants to consolidate 5-year reviews, the timing of the first 5-year review for a site could shorten monitoring time. Fay said that the FSs should tie monitoring to the first five years, rather than to 5-year reviews. Rose agreed. And noted that this would not be an issue because the next review date has been set from the last and will continue every 5 years to include all sites with RODs even those less than 5 years old.

Groundwater Treatment Plant Update

Greg Jones

Greg Jones noted that the treatment plant operated normally at 180 to 200 gallons per minute in the metals and volatiles treatment units, and 15 to 18 gpm in the FBR. Greg noted that one week, cold weather hampered operations somewhat, in particular the sodium hydroxide line. He also noted that some extraction pumps at LHAAP-16 and LHAAP-18/24 have been changed out, resulting in improved production rates.

DERP Total Environmental Restoration Contract (TERC) Update

Rose Zeiler

LHAAP-37/67 – Draft Final ROD Status

Rose indicated that an explanatory email had been sent out regarding the reopening of a comment period for these two sites. The Army will hold the public meeting for the Proposed Plan for LHAAP-37/67 on March 9. Army said that they will be using six posters for the two sites during the public meeting presentation. Steve asked for a copy of the posters used and copies of the public notice which was published in the Marshall paper on February 21 and February 22 in the Shreveport paper.

MMRP John Lambert

Army Position Memo to TCEQ

Fay said that she and Steve needed to discuss this memo.

Other Issues

Sitewide Schedule Review

The amended schedule will be provided by Shaw. This review will be conducted in May.

RAB Tour Rescheduled

Rose indicated she had heard from two RAB members regarding the tour schedule on Monday, March 8th or Tuesday, March 9th. One member favored Monday evening at 4 to 6 pm, while the other preferred Tuesday afternoon at 3 to 5 pm. Rose wanted to offer a third alternative, possibly 9 to 11 am Tuesday morning. She noted that in case of a conflict, the tour would be held at a time that Paul Fortune could attend because he is the one who requested it. She will send a follow up email to the RAB.

IAP Schedule

March 15th through the 29th is the data collection period. After this, the schedule goes to the regulators for their review. They will have two weeks for review and to get any comments back to the Army.

Paul Bruckwicki confirmed with Rose that Jim Stockey had contacted the Army about fire management at the Refuge. Paul indicated that Jim Stockey with the Fire Management Office burns brush and vegetation at the magazines and other isolated areas approximately once every 3 years.

Paul asked Rose about the UXO safety video that was made and when USFWS would get a copy for use at the Refuge for visitor education. The video was finalized with the MMRP report. Rose said she would check into it, and asked if USFWS had a preference for delivery. Paul said they had means to retrieve it from an FTP site if a link could be provided. Paul also asked about the associated brochures that were developed for this purpose as USFWS would like to get those too. John said he would take of it.

Meeting Adjourned

Action Items

EPA

• Provide analytical results on IDW from recent groundwater sampling.

Shaw

• Provide regulators with a copy of the media release and public notice published in the local newspapers.

Army

- Provide UXO video and brochures to USFWS for the Caddo Lake Natural Wildlife Refuge.
- Provide regulators with a copy of the media release and public notice that is published in the local newspapers.

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract February 25, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
1	Draft Rev 01Decision Document, LHAAP-02	10/01/09	Х		Draft Final	03/11/10	X	X	In progress	Army is reviewing a track-changes version prior to submittal to TCEQ.	DD identifies limited groundwater monitoring
2	Draft Soil Removal Work Plan, LHAAP-03	03/18/10	х							In preparation	
3	Draft Completion Report, LHAAP- 04	01/21/10	X							In Army review	
4	County Notification LHAAP-06, 07, 51, 55, 64, 66, 68	01/30/10	х							With Army for signatures	
5	Draft Final Feasibility Study Addendum, Rev 01, LHAAP-16	7/3/08	X	х	Final	03/12/10	X	х	In progress	RTCs reviewed by regulators. Track- change document under review by EPA and TCEQ	
6	Draft Final Feasibility Study, LHAAP-17	4/14/09	Х	х	Final	03/11/10	х	х	In progress	RTCs are in regulatory review. Shaw is resolving one comment.	
7	Draft Feasibility Study, LHAAP- 18/24	3/3/09	х		Draft Final	03/25/10	х	х	In progress	Army comments received. Resolution in progress.	
8	Draft Final Feasibility Study, LHAAP-29	03/11/09	Х	X	Final	03/30/10	X	X	In progress	RTCs in regulatory review as of 02/11/10.	

1

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract February 25, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
9	Final Focused Feasibility Study, LHAAP-46	10/28/09	X	X					Resolution complete	Final FS submitted	
10	Final Proposed Plan, LHAAP-46	01/12/10	X	X					Resolution complete	Final PP submitted	
11	Draft Record of Decision, LHAAP-46	03/05/10	Х							In preparation	
12	Draft Focused Feasibility Study, LHAAP-47	12/23/08	х		Draft Final	03/18/10	х	х	In progress		
13	Final Proposed Plan, LHAAP-49	01/07/10	x	X					Resolution complete	Final PP submitted	
14	Draft ROD, LHAAP-49	10/20/09	х		Draft Final	03/25/10	х	х	In progress	Initial comments received from Army. Proposed revisions to be submitted after formal public meeting.	
15	Final Feasibility Study, LHAAP-50	12/17/09	X	x					Resolution complete	Final FS submitted	
16	Final Proposed Plan, LHAAP-50	01/19/10	X	x					Resolution complete	Final PP submitted	
17	Draft Record of Decision, LHAAP-50	03/12/10	х							In preparation	

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract February 25, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
18	Final Feasibility Study, LHAAP-58	12/21/09	х	X					Resolution complete	Final FS submitted	
19	Final Proposed Plan, LHAAP-58	01/19/10	X	X					Resolution complete	Final PP submitted	
20	Draft Record of Decision, LHAAP-58	03/19/10	Х							In preparation	
21	County Notification, LHAAP-60	01/30/10	X							With Army for signatures	
22	Draft Final Decision Document, LHAAP-35/36	07/15/09	Х	Х	Final	3/18/10	х	х	In progress	TCEQ comment received on DF DD. Army has reviewed responses; Shaw is addressing their input.	
23	Final Completion Report, Pistol Range	01/12/10	X	X					Resolution complete	Final FS submitted	
24	Final Proposed Plan, Pistol Range	01/12/10	Х	Х					Resolution complete	Final PP submitted	
25	Draft Record of Decision, Pistol Range	02/08/10	х		Draft Final	03/25/10	х	х		Army is currently reviewing the draft ROD.	

Longham ABP Site Tour marely 9,2010

and the state of t	Mame	Organiza	iou .	Phone	E-neup	
-	£	1 0		0.50	pravecu Srivas	tav act
i	Praveen Srive	,			and the second s	/
2_	Fay Du	ke TC	E 5	12-239-2843	1 duke Wto	reg stute tà Us
2	Grea Jon	es Sha	ω 2	81-531-3172	gregin, pros	a shaugrp.com
3	Paul Fort	une RH	-B 9	703.679.3949	plfortuned	notmail.com
4	FOUHUNK	EN ET	T 96	3-240-8553	Vanceastre	I
5	Doug Park	ker GCL	A 90	13-679-3650	parkerdea	winds regun net
6	Jim LAMbi	right	90	3-789-212	1 lakepan 1 egillise	20 yshoo
7	Charles Gi	Mis Fei	SUDS "	703-938-731	1 egillis @	prysw. net
8	Nigel Shi	vers RA		963-679-4128	· .	15 @ Yalua .Com
9	Gary End	sleep Fr	end 5			1
]6	John Lo	mbort	USACE	E 918-669-	4992 jeho.r.lan	berte army mi
Ŋ	Tom Walker	GCL	4 90	3-665-8279	twalkercaddolak	4
12	Dale Voc	lak TEG	२ ५	03.535-5147	duodak@	tceg, State thing
13				9036799144	,	•
14	Aaron Willia	ims Us	ACE "	718-661-4915	garon. Kuilly	mseustæararal)
. 15-	Kose M. Zai	ler Litt	AP BRAC	479-635-0	110 Yose-Zeile	reas. avay. mil
16						
17						

B

LONGHORN ARMY AMMUNITION PLANT,

Karnack, Texas

MONTHLY MANAGERS' MEETING

AGENDA

DATE: Tuessday, 9 March 2010

TIME: 2:00 p.m.

PLACE: Caddo Lake National Wildlife Refuge Office Conference Room

Teleconference, Call-in-Number Courtesy of Shaw: 866-797-9304, Passcode

4155734

Welcome RMZ

Action Items:

EPA

• Provide analytical results on IDW from recent groundwater sampling.

• **18/24 ESD -** Status

Shaw

• Provide regulators with a copy of the media release and public notice published in the local newspapers.

Army

- Provide UXO video and brochures to USFWS for the Caddo Lake Natural Wildlife Refuge.
- Provide regulators with a copy of the media release and public notice that is published in the local newspapers.

Defense Environmental Restoration Program (DERP) PBC Update

PS/GJ

- Document Status/Environmental Sites (Table)
- Groundwater Treatment Plant
- Recordations

DERP Total Environmental Restoration Contract Update

- Re-opened Public Comment Period for LHAAP-37/67
- Recordations RMZ

MMRP JRL/AW

Army Position Memo to TCEQ – Status Removal Action Report - Status

Other Issues RMZ

- Sitewide Schedule Review
- RAB Tour Recap
- IAP Schedule

March 22 – End Data Gathering

April 5 - Refresh IAP & send to regulators for review

April 26 – Validation Call – end of IAP update

Adjourn

Subject: Draft Final Minutes, Monthly Managers Meeting,

Longhorn Army Ammunition Plant (LHAAP)

Caddo Lake National Wildlife Refuge Office Conference Room **Location of Meeting:**

Date of Meeting: March 9, 2010; 2:00 PM – 4:30 PM

Meeting Participants:

BRAC: Rose M. Zeiler

USAEC: Matthew Mechenes (teleconference)

USACE-Tulsa: Aaron Williams, John Lambert Shaw: Praveen Srivastav, Greg Jones

USEPA Region 6: Steve Tzhone, Rich Mayer

TCEQ: Fay Duke, Dale Vodak

USFWS: Paul Bruckwicki

USGS: Kent Becher

Action Items:

EPA

Provide analytical results on IDW from recent groundwater sampling. Completed. Rich Mayer said that Shaw staff had accepted the purge water results, and the water had been disposed at the GWTP in December. He noted that Shaw and ECC had helped with access during the sampling event.

LHAAP-18/24 ESD – Status

Steve Tzhone noted EPA had some minor changes on the ESD, including an item on the acronym list, a duplicate page number, etc. The Army indicated that they would look over these suggested changes.

• **LHAAP-18/24 Sampling** – Status

Kent Becher said that 89 results exceeded standards. USGS is working on the report. A hydrologist in Austin is preparing contours. Kent thanked Shaw for related water level data. Kent also passed along some data questions to Shaw regarding results from 2006 that needed clarification. Shaw said they would get back to Kent with a reply.

1

• 5-Yr Review Start Date

Steve clarified a discussion in the previous meeting regarding the start of the 5-year review period. He said that it is tied to start of on-site construction. However, in CERCLIS, it is recorded as completion. Steve sent an email on 25 February 2010 with text that he asked be included in the minutes:

"Five-year Review Completes is a program measure. Five-year review completes must be planned and reported site-specifically in CERCLIS. The trigger for a statutory five-year review is the actual completion date of the RA on-site construction." [RA is "Remedial Action."]

Steve also mentioned the Targets Harmonization Working Group. He said this group within EPA was established to negotiate schedule dates on Federal sites. They will be meeting with 12 or 13 different Federal agencies. In the future, the group may ultimately be responsible for setting schedule dates. The group would be able to adjust dates per funding priorities.

Shaw

• Provide regulators with a copy of the media release and public notice published in the local newspapers. *Completed*.

Army

- Provide UXO video and brochures to USFWS for the Caddo Lake Natural Wildlife Refuge. *Completed*.
- Provide regulators with a copy of the media release and public notice that is published in the local newspapers. *Completed*.

Defense Environmental Restoration Program (DERP) PBC Update

• Document Status/Environmental Sites (Table)

Rose Zeiler noted the importance of bringing up any schedule issues as the group goes over the individual sites and documents. Army's enforceable schedule must be met and any difficulty in meeting the schedule must be brought to Army's attention as soon as possible, including any regulator review times. There are a number of sites that are particularly tight, and those include Sites 17 and 29.

Praveen went over the document status/environmental sites table.

- o LHAAP-02: The Draft Final Decision Document for LHAAP-02 is in comment resolution with the Army.
- o LHAAP-03: The draft work plan for soil removal is in preparation.
- o LHAAP-04: The Draft Completion Report for LHAAP-04 is in Army review.
- o LHAAP-06, -07, -51, -55, -64, -66, and -68: The survey data with accompanying affidavits for LHAAP-06, LHAAP-07, LHAAP-51, LHAAP-55, LHAAP-64, LHAAP-66, and LHAAP-68 were provided to the Army for signatures. Army anticipates signatures on March 10th. Then Shaw will file county notifications.
- o LHAAP-16: The response to comments (RTCs) for the Draft Final Feasibility Study Addendum, Rev 01 for LHAAP-16 is in regulatory review. Shaw provided a track-

changed document showing the revisions. Steve said that EPA is monitoring responses to TCEQ comments. EPA will concur if these are acceptable to Terry Burton. Terry's remaining concern was sample frequency. John indicated that something in writing would still be good. Regarding the outstanding TCEQ issues:

- Miscellaneous COCs that occasionally exceed comparison levels will be monitored for a few years, and then removed from further monitoring if results are acceptable (i.e., no active remedy is currently indicated).
- It was agreed to simply drop the Compliance Values.
- The erratic nature of some of the results at LHAAP-16 will need to be examined further during remedial design.
- o LHAAP-17: Shaw and Army are resolving a regulatory comment on the trigger for shutting down groundwater extraction in one of the alternatives. There was a lengthy discussion of this issue and its possible impact on schedule. Specifically, Rose indicated Army's concern that pumping followed by 2 years of MNA evaluation would not leave time to implement a contingency within Shaw's contract period. Fay noted that it was not necessary to evaluate the full 2 years if results were poor. Steve stated that the 2 years was an "at least" time frame for demonstrating if MNA was successful. The regulators indicated agreement with the 20,000 ug/L perchlorate trigger. This was based on Shaw agreeing to proceed with bioremediation if the trigger was not met. Also, if the trigger is met and Shaw proceeds with MNA, then the MNA needs a contingency. This appeared to be generally agreed by the meeting participants as a whole. Army said they would provide Shaw with an immediate response to Shaw's latest email on this topic.
- o LHAAP-18/24: Responses on the Draft Feasibility Study are being resolved with the Army.
- o LHAAP-29: Revised RTCs for the Draft Final Feasibility Study for LHAAP-29 were submitted to the regulators. Fay said that TCEQ had several comments:
 - TCEQ feels that SAM modeling cannot be used on waste material, but only on contaminated media. Since the contents of the process piping is a waste rather than a contaminated medium (e.g., contaminated soil), SAM modeling does not apply to the contents. Steve commented that Terry Burton also did not care for the modeling. Praveen said that Shaw would eliminate the SAM modeling. Steve also noted that Appendix E (modeling text) will need to be dropped per this discussion.
 - The transite pipe itself is a waste because it contains asbestos. As waste left in place, the pipe location would need to be deed recorded.
 - Reference to the Remedial Facility Assessment is moot. The RFA is a visual check, so it has no basis at this point. The RFA quote (within Army Comment #1) should not be used.
 - In general, Fay felt that we were much closer to completing this document prior to the latest responses. She advised that Shaw flush the line until getting a clean sample. Then we just need to be able to handle the water.
 - Regarding EPA comment #2, Fay said that the COCs cannot be eliminated. Steve said that the COCs screening should be patterned after the earlier discussion on LHAAP-16.

- TCEQ disagreed with the approach to ARARs as described in the LHAAP-29 responses. In particular, Fay was concerned about ARARs for off-site activities. Army said that the interpretation stemmed from recent Army training regarding ARARs. Army explained that although not all requirements are considered ARARs, those requirements would still be met. The difference is that the alternatives are evaluated through compliance with ARARs and other requirements should not be part of that evaluation. Steve said that this seemed like a programmatic issue. Matt Mechenes forwarded the training information to Steve. Steve said he would discuss with ARARs experts at EPA and respond.
- o LHAAP-46: The Final Proposed Plan for LHAAP-46 was submitted January 12, 2010. This site is one of the subjects of the public meeting tonight. Several comments have already been received, including some from Caddo Lake Institute (CLI). Praveen asked about the proper procedure of the response. Steve said that responses could be provided separately, but that they must ultimately be summarized in the Responsiveness Summary. Praveen said that the CLI comments were very detailed and that written responses would be provided. However, these would not be available by the meeting tonight. He also noted that the proposed remedy was developed to handle the uncertainties that were being mentioned.
- o LHAAP-47: Responses on the Draft Feasibility Study for LHAAP-47 are being resolved with Army.
- o LHAAP-49: The Final Proposed Plan for LHAAP-49 was submitted January 8, 2010. This site is a subject of the public review meeting tonight.
- o LHAAP-50: The Final Proposed Plan for LHAAP-50 was submitted January 19, 2010. This site is a subject of the public review meeting tonight.
- LHAAP-58: The Final Feasibility Study for LHAAP-58 was submitted December 16,
 2009. The Final Proposed Plan for LHAAP-5 was submitted January 19, 2010. This site is a subject of the public review meeting tonight.
- o LHAAP-60: Same status as -06, -07, etc.
- o LHAAP-35/36: The RTCs for the Draft Final Decision Document for LHAAP-35/36 are in progress. Praveen noted that the Final Data Evaluation Report needs correction for a discrepancy between sites 37 and 47. Fay suggested that this be handled as a letter to the regulators describing the correction
- Pistol Range: The Final Proposed Plan for the Pistol Range was submitted January 12,
 2010. This site is a subject of the public review meeting tonight.

• Groundwater Treatment Plant

Greg Jones noted that the treatment plant operated normally since the last monthly managers meeting - 180 to 200 gallons per minute in the metals/volatiles treatment units and 15 to 18 gpm in the FBR.

Recordations

Rose said that she would be providing the signed and notarized papers to Shaw the next morning.

DERP Total Environmental Restoration Contract Update

- Re-opened Public Comment Period for LHAAP-37/67 Army noted that April 8 is the end of the public comment period.
- Recordations
 This topic was not discussed.

MMRP

Steve indicated that TCEQ and EPA need to finish discussing this.

John Lambert noted that the Removal Action Report was issued to the regulators as final. Currently, Army is awaiting regulatory responses from EPA and TCEQ on the Draft MC Data Summary Report and a Historical Perchlorate Summary Memorandum. He said that the MEC area will have institutional controls, and that the recordation was on hold until completion of the ROD.

Other Issues

- Site-wide Schedule Review
 Army noted that the schedule was sent to everyone.
- RAB Tour Recap

John described the tour (at 10am) as a "cordial event." Eight members of the public attended.

A question was brought up regarding two congressional inquiries that are in progress. Rose said that the Army has not received any inquiries.

• IAP Schedule

As noted on the agenda, the schedule is:

March 22 – End Data Gathering

April 5 - Refresh IAP & send to regulators for review

April 26 – Validation Call – end of IAP update

Army noted that the IAP will need to be updated per the latest schedule information, and that LHAAP is a priority site because it is a transfer site.

Meeting Adjourned

Action Items

EPA

EPA will examine Army training materials on ARAR and provide an opinion on whether there are problems related to application to off-site responses.

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract March 09, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
1	Draft Rev 01Decision Document, LHAAP-02	10/01/09	Х		Draft Final	03/11/10	X	X	In progress	Army is reviewing a track-changes version prior to submittal to TCEQ.	DD identifies limited groundwater monitoring
2	Draft Soil Removal Work Plan, LHAAP-03	03/18/10	х		Draft	03/30/10	х			Removal action work plan in preparation	
3	Draft Completion Report, LHAAP- 04	01/21/10	X							In Army review	
4	County Notification LHAAP-06, 07, 51, 55, 64, 66, 68	01/30/10	х							With Army for signatures	
5	Draft Final Feasibility Study Addendum, Rev 01, LHAAP-16	7/3/08	X	х	Final	03/30/10	X	x	In progress	RTCs reviewed by regulators. Track- change document under review by EPA and TCEQ. TCEQ comments received 2/25/10. EPA comments pending.	
6	Draft Final Feasibility Study, LHAAP-17	4/14/09	X	х	Final	03/30/10	x	x	In progress	RTCs are in Army review	
7	Draft Feasibility Study, LHAAP- 18/24	3/3/09	х		Draft Final	03/30/10	х	х	In progress	Army comments received. Resolution in progress.	
8	Draft Final Feasibility Study, LHAAP-29	03/11/09	Х	х	Final	03/30/10	X	X	In progress	RTCs in regulatory review as of 02/11/10.	

1

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract March 09, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
09	Draft Record of Decision, LHAAP-46	03/30/10	x							In preparation	
10	Draft Focused Feasibility Study, LHAAP-47	12/23/08	х		Draft Final	03/30/10	х	х	In progress		
11	Draft ROD, LHAAP-49	10/20/09	X		Draft Final	04/15/10	X	X	In progress	Initial comments received from Army. Proposed revisions to be submitted after formal public meeting.	
12	Draft Record of Decision, LHAAP-50	03/30/10	X							In preparation	
13	Draft Record of Decision, LHAAP-58	03/30/10	X							In preparation	
14	County Notification, LHAAP-60	01/30/10	X							With Army for signatures	
15	Draft Final Decision Document, LHAAP-35/36	07/15/09	X	X	Final	4/15/10	х	X	In progress	TCEQ comment received on DF DD. Army has reviewed responses; Shaw is addressing their input.	
16	Draft Record of Decision, Pistol Range	02/08/10	x		Draft Final	04/15/10	X	x		Army is currently reviewing the draft ROD.	

LONGHORN ARMY AMMUNITION PLANT MONTHLY MANAGERS' MEETING

Location	Longhorn Army Ammunition Plant, Karnack, Texas								
Date	9-Mar-2010	Time	-1:30 AM	2:00 P.M.					

ATTENDEES

Name (printed)	Signature	Organization	Phone	E-mail	1
Longhorn Team M	embers		•		1
Rose M. Zeiler	dun	BRAC	(479) 635-0110	rose.zeiler@us.army.mil	1
Matthew Mechenes	on chone	USAEC	(410) 436-1505	matthew.mechenes@us.army.mil	1
Aaron Williams	arm Walsand	USACE, Tulsa	(918) 669-4915	aaron.k.williams@usace.army.mil	1
John Lambert	John Jamber	USACE, Tulsa	(918) 669-4992	john.r.lambert@SWT03.usace.army.mil	1
Stephen Tzhone	OAhr	USEPA, Dallas	(214) 665-8409	tzhone.stephen@epa.gov	1
Raji Josiam	1770	USEPA, Dallas	(214) 665-8529	josiam.raji@epa.gov	1
Fay Duke	Jarp cile	TCEQ, Austin	(512) 239-2443	fduke@tceq.state.tx.us	1
Dale Vodak	See below	TCEQ, Tyler	(903) 535-5142	dvodak@tceq.state.tx.us	1
Barry Forsythe	\sim	USFSW, Dallas	(214) 665-8467	forsythe.barry@epa.gov	1
Paul Bruckwicki	KB1/1	USFSW, Karnack	(903) 679-4536	paul_bruckwicki@fws.gov	1
Mark Williams	0	USFSW, Karnack	(903) 679-9144	mark_williams@fws.gov	1
Praveen Srivastav	Mulo	SHAW, Houston	(281) 531-3188	praveen.srivastav@shawgrp.com	1
Kay Everett		SHAW, Houston	(281) 531-3121	kay.everett@shawgrp.com	
Greg Jones S	Sugar Kon-	SHAW, Houston	(281) 531-5172	greg.n.jones@shawgrp.com	1
Kent Becher	Kert Berber	USGS Dallas/FW	(817) 253-0356	Kdbecher Astrophobal: net C	US95.901
Richmaner	EPA Dullar	USEPA	on Phone		1
Dish Voelak	TERROLATIVE .	-TCEQ Tyler	9035355147	duodak@tceg. State. tx.	US
	J	U		U	1
					1
					1
					1
					1
					1
					1

LONGHORN ARMY AMMUNITION PLANT RESTORATION ADVISORY BOARD Karnack, Texas (479) 635-0110

February 22, 2010

Distribution (one copy each)

Paul Fortune Post Office Box 16 Karnack, Texas 75661

Judith Johnson 1635 Dorough Road Karnack, Texas 75661 Tom Walker 500 Private Rd 7222 Jefferson, Texas 75657

Nigel R. Shivers Post Office Box 558 Karnack, Texas 75661

Dear LHAAP RAB Member,

The next Restoration Advisory Board (RAB) meeting will be held on Tuesday, March 9, 2010, from 5:45 to 6:45 p.m. at the Karnack Community Center, Highway 134 and Spur 449, Karnack, Texas 75661. Following this meeting, a second Public Meeting on seven environmental sites will begin. We hope that you can attend both meetings. If you have any questions, please do not hesitate to contact me.

Shaw Environmental, Inc. (Shaw) is the contractor supporting the U.S. Army environmental restoration activities at the Longhorn Army Ammunition Plant (LHAAP), and will be coordinating the RAB meeting. A tentative agenda for both meetings are attached.

Regards,

Dr. Rose Zeiler

Department of the Army

Longhorn Army Ammunition Plant

Box 220

Ratcliff, Arkansas 72951

LONGHORN ARMY AMMUNITION PLANT RESTORATION ADVISORY BOARD Karnack, Texas (479) 635-0110

AGENDA

DATE: Tuesday, March 9, 2010

TIME: 5:45 - 6:45 PM

PLACE: Karnack Community Center, Karnack, Texas

05:45 Welcome {RMZ & PF}

05:50 Open items {RMZ}

05:55 Programmatic Issues

Site Status Summary

06:05 Defense Environmental Restoration Program (DERP) Performance Based

Contract (PBC) Update {Shaw}

Groundwater Treatment Plant (GWTP) Update

Documents Status/ Environmental Sites Decision Document for LHAAP-02

06:15 DERP Total Environmental Restoration Contract Update {RMZ}

LHAAP-35B(37) and LHAAP-67

06:20 Military Munitions Response Program (MMRP) Update {USACE}

06:30 Other Environmental Restoration Issues/Concerns {RMZ}

Construction Debris Landfill

06:35 Transfer Update

Transfer status of Site 12

ECOP VI

06:45 Adjourn {RMZ}

(Note: **The Public Meeting will begin at 7:00**. Please hold all questions pertaining to the Proposed Plans for LHAAP-46, LHAAP-49, LHAAP-35A(58), LHAAP-50, the Pistol Range, LHAAP-35B(37), and LHAAP-67 until after the RAB meeting. A court reporter will be present to record your questions and comments at that time.)

Subject: Draft Final Minutes, Quarterly Restoration Advisory Board

(RAB) Meeting, Longhorn Army Ammunition Plant

(LHAAP)

Location of Meeting: Karnack Community Center, Karnack, Texas

Date of Meeting: March 9, 2010, 5:45 – 06:45 PM

Meeting Participants:

LHAAP/BRAC Rose M. Zeiler

USACE-Tulsa: John Lambert, Aaron Williams, Matt Mechenes

Shaw Environmental: Praveen Srivastav, Greg Jones, Kay Everett, Van Vangala,

Susan Watson

TCEQ: Fay Duke

USEPA Region 6: Steve Tzhone, Carlos Sanchez

USGS: Kent Becher

RAB: Paul Fortune, Nigel Shivers, Tom Walker, Judith Johnson

An agenda for the RAB meeting was distributed prior to the meeting.

Rose Zeiler indicated that the public tour of the Longhorn plant was conducted that morning with about 8 members of the community participating. She said that there were many good questions.

Welcome - Rose Zeiler and Paul Fortune

Paul Fortune called the meeting to order and introduced the RAB members. New meeting participants were also introduced. A recruitment effort for the RAB is ongoing.

Open Items - Rose Zeiler

There were no open items.

Programmatic Issues

Site Status Summary

The site schedule has been updated, and it has been noted that the schedule has slipped by one month for two sites, LHAAP-17 and LHAAP-29. Rose Zeiler stated that some comments still need to be resolved for the Feasibility Study (FS) stage, but the slippage is not expected to impact the RODs schedule regarding these sites coming out later this fiscal year.

A site status schedule is planned to be handed out at every RAB meeting. Steve Tzhone stated that the public can search on CERCLIS website and also find this schedule. Fact sheets for these sites are being prepared and will be presented to the RAB soon.

Defense Environmental Restoration Program (DERP) Performance Based Contract (PBC) Update—Shaw

Document Status/Environmental Sites

Praveen Srivastav distributed copies of the document status table and discussed each site.

- Praveen indicated that the LHAAP-02 decision document is in comment resolution, and Army is reviewing tracked changes. The decision document identifies limited groundwater monitoring in order to address the soil-to-groundwater COCs within LHAAP-02. The decision document will be submitted to the TCEQ soon. Praveen explained that the site is a former parking lot within the LHAAP-58, and soil samples were collected in the ditches surrounding the parking lot for metals. Sampling results did not yield any significant concern; however, groundwater sampling is being proposed to monitor for metals in groundwater to confirm the absence of specific metals contaminants leaching into groundwater.
- A soil removal work plan for LHAAP-03 is being developed. Praveen indicated that LHAAP-03 was a former waste storage pad for a drum of waste paint. It is also located within LHAAP-58.

Tom Walker asked that when the soil at LHAAP-03 is removed, where would it be disposed of. Praveen indicated that the soil would be tested to determine how it is handled, i.e. hazardous waste soil would be disposed at a hazardous waste disposal facility and non-hazardous waste would be disposed at a non-hazardous waste disposal facility. Likely locations would be Robstown, Texas (hazardous) and Republic Waste in Louisiana (non-hazardous).

- The Draft Completion Report for LHAAP-04 is in Army review. Praveen said that this site is located across from the Fire Station and that it was pointed out during the tour that was conducted earlier in the day. He indicated that it was an old water treatment plant and had soil contaminated with perchlorate. The contaminated soil was removed from the site last year.
- Affidavits and surveys for LHAAP-06, -07, -51, -55, -64, -66, and -68 for the county notification have been reviewed by Army and approved by TCEQ and will be signed and notarized this week.

- Comment resolution is in progress for the LHAAP-16 Draft Final Feasibility (FS) Study. A track-changes document and response to comments are currently being reviewed by regulators.
- Comment resolution is in progress for the LHAAP-17 Draft Final FS.
- Army comments were received and resolution is in progress for the Draft FS for LHAAP-18/24.
- Revised responses to comments have been reviewed by Army and responses are being reviewed by regulators for the Draft Final FS for LHAAP-29.
- The Final FS for LHAAP-46 was submitted in October 2009. Responses to Army's comments on the Draft ROD for LHAAP-46 are in preparation and a public meeting for this site is being held after the RAB meeting.
- Comment resolution is in progress on the Draft FS for LHAAP-47.
- The Draft Record of Decision (ROD) for LHAAP-49 is in Army review and proposed revisions will be submitted after the formal public meeting for the site. The public meeting for LHAAP-49 will be held after the RAB meeting.
- The Draft ROD for LHAAP-50 is in progress. The public meeting for the Proposed Plan for LHAAP-50 will be held after the RAB meeting.
- The Draft ROD for LHAAP-58 is in progress. The public meeting for the Proposed Plan for LHAAP-58 will be held after the RAB meeting.
- The affidavit and survey for the LHAAP-60 county notification are being reviewed by Army and approved by TCEQ before a notarized signature is obtained.
- Resolution of comments on the Draft Final Decision Document for LHAAP-35/36 is in progress.
- The Army is currently reviewing the draft ROD for the Pistol Range. The public meeting for the Pistol Range will be held after the RAB meeting.

Paul Fortune said he was not familiar with the LHAAP-35/36 site. Praveen said that it encompasses the process sumps and waste rack sumps located throughout the installation. Most of these sumps, about 145, are found within LHAAP-46 and 47 and each sump is tracked by its own unique number.

Groundwater Treatment Plant (GWTP) Update

Greg Jones indicated that the plant has been operating normally since the last RAB and runs approximately 180 to 200 gallons/minute. He indicated that the front end system runs 3 days with VOC and metals treatment and a further treatment for perchlorate every day. The weather has affected some lines so plant personnel have had some extra maintenance days.

Quarterly creek sampling or surface water sample was conducted since the last RAB meeting and the results were provided. Gary Endsley asked about the single average sampling value that exceeded historical results. Praveen and Greg explained that was the time when the GWTP was down for several weeks. Extra samples were collected from a surface water location in Harrison Bayou downstream of the plant and at four monitoring well locations to see what impacts there might be on the plume when the plant was down. It was determined that while there were increases in concentrations in some of the wells, the creek was not impacted.

DERP Total Environmental Restoration Contract (TERC) Update – Rose Zeiler

ROD for Sites LHAAP-37 and -67

A second public meeting for LHAAP-37 and -67 will be held after the RAB meeting in order to provide the community a second chance to ask questions or make comments on these two sites. The ROD for these sites is expected to be submitted this calendar year (2010).

Military Munitions Response Program (MMRP) Update – USACE

John Lambert indicated that the MEC report has been finalized and submitted. He informed the RAB that there is a safety video and brochures that have been provided to the FWS for their use. Mr. Lambert stated the brochures are site specific for Longhorn. The safety video was shown in its entirety to the RAB.

Other Environmental Restoration Issues/Concerns – USACE

Construction Debris Landfill

The Construction Debris Landfill has been completed; however, the cover is being checked to make sure adequate vegetation is growing. There is a rye type grass growing on the landfill cover at the present time, but EEC is supposed to come back to the site and overseed with native grasses, if required.

Transfer Update

Transfer Status of Site 12

There has been no change.

ECOP VI

MMRP sites won't be up for transfer until next year and they will be in ECOP VII along with the demolition landfill and the pistol range. ECOP VI includes the Y-Area (LHAAP-48), the Static Test Area (LHAAP-53), the Former TNT Waste Disposal Plant (LHAAP-32) tract and the Sewage Treatment Plant (LHAAP-08). It will be ready for review when the Site 49 ROD has been signed.

The next RAB meeting is June 10, 2010, at 6:30 PM.

Adjourn

January Meeting Attachments and Handouts:

- Status of Technical Documents PBC
- Meeting Agenda
- Quarterly Creek Sampling Results Table

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract March 09, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
1	Draft Rev 01Decision Document, LHAAP-02	10/01/09	Х		Draft Final	03/11/10	Х	х	In progress	Army is reviewing a track-changes version prior to submittal to TCEQ.	DD identifies limited groundwater monitoring
2	Draft Soil Removal Work Plan, LHAAP-03	03/18/10	х		Draft	03/30/10	x			Removal action work plan in preparation	
3	Draft Completion Report, LHAAP- 04	01/21/10	X							In Army review	
4	County Notification LHAAP-06, 07, 51, 55, 64, 66, 68	01/30/10	х							With Army for signatures	
5	Draft Final Feasibility Study Addendum, Rev 01, LHAAP-16	7/3/08	Х	x	Final	03/30/10	х	х	In progress	RTCs reviewed by regulators. Track- change document under review by EPA and TCEQ. TCEQ comments received 2/25/10. EPA comments pending.	
6	Draft Final Feasibility Study, LHAAP-17	4/14/09	X	X	Final	03/30/10	X	х	In progress	RTCs are in Army review	
7	Draft Feasibility Study, LHAAP- 18/24	3/3/09	X		Draft Final	03/30/10	X	х	In progress	Army comments received. Resolution in progress.	
8	Draft Final Feasibility Study, LHAAP-29	03/11/09	х	X	Final	03/30/10	Х	х	In progress	RTCs in regulatory review as of 02/11/10.	

1

Status of Sites and Technical Documents Longhorn Army Ammunition Plant – PBC Contract March 09, 2010

No.	Document in Progress	Submittal Date	Army	Regulator	Next Submittal	Expected Date	Army	Regulator	Comment Resolution	Status	Remarks
09	Draft Record of Decision, LHAAP-46	03/30/10	х							In preparation	
10	Draft Focused Feasibility Study, LHAAP-47	12/23/08	Х		Draft Final	03/30/10	X	X	In progress		
11	Draft ROD, LHAAP-49	10/20/09	х		Draft Final	04/15/10	X	х	In progress	Initial comments received from Army. Proposed revisions to be submitted after formal public meeting.	
12	Draft Record of Decision, LHAAP-50	03/30/10	х							In preparation	
13	Draft Record of Decision, LHAAP-58	03/30/10	х							In preparation	
14	County Notification, LHAAP-60	01/30/10	х							With Army for signatures	
15	Draft Final Decision Document, LHAAP-35/36	07/15/09	Х	X	Final	4/15/10	X	X	In progress	TCEQ comment received on DF DD. Army has reviewed responses; Shaw is addressing their input.	
16	Draft Record of Decision, Pistol Range	02/08/10	х		Draft Final	04/15/10	X	х		Army is currently reviewing the draft ROD.	

Longhorn Army Ammunition Plant Restoration Advisory Board Meeting

Location	Karnack Commu	nity Center, Karnack, T	exas
Date	9-Mar-2010	5:45 AM	page 1 of _

Please sign in the space provided or add your name and address on next page if your name does not appear below.

ATTENDEES

	ATTENDEES												
Name (printed)	Signature	Organization	Phone	E-mail									
RAB Members													
Paul Fortune	(Paul Fortem	RAB Co-Chair		plfortune@hotmail.com									
Nigel R. Shivers	noyel Deling	RAB Board Member	903-679-4128	nigelshivers@yahoo.com									
Tom Walker	Wom Walker	RAB Board Member		twalkercaddolake@gmail.com									
Judith Johnson	Dudith Johnson	RAB Board Member		judithjohnson@webtv.net									
	X 0.												
L			J										
Longhorn Team Men	nbers and Communi	ty		**************************************									
Rose M. Zeiler		Longhorn AAP	(479) 635-0110	rose.zeiler@us.army.mil									
Matthew Mechenes		USAEC	(410) 436-1505	matthew.mechenes@us.army.mil									
Aaron Williams	AAAA	USACE, Tulsa	(918) 669-4915	aaron.k.williams@usace.army.mil									
John Lambert	John Jambe	USACE, Tulsa	(918) 669-4992	john.r.lambert@SWT03.usace.army.mil									
Steve Tzhone	112/	USEPA, Dallas	(214) 665-8409	tzhone.stephen@epa.gov									
Raji Josiam	0	USEPA, Dallas	(214) 665-8529	josiam.raji@epa.gov									
Fay Duke	Julisus	TCEQ, Austin	(512) 239-2443	fduke@tceq.state.tx.us									
Dale Vodak	V	TCEQ	(903) 535-5142	dvodak@tceq.state.tx.us									
Paul Bruckwicki		USFSW	(903) 679-4536	paul_bruckwicki@fws.gov									
Barry Forsythe	1	USFSW	(214) 665-8467	forsythe.barry@epa.gov									
Mark Williams	Mock Wilkeam	JJSFSW JSFSW	(903) 679-9144	mark_williams@fws.gov									
Praveen Srivastav .	Mund	SHAW	(281) 531-3188	praveen.srivastav@shawgrp.com									
Greg Jones		SHAW	(281) 531-3172	greg.n.jones@shawgrp.com									
Kay Everett	and	SHAW	(281) 531-3121	kay.everett@shawgrp.com									
Susan Watson	Sh	SHAW	(281) 531-3107	susan.watson@shawgrp.com									
Gary Endsley	Stindster Combraction	self-Friends											
YM LAMBRIGHT	J. Kambryesty	DELP	903)789-21										
allos A. Sanche	C Bles Holanet	EPA	214/665-8507	Conchez Parles @ 2 pg. 500									
Kent Beche	Kert Behn	VSGS	817)253-0356	Kdbecher & Usgs.gay									
				- 7 70 /									

AGENDA

PUBLIC MEETING

PROPOSED PLANS FOR LHAAP-46, LHAAP-49, LHAAP-35A(58), LHAAP-50, PISTOL RANGE, LHAAP-35B(37) AND LHAAP-67

DATE:

Tuesday, March 9, 2010

TIME:

7:00 - 9:00 PM

PLACE:

Karnack Community Center, Karnack, Texas

07:00 - 7:30 Review of posters

7:30 – 8:30 Presentation of Proposed Plans and Questions/Answers

- LHAAP-46
- LHAAP-50
- LHAAP-35A(58)
- LHAAP-49
- Pistol Range
- LHAAP-35B(37)
- LHAAP-67

08:30 - 9:00 Additional Question and Answer Period

Note: Public comment period for LHAAP-46, -49, -50, -35A(58), and Pistol Range is January 25 through March 25, 2010. Public comment period for LHAAP-35B(37) and LHAAP-67 is March 8, 2010 through April 8, 2010. Written questions or comments on the Proposed Plans can be submitted in writing to Dr. Rose M. Zeiler, Longhorn Army Ammunition Plant, P.O. Box 220, Ratcliff, Arkansas, 72951 close of business of the posted ending date of the comment period or emailed to march 9, 2010 to transcribe public comments.

LONGHORN ARMY AMMUNITION PLANT PUBLIC MEETING

Location	KARNACK COMMUNITY CENTER					
Date	9-Mar-2010	Time	7:00 P.M.			
				page 1 of I		

ATTENDEES

	ALIENDEES			
Name	Address	Phone	E-mail	
Please Print				
MARKWILLIAMS	P.o. Box 230, Karnack, TY -	5661 903/6	79-9144 Mark_williams ofws.	70V
Corlos A. Sanker	EPA		Sanchez. Carlosavera.gov	
Ron Munden	BIT	93.2403562	18 ne east texas towns.	om
Cary Endyley	281 CR 3209 Attack TK		·	
Susan Watson	Shaw Etz, Howton, TX		Susan water eshaugra	PY .
HOWW (More	= EPA		trhone. steplen @PG. gov	
Aoron Williams			garon, K. williams ausace am	y. mi]
Tom Welkies			twalker caddolake@gmileco	OM
Nigel Shivers	•	903 679-4128	nige 15 hiver Dyahor . com	24
Julanbrigh	5198 E CUPLESS DE LANCERTAI	903-789-21	1) Lakepair @ yohoo	
Fay Duke	TCEO	512239-2443	Huke@teeg.stute.tx	α.
Kent Becher	V365	817-244	Kobecher QUSGS Gar Zjohn.r. lambocitævsace	
John Lambert	USACE TUISA	918-669-499	Zjohn.r. lamberte usace.c	army mil
PraveenSira	La Shaw			
		903 679 3949	p/foture a hotmail.com	
Douglarker	2403 Dorough, Karnack	903-679-3650	parkerde @ windstream, net	
Kny EverAt	Shaw E+I Hanston	29 53 312	kay.comteshawg.p.com	

PUBLIC MEETING MARCH 9, 2010 PROPOSED PLANS FOR LHAAP-46, LHAAP-49 LHAAP-35 (58), LHAAP-50, PISTOL RANGE, LHAAP-35B(37) AND LHAAP-67 ORIGINAL Reported By: Donna Blissett Crenshaw Certified Court Reporter

MS. ROSE ZEILER: Welcome to the Longhorn Army Ammunition Plant public meeting for seven proposed plans, seven sites. Those are LHAAP 46, LHAAP 50, LHAAP 35A, 58, LHAAP 49, the Pistol Range. LHAAP 35B, also known as 37, and LHAAP 67. As I briefly described before, we're going to put speakers up here, Shaw and also the Corps. They're going to go through one proposed plan at a time. We're going to begin with 46. They're going to give you a brief overview of it. You're free to ask questions at any time. If you can hold those until after their presentation is complete, then go ahead. But you are free to ask at any time in between. you do ask your question or make a comment, please state your name clearly so that our transcriber here can get that in her notes. So with that, I'm going to

Is that you, Susan?

begin with LHAAP 46.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. SUSAN WATSON: Actually we've switched the order.

MS. ROSE ZEILER: We've switched the order. Okay. Which one do you want to begin with?

MR. GREG JONES: Pistol Range. I've got a couple of introductory things.

MS. SUSAN WATSON: Yes, introductory

things.

MS. ROSE ZEILER: Greg, do you want to present yourself?

MR. GREG JONES: Yes, I'm Greg Jones. I'm with Shaw Environmental, and what we're starting out with here is a presentation on some five sites that Shaw has been dealing with in most detail, and I'll talk about the first couple and then hand off to Susan Watson, who will talk about the three other of those sites that are on this first list. Let me flip over to this here.

MR. DOUG PARKER: Can I ask a question, kind of an overall question here? We're looking at, going to be looking at five sites --

MS. ROSE: Seven.

MR. DOUG PARKER: I'm kind of new to the whole game. But why in March of 2010 are we all of a sudden looking at these five, not necessarily these five sites, but five more sites? And I'm not being critical. I'm trying to understand how this fits into the total plan. Why weren't these looked at ten years ago?

MS. ROSE ZEILER: Because we weren't to the point for proposed plan at that time. We had not been through the whole process of the remedial

investigation feasibility study. We had to make it through those documents and discovery and characterization of the site and analysis of alternatives to get to the proposing a plan for remediation of those sites. So what we have behind us is an investigative characterization study phase and we're now at the point of proposing a way to remediate those sites. And we're presenting the possible alternatives to remediation in the proposed plan to We've made a recommendation on which the the public. Army and the regulators agree is a good way to approach those sites and the remedy that we are But we are providing the opportunity recommending. for public input on that, and that's what this is today for you to ask questions and make comments. But why seven all at a time, it just kind of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

But why seven all at a time, it just kind of happened that way. There was no intention. They weren't lumped together for any particular reason.

But as these sites go, they're less complex than the ones to come.

MR. DOUG PARKER: There's more to come.

MR. GREG JONES: All right. Good. Rewind the slide to start with, I guess. Of course this is the public meeting and it mentions the first five sites we'll cover, the Pistol Range, 49, 58, 46, and

50 and remind you about with questions, please mention your name and affiliation if you will.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Now, the first slide to start off with just -well, a couple of introductory slides here. This first one besides as I was realizing ahead of time may be a good acronym list for a lot of the stuff we do, it also presents just a general overview of the And things start out with preliminary assessments and site investigations. They typically progress to remedial investigation, more intense investigation to support a feasibility study. And the feasibility study being where we'll typically evaluate several different remedial options to use at a site. Some sites skip from these earlier stages and go directly to the proposed plan which, you know, of course is leading to the ROD. We put the proposed plan off to the side because that's the stage we're at That's what we're doing currently. We're having the public meeting trying to relay the proposed plan. And obviously the first couple of steps cover a large number of sites here and also cover a large number of vears. Now some of these sites should pretty much end at the kind of the record of decision stage, then it will be considered closed. Others will have to go through remedial design after we're all comfortable

with the proposed alternative to move forward with. Go through remedial design, remedial action, then operations showing that things are operating properly and successfully, the OPS state, and then end with a site closure on down the line. This is all part of the, what's usually called the superfund process or also known as CERCLA. And the acronym is covered here as well.

2.1

The other thing noted up here of course is that Longhorn is an NPL site, national priority list site. Basically the designation I guess that you can say that we all as U.S. citizens have given, you know, the bad hazardous waste sites that are out there and Longhorn with a lot of kind of sites inside it, no surprise it should be on the NPL list.

Another kind of general overview site they want to bring up is about risk assessments or risk evaluations because most of the sites talked about tonight have been dealt with under, I guess they share mathematical risk assessment calculations. You know, basically taking the concentration data and running calculations to show whether or not the risk from those contaminants are acceptable and whether remediation needs to be moved forward with. But naturally, there are exceptions and the first site

that I'll talk about in a minute, the Pistol Range, is kind of an exception to that. So it's kind of based on risks, but they're not the straight-up calculations that's typically used for other sites. The risk range that's typically called as acceptable is the, for cancer, is a one in 10,000 to one in a million risk of getting a cancer, not necessarily dying from it, but getting a cancer. That's cancerous risk. also have non cancer risk, you know, problems with thyroids or your urinary tract or something like that, the liver building up contaminants, those sorts of Those non cancer risks are referred to as things. hazard, expressed as a hazard index. No one in a million, or one in 10,000 here. It's basically whether you're taking in more than you should, so it's just a straight ratio comparison of kind of intake doses to reference doses. So if what you're taking in is acceptable, that ratio will come out less than one and should be fine. If risks are acceptable, you shouldn't need any further action at the site. they're not, we look at things a little harder and decide where to go from there. The other piece of the risk equation, it's one thing to have some numbers you're looking for, but who do those numbers apply to. In the case of Longhorn Army Ammunition Plant, the

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

future land use is as a national wildlife refuge and really the scenario or the receptor that we are concerned about here is this hypothetical future maintenance worker that's out there digging around the site and mowing the grass, doing whatever needs to be done because that sort of person, rather than a visitor or a number of other types of people, is the person that will be here over the most number of years and basically be exposed to any contamination the I've been talking about human risks. first couple of bullets, it's also worth mentioning that of course we did look at ecological risks. Actually quite a bit of time and effort was devoted to looking at a number of different species and chemicals potentially for ecological concern. But for the, you know, to keep things short for the sake of this site and these sites that we're discussing tonight, they weren't sites with ecological risks. Ecological risks goes down at a much more complicated pathway than certainly I can get into tonight. But, you know, that's something we can address questions for as well if people have them.

1

2

3

4

5

6

7

8

9

10

1.1

12

1.3

14

15

16

17

18

19

20

21

22

23

24

25

All right. Digging into the first of the five sites in the presentation. The first one is the Pistol Range down in the southeastern portion of the

It comes from -- actually I can move to the site. next one here, it covers about four-tenths of an acre. It was used, best we can tell, it's not really great records on the Pistol Range, but for approximately 50 years anyway, for a small arms practice and qualifying Probably not much surprise to anybody that the contaminant of concern at a small arms pistol range is And right off the bat here I'm getting to kind lead. of that exception that I noted for risks. For this, rather than go through the risk calculations, what we went and did to avoid kind of the time consuming effort of the risk assessment, was to compare directly And this is the to some existing state standards. soil medium specific concentration for industrial use, It's used a few times in these slides. SAI-IND. of course is for industrial. SAI you can think of as soil and with air inhalation and "I" for ingestion and it covers direct contact as well. But that's a number that the state has and they allow to be used in lieu of doing detail site specific calculations basically if you can compare that, you can decide whether you're below it or whether you want to clean up to those levels rather than going through the intense risk Well, we exceeded that. We actually at calculation. the Pistol Range had concentrations as high as

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

fifty-two hundred and forty milligrams per kilogram. In this little figure here you can see a blue line, everything inside that blue contour was higher was -well, was estimated as being higher than 1,000 based on, based on samples we collected inside the soil. did under the worst area contamination put in a well, checked the water there, it was below MCL level of 15 micrograms per liter for lead. The investigation concluded that the soil would not adversely affect the groundwater over time as well. But since we had the high soil values there, we went in and completed a non time critical removal action in August of this past year and the objective of that was to remove the lead that was above that 1,000 milligram per kilogram We excavated that. We talked a little bit level. about it in the previous meeting. And we sent I think it was about 75 tons off as hazardous waste and about 160 tons I think it was off as non hazardous waste and then we backfilled that area with clean material brought in from off site. Confirmation sample results were taken beneath where the excavation was there and all those confirmation results were less than the 1,000 milligram per kilogram level. I think they varied from about a high of around 10 or 11 to about So as I mentioned the contamination was 600 or so.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2.0

21

22

23

24

compared to industrial levels and was appropriate because it was a future use as a national wildlife The SAI-IND level, we're talking about based refuge. on inhalation, ingestion and contact. The soil contamination before the removal action exceeded that level, groundwater was acceptable. After removal action, of course groundwater is still acceptable. And we removed the soil contamination that was above the level, so it's fine now. So by doing that removal action, we essentially eliminated the need for any further action at the site which is why the proposed remedy for the Pistol Range is no further action. land use, of course, that would have to be noted that would count as non residential because it was evaluated on this use with a maintenance worker as a national wildlife refuge and not as a residential This is the last slide on the Pistol Range, so this is probably an appropriate sort of breaking point to ask if people have official questions they'd like to throw out about the site? Any details here I might know, might not, but certainly glad to try to answer if anybody has any questions or just general comments about the site.

1

2

3

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. PAUL FORTUNE: I've got a comment. My name is Paul Fortune. I'm a local resident here. And

the Pistol Range is what threw up a big red flag for me on some things that other things that are going on I'll have to go back to a point in time where at a RAB meeting the Pistol Range was discussed and I asked about the cost of what it was going to take to do the excavation of the Pistol Range and the follow-up monitoring and everything, the whole ball of And I was told at this meeting that those wax. records weren't available. So I just asked for a general, just what you think it's going to cost. I was told about \$100,000. And I thought that that was an awful lot of money to be spent on just a small And so I asked to see the documents that would show the breakdown of the cost on the Pistol Range and I was sent that information. And to my surprise, I found out that it was not \$100,000, it was more in line with \$600,000. And so then I came back at another meeting and I asked why is it going to cost And I was told, well, it really isn't going \$600,000. to cost \$600,000, it's going to be more like \$300,000.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2.0

21

22

23

24

25

The cost of it may not alarm me as much as just simply the fact that I don't feel like I was told the truth the first time. And that's a comment.

MR. GREG JONES: And I will, I guess, attempt to address in a small way, in a partial way.

And I was probably at at least one or both, maybe both 1 2 of the meetings, where you were bringing up things. 3 And I think like the first time I was just trying to 4 come up with an off-the-cuff number based on my 5 memory, in my memory of the estimate we had in the engineering evaluation cost analysis we did for the 6 But those numbers which in looking back 7 Pistol Range. 8 over in time, I think probably for the field work, they're probably decent ball park numbers. But it is 9 worth reiterating kind of how they break down a bit. 10 Because when you mention the kind of the 600,000 11 number, you're including, or really it's sort of a 12 13 global cash flow over 30 years which, in other words, how much you spent in capital last year to do this 14 15 plus, you know, every five year review and frankly those five year reviews are costed out as if one was 16 only doing one site at Longhorn. And so they don't 17 take into account any economies --18 (Interruption by train) 19 COURT REPORTER: I'm sorry, I can't hear 20 21 you because of the train. 22 MR. GREG JONES: Into account any economies scale for the fact at multiple sites is 23 probably what it was. And that's kind of we're stuck 24

with that a bit based on the formula for how you put

those documents together. But really kind of the upfront cost for the excavation and designs and those sort of things are estimated around \$285,000, just that portion of it. And the field work was about \$185,000. And so certainly I apologize for any miscommunication that might be going on, but that \$185,000 was an estimate, probably a pretty reasonable estimate of what went on in the field because the overall tonages were about right, you know.

 $$\operatorname{MR.}$ PRAVEEN SRIVASTAV: These are from the EE/CA?

MR. GREG JONES: Yes.

MR. PRAVEEN SRIVASTAV: These are from the engineering evaluation and cost analysis.

COURT REPORTER: I need his name.

MS. ROSE ZEILER: Praveen Srivastav. I'd like to jump in just a minute. I think, you know, Paul, I understand that it's been very confusing for you on how these costs go. I think we've really tried to give you information and to help you understand. In fact, we devoted a large part of one RAB meeting with regulators trying to help you understand what this process is and why it's so costly. And I think part of the issue stems from we're really talking about three types of costs here, three different ones.

And the first one would be what their negotiated contract cost is. For instance, the Pistol Range has already been negotiated. The cost for them to conduct their activity at the Pistol Range was negotiated in September of 2005.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2.0

21

22

23

24

25

MR. PAUL FORTUNE: I understand that.

MS. ROSE ZEILER: The second set of costs are those that we presented to EE/CA. Those are not hard and fast. They're like engineering evaluations and they're presented with the same basis of estimates for each one so you compare alternatives, one cost to They're considered order magnitude the next. estimates, therefore, they can't be dependable. They're only used to estimate the potential cost of each one relative to the other. And then the third type of cost we're talking about is the actual cost that Shaw incurred during their field activities. Some of those we can't give you. We can't give you the actual cost that Shaw incurred because that's They know whether it cost them more than what theirs. they were paid or less. But the amount that they were paid is part of that negotiated contract. And the EE/CA value, I think we've tried to explain that, those are, those are estimate values. And as Greg said, they're lifetime costs. So life cycle costs.

1 So, you know, I'm not sure what we could give you more 2 there. 3 MR. PAUL FORTUNE: I think you've given me 4 all of the information. I was just sharing my 5 thoughts from the past. I will say this, Rose, though 6 that you mentioned that you tried to explain this to 7 me at a RAB meeting and I was not -- you told me that 8 we could not talk about this at a RAB meeting. And so 9 it was after the, when we talked, when I --10 MS. ROSE ZEILER: Oh, because we already 11 -- right. This was a comment out of comment period, and I asked for everybody to stay because it was going 12 to be very long and everybody did stay. We talked 13 1.4 about it after the RAB meeting. 15 MR. PAUL FORTUNE: It was my impression that this couldn't be discussed on the record and 16 17 that's why --18 MS. ROSE ZEILER: Oh, no, no, no. 19 MR. PAUL FORTUNE: Well, that's certainly 20 the impression that I got. But anyhow, we'll move on. 21 MR. GREG JONES: All right. 22 MS. ROSE ZEILER: Any other comments on 23 that? Is that it? 24 MR. GREG JONES: Yes, this is the last of 25 the Pistol Range.

```
MS. ROSE ZEILER: Any other comments on
 1
 2
     Pistol Range?
 3
                 MR. DOUG PARKER: So there's no ongoing
 4
     activity at the Pistol Range?
 5
                 MR. PAUL FORTUNE:
                                     Oh, there is.
                                                     It's
 6
     future monitoring going on at Pistol Range every five
 7
     years.
 8
                 MS. ROSE ZEILER: Every five years, that's
 9
     right.
10
                 MR. DOUG PARKER:
                                    That was my question.
11
                 MR. PAUL FORTUNE:
                                    At the tune of about
12
     $45,000 for every five years for that monitoring.
13
                 MS. ROSE ZEILER:
                                   For the sake of
14
     estimates, that's right. In reality, no.
15
                 MR. PAUL FORTUNE:
                                     That's really fuzzy for
16
    me.
17
                 MS. ROSE ZEILER:
                                   The Army requires that
18
    we evaluate on its own merit as a stand-alone project.
19
    But we would never come out and just look at one site.
20
    We'd look at all of the sites that we're looking at so
21
    there's an economy there. But to evaluate that
22
    particular remedy, we have to follow certain
23
    guidelines or we'd be looking at different numbers for
24
    each one. So we follow these guidelines strictly and
25
    we're told about how much you can count on for a five
```

year review. So in order to -- suppose we decided to do just a land use control at one site, so we would only have to come out here every five years. Well, maybe there's a remedy that we could remove the soil. Now, in this case, you know, we still have the five year review, but you compare those costs one against the other to see which is more effective over the 30 year time frame. That's what the Army requires. And 30 year cost to complete basically is what we use.

2.0

2.1

MR. PAUL FORTUNE: I wanted to go on, but I will look at the cost analysis on this Pistol Range, the breakdown of it, and I cannot understand for the life of me why it costs over \$100,000 to design a plan to haul off 10 loads of dirt. Maybe it does. I don't understand it. In my line of work, it doesn't cost that much, anything like that, and I understand we're dealing with some contaminated soil here, but --

MR. PRAVEEN SRIVASTAV: Praveen Srivastav here. The break up of the cost is in the EE/CA numbers, engineering evaluation and cost analysis. That's where you see the details. That's what it adds up to. That's all we can tell you. All the break up is there. Now, you know, it may be hard to understand, but that's where it is and that was, I mean, it's a public document.

MR. PAUL FORTUNE: Sure, I understand.

MR. GREG JONES: Well, and the \$100,000 you mentioned, it encompasses the work plan to go out and do it, but also encompasses the completion report and the proposed plan, that kind of stage you're going through too with some of these costs that are associated with.

MR. PRAVEEN SRIVASTAV: It's not just the cost of digging it up and hauling it. There are testing requirements. We take, we test before and after. So we took the samples from the ground after the excavation. We took samples from the haul off itself. The samples go to the land fill. They go to the process. They approve whether or not we can. It's a highly prescriptive process. It's not as simple as digging it up and hauling it off. It's not.

MR. GREG JONES: If that's everything on the Pistol Range.

MS. ROSE ZEILER: I think you can move on.

MR. GREG JONES: We'll move on to the next exciting site. 49, former acid storage area. This is of course a large, rectangular site up in the northwestern corner of the facility used for obviously nitric and sulfuric acid storage. I also just want to, while this is here, bring everybody's attention to

this notch parcel sticking out here to the north because it seems to be the most interesting part of the site. All right. It's approximately 30 acres, used in World War II for long duration storage of Right now the surface features you'll find there are mainly grass and woods. And if you're looking among the trees, a lot of concrete saddles and stuff that once supported some large acid storage tanks. And the parcel that I noted at two and a half acre parcel to the north of Fourth Street there was included in the site boundaries. Kind of originally the site boundaries were a little different, but in the end over the course of investigations, there was discovered that, well, there's kind of elevated lead and mercury, but particularly on the other side of Fourth Street there were some elevated mercury concentrations. As noted here, the early investigations was showing levels, elevated levels in the soils especially lead and mercury. And, again, mentioning those north of Fourth Street. Groundwater investigations were conducted at several different years over time. You know, they kind of after the first couple where you're kind of looking at a lot of different things, the later investigations, the groundwater concentrated on a few chemicals that

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

appear to be elevated based on the earlier sampling. As we focused in on those particular chemicals, it was determined that they were either associated with the high background levels selenium is an example of that, or they were associated with well construction or sampling artifacts, I quess you can say, rather than really being truly representative of the groundwater itself. And so they were really determined that these sporadic elevated concentrations were determined not This was addressed. to be of concern to the site. mean unlike the Pistol Range where I was just talking about the kind of standard that the state issued for soil that we utilized, this one did undergo a human That risk assessment was done health risk assessment. several years ago and it was based on the first couple of years of investigation. Some additional sampling was done over time that focused in more on some of those metals that were high and so what Shaw did -- I should mention that that original risk assessment was What we did with the additional data done by others. that came in from those follow-up investigations was take it and see if it changed the exposure point concentrations that were used in the earlier risk assessment. We found that it didn't cause those to increase; therefore, the risk was not increased and we

1

2

3

4

5

6

7

8

9

10

1.1

12

13

14

15

16

17

18

19

20

21

22

23

2.4

could live with the outcome of the previous risk Under that risk assessment it was that future maintenance worker as mentioned earlier was what was evaluated under said to be industrial but which is kind of our term for, general term for national wildlife refuge what a maintenance worker does, industrial scenario. Important findings of that assessment, the soil and groundwater cancer risk, soil and groundwater cancer risk was found to be in the The soil hazard index was found to acceptable range. be in the acceptable range. And I mentioned that was determined despite, like I mentioned, some high concentrations of mercury and lead that were around The groundwater had a hazard index of two the site. which just exceeds the acceptable range of one. you know, there are a lot of sites around the country that, even Longhorn, that have much, much higher values of hazard index, those non cancer risks that are out there. So this one was just over. When you have something that's borderline like that, well, you go in and you start looking at individual contaminants And what we found and seeing what's causing things. was the thing I mentioned earlier, selenium being an example of something that was high but then we realized when we compared that to the perimeter for

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

selenium they were high too, essentially background issue. Other things like chromium was high, but we found that by putting in a well not made out of stainless steel that the chromium was really a result of the corrosion of the well itself, that kind of thing. So kind of one by one through a few problem chemicals we looked at them to determine whether they were real concerns, and as I mentioned earlier, the more or less artifacts the way the wells were installed, the ways the samplings of the wells themselves. The end result being that really at this site no action was needed to protect potential receptor for the future maintenance worker.

This next bullet is something that's been a little controversial at times, I think. There were to the north side of Fourth Street, you know, there were elevated mercury concentrations. There were a couple of samples that were particularly elevated with TCEQ, the hot spot concerns. You know, when we were first looking at the risk is acceptable there already according to the risk assessment using the latest numbers, but, you know, these were high values. You know, the easiest thing to do to eliminate the issue was to just go in there and take them out. So we went in and we went to where those samples were and the

area is about 10 feet by 40 feet. And we removed it a foot deep and back filled it with clean soil and it was imported from off site.

1.5

MR. NIGEL SHIVERS: I have a question.

I'm Nigel Shivers. I'm with RAB. After taking the foot of soil and back filling it, was it ever retested again to make sure it all, the contaminants of mercury was removed?

MR. GREG JONES:

Well, we didn't take

samples -- we took out the foot of material and we didn't take samples at the bottom. We basically just brought in the clean material and put on top of that. And kind of the logic being that because our risk evaluation had already shown that the site was acceptable for, you know, given kind of the typical concentration that this receptor would be exposed to over time, that by going in there and simply removing that hot spot area and back filling with clean material, it went from already acceptable to, you know, what should be more acceptable. And so we didn't bother to take additional samples below there.

MR. NIGEL SHIVERS: So we really don't know what is below the one foot level?

MR. GREG JONES: Right. We don't know exactly what is at that interface between the clean

material and the existing material. 1 MR. NIGEL SHIVERS: Okay. 2 MR. GARY ENDSLEY: I have a question. 3 Gary Endsley, Friends Group. Did you take samples 4 beyond those two, beyond the hot spot? 5 MR. GREG JONES: Yes. 6 7 MR. GARY ENDSLEY: And how many samples did you take and what area did it cover? 8 MR. GREG JONES: Well, the first one 9 itself was two and a half acres or so, and we probably 10 took a half dozen or so samples in there. 11 course across the rest of the site there is a huge 12 number of, well, I say a huge number of samples, but I 13 quess a few dozen samples across the other part of the 14 30 acres that make up site 49. 15 MR. PAUL FORTUNE: You have these hot 16 Define hot spot. Is that --17 spots. MR. GREG JONES: I mean I'm smiling 18 because that's sort of an interesting sort of 19 It's one of those things that in the 2.0 question. business can get defined in a number of different 21 But in this case, you know, we had a few 22 23 elevated concentrations anyway. MR. PAUL FORTUNE: 24 Okay.

25

MR. GREG JONES: But those were much

higher.

MR. PAUL FORTUNE: The one that we looked at today, what is acceptable and what was this area that y'all took the foot of dirt off of?

MR. GREG JONES: The acceptable level, I'm not sure I know off the top of my head. But the two that were in there, that were in that, were probably two orders of magnitude and one order of magnitude higher. And by that I mean powers of 10. Like 100 and 10 times as high as the other ones around them. I mean they were high. And there's no doubt about it.

MR. PAUL FORTUNE: So you removed that dirt from this one spot?

MR. GREG JONES: Yes, this 10 by 40 foot strip.

MR. PAUL FORTUNE: Well, you know, I'm just trying to apply some logic here. It would seem to me that if you removed a foot of dirt, you would need to check the soil again at that foot down.

MR. GREG JONES: Well, I guess using the notion that this is top down contamination here. The contamination that we found at the site was, I mean, basically surface and it got lower, it got -- in other areas of the site get lower as you went down further. And so if you give a top down contamination and you

strip off that top, then anything below there should be even a lower amount of contamination. And then when you bring in clean fill material and, you know, we tested that fill material and placed in there, then anything someone is going to be walking across in that area is, you know, far lower than what was there already, what was there previously.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1.6

17

18

19

20

21

22

23

24

25

MR. PAUL FORTUNE: Well, and you're right, it should be, but we don't know for sure. And I do know because I've asked this question several times in the past in regards to Site 49, I know there's been some sort of discussions with the Fish and Wildlife Service. They're not really, they have some concerns about that particular spot. And it would look to me like that the most logical solution to this problem with getting this piece of property transferred and everybody happy would be just to go down there and dig down a foot and sample the soil right there and see And if it's acceptable, you know, if TCEQ -what is. Mark, am I, am I correct that the Fish and Wildlife Service have some issues?

MR. MARK WILLIAMS: I'm Mark Williams.

I'm the Refuge Manager at Caddo Lake Fish and Wildlife
Refuge and that's correct, Paul, we do. As it stands
right now, if it's offered up for transfer, the Fish

and Wildlife Service won't accept it.

2.1

MR. PAUL FORTUNE: And it's my understanding that the only thing y'all would have to do is go down there and sample this soil and this issue would be resolved.

MS. ROSE ZEILER: Let me answer that question. They're not -- that's a transfer question, not an environmental restoration question. And so from Shaw's standpoint and Army's, they've fulfilled their obligation as far as satisfying regulator comments on this site. There's no regulatory driver. By that we mean there's no, there's nothing driving any further action to this site. So as far as the regulators are concerned, there is no further action necessary.

Now, your comment, you know, that's true. All it would take is one sample. But it's not an environmental restoration question. That's a transfer question.

Does that -- do you see?

MR. PAUL FORTUNE: Uh-huh (responded affirmatively). Well, if y'all want the property transferred, why don't you just do it?

MS. ROSE ZEILER: Well, you know, it may happen that way. But we can't really interfere with a

contract with the environmental restoration work. That's a transfer issue that is beyond what they can be required to do. I might add there's absolutely no unacceptable risk because the soil they did bring into the site to fill in was tested. Am I right? MR. GREG JONES: Uh-huh (responded affirmatively). MR. PRAVEEN SRIVASTAV: Praveen Srivastav. We had several samples like Greq pointed out, along those two samples. You were asking what was the level above which the samples were. In a typical risk assessment process, if there was a site that had unacceptable risks, then you would go ahead and calculate clean-up goals if the risk wasn't acceptable. At this site the risk was acceptable. there wasn't a clean-up goal that you can say, okay, everything that's above this level is unacceptable. So what we're saying is even though the risk was acceptable, we still went ahead and to alleviate any concerns that were there from the regulator perspective, we said, okay, there's this one spot that had high concentration. You're talking about 700 PPB, PPM? PPB? MR. GREG JONES: PPM. MR. PRAVEEN SRIVASTAV: PPM, ves. PPM of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

That's pretty high compared to the -mercury. Okay. I missed that. MR. PAUL FORTUNE: What was the level of the mercury in that spot? In that spot what was MR. GREG JONES: mentioned was like 100 -- there were two samples there. One of them was probably 100 times as high as stuff around it and the other about 10 times. So yes, the higher one was several hundred parts per million and the one next to it was between, well, in the tens or 70 or 80. I'm not sure of the exact number. MR. PRAVEEN SRIVASTAV: Again, these are The background here is much lower. We the numbers. have done a background study to find out what the levels are. So these levels seem to be quite a bit higher than that number and that's why just to address that concern, that concern was there, that's why we took out the soil. So at this point there's no risk at the site. And it's ready to be closed. MR. PAUL FORTUNE: Well, I still don't -it doesn't make sense to me why you don't test the soil a foot down and make -- but that's my comment. MR. PRAVEEN SRIVASTAV: Any other comments? MR. GREG JONES: This is the last slide on 49.

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

MS. ROSE ZEILER: Any other comments on this? Thank you, Greg.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. SUSAN WATSON: My name is Susan Watson, and I am kind of the lead on the next three sites. These three sites are 35A, we also call it 58, 46 and 50. These were all originally in a group called Group Four Sites. And so first I'm just going to talk about some general things because it covers kind of all the sites instead of talking about them again and again and again.

There were a lot of investigation and studies done on these sites. The first published investigation was in 2002 and it covered data collected from 1992 to 2000. And since then you can see all of the different studies, most of which have been done on these sites. One thing we did in 2007 is we collected over all of the area of the Group Four Sites a round of water elevations, and that was to help us assess which way the groundwater flowed. this is the Group Four area. I'm not sure you can see the contours really well. But how we did this is we went around and we measured the water level in each well and they were all just over a few day period. And then what you do is you plot that elevation and And then from those that gives you the contours.

contours, you can figure out where your flow is going. So in these areas we generally have a shallow zone, an intermediate zone, and a deep zone. And what we've also found on some of these sites, you'll hear me talk about shallow and intermediate because there's thin sand lenses and they kind of layer and they'll meet sometimes and then they come apart again. So we try to group all of the wells in the shallow and intermediate and some of them actually cross over. this is a shallow zone. And this is Site 46 up here. You can see our flow is kind of east, and it kind of turns northeast, and it's east again here. And this It's pretty much east. And down here is 50 is 58. and it's also east. So generally in the shallow zone, the water is flowing east.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

This is the intermediate zone. Up here is 46. You can see it's going northeast. Here is 58. It's kind of going more east, but it's not really well defined because we didn't have as many wells down here. And down here at 50 again, it's still kind of going maybe a little more northeast than east. So typically in the intermediate zone, the water is all flowing northeast. So it's just kind of a frame of reference just to kind of keep in your mind how the water flows.

The reason why you would need to know this is because once we find contamination in the water, it helps us determine where the plume is, where the plume may go so we can assess the best technologies to look at to try to deal with the contamination of the water. MR. DOUG PARKER: Do you expect those flows that you showed in the northeast and so forth to remain more or less the same over 30 years as is generally expected? MS. SUSAN WATSON: There will be some, you know, maybe see-saw variability slight or you may see some, you know, just localized variations on a site. But typically overall for that zone, yes. MR. GARY ENDSLEY: What you're -- I wish you would have had notes on your well locations on the previous slide. Do you have another way that might do that? These are all the MS. SUSAN WATSON: intermediate wells. Where are they? MR. GARY ENDSLEY: See these circles? MS. SUSAN WATSON: MR. GARY ENDSLEY: Okay. So all of these wells, MS. SUSAN WATSON: not just on this site, but all of these wells

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

collectively we gathered the data. And so we did a

1 large area. Because I think the last time was back in 2 the '90s where they did this. And since then --3 MR. GARY ENDSLEY: Most of this data is from '99 and 2000? 4 MS. SUSAN WATSON: No, this is from 2007. 6 MR. GARY ENDSLEY: Okay. 7 MS. SUSAN WATSON: End of November, first 8 of December we came and did all of the measurements. And so what we did is we took all of these as a group 9 10 so we'd have a better picture of what was going on 11 across the site. Because if you imagine if you only 12 took this little group of wells, you couldn't really 13 figure out maybe what was going on right here. 14 that's why we collectively looked at a larger area so 15 we could assess better where the groundwater was 16 going. 17 So this is the intermediate, and there are fewer wells in the intermediate zones. Let me go back 18 19 to the shallow. Do you see all of these little dots? 20 All of, these are all of the shallow well zones, the 21 shallow zone wells. Sorry. 22 MR. GARY ENDSLEY: These are not the same 23 as the other, the deeper wells? 24 MS. SUSAN WATSON: That's correct. 25 MR. GARY ENDSLEY: Different wells.

MS. SUSAN WATSON: They're different wells. And sometimes we do groups of wells together in a location where they're shallow, intermediate, and deep. So we'll have like a grouping that's in a similar location.

MR. GARY ENDSLEY: Are there any wells to the north or northeast of those things?

MS. SUSAN WATSON: There are some that are, you know, they're way up here somewhere off the edge of the property. Actually they're right somewhere over here. There's some perimeter wells. But they were in here. They were not included in this study. Right over here, do you see the little map over here? There's some perimeter wells. There's not to the north -- there's not any perimeter wells to the northeast. So these are the only wells here because we're really close to edge of the site. Right here is the edge of the site.

MR. GARY ENDSLEY: That's my concern that right across there is the public drinking water supply.

MS. SUSAN WATSON: I've got some slides that you can look at that. They're on the, they're located on the other slide.

Okay. So this is the shops area. And

originally it was much larger. If you look at historical documents, you might see some different It's now this little area right here. acreage. you can see all of these other identifiers. lot of other little sites that are, you know, within this area. So the shops area was a maintenance It was established in 1942 and closed in complex. 1997. So it operated for about 55 years. supported services throughout LHAAP including laundry automotive, woodworking, metalworking, painting, refrigeration, electrical and there were solvents and degreasers, those kind of things that were used here because of the auto maintenance. It's about 11 acres right now at its current size. You can see there's several other sites within its boundaries. Right now the surface features are just paved roads, old parking There's some grass covered areas. lots. relatively flat. Surface drainage goes to tributaries and eventually flows to Goose Prairie which eventually goes to Caddo Lake. I talked a little bit earlier about the sand lenses. They're about three to five The depth varied across the site. feet thick here. The three zones, the shallow zone here is about 10 to 25 feet below the ground surface and on this site on the eastern side, it flows east and there's a little

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2.4

25

bitty area on the west side of the site that flows back southwest. But it will come back around and then it kind of goes east again. The intermediate zone is about 60 to 71 feet below the ground surface. And the deep zone is 126 to 140.

The base line human health risk was done for the industrial worker. For the soil, the cancer risk and the hazard index are acceptable. And the shallow groundwater, the cancer risk and the HI are not acceptable. The cancer risk was 1.6 times 10 to the minus two. Remember it's supposed to be minus four to minus six. And the HI is 38 versus one, which is unacceptable. The intermediate and deep zones do not have any contamination. The chemicals of concern --

do to determine that the deep, intermediate and deep weren't contaminated?

 $\mbox{MS. SUSAN WATSON: Off the top of my head} \\ \mbox{I don't know.}$

MR. GARY ENDSLEY: Were there six or 50? Closer to six?

MS. SUSAN WATSON: Maybe -- I can't tell you how many wells -- you saw the intermediate wells that were at the site. You know, there was, you know, samples collected from all those more than once.

MR. PRAVEEN SRIVASTAV: Is the question how many wells were sampled?

2.4

MR. GARY ENDSLEY: Yes, how much data do we have?

MR. PRAVEEN SRIVASTAV: I would say closer to six. There are some samples from 1990s and we started collecting and we collected three or four rounds.

MR. JOHN LAMBERT: Yes, it goes back.

There's 15 years' worth of data. That's not to say -
John Lambert -- that's not to say every year was

sampled, but the data goes back 15 years. So at

multiple times as he's indicated.

MR. CARLOS SANCHEZ: My name is Carlos
Sanchez with EPA. At this meeting, sometimes we may
not have the complete answer for your comment or
question. Once we get back to the office, we'll give
you a detailed response to your comment and that will
be included as part of the record, in the record of
decision. It's called responsive summary. And in
there we will give you the full information. We'll
try to answer your questions as best we can, but in
some cases we will have the full details or
information that will be presented in the
responsiveness summary for the roster. Your comments

or questions will be fully answered in writing. 1 MS. ROSE ZEILER: Thank you, Carlos. 2 MS. SUSAN WATSON: So the chemicals of 3 concern in the shallow groundwater zone are 4 tetrachloroethene, trichloroethane, 1,2 5 dichloroethane, 1,1 dichloroethene and vinyl chloride. 6 I'm trying not to talk in acronyms, but I may slip up. 7 PCE is the tetrachloroethene. It's like a parent 8 We think about it as the parent. And then 9 as it degrades, it becomes TCE or trichloroethene. 10 Then on to DCE, vinyl chloride, and finally to the 11 harmless ethene. So that's the pathway. You know, 12 these were in a lot of the chlorinated solvents, and 13 they were used, you know, in the area. So there's not 14 really any surprise here of any of this contamination 15 based on the operations that were at the site. 16 Here are the two shallow groundwater 17 We're calling this just the eastern flow. Uр 18 here you can see the highest. This is just the 19 This is not from any particular well. 20 maximum. highest trichloroethene is almost 10,000 micrograms 21 per liter. If you hear us talking PPBs or PPMs, a 22 microgram per liter is the same as a PPB. Milligram 23 per liter is the same as a PPM. So sometimes you may 24

hear things both ways. So that's what that means.

25

The PCE is at 605 in the eastern plume. Then in the western plume, the PCE is about seven and TCE is at 25. The MCL, maximum contaminant limit, the drinking water limit is five for both PCE and TCE. So you can see that these are above the MCLs.

2.0

So what we do is we go through and you determine as part of the feasibility study process, the remedial action objectives. So for this site it is to prevent exposure to the VOCs, that's all of the PCE, TCE, that collective group, contaminated groundwater, prevent the groundwater from impacting the nearby surface water, and then return groundwater to its potential beneficial use.

So as part of the FS, you look at technologies first. So what kind of technologies are out there to help remediate this problem. One of the technologies is monitored natural attenuation. What that is is a passive treatment. So natural processes actually reduce the contaminant mass in the groundwater. And to do this, you have to have favorable conditions. So you look at things like your dissolved oxygen and your Ph and the groundwater composition. And you evaluate all of this as well as contaminant concentrations to determine if you think that the monitored natural attenuation will work. At this site we have not

conducted any kind of study, you know, formal study where we take so many like quarters of data to actually evaluate the effectiveness of natural attenuation.

Same for in situ bioremediation. We haven't done any studies yet to see if this would really work at this site.

Then there's an active treatment. What it is is you actually inject nutrients and microbes and it jump starts and helps expedite the degradation of the groundwater contaminants. So basically what we're doing is we are manipulating the subsurface conditions to make it favorable basically for biodegradation or attenuation. But in that case it's not natural anymore where we go in and we inject things. It follows the same chemical process though once it starts degrading.

So basically then once you look at your technologies, you put all of those together, and you come up with various alternatives that you evaluate. The first alternative is always no action. That means doing absolutely nothing. You walk away. It cost you zero dollars. Any risk that is there is still there. You don't monitor, you don't do anything, you don't have any idea what's happening.

Our second alternative we looked at for both plumes was monitored natural attenuation with land use controls. The third alternative for both plumes was in situ bioremediation with land use control and then long-term monitoring. And the fourth alternative was in the eastern plume was to do the in situ bioremediation and then monitored natural attenuation in the area where you didn't actually inject and the land use controls. And in the western plume is just monitored natural attenuation with land use controls. And alternative four is the proposed remedy.

So once we developed these alternatives, then we have to evaluate them, which I kind of guess I jumped ahead by putting the proposed remedy. So there's actually nine criteria that we have to look at when we evaluate alternatives. The overall protection of human health, the compliance with applicable and relevant and appropriate requirements, which are chemical specific like MCLs, location specific, like is it in a flood plain; and action specific, which, you know, also can get into -- help me out -- action specific --

MR. GREG JONES: Disposal risk.

MS. SUSAN WATSON: Yes, disposal. Just like you're digging up soil. I couldn't think of one

right offhand. The long-term effectiveness and permanence, reduction of toxicity, mobility, or volume through treatment, short-term effectiveness, which is essentially protection of workers and the community during the action; implementability which is availability and reliability of resources, the cost which we look at capital cost to put a system in, the operation and maintenance cost, then we bring all of that back to present worth so it can be evaluated and the alternatives can be compared; the agency acceptance of the proposed remedy and the community acceptance of the proposed remedy.

So as we look at that, alternative four is the proposed alternative. It is implementable, it utilizes statutory preference for treatment, which is on the eastern plume. It's expected to attain remedial action objectives, and it will have long-term effectiveness, permanence with minimal short-term impact and the cost.

So here are the key elements of the proposed remedy. In the western plume it's the monitored natural attenuation. And what will happen with that is for two years, eight quarters of data will be collected, and it will be evaluated. And it will, we'll look at it to figure out is it effective, is

attenuation occurring or is it not. If it's not effective, then after two years the contingency remedy would be implemented such as in situ bioremediation. If it's found that it's effective, new curves will be made so it will project when it would be cleaned up and the monitoring frequency would be changed to semi annual for three years and then annual until the next five year review. Then it will start falling into the five year review cycle. And, you know, every five year review, they again evaluate the remedy and its effectiveness.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1.8

19

20

21

22

23

24

25

In the eastern plume we have the active treatment which is the in situ bioremediation. This target area is expected to require about five injection points and that's still subject to design. This is sort of what the cost estimate is based on. So we can compare it. And outside of that area of injection, there would still be MNA, and then the attenuation of the area where we inject is also re-evaluated to make sure that it is continuing to The estimated time to achieve the clean-up attenuate. levels in both plumes is about 200 years. actually kind of based on the western plume. eastern plume may go a little faster once we do the Land use controls, we will treat the bioremediation.

groundwater use until the clean up levels are achieved. Then based on the groundwater flow rates, there's not expected to be any adverse affect on any of the surface water during this treatment time. And the groundwater monitoring will continue every five years until MCLs are met.

2.0

2.1

2.3

So that's the end of Site 35A (58). Do you have any questions on it?

MR. PAUL FORTUNE: It's expected for this clean-up to take 200 years?

MS. SUSAN WATSON: Correct.

MR. PAUL FORTUNE: Okay. We have a plan to monitor this every five years for the next 200 years?

MS. SUSAN WATSON: Yes. Once the MNAs are evaluated, the new curves, a new time frame, you know, depending on how the attenuation, once we get better data, you know, the duration will be reassessed. But right now based on the data we have, we're predicting approximately 200 years.

MR. PAUL FORTUNE: I guess y'all know that I'm happy to say just -- excuse me. Paul Fortune is my name. The Caddo Lake Institute did hire a biologist to do a, to look at this, these alternatives and remedies, and prepared some comments on them. And

on this particular site here, 35 (58), one of his comments in regard to the MNA is, and I'm going to read this, and if y'all would like to comment you can. The proposed plan states that contaminant levels will be reduced to MCLs in approximately 200 years. uncertainty associated with this estimate is an order of magnitude. That is the time to achieve MCLs could range from 20 to 2000 years. It is not reasonable to propose a plan that would require the maintenance of land use controls for many decades or centuries. Can y'all comment on that? I don't know. Т mean, this is another opinion here. I'm just --MS. SUSAN WATSON: Our best estimate right This will be evaluated, and based now is 200 years. on those rates, you know, another duration will probably come out once we look at the performance of And until that's done, I can't, you know -the MNA. this is based on the data we have right now, we're saying about, you know, 200 years. MR. PAUL FORTUNE: If you did this with the, what is that other, in situ bioremediation? MS. SUSAN WATSON: Uh-huh (responded affirmatively). MR. PAUL FORTUNE: About how long would

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

you expect it to take?

MS. SUSAN WATSON: If it's effective, less. But I can't tell you. I mean, I can't tell you how much less. So off the top of my head, I can't tell you.

MR. PRAVEEN SRIVASTAV: It depends on the subsurface response once we treat it and then you start seeing the effects. So it depends site to site. But yes, you can probably treat it the next few years. It's hard to say how long.

MS. SUSAN WATSON: I will say now the eastern plume, we looked at that data. We said attenuation is not really happening here. We evaluated the data. We did, you know, attenuation evaluations just like we've done on the other ones and we said, you know, has not attenuated here. So that is why the bio is proposed for that.

MR. PRAVEEN SRIVASTAN: One thing I would like to mention, this has gone through very rigorous review and all these remedies have come out of the, as part of the resolving comments of PCQ and EPA where they were, you know, really, they were commenting on the eastern plume, you know, what the data we are presenting is not indicating will actually remediate this part of the plume. So I think that's the whole process where we work with them and came up with a

plan that okay, on the eastern plume, we're going to treat the plume right up front to expedite the process. But on the western site, it seems like that there are daughter products and attenuating might work. Again, it's in the evaluation phase. If you don't see MNA working after two years, then we'll evaluate the need for contingency. That's where we are.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. CARLOS SANCHEZ: This is Carlos Sanchez with EPA. Basically what we're doing in the five year review is we have to show that it's decreasing. If it does not do anything, we're not just going to continue to monitor it forever. Wе expect some kind of active remedy to actually, you know, get to the MCL levels. So just, you know, these years are an estimate, but, again, every five years or sooner with groundwater samples and data are analyzed, we have to show, you know, the levels have to show a trend that they're actually decreasing and going down to continue that process. If it's not doing anything, we're not just going to keep monitoring. We're going to require some active treatment.

MR. PAUL FORTUNE: Is there a rate of decrease that you looked at?

MR. CARLOS SANCHEZ: It varies by site,

but there is some criteria after, you know, as to X number of years where, you know, you would expect it to show a decrease, that monitored natural attenuation is actually taking place. And if that is not happening, you know, you have to take some active or implements, some active remedy because that's what the five year reviews are for to determine the effectiveness of the remedy. And if it's not being effective, it's not going to just continue.

2.3

MR. PAUL FORTUNE: All right. I know that y'all look at cost and I appreciate that, but if cost wasn't a factor, would this be the way that you would go?

MR. CARLOS SANCHEZ: Based on the information we have right now, we would go with that. But, again, and that's why we do the evaluations, not just for groundwater, but for all of the remedies. We evaluate and continue to look at the remedies to make sure that they're still effective and they're still serving the function that they were designed for.

UNIDENTIFIED SPEAKER: So 200 years for remedy is acceptable?

MR. CARLOS SANCHEZ: Well, that's what I'm saying. If after X number of years we don't show that it's decreasing, we're not going to continue the

monitoring. We're going to require some active treatment.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

This is John Lambert. MR. JOHN LAMBERT: It should be added that part of the challenge here is this trichloroethene, it's a chlorinated solvent that's very heavy, it's a chain molecule. gets in the subsurface, it's very hard to remove. Example, 18/24 where they've been pumping for over 12 years, you know, it's not as though you get rid of it right away. It takes a long time, even if you're doing an active treatment. So it's a cost balance You can spend a lot of money and do a very thing. active treatment for some number of years and still be a long way from reaching the target. I've heard it stated that very few sites with TCE contamination of groundwater have ever been cleaned up fully. So part of the challenge is the contaminant here in the subsurface. So either you go throw a lot of money at it and still be doing it 50 years later. That's how challenging that contaminant is in the subsurface.

MR. CARLOS SANCHEZ: This is Carlos

Sanchez again. We look at various situations, we look

not just at, you know, where you are at the time frame

that we're looking at for the remedy to reach the MCL.

We also look to see if the plume is basically, you

know, not moving to, you know, the creek or the lake or to, you know, public drinking source. So we look at various factors to say that 200 may be unacceptable. If you have drinking water, you know, public drinking water float by five years would not be acceptable. So it depends on the site and then the area where the groundwater may be moving to. That takes into account how many years would be acceptable for remedy to reach the MCL levels.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. DOUG PARKER: Can you go back to the listing of the four alternatives? Yes, and alternative four was the one that was chosen. alternative three shows in situ bioremediation for both plumes. And my question here, I guess, is about your process or your analysis, not specifically about this site. But it would seem to me that it's difficult to evaluate an alternative when you don't know the long-term effect. In other words, alternative four, you've made an estimate of 200 For alternative three in which you were doing vears. bioremediation, you've not made a similar evaluation. That's not what I'm hearing anyway. I'm wondering how can you make a fair analysis of the alternatives if you don't know that estimate for each of those alternatives?

MS. SUSAN WATSON: Okay.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. DOUG PARKER: Is that clear?

MS. SUSAN WATSON: Yes. Basically a standard 30-year period is used to evaluate any alternative. And all the estimates are done in today's dollars and brought back to present worth. And at that point in the future it's not capital cost which are most of your upfront expenditures, but it becomes more of an annual type cost. So it actually doesn't influence like, for example, the cost numbers as much as you think. And we may not know the exact duration of all of these, but I think they were all probably evaluated for the 30-year period. So that's -- to help evaluate, there are set guidelines. are set discount rates that are published. So a lot of what we do is by some guidance, it's regulatory driven, it's not just oh, this time we'll do this and this time we'll do that. So there's a set of rules on how to do the estimates. And so those are followed, you know, for compatibility. As far as technologies, there's also a lot of guidance on what technologies to use based on contaminants. So all of those things get used to develop, you know, as you go through your technology, screening technologies do you think it will work here, it might work on this contaminant but

maybe there's something about the site that this technology is just not going to work. So you have to look at all of that. So first you look at technologies, what is going to work here based on the contaminant and the site. Then once you get all of those technologies, you start grouping them differently, the different alternatives that make sense. And then you do the cost estimates to fully evaluate.

MS. ROSE ZEILER: If I might add, I'm not sure if I understand this part of the question, but we do evaluate each alternative on how well to address the remedial action objective and the time question really relates to the restoration objective which is restoration of groundwater to MCL. I think that was one of three remediation action objectives. So when these alternatives are evaluated, that's one of the criteria is timeliness, short-term and long-term effectiveness. And that will go to how well it addresses that particular remedial action objective, restoration of groundwater. You said we haven't evaluated time, we're not saying much about the time in alternative three which is the in situ. Is that what you were talking about?

MR. DOUG PARKER: Yes. And how do you

compare, you know, one alternative that you have an estimate and another in which you don't have an estimate.

MS. ROSE ZEILER: Right.

1.1

1.2

MR. PRAVEEN SRIVASTAV: And I think it comes back to time for what. That's what John was referring to. That like in alternative three, you could treat something right up front, but it probably wouldn't get you to MCL much sooner than alternative four. You can knock out a lot of the mass, but to say that it's clean, you have to get to five PPBs for TCE. It takes a long, long time for it to get there, even if you treat something. So that's -- so, I mean, the other part of your question is time for what. That is the hard question to answer.

MR. DOUG PARKER: So obviously when you came up with approximately 200 years, you somewhere say 200 years to mean what. My question is okay, apply the same thing to the other alternatives.

MR. JOHN LAMBERT: I think he hit on it earlier. That is, it's generally known with that technology in situ bio, that it decreases mass more quickly up front. But as he indicated, you still have

that long process where you've got to get to that very low number with the residual contaminated and the It's known that it would decrease the subsurface. time, but just as he said, you don't know exactly how the formation is going to respond to what you do when you inject into the formation to stimulate the biologic process. You don't know exactly how it's going to happen in terms of decrease in time. will get that data in your monitoring program. will become more apparent. But it's generally established or agreed that it would decrease the amount of treatment time if you did the active in situ bio, but not greatly if you look at the long-term getting to that low level of five. So until you actually do it and get some evaluation data, you can't, it would be pretty much a guess.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. ROSE ZEILER: I would say certainly with in situ the 30 year, what's beyond that. But I think his question was the time. I think you answered it. Unless you wanted more in depth.

MR. DOUG PARKER: No. Thank you.

MS. SUSAN WATSON: The time is based on you look at the data and you develop degradation rates and then based on those rates for each individual site, it's is not like a textbook number, you have the

data from that site and then that's how the times are 1 2 developed. Any other questions? MR. PAUL FORTUNE: I have just an 3 in-general question, not specifically about this. But. 4 I guess when you're talking 200 years, this seems 5 irrelevant, but why are we just now at this point on 6 starting to monitor this water over there? 7 MS. ROSE ZEILER: Well, that's a good 8 We're not -- monitoring implies that we're 9 question. looking at it for some purpose. And I know that 10 sounds insane. We've been in the investigative 11 characterization phase for a long time. And as we 12 move into the MNA or the remedial phase, we'll be 13 doing this at a regular forecast schedule by which we 14 know we can evaluate the data from quarter to quarter. 15 It would have been desirable now that we look back to 16 17 have some historic data. It certainly would have us at this point. And we have historic data. 18 don't have a regular scheduled quarterly data. 1.9 MR. JOHN LAMBERT: For certain things when 2.0 21 you do MNA. MS. ROSE ZEILER: You do, but I think he's 22 just talking about -- were you talking about just 23 24 monitoring for concentrations? MR. PAUL FORTUNE: I don't know why we

25

```
didn't start this monitoring natural attenuation years
1
2
    ago.
3
                 MS. ROSE ZEILER: Because it's a remedy.
    We have to all agree on it.
4
                                    But it seems like the
                 MR. PAUL FORTUNE:
5
                     I don't even know when y'all decided
    whole -- okav.
6
7
    that -- when did you first test this water over there?
                 MS. ROSE ZEILER:
                                   For contaminants?
8
                 MR. PAUL FORTUNE: Uh-huh (Responded
9
    affirmatively).
10
                 MS. ROSE ZEILER: I would say early '90s.
11
    Maybe there was an '88 sampling event.
12
                 MR. PAUL FORTUNE: So it's early '90s,
13
     '88, so it's taken 10 or 12 years just to get to this
14
15
    point?
                 MS. ROSE ZEILER: Yes, it has. It's taken
16
17
     a long time.
                                    To go back to the first
                 MS. SUSAN WATSON:
18
     line, Greg, too far to go back to, but if you remember
19
     one of the very first ones, the RI/FS stage was --
20
                                          2002.
                 MR. PRAVEEN SRIVASTAV:
21
                 MS. SUSAN WATSON: 1992, and the FS, these
22
     FSs are 2009. So over that period, there's been a lot
23
     of investigations done. And you had to get all of the
24
```

risk assessments done and the ecological risk

25

assessments done because all of the actions are risk driven, either ecological or human. So it just all took time.

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. ROSE ZEILER: And I know that it's Part of the been frustrating here. I know that. complication is too or part of the delay is that there are complications in these sites. Perchlorate has been a big one for us. I can't speak to years in the '90s, I can't speak to all of that, I don't know a lot about that history of what actually went on here, but the perchlorate because it was really an emerging contaminant it had a huge bearing on how we went forward on our rating because for a long time we had no clean-up criteria for perchlorate. So if you think about someone saying, Army in this case, okay, we can go clean up perchlorate, what do you clean it up to. What do you clean it up to. Suppose you went out and cleaned it up and then maybe the levels are announced at some point later and you didn't clean up enough. You would have to go back. Army's policy is, you know, unless there's a standard, promulgated standard, that we can work towards, we have nothing to constrain what our level of activity would be. Perchlorate was a problem because it was always identified as a emerging contaminant in '96, '97, somewhere around

there pretty late into the '90s, and we went into here, dispute resolution on how to address perchlorate as an emerging contaminant, that took a lot of time. And then later as we went into ecological risk assessment. We had to have our ecological risk assessment done before we could even start finalizing feasibility studies. Ecological risk assessment, perchlorate cost, another problem for us, among other things, because we didn't have standards for perchlorate for human health, much less ecologic risk That was a delay. And then, you know, at that time. finally we got through that ecological risk assessment and really we've been kind of busting loose since So we're done... then.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. SUSAN WATSON: Any questions? Okay,
46. 46 is the site we were talking about that's up
here that's close to the north boundary. Site 46 is
also known as the plant two area. You might hear it
referred to as that. It was industrial area.
Pyrotechnic and elimination devices were produced.
And it was from the '40s to 1997, so for almost 60
years operations were occurring there. Currently the
buildings have been demolished. There's some concrete
slabs there and overgrown with vegetation. It's
pretty flat and there's just some tributaries around

the site that eventually run off and head toward Goose Prairie Creek which as y'all know drains into Caddo Lake. The site is much larger than the other sites. It's about 190 acres. The risk assessment indicated that the soil was acceptable both cancer and the hazard index. The cancer risk, it was acceptable in the groundwater, but it had an HI of 31 which is not acceptable. The chemicals of concern were TCE again and their daughter product, cis 1,2- DCE and the vinyl chloride. And the clean up goals here are the MCLs. This is the shallow groundwater contamination. This plume is defined as not migrating into off site. It's

1.0

MR. GARY ENDSLEY: How do you know that?

MS. SUSAN WATSON: Because these wells

right here and here and here, they don't have

contamination in them.

MR. GARY ENDSLEY: That can get off site by going another direction.

MS. SUSAN WATSON: Remember which way your groundwater flows. In the shallow zone, it's going this way.

MR. GARY ENDSLEY: Yes, I know.

MS. SUSAN WATSON: It's got to go -- look how far it has to go and then, you know, it's a long

ways. Let's say there was a, you know, even if there was a little --

MR. GARY ENDSLEY: And what is the migration rate in the shallow zone?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. SUSAN WATSON: I can't tell you based on groundwater velocity.

MR. GARY ENDSLEY: I read in one of the publications 1.74 feet per day times 365 --

MR. PRAVEEN SRIVASTAN: Let me take that I think this is something we talked question, Susan. about before. Groundwater velocity versus the rate at which the contaminant is going to travel, two completely different things because the contaminant is being affected by, as you know, natural contamination processes. It's getting absorbed, it's getting degraded. So that's why this plume is where it is. Even though the spill is probably 1940s. If it was moving at that speed, it would be somewhere else. we have several rounds of data in those wells that are around the plume. So we have defined the plume close to and below the MCL and we have several rounds of data that shows that concentration. So that's the indication that the plume is not going anywhere. pretty stable at this point. That's both the shallow zone and the intermediate zone.

MR. NIGEL SHIVERS: I have a question. 1 2 Nigel Shivers. Is it possible for the contaminants in 3 the intermediate zone to leach into the deep? MS. SUSAN WATSON: The deep zone samples 4 5 are clean. There is contamination in the intermediate So I'll go to the next slide here. This is the 6 7 intermediate zone. Part of the reason why this plume 8 may appear bigger is these wells you can see are spaced much further apart. The shallow zone, there 9 are more wells. And there is a deep, actually there's 10 a cluster of wells that's in this area, shallow, 11 intermediate, and deep, they're all together. And the 12 deep wells are clean. 13 MR. NIGEL SHIVERS: The greatest 14 contamination is in the intermediate; right? 15 16 MS. SUSAN WATSON: MR. NIGEL SHIVERS: For this site? 17 MS. SUSAN WATSON: No. The shallow zone 18 concentration is at 85.5 micrograms per liter for TCE. 19 And the intermediate zone is at about 31 micrograms 20 21 per liter. MR. PRAVEEN SRIVASTAV: And the other 22 23 thing to know is the way contamination moves -- sorry. 24 Is it showing the different data? 25 MR. NIGEL SHIVERS: I may be reading it

wrong, but it says the shallow zone is approximately

1.4 million gallons of contaminated groundwater in the
shallow zone and approximately 7.85 million gallons in
the intermediate zone.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. SUSAN WATSON: Volume water, correct. And that is this volume. Okay, you see this circle is It's also based on the thickness. remember the actual thickness of the zone. you can see how this is much smaller. So the volume affected, look at the well spacing, you can see the wells are closer together so you can define the plume as smaller. So here the well spacing is larger so you draw your -- you don't say it's real small. conservative in how you draw the plume. So since we know this one is clean, you can see, you know, it's not drawn around here, it's actually drawn out closer to here because we know this one is clean. So if we had the entire well spacing, the volume of the intermediate zone, you know, could be less. It's hard to say, you know, based on -- this is conservative.

MR. PRAVEEN SRIVASTAV: Let me take another shot at this. What you're looking at is the volume. But overall concentration in the intermediate zone is lower than what's in the shallow. That's one. Number two, when you worry about vertical migration,

you worry about that when you have really, really high concentrations, so let's suppose we have much, much higher concentrations in the intermediate zone, then you start thinking, okay, maybe it's moving down. But these concentrations are not nearly as high. So that's one. And number two, we do have a deeper well that shows no contamination. So we have tested in the area that is highest concentration at the site and it's not showing that.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MS. SUSAN WATSON: So the groundwater contamination is approximately down to 30 feet below the ground surface and that's in the intermediate The drinking water well -- we had questions on zone. The drinking water wells are in the Wilcox this. group and it's approximately 200 feet below the ground The drinking water wells are upgradient of surface. contamination and this is from the remedial investigation. This is where this information has They did this -- well, I don't know what come from. year they actually looked at the data. But this is from approved RI that was back in 2002.

MR. DOUG PARKER: Can you go back, please. The last item, I'm sorry, I read English, but I don't know what that means, upgradient of the contamination, what does that mean?

MS. SUSAN WATSON: It means that the water 1 2 flows from the direction of the drinking wells down 3 towards lake and Longhorn. MS. ROSE ZEILER: It's not flowing towards 4 5 the drinking water. MS. SUSAN WATSON: (Pointing toward slide) 6 7 yes, Longhorn down. It's flowing up. From the 8 public, the area of the public water wells, the 9 groundwater flow would flow towards Longhorn. UNIDENTIFIED SPEAKER: It's downwind is 10 what you're saying? 11 MS. SUSAN WATSON: Right. Here's what we 12 did --13 14 MR. CARLOS SANCHEZ: Uphill of the 15 drinking water. 16 MS. SUSAN WATSON: Thank you. These are 17 the one, two, and three wells that are in the Caddo 18 Lake water supply. And these coordinates came from 19 the state data base. I know this one is slightly off. I know it's not in the middle of the road. 20 But this 21 is the shallow zone. And this is the same groundwater 22 flow that we saw earlier that was bigger, so it's just 23 for this site. And so this is the flow direction here in the shallow zone. Here's your contamination. 24 This 25 little area in the middle is where it is now.

Historically you can see it's been larger. So right down here is your contamination right here. And then here is your flow. And then here are your wells here and here and here. Then here is the intermediate.

Groundwater flow is towards the northeast. So it's coming across this way. Here's the plume. Your wells are here, here, and here.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

So before we move on, any questions about any of that before we move on to the alternatives?

Alternatives evaluated, there were Okav. three of them. First one was no action. Second one is monitored natural attenuation with land use Third one was the in situ bioremediation controls. with short-term land use controls and long-term monitoring. And alternative two is the proposed This is for both the shallow and intermediate remedy. So why was it recommended; it was easily zone here. implementable, it's expected to attain remedial objectives, it will have long-term effectiveness and permanence with minimal short-term impact, and the cost.

So the monitored natural attenuation means, again, for two years we'll collect a course of data and evaluate it. If it's effective, monitoring will continue. If it's not, a contingency remedy would be

implemented. The long-term monitoring would continue every five years until the MCLs are met and the LUCs would restrict groundwater use until the clean-up levels are met. And the estimated time to achieve the clean-up levels is about 30 years. That's the last site. Any questions? MR. PAUL FORTUNE: Yes. What is thallium? MS. SUSAN WATSON: It's a metal. MR. PAUL FORTUNE: I've never heard Okay. of it before. Why would it be a chemical of concern? MS. SUSAN WATSON: If there is risk from thallium, it would be a chemical of concern. MR. PAUL FORTUNE: But is there a risk from thallium? I don't know. I'm asking. MS. SUSAN WATSON: From the risk assessments and the feasibility study, the COCs here were TCE and the daughter products. MR. PAUL FORTUNE: Well, since I don't know what thallium is, it says here, and this is in George Rice's comments, all analysis of thallium

1

2

3

4

5

6

7

8

9

10

17

12

13

14

15

16

17

18

19

20

21

22

23

24

25

know what thallium is, it says here, and this is in George Rice's comments, all analysis of thallium infiltered groundwater samples at Site 46 exceeded the MCL. The Army has stated that the thallium is probably naturally occurring. Thus, it is not considered to be a chemical of concern. However, this conclusion does not appear to be supported by the

And it goes on. And I mean -data. 1 MR. PRAVEEN SRIVASTAV: Let me take that. 2 What we are trying to do, we just got them yesterday 3 or day before from Mr. Lowery, so we are planning on 4 responding to them in writing. Since we just received 5 them, we don't have all of the information to answer 6 7 that question. MR. PAUL FORTUNE: All right. I didn't 8 know whether y'all were going to respond to them. 9 haven't responded to any of my questions. 10 MR. PRAVEEN SRIVASTAV: We're happy to 11 respond to them. 12 MS. ROSE ZEILER: Yes, right. We have to 1.3 14 respond. MR. PRAVEEN SRIVASTAV: We have to go back 15 and look at the data and see what Mr. Gary Rice is 16 referring to. Is it Gary Rice? 17 MR. PAUL FORTUNE: George. 18 MR. PRAVEEN SRIVASTAV: George. 19 MS. ROSE ZEILER: And all of your comments 20 will be responded to, every one of them. And they're 21 22 going to be included --MR. PAUL FORTUNE: Well, nobody said they 23 were going to be, so I just --24

25

MS. ROSE ZEILER: I'm sorry, I thought we

```
Maybe we didn't. I apologize if we didn't.
    did.
1
    will be in responsiveness summary of the ROD, but
2
    you're free to ask those now. We'll try to answer
3
4
    them briefly.
5
                 MR. PAUL FORTUNE:
                                    Okav.
                 MR. NIGEL SHIVERS: I have another
6
7
                Going back to the alternative, take for
    question.
    instance alternative three, you chose not to do that
8
9
    one.
                 MS. SUSAN WATSON:
                                    Do you want me to go
10
    back?
11
                 MR. NIGEL SHIVERS: Alternative three,
12
    right, you chose not to do that one.
13
                 MS. SUSAN WATSON:
                                    Because --
14
                 MR. NIGEL SHIVERS: What about the length
15
16
    of duration? How long did --
                 MR. GARY ENDSLEY:
                                     30 years.
17
                 MR. NIGEL SHIVERS: 30 years on three?
18
                 MR. GARY ENDSLEY: I've believe on two.
19
20
                 MS. SUSAN WATSON:
                                     30 years on two.
                 MR. NIGEL SHIVERS: Two?
21
                 MS. SUSAN WATSON: Yes. So it could be
22
23
           How much, I can't tell you.
     less.
                 MR. GARY ENDSLEY: Would you use the same
24
     logic you were applying to an earlier site, we could
25
```

expect of immediate bump, knock down the 1 concentration, long string out of getting the MCL. 2 Especially when they're MS. SUSAN WATSON: 3 low concentrations --4 MR. GARY ENDSLEY: And what we're worried 5 about here is the close proximity to the public 6 drinking water source. And the numbers of samples, 7 the kind of bottle you put the thing into, all that 8 plays into the quality of what rolls out at the end of 9 You know, this to me is the top line 10 We need more sampling of wells, shallow, 11 intermediate that's in line with the drinking water 12 I think you should put them out there. 13 sources. you should monitor those things. I think you ought to 1.4 be putting the bugs to it and augmenting the bugs and 15 see if they can't hurry up and get rid of this 16 potential nightmare situation. 17 MS. ROSE ZEILER: Thanks for your 18 19 comments. MR. GARY ENDSLEY: That's my comment. 2.0 Just in general with, MS. SUSAN WATSON: 21 again, TCE, you may think oh, it's a low 22 concentration, but sometimes, I mean, it still takes a 23 long time for it to get all the way through even 2.4

25

though it's --

MR. GARY ENDSLEY: It's been out there a long time already.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. NIGEL SHIVERS: I was just wondering if you could reach the same conclusion in a shorter period of time by doing alternative three; same result, shorter period of time?

MS. SUSAN WATSON: Basically alternative two and alternative three both should ultimately restore groundwater to beneficial use, yes.

Okay. Site 50 is a little bitty Site 50. site right here. And we talked about the sampling at Goose Prairie Creek earlier at the RAB meeting when they were saying this is one of the areas where they sampled Goose Prairie Creek was right around here. Site 50 was the former sump water tank. And I think the name tells you what the operations were. Basically they took water from all of the sumps around Longhorn and took it to this large 47,000 gallon above ground storage tank at the site. Then what they did is they filtered out the solids and then the liquid was actually discharged to Goose Prairie Creek when the flow was sufficient to dilute the water to safe levels. The tank has been removed. It's just basically grass out there. And the site is about one It's actually a little bitty site. Basically

the runoff does flow to Goose Prairie Creek. And the shallow zone is about 20 feet below the ground surface and it flows, I have here east northeast, just on the overall how it flows. And the shallow zone groundwater, the creek is adjacent to the site, but the level of the shallow groundwater is actually below the bottom of the creek there. So the groundwater, you know, doesn't flow into the creek. So the risk assessment was done. And the soil, there was no cancer risk. No non cancer hazard index. Everything was acceptable. And the groundwater, there was a cancer risk and the HI was not acceptable. Most of this is due to perchlorate. 300. thing we did here with the perchlorate is we looked at the soil to groundwater pathway and what we found is actually there was an area of soil that had high perchlorate levels. So you'll see for soil, the chemical of concern is perchlorate and that's because it can leach into the groundwater. And there's a level they looked at the levels in the soil leaching into the groundwater for industrial use and that's the value that was used, TCEQ value. The chemicals of concern in the shallow groundwater are perchlorate, tetrachloroethene, trichloroethene, 1,1 dichloroethene, cis 1,2- dichloroethane, 1,2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

dichloroethane, and vinyl chloride.

2.0

Here are the plumes. Again, remember it's just the shallow groundwater. These are the volatile COC plumes that would be tetrachloroethene, trichloroethene, dichloroethene. And then on this one we also showed perchlorate. You'll see it on the next one. But here's the little area that perchlorate was identified. You'll see excavation on the alternatives. That's where it will be. This is the perchlorate. This little circle right here is where we believe the tank was located based on the past reports.

MR. GARY ENDSLEY: That plume is 30 feet below the surface, 20 feet?

MS. SUSAN WATSON: 20 feet.

MR. GARY ENDSLEY: 20 feet.

MS. SUSAN WATSON: Remedial action objectives for site 50 are to prevent exposure to the volatiles, perchlorate contaminated groundwater, to protect the human health by preventing further degradation of groundwater and surface water from the soil contaminated with perchlorate and to return the groundwater to its potential beneficial use as a drinking water. So the alternatives were developed. Alternative one is no action. Alternative two is

excavation of the perchlorate contaminated soil, monitored natural attenuation. That would be for both the VOC and perchlorate plumes and then land use controls. Then alternative three, again, excavation of perchlorate contaminated soil, in situ bioremediation, which is effective on both VOC and perchlorate, MNA, the monitored natural attenuation, and land use controls. And alternative two is the proposed remedy.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Again, implementable, it's expected to attain remedial action objectives. It will have long-term effectiveness and permanence with minimal short-term So the remedy is to first go out impact and the cost. there and remove the perchlorate contaminated soil that is above the groundwater protection level. anything that can leach from the soil into the groundwater would be stopped for perchlorate. Then the monitored natural attenuation performance will be This is for both perchlorate and tri -evaluated. They all look alike after a while. trichloroethene. Then if it's effective, monitoring would continue. it's not effective, a contingency remedy such as the in situ bioremediation. Subsequent monitoring would occur every five years until MCLs are met. In the case of perchlorate, it's actually a state level that

It's a promulgated state level, which is is used. 1 The land use controls will restrict industrial level. 2 groundwater use until clean-up levels are achieved, 3 and the estimated time to achieve clean-up here is 4 about 50 years. 5 This is the last of 50. Any questions? 6 We don't know whether MR. PAUL FORTUNE: 7 this well has contaminated the groundwater? 8 Pardon me? MS. SUSAN WATSON: 9 We don't know whether MR. PAUL FORTUNE: 10 this spill here has contaminated the groundwater? 11 MS. SUSAN WATSON: It is the water, the 12 13 groundwater --MR. PAUL FORTUNE: But the deeper. 14 MS. SUSAN WATSON: There are deeper wells 15 that were installed. There was no contamination in 16 the other levels. Only the shallow zone. 17 Any other MR. PRAVEEN SRIVASTAV: 18 19 questions? Okay. No more? MS. SUSAN WATSON: 2.0 Aaron, I think Aaron Williams will be talking about 21 Site 35B, which is also called 37 and LHAAP 67. 2.2 MR. AARON WILLIAMS: Hello, I'm Aaron 23 Williams. I'm with Tulsa Corps of Engineers. 24 going to be discussing the proposed plans for Site

25

35B, also known as 37 and Site 67. If you can't see these posters, I've got facts sheets. So Site 37 was the chemical laboratory and it was constructed in the 1953, 1955 time frame. It was constructed to support production activities at Longhorn. And it was also supporting activities for research and testing of materials that would go into the production activities at Longhorn. Site 67 was a former aboveground storage tank farm. There were seven storage tanks at this site of unknown sizes. And personnel indicate that the tanks were used to store solvents.

1.0

Longhorn. It's approximately 12 acres. It's asphalt-paved roads, several administrative buildings. The flow at this site is east northeast direction.

And for Site 67, it's about two acres and the groundwater flow at that site is an east southeast direction. There was a base line human health risk assessment performed for these two sites. The soil at the sites did not have a cancer risk or a non cancer hazard. The groundwater, however, for both sites did have a cancer risk and a non cancer hazard associated with them. And, again, that is for that potential maintenance worker. The chemicals of concern for this Site 37 had DCE, PCE, and TCE in the shallow

groundwater zone. And 67 had DCE, DCA, TCA, and TCE in the shallow groundwaters.

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

So the remediation action objectives for these sites is the protection of human health by preventing human exposure to the contaminated groundwater, protection of human health and environment by preventing contaminated groundwater from migrating into nearby surface water and then return the groundwater to its potential beneficial uses as drinking water wherever practical. There were four alternatives that were evaluated during this feasibility study. The first was the no action. The second alternative is land use control and monitored natural attenuation. You can see the cost on there for each of these alternatives as well. Alternative three, in situ bioremediation with land use controls. And then the fourth alternative, groundwater extraction, on-site treatment, and then the land use controls. Each of these alternatives were then evaluated with the nine criteria that have been discussed earlier on in detail. And the selection that we have for this proposed plan is alternative two which is the monitored natural attenuation with land It is consistent with intended future use controls. use of this site as wildlife refuge. It will satisfy

the RAO for the sites through groundwater restriction LUCs which will ensure protection of human health by preventing human exposure to contaminated groundwater. The monitored natural attenuation will assure protection of human health and environment by monitoring the contaminated groundwater to ensure the MNA returns the groundwater to its potential beneficial use as drinking water. Also it documents that the plume is not migrating into the nearby surface water bodies. And I think that covers the high points. The clean-up levels that are expected to be met is 43 years for 37 and approximately 66 years for Site 67.

Any comments? All right. Thanks.

MS. ROSE ZEILER: Thank you, Aaron. To kind of wrap this up, any remaining questions or comments on anything? Okay. I just wanted to ask if the EPA had any comments on these proposed plans?

MR. CARLOS SANCHEZ: First of all, I want to thank all of you for participating in this public meeting. It is very beneficial to the process of getting comments and questions from the public. So we appreciate your coming here and giving your time and helping us, you know, try to make sure that you understand what is being proposed and what the

remedies will be for the sites. EPA has worked closely with the Army for many years on the whole site and all of these different sites are being proposed to clean up together with the Texas Commission on Environmental Health Quality. And EPA is in agreement with the proposed remedies for all these different sites.

MS. ROSE ZEILER: Thank you, Carlos.

MS. FAY DUKE: TCEQ as well is in support of Army's selective remedy proposed.

MS. ROSE ZEILER: All right. Well, that concludes the meeting this evening. From the Army, thank you very much for attending. Your comments and questions, if they weren't answered in detail tonight, they will be responded to in the transcript. Thank you.

MR. CARLOS SANCHEZ: Now, your comments are officially of record and we will respond to them.

1	<u>CERTIFICATE</u>
2	
3	
4	
5	STATE OF LOUISIANA:
6	PARISH OF CADDO :
7	
8	I, Donna B. Crenshaw, Certified Court
9	Reporter, do hereby certify that the foregoing
LO	proceedings were had before me, and that they were
11	reported by me and this is a true and correct record
12	of the proceedings had in the public meeting held on
L3	March 9, 2010.
L 4	I further certify that I am related to or
L5	employed by any of the parties to this cause or in any
L 6	wise interested in the event thereof.
L7	SUBSCRIBED AND SWORN TO on this the 25th day
L8	of March, 2010.
L9	OFFICIAL SEAL DONNABLISSETT CRENSHAW
20	Certified Court Reporter in and for the State of Louisiana Certificate Number 93014 Certificate expires 12-31-10
21	
22	
23	(: UM Cellell) alla
24	Donna Blissett Crenshaw, CCR

25